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 A B S T R A C T

Wave runup observations are important for coastal management providing data to validate predictive models 
of inundation frequencies and erosion rates, which are vital for assessing the vulnerability of coastal ecosystems 
and infrastructure. Automated algorithms to extract the instantaneous water line from video imagery struggle 
under dissipative conditions, where the presence of a seepage face and the lack of contrast between the sand 
and the swash impede proper extraction, requiring time-intensive data quality control or manual digitization. 
This study introduces two novel methods, based on color contrast (CC) and machine learning (ML). The CC 
method combines texture roughness — local entropy — with saturation. Images are first binarized using 
entropy values and then refined through noise reduction by binarization of the saturation channel. The ML 
method uses a convolutional neural network (CNN) informed by five channels: the grayscale intensity and its 
time gradient, the saturation channel, and the entropy and its time gradient. Both methods were validated 
against nine manually labeled, 80 min video time series. The CC method demonstrated strong agreement with 
manually digitized water lines (RMSE = 0.12 m, 𝑟 = 0.94 for the vertical runup time series; RMSE = 0.08 m, 
𝑟 = 0.97 for the 2% runup exceedance (𝑅2%); and RMSE = 3.88 s, 𝑟 = 0.70 for the mean period (𝑇𝑚−1,0)). The 
ML model compared well with the manually labeled time series (RMSE = 0.10 m, 𝑟 = 0.96 for the vertical 
runup time series; RMSE = 0.09 m, 𝑟 = 0.97 for 𝑅2%; and RMSE = 3.51 s, 𝑟 = 0.79 for 𝑇𝑚−1,0). Furthermore, the 
computed 𝑅2% values of both methods show a good agreement with the formula proposed by Stockdon et al. 
(2006) for extremely dissipative conditions, with RMSE-values lower than 0.13 m and correlations exceeding 
0.70 for manual, CC, and ML estimates. While the CC method is deemed applicable for wave-by-wave analysis 
under similar dissipative conditions with a smooth seepage face and sufficient turbulent swash, the ML method 
still struggles with new, unseen data. However, it shows promise for a broader application and serves as a viable 
proof of concept. Together, these methods reduce the need for manual processing and enhance real-time coastal 
monitoring, contributing to more accurate predictive modeling of runup events and a better understanding of 
nearshore processes.
1. Introduction

Wave runup — the instantaneous position of the water’s edge on 
the beach face — is a key factor in coastal flooding, especially during 
high tide and storm surges (Tomás et al., 2016; Gomes da Silva et al., 
2016), and plays a critical role in sediment transport (Coco et al., 
2014). Accurate runup observations are essential for deepening our 
understanding of nearshore processes (Gourlay, 1992; Raubenheimer 
et al., 1999; Bertin et al., 2018), and for coastal management, pro-
viding data to validate predictive models of inundation frequencies 
and erosion rates, which are vital for assessing the vulnerability of 
coastal ecosystems (Ware et al., 2019, 2021) and infrastructure (Najafi 
et al., 2021). Measuring runup, however, is challenging due to its highly 
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dynamic nature, particularly during storm events. Video imagery offers 
a solution (e.g., Bergsma et al., 2019), enabling remote monitoring of 
the coastline and thus emerging as the preferred method for runup 
observation (Mendes et al., 2022).

Numerous image preprocessing techniques have been shown to en-
hance nearshore features from timestack images—generated by stack-
ing pixel arrays from sequential video frames over time, capturing 
temporal changes in wave runup. Manual selection is one of the old-
est methods for extracting runup from video images and, despite its 
laborious nature, remains widely used (e.g., Holman et al., 1993; 
Huisman et al., 2011; Power et al., 2011; Atkinson et al., 2017; Yang 
et al., 2022). This continued reliance on manual methods underscores 
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Fig. 1. Schematic overview of the development of runup analysis methods, with on the left the workflow of the camera-based runup estimates and on the right the empirical-based 
equivalent.
some limitations of automated approaches, despite recent advances in 
efficiency and accuracy.

Automated color contrast (CC) methods for runup extraction have 
been developed over the past few decades. Bailey and Shand (1994) 
proposed a grayscale image-based method that employed smooth-
ing, edge detection, contrast normalization, and path-finding tech-
niques. Though effective for relatively pristine data, the approach often 
smoothed smaller runup events and produced saw-tooth artifacts due to 
cut-off backwash. Color channel difference methods, such as in Turner 
et al. (2001), exploit color distinctions, computing red-blue channel 
differences to capitalize on the relative red dominance in sand and blue 
in water. Similarly, Simarro et al. (2015) introduced a pixel variance-
based method, effective in many conditions but inconsistent when 
runup occurred within the seepage face.

Pixel Intensity Clustering, PIC (Aarninkhof et al., 2005; Uunk et al., 
2010), was implemented into the Argus coastal monitoring system to 
segregate water from sand on time-averaged images. This method trans-
lates the red-green-blue (RGB) color space to the hue-saturation-value 
(HSV) color space and segregates pixels based on the two-dimensional 
histograms of color and luminance. In another approach, Zhang and 
Zhang (2009) developed roughness metrics based on local entropy in 
the HSV space. However, its performance under dissipative conditions 
has yet to be fully evaluated.

Despite all these attempts, complications often arise from CC meth-
ods when applied on dissipative beaches. If the effluent line, marking 
the boundary where water seeps back into the sand, is decoupled from 
the waterline — which is common under dissipative conditions — a 
thin layer of water remains on the sand, complicating the distinction 
between water and sand. Furthermore, under dissipative conditions, 
waves lose most of their energy before reaching the shoreline, resulting 
in subtle gradients that are harder to distinguish from background 
noise, especially for the backwash (Huisman et al., 2011). Almar et al. 
(2017) successfully used a Radon transformation method, validating it 
on a dissipative beach with high-energy conditions. This method sep-
arates the uprush and backwash components of runup, but it depends 
on sufficient wave energy for effective edge detection.

Recent research leverages Convolutional Neural Networks (CNNs) 
for automated recognition of water, sand, and wrack pixels (Kang 
et al., 2024a), with potential applications in stochastic flooding pre-
dictions (Kang et al., 2024b). However, the lack of georeferencing 
currently limits precise measurement applications. Collins et al. (2023) 
employed a CNN architecture, utilizing LiDAR data to extract the in-
stantaneous waterline from timestack images, with four input channels: 
2 
elevation, reflectance, and the variance of elevation across both space 
and time. Although they achieved very accurate results, the use of Li-
DAR data on temporary field campaigns remains a limiting factor due to 
the high cost and technical challenges during deployment, as well as the 
high computational demand involved with postprocessing (Kuschnerus 
et al., 2024). The use of multi-channel input has not been implemented 
yet for regular video imagery data. This raises the question of whether 
image preprocessing techniques could serve as effective input channels 
for a CNN algorithm to extract wave runup from video imagery.

Runup extraction from video imagery is a challenging task, par-
ticularly under highly dissipative conditions where the instantaneous 
waterline is difficult to distinguish due to subtle gradients and low im-
age contrast. Although advancements in video-based shoreline mapping 
have been made, as mentioned above, limitations are often observed 
due to sensitivity to environmental variability or a lack of robustness in 
dissipative settings. In this research, these gaps are addressed through 
the development and testing of automated frameworks tailored for 
such conditions. Video imagery collected from Galveston Island, Texas, 
along the Gulf of Mexico, was used to extract timestack images. Two 
novel methods were implemented: a CC method that leverages local 
entropy and the saturation channel from the HSV color space, and a 
multi-channel ML model incorporating preprocessed timestack images 
as input with manually labeled data for training. The methods were 
evaluated by comparing their runup metrics to manual delineations, 
and the measured runup statistics were compared with empirical esti-
mates to provide insights into their accuracy and applicability under 
challenging dissipative conditions. Fig.  1 provides an overview of the 
research workflow.

The paper is organized as follows: Section 2 describes the study 
area, details the data collection procedure, outlines the CC and ML 
methods, and describes the used runup metrics, while Sections 3 and
4 present and discuss the results. Finally, Section 5 summarizes the 
study’s conclusions.

2. Methods

2.1. Site characterization

Galveston Island, located on the Gulf Coast of Texas, USA, is a 
barrier island with sandy beaches situated approximately 50 miles 
southeast of Houston (Fig.  2). The region experiences mixed semidiur-
nal tides, with astronomical tidal ranges typically between 0.3 and 0.9 
m in the micro-tidal Gulf of Mexico (NOAA, 2024b). Local water levels 
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Fig. 2. In (a), the Gulf of Mexico and the coastal region near Houston, Texas; in (b), the mean elevation profile at the test location; in (c), the corresponding beach slopes; and 
in (d), a map of Galveston Island, with the campaign site indicated by a red dot and the Spotter wave buoy marked with a blue dot.
can vary significantly due to atmospheric pressure changes, wave-
induced setup, and wind tides, often exceeding the NOAA predictions 
of the astronomical tide by a factor of two (Lefevre et al., 2000; Huff 
et al., 2020).

Seasonal variation influences wave and current direction, with 
southeast-south waves dominant from November to February and
south-biased waves from June to August (NOAA, 2024a). During nor-
mal conditions, 95% of waves are under 1.3 m, and 99% are under 
2 m (Surf-Forecast, 2024). However, Galveston is highly impacted by 
tropical storms and hurricanes during the June–November hurricane 
season, with offshore waves exceeding 10 m observed during these 
events (Nayak and Panchang, 2015).

The Galveston barrier island formed approximately 5500 years ago 
and evolved into its current dissipative beach profile due to sediment 
redistribution driven by relative sea-level rise and storm activity, as 
described by Bruun (1962) and Swift (1968). The coastline has been 
further shaped by both natural processes and anthropogenic influences, 
resulting in sandy dissipative beaches characterized by typical beach-
face slopes of approximately 1:20 and dune-to-toe slopes of around 
1:10 (Fig.  2c). Its poorly graded beaches, with a D50 ranging between 
0.07–0.1 mm (US Amry Corps of Engineering, 2022), are characteristic 
of the region.

In 1900, a Category 4 hurricane devastated the island, causing 
10,000 fatalities and destroying over one-third of all buildings (Na-
tional Geographic, 2024). This tragedy prompted the construction of a 
15 km seawall, extending from the northeast jetty to the southwestern 
edge of the city. The field campaign was conducted on the beach 
fronting the seawall, which protects against storm surges. While the 
seawall protects the city from storms, it disrupts longshore sediment 
transport, exacerbating erosion southwest of the structure at rates of 
2 m/yr (Paine et al., 2020). Periodic beach nourishment along the 
seawall has mitigated this erosion, with the most recent effort in 2019 
using sediment from the shipping channel and with more than 38% of 
fines (Maglio et al., 2020; US Amry Corps of Engineering, 2022).

2.2. Data collection

2.2.1. Camera deployment
Video imagery of the instantaneous water line was collected during 

the TURTLE field experiments on Galveston Island in November 2023. 
3 
Here, the part of the field campaign relevant to this study is summa-
rized. A detailed description of the entire data collection campaign is 
provided in Christiaanse et al. (2025). The campaign included collect-
ing offshore wave data with a SOFAR Spotter wave buoy (Sofar Ocean 
Technologies Inc., 2023) located about 1.3 km from the shoreline, 
extracting wave runup data using video imagery from a GoPro camera, 
and real-time kinematic (RTK) beach elevation profiles with a Leica 
GS08 GPS.

During the data collection period, the tidal range was approximately 
0.8 m, with the local 10 min average water level (surge + tide) 
varying between 0.113 and 0.92 m NAVD88. Offshore wave heights 
(𝐻0) ranged from 0.82 to 1.76 m, with a mean of 1.11 m, while peak 
wave periods (𝑇𝑝) varied between 7.3 and 8.52 s, averaging 8.1 s.

The GoPro was strategically positioned to capture a comprehensive 
view of the transect, spanning from the distant horizon to the base of 
the dune (Fig.  3). It was securely enclosed within a protective box and 
mounted to a pole for stability and height. Through the Quick app, the 
real-time stream of the camera’s view was accessed, and the field of 
view was confirmed to meet all requirements.

Six ground control points (GCPs) were deployed within the camera’s 
field of view. These were strategically positioned above the waterline, 
ensuring visibility. Their arrangement was designed to cover the area 
of interest and prevent collinearity as much as possible. The precise 
locations of the camera and the six GCPs were determined using the 
Leica GS08 GPS RTK device with an accuracy of 3 cm.

2.2.2. Camera settings
A GoPro Hero 10 Black camera (23MP CMOS camera sensor, 16 mm 

f2.8 lens; GoPro Inc., 2021) was chosen for the measurement campaign 
due to its compact design, durable construction, and suitability for 
outdoor environments. Moreover, the GoPro’s flat lens enhances the 
camera’s ability to effectively shed raindrops, ensuring clear visibility 
during adverse weather conditions. The linear lens was adopted for 
filming to minimize distortion in captured images.

An important consideration in the camera selection process involved 
balancing temporal resolution and memory usage. GoPro cameras have 
a relatively high bit rate, which causes the memory to fill up quickly. 
The GoPro Hero 10 Black supports a maximum SD card storage of 
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Fig. 3. Visualization of GoPro installation (Figure 5 in Christiaanse et al., 2025). In (a), pictures of the GoPro box (a.1,a.2), a GCP (a.3), and the installed system (a.4). In (b), a 
schematic of the GoPro installation with the transect spanning from the horizon (A) to the dune toe (B).
128 GB. A frame rate of 2 frames per second (fps) was deemed sufficient 
to capture runup smoothly and was chosen through the time-lapse 
video option. The videos were recorded in 4 K to maximize the spatial 
resolution. With the above settings, one filming day (approximately 7 
to 9 h) translated to a data storage requirement of about 30 GB. Ac-
knowledging the limitation of the GoPro’s internal battery life, lasting 
approximately 1 h and 30 min at 2 fps and 4 K resolution, an exter-
nal battery was integrated into the setup, enabling daily monitoring 
without interruptions.

2.2.3. Camera calibration
Intrinsic camera calibration was performed individually for each 

camera and filming mode to tailor the calibration parameters to specific 
settings. The calibration procedure involved capturing a short video of 
a flat checkerboard pattern with known dimensions, observed under 
varying angles and distances. A selection of sharp frames, showing the 
complete checkerboard pattern, was extracted from the video, and the
OpenCV  for Python toolbox was employed to recognize corner points in 
these frames. Radial and tangential distortions — the fisheye effect and 
non-parallel alignment of the lens and image plane — were corrected 
using the OpenCV  toolbox. This resulted in a camera-specific calibration 
matrix encompassing focal lengths and optical center location with 
a corresponding Root Mean Square (RMS) reprojection error, which 
is required to remain sub-pixel. The obtained calibration matrix was 
then applied to undistort all videos filmed with the same camera and 
identical setting combination.

Extrinsic camera calibration involves the georeferencing of two-
dimensional undistorted images to real-world coordinates. The calibra-
tion process was accomplished through the solution of a photogram-
metric algorithm with six unknowns, comprising three rotation angles 
of the camera and the real-world coordinates of the camera in XYZ 
dimensions. The equation can be solved theoretically with three GCPs 
with known real-world and pixel coordinates, under the assumption 
that the camera and GCP positions are free of measurement noise and 
that the GCPs are not placed collinearly. However, in practice, addi-
tional GCPs are needed to improve the accuracy and reliability of the 
solution, as real-world conditions often introduce measurement errors 
and GCP placements that may approach collinearity. Six GCPs were 
deployed each time the camera was used, allowing for adjustments in 
case of measurement errors. The Matlab toolkit from Bruder and Brodie 
(2020) was used to approximate the solution, resulting in an equation 
linking each pixel (u, v) to real-world coordinates (x, y, z).

2.2.4. Manual digitization
Once the photogrammetric equation was solved, an averaged xy 

cross-shore transect was computed over each deployment and con-
verted into pixel coordinates. The corresponding RGB arrays from 
4 
Fig. 4. Snapshot of the manual digitization process.

Table 1
Data compendium with days, video IDs, start and end times.
 Day Video ID 𝑡𝑆𝑡𝑎𝑟𝑡 𝑡𝐸𝑛𝑑  
 2023-11-13 GX010081 13:46 15:06 
 2023-11-13 GX020081 15:06 16:26 
 2023-11-13 GX030081 16:26 16:54 
 2023-11-14 GX010084 08:50 10:10 
 2023-11-14 GX020084 10:10 11:30 
 2023-11-14 GX030084 11:30 12:50 
 2023-11-14 GX040084 12:50 14:10 
 2023-11-14 GX050084 14:10 15:30 
 2023-11-14 GX060084 15:30 16:50 

each frame were then extracted and stacked on top of one another 
to generate a timestack image, which provided a spatial and temporal 
representation of the transect.

The instantaneous position of the water line was manually digitized 
on nine timestack images of 80 min, except one that was 28 min and 
25 s long. A moving window was used to move along the timestack 
in time and select the contours of individual swash extends produced 
by the waves (Fig.  4). The swash motion includes a decelerating up-
rush phase and an accelerating downrush phase (i.e., backwash). The 
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Fig. 5. Diagram of the runup extraction process utilizing local entropy and saturation channel operations. In (a) the grayscale image with pixel intensity I (b) 𝑑𝐼∕𝑑𝑡, (c) the local 
entropy, (d) the corresponding histogram with Otsu’s threshold (Otsu, 1979), (e) the binarized image, (f) the saturation image, and in (g) the corresponding histogram with Otsu’s 
threshold, (h) the binarized saturation image with the effluent line in red, (i) the binarized entropy image cleaned from noise above the effluent line, and (j) the grayscale image 
with the computed instantaneous water line in red.
wave uprush was easily detected by a sharp white/gray contrast. The 
backwash, however, was less obvious to the eye. The reason for this 
complication related to backwash detection originates from the dissi-
pative character of the beach. When waves reach the shoreline, they 
have lost most of their energy already. As part of the swash motion, 
water infiltrates into the beach matrix during both the uprush and the 
backwash. The accelerating very shallow flow during backwash over 
an extremely gentle slope can result in an unclear delineation of the 
water and sand boundary. During manual digitization, the backwash 
was estimated by following the slope of the upper backwash where 
it was visible. In cases where the upper backwash was indistinct, an 
inverse slope to that of the uprush was applied to delineate the end of 
the wave before the next runup event.

While only one person was involved in the manual digitization of 
the runup, previous research by Buckley et al. (2024) showed that the 
RMSE of the 𝑅2% was small, ranging from 0.04 m to 0.1 m relative 
to the amplitude of the swash. This suggests that, despite the use of a 
single digitizer, the approach produces reasonably accurate results. The 
manually digitized timestack images are summarized in Table  1, with 
video IDs corresponding to the published raw data by Christiaanse et al. 
(2025).

2.3. Runup extraction methods

2.3.1. CC method
The CC method combines the concepts of entropy and saturation 

into a straightforward model based on channel operations, enabling 
efficient runup extraction on dissipative beaches (Fig.  5). The process 
begins with binarizing the image based on local entropy values, fol-
lowed by noise reduction achieved by removing all values above the 
effluent line, which corresponds to where groundwater intersects the 
beach surface, as determined through the binarization of the saturation 
channel of the image.

Local entropy was specifically employed to quantify the local com-
plexity within a timestack image. The dynamics of the swash zone are 
characterized by turbulent movements with a large range of gradients 
in both time and space and a smoother appearance (high complexity), 
which can be distinguished from the less dynamic and more smooth 
sandy areas (low complexity). To quantify this complexity, the entropy
function from the skimage.filters.rank module of the Scikit-Image library 
was applied to the time gradient of the grayscale image, 𝑑𝐼∕𝑑𝑡 (Fig. 
5b). This function computes the local entropy of an image, effectively 
highlighting areas of high complexity, such as those found in the swash 
zone.
5 
A local neighborhood was defined with the disk function from the
skimage.morphology module with a radius of 5 pixels. Then, the local 
normalized histogram was computed internally for each pixel according 
to: 

𝑝𝑖 =
ℎ𝑖

∑𝑛−1
𝑗=0 ℎ𝑗

(1)

where 𝑝𝑖 is the probability of intensity 𝑖 in the local neighborhood, 𝑛
is the number of distinct intensity levels, and ℎ𝑖 the pixel count per 
intensity entry 𝑖. Finally, the local entropy 𝐸 of the local neighborhood 
was computed as: 

𝐸 = −
𝑛−1
∑

𝑖=0
𝑝𝑖 log2(𝑝𝑖) (2)

This resulted in an image where each pixel represents the complex-
ity of the surrounding area, making it easy to distinguish between the 
swash and the beach (Fig.  5c). This was confirmed by the corresponding 
histogram, showing strong bimodality (Fig.  5d). After binarization by 
Otsu’s method (Otsu, 1979), some noise persisted (Fig.  5e). Notably, 
certain areas above the effluent line had high entropy. These corre-
spond to regions with a more textured sand surface (not smoothed by 
wave runup).

Under reflective conditions, the saturation or Red-Blue channel has 
been shown to segregate the swash from the sand quite well, as sand 
pixels contain more red than water pixels, while water pixels contain 
more blue (Turner et al., 2001; Aarninkhof and Ruessink, 2004; Uunk 
et al., 2010). However, on dissipative beaches, these methods do not 
delineate the swash as well, because the presence of a seepage face 
can disturb the signal (Huisman et al., 2011). This happens when the 
instantaneous water line is decoupled from the effluent line, resulting in 
a thin layer of water covering the beach above the swash and below the 
effluent line. Sand grains located in this area are then falsely classified 
as water. Hence, under dissipative conditions, the saturation or the Red-
Blue channel does not enhance the swash but delineates the effluent 
line instead. However, what initially appears to be a disadvantage can 
be turned into an advantage.

To handle the remaining noise in the entropy image, the saturation 
channel was obtained from the HSV color space with the OpenCV
library. Subsequent application of Gaussian blur over time with a 
201 × 1 kernel allowed for a clearer distinction between the regions 
above and below the effluent line (Fig.  5f). The strong bimodality of 
the corresponding histogram (Fig.  5g) further confirmed this distinction 
and allowed for binarization of the image using Otsu’s method (1979). 
The results clearly distinguished between the wet and the dry region 
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(Fig.  5h) and were used to remove the noise above the effluent line 
from the entropy image (Fig.  5i). Finally, the summation of the water 
pixels resulted in the runup estimates of the entropy-saturation method, 
delineated in red in Fig.  5j.

All runup delineations with the CC method were initially performed 
on full 90 min timestack images, with binarization thresholds computed 
based on characteristics over the entire time frame. A sensitivity analy-
sis was conducted on the computational window size to better capture 
local variations. Time windows ranging from 5 grid cells to 9000 grid 
cells were tested, and a window size of 500 grid cells (approximately 
4 min) was selected for its optimal balance between capturing local 
characteristics and maintaining stable results.

Another approach to address local temporal variations involved 
column-wise normalization of the processed images. However, testing 
different configurations, including normalizing saturation, entropy, or 
both, revealed no clear improvement. Normalizing entropy or both 
channels simultaneously slightly decreased model performance, while 
normalizing only the saturation channel had no overall effect on the 
model performance. Although it improved handling of high-
luminescence areas, it also reduced accuracy in regions where the 
seepage face was noisier. Given the lack of a consistent positive impact, 
column-wise normalization was not retained in the final method.

2.3.2. ML method
A second method was implemented to extract the runup position 

from timestack images using a relatively simple yet effective Convo-
lutional Neural Network (CNN), prioritizing computational efficiency 
while ensuring sufficient spatial and temporal resolution to capture 
wave runup dynamics.

The CNN algorithm was implemented using the keras.models module 
from the tensorflow library, with the spatial–temporal input dimen-
sionality set to small patches of 60 × 60 pixels across five channels: 
the grayscale image, 𝐼 , the intensity over time, 𝑑𝐼∕𝑑𝑥, the saturation 
channel, 𝑆, the entropy image, 𝐸, and the entropy over time 𝑑𝐸∕𝑑𝑡, 
resulting in an input shape of 60 × 60 × 5. This design balanced 
computational efficiency with adequate spatial and temporal resolu-
tion, effectively capturing the physical processes of wave runup. With a 
spatial resolution of 7 cm per pixel and a temporal resolution of 0.5 s, 
each patch covered 4.2 m and spanned over 30 s.

The network architecture is shown in Fig.  6. It is composed of a 
contracting path (on the left) and an expansive path (on the right). The 
contracting path adheres to the standard structure of a convolutional 
network, beginning with two 3 × 3 convolution layers with 32 and 64 
filters, respectively. Each convolution is followed by a ReLU activation 
function and a 2 × 2 max pooling operation for downsampling. The 
expansive path features a 3 × 3 up-convolution with a stride of 2, which 
upsamples the feature map, followed by another 3 × 3 convolution with 
stride 2 that reduces the feature map size from 64 to 32. The final layer 
is a 1 × 1 convolution with a sigmoid activation to produce a binary 
segmentation of the image.

The model was focused on distinguishing between water and sand, 
rather than directly identifying the water line. This decision was based 
on the observation that the manually selected water line likely con-
tained more inaccuracies than the broader classification of areas as 
either water or sand. Segregating water from sand presented a less 
error-prone task, as the extensive areas covered by each category 
provided more reliable and consistent data than the precise delineation 
of the water line, resulting in less class imbalance.

Initially, seven input channels were considered: the grayscale image, 
I, the intensity changes over time, 𝑑𝐼∕𝑑𝑡, the intensity changes over 
space, 𝑑𝐼∕𝑑𝑥, local entropy, 𝐸, the entropy changes over time, 𝑑𝐸∕𝑑𝑡, 
the original RGB image, and the saturation image, S.

During the first steps of the model development, k-fold cross-
validation was applied to an 80 min timestack image for efficient 
computation (Fig.  7). The data was split into five equal parts (folds), 
with four used for training and one for testing. This process was 
6 
Fig. 6. Network architecture of ML model.

repeated for all folds, and the average performance guided model 
selection, assessed by accuracy and precision. Accuracy was defined 
as the percentage of correctly predicted water and sand pixels relative 
to the manually labeled timestack and is expressed as: 

Accuracy =
Number of correctly predicted pixels

Total number of pixels × 100% (3)

and the standard deviation of the accuracy in between folds: 

Precision = 𝜎𝑎𝑐𝑐 =

√

∑𝑘
𝑖=1(𝑥𝑖 − 𝜇𝑎𝑐𝑐 )2

𝑘 − 1
(4)

where 𝑥𝑖 represents the accuracy of fold 𝑖 𝜇𝑎𝑐𝑐 is the mean accuracy in 
between folds, and 𝑘 is the total number of folds.

First, the optimal dimensions for Gaussian smoothing kernels on 
the grayscale image were assessed to improve noise reduction while 
preserving relevant features. The smoothing process involved applying 
weighted averages to pixels based on a Gaussian function, with closer 
pixels having more influence. Using OpenCV ’s GaussianBlur function, 
two kernel types were evaluated: a horizontal kernel (n ×1) and a 
square kernel (n ×n), with different values of n tested via k-fold cross-
validation. The best-performing kernels according to accuracy and 
precision were retained: a 3-pixel horizontal kernel (time smoothing) 
and a 3 × 3 square kernel (time and space smoothing).

Second, for every considered input channel the horizontal and 
squared smoothing kernels were evaluated to the no-smoothing base-
line. A pairwise comparison evaluated the effect of smoothing on model 
accuracy and variance of every single-channel ML model, using a t-test 
for mean accuracy and an f-test for variance. A significance threshold 
of 𝛼 = 0.05 was applied. If the square kernel did not reduce accuracy 
or increase variance, it was preferred because it maximized smoothing 
while preserving key features. If the square kernel led to accuracy loss 
or increased variance, the horizontal kernel was chosen as an alterna-
tive. If neither smoothing method provided a performance advantage, 
the no-smoothing baseline was used. The grayscale (𝐼) and RGB images 
showed no improvement with smoothing, so the no-smoothing baseline 
was retained. For the entropy (𝐸), 𝑑𝐸∕𝑑𝑡, 𝑑𝐼∕𝑑𝑥, and saturation (𝑆) 
images, the square kernel maintained accuracy and precision, making 
it the preferred choice. However, 𝑑𝐼∕𝑑𝑡 experienced a precision drop 
with the square kernel but performed well with a horizontal time-axis 
kernel, avoiding excessive loss of details.

Third, all 127 combinations of the seven input channels were evalu-
ated. Beforehand, the input channels were normalized to ensure that all 
inputs contributed equally to the learning process, preventing features 
with larger scales from dominating. On a laptop equipped with an Intel 
Core i7 processor and 16 GB of RAM, this took approximately 10 h to 
complete. Finally, the channel combination with the highest accuracy 
was retained: a model informed by 𝐼 , 𝑑𝐼∕𝑑𝑥, 𝑆, 𝐸, and 𝑑𝐸∕𝑑𝑡.
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Fig. 7. Optimization and evaluation scheme of ML model for runup extraction.
Fourth, the training set was expanded to include a broader range 
of conditions. During the first optimization steps, the ML algorithm 
was developed by k-fold cross-validation on a single timestack (video 
ID: GX060084), to accelerate the optimization process. This model 
(𝑀𝐿1) was validated on a new timestack (video ID: GX050084) and the 
results were compared to a model trained on all remaining timestack 
images (𝑀𝐿8). To assess the performance 𝜇𝑎𝑐𝑐 and 𝜎𝑎𝑐𝑐 metrics of 𝑀𝐿8
a 9-fold cross-validation was performed using all labeled timestacks. 
Additionally, the added value of a multi-channel informed model was 
assessed by comparing it to a single-channel model informed solely by 
a grayscale image and trained on eight timestacks (𝑀𝐿8;𝐼 ).

2.4. Evaluation of runup measurements

2.4.1. Comparison with manual results
Once the instantaneous shoreline was delineated from the timestack 

images, the pixel coordinates were converted to real-world coordinates 
with the solved photogrammetric equation (Section 2.2.3). An elevation 
time series 𝑅(𝑡) was obtained from which runup statistics (𝑅2% and 
𝑅50%) were computed.

The mean runup period 𝑇𝑚−1,0 of the runup delineation methods 
is assessed through spectral decomposition of the runup time series. 
The spectra are computed over a duration D of 30 min with blocks of 
length D/16 which satisfies a trade-off between spectral resolution and 
reliability. Then, the mean period 𝑇𝑚−1,0 is computed as 𝑚−1∕𝑚0. With 
𝑚0 and 𝑚−1, the zeroth and the -1st spectral moments. The mean runup 
period 𝑇𝑚−1,0 is often used in wave runup as it gives relatively more 
weight to the lower frequencies, which dominate the runup processes, 
especially on gently sloping beaches. The runup metrics obtained using 
both the CC and ML methods were evaluated against the manual results 
by calculating the root-mean-square error (RMSE) and the correlation 
coefficient (𝑟).

2.4.2. Empirical estimates
The ultimate goal is to predict wave runup, so the measured runup 

values were compared to the most common empirical estimates of 𝑅2%: 
the general expression from Stockdon et al. (2006): 

𝑅2% = 1.1
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(5)

and the reduced formula for extremely dissipative conditions (applica-
ble when the surf similarity parameter 𝜉 < 0.3): 
𝑅2% = 0.043(𝐻0𝐿0)1∕2 (6)

where 𝛽𝑓  is the foreshore slope or beach slope, 𝐻0 is the deep-water 
significant wave height, and 𝐿  is the deep-water wave length.
0
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Table 2
Comparison of multi- and single-channel ML algorithms.
 ML model # Training 𝑟 (−) 𝜇𝑎𝑐𝑐 (%) 𝜎𝑎𝑐𝑐 (%) 
 𝑀𝐿1 Multi-channel 1 0.70 96.09 0.42  
 𝑀𝐿8 Multi-channel 8 0.77 93.03 1.40  
 𝑀𝐿8,𝐼 Single-channel 8 0.66 90.92 2.23  

The deep-water wave conditions, 𝐻0 and 𝑇𝑝, were derived from the 
wave data recorded by the Spotter buoy, approximately 1.3 km offshore 
from the site at a depth of ±8 m during low tide. The significant wave 
height at that location was translated back to the deep-water significant 
wave height 𝐻0 iteratively through the dispersion relation. Refraction 
was disregarded under the assumption of alongshore uniformity and 
normal incident waves. Energy losses due to white capping or wave 
breaking were also neglected.

Mean water level data (tide + wind surge) were obtained from a 
nearby NOAA station at the North Jetty of the Galveston Bay entrance 
(Station ID: 8771341, Location: 29.357◦N, 94.725◦W). The total water 
level was computed as the sum of the observed mean water level 
and the wave runup predicted by either the general expression or the 
formula for extremely dissipative conditions (Stockdon et al., 2006). 
Three empirical runup estimates were evaluated. Two were based on 
the general Stockdon formula, using beach slopes of 0.016, the smallest 
measured slope at the dune toe (Fig.  2b) representing the most dissipa-
tive conditions, and 0.1, a standard value for more reflective conditions, 
to assess the effect of the input slope on the results. Additionally, 
the reduced formula for extremely dissipative conditions was applied, 
which does not require a beach slope input.

3. Results

3.1. ML method optimization

When considering the ML method itself, it appears that the multi-
channel ML approach significantly outperformed the single-channel 
model according to the correlation coefficient, 𝜇𝑎𝑐𝑐 , and 𝜎𝑎𝑐𝑐 metrics 
(see Table  2).

Expanding the training dataset in multi-channel models improved 
model performance, as shown by an increase in the correlation co-
efficient with the manual results from 0.70 to 0.77. However, 𝜇𝑎𝑐𝑐
decreased, and 𝜎𝑎𝑐𝑐 increased when the training set was expanded to 
all labeled data. Initially, when k-fold cross-validation was performed 
within a single timestack, the model achieved an accuracy of 96.09% 
with a standard deviation of 0.42%. However, with the expanded 
training set, the mean accuracy dropped to 93.03%, and the standard 
deviation increased significantly, indicating greater variability and less 
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Fig. 8. Section timestack from November 14th (video ID: GX050084), with the manually digitized water line (back dashed), and the CC (blue solid) and ML results (red solid).
Table 3
Correlation and RMSE of 𝑅(𝑡), 𝑅2%, 𝑅50%, and 𝑇𝑚−1,0 from the ML and CC methods 
compared to manually digitized for all measurements on November 13th and 14th.
 𝑅(𝑡) 𝑅2% 𝑅50% 𝑇𝑚−1,0

𝑟 (–) RMSE (m) 𝑟 (–) RMSE (m) 𝑟 (–) RMSE (m) 𝑟 (–) RMSE (s) 
ML 0.96 0.10 0.97 0.09 0.99 0.05 0.79 3.51  
CC 0.94 0.12 0.97 0.08 0.99 0.05 0.70 3.88  

onsistent performance. However, when zooming in on the individual 
olds of the multi-channel model trained on the extended set, the accu-
acy was lower when the validation timestacks were from November 
3th, with fewer timestacks. Specifically, the average accuracy was 
1.21% with a standard deviation of 0.78%. In contrast, November 
4th had more timestacks, an average accuracy of 93.94%, and a 
tandard deviation of 0.41%. Possible causes for this discrepancy might 
e that the validation timestacks from November 13th had higher data 
ariability, or that the model did not have enough similar samples from 
hat day compared to November 14th. This suggests that the model 
as better tested for under- and over-fitting when cross-validated on 
 larger and more diverse set of timestacks, capturing a wider range of 
onditions, hence improving generalization.

.2. Comparison with manual delineation

A section of the timestack from November 14th was selected to 
llustrate the results of both the CC and the ML method, alongside 
he manually digitized runup (Fig.  8). Both methods demonstrate very 
trong correlations with the manual results. For the full runup time 
eries 𝑅(𝑡), the correlation coefficients are 0.96 for the ML method 
nd 0.94 for the CC method, indicating an excellent linear relationship 
etween the predicted and manual values. The corresponding RMSE 
alues are approximately 10 cm and 12 cm for the ML and CC meth-
ds, respectively, representing an error of around 16% relative to the 
aximum runup amplitudes, which is considered reasonable (Table  3).
However, the performance of both methods fluctuates over time. In 

he left section of the image, where the swash appears less distinctly 
hite and horizontal seepage lines are visible, both methods demon-
trate difficulties in accurately estimating the runup. They tend to 
verestimate the shoreline position compared to the manually digitized 
esults. This discrepancy suggests that the models may struggle with 
reas where the swash zone has lower contrast and with non-wave 
eatures in the seepage face such as horizontal lines.
The estimated runup percentiles 𝑅2% and 𝑅50% show good agree-
ent with the manual method, which is confirmed by high correlation 
8 
coefficients of 0.97 and 0.99, respectively, indicating a solid linear 
relationship between the ML and CC runup statistics and manual values. 
Additionally, the RMSE values for runup heights are relatively low 
(0.05–0.09 m), indicating minor deviations from the manually digitized 
water line (Table  3). This low error metric further validates the accu-
racy of the ML and CC methods in estimating runup heights, enhancing 
their reliability for practical applications in coastal management. This 
is especially true for 𝑅2%, which is often used in extreme value analysis.

From Fig.  9a, it is clear that over the considered period, most energy 
is contained in the infragravity band of the spectra. On November 14th 
from 12:30, some more energy is found in the sea-swell part of the 
spectra located above the infragravity frequency band. In Fig.  9b and 
c, the manual spectra and the differences between the ML and CC 
spectra compared to the manual spectra are shown (ML - manual and 
CC - manual). Positive values (red) correspond to overestimation by the 
method, while negative values (blue) correspond to underestimation 
by the method. For both methods, the difference in energy density is 
largest around the peak frequency, located in the infragravity band 
(0.004 Hz–0.04 Hz). Overall, the methods tend to slightly underesti-
mate the energy contained around the peak, except for the ML method 
on November 13th around 17:00, suggesting it might be capturing a 
larger amplitude wave runup. This may be due to the tendency to 
manually digitize the waves retreating further after each backrush and 
because manual digitization follows the peaks more closely than the ML 
and CC methods, which tend to round them off. However, the difference 
across methods remains within the 90%-confidence interval of the 
energy density spectra, meaning that the deviations are not significant. 
The methods do not present a significant difference in the sea-swell 
part of the spectrum. They all show reduced oscillation values in the 
sea-swell domain, which is typical as this component represents higher 
frequency waves that generally contain less energy in the nearshore due 
to breaking and dissipation.

From the plots, it appears that the Very Low Frequency (VLF) band 
is slightly underestimated by both methods. However, this is an artifact 
of the interpolation method of the plotting options, as the frequency 
resolution (𝛿𝑓 ) is 0.009 Hz, meaning that VLF components fall out of 
the resolution range.

The model’s performance is satisfactory when considering the mean 
wave period (𝑇𝑚−1,0). The corresponding mean wave frequency (𝑓𝑚−1,0) 
derived from both the ML and CC methods closely follows that obtained 
from the manual results, as shown in Fig.  9b and c. The ML model 
shows a correlation coefficient of 0.79, while the CC method has 
a slightly lower correlation coefficient of 0.70. Also, the differences 
remain tolerable as the magnitude of the mean wave period is not too 
far off. The RMSE for 𝑇  remains within 10% of the observed values 
𝑚−1,0
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Fig. 9. Spectrogram of the extracted runup: manually digitized results (a), and the spectral difference between ML and Manual (b), and CC and Manual (c). The horizontal dashed 
lines indicate the limits of the infragravity band, while the solid lines represent the peak frequency (𝑓−1;0). From 2023-11-13 13:46:00 to 2023-11-13 16:54:24, and from 2023-11-13 
13:46:00 to 2023-11-14 10:10:00.
(𝑇𝑚−1,0 ∼ 40 s), at 3.51 s for the ML model and 3.88 s for the CC method 
(Table  3). This indicates that the models accurately predict the timing 
aspects of the runup, which is crucial for dynamic assessments, such as 
predicting the frequency of inundation.

3.3. Runup measurements and empirical estimates

Since the ultimate objective is to predict wave runup, the runup 
observations from the manual, ML, and CC methods were evaluated 
9 
against empirical estimates of Stockdon et al. (2006). The runup pre-
dictions were made according to the general formula with two different 
beach slopes (𝛽 = 0.1, and 𝛽 = 0.016), and the formula for extremely 
dissipative conditions. The results are displayed in Fig.  10.

All methods and predictions exhibit an increasing trend in 𝑅2%
throughout the day on November 13th and November 14th. Each 
observation method demonstrates a high correlation (greater than 0.7) 
with the empirical estimates, which is expected given that a significant 
portion of the estimates is derived from the observed mean water levels 
(tide + surge) from the NOAA station. However, there are notable 
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Fig. 10. Runup observations and estimates of 𝑅2% on November 13th and November 14th, 2023. Observations include manual, ML, and CC methods. Estimates are based on 
the general Stockdon formula (with 𝛽 = 0.1 and 𝛽 = 0.016), and the Stockdon formula for extremely dissipative conditions. The time ranges are from ‘2023-11-13 13:46:00’ to 
‘2023-11-13 16:54:24.5’ and from ‘2023-11-13 13:46:00’ to ‘2023-11-14 10:10:00’.
differences in the 𝑅2% values predicted by the different Stockdon 
implementations.

The Stockdon formula with 𝛽 = 0.1 consistently predicts the highest 
𝑅2% values, which is confirmed by the higher RMSE values for all three 
methods: 0.38 for Manual, 0.51 for ML, and 0.50 for CC. For a beach 
slope of 𝛽 = 0.016, the predicted 𝑅2% values are lower than those for 
𝛽 = 0.1. Correspondingly, the RMSE values are smaller, at 0.16, 0.28, 
and 0.27 for Manual, ML, and CC methods, respectively.

The dissipative Stockdon formula appears to align best with the 
observations. It shows the lowest predictions and maintains a high 
correlation across all observation methods, with r values of 0.71 for 
manual, 0.83 for ML, and 0.83 for CC. This runup formula also mini-
mizes the RMSE, achieving values of 0.08 for manual, 0.13 for ML, and 
0.13 for CC.

Notably, all runup estimates show the least alignment with runup 
observations during low tide, while they follow the observations during 
mid- and high tide more closely. This trend is also evident in the runup 
estimates derived from the Stockdon formula for extremely dissipative 
conditions. During high tide, the estimates align almost perfectly with 
the observations, whereas during low tide, discrepancies can reach up 
to 20 cm. This aligns with observations by Stockdon et al. (2006), who 
noted a significantly lower correlation between estimates and observed 
values during low tide (𝜌 = 0.29) compared to mid- to high tide 
(𝜌 = 0.52), attributable to the shallower depth of the nearshore platform 
causing waves to break further offshore.

4. Discussion

The results of this study highlight the potential of machine learn-
ing (ML) and color contrast (CC) methods to accurately delineate 
runup contours in timestack images derived from video imagery under 
the challenging conditions of dissipative environments. Both methods 
showed a strong correlation with manually digitized waterline data, as 
evidenced by the full runup time series 𝑅(𝑡), runup statistics 𝑅2% and 
𝑅50%, and mean runup period 𝑇𝑚−1,0. However, the findings also reveal 
critical challenges and opportunities for enhancing the accuracy and 
reliability of these methodologies.

Entropy, combined with saturation to reduce noise above the efflu-
ent line, proves effective for runup extraction. Previous studies demon-
strate that spatial pattern analysis aids shoreline detection in satellite 
images (Fuse and Ohkura, 2018), and topographical LiDAR data identi-
fies the swash zone through surface roughness variations (Wang et al., 
2023). As a roughness metric, local entropy shows strong potential 
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for isolating the turbulent swash zone from sand, highlighting again 
the efficacy of roughness-based approaches for swash detection on 
dissipative beaches (Zhang and Zhang, 2009).

However, the CC model still has limitations. It requires a smooth 
seepage face to perform well; otherwise, high entropy values in the 
seepage face lead to an overestimated water line and the introduction 
of high frequencies. Additionally, the model needs a certain level of 
turbulence in the swash zone. Without it, the swash is characterized 
by patches of low entropy, leading to an underestimated water line. 
This issue is particularly pronounced in the backwash of singular runup 
events. Window size reduction enhanced the model performance and 
is an essential metric. Column normalization of the saturation channel 
improved the CC method’s performance in certain sections of the 
timestack images but diminished it in others. Further research is needed 
to assess the robustness of this approach.

As for the ML model, the primary challenge is related to the training 
set size and composition. Initial attempts to train the ML model on 
a limited dataset revealed that a single timestack lacked the vari-
ability needed to capture complex coastal conditions, such as high 
luminescence or irregular seepage faces. The implementation of k-fold 
cross-validation across nine labeled timestacks significantly improved 
correlation with the manual results. However, this increased data also 
introduced an imbalance, with a disproportionate number of timestacks 
from November 14th compared to November 13th, which may have led 
to overfitting, which led to a decrease in mean accuracy as the train-
ing set was enlarged. Future work should prioritize balanced training 
datasets, potentially through data augmentation techniques, to ensure 
robust model performance across diverse environmental conditions.

When the estimations were extrapolated to new time series, the 
ML model occasionally failed to accurately capture the water line due 
to specific characteristics of the new timestack images. These errors 
remained infrequent and did not significantly impact broader runup 
statistics over extended periods, such as trends across tidal cycles or 
seasonal variations. For wave-by-wave analysis, future research should 
focus on extending the training to more extensive and diverse coastal 
regions and environmental conditions to improve the model’s robust-
ness. Alternatively, to overcome the incorrect runup extraction due to 
new unknown artifacts, it might be beneficial to add synthetic artifacts 
during training on the timestack images. This process, called data 
augmentation, could also help in raising a flag when strange patterns 
are encountered.

Another critical aspect of model optimization is the establishment 
of reliable ground truth data. Although manually digitized water lines 
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serve as a useful baseline, they are inherently subjective and may 
not accurately represent the true water line, especially in dissipative 
beach environments where distinguishing backwash can be challeng-
ing. Integrating alternative measurement techniques, such as LiDAR 
or resistance wire data, could provide more accurate ground truth 
references, facilitating further improvements in the ML model.

Collins et al. (2023) developed a CNN model incorporating multi-
channel LiDAR data, including elevation. While video imagery lacks 
direct height maps, solving the photogrammetric equation enables 
projection from pixel coordinates to 3D coordinates if accurate beach 
profile measurements are available. This elevation map can then serve 
as an additional channel, aiding in distinguishing sand from water 
along the cross-shore. If profile data are unavailable, a linear function 
could approximate the effect.

Also, combining channels into new ones by averaging might help 
balance certain extreme features by reducing the variance of the newly 
generated input channel. This method is called ensemble averaging 
and ‘has been frequently compared to the individual estimators, and in 
many cases improves the resultant model accuracy’ (Hashem, 1997).

Another possible improvement could be the addition of other covari-
ates such as temperature, wind speed, offshore wave characteristics, 
atmospheric pressure, or humidity. While these variables may not be 
available at the same timescale as the runup events, they could be 
obtained from local measurement stations and incorporated as one-
dimensional metrics in the learning process to improve the model’s 
accuracy and robustness. This process, known as statistical downscal-
ing, has been successfully implemented for medium-term shoreline 
prediction (Antolínez et al., 2019).

In this study, the best channel combination was chosen based 
on the highest accuracy. It might be beneficial to conduct a fea-
ture importance analysis to identify and prioritize the most significant 
channels (Verdinelli and Wasserman, 2023), so they can be weighted 
dynamically during the training (Turali et al., 2024). Also, the chan-
nels were combined linearly. Exploring non-linear combinations could 
enhance the model’s ability to capture complex interactions in runup 
phenomena, potentially leading to more accurate predictions. Non-
linear methods can better represent underlying dynamics, though they 
also increase model complexity and the risk of overfitting. A larger 
training set would be needed to offset these risks, and the associated 
computational costs should be considered.

The CNN architecture in this study was intentionally kept shal-
low, and with 60 × 60 input patches to accommodate computational 
constraints, limiting the model’s ability to capture larger spatial pat-
terns crucial for runup continuity. Using larger patches could improve 
generalization on unseen data, reduce edge effects, and benefit from 
advanced padding techniques to better manage border-related chal-
lenges (Hamwood et al., 2018). Combining larger patches with a deeper 
architecture could help uncover hidden patterns, enabling the model 
to more effectively identify complex spatial and temporal relation-
ships. Future research could refine the CNN approach by experimenting 
with different pooling methods, activation functions, and optimizers to 
enhance feature extraction and convergence rates. For example, incor-
porating a mixed loss function that combines the initial classification 
of water and sand with regression of runup values could create a more 
targeted training strategy. Additionally, adding a third classification 
for the seepage face could improve predictive accuracy by helping 
the model better differentiate between water, sand, and seepage faces. 
Recent work by Kang et al. (2024a) classified coastal video images into 
three categories: ‘water’, ‘sky’, and ‘background’ (or beach), with the 
‘sky’ category, included to reduce misclassified water pixels.

5. Conclusions

Accurate runup observations are essential for deepening our under-
standing of nearshore processes and supporting coastal management, 
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offering critical data to validate predictive models of inundation fre-
quencies and erosion rates. The goal of this study was to develop a 
method for extraction of wave runup from video imagery under the 
challenging swash conditions of dissipative beaches. To this end, two 
methods were developed, based on color contrast (CC) and machine 
learning (ML). The CC method, using local entropy and saturation, 
showed strong agreement with manual results, achieving an RMSE 
of 0.12 m and 𝑟-value of 0.94 for the full time-series (𝑅𝑡), 0.08 m 
RMSE and 𝑟-value of 0.97 for 𝑅2%, and 3.88 s RMSE and 𝑟-value of 
0.70 for 𝑇𝑚−1,0, indicating its applicability to similar beaches along the 
northern Gulf of Mexico. However, it is important to recognize that 
when the seepage face is not smooth, high entropy values can lead to 
overestimated water lines and high-frequency noise, while insufficient 
turbulence in the swash zone may cause an underestimation of the 
water line.

This study also demonstrated the promising potential of image pre-
processing techniques in enhancing a CNN for wave runup extraction 
from video timestack images. The developed ML method, informed 
by five input channels (𝐼 , 𝑑𝐼∕𝑑𝑥, 𝑆, 𝐸, and 𝑑𝐸∕𝑑𝑡) showed strong 
agreement with manual results at the test site, achieving an RMSE of 
0.10 m and an 𝑟-value of 0.96 for 𝑅𝑡, 0.09 m RMSE and 𝑟-value of 0.96 
for 𝑅2%, and an RMSE of 3.51 s with an 𝑟-value of 0.79 for 𝑇𝑚−1,0. When 
compared to a single-channel input model, the added value of multiple 
input channels was evident, as it led to an increased correlation with 
the manual results (from 0.66 to 0.77). These results establish the 
model as a viable proof of concept for runup delineation under the 
given local conditions, despite occasional inaccuracies when applied to 
new, unseen datasets. To improve the model robustness, future research 
should focus on expanding the training dataset, exploring data augmen-
tation techniques, and utilizing more reliable ground truth data such as 
LiDAR. Further optimization of the model could involve experimenting 
with different input channels, pooling methods, activation functions, 
and optimizers, as well as increasing patch size and network depth to 
capture larger spatial patterns. Additionally, integrating a mixed loss 
function that combines regression and classification tasks and adding 
a third classification for the seepage face could enhance predictive 
accuracy. Finally, incorporating external covariates like environmen-
tal variables or conducting feature importance analysis could further 
improve the model’s generalization and performance.

Additionally, the observed 𝑅2% values show strong agreement with 
the formula proposed by Stockdon et al. (2006) for dissipative condi-
tions, with RMSE values lower than 0.13 m and 𝑟-values exceeding 0.70 
for manual, CC, and ML estimates. These results further support the 
reliability of our methods, which enable wave-by-wave runup extrac-
tion even in highly dissipative environments. This improved detection 
of short-term fluctuations enables a better understanding of swash 
zone dynamics, erosion, and local flooding events and contributes to 
more precise predictive modeling. By providing more accurate runup 
measurements, our approach strengthens coastal hazard assessments 
and supports better informed management strategies.

Based on the current results, the CC method is recommended as a 
ready-to-use approach, providing reliable and accurate results under 
dissipative beach conditions with a smooth seepage face and enough 
turbulence in the swash zone. In contrast, the ML method shows 
significant potential for broader applications, particularly as it is fur-
ther refined and trained on larger datasets, which will enhance its 
robustness and reliability, extending its applicability beyond dissipative 
conditions.
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