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ABSTRACT

Context. The detection and characterization of exorings (rings around exoplanets) will help us to better understand the origin and
evolution of planetary rings in the Solar System and beyond. However, exorings are still elusive, and new and clever methods for
identifying them need to be developed and tested.
Aims. We explore the potential of polarimetry as a tool for discovering and characterizing exorings.
Methods. For this purpose, we improved the general publicly available photometric code Pryngles by adding the results of radiative
transfer calculations with an adding-doubling algorithm that fully includes polarization. With this improved code, we computed the
total and polarized fluxes and the degree of polarization of model gas giant planets with or without rings. Additionally, we demonstrate
the versatility of our code by predicting the polarimetric signal of the puffed-up planet HIP 41378 f as if it had an exoring.
Results. Spatially unresolved dusty rings can significantly modify the flux and polarization signals of the light that is reflected by a gas
giant exoplanet along its orbit. Rings are expected to have a low polarization signal, but they will decrease the degree of polarization
of reflected light when they cast a shadow on the planet and/or block part of the planet. The most diagnostic feature of a ring occurs
around the ring-plane crossings when sharp changes in the flux and degree of polarization curves are predicted by our model. When
we applied our methods to HIP 41378 f, we found that if it is surrounded by a ring, noticeable changes in the degree of polarization of
reflected light will arise. Although the reflected light on the planet cannot yet be directly imaged, the addition of polarimetry to future
observations would aid in the characterization of the system.

Key words. polarization – methods: numerical – planets and satellites: rings

1. Introduction

The discovery of planetary rings, hereafter exorings, remains
elusive (see e.g. Piro & Vissapragada 2020 and references
therein) for all exoplanets that were discovered so far, even
though most of these planets are gas giants. Although the
absence of exorings might seem like an unsolved mystery, it
might be due to the limitations of the methods and techniques
we use to detect them. The fainter rings around the giant plan-
ets in the Solar System, especially those of Jupiter, Uranus, and
Neptune, were discovered through in situ observations by space-
craft, or through the detection of anomalies in the light curve of
stellar occultations (Charnoz et al. 2018).

Current efforts to detect exorings using planetary transits
have been unsuccessful thus far. One interesting explanation for
this fact might be that the signal of many exorings is hidden
among the trove of available photometric data, but is misinter-
preted as large puffed-up planets (Zuluaga et al. 2015, 2022;
Ohno & Fortney 2022). Ringed exoplanets would project a larger
⋆ Corresponding authors; a.k.veenstra@tudelft.nl;
jorge.zuluaga@udea.edu.co;
mario.sucerquia@univ-grenoble-alpes.fr

area on the stellar disk than an exoplanet without rings, and this
type of exoplanet also has a larger apparent size when observed
indirectly through planetary transits. To circumvent this problem,
it has been suggested that rings might be detected in reflected
light rather than during a transit (Arnold & Schneider 2004;
Dyudina et al. 2005; Sucerquia et al. 2020). Planetary rings can
contribute to a noticeable increase in stellar flux during most
of their orbit and depending on the geometry of the system
(Sucerquia et al. 2020; Lietzow & Wolf 2023). The detection of
these photometric anomalies could reveal the presence of a ring
and help us to characterize it.

Moreover, scattered light and polarization measurements
have recently emerged as a crucial tool in the study of exo-
planets. These measurements reveal valuable information about
the properties of the exoplanet that cannot be obtained using
traditional techniques. For instance, instruments such as the
Spectro-Polarimetric High-contrast Exoplanet REsearch/Zurich
IMaging POLarimeter (SPHERE/ZIMPOL) intend to use light
that is polarized from planetary surfaces to characterize cold
planets (Knutson et al. 2007; Schmid et al. 2018). Other studies
have proposed similar methods for the detection and characteri-
zation of directly imaged exoplanets (see, e.g. Stam et al. 2004;
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Karalidi et al. 2012, 2013; Stolker et al. 2017). All of these
techniques, along with the appropriate instruments, might help
us understand the nature of many extrasolar systems whose
behaviors are still awaiting an explanation. This is the case, for
instance, of the phase curve of 55 Cancri, whose time-varying
occultation depth (Tamburo et al. 2018; Morris et al. 2021; Meier
Valdés et al. 2022) defies current models of light reflection
and emission (Demory et al. 2023), or of the discovery of hot
so-called puffed-up planets that appear to have extraordinarily
low densities (Piro & Vissapragada 2020), such as HIP 41378 f
(Akinsanmi et al. 2020; Alam et al. 2022).

In anticipation of these new instruments and measurement
techniques, we continue our work on a numerical model, called
Pryngles, that can model both the reflected light curve and
the transit. In Zuluaga et al. (2022) we introduced Pryngles1,
a novel Python package, and we fully implemented and tested
the novel geometrical model that characterizes our approach,
namely, a decomposition of the bodies into so-called spangles.
The code uses a planetocentric description of the relative posi-
tion of the star, planet, and ring. The original version used
a simplified treatment of reflection and scattering and did not
include polarization.

In this paper, we present, test, and apply an updated ver-
sion of Pryngles that enables the computation of total and
polarized fluxes and the degree and direction of polarization for
ringed exoplanets. To accomplish this, we used realistic phase
curves calculated by an adding-doubling radiative transfer algo-
rithm (for the planetary atmospheres) and experimental data (for
ring particles), which includes polarization at all orders of light
scattering.

We used this updated model to investigate the effect of a
ring on the reflected light and polarization curves. Recently,
Lietzow & Wolf (2023) also modeled the total flux and polar-
ization of light scattered by exoplanetary rings with a Monte
Carlo algorithm. To distinguish our method from their method
and results, we focused especially on the signal of a ringed
planet that is not seen edge-on. This focus is not unfounded
given the recent interest in better direct observations of plan-
ets (e.g. National Academies of Sciences, Engineering, and
Medicine 2021). Another distinction and improvement is our use
of nonspherical ring particles. Although the model by Lietzow &
Wolf uses ring particles of different sizes and compositions, the
authors assumed that all particles were homogeneous spherical
particles, which generally show much stronger angular features
in their single-scattering phase curves than more realistic irregu-
larly shaped particles (see, e.g., Muñoz et al. 2000). In contrast,
our single-scattering phase curves of the ring particles are based
on laboratory measurements of light scattering by irregularly
shaped particles (for a description of the experimental set-up,
see Muñoz et al. 2012). This ensures a more accurate calculation
of the reflected or transmitted light by the rings, although at the
price of lacking the flexibility to change the composition and size
of the ring particles.

This paper is organized as follows. In Section 2, we give
a brief overview of the Pryngles package and describe the
improvements implemented for this paper, and the physics
behind them. We describe the physical properties of a set of
model planets and their corresponding rings, which we use
to test and demonstrate the capabilities of our model in Sec-
tion 3. Section 4 presents the results of computing the fluxes

1 ASCL entry available at https://ascl.net/2205.016. Pack-
age PyPI repository available at https://pypi.org/project/
pryngles

and polarization curves for our model planets. Finally, we apply
our model and tools to study the case of the possibly puffed-up
planet HIP 41378 f. The results are summarized in Section 5. The
limitations and prospects of this work are presented in Section 6,
and in Section 7 we summarize and draw the main conclusions
of our work.

2. Pryngles: Planets in spangles

In Figure 1, we illustrate the appearance of a ringed planet as
represented in Pryngles and the corresponding geometrical
configuration of a typical simulation. Although the representa-
tion in Figure 1 is centered on the star (filled white circle in the
center), the model is initially planetocentric, which considerably
simplifies the computation of the viewing and illumination con-
ditions (see Zuluaga et al. 2022 and Appendix B for additional
details).

2.1. Geometrical description of the system

The illumination and viewing geometries of the planetary and
ring spangles vary with the location of the planet along its orbit,
as measured by the true anomaly ν. For simplicity, we assume
hereafter that the orbit of the planet is circular. As a result, true
anomaly is arbitrarily defined with respect to the point in the
planet orbit that is closest to the subobserver location. In all
our simulations, at ν = 0◦ the planet therefore is between the
observer and the star. In this specific configuration, we mostly
observe the nightside of the planet.

The ring and orbital orientation are defined by the three
angles that are schematically represented in Figure 2. They are
the orbital inclination angle i (i = 90◦ corresponds to an edge-on
orbit), the ring inclination angle γ with respect to the direction
of the observer (γ = 90◦ corresponds to an edge-on ring), and
the azimuthal rotation angle or roll angle λr.

A complimentary angle that is frequently mentioned when
we describe our results, is the planetary phase angle α, which is
defined as the angle between the direction toward the observer
and the line joining the centers of the star and the planet (see
Figure 2). If α = 0◦, the planet is fully illuminated by the star
(ignoring the possible influence of a ring and the fact that the
planet would be precisely behind its star as seen by the observer).
On the other hand, when α = 180◦, the full nightside of the
planet is in view, and in rigor, the planet would be transiting the
stellar disk. The range of values that the phase angle can attain
along the planet depends on the inclination angle i. Figure 2
cleary shows that 90◦ − i ≤ α ≤ 90◦ + i. With the exception of
the case when i = 0◦ (a face-on orbit for which always α = 90◦),
the planetary phase angle α changes with the true anomaly ν.

2.2. Illumination and viewing conditions

Describing the color conventions we use in Pryngles graphi-
cal outputs, as illustrated in Figure 1, is key to understanding the
different conditions of illumination and viewing of the spangles
that determine the flux and polarization of light reflected by
the planet and ring. For the system represented in Figure 1, the
so-called ring-plane crossings, that is, the configuration when
an infinitely thin ring neither reflects nor transmits stellar light,
occur at ν = 90◦ and 270◦. Ring spangles under this condition
are represented in gray.

Along part of the orbit in the upper half of the figure (90◦ ≤
ν ≤ 270◦), the shadow of the ring on the planet reveals that
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Fig. 1. Various illumination and viewing geometries in a planet-ring system simulated with Pryngles. The star (white dot) and planetary orbit
are not to scale. The circular planetary orbit has an inclination angle i of 60◦. The ring has an inclination angle γ of 70◦ and a roll angle λr
of 0◦ (this system is thus mirror-symmetric from left to right). The true planetary anomaly ν is shown next to each planet image and increases
rotating counterclockwise. The colors of the spangles in this figure are indicative of viewing and illumination conditions, following the conventions
explained in the text.

Fig. 2. Definition of the angles used to define the orientation of the
orbit and ring as projected in a side view of the planet-ring system at
the orbital locations in which the true planet anomaly ν is 0◦ and 180◦.

the ring is seen in diffusely transmitted starlight (the star illu-
minates the bottom of the ring as seen from the observer). In
Pryngleswe show the spangles under these conditions in green.
In the lower half of the orbit (270◦ ≤ ν ≤ 360◦ and ν ≤ 90◦),
the ring is seen in reflected starlight. Under this condition, we
use cyan spangles for the ring and yellow spangles for the atmo-
sphere of the planet. Dark blue spangles indicate shadows on the
planet and/or the ring. Magenta spangles correspond to plane-
tary spangles seen through the ring, and, as explained before,
gray spangles are spangles in the dark. The small dark gray pat-
terns on the planet and the ring are moiré patterns caused by the
number and tightness of spangle arrays.

Since the ring is not completely opaque, the light from the
star can pass through it and still reach the planet. As a result,
planetary spangles in the shadow of the ring are not completely
dark. On the other hand, light reflected by the planet can also
pass through the ring toward the observer, that is, the observer
can ‘see’ the planet through the ring (the effect is shown in
Figure 1). It is also possible for light to reach the planet through
the rings and then reflect back toward the observer, again passing

through the rings. Each time the light traverses the ring, the flux
is diminished by a factor proportional to the optical thickness b
of the ring and the illumination/viewing angle (more on this in
the next section).

We ignored planet(ring)-shine, that is, the light that is first
scattered by the planet (ring) and then subsequently reflected
by the ring (planet) toward the observer. Although it is an
interesting second-order effect and was included and studied in
Zuluaga et al. (2022), the contribution to the total flux of this
effect is mostly negligible (see Porco et al. 2008), especially for
exoplanets.

Since Pryngles assumes a flat and geometrically zero-
thickness ring, all ring spangles are dark during the ring-plane
crossings. In this configuration, the rings do not cast any shadow
on the planet. These crossings are always 180◦ apart. In our
coordinate system, the true anomaly ν at which the ring-plane
crossings take place depends not only on the ring roll angle λr,
but also on the ring inclination γ and orbital inclination i. When
the planes of the ring and the orbit coincide (i = γ), the ring is
moreover in a perpetual ring-plane crossing.

Finally, although at the ring-plane crossings the rings do not
cast a shadow on the planet, they can still occult some of the
planet spangles and thus still affect the total signal of the system.
The location, in terms of ν, in which the ring-plane crossings
of an arbitrary system occurs can be calculated analytically. In
Appendix A we derive this important relation.

2.3. Physics of light scattering

The formalism we used has been described in detail in previous
works (see eg. Hansen & Travis 1974; Hovenier et al. 2004; Stam
& Hovenier 2005; Rossi & Stam 2018). For clarity, we reproduce
the definition of the essential quantities that were calculated as
part of the results of our numerical experiments.
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Unidirectional beams of light are described here using Stokes
vectors (Hansen & Travis 1974; Hovenier et al. 2004),

F ≡


F
Q
U
V

 , (1)

with F the total flux, Q and U the linearly polarized fluxes, and
V the circularly polarized flux. All these quantities are measured
in W m−2 or W m−3 when the wavelength is included. The cir-
cularly polarized flux V is usually very low compared to F, Q,
and U and was neglected (Rossi & Stam 2018). This does not
yield significant errors in the computation of the most significant
components F, Q, and U (Stam & Hovenier 2005).

Linearly polarized fluxes Q and U are defined with respect
to a reference plane and can be rotated from one reference plane
to the next using the rotation matrix L. Neglecting circular
polarization, L is given by (see e.g. Hovenier et al. 2004)

L(β) =

1 0 0
0 cos 2β sin 2β
0 − sin 2β cos 2β

 . (2)

Here, β is the angle between the old and new reference
planes, measured in counterclockwise direction when looking
toward the observer. A description of the procedure we devised
for computing β at each spangle is included in Appendix C.

We also computed the polarized flux Fpol and the degree of
polarization P, which are independent of the chosen reference
plane and are defined as

Fpol ≡
√

Q2 + U2, (3)

and

P ≡
Fpol

F
. (4)

2.4. Locally reflected and transmitted starlight

To obtain the Stokes vector of light that is reflected/transmitted
by the planet-ring system as a whole, we added the contributions
of the individual active spangles, that is, those that are visible
and illuminated, in a similar fashion as done in Sections 2 and 3
in Zuluaga et al. (2022).

The Stokes vector F x
n that is locally reflected by the nth

planetary/ring spangle is calculated as (Hansen & Travis 1974)

F x
n (µ0n, µn, ϕn − ϕ0n) = µn R x

n1(µ0n, µn, ϕn − ϕ0n) µ0nF0, (5)

where x is either p or r if the spangle belongs to the planet or
ring surface, respectively, µ(0)n = cos θ(0)n with θ0 and θ the illu-
mination and observation angles, respectively, and ϕn −ϕ0n is the
local azimuthal difference angle (see Appendix C for the defini-
tion of these angles). R x

n1 is the first column of the local reflection
matrix, and πF0 is the flux of the incident starlight as measured
on a plane perpendicular to the direction of incidence.

We assumed that starlight is unidirectional and unpolarized
when integrated over the stellar disk. This assumption is based
on the very low disk-integrated polarized fluxes of active and
inactive FGK stars (Cotton et al. 2017) and on measurements of
the Sun (Kemp et al. 1987). Because of this assumption, we do
not need the full reflection matrix in Equation (5), but only its
first column.

The Stokes vector for light that is locally diffusely transmit-
ted through the nth ring spangle is calculated using

F r
n(µ0, µ, ϕ − ϕ0) = µ T r

n1(µ0, µ, ϕ − ϕ0) µ0F0, (6)

with T r
n1 the first column of the local transmission matrix. Since

we assumed a flat ring and parallel incident light, every ring
spangle had the same illumination µ0, viewing µ, and azimuthal
difference ϕ − ϕ0 angles.

The local reflection and transmission matrices Rp
n, R r

n , and
T r

n are a function of the physical properties of the medium they
represent. This means that Rp

n depends on the chemical compo-
sition and optical thickness of the atmosphere as well as on the
surface albedo, while R r

n and T r
n depend on the optical thickness

of the ring and the optical properties of the particles in the ring.
We assumed that all planetary and ring spangles have the same
properties.

Calculating reflection and transmission matrices for all indi-
vidual values of µ and µ0 across the planet and the ring spangles
is prohibitively expensive in computational terms. Instead, the
model developed for this work and incorporated in Pryngles
uses a method similar to Rossi et al. (2018). Our model uses
precalculated coefficients of a Fourier expansion of Rp

1, R r
1 ,

and T r
1 obtained for various combinations of µ0 and µ. The

coefficients were computed using an adding–doubling radiative
transfer algorithm that fully includes polarization and all orders
of scattering (see de Haan et al. 1987, for a detailed descrip-
tion of the adding-doubling algorithm and the Fourier series
expansion). We used bicubic spline interpolation for values of
µ0 and/or µ that fall between the calculated Fourier coefficients.
We thoroughly tested the procedure and reproduced well-known
results found in the literature before we used the model to study
the reflected light of a ringed planet Pryngles2.

2.5. Integrated fluxes and polarization

The Stokes vector of the light that is reflected by the planet(p)-
ring(r) system as a whole can be written as

F = F p + F r (7)

The Stokes vector F p of the planet can be written as the sum
of the local Stokes vectors over the N p active planetary spangles,
as follows:

F p(ν) =
F0

d2 Ap
Np∑

n=1

e−ban µn µ0n L(βn) R p
n1(µn, µ0n, ϕn − ϕ0n).

(8)

Here, d is the distance to the observer, b is the optical thick-
ness of the ring (see Section 3), Ap is the surface area of a plane-
tary spangle (Ap = 4πr2

p/N
p, with rp the planetary radius), L(βn)

the rotation matrix for the nth spangle (see Equation (2)), and an
is a parameter that depends on whether the planetary spangle is
in occultation and/or in the shadow of the ring. The four possible
values or formulae for calculating an are provided in Table 1.

The local meridian plane is the reference plane for the Stokes
parameters Q and U of the nth spangle. This plane contains
the normal to the surface and the direction toward the observer.
Since they are located on a sphere, different planetary spangles

2 The results of these tests are available in the notebooks published
together with the latest version of Pryngles in the GitHub pub-
lic repository of the package https://github.com/seap-udea/
pryngles-public
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Table 1. Values and formulae of an.

Spangle state an

No occultation or shadow 0.0
Occultation 1/ cos θr
Shadow 1/ cos θr0
Occultation and shadow 1/ cos θr + 1/ cos θr0

Notes. Used to calculate the Stokes vector reflected in the planet
(Equation (8)) according to the state of the spangle. The formulae θ r

0
and θ r include the illumination and viewing angles as measured with
respect to the normal to the spangle, respectively.

generally have different local meridian planes. Logically, all ring
spangles have the same local meridian plane. To add the contri-
bution of all spangles, the matrix L in Equation (8) rotates the
local Stokes vector from the local meridian plane of a spangle
to the reference plane of the system as a whole, namely to the
so-called detector plane (DP). This plane is fixed with respect
to the planet and its ring, and it is equivalent to the xz-plane
when viewed from the observer reference frame of the original
Pryngles (see Zuluaga et al. 2022 for details).

The Stokes vector of the ring, F r is calculated using

F r(ν) =
F0

d2 Ar
Nr∑

n=1

µ µ0 L(β) R r
1(µ, µ0, ϕ − ϕ0), (9)

when the ring reflects the incident starlight. In this formula, Nr

is the number of active ring spangles. When the ring is seen in
transmitted light, the Stokes vector is given by

F r(ν) =
F0

d2 Ar
Nr∑

n=1

µ µ0 L(β) T r
1 (µ, µ0, ϕ − ϕ0). (10)

In the previous expressions, all the ring spangles have the
same surface area, Ar. For a circular ring with an outer radius
rout and an inner radius rin (measured in planetary radius units
rp), the spangle area is defined as Ar = π(r2

out − r2
in)r2

p/N
r. The

area of the ring spangles is not necessarily the same as the area
of the planetary spangles.

We normalized the total and polarized fluxes, F and Fpol,
computed by summing the contribution of reflected/transmitted
starlight from all spangles, such that at a phase angle α of 0◦,
the total flux F is equal to the ringless planet geometric albedo
AG. The fluxes we computed and report in the following sections
are thus dimensionless. The actual fluxes received from a given
planetary system, measured in W m−2, can be obtained by mul-
tiplying the normalized value by the normalization factor Fnorm,

Fnorm ≡
F0 r2

p

4 d2 , (11)

with πF0 the flux of the starlight that is incident on the planet, rp
the radius of the planet, and d the distance between the system
and the observer. This normalization was made in order to shrink
the parameter space while demonstrating the impact that rings
have on the flux and polarization curves.

To test a correct implementation of our formalism, we cal-
culated the total flux reflected by a planet with a Lambertian
reflecting surface. In this case, the total reflected flux of a planet
at a phase angle α and with a geometric albedo As is given by

F(α) =
2As

3π
[sinα + (π − α) cosα] . (12)

Fig. 3. Difference in flux calculated using the analytical phase
function of a Lambertian surface and a mock (nonringed) planet with
10 000 spangles.

In Figure 3, we show the difference between the flux calcu-
lated with Pryngles and that calculated using Equation (12).
The agreement between our model with the theory is noticeable.
This tells us that the formulae and approximations described in
this section are properly implemented in the package, and gives
us confidence to apply Pryngles to study more complex cases.

3. A test planet and its rings

After improving Pryngles with a more realistic model of light
scattering and polarization, we focused on the scientific insights
we may gain from applying our model. For this purpose, we
designed a series of numerical experiments in which we varied
the most important geometrical and physical parameters of the
planet and the model. It is important to stress that although these
experiments can be seen as simple computational tests of the
package, they are mainly intended for and were analyzed to bet-
ter understand the revealing signatures that rings may produce in
the polarimetric light curves of exoplanets.

Our test planet had a perfect spherical shape and a gaseous
atmosphere bounded below by a Lambertian reflecting surface
with an albedo of 0.5 that mimics a deep cloud layer. The gas
molecules in the atmosphere were anisotropic Rayleigh scatter-
ers with a depolarization factor of 0.02, which is a typical value
to model the scattering properties of H2 (Hansen & Travis 1974).

The planet was surrounded by a flat, circular, and horizon-
tally homogeneous ring. Although we assumed that the ring
was infinitely thin, it was composed of irregularly shaped par-
ticles with finite sizes. The optical thickness b of our model
ring varied between 0.01 and 4.0, which is the range of optical
thicknesses at visible wavelengths found across the horizon-
tally inhomogeneous rings of Saturn (Lissauer & de Pater 2019).
The single-scattering albedo ϖ and the scattering matrix
(Mishchenko 2009) of the ring particles depend on their size,
shape, and composition, and for nonspherical particles, on their
orientation. Our model ring particles were irregularly shaped and
randomly oriented. It is important to use irregularly shaped par-
ticles to avoid sharp angular features such as rainbows or glories
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that arise when using spherical particles (Goloub et al. 2000;
Nousiainen et al. 2012).

For our numerical experiments, we only used one type of
particle to keep the number of varied parameters down. This is
justified because the change in behavior from a spherical parti-
cle to an irregular particle is generally much larger than between
irregular particles of different composition, provided the size is
the same for all three (Nousiainen et al. 2012). This holds espe-
cially true when the degree of polarization of the reflected light
is computed.

The single-scattering properties of our ring particles are
based on laboratory measurements of light scattered by olivine
particles of sizes described by a log-normal distribution (Muñoz
et al. 2000). The scattering matrix of these particles was calcu-
lated by Moreno et al. (2006) using the discrete dipole approx-
imation (DDA) method (Draine & Flatau 1994, 2004) to fit the
measurements. The light-scattering measurements are available
at 442 and 633 nm. We used the 633 nm data, keeping in mind
the wavelength region and capabilities of JWST (Rieke et al.
2005; Jakobsen et al. 2022). We selected particles that Moreno
et al. (2006) called “shape 5” particles, with an average projected
surface area of 4.2 µm2 and equivalent radii of up to 1 µm to
use in our calculations. For use in our adding-doubling radiative
transfer algorithm, we expanded the scattering matrix elements
of the ring particles into generalized spherical functions (de
Rooij & van der Stap 1984).

The chosen particle size meant that the modeled ring was
more similar to the E ring of Saturn, which has particle sizes
between 0.2 and 10 µm (Ye et al. 2016). Larger macroscopic
particles would mean that their mutual shadowing must be con-
sidered. This is not needed to illustrate the basic effects of a ring
on the reflected flux and degree of polarization of a planet. It
would also require a different radiative transfer approach.

The flux F and degree of polarization P of the light that is
singly scattered by the ring particles and the gaseous molecules
that form the planetary atmosphere are shown in Figure 4. In
the measurements by Muñoz et al. (2000), the phase functions
were not absolutely calibrated since the number of particles in
the aerosol beam in the laboratory experiment is not known. The
singly scattered fluxes were normalized such that their average
overall scattering directions equal one (Hansen & Travis 1974).

We defined our standard system as a planet with a ring with
rin = 1.20 and rout = 2.25 planet radii, which is similar to the
radii of the Saturn ring (Lissauer & de Pater 2019). The opti-
cal thickness b of the ring was 1.0, and the ring particles had a
single-scattering albedo ϖ of 0.8. This high albedo mimics the
bright, icy particles in the Saturn ring. Our standard system had
i = 20◦, λr = 30◦, and γ = 60◦. The ring-plane crossings in this
system occurred at ν = 69.4◦ and ν = 249.4◦ (see Equation (A.1)
for details). Between these values of ν, the ring is seen in dif-
fusely transmitted starlight, while at lower or higher values of ν,
the ring is seen in reflected starlight. Every result we present was
solved for the entire orbit using a step size of 1◦.

4. Results

4.1. A ringless planet

In order to understand the effect of a ring on the polarimetric
light curve of a planet, we first need to know the expected flux
of a planet devoid of a ring. Figure 5 shows the reflected flux F,
the polarized flux Fpol, and the degree of polarization P of our
model ringless planet as functions of the true anomaly ν. Here-
after, we call these three plots the “polarimetric light-curve set”.

Fig. 4. Phase function or flux (top) and degree of polarization (bot-
tom) of incident unpolarized light that has been singly scattered by
gas molecules (dashed orange) and the irregularly shaped ring particles
(Moreno et al. 2006) (solid blue) as functions of the single-scattering
angle Θ (Θ = 0◦ for forward-scattered light). The fluxes have been nor-
malized such that their average overall scattering directions equal one
(Hansen & Travis 1974). Positive (negative) polarization indicates a
direction of polarization perpendicular (parallel) to the plane through
the incident and scattered-light beams.

We varied orbital inclination angles i ranging from 0◦ (a face-on
orbit) to 90◦ (edge-on orbit) to study the effect of this parameter
on the light curve. In all plots, the total and polarized fluxes were
normalized as described in Section 2.5.

The obtained polarimetric light curves with Pryngles are
very similar to those calculated with independent methods in
Stam et al. (2004); Buenzli & Schmid (2009). This provides a
new confirmation of the validity of our models, at least for ring-
less planets. For i = 0◦, the phase angle α is always 90◦, and F,
Fpol, and P are thus constant along the orbit (solid thick line in
Figure 5). For i > 0◦, the planet attains its largest phase angle at
ν = 0◦ and 360◦, and its smallest one at ν = 180◦. For an edge-on
orbit (i = 90◦), the planet is precisely in front of its star at ν = 0◦
and 360◦ and thus in transit (dip in the flux plot).

As expected, P is highest around ν = 90◦ and 270◦ (see the
upper panel of Figure 5) when α ≈ 90◦ and the single-scattering
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Fig. 5. Polarimetric light-curve set of a ringless planet and its depen-
dence on the orbital inclination angle i. From top to bottom: Nor-
malized total flux F, normalized polarized flux Fpol, and degree of
polarization P.

degree of polarization of the gaseous molecules is highest (see
the peaks in the bottom plot of Figure 4). The peak of polar-
ized flux (middle panel in Figure 5) shifts toward ν = 180◦ at
low i because it is not just a function of the degree of polar-
ization of the light, but is also modulated by the flux. The flux
(upper panel in Figure 5) increases with decreasing α, that is,
with increasing orbital inclination i, because of the biased phase
function of molecules toward forward scattering (peak around
θ = 0 in Figure 4). The small peaks in P for i = 90◦ around low
and high values of ν are caused by light that has been scattered
twice in the atmosphere as described in Stam et al. (2004). The
direction of polarization of this twice-scattered light is parallel
to the detector plane.

In summary, we showed in this first experiment that our
model reproduces known features of the polarimetric light curve
of a ringless planet. More importantly for our paper, we have
polarimetric light curves against which we can compare our
results. This allow us to recognize the effect of rings in polar-
ization in the next numerical experiments.

4.2. Effect of rings on flux and polarization

Figures 6 and 7 summarize the effect of a ring on the polari-
metric light curve of a ringed planet and constitute the most
important result of this paper. There, we show the influence of
the orientation of the ring for two different planetary orbital
inclination angles: i = 20◦ in Figure 6, which may correspond to
the case of a planetary system that would have been discovered
or studied using direct imaging; and i = 90◦ in Figure 7, which
shows the case of a system discovered or studied using the transit
method. As we mentioned in Section 1, we especially focused on
the novel results represented by Figure 6 and the observability of
exorings around exoplanets found through direct observation.

In the polarimetric light-curve sets (flux, polarized flux, and
degree of polarization), one per row at different values of the
ring roll angle λr, we include for comparison purposes the cor-
responding light curve of a ringless planet (solid curve). We
discuss important features in the light curves of Figure 6 and
Figure 7 and highlight their effect on observability.

4.2.1. The effect of shadows

The most salient features in the light curves are those produced
by the changing shadows (see Figure 1). Although we do not
discuss all features created in the light curves by shadows in full
detail, a few characteristic features are highlighted for the benefit
of interpreting future observations. While the phase curves of
the planet itself are symmetric around ν = 0◦, a nonzero ring
inclination longitude λr makes them asymmetric. This was noted
before (Arnold & Schneider 2004; Dyudina et al. 2005).

The first interesting and highly nontrivial results are those
obtained when the ring is edge-on (γ = 90◦, dotted lines in all
panels). Since the view on the ring is independent of λr (see the
inset planet diagram to the left), the polarimetric light curves for
this case are the same in all rows in each figure. Although in
this configuration, the observer receives no light reflected by or
transmitted through the ring, depending on orbital inclination,
the ring does leave traces in the light curves. For example, in
Figure 6 for every γ = 90◦, the shadow the ring casts on the
planet reduces F and Fpol between approximately ν = 50◦ and
130◦, and 230◦ and 310◦. This effect is more noticeable for λr =
90◦, when the ring is seen edge-on for all γ. We conclude that
a wiggly structure of the polarimetric light curves is a revealing
signature of shadows cast on the planet by a ring.

4.2.2. Plane-crossing discontinuities

For all the geometrical configurations, the flux and polarization
of the light reflected by ringed exoplanets almost coincide with
the ringless case at the ring-plane crossings, that is, where the
ring is illuminated at its edge and the shadow is infinitely nar-
row. For λr = 0◦ (upper row in the two figures), the ring-plane
crossings occur at ν = 90◦ and 270◦, but for other values of λr
and/or γ (the latter only when λr , 0), the locations of the ring-
plane crossings are slightly different but easy to identify since
the ringed and ringless curves intersect at the crossings.

Ring-plane crossings usually manifest themselves in the light
curves as sharp changes in the slope of the curves (e.g., dis-
continuities in the derivatives of the curve). This effect is due
to a change in the light-scattering regime from light that i is
reflected before or after the ring-plane crossing to light transmit-
ted through the ring. A prime example of this discontinuity in
Figure 6 is when λr = 0◦ (first row) and γ = 60◦ (dash-dotted
green lines). In this case, between ν = 0◦ and 90◦, the ring
reflects the stellar light and produces higher F values than in
the ringless case. After the ring-plane crossing, the ring trans-
mits light but also casts a shadow on the planet, which decreases
the flux F with respect to the ringless situation. It might be diffi-
cult to observe these sharp features, which also occur in Figure 7
because it requires high-cadence observations. Nonetheless, it
would be very valuable in characterizing the features for which
we search.

4.2.3. Reflection versus transmission

The λr = 0◦ (first row) and γ = 0◦ curve (dashed blue line) in
Figure 6 aptly demonstrates another interesting effect of rings
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Fig. 6. F (left), Fpol (middle), and P (right) of the light that is reflected by the model planet with a Saturn-like ring with rin = 1.2 and rout = 2.25,
b = 1.0, and i = 20◦ (αmin = 70◦ and αmax = 110◦) as functions of the true anomaly ν. The ring inclination longitude λr is 0◦ (first row), 30◦ (second
row), 60◦ (third row), and 90◦ (bottom row). For λr = 90◦ the ring is seen edge-on. The ring inclination angle γ is 0◦ (dash-dot-dot blue), 30◦ (long
dash green), 60◦ (long-dash-dot red), or 90◦ (dot-dot purple). For γ = 90◦, there is no dependence on λr. The black lines show the planet without a
ring. The images on the left illustrate the planet with its ring at ν = 0◦, i.e., when it is closest to the observer.

on reflected light curves. The difference in the behavior with
respect to the γ = 60◦ curve (dashed green lines) arises from
the fact that the ring transmits and reflects light in different parts
of the orbit. However, in this case, the forward-scattering peak
manifests itself as a strong increase in the transmitted light with
respect to the ringless case (high peak in the dashed blue line). In
summary, even when rings do not reflect light from the star, they
may produce intense peaks in the flux via the forward scattering
of ring particles.

Another good example of the difference between reflection
and transmission is shown in Figure 6 for λr = 30◦ and λr = 60◦
(second and third row, respectively). The orientation of the ring
causes the light curve to be highly asymmetrical. With peak
fluxes around ν = 270◦, which in our orbit configuration coin-
cides with the location in the orbit where the angular separation
between the star and planet is largest, the observability is higher.
Depending on the orientation of the orbital plane, however, this
could also hamper observability. The fact that the presence of
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Fig. 7. Similar to Fig. 6, except for i = 90◦. The images on the left illustrate the system at ν = 0◦, which for i = 90◦ is precisely in front of the star,
i.e., the nightside of the planet is turned toward the observer. To keep the structures in the curves visible, we limited the vertical axis in the graphs
for F-. In some cases, the forward-scattering peaks are therefore cut off. The missing peak values are the following: for λr = 0◦, the lines reach
6.13, 5.37, and 2.25 for γ = 0◦, 30◦, and 60◦, respectively. For λr = 30◦, they reach 5.36, 4.61, and 1.55, and for λr = 30◦, 2.38 and 1.65 for γ = 0◦
and γ = 30◦, respectively.

a ring can shift the location of peak flux during the orbit is
an important observation. It is a way of distinguishing ringed
planets from nonringed planets.

4.2.4. Effects on polarization

Ring-plane crossings appear to be even more pronounced in
P than in F and Fpol (third column in Figures 6 and 7). The
curves of Fpol clearly show that the light that is reflected by

the system in configurations when the ring blocks part of the
light that is reflected by the planet is usually less polarized than
the light in the ringless case. In some cases, this effect sig-
nificantly suppresses the degree of polarization P of the light
from the system as a whole. This result can be understood by
examining Figure 4: the light that is scattered singly by the ring
particles not only has a lower P, but at large scattering angles Θ
(small planetary phase angles α), it also has an opposite direc-
tion of polarization (negative values at the tail of the curve in
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Figure 4) as compared with the light that is scattered in the
planetary atmosphere. This further decreases P of the whole
system.

The ring shadow on the planet can slightly increase P when
it breaks the symmetry of the illuminated and visible planetary
disk. Examples of this effect are evident in the case of γ = 90◦
(dotted red lines) in Figure 6. In these cases, the edge-on ring
prevents light from being reflected on the ring (no polariza-
tion effect), but P is slightly larger (smaller) just before (after)
the ring-plane crossings due to the break in symmetry. Another
good example is the drops in the P curves observed for γ = 60◦
(dashed-dotted green line) when λr = 0◦ (first row) and 30◦
(second row). The drops occur before and after the ring-plane
crossings, when the ring casts its shadow on the planet, again
breaking the symmetry.

Interpreting the behavior of Fpol is less straightforward. On
the one hand, the changes observed in this quantity do not match
the changes perceived in the total flux. On the other hand, as
explained before, we would expect that the polarized flux is con-
sistently lower when the ring is present. This is not the case,
however. For example, in Figure 6, when λr = 30◦ and λr = 60◦
(second and third rows), the ring adds some polarized flux dur-
ing the second half of the orbit (ν > 90◦) because although it is
weakly polarized, the reflection and forward scattering of light
from the huge surface of the ring still adds polarized flux to
the total. This effect is also noticeable when i = 90◦ (Figure 7),
where for λr < 90◦ the polarized flux curves show significant
bumps at the beginning and end of the orbit.

4.2.5. Rings on edge-on orbits

The case of an edge-on i = 90◦ transiting orbit (Figure 7) exhibits
interesting differences with respect to that of a nontransiting
one. Although most of these features have been discussed by
Lietzow & Wolf (2023), our smaller orbital step size (1◦ vs. 5◦
in Lietzow & Wolf 2023) leads to sharper features in the light
curve than Lietzow & Wolf (2023). Furthermore, we examined
a larger selection of ring orientations and found that certain ring
orientations lead to more distinct asymmetries.

Comparing Figures 7 to 6, we first of all find that the ring
is much brighter in diffusely transmitted light (huge wings at
low and high values of ν) than in reflected light (peak around
ν ∼ 180◦). The reason for this behavior is the strong single for-
ward scattering of the ring particles (see Figure 4). At these
observing angles, we observe the dark side of the planet, and
therefore, the ring dominates the flux from the system. This also
explains why the polarization is low in these configurations.

This forward-scattering peak might be expected to be easily
detectable. However, since the orbit is edge-on, the angular sep-
aration between the planet and its star will be very small and the
forward-scattered light will be blended into the stellar light. Still,
these peaks might be observable by monitoring the brightness of
the star and variations therein. This was demonstrated by Placek
et al. (2014) in the infrared, where hot giant planets are relatively
bright, but it might also be observed at visible wavelengths, as
suggested by Sucerquia et al. (2020).

The second noticeable difference between the transiting and
nontransiting case is the structure of the degree of polarization
(third column in Figure 7) curves. The dramatic drops in P in
the analogous curves of Figure 6 are also present here, but the
presence of rings no longer significantly changes the shape of
the curves. Instead, the peak P value is often just decreased
(see, e.g., the second and third rows). This makes it harder to

distinguish the polarization curves of a ringed planet from those
of a ringless one.

A ringless planet with clouds might also exhibit similarly
oscillating P curves (see Stam et al. 2004; Karalidi et al. 2012)
and mimick the effect of rings. However, the asymmetry on
the polarization curves, such as those observed for the case of
λr = 30◦ (second row in Figure 7), might help us to identify the
revealing signatures of rings. It would have to be ruled out that
the asymmetrical behavior is due to seasonal effects on a hor-
izontally inhomogeneous ringless planet, however, as remarked
by Dyudina et al. (2005). Even if this were the case, seasonal
effects could not explain the sharp changes due to the ring-plane
crossings (see, e.g., the features at ν = 300◦ when λr = 30◦).

In order to study the effect that other key physical parameters
such as the optical thickness, the single-scattering albedo, and
the ring size have on the polarimetric light curves of a ringed
planet, we performed a limited but rigorous exploration of the
parameter space. We present the results of these explorations
in Appendix D.

5. The case of HIP 41378 f

To show the usefulness and potential of Pryngles for the study
of future exoring candidates, we performed a numerical exercise
on the controversial case of the puffed-up planet HIP 41378 f
(Akinsanmi et al. 2020; Alam et al. 2022). We present two gen-
eral problems (questions) about this case here and use Pryngles
to address them. The first problem is to calculate the flux of
reflected light on the ring and planet system. This flux would
help us to evaluate whether the planet is detectable with avail-
able instruments. If it is not, we wish to know the required
level of sensitivities for measuring reflected light on planets
such as HIP 41378 f. The second problem or question is that if
we can measure the light from the planet and its polarization
with a temporal resolution that is high enough, how we distin-
guish the ringless from the ringed planet case using polarime-
try. Moreover, we are interested in knowing how polarimetric
data could be used to characterize a hypothetical ring around
the planet.

HIP 41378 f has a relatively large semimajor orbital axis of
about 1.4 AU, which at a distance of 103 pc translates into a
sky-projected angular separation with its F-type parent star of
∼13 mas (Santerne et al. 2019). This would be large enough
to resolve the planet using direct-imaging telescopes such as
the proposed Large UV/Optical/Infrared Surveyor (LUVOIR)
(The LUVOIR Team 2019) or the Habitable Worlds Observa-
tory (HWO) (National Academies of Sciences, Engineering, and
Medicine 2021). The planet has an equilibrium temperature Teq
of ∼294 K (assuming a bond albedo of zero; Santerne et al.
2019), so that no significant thermal emission would be mixed
in the reflected starlight and decrease the degree of polarization
of the planet P of the light reflected by the planet. The transit of
HIP 41378 f was discovered as part of the K2 mission (Howell
et al. 2014), which used visible wavelengths comparable to the
633 nm we used in our previous computations.

HIP 41378 f has an extremely low average density of 0.09 ±
0.02 g cm−3, which is rather unusual according to the available
theories of planetary interiors. However, by assuming that a ring
partly causes the transit depth, Akinsanmi et al. (2020) reported
that a planet with an average density ρp of 1.2 ± 0.4 g cm−3

explains the transit curve slightly better than a low-density ring-
less planet. A recent follow-up observational study by Alam et al.
(2022) showed that the hypothesis of a ring holds when the
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Table 2. HIP 41378 f parameters (without uncertainties).

Parameter Value

rp (r⊕) 3.7
a/r∗ 231.0
i (◦) 89.97
rin (rp) 1.05
rout (rp) 2.6
γ (◦) –2.11
λr (◦) –24.92

observations are made over a range of wavelengths. Nonetheless,
they did not discard the case of an extended atmosphere either so
far. Other possibilities to explain the anomalous low density also
include the presence of exomoons (Harada et al. 2023). In sum-
mary, although an interesting case, it is too early to consider this
as a ringed planet candidate.

In Table 2 we present the parameters of the planet as derived
from Akinsanmi et al. (2020). In the table, rp is the planet radius
(expressed in Earth radius r⊕), a is the orbital semimajor axis,
and r∗ is the stellar radius. The value of the inclination and roll
angle of the ring we provide here are different than those in
Akinsanmi et al. (2020) because we defined these angles differ-
ently, but they represent the same physical situation.

In order to show the detectability of the reflected light, we
used the extremes of the ring optical thickness b and single-
scattering albedoϖ of ring particles that are still compatible with
the constraints imposed by the properties of the rings shown in
Table 2. ϖ is unconstrained by the transit but can have a signif-
icant influence on the reflected flux (see Figure D.3). We used
extreme values of ϖ of 0.05 and 0.8. It is worth mentioning,
however, that a value of 0.8 seems too high for ring particles
that due to the estimated equilibrium temperature are expected
to consist of rocky material. However, Akinsanmi et al. (2020)
and Alam et al. (2022) estimated an average density ρ of the ring
particles of 1.08 ± 0.3 g cm−3, which is low compared to most
rocky materials. Explanations for the anomalously low density
could be that the particles are porous (Carry 2012) or contain ice
deposits from an unknown source.

Akinsanmi et al. (2020) and Alam et al. (2022) assumed a
completely opaque ring, which is far from a realistic case. Model
simulations of the transit performed with Pryngles showed that
using b ≥ 4 results in a transit depth that is fairly close to the
observations. Therefore, we varied b between 4 and 20. These
values are high enough for an opaque ring, but not unrealistic.

We used the scattering properties of the same olivine parti-
cles as in the previous sections since the size of the particles is
similar to those assumed by the follow-up study of Alam et al.
(2022). Finally, and for the sake of simplicity, we used the same
gaseous planetary atmosphere as for our test planet in Section 5.
In Figure 8, we show the polarimetric light curves (F, Fpol, and
P), assuming a different combination of the free parameters ϖ
and b.

Even in the most favorable case, the contrast required to
detect the light reflected by the planet is on the order of tens of
parts per billion (ppb). Due to the effect of the shadows cast by
the ring on the planet, the ringed case could counterintuitively
require even lower sensitivities at the level of a few ppb. This
is certainly not achievable with SPHERE/ZIMPOL (Thalmann
et al. 2008) or with JWST (Carter et al. 2023), especially at the
small angular separation for the maximum flux of 13 mas. The

Fig. 8. Polarimetric light-curve set of a ringed and ringless HIP 41378 f
planet for different values of b and ϖ as functions of ν. The magenta
curves pertain to the ringless puffed-up planet, and the black curves
show the ringed planet model, but without a ring, using the parame-
ter values of Akinsanmi et al. (2020). All curves use the same orbital
inclination and stellar properties, but the magenta curve has a different
semimajor axis (a/r∗ = 231.6). In the Fpol plot, the magenta curve has
been omitted as it has the same shape as the black curve, except with
maximum values up to 0.0015 ppm. In the P plot, the magenta and
black curves overlap.

following analysis is thus an exercise in what we can learn from
a measured light curve in the (near) future.

When the particle albedo is low, only the shadow of the ring
on the planet leaves an impression. This means that it will be
very hard to detect a ring in any reflected light curve. Only by
very accurately measuring the degree of polarization could such
a ring be detected. For high-albedo particles, we can more read-
ily distinguish the ringed from the ring-less planet, and we can
discern some ring properties.

Based on the flux alone, it is in principle possible to deter-
mine the optical thickness of the ring based on the forward-
scattering peak. For a certain ring orientation, the reflected flux
at ν = 90◦ is mostly a function of the albedo, while the transmit-
ted flux for low ν is strongly dependent on the optical thickness
(see the upper panel in Figure 8). The caveat is that the angular
separation is small when the additional flux due to the ring is
high. The asymmetrical shape of the flux curve would make it
distinguishable from a ringless planet.

The detectability of a ring is further boosted by the fact that
the transmitted and reflected light from the ring has a lower
degree of polarization. The bottom panel of Figure 8 shows that
the albedo and optical thickness might also be constrained by
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observing the system when ν = 270◦, which coincidentally is
also when the angular separation is largest. Measuring the degree
of polarization when ν = 90◦ would also allow for the detection
of a ring without measuring the forward-scattering peak.

Some considerations are required. Other processes mimic the
behavior of a ring. As mentioned in Section 4.2, a planet with
seasonal changes might also exhibit asymmetrical light curves
(Dyudina et al. 2005). Furthermore, the reflected light of a planet
with an exomoon (Harada et al. 2023) might in theory pro-
duce anomalous changes in the polarimetric light curves. Since
the moon may move in front of the planet, or vice versa, the
symmetry breaks would change the polarization of the reflected
light. However, the possibility that this would occur during an
observation depends on the size and period of the moon and on
the observation frequency (Berzosa Molina et al. 2018). More-
over, these mutual transits will result in shallow and brief dips
in the polarimetric light curve. These dips could be especially
small in polarization (around 2% according to Berzosa Molina
et al. 2018) and would mean that the effect of moons would be
distinguishable from the effects of a ring.

In summary, although the evidence for the presence of a
ring around HIP 41378 f is still marginal, the planet offered
us an interesting experimental case for applying the model and
tools we implemented in Pryngles. We find that although the
reflected light from HIP 41378 f cannot be detected with cur-
rent instruments, it might be used to reveal the presence of a
ring, but only when the polarization can also be measured. For a
cadence and sensitivity that are high enough, polarization might
even help us to constrain the properties of the ring, such as the
composition and optical thickness.

6. Discussion

In general, the developments presented here can contribute to
three fronts in the search for exoplanets with rings: rings around
exoplanets in close-in orbits (i.e., warm exorings), circumplane-
tary disks (CPDs), and rings around distant giant planets similar
to the Saturn rings. Concerning the first case, populations of
warm rings that were originally proposed by Schlichting &
Chang (2011) can exist in proximity to their host stars for mil-
lions of years and are composed of refractory particles rather
than icy particles, as the Saturn rings. Although the thermal
emission of warm rings cannot be modeled using the current ver-
sion of our model, it might be added as a constant since thermal
emission is predicted to have a relatively low degree of polar-
ization (Stolker et al. 2017). It is important to point out that
Pryngles is only designed to calculate the optical properties of
cold disks that are infinitely thin. To model more general CPDs
requires not only different physics, but probably different com-
putational models. Still, the geometrical machinery of the model
is essentially the same.

The second case, that is, massive planets with extensive
orbits, has a higher likelihood of developing substantial CPDs,
which may ultimately transform into planetary rings upon com-
pletion of the satellite formation process. These planet-ring
systems might be detected using high-contrast imaging tech-
niques, which are the sole method of planet detection that offers
spatial resolution of photons emanating from planets and their
surroundings (see, e.g. Ruane et al. 2018). This approach uses
coronagraphs or other nulling methods to suppress light from
the central star, and in conjunction with observing techniques
such as angular differential imaging can attain contrasts of 10−6

at separations of tenths of arcseconds (Marois et al. 2010).

Consequently, this method enables the detection of self-
luminous gas giants (i.e., planets that are still forming) on wide
orbits and the effects of their presumed rings. To date, planets
identified using direct imaging are generally a few million years
old and situated tens of astronomical units from their host star.
This favors the survival of icy rings. High-contrast imaging has
yielded several significant discoveries, including the detection of
four planets orbiting HR 8799 (Marois et al. 2010) and the planet
β Pic b (Lagrange et al. 2010). As a result, the advancements
presented in this paper demonstrate a potential for modeling
the CPD populations discovered through the aforementioned
techniques.

The third case, that is, rings that are similar to the Saturn
rings, was studied in this paper. The study of light scattered
from planetary rings around exoplanets is highly relevant to the
current search for Saturn-like planets, and their characteriza-
tion can reveal important information about their evolution and
their environments. The modeling of the scattering and polar-
ization of dust grains in planetary rings can provide valuable
insights into the composition and evolution of the rings them-
selves, as well as into the dynamics of the planet-ring system as
a whole. Unfortunately, our numerical predictions can currently
not be validated through actual observations of Saturn because
ground-based telescopes (or space telescopes in the vicinity of
Earth) can only observe these planets at small phase angles,
where the degree of polarization of the reflected light is very
low because of a symmetric geometry. Observing these plan-
ets as if they were exoplanets is only possible with orbiters,
such as the Cassini spacecraft, or with a flyby mission. However,
although the Cassini Imaging Science Subsystem instrument had
polarimetric capabilities (Porco et al. 2004), no polarimetric
observations of Saturn and its ring system have been published
so far (West 2022, priv. comm.).

While the particles we used have a more realistic scatter-
ing behavior than similarly sized spherical particles, they were
comprised of material that is not typically found in a ring. For
example, the rings of Saturn are mainly composed of icy mate-
rials (Cuzzi et al. 1984) and have a different refractive index
compared to the olivine particles that we used here. To rem-
edy this shortcoming, future package updates will add different
ring particles based on data in the Amsterdam-Granada database
(Muñoz et al. 2012). Another potential problem is that the used
particles have a log-normal distribution (Muñoz et al. 2000;
Moreno et al. 2006) while ring particles have a power-law distri-
bution (Dohnanyi 1969; Cuzzi & Pollack 1978). The difference
in scattering behavior of the two different size distributions
should be investigated in a future study. The effect of inhomo-
geneous rings should also be explored in the future as our model
ring is horizontally homogeneous, while real planetary rings,
such as those in the Solar System, are not. Radial variations in
the optical thickness and particle properties of our Solar System
ring are widespread, and some also exhibit azimuthal variations.
These inhomogeneities influence the ring shadows and occulta-
tions, and their traces in the signals of planet-ring systems would
be interesting to explore.

Although Pryngles can handle eccentric orbits, we
assumed circular orbits to reduce the number of free parameters.
Our results can be scaled for eccentric orbits by multiplying the
total and polarized fluxes by a factor to represent the actual inci-
dent fluxes on the planet and its ring (the degree of polarization
of the reflected signal would not be affected by the orbital eccen-
tricity). A potential complexity with simulating a ringed planet
in a significantly eccentric orbit is that depending on the size
of the rings and the semimajor axis of the orbit, the illumination
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angle might no longer be uniform for the ring, while we assumed
a single illumination angle in the ring3.

Although each of the varied system parameters has distinct
effects on the light curve, we demonstrated that they also overlap.
Especially the properties of the ring, such as optical thickness,
particle albedo, and size, show some degenerate behavior. Prop-
erties such as the size of the ring and its optical thickness
also affect the stability of the ring, which might aid in narrow-
ing down the parameter space to obtain a singular fit. This fit
should include eccentric orbits, which is already possible using
Pryngles, and different planetary atmospheres, as was done
by Lietzow & Wolf (2023), which is not yet possible with the
package. The variation in the latter is interesting to combine
with observations in different wavelength bands, in particular,
at wavelengths in which the gases in the planetary atmosphere
absorb and where the planet is thus dark, which could highlight
the presence of rings and help us to characterize them.

7. Summary and conclusions
We computed the effects of a ring around an extrasolar planet
on the total and polarized fluxes of starlight reflected by the
system. For these computations, we extended the novel pho-
tometry Python package Pryngles with an adding-doubling
radiative transfer algorithm that included all orders of scatter-
ing and polarization. We studied the case of hypothetical planets
with a similar radius as Saturn, surrounded by dusty rings that
are comprised of irregularly shaped particles with an effective
radius of 1 µm. By varying the system parameters (orbital and
ring inclination, ring roll angle, optical thickness, particle sin-
gle albedo, and ring size), we investigated how the polarimetric
light curve of the system is affected by the presence of a ring.
To further illustrate the application of our model and tools to the
case of a real planet, we calculated the polarimetric light curves
of HIP 41378 f, assuming it has a ring, as hypothesized in some
papers (Akinsanmi et al. 2020; Alam et al. 2022).

Our results revealed a number of features in the polarimetric
light curves that would be indicative of a ring. Some of these
features have been identified in previous works, but others have
been overlooked. In general, the light curve of a planet with a
ring (total flux as a function of true anomaly) has two peaks, one
peak due to the light reflected on the planet and the ring, and the
other peak due to the diffusely transmitted light. This behavior
was predicted by Arnold & Schneider (2004) and Dyudina et al.
(2005).

When we included polarization, however, we were able
to identify that the second flux peak also has a substantially
lower degree of polarization. This effect arises from differences
between the way in which the molecules in the atmosphere of
the planet and ring particles polarize the light. This dichotomy
between a higher flux but a lower degree of polarization is there-
fore a key signature of a ring. This was also reported in a recent
study by Lietzow & Wolf (2023).

The experimental case study we performed on HIP 41378 f
showed that it is currently impossible to directly observe such
a system. It might be observable with the next generation of
space telescopes, such as LUVOIR (The LUVOIR Team 2019),
HabEx (Gaudi et al. 2020), or the recently announced Habitable
Worlds Observatory (HabWorlds or HWO) by NASA (National
Academies of Sciences, Engineering, and Medicine 2021). Our
results suggest that it would indeed be very beneficial for these

3 Pryngles itself can handle different illumination angles for different
ring spangles, but we did not consider this in this paper.

missions to use polarimetry because it allows the identification
of properties such as the optical thickness and particle albedo of
exorings. This is not possible using flux measurements alone.

Polarimetry might also be valuable as a method for detecting
and characterizing the magnetic fields of ringed exoplanets. As in
the case of the giant planets in the Solar System (and in the debris
disks around young stars), a planetary magnetic field can modify
the optical properties of the rings by influencing the particle ori-
entations (Dollfus 1984; Lazarian 2007). Finding ring-particle
orientations could thus potentially provide valuable information
about the structure and dynamics of the planet interior, which in
turn could provide clues about the habitability of these worlds
(in the case of rocky planets) and their satellites (see, e.g., Heller
& Zuluaga 2013).
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Appendix A: Calculating the ring-plane crossings

The location of the ring-plane crossings can be calculated by
solving:

nr · nstar(νrp) = 0 , (A.1)

with nr the normal vector to the ring, νrp the true anomaly of the
ring-plane crossings and nstar the normal vector pointing from
the planet to the star.

We may express these locations in terms of the key orienta-
tion angles introduced in Section 2.2:

sin (λr) cos (γ) sin (νrp) +

cos (νrp)
[
cos (λr) cos (γ) sin (i) − sin (γ) cos (i)

]
= 0.

For example, if we have a system with an orbital inclination
i = 20◦, and a ring with a roll angle λr = 30◦, and inclination
γ = 60◦, the solution of the previous equation predicts that the
ring-plane crossings will happen at ν = 69.4◦ and ν = 249.4◦.

Appendix B: The geometry of spangle
light-scattering

In Section 2.5 for computing the integrated flux reflected or scat-
tered on the ring and planet spangles, we need to know the angles
of the incoming and outcoming light rays, These angles deter-
mine the values of parameters µ and ϕ in Equations (8)-(10).
We schematically illustrate in Figure B.1 how these angles are
defined.

For each spangle, we define the local stellar zenith angle θ0
as the angle between the local zenith direction and the direction
towards the star. Analogously the local viewing zenith angle θ,
is the angle between the local zenith direction and the direction
towards the observer. From them, we define the local azimuthal
difference angle ϕ−ϕ0, taken as the angle between the plane that
contains the direction towards the local zenith and the direction
towards the observer, and the plane that contains the direction
towards the local zenith and the direction of propagation of the

Fig. B.1: Spangle geometry: orientation and angles involved in the
calculation of stellar light scattering by an individual spangle, along
with the observer’s orientation (here, a LUVOIR-type telescope is the
observer).

incident starlight. It is important to stress that the angle ϕ − ϕ0
is measured rotating in the clockwise direction when look-
ing towards the local zenith (see de Haan et al. 1987). For a
description of our computation of ϕ − ϕ0, see the next section.

In all cases, we assume that the incident direction of the
starlight is the same across the planet and the ring (the local inci-
dent angles depend of course on the spangle). This assumption
would not hold for computations for planets with very wide rings
and/or that are very close (≪ 0.1 AU) to their star.

B.1. Spangle states

Given the orientation angles i, γ, and λr (which are part of the
user-provided input to the package), Pryngles computes, for
each true anomaly ν along the planetary orbit, the phase angle
α, and for each spangle on the planet and the ring, the angles
θ0, θ, and ϕ − ϕ0. Unlike the planet spangles, all ring spangles
have the same illumination and viewing geometries at a given
value of ν. Then, taking into account the radius of the planet,
the inner and outer radii of the ring, and the direction to the star,
Pryngles computes the state of the spangle, namely, whether it
is illuminated by the star and visible to the observer; whether it
is in the shadow of the ring (for planet-spangles) or the planet
(for ring-spangles); and/or whether it is occulted by the ring (for
planet-spangles) or the planet (for ring-spangles) (for a discus-
sion on the key concept of “spangle state” in Pryngles, see the
original paper by Zuluaga et al. 2022).

Appendix C: Computing ϕ − ϕ0 and β

The most critical calculation with Pryngles depends on the
knowledge we have of the azimuth difference (ϕ − ϕ0) and the
angle β between the reference and the detector plane at each
spangle (see Section 2.5).

The azimuthal angles (ϕ and ϕ0) are defined with respect
to any plane containing the local z-axis. This makes the plane
that also contains the observer an obvious choice since it elim-
inates one of the two angles that need to be calculated, namely
ϕ. Thus an expression is needed for ϕ0 which then automatically
also becomes an expression for ϕ − ϕ0.

Using the spherical law of cosine an expression can be found
for an intermediate angle we name δ which is used to find ϕ0
with respect to the plane containing the direction to the observer
and local z-axis (see Figure C.1),

ϕi,0 = π − δi , (C.1)

δi = arccos
(

cosα − cos θi,0 cos θi
sin θi,0 sin θi

)
, (C.2)

where the subscript i stands for the ith spangle.
Care has to be taken, however, to make sure the angle that is

found using the above equation is for a rotation that is clockwise
when looking in the positive local zenith direction. Whether the
found angle needs to be adjusted depends generally on the ori-
entation of the spangle, be it planetary or ring, and the direction
of the star-light. The dependency on the location of the star can
be understood from Figure C.1 where α will change during the
orbit, eventually moving to the other side of the plane formed
by ûi and ûobs, the normal vector of the spangle and the normal
vector pointing to the observer respectively.

For planetary spangles, the angles are modified as

(ϕi − ϕi,0) = ϕi,0 , (C.3)

(ϕi − ϕi,0) = −ϕi,0 , if yscat
i < 0 , (C.4)
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Fig. C.1: The angles and unit vectors associated with each individual
spangle i. They are: the phase angle α, direction to observer ûobs, direc-
tion to the star ûs, normal vector ûi, illumination angle θi,0, viewing
angle θi, azimuthal angle ϕ0,i, and intermediate angle δi. The rotation
angle βi is not shown here.

with yscat
i the y-location of the spangle with respect to the plan-

etary scattering plane. Here, the criterion is to compensate for
the flipping of the normal vector for spangles on the “south-
ern” hemisphere. The dependency on the location of the star
is already incorporated into the y-location with respect to the
planetary scattering plane.

Since all ring spangles have the same normal vector there is
no dependency on their location on the ring. There is, however, a
dependency on the orientation of the ring since it determines the
locations in the orbit where the flip in the rotation direction hap-
pens. The locations of these flips are defined as the place where
the plane containing the star, the planet, and the observer and the
plane containing the normal vector of the ring and the observer
are parallel. A 2D projection of the problem is shown in Fig-
ure C.2 with the two vectors in the direction of the star ûstar, (1,2)
representing two moments in the orbit.

Two situations arise, depending on the orientation of the
ring. If the normal vector of the ring ûring is pointing in the +y
direction,

(ϕi − ϕi,0) = −ϕi,0 , (C.5)

when the vector pointing to the star ûstar is on the −x side of the
plane formed by ûring and the observer. If ûring is pointing in the
−y direction,

(ϕi − ϕi,0) = −ϕi,0 , (C.6)

when ûstar is on the +x side of the plane formed by that same
plane.

The angle between the local meridian plane and the detector
plane, β, is also calculated differently for ring spangles compared
to planetary spangles. For planetary spangles, the angle is only
dependent on their location on the planet. With the detector plane
as the reference plane, β is calculated as

xiyi ≥ 0 : βi = arctan
yi

xi
, (C.7)

xiyi < 0 : βi = π + arctan
yi

xi
, (C.8)

where the coordinates (xi, yi) are in the observer reference frame.
The addition of π is there to make sure the angle that is calculated
rotates in the correct direction.

Because all ring spangles have the same normal vector the
rotation angle does not depend on the location of the individual

Fig. C.2: Illustration of the condition for changing the calculation of β,
described in the text.

spangles. Using the spherical cosine law we can find an equation
that instead depends on the orientation of the ring

β = arccos
(

cosσ
sin θi

)
, (C.9)

β = π − arccos
(

cosσ
sin θi

)
, if ûyring < 0 , (C.10)

with σ = arctan2
(
ûz

ring, û
x
ring

)
the angle the normal vector makes

with the x-axis and ûz
ring the z-component of the normal vec-

tor. Again the condition of ûring
y < 0 is added to make sure the

rotation direction stays the same.

Appendix D: Exploring the parameter space

After exploring the effect that changing the geometrical configu-
ration of the orbit and the ring has in the polarimetric light curve,
we will study in this appendix the impact that other key parame-
ters have on the flux and polarization of the light reflected in our
test ringed planet.

In particular, we will focus on three parameters: ring optical
thickness (b), single-scattering albedo of ring particles (ϖ), and
ring size (ri, re).

D.1. The influence of the ring optical thickness

In Figure D.1 we show the influence of the ring optical thick-
ness b on the polarimetric light curve of the standard planet-ring
system, in a particular orbital and ring configuration (namely
i = 20◦, λr = 30◦, γ = 60◦). First, we want to discuss the influ-
ence of b along the part of the orbit where the ring reflects
incident light, and then the more complicated part where the ring
diffusely transmits light.
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Fig. D.1: F (top), Fpol (middle), and P (bottom) as functions of ν for
ring optical thicknesses b ranging from 0.01 (dark blue) to 4.0 (brown).
For this planet-ring system, i = 20◦, λr = 30◦, γ = 60◦, rin = 1.20, rout =
2.25, and ϖ = 0.8. The black line represents the ringless planet.

In the figure, the ring reflects light for ν ≤ 69.4◦ or ≥ 249.4◦.
In those segments of the orbit the flux F increases as a whole.
The increase in F increases with b, although not linearly. With
increasing b, the increase in F vanishes as the reflection by the
ring reaches an asymptotic value when increasing b does not
further increase F. Note that along this part of the orbit, the
planet also casts its shadow on the ring, thus decreasing the ring
contribution to F, while the ring hardly casts a shadow on the
planet.

In reflected light, polarized flux Fpol of the system is lower
than that of the ringless planet (solid black curve) at small values
of ν and vice-versa. The reason for the lower and higher values
of Fpol when the ring is added is due to the polarized flux of
the light that is singly scattered by the ring particles, which has
an opposite direction of that of the gas molecules in the planet
atmosphere at the small values of ν, where the single-scattering
angle θ is larger than 150◦, and the same direction at the large
values of ν, where θ is smaller than 150◦ (see Figure 4).

Between 69.4◦ < ν < 249.4◦, the ring diffusely transmits
light, adding light to the total flux of the system. At the same
time, the ring casts shadows on the planetary disk and occults
part of it; both effects act at suppressing the planetary flux (see
Figure 1).

To understand the relation between the transmitted light and
b, in Figure D.2 we show F, Fpol, and P of diffusely transmitted
light of just a slab of ring-material for a viewing angle of θ = 0◦,
different angles of incidence θ0 and as functions of b. As can be
seen, the curves for F increase with b due to increased scattering
of light by the ring particles (the flux of the directly, thus non-

Fig. D.2: The diffusely transmitted F (top), Fpol (middle), and P (bot-
tom) as functions of the optical thickness b of a slab of ring-material for
illumination angles θ0 ranging from 0◦ (blue) to 80◦ (green). The view-
ing angle θ is 0◦.

scattered beam of light decreases with increasing b), until about
b = 1 to 3 (depending on θ0 and θ as those angles affect the effec-
tive ring optical thickness). Further increases of b decrease the
diffusely transmitted F as fewer and fewer photons get through
the ring.

The relatively large values of F between ν ≈ 100◦ and 210◦
in Figure D.1, are due to the changing size of the planet shadow
on the ring. Similar behavior can be seen for Fpol.

The degree of polarization P generally decreases with
increasing b as the amount of multiple scattered, generally low
polarized, light, increases with b. Between ν = 69.4◦ and 249.4◦
where the flux of the reflected ring light is small, this depolariz-
ing effect is not very prominent, especially not for b = 4.0: the
very small ring-flux hardly contributes to F and Fpol while at the
same time, the ring strongly shadows and occults the planet and
thus also decreases the total flux of the system.

D.2. The influence of the single-scattering albedo

Now we will vary the single-scattering albedo ϖ of the ring
particles. The variation of these parameters will be equivalent
to varying different particle compositions. Icy particles sur-
rounding Saturn would, for example, not survive at the distance
between the Earth and the Sun, therefore it would be important
to also look at refractory materials (which have a lower albedo
in the visible) (Piironen et al. 1998; Ostrowski & Bryson 2019).

In Figure D.3 we show the polarimetric light curves for the
standard planet-ring system, with the same geometrical parame-
ters used in the previous section, but with a variable ϖ ranging
from 0.05 to 0.8.
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Fig. D.3: Similar to Fig. D.1, except for different single-scattering
albedosϖ of the ring particles: 0.05 (blue, dashed), 0.3 (orange, dashed-
dot-dot), 0.5 (green, dotted), and 0.8 (red, short-dashed-dotted). The
system-parameters are i = 20◦, λr = 30◦, γ = 60◦, rin = 1.20, rout =
2.25, and b = 1.0.

Not surprisingly, increasing ϖ increases the total flux F,
regardless of whether the ring is seen in reflected or transmitted
light. Because for a given b, ϖ has no effect on the shadow-
ing or occultation by the ring, and because the single-scattering
polarization of the particles is independent ofϖ, Fpol shows little
dependence onϖ, indirectly showing how small the contribution
of the ring is to Fpol of the system. The variation in P is thus
mostly due to the variation in F.

By comparing Figure D.1 and Figure D.3, we conclude that
for this system, it is difficult to determine whether a curve would
be due to a larger value of b or a higher value of ϖ. Increases
in either parameter lead to higher fluxes when the ring is reflect-
ing light and a larger b can also increase the transmitted flux.
For a different orientation of the ring and/or planetary orbit, this
might be different. A full retrieval algorithm to fit the physical
and geometrical parameters may break the degeneration.

D.3. The influence of the ring radius

The effect that the ring radius rout has on the polarimetric light
curves is shown in Figure D.4. The curves are very similar to
those for various ring optical thicknesses b (see Figure D.1)
since increasing rout increases the reflected fluxes and, depend-
ing on the geometry, also the size of shadows, in a similar way as
increasing b does. There are some key differences, however. For
example, along parts of the orbit where the ring is diffusely trans-
mitting light, the ring flux increases with increasing rout while it
would decrease with increasing b beyond a value of about 1.0
(see Figure D.2).

Another difference compared to changing b is found in the
curves for Fpol: while increasing b decreases Fpol of the system

Fig. D.4: Similar to Fig. D.1, except for different outer ring radii rout
(expressed in planet-radius r): 1.75 (blue), 2.0 (green), 2.25 (purple), 2.5
(pink), 3.0 (orange), 4.0 (red), and 5.0 (brown). The system-parameters
are i = 20◦, λr = 30◦, γ = 60◦, rin = 1.2, ϖ = 0.8, and b = 1.0.

as a whole, because light that has been scattered multiple times
is less polarized, there is no such relation with the ring size: the
larger rout, the larger the Fpol that is added to the signal of the
planet-ring system.

With increasing rout, the curves for P converge as the polar-
ization signal of the rings starts to dominate that of the planet
(except near the ring-plane crossings). This trend is helped by
the fact that eventually, increasing rout no longer increases the
extent of the shadows on the planet.

The dips around ν = 15◦ and 290◦ become more pronounced
when the ring brightens as is evident from Figure D.1, Fig-
ure D.3, and Figure D.4. At these locations in the orbit, the angle
of polarization of the ring light is opposite to that of the planet
light, thus decreasing P; an effect that becomes more prominent
with increasing rout. For rout = 5.0, the flux that is reflected by
the ring dominates the planetary flux and P no longer approaches
zero.
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