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Summary

Human beings can walk stably and efficiently on all sorts of terrain, apparently
without much effort. From an engineering point of view, this apparent ease is
remarkable given the fact that the walking motion is a complex dynamic phe-
nomenon. Walking on two legs involves highly non-linear and multi-variable
dynamics, a limited foot-ground interaction (only compressive forces), naturally
unstable dynamics (the system is an inverted pendulum pivoting at the foot), it
involves discrete events (such as heel strike) and a varying configuration (alter-
nating stance and swing phases). To be able to replicate this complex walking
motion, for example for the development of rehabilitation aids or for walking
robots, it is necessary to find the essentials of the locomotive system design that
make human walking so natural and effortless.

To find the essentials of human walking, this thesis applies the approach
of gait synthesis (building artificial walking systems) rather than gait analysis
(studying the existent human system). In a problem-solving manner, an artificial
walking system is built up feature by feature. This approach ensures a focus on
the essentials of walking; for each additional feature it is known exactly why it
is necessary and how it adds to human-like walking.

The approach in this thesis differs from the approach used in most walk-
ing robot projects. Usually, the design and control of two-legged robots is based
on standard robot manipulator technology; strong actuators and stiff structural
components are combined with sophisticated control algorithms so that the en-
tire system can accurately follow prescribed trajectories. We argue that this leads
to unnecessarily complex, heavy, and energy inefficient walking machines, be-
cause accurate trajectory following is not a necessary condition for successful
locomotion. The key insight is that stability does not necessarily need to be ob-
tained within a single step (the trajectory control approach), as long as the walk-
ing motion is stable over the course of multiple steps. In other words, the walking
motion must be regarded as a cyclic motion which only needs to be stabilized in
its entirety. Thus, the fundamental trajectory instability within a step (the system
is an inverted pendulum) can simply be allowed to exist!

Our research is based on the well known concept of ‘passive dynamic walk-
ing’, in which the potential of the cyclic approach is convincingly demonstrated.
Purely passive mechanisms consisting of two legs with knees can perform a sta-
ble, cyclic walk down a shallow slope. With their unactuated hip and knee joints,
these walkers obtain cyclic stability without any control input. Not only are such
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walkers extremely simple mechanical constructions, also their walking motion
is highly natural and efficient; the swing leg moves forward in its natural fre-
quency requiring no energy input and giving a natural, fluent impression. Only
at the end of the step, a bit of energy is lost at the heel strike impact, which is usu-
ally replenished by walking down a shallow slope. The stability of such walkers
is a result of the regulating effect of the impact at heel strike and it depends on
the parameter values of the model. To analyze the stability of a passive dynamic
walker by means of computer simulations, the method of Poincaré Mapping is
usually applied. The system state is monitored once per cycle (at heel strike),
and it is analyzed how this state progresses from step to step. If a certain state
repeats itself step after step (‘it maps onto itself’), then the system is said to be
in a limit cycle. The stability of the limit cycle is analyzed by regarding the lin-
earized effects of small deviations from the limit cycle. This is the method that
has been applied in previous research on passive dynamic walking and it forms
the basis for the stability research in this thesis.

The goal of this thesis is to find the essentials of dynamic, human-like walk-
ing, taking the concept of passive dynamic walking as the point of departure. So,
what are the limitations of the current state of the art in passive dynamic walk-
ing? The answer consists of a long list of capabilities and features that have not
yet been incorporated in passive dynamic walking; stability against large dis-
turbances, an upper body, 3D stability, starting and stopping, standing up after
a fall, climbing stairs, turning, etcetera. This thesis focuses on three of the prob-
lems in this list. First, although the passive walkers are stable for small distur-
bances, larger disturbances quickly lead to a fall. Therefore, the first requirement
is a method to analyze the large disturbance behavior, with the help of which we
should find simple and efficient design or control solutions to improve the large
disturbance behavior. Second, a major limitation of passive dynamic walking is
the fact that currently all designs consist of legs only, as there exists no passive
solution to add an upper body. Third, in passive dynamic walking the 3D sta-
bility results are still meagre. Almost all of the prototypes are two-dimensional;
they move in the plane by means of a double symmetric construction with two
pairs of legs, one outer pair and one inner pair (cf. walking with crutches). The
few existent prototypes with genuine 3D dynamics (which can fall also side-
ways because they have only two legs) are only barely stable. In summary, the
goal of this thesis is to solve the following three problems:

1. understanding and improving the large disturbance behavior,

2. adding the upper body,

3. obtaining 3D stability.

First, to study the large disturbance behavior, we introduced the analysis of
the basin of attraction of the limit cycle. The basin of attraction is the collection of
all the states that still lead to the steady limit cycle. All states outside the basin
of attraction eventually lead to a failure. We analyzed the basin of attraction
for the most elementary walking model, a two-dimensional model with straight
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legs and point masses at the hip and feet. We found that the main failures are
falling backward (not sufficient energy to pass mid stance) and falling forward
(the swing leg is not timely in a forward position to catch the walker for the next
step). The simulation study provided the following conclusions:

• Compared to the original, linearized stability analysis, the basin of attrac-
tion provides a better insight in the large disturbance behavior, and thus
it enables a better prediction of successful locomotion under realistic cir-
cumstances.

• The basin of attraction for purely passive walkers is extremely small, indi-
cating a very weak tolerance for larger disturbances.

• The most frequent failure is a fall forward. The fully passive swing leg
moves forward in its natural frequency and thus it requires a fixed amount
of time to complete the step. If the walker moves too fast due to a distur-
bance, the swing leg is not timely in a forward position to catch the robot
for the next step.

To improve the large disturbance behavior, we proposed to take a step away
from the fully passive approach and to add actuation in the hip joint. With an
actuator at the hip it is possible to accelerate the swing leg to ensure a timely
arrival at a forward position. A simulation study showed that this solution can
completely remove the risk of falling forward, albeit at a small energetic cost.
Moreover, we found that there is no complex control required for this solution;
the swing leg can simply be moved to a preset forward position. No measure-
ments of the actual state of the robot are required, the actuation can be identical
at every step. A simple spring-damper combination at the hip joint is sufficient;
all that is required is to switch the equilibrium position of the spring once per
step. An additional benefit of the proposed actuation is that it injects a sufficient
amount of energy in the system so that the walkers are no longer dependent on
a downhill slope for their energy input.

The proposed solution was validated with an autonomous, two-dimensional
prototype with knees. The prototype weighs 7 kg and stands 0.7 m tall, and it
can walk at 0.4 m/s (0.6 s per step). The hip joint is actuated with McKibben
muscles which provide a joint stiffness proportional to their internal CO2 pres-
sure. By alternatingly using only one muscle out of a pair of antagonistic mus-
cles, the hip joint is given a stiffness and a forward set point at each step. In this
manner, the swing leg is accelerated forward according to our proposed control
rule. The prototype was made to take a step-down during a steady walk, and the
maximal step-down height was recorded as a function of the hip muscle pres-
sure (hip joint stiffness). It was shown that a higher pressure indeed allows a
larger step-down (maximally 14 mm). Thus, the proposed hip actuation indeed
improves the large disturbance behavior.

Second, to add an upper body, we introduced the bisecting hip mechanism. It
constrains the upper body to the bisection angle of the two legs. In this manner,
the addition of the upper body does not introduce an extra degree of freedom.



iv ESSENTIALS OF DYNAMIC WALKING; ANALYSIS AND DESIGN OF TWO-LEGGED ROBOTS

The upper body is not an unstable inverted pendulum (with the hip as pivot
point), but rather its mass and inertia are mapped onto the two legs. Therefore,
there is no additional stability control required and we can maintain the sim-
ple system design of the original passive walkers. A simulation study revealed
that the presence of such an upper body results in an improved energy efficiency
without deteriorating the large disturbance behavior. From these results we con-
cluded that the bisecting hip mechanism forms a practical and simple solution
to construct efficient bipedal walking robots with an upper body, in agreement
with the concept of passive dynamic walking.

The proposed solution was validated with an second prototype. The walker
is an autonomous, two-dimensional prototype with knees and an upper body.
The prototype weighs 10 kg and stands 1.1 m tall (0.7 m leg length), and it walks
at 0.4 m/s (0.8 s per step). The actuation system and most of the design is an im-
proved copy of the first prototype. The prototype walks stably and efficiently,
while the motions and the disturbance behavior match perfectly with a detailed
simulation model. We found both in the model study and in the prototype that
the fore-aft position of the center of mass of the upper body is a powerful para-
meter for the stability of the walking motion. Conversely, the hight of the center
of mass, the total mass and the mass distribution have no noticeable influence
on the stability. The prototype experiments validate the use of a bisecting hip
mechanism to add a passive upper body in a simple manner to dynamically
walking robots.

Third, to obtain stability for three-dimensional walking motions, we stud-
ied a special ankle joint. The ankle joint points forward and downward, quite
unlike the human ankle. The effect of the ankle joint is a dynamic stability; it
only provides stability when the robot is walking with sufficient forward veloc-
ity. The effect is similar to the stabilizing dynamic effects found in bicycles and
skateboards. In all of these systems, a sideways leaning angle (the main cause
for instability in 3D walking systems) is coupled to a steering angle so that the
systems steers in the direction that it is falling. With sufficient forward velocity,
the coupling results in a stabilization of the sideways leaning angle. A simula-
tion study revealed that the orientation of the ankle joint axis has an important
effect on the stability. The general rule is that the more horizontal the axis is ori-
ented, the higher is the required minimal velocity for stability. The simulation
also showed that the hip actuation as described earlier is a prerequisite for stable
3D walking with this ankle joint. A final result is that the ankle joint provides a
simple means to make (weak) turns while walking; an asymmetry in the mass
distribution automatically leads to a turn, as the asymmetry can be seen as a
continuous sideways disturbance which is stabilized by (automatically) steer-
ing in that direction. In summary, the simulation results convincingly showed
that the special ankle joint can result in stable 3D walking motions.

The idea of a special ankle joint for 3D stability was validated with a final
prototype. The prototype weighs 8 kg and stands 1.5 m tall (0.7 m leg length),
and it walks at 0.4 m/s (0.8 s per step). The prototype leaves a much more hu-
man impression than any of the previous machines. It has two legs (not four



ESSENTIALS OF DYNAMIC WALKING; ANALYSIS AND DESIGN OF TWO-LEGGED ROBOTS v

legs in symmetric pairs) with knees and the special ankle joints, and an upper
body (with a lightweight head and counter-swinging arms, features more for
appearance than for function yet). The human impression is especially strong
when the prototype walks; the natural swing of the legs including a passive
knee motion, the slight sideways oscillation from step to step, and the overall
effortless forward progression all give the prototype a highly natural appear-
ance. With its successful walking performance, the third prototype validates the
implementation of a special ankle joint that couples lean to steering as a solution
for dynamic stability in 3D walking machines.

The most significant achievement is that the three prototypes can walk nat-
urally, stably, and efficiently while using a minimal control system; the entire
control system for all three prototypes consists of only two foot switches which
trigger only three on/off actuators (one hip actuator and two knee latches).
With these results, we have demonstrated that knowledge of the essentials of
dynamic, human-like walking can lead to extremely simple yet highly natural
walking machines.

Martijn Wisse, 2004
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Chapter 1

Introduction

1.1 Essentials of dynamic walking

The topic of this thesis is the search for the essentials of dynamic, human-like
walking. This search is motivated by needs from rehabilitation and from robot
design (Section 1.2). The search is conducted by means of gait synthesis (the con-
struction of walking simulations and robot prototypes) rather than gait analysis
(the biomechanical study of human locomotion), because this will lead to the
more fundamental dynamic insights (Section 1.3). The main difficulties in gait
synthesis arise from the involved nonlinear and variable dynamics and from the
unilateral foot contact (Section 1.4). To overcome these difficulties, two general
approaches are known (Section 1.5); industry builds on classical robotic con-
trol techniques whereas some academic research institutes build on dynamical
systems theory. This thesis applies the second approach. The state of the art is
represented by ‘passive dynamic walking’ robots; mechanical contraptions that
demonstrate extremely natural walking motions without the need for any con-
trol action (Section 1.6). Of all the work that needs to be done in this field, this
thesis focuses on three issues (Section 1.7): 1) robustness, 2) upper body, and
3) 3D stability. These three issues are resolved via a comparison (Section 1.8)
between simulations and three successfully walking prototypes (one for each
problem) as outlined in Section 1.9.1

1Note that chapters 2-8 are exact reproductions (except for page lay-out) of journal articles or
conference articles as they have appeared or have been submitted.
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1.2 Motivation

The oldest motivation to search for knowledge on dynamic walking is the field
of rehabilitation. Archeological findings2 have shown that already in the prehis-
tory, humans were fitted with prostheses (limb replacement) and orthoses (limb
function support). Then and now, these artificial limbs have two purposes: to
restore the function of the limb (prostheses and orthoses) and to hide the weak-
ness or disfiguredness of a missing limb (mostly prostheses). In ancient history,
most of the amputations were a result of human conflicts, and this is not differ-
ent in the more recent history, as World Wars I and II brought tens of thousands
of amputees each, while other parts of the world continue to suffer from large
scale conflicts. In addition, the late 1950’s saw the ‘Thalidomide tragedy’; ap-
proximately ten thousand babies were born with deformed or missing limbs
due to disastrous side effects of this insomniac drug taken during pregnancy3.
In the Netherlands, currently most amputations are a result of an accident or are
necessary because of a vascular disease (mostly elderly patients), and add up to
over 2000 amputations per year in the Netherlands alone [42].

For most part of history, leg protheses have been constructed the same way,
with a wooden peg leg, leather straps and a soft leather or linen lining. In the six-
teenth century Paré heralded an era of mechanical refinement comprising better
materials and more degrees of freedom, especially for the upper extremities.
For the legs, however, even the most advanced prostheses still have only one
degree of freedom, the knee. Foot designs have evolved to incorporate damping
and compliance, but most of these developments were experience-based. This
is also the case for the modern prostheses with computer controlled damping in
the knee. Almost none of the design features of today’s prostheses are based on
knowledge of the dynamics of walking. This lack of knowledge results in unnat-
ural dynamic behavior of the prosthetic leg, which the amputee will try to hide
by means of extra effort [72]. This demonstrates the relevance of knowledge on
the essentials of dynamic walking and the current lack thereof.

Another motivation for the search for knowledge on dynamic walking comes
from the field of entertainment, an industry with less urgency but much more
economic thrust than the field of rehabilitation. The billion dollar markets of
computer games and motion pictures make more and more use of computer
generated actors [35]. The generated motions must be of high quality because
the human eye is very perceptive for deviations from natural walking motions.
Although virtual gravity is a little more forgiving than the real thing, knowl-
edge of the underlying dynamics is imperative for the development of realistic
animations.

More recently, the entertainment industry has been opening up the market
for entertainment robots. After SONY’s four-legged AIBO-dog, several compa-

2The remarks with respect to the history of gait analysis and prosthetics in this chapter are based
on the Clinical Gait Analysis webpages, http://www.univie.ac.at/cga/

3The ‘Thalidomide tragedy’ (‘Softenon drama’ in Dutch) was one of the incentives to start re-
search into prosthetics at Delft University of Technology, the technology of which has been the base
for our research into biped robots.
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nies [68, 46, 41, 45] are now developing two-legged humanoid robots, see Fig. 1.1.
Although the current products are still based on classic robotic technology (see

(a)(a) (d)(c)(b)

Figure 1.1: Several companies are now developing two-legged humanoid robots: (a)
Honda’s ASIMO [68], (b) Sony’s SDR-4X [46], (c) Kawada’s HRP2 [41], and (d) Fujitsu’s
HOAP-1 [45].

Section 1.5), the attractiveness of the human appearance of these robots has al-
ready resulted in huge media coverage and public interest, providing the devel-
oping companies with an effective means to show their technological disposi-
tion. It is expected that the human-like form of locomotion will eventually also
prove useful for tasks other than entertainment; a two-legged design provides
functionality in environments that are especially designed for humans such as
dangerous factory environments, construction workplaces, and the homes of
private robot owners. Various reports [74, 66] predict a steady development
from the current research and entertainment products towards highly versatile
machines, parallel to the stages of development seen in the short history of the
PC. For the development of two-legged walking robots, the need for knowledge
of the essentials of human-like walking is self-evident.

1.3 Gait synthesis instead of biomechanical anal-
ysis

To obtain knowledge on human walking, there are two distinct approaches; de-
scriptive gait analysis and predictive gait synthesis. The most obvious approach,
gait analysis, has been a central research topic in biomechanics since early his-
tory, such as Hippocrates’ treatment of people with a hip joint dislocation [32]
around 400 BC. The early modern times have produced beautiful treatments
on human motion (e.g., Borelli [9] in 1680). As soon as photography became
available in the late nineteenth century, Marey [47] and Muybridge [55] applied
it to perform two-dimensional (2D) kinematic analyses. The first 3D kinematic
analysis was performed in 1891 by Braüne and Fischer [10]. Elftman [22] devel-
oped the force plate in 1938 which he used to perform the first inverse-dynamics
gait analysis. Although the tools have improved enormously since then (e.g.
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with the introduction of the 3D computerized data acquisition and even real-
time inverse-dynamics analysis), the basic analytical approach has remained the
same ever since; the motions and ground reaction forces are measured and the
joint torques or muscle forces are then calculated using a model of the human
body.

In the search for the essentials of human-like walking, the biomechanical ap-
proach of gait analysis is not suitable. First, it is hard to discriminate between
essential and non-essential features, because the system has to be studied in its
entirety. For example, it is rather impossible to switch off certain sensors (e.g.
Golgi tendon organs which measure muscle force) and study the result. Second,
some essential features might be overlooked because of their sustained presence
in all experiments. For example, many studies based on inverse-dynamics calcu-
lations ignore the problem of stability and thus fail to recognize the importance
of related features such as local feedback control loops.

The goal of this thesis, finding the essentials of dynamic walking, is better
served with the approach of gait synthesis. In a problem-solving manner, an
artificial walking system is built up feature by feature. This approach ensures
a focus on the essentials of walking. Moreover, for each additional feature it is
known exactly why it is necessary and how it adds to human-like walking. This
is the approach taken throughout the research presented in this thesis.

1.4 The difficulty with gait synthesis

The synthesis of bipedal gait is difficult because it requires a complete under-
standing of the system characteristics; it is impossible to focus on a detail (e.g.
knee motion) and temporarily ignore a fundamental problem such as stability.
Following Pratt [63], we distinguish the following characteristics that make two-
legged systems a complicated topic:

• Non-linear dynamics. The leg excursions are distinctly outside the lin-
earizable region so that the full non-linear dynamics must be accounted
for. The non-linear nature of the system is especially dominant when three-
dimensional dynamics are considered.

• Multi-variable dynamics. Walking systems are modeled as multibody sys-
tems with rigid links and low-impedance joints. The interaction between
the various degrees of freedom is important and should not be overlooked,
especially in three dimensions (e.g. a simplification into two planar mod-
els, one for the lateral plane and one for the frontal plane, is guaranteed to
provide erroneous answers).

• Naturally unstable dynamics. Grosso modo, the entire system can be seen
as a (naturally unstable) inverted pendulum balancing on the stance leg.
This necessitates to study the dynamic balance of the system over the en-
tire walking cycle, which requires a much more involved analysis than the
more common study of static balance.
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• Limited foot-ground interaction. The unilateral nature of the foot-ground
contact (only compressive contact forces) makes biped systems fundamen-
tally underactuated. The system must use the control over its internal
joints to cope also with the uncontrollable foot-ground contact. In addi-
tion, the system has no permanent contact to an inertial reference frame
and so it cannot directly determine its absolute orientation in space.

• Discretely changing dynamics. The alternation of foot contact represents
a discrete change in boundary conditions of the dynamical system. In ad-
dition, in many idealized models of biped machines there is the occurrence
of impacts (e.g. heel strike) which result in discrete velocity changes.

Due to these characteristics, biped systems belong to a general class of systems
that form an interesting topic for dynamical systems theory and a definite chal-
lenge to control theory [86].

However, it should be realized that the requirements for successful bipedal
walking are not identical to those for successful robotic manipulation for man-
ufacture, the classical interpretation of robotics. Where speed and positioning
accuracy are the main requirements for successful manufacturing, these charac-
teristics are not important for bipedal walking, warranting a different approach
to dealing with the above mentioned intricacies. Instead of speed and position-
ing accuracy, successful biped systems meet the following requirements:

• Stability. The biped should not fall when challenged with (a predefined
range of) disturbances.

• Efficiency. In most cases the biped system is useful only if it is autonomous,
i.e. it has to carry its own energy supply. Depending on the required sus-
tained operational time, it has to use its resources efficiently.

• Naturalness. Depending on its purpose, the biped has to demonstrate
more or less human-like natural motions. Note that playing back prere-
corded human walking motions on an artificial system with slightly dif-
fering dimensions can quickly result in a highly unnatural appearance to
the human observer.

• Versatility. Depending on the application, the biped system should be ca-
pable to manoeuvre, vary velocities, climb stairs, avoid obstacles, etc.

• Safety. When applied in a human environment, the biped system should
be unable to harm human beings, i.e. it should be lightweight and low-
powered.

These requirements make the synthesis of walking systems a challenge that
is clearly different from classical robot design, and in some ways the solutions
might prove simpler, depending on the design approach as detailed in the fol-
lowing section.
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1.5 Two possible points of departure

To synthesize gait and build biped walking systems, two possible points of de-
parture exist:

• the industry-oriented static bipeds

• the academic oriented passive bipeds

Each starting point has its benefits and drawbacks, but both require substantial
research to arrive at human-like walking; the static bipeds have sufficient versa-
tility but must be developed towards dynamic (more natural and efficient) walk-
ing, whereas the passive bipeds already possess an efficient, natural dynamic
gait but must be provided with actuation and must be developed towards more
robustness and versatility. The points of departure are detailed below.

Static bipeds

The standard approach to robot control as applied in industrial manufactur-
ing robots is to ensure direct control over all degrees of freedom. By applica-
tion of strong actuators and stiff structural components, the robot manipulators
can be controlled to accurately follow prescribed trajectories. This approach can
be used as a starting point for the construction and control of biped robots. To
deal with the fundamental characteristics of limited foot contact and discretely
changing dynamics, the bipeds are programmed to walk slowly and to keep
the center of mass above the foot contact area (hence ‘static’ bipeds). Thanks to
these constraints, the stance foot remains in full, flat contact with the floor and
thus ‘simulates’ direct control over all degrees of freedom. An extension towards
a more dynamic approach is the so-called ‘Zero Moment Point’ [82] (center of
pressure [28]) control; by keeping the center of pressure inside the foot contact,
full and flat foot contact can also be ensured. Note that this is not sufficient to
prevent the biped from falling, it would just fall while keeping full foot contact.
Usually, the ‘Zero Moment Point’ calculation serves as a constraint to trajectory
generators so that faster (than fully static) walking motions can be generated
while ensuring that the foot maintains full, flat contact with the floor. The ac-
tual stability of the gait results from the ability to robustly follow the generated
trajectory. One of the first research robots based on this approach was built at
Waseda University in 1970 [1]. Many followed, especially in Japan, and work
towards a more dynamic gait is in progress.

The benefit of the static approach is that a complete system can be built
from the start; it has all the degrees of freedom needed to make it look human
and thus it is immediately ready for commercialization, e.g. for entertainment
purposes. Making it more dynamic, natural, efficient and cheaper are topics
for gradual improvement, as illustrated with the succession of prototypes by
Honda [33, 68] and Sony [46]. This benefit makes the static approach a good
starting point for industrial developers. The drawback is that it is unlikely that
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this approach will yield clearly presented fundamental insights in the problem
of walking, making it an unattractive starting point for academic research.

Passive bipeds

Biomechanical research has provided several hints towards the possible role of
passive dynamic motions in human walking. A remarkably relevant hypothesis
posed by Weber and Weber [84] as early as 1836 reads: ‘Die Beine können am
Rumpfe wie Pendel hin und her schwingen. (...) Unsere aufmerksamkeit wird
für diese schwingende Bewegung nicht erfordert.’ (‘The leg can swing back and
forth like a pendulum suspended from the body. ... Our attention is not required
to produce this swinging motion.’) Mochon and McMahon [53] arrived at the
same conclusion after comparing the swing leg motion with a passive double
pendulum. Another hint in that direction is given by Ralston [65] who discov-
ered that there exists an optimal walking velocity for humans; at approximately
5 km/h the specific resistance (also termed specific cost of transport, i.e. energy
cost per weight per distance traveled) is minimal, a phenomenon that indicates
the use of the natural frequencies of the mechanical system.

Early toy makers [23] (Fig. 1.2a) proved the applicability of the ideas by
showing that the human walking motion can at least partially be generated with
passive mechanisms that move and oscillate at their natural frequencies. In 1989,
McGeer [49] proposed that those passive mechanisms could serve as an alterna-
tive point of departure for the synthesis of bipedal gait. He parallelled this to
the approach of the Wright Brothers, who first mastered passive gliding before
they added an engine to their aeroplane. McGeer showed that a completely un-
actuated and therefore uncontrolled robot can perform a stable walk [48] when
walking down a gentle slope (Fig. 1.2b). Since then, his work has been extended
gradually by Ruina’s group at Cornell University [18, 15, 27, 24, 19] (Fig. 1.2c)
up to the point where the passive approach can be regarded beyond doubt as a
valid starting point for bipedal gait synthesis and robot construction.

The benefits of the passive approach are the inherent efficiency of the walk-
ing motion, the natural-looking motions, and the simplicity of the required con-
struction. The development towards a more human-like versatility should be
taken step-by-step (figuratively), which can be seen as both a benefit and a
drawback of this approach. The drawback is that, although the motions of the
early machines are uncannily natural, the general public is quickly disappointed
with the incompleteness of the system (e.g. no upper body, lateral constraints
to ensure only two-dimensional dynamics, no velocity control). This makes the
passive approach unattractive for industrial developers. The required incremen-
tal addition of versatility does, however, provide ample opportunities to dis-
cover fundamental dynamic properties. As such, the passive approach is the
most appropriate point of departure for academic research into gait synthesis.
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a b c

Figure 1.2: Previous realizations of passive walkers demonstrate the feasibility of the
concept of passive dynamic walking: (a) Figure from 1888 patent by Fallis [23], (b) Gar-
cia’s copy of McGeer’s 2D kneed walker [48], (c) Collins’ 3D passive walker with knees
and counterswinging arms [19].

1.6 State of the art and problem statement

Since McGeer, much research has been done on passive dynamic walking, but
even more remains to be done. McGeer built and simulated bipeds with and
without knees which were laterally constrained (2D dynamics) by a symmetric
construction with two pairs of legs. Simulation studies on fully passive mod-
els were performed by Garcia [27] and Goswami [30], whereas Hurmuzlu [38],
Spong [73], Van der Linde [78] and Asano [8] added some form of actuation and
control. Wisse [90], Piiroinen [60], Adolfsson [6, 7], and Kuo [43] simulated near-
3D models, whereas Coleman [17] simulated a fully passive, full 3D model, for
which also a physical prototype was built [18]. Other prototypes were built by
Collins [19], Van der Linde [77], Ono [57, 58] and Tedrake [75], whereas Pratt [62]
included passive dynamics in an otherwise active robot.

Almost all walkers in this list consist of legs only, most of them are fully
passive, and many exist only as computer models. Also, all of them require
a disturbance-free environment. To advance from this state of the art towards
human-like walking capabilities, at least the following topics need to be ad-
dressed:

• increasing the robustness in 2D,

• adding an upper body,

• obtaining robustness in 3D,

• enabling control of the walking velocity,

• enabling the walker to start and stop,

• enabling the walker to turn,
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• enabling the walker to stand up after a fall.

These increases in complexity and actuation must be carried out step-by-step.
For each addition, it should be ensured that the beneficial characteristics of pas-
sive walking (efficiency, naturalness, and simplicity) are preserved, and that the
fundamental dynamic properties and effects in the entire system with the new
addition are understood. This is clearly a long-term research goal, much broader
than can be captured in one PhD study. Therefore, this thesis is confined to the
first three topics; an increased robustness in 2D, the addition of an upper body,
and the search for robustness in 3D.

1.7 Goal

The goal of this thesis is to answer the following three questions:

1. How can the robustness of 2D walking motions be increased?

2. How can an upper body be added?

3. How can robustness for 3D walking motions be obtained?

While answering to these issues, it is pursued to:

• preserve the efficiency, naturalness, and elegant simplicity of passive dy-
namic walking, and

• present an understanding of the fundamental dynamic principles.

1.8 Approach

The research approach taken in this thesis is based on two cornerstones. On
the one hand, irreducibly simple simulation models are studied to generate an
understanding of the underlying dynamic principles. On the other hand, the hy-
potheses and concepts that result from the simulation studies are verified and
validated with real-world prototypes, one for each of the three questions men-
tioned above. The validation can take place on three levels of detail, where each
level subsumes the previous one:

• Single-bit. The robot walks or it does not. If the irreducibly simple sim-
ulation predicts a stable walking motion for a certain morphology within
certain boundaries, and the corresponding prototype indeed demonstrates
a successful walking motion, then the concept is verified. In many cases a
validation on this lowest level of detail is already sufficient, as most objec-
tions can easily be countered with ‘It works!’.
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• Qualitative effects. A certain effect (such as an increased stability with a
parameter change in a certain direction) is found both in the simulation
and in the prototype. If the predicted qualitative effect can be reproduced
in the prototype, then the most important goal is achieved; the model has
indeed provided an understanding of the fundamental dynamic effects.
These are the main research results. The validation in the corresponding
prototype guarantees applicability of the concepts for gait synthesis.

• Quantitative gait characteristics. The gait characteristics such as walking
velocity, step length, energy consumption and disturbance rejection can be
quantitatively predicted with the simulation model. This requires a sim-
ulation model with adjustable parameters to accurately model the mass
distribution, friction, damping, etc. As such, the model is no longer ‘ir-
reducibly simple’, which might jeopardize the goal of generating an un-
derstanding of the fundamental dynamic principles. Therefore, a valida-
tion on this level of detail requires a second, more detailed model in addi-
tion to the irreducibly simple model. Although a validation on this level
merely demonstrates a skill of data matching, the results can help in mak-
ing the validation on the qualitative level more convincing. Also, the de-
velopment of such an accurate model is imperative for the optimization of
the correlating prototype.

In this thesis, a validation at the level of qualitative effects is applied, enriched
with a validation of quantitative gait characteristics where this provides added
value. The first level of validation (‘It works’) is still the most convincing, espe-
cially when seen in motion; please refer to the website http://dbl.tudelft.nl
or to Appendix B (consisting of text and a CD-ROM) for a collection of videos
of the robots presented in this thesis.

1.9 Thesis outline

This thesis contains two parts, Part I with four chapters on irreducibly simple
simulation models, and Part II with three chapters on real-world prototypes.
Each chapter is a complete article, unmodified with respect to the form in which
it was published or submitted. Therefore, there exists some overlap between the
two parts, as an article on simulation results sometimes requires a brief proto-
type section and vice versa. The three questions that constitute the goal of this
thesis are addressed in the following chapters:

1. How can the robustness of 2D walking motions be increased?

• Part I, Chapter 2 presents the analysis of the basin of attraction to
study the large-disturbance behavior,

• Part I, Chapter 3 presents a simple control rule for the swing leg
which increases the robustness against large disturbances,
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• Part II, Chapter 6 presents a validation of this rule with the prototype
‘Mike’.

2. How can an upper body be added?

• Part I, Chapter 4 presents the concept of a bisecting hip mechanism
which allows the addition of a passive yet stable upper body,

• Part II, Chapter 7 presents a validation of this concept with the pro-
totype ‘Max’.

3. How can robustness for 3D walking motions be obtained?

• Part I, Chapter 5 presents the concept of tilted ankle axis which cou-
ples lean to yaw for 3D stability,

• Part II, Chapter 8 presents a validation of this concept with the pro-
totype ‘Denise’.

Finally, Chapter 9 presents a discussion and a general conclusion. In addition,
Appendix A provides a tutorial text to get started with ’passive dynamic walk-
ing’ and Appendix B (consisting of text and a CD-ROM) provides a collection
of videos of the walking robots and models presented in this thesis.
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Part I

Elementary model studies





Chapter 2

Basin of Attraction of the Simplest
Walking Model

A. L. Schwab and M. Wisse
ASME Design Engineering Technical Conferences, Sep. 2001; Pittsburgh,

Pennsylvania.

Passive dynamic walking is an important development for walking robots, sup-
plying natural, energy-efficient motions. In practice, the cyclic gait of passive
dynamic prototypes appears to be stable, only for small disturbances. Therefore,
in this paper we research the basin of attraction of the cyclic walking motion for
the simplest walking model. We present a general method for deriving the equa-
tions of motion and impact equations for the analysis of multibody systems, as
in walking models. Application of the cell mapping method shows the basin of
attraction to be a small, thin area. Our measures of the basin of attraction are not
directly related to the stability of the cyclic motion.
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2.1 Introduction

The past few decades robotics research has made huge developments in the area
of biped locomotion, running from prosthesis development to entertainment in-
dustries. Several major institutes have succeeded in building successful walking
bipeds. One of the under-addressed problems is energy consumption. Most ex-
isting bipeds need an ‘umbilical cord’ for power supply. Honda Motor Co. [33]
developed a completely autonomous humanoid robot, but it has to carry 20 kilo-
grams of batteries for a 15 minute walk.

A solution for energetic efficiency is the exploitation of the ‘natural dynam-
ics’ of the locomotive system. In 1989 McGeer [49] introduced the idea of ‘pas-
sive dynamic walking’, inspired by research of Mochon and McMahon [53].
They showed that in human locomotion the motion of the swing leg is merely a
result of gravity acting on an unactuated double pendulum. McGeer extended
the idea and showed that a completely unactuated and therefore uncontrolled
robot can perform a stable walk [48].

The walking motion of a passive dynamic walker is started by launching the
robot with such initial values for the leg angles and velocities, that the end of
that step (the beginning of a new step) is nearly identical to the starting condi-
tions. A periodic or cyclic walking motion will then result. At each step, when
the heel strikes the floor, the impact will result in loss of energy. This loss can be
compensated for by having the robot walk down a shallow slope or by periodi-
cally supplying energy with an actuator.

A recent study by Garcia et al. [27] showed that the simplest passive dynamic
walking model can have stable cyclic motion. Experience with real prototypes
however reveals that even a very small disturbance may result in failure. This
leads us to believe that the size of allowable disturbances is at least as important
as the stability of the cyclic solution. Therefore, in this paper we will investigate
the basin of attraction of the cyclic motion and the failure modes for the simplest
walking model.

2.2 The Simplest Walking Model

The subject of this research is the simplest mechanical model still possessing the
ability to perform a bipedal walking motion, as conceived by Garcia et al. [27].
The model, shown in Figure 2.1, consists of two rigid links with unit length,
connected by a frictionless hinge at the hip. The mass is distributed over three
point masses; one with unit mass at the hip, and two with mass β at the feet. The
limit case where the foot mass is negligible in comparison with the hip mass,
β → 0, is investigated. This unactuated two-link system walks down a slope in
a gravity force field with unit magnitude. The scaled model of the walker now
only has one free parameter, the slope angle γ.

A walking step is started with both feet on the slope. The front foot has just
made ground contact, the hind foot has a velocity away from the floor. During a
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step, the stance foot is modeled as a hinge, connected to the floor. The swing foot
is moving freely as the other end of a double pendulum. At about midstance, the
swing foot will briefly be below floor level (‘foot-scuffing’), which is inevitable
for a walker with straight legs. Knees ([50], [88], [7], [19]) or other leg shortening
measures ([76]), as well as 3D motion ([43], [76] [78]) would solve the problem
but increase complexity of the model. After this short through-pass, the second
time that the swing foot reaches floor level is regarded as heel-strike, the end
of the step. The former swing foot makes a fully inelastic collision and becomes
the new stance leg. Instantaneously, the former stance leg loses ground contact,
and a new step begins.

φ

g M

mm
θ

γ

l stance
leg

swing
leg

Figure 2.1: A typical passive walking step. The new stance leg (lighter line) has just made
contact with the ramp in the upper left picture. The swing leg (heavier line) swings until
the next heelstrike (bottom right picture). The top-center picture gives a description of the
variables and parameters that we use. θ is the angle of the stance leg with respect to
the slope normal. φ is the angle between the stance leg and the swing leg, M is the hip
mass, m is the foot mass, l is the leg length, γ is the ramp slope, and g is the acceleration
due to gravity. Reprinted with permission from Garcia et al. [27]

2.3 Analysis of the Model

In the analysis of the passive dynamic walking motion, three stages can be dis-
tinguished. First, the derivation of the equations of motion for the walker during
the support phase. They will be derived in terms of independent coordinates by
the principle of virtual power and will be solved by numeric integration. Sec-
ond, we formulate and apply the impact equations governing the heelstrike.
Third and last, we will formulate the support exchange and combine the re-
sults from the previous stages in a stride function. The ‘stride function’ [51] is a
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Poincaré map relating the state during one part of a step with the state during
the same part of the next step.

2.3.1 Equations of Motion

The configuration of the walker is defined by the coordinates of the three point
masses; the stance foot, the hip and the swing foot, which can be arranged in a
global vector x = (xstl, ystl, xhip, yhip, xswl, yswl)T . These coordinates are not in-
dependent owing to the two distance constraints imposed by the stance and the
swing leg. In order to eliminate the constraint forces from the start, we shall ex-
press the equations of motion in terms of independent generalized coordinates.
Let Oxy be a fixed orthogonal system of coordinates with Ox along the walking
slope and Oy directed upward. Then u and v are the coordinates of the contact
point of the stance foot. During walking motion they will be fixed, but at heel-
strike they will have no boundary condition in order to fulfill the ‘lifting stance
foot’-assumption. Furthermore, θ is the angle between the stance leg and Oy,
and φ the clockwise angle between the stance leg and the swing leg. The config-
uration of the walker can be described by the vector of generalized coordinates
q = (u, v, θ, φ)T . The coordinates x can locally be expressed as functions of the
generalized coordinates q, the kinematic degrees of freedom (configuration co-
ordinates), by means of a transfer function F as

x = F(q) →

⎡
⎢⎢⎢⎢⎢⎢⎣

xstl

ystl

xhip

yhip

xswl

yswl

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u
v
u − sin(θ)
v + cos(θ)
u − sin(θ) + sin(θ − φ)
v + cos(θ) − cos(θ − φ)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.1)

The unreduced equations of motion for the system are obtained by assembling
the contribution to the virtual power equation of all point masses in a global
mass matrix M and a global force vector f , which results in a virtual power
balance

δẋT [f − Mẍ] = 0. (2.2)

Here, δẋ are kinematically admissible virtual velocities, which satisfy all instan-
taneous kinematic constraints. By differentiating the transfer function (2.1) we
obtain

ẋ = F,qq̇, δẋ = F,qδq̇ and ẍ = F,qq̈ + F,qqq̇q̇. (2.3)

Here a subscript comma followed by one or more variables denotes partial
derivatives with respect to these variables. The way in which higher-order deriva-
tives have to be multiplied by the juxtaposed vectors goes without saying. Sub-
stitution of these expressions in the virtual power equation (2.2) and adding on
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the left-hand side the contribution, δq̇T Q, from the generalized forces Q dual to
the coordinates q, yields the reduced equations of motion

[FT
,qMF,q]q̈ = FT

,q[f − MF,qqq̇q̇] + Q. (2.4)

For the walker the global mass matrix is

M = Diag(β, β, 1, 1, β, β), (2.5)

and the applied forces, only gravity, are

f = M[sin(γ),− cos(γ), sin(γ),− cos(γ), sin(γ),− cos(γ)]T , (2.6)

and zero for the generalized forces Qθ and Qφ. The contact condition on the
stance foot gives the boundary conditions u = 0 and v = 0. This contact is only
valid for compressive vertical contact force, Qv > 0, and will be checked during
the simulation. After solving the unknown accelerations of the generalized co-
ordinates q̈ from the reduced equations of motion (2.4) and then taking the limit
yields

lim
β→0

q̈ =
[

θ̈

φ̈

]
=

[
sin(θ − γ)
sin(φ)(θ̇2 − cos(θ − γ)) + sin(θ − γ)

]
, (2.7)

and for the unknown contact forces

lim
β→0

[
Qu

Qv

]
=

[
sin(θ)(θ̇2 − cos(θ − γ))

− cos(θ)(θ̇2 − cos(θ − γ))

]
. (2.8)

In the case of a more complicated walker, as for example in the 3D passive dy-
namic biped with yaw and roll compensation [88], it will be impractical to solve
symbolically for the accelerations of generalized coordinates. A numerical eval-
uation of every individual contribution to the reduced equations of motion (2.4)
and its solution is more practical. A limit case can be handled by a small order
perturbation.

2.3.2 Heelstrike

We assume that the heel strike behaves as a fully inelastic impact (no slip, no
bounce), which is in accordance with observations on existing passive dynamic
walking prototypes. Also, double stance is assumed to occur instantaneously.
As soon as the swing foot hits the floor the stance foot lifts up, not interacting
with the ground during impact. The resulting vertical velocity of the lifting foot
should then be pointed upward. If this is confirmed after the impact equations
are solved, the assumption is verified. Otherwise, the walker would come to
a complete stop. Treating heel strike as an impact, we assume that velocities
change instantaneously. These velocity jumps are enforced by very high values
of the contact forces acting only during a small time interval of contact. In the
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limit case the forces go to infinity and the time interval goes to zero. The integral
of the force with respect to time over the duration of the impact, the impulse,
has a finite value which is the cause of the velocity jump. While the impact takes
place all positions as well as all non-impulsive forces of the system remain con-
stant. The impact is usually divided into a compression and an expansion phase.
Newton’s impact law links these two phases by stating that the relative speed
after impact equals e times the relative speed before impact but in opposite di-
rection. The factor e is the coefficient of restitution. A value of e = 1 corresponds
with a fully elastic impact whereas the value of e = 0 represents a completely in-
elastic impact in which the two parts “stick” together after impact. The reduced
equations of motion (2.4) written in terms of the generalized coordinates q are

M̄q̈ = f̄ , (2.9)

with the reduced mass matrix and force vector

M̄ = [FT
,qMF,q], f̄ = FT

,q[f − MF,qqq̇q̇] + Q. (2.10)

Note that the ‘lifting stance foot’-assumption implies that the system has no
boundary conditions on the former stance foot and consequently there are more
degrees of freedom during impact than during smooth motion. The uni-lateral
constraints at heel strike are expressed by the contact functions g, the coordi-
nates of the swing foot expressed in terms of the generalized coordinates as

g(q) =
[

gx

gy

]
=

[
xswl

yswl

]
=

[
u − sin(θ) + sin(θ − φ)
v + cos(θ) − cos(θ − φ)

]
. (2.11)

When contact occurs, detected by a change of sign in the swing foot vertical
clearance function gy , the former swing foot becomes constrained in both the x
and y direction and the equations of motion become

M̄q̈ + gT
,qλ = f̄ , (2.12)

with the Lagrangian multipliers λ dual to the relative contact velocities ġ. These
multipliers can be interpreted as the contact forces. Integration of these equa-
tions of motion over the time of impact and taking the limit case yields

lim
t−↑t+

∫ t+

t−
(M̄q̈ + gT

,qλ)dt = 0. (2.13)

The reduced force vector f̄ only contains non-impulsive forces and therefore the
right-hand side vanishes. Under the introduction of the contact impulses,

ρ = lim
t−↑t+

∫ t+

t−
λdt, (2.14)

and noting that the mass matrix, in general a function of the generalized coordi-
nates, remains constant during impact, the momentum equations for the system
become

M̄q̇+ + gT
,qρ = M̄q̇− (2.15)
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with q̇− the velocities before and q̇+ the velocities of the system after impact.
Together with Newton’s impact law,

ġ+ = −eġ−, or g,qq̇+ = −eg,qq̇−, (2.16)

we have a complete set of linear equations reading
[

M̄ gT
,q

g,q 0

] [
q̇+

ρ

]
=

[
M̄q̇−

−eg,qq̇−

]
(2.17)

From these equations the velocities after impact q̇+ together with the contact
impulses ρ can be found. Because Newton’s impact law (2.16) is often contra-
dicted experimentally in case of multiple impacts, a restriction to simple im-
pacts is made. The contact configuration for the walker is denoted by u = 0,
v = constant, and φ = 2θ. The velocities of the stance foot before impact are zero.
Solving the impact equations at the contact configuration and subsequently tak-
ing the limit case yields for the velocities after impact

lim
β→0

q̇+ =

⎡
⎢⎢⎣

u̇+

v̇+

θ̇+

φ̇+

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− sin(θ) cos(2θ) sin(2θ)
cos(θ) cos(2θ) sin(2θ)

cos2(2θ)
cos(2θ)(cos(2θ) − 1)

⎤
⎥⎥⎦ θ̇−, (2.18)

and for the contact impulses

lim
β→0

ρ =
[

ρx

ρy

]
=

[ − sin(θ) sin(2θ)
cos(θ) sin(2θ)

]
θ̇−. (2.19)

The limit case, with the only moving mass in the hip, gives us some easy to
verify results. First, the velocities after impact are only a function of the stance
leg angle θ and its angular velocity θ̇−. This velocity is in fact the hip velocity.
Second, the contact impulse at the heel strike is directed along the swing leg
with magnitude sin(2θ)θ̇−, which is the projection of the hip velocity just be-
fore impact on the swing leg. And last, the stance foot velocity after impact is
cos(2θ) sin(2θ)θ̇− in the direction of the stance leg, this is the hip velocity after
impact projected on this leg.

2.3.3 Stride function

The mapping from the initial conditions v = (q, q̇), from one step to the next is
the so-called ‘stride function’ [51], reading

vn+1 = S(vn). (2.20)

If we start the walker with the initial conditions on the state as (θ, φ, θ̇, φ̇)0, then
after the first heelstrike (2.18) two initial conditions drop out and the next state
is only dependent on θ and θ̇−. In this paper we look for a motion of the walker
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were the two legs pivot and swing, no full turns, and return to the same state
after one heelstrike, the so called period-one gait cycle. For the analysis of the
gait we have to swap the stance and swing leg variables from step n to step n+1
as

θn+1 = θn − φn

φn+1 = −φn.
(2.21)

At heelstrike, the swing leg angle φ− is equal to 2θ−, and combining the time
derivatives of (2.21) with the velocities after impact (2.18), gives us the initial
conditions after heelstrike as

θn+1 = −θ−n
φn+1 = −2θ−n
θ̇n+1 = cos(2θ−)θ̇−n
φ̇n+1 = cos(2θ−)(1 − cos(2θ−))θ̇−n .

(2.22)

The stride function for the simplest walker is now; starting with (θn, θ̇n) as the
initial conditions at the beginning of the nth step, numerically integrating the
equations of motion (2.4) until heelstrike occurs, then calculating the velocities
after heelstrike and finally swapping the legs (2.22), resulting in the initial con-
ditions (θn+1, θ̇n+1) of the next step.

2.4 Step-to-step behavior

For a large range of initial conditions at step n, the stride function has no result;
the model does not make a complete walking step so that there cannot be a
subsequent step. Usually, the stride function has one or two cyclic solutions:
initial conditions that map onto themselves. If a cyclic solution is stable, there
exists a region surrounding it, which asymptotically leads to this solution. This
region is called the basin of attraction. We will determine this basin of attraction
by the cell mapping method.

2.4.1 Failure modes

We limited the searching area for practical reasons by exclusion of uninterest-
ing and unfeasible initial conditions. First, as mentioned in Section 3.3, after
the first heelstrike there are only two independent initial conditions, θ and θ̇.
This reduces the Poincaré section to a 2D area. Second, only forward walking
is investigated, so θ > 0 and θ̇ < 0. And last, from (2.22) it is clear that after
heelstrike, θ̇n+1 can only be negative (forward motion) if θ < π

4 [rad]. Within
this area, the general behavior is classified in Figure 2.2. Exemplary motion of
the walker is at a slope γ = 0.004 [rad]. The area of possible initial conditions is
roughly bisected by the line θ̇0 = −θ0 + γ. Above this line, the input energy (ini-
tial velocity) is not enough to overcome the ‘dead point’ (compare this with an
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inverted pendulum), and the walker falls Backward. Below this line, the walker
falls Forward. This occurs when the swing foot does not rise above floor level,
after the short through-pass at midstance. In between these areas, a small re-
gion exists in which a walking step can occur. Some of these steps lead to failure
(F or B) after a sequence of steps, while others will lead to perpetual walking,
the small basin of Attraction. At large angles and high speeds, walking is not
possible. In the model, a tensile vertical foot contact force occurs, Qv < 0. Real
walking mechanisms would lose foot contact and with both feet in the air we
classify this as Running. Note that this is more or less equal to the commonly
used boundary of Froude number v2/(gl) > 1.
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0.2 0.80.6
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γ = 0.004+

θ [rad]
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Figure 2.2: Poincaré section for the simplest walker with initial stance leg angle θ and
velocity θ̇ together with failure modes; falling Forward, falling Backward and Running, and
the basin of Attraction of the cyclic walking motion (θ, θ̇) = (0.1534,−0.1561) [rad] at a
slope of γ = 0.004 [rad].

2.4.2 Cyclic motion

If the model is started inside the basin of attraction, it settles eventually into a
repetitive motion, the attractor. The walker is in cyclic motion if the stride pat-
tern repeats itself after a fixed number of strides. Looking at the Poincaré map
of the state of the system at the beginning of each step we recognize this cyclic
motion as a fixed point. The method for finding cyclic gait, as commonly used in
passive dynamic walking research, is as follows. A walking cycle is specified by
the requirement that the vector of initial conditions vn results in identical initial
conditions for the kth subsequent step:

vn+k = vn (2.23)
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A vector with initial conditions satisfying this requirement is a cyclic solution
vc, which maps onto itself:

Sk(vc) = vc (2.24)

The main interest is symmetric walking, or k = 1. Such cyclic solution can be
found by a linearization of the stride function

S(v + ∆v) ≈ S(v) + J∆v
with J = ∂S

∂v

(2.25)

and applying a Newton-Raphson iteration procedure, starting with a set of ini-
tial conditions v close to the cyclic solution vc

repeat
∆v = [I − J]−1(S(v) − v)

v = v + ∆v
until |∆v| < ε

(2.26)

where I is the identity matrix. The Jacobian J is calculated by a perturbation
method, which involves simulation of a full walking step for every initial con-
dition. The eigenvalues of J quantify the stability of the cyclic motion. If both
eigenvalues are inside the unit circle in the complex plane, a basin of attraction
exists, with at least the size of the perturbation used to calculate the Jacobian.
From Garcia, it is known that the simplest walking model has a stable cyclic
walking motion for slopes up to 0.015 [rad], see Figure 2.3.
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Figure 2.3: Stance leg angle θ at fixed point versus slope angle γ. Reprinted with per-
mission from Garcia et al. [25].
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2.4.3 Cell mapping method

The general behavior of the stride function can be studied with the aid of the cell
mapping method [36]. The region of feasible initial conditions is subdivided into
a large number (N) of small cells. All unfeasible initial conditions are regarded as
a small number (z) of very large cells, so called sink cells. The cells are numbered
1 to N+z. By application of the stride function to the centre of each cell, all of the
N+z cells point to initial conditions inside one of the other cells, except the sink
cells which point to themselves by definition. Starting with cell 1, a sequence of
cells appears by following the pointers. This sequence either ends in a sink cell
or in a repetitive cycle. This cycle can consist of one self-repeating cell (a fixed
point, which could be a sink cell), or a number of cells (comparable to multiple-
period walking, Garcia [25]). The repetitive cycle is identified and all cells in the
sequence are labeled as basin of attraction of that cycle. Then the procedure is
repeated with all N cells. As soon as a known cell (from a previous sequence)
is encountered, the procedure can be stopped, and all cells in that sequence are
labeled as basin of attraction of that last cell.

Application of the cell mapping method results in a list with all attractors
(cyclic solutions) and classification of all discretization points into this list. Not
only period-one walking gaits can be found, also period-k walking gaits. Results
of the cell mapping method are as accurate as the discretization, within these
tolerances fixed points may come and go. For example, what appears to be a
fixed cell might in fact be slowly changing initial conditions (smaller changes
than the discretization) of subsequent steps.
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2.5 Results

All initial conditions leading to perpetual walking are contained inside the basin
of attraction, which for the simplest walker is roughly speaking a small, pointy
boomerang. If started inside the basin of attraction, the initial conditions of a
sequence of steps spiral toward the self-repeating cyclic solution. The size and
shape of the basin of attraction diminish at increasing slope angle. Above a cer-
tain slope angle, the basin of attraction completely disappears and no stable
cyclic solutions exist.

2.5.1 Basin of Attraction

From Figure 2.2 it is obvious that the basin of attraction is only a very small
region. For better insight in the shape, Figure 2.2 is zoomed in and sheared,
leading to Figure 2.4. The vertical axis now represents the sum of the stance leg
angle and scaled angular velocity. The horizontal line at θ + θ̇ = 0 corresponds
with the ‘-45 degree’-line in Figure 2.2. Figure 2.4 is obtained with application of
the cell mapping method with a discretization of about 200 × 250 points (∆θ =
0.002 [rad], ∆(θ + θ̇) = 0.0002 [rad]), the drawn lines are a manual continuous
interpretation of the discrete boundary of the basin of attraction.
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Figure 2.4: Poincaré section for the simplest walker, enlarged and sheared section from
Figure 2.2, together with failure modes; falling Forward, falling Backward, and the basin
of Attraction of the cyclic walking motion.

Figure 2.4 shows that the small basin of attraction is mostly bounded by
falling backward on one side and falling forward on the other side. The basin
of attraction seems to be a continuous and tailing area. The different areas show
fractal-like entanglement. We will discuss the behavior of the walker in these
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areas by going over a vertical line, θ = 0.2 [rad], in Figure 2.4 from area F to
area B, crossing the basin of attraction at least four times. Point (θ = 0.2 [rad],
θ̇ = −0.23 [rad]) lies in area F. If started with such initial conditions, the walk-
ing model will fall forward; the swing leg is allowed to pass through the floor
to ignore the otherwise inevitable foot-scuffing, but does not rise above floor
level anymore. Going up, the area changes from falling Forward to the basin
of Attraction. Just before crossing this boundary, the behavior changes. Not the
first step after these initial conditions is failing, but the model first walks some
steps before eventually falling forward. The closer to the basin of attraction, the
more steps it takes before failure. If started in the first tail of the basin of attrac-
tion, encountered when going up, the walker will eventually settle into steady
cyclic walking with initial conditions of the fixed point. The path toward the
fixed point is presented in Figure 2.5 and in Table 2.1. The motion of the legs
is shown in Figure 2.6. After nine steps, the walker is close to the fixed point,
and continuing the simulation will show asymptotic approach. Even more up

step θ [rad] θ̇ [rad] θ + θ̇ [rad]
1 0.2000 -0.2165 -0.01645
2 0.1788 -0.1917 -0.01290
3 0.1756 -0.1841 -0.00850
4 0.1878 -0.1888 -0.00100
5 0.1586 -0.1599 -0.00134
6 0.1459 -0.1488 -0.00295
7 0.1492 -0.1526 -0.00337
8 0.1539 -0.1569 -0.00302
9 0.1558 -0.1583 -0.00256
...

...
...

...
f.p. 0.1534 -0.1561 -0.00269

Table 2.1: Initial conditions of a number of subsequent steps, started just inside the basin
of attraction and going to the fixed point.

on the line (θ = 0.2), area F is encountered again. Starting there leads to falling
forward after a number of steps. In this manner, A, B, and F are crossed sev-
eral times, until we reach θ + θ̇ = γ. Above this boundary, the stance leg will
not reach midstance and fall backward. In general, if started inside the basin of
attraction, the initial conditions spiral toward the fixed point. If started just out-
side the basin of attraction, the walker will take a few steps but eventually fail.
The further away, the smaller the amount of successful steps before failure.

2.5.2 Basin of attraction versus slope angle

The size of the basin of attraction determines the amount of disturbance that the
walker can handle without falling. The stability of the fixed point determines if,
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Figure 2.5: A number of steps, started just inside the basin of attraction and going to the
fixed point. Together with failure modes; falling Forward, falling Backward, and the basin
of Attraction of the cyclic walking motion.
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Figure 2.6: Orientation of the stance leg, solid line, and swing leg, dotted line, with re-
spect to the normal on the slope for a walker started just inside the basin of attraction
and going to the fixed point.

and how fast the walker recovers from a small disturbance. The latter analysis
is less time-consuming and therefore very useful to determine the existence of
a basin of attraction. The applicability of the walker however depends on the
allowable size of disturbances. Therefore, we investigate the dependency of the
basin of attraction on the only model parameter, the ramp slope γ. Figure 2.7
shows the development of the basin of attraction for an increasing ramp slope
γ. As the slope increases, the basin of attraction decreases in size and gets more
and more tails at the boundaries, which appear to be fractal-like. At and beyond
a slope angle of 0.019 [rad] the basin of attraction has vanished, leaving fractal-
like boundaries between the regions of falling forward and falling backward.
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with failure modes; falling Forward, falling Backward, and the basin of Attraction of the
cyclic walking motion.

We compare the size of the basin of attraction with the stability of the cyclic
motion, see Figure 2.8. The stability is measured as the largest of the two eigen-
values (modulus) of the linearized stride function (2.25). As stated by Garcia et
al. [25], for 0 < γ < 0.0151 [rad] the period-one gait is stable. For higher slopes,
only higher-period gaits are stable, having a small basin of attraction. The eigen-
values would lead to believe that a slope γ = 0.012 [rad] would be preferable.
However, the basin of attraction, measured as the number of cells inside the
basin of attraction times the area of one cell, is not at its maximum. Clearly,
there is no direct relation between the stability of the cyclic motion and its basin
of attraction.
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Figure 2.8: The stability of the cyclic motion and the area of the basin of attraction versus
slope angle γ.

2.6 Conclusion

The basin of attraction of the simplest walking model is very small. This ex-
plains why physical models only walk successfully if started carefully on a very
flat and rigid surface. The basin of attraction is surrounded by a region of initial
conditions that lead to successful walking for a limited number of steps, even-
tually resulting in failure. The simplest walker has two failure modes; falling
forward and falling backward. We expect to find qualitatively similar failure
behavior in more complex walkers, although these would have more failure
modes.

Our research shows that there is no obvious relation between the size of the
basin of attraction and the stability of the fixed point. Therefore, the most ro-
bust design would probably not be the one with the best linearized stability, but
the one with the largest basin of attraction. It is our intention to continue this
research and find in which manner various passive and active measures on the
walker can increase the basin of attraction.
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Chapter 3

How to keep from falling forward;
Elementary swing leg action for passive

dynamic walkers

M. Wisse, A. L. Schwab, R. Q. van der Linde and F. C. T. van der Helm
To appear in IEEE Transactions on Robotics, 2004.

Stability control for walking bipeds has been considered a complex task. Even
in 2D, fore-aft stability in dynamic walking appears to be difficult to achieve.
In this paper we prove the contrary, starting from the basic belief that in nature
stability control must be the sum of a number of very simple rules. We study the
global stability of the simplest walking model by determining the basin of at-
traction of the Poincaré map of this model. This shows that the walker, although
stable, can only handle very small disturbances. It mostly falls, either forward
or backward. We show that it is impossible for any form of swing leg control to
solve backward falling. For the problem of forward falling, we devise a simple
but very effective rule for swing leg action: “You will never fall forward if you put
your swing leg fast enough in front of your stance leg. In order to prevent falling back-
ward the next step, the swing leg shouldn’t be too far in front.” The effectiveness of
this rule is demonstrated with our prototype ‘Mike’.
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3.1 Introduction

When designing a practical locomotion system, the engineer usually chooses
wheels or tracks. On the one hand, legged locomotion seems complicated, even
more so with only two legs, when static stability is out of the question. On
the other hand, for some reason human beings have been equipped with two
legs, and seem to have no difficulty with locomotion. Moreover, walking doesn’t
seem to require any attention, as one can concentrate on complicated thoughts
while walking. Is bipedal walking then really as complicated as the engineer
suspects?

No, it can quite simply be the natural mode of a purely mechanical system.
Connect two rods by a hinge, and the system can walk down a shallow slope,
the legs swinging in their natural frequency. Patents over 100 years old (e.g. [23])
already use this principle. In 1989, McGeer [49] performed rigorous numerical
and practical experiments, showing that passive dynamic walking, as he termed
it, even allows for knees. The key to passive dynamic walking is the repetitive
nature of the walking motion, a limit cycle. If such a limit cycle is existent and
stable, the walking motion is successful. McGeer, Garcia [27], Van der Linde [78],
Goswami [29] among others researched the influence of different parameters on
the stability of such walking cycles. It is now known that by applying round feet,
a large hip mass compared to the leg mass, and not too steep a slope, a passive
dynamic walker can be constructed that is stable enough for manual startup by
an experienced person.

However, human beings can deal with much larger disturbances. On top of
the passive locomotory system, humans are actively reacting to perturbations of
the walking cycle. We presume that the human control scheme is of the same el-
egant simplicity as the passive dynamic walking motion. A basic assumption in
our research is that the human walking motion is stabilized by a number of very
simple, modular control rules. In this paper, we focus on one of those modules;
swing leg control. We take the simplest walking model and ask the question:
“Can we achieve global stability for the simplest walking model with a sim-
ple swing leg control rule?”. The answer is then validated with our prototype
‘Mike’, see Fig. 3.1.

3.2 Modeling and analysis

3.2.1 The simplest walking model

This research starts with the simplest mechanical model still possessing the abil-
ity to perform a bipedal walking motion, as conceived by Garcia et al. [27].
The model, shown in Fig. 3.2, consists of two rigid links with unit length, con-
nected by a frictionless hinge at the hip. The mass is distributed over three point
masses; one with unit mass M at the hip, and two with infinitesimally small
mass m at the feet. This unactuated two-link system walks down a slope in a



3 How to keep from falling forward; Elementary swing leg action for passive dynamic walkers 35

Figure 3.1: Prototype ‘Mike’; a 2D passive dynamic walking robot with pneumatic McK-
ibben muscles at the hip.

gravity force field with unit magnitude. The scaled model of the walker now
only has one free parameter, the slope angle γ.

A walking step is started with both feet on the slope. The front foot has just
made ground contact, the hind foot has a velocity away from the floor. During a
step, the stance foot is modeled as a hinge, connected to the floor. The swing foot
is moving freely as the other end of a double pendulum. At about midstance,
the swing foot is briefly allowed to be below floor level (’foot-scuffing’), which
is inevitable for a walker with straight legs. Knees ([50], [90], [7], [19]) or other
leg shortening measures ([76]), as well as 3D motion ([43], [18] [79]) would solve
the problem but increase complexity of the model. After this short through-pass,
the second time that the swing foot reaches floor level is regarded as heel-strike,
the end of the step. The swing foot makes a fully inelastic collision and becomes
the new stance leg. Instantaneously, the former stance leg looses ground contact,
and a new step begins.

3.2.2 Limit cycle analysis

According to common practice, the dynamic behavior of the simplest walking
model is investigated with the following computer simulation procedure. The
simulation of one step comprises smooth leg swing motion, an abrupt collision
at heel strike, and the switching of leg function. A simple and efficient method
for deriving the necessary equations of motion is given in [71]. Here we will only
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Figure 3.2: A typical passive walking step. The new stance leg (lighter line) has just made
contact with the ramp in the upper left picture. The swing leg (heavier line) swings until
the next heelstrike (bottom right picture). The top-center picture gives a description of the
variables and parameters that we use. θ is the angle of the stance leg with respect to
the slope normal. φ is the angle between the stance leg and the swing leg, M is the hip
mass, m is the foot mass, l is the leg length, γ is the ramp slope, and g is the acceleration
due to gravity. Reprinted with permission from Garcia et al. [27].

supply a brief overview of the simulation procedure for one walking step. Then,
this procedure is applied to investigate how initial conditions change from one
step to the next.

The model has two independent degrees of freedom, the absolute stance leg
angle θ, and the relative swing leg angle φ. The equations of motion, as pre-
sented in [27] and [71], read:[

θ̈

φ̈

]
=

[
sin(θ − γ)
sin(φ)(θ̇2 − cos(θ − γ)) + sin(θ − γ)

]
(3.1)

The state of the system at the start of step n (φn = 2θn) is completely determined
by θn, θ̇n, and φ̇n. Shortly it will be clear that also φ̇n is a dependent initial con-
dition, leaving only two independent initial conditions describing the start of a
step. With these initial conditions, the equations of motion are numerically in-
tegrated until the end of step n (thus the start of step n + 1) is detected (when
again φ = 2θ).

At heel strike just before the start of step n + 1, the collision of the for-
mer swing foot with the floor, simultaneous with the loss of ground contact
of the former stance leg, leads to an instantaneous velocity change from the pre-
collision state (−) to the post-collision state (+) calculated with:[

θ̇+
n+1

φ̇+
n+1

]
=

[
cos(2θn+1)

cos(2θn+1)(1 − cos(2θn+1))

]
θ̇−n+1 (3.2)

From the collision equation Eq. (3.2), it is obvious that the initial conditions of
the next step are only a function of θ and θ̇. Therefore, in continuous walking
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there are only two independent initial conditions. This is a result of the peculiar
mass distribution into three point masses. The final part of the simulation is
switching the stance and swing leg, resulting in initial conditions for the next
step. The simulation has now completed one walking step, and can be repeated
with the new initial conditions.

The above simulation procedure is regarded as a step-to-step function S:

[
θn+1

θ̇n+1

]
= S

([
θn

θ̇n

])
(3.3)

Monitoring the state of the system only once per cycle like this is known as
Poincaré mapping, with the event of heel strike taken as the Poincaré Section.
The walker is in a limit cycle if, logically, [θn+1, θ̇n+1] = [θn, θ̇n]. These initial con-
ditions are then a fixed point on the Poincaré map. Fixed points can be found
with a Newton-Raphson iteration procedure as described in [49], [27], [71] or
[90]. For the simplest walker, we usually find zero or two fixed points, as elab-
orated in [27]. These fixed points represent an equilibrium of the gravitational
energy input of the slope and the collisional energy loss at heel strike. The fixed
points are the basis for stability research; if away from a fixed point, will the
walker return there over a number of steps?

3.2.3 Linearized stability, local stability

Suppose we know the fixed point of the simplest walking model, and start the
simulation with these initial conditions. By definition, every subsequent step
will be equal. Starting away from the fixed point with small errors εn on the
initial conditions results in errors on the initial conditions of the next step as
εn+1. For small errors, we assume linearity around the fixed point, such that:

εn+1 = Jεn with J =
∂S

∂(θn, θ̇n)
(3.4)

J is the Jacobian of the stride function S and is approximately determined by
performing the simulation procedure once for both errors εn, one for each inde-
pendent initial condition. The stability characteristics are described by the two
eigenvalues λ1 and λ2 of the Jacobian J; if both are smaller then 1 in magnitude,
errors decay over subsequent steps. The smaller the eigenvalues, the faster the
walker converges toward the fixed point.

Garcia et al. [27] performed this linearized stability analysis on the simplest
walker, showing that it has one stable fixed point for small slopes up to γ =
0.015 [rad], and none for steeper slopes, see Fig. 3.3. This concludes the recapi-
talization of results from literature. It is important to note that these results are
only valid for small errors, therefore only describing the local stability around the
fixed point.
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Figure 3.3: Stance leg angle θ at fixed point versus slope angle γ. In this paper, all
simulations are performed with a slope of γ = 0.004 [rad] leading to a fixed point with
stance leg angle θ = 0.15 [rad]. Reprinted with permission from Garcia et al. [25].

3.2.4 Basin of attraction, global stability

For practical use, one wants to know when the walker keeps walking, and when
it falls down. Clearly, the more initial conditions of [θ, θ̇] result in continuous
walking, the more tolerant is the walker for incorrect launches and in-motion
disturbances. The entire collection of initial conditions leading to walking is
what is called the basin of attraction. We know that there must be some basin
of attraction when the walker is linearly stable around the fixed point, but how
large is it? Below, we will describe how to find the complete basin of attrac-
tion with the cell mapping method [36], and apply this method to the simplest
walking model.

The region of feasible initial conditions is subdivided into a large number
(N) of small cells. All unfeasible initial conditions (e.g. θ̇ > 0) are regarded as a
small number (z) of very large cells, so called sink cells. The cells are numbered
1 to N+z. By application of the step-to-step function S to the center of each cell,
all of the N+z cells point to initial conditions inside one of the other cells, ex-
cept the sink cells which point to themselves by definition. Starting with cell 1,
a sequence of cells appears by following the pointers. This sequence either ends
in a sink cell or in a repetitive cycle. This cycle can consist of one self-repeating
cell (a fixed point), or a number of cells (multiple-period walking, Garcia [25]).
The fixed point is identified and all cells in the sequence are labeled as basin of
attraction of that fixed point. Then the procedure is repeated with cell 2, then
cell 3, etcetera. As soon as a known cell (from a previous sequence) is encoun-
tered, the current sequence merges with that of the known cell. The procedure
is repeated until all cells are labeled.

Application of the cell mapping method results in a list with all attractors
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Figure 3.4: Poincaré section for the simplest walker with initial stance leg angle θ and
velocity θ̇ together with failure modes; falling Forward, falling Backward and Running,
and the basin of Attraction of the cyclic walking motion (θ, θ̇) = (0.1534,−0.1561) [rad]
(indicated with ‘+’) at a slope of γ = 0.004 [rad]. Reprinted from [71]

(fixed points) and classification of all discretization points into this list. Not only
period-one walking gaits can be found, also period-k walking gaits. Results of
the cell mapping method are as accurate as the discretization, within these tol-
erances fixed points may come and go. For example, what appears to be a fixed
cell might in fact be slowly changing initial conditions (smaller changes than the
discretization) of subsequent steps.

With the cell mapping method, the basin of attraction of the simplest walker
is calculated in [71], see Fig. 3.4. Although the shape and size of the basin of
attraction slightly varies for different slope angles, for this article we have cho-
sen to use a representative slope angle of γ = 0.004 [rad]. In Fig. 3.4 the basin
of Attraction is represented by the very thin area A, otherwise the walker falls
Forward or Backward, or, if started with high speeds, the stance foot loses com-
pressive ground contact (Running). This analysis describes the global stability of
the walker. This is the more important stability measure for the robustness of
the gait [79].

Note that the calculation of the basin of attraction is a costly business as the
number of calculations increases with the power of the number of degrees of
freedom. This is one of the reasons that we perform the simulation analysis on
the simplest walking model instead of on the more complete model of ‘Mike’.
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3.3 Swing leg action for a larger basin of attraction

3.3.1 Largest possible basin of attraction

Now that the basin of attraction of the simplest walker is known, some questions
arise. Is it a sufficiently large basin of attraction, or is control necessary? Can
control of only the swing leg have any substantial positive effect on the basin
of attraction? Before answering these questions, we should recognize that any
conceivable hip action does not influence the current stance leg motion whatso-
ever with the assumption of massless legs. The only thing that matters is the hip
angle at heel strike. In other words, swing leg control of the simplest walker can
only influence the subsequent step.

Therefore, swing leg control cannot do anything for the walker if the current
hip velocity is not enough to pass the apex of the hip trajectory. The mathemat-
ical equivalent of this requirement is the following energy inequality:

1
2
M(θ̇l)2 > Mgl(1 − cos θ) (3.5)

or, rewriting and scaling M , g, and l to unity:

|θ̇| > 2 sin
θ

2
(3.6)

This inequality is represented in Fig. 3.5 with Line (1). Note that this is the fa-
miliar separatrix in the normal simple pendulum phase portrait. Also note that
Line (1) does not coincide with the dashed boundary between area B and area
F in Fig. 3.4. The area between the two lines represents a set of initial condi-
tions that, for the fully passive walker, does not lead to immediate falling back-
ward, but to a short series of successful steps that eventually leads to falling back-
ward [71].

The second boundary to the initial conditions for making a successful step is
the requirement for compressive foot contact: at high velocities the centrifugal
effect overcomes gravity and the stance foot would loose contact. This boundary
is represented in Fig. 3.5 as Line (2). The scaled vertical contact force fv is given
in [71] as:

fv = − cos(θ)(θ̇2 − cos(θ − γ)) (3.7)

Requiring that fv > 0, we get the inequality for Line (2):

|θ̇| <
√

cos θ (3.8)

Note that the fact that Line (2) passes through {θ, θ̇} = {0,−1} corresponds to
saying that for this nondimensionalized walker the Froude number

√
v2/(gl) is

equal to 1 (with body speed v equal to stance leg velocity θ̇ due to the unit leg
length).
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Figure 3.5: Maximally obtainable basin of attraction (gray area, bounded by Lines 1, 2
and 3, see text) and uncontrolled basin of attraction (thin area A) of the simplest walking
model. The entire problem of falling forward can be solved with swing leg control, while
the problem of falling backward (area B) remains existent and would need something else
than swing leg control.

The third and last boundary of the maximally achievable basin of attrac-
tion is somewhat arbitrary; we only investigate initial conditions with a positive
stance leg angle, i.e. starting with the stance foot in front of the swing foot, re-
sulting in Line (3).

Lines (1), (2), and (3) are the outer boundaries for any basin of attraction that
swing leg control could possibly achieve for the simplest walker. Therefore we
choose to use the area inside these boundaries as a reference for the size of the
basin of attraction. Comparing the area of the thin region A in Fig. 3.4 with the
large gray area in Fig. 3.5, we find that without control, the basin of attraction
is only 0.3% of the maximally achievable. This result justifies the search for a
controller to enlarge the basin of attraction.

Summarized so far, we have said that the uncontrolled simplest walker very
rarely walks. It mostly falls, either forward or backward. When adding swing
leg control, we cannot address the problem of falling backward whatsoever.
Therefore, for the swing leg controller we only have to consider the forward
falling problem. This makes things easy; as long as we make sure that the swing
leg swings forward fast enough, and then just keep it there, the problem should
be solved. There is only one extra requirement; the swing leg should not be too
far forward, otherwise the walker will fall backward at the subsequent step.
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3.3.2 The rimless wheel

If for now we stick to the idealized situation of a massless swing leg, we could
imagine the swing leg controller putting the swing leg at a preset, constant, for-
ward angle immediately after the step has started. The behavior of the walker
would then be exactly equal to the ‘rimless spoked wheel’, a system that has
a number of ‘legs’ (the spokes) at equal, fixed angles apart (see the inset in
Fig. 3.6). This system has been studied in depth by Coleman [16], who con-
cluded that it would always reach a stable cyclic walking motion, provided that
the leg angle is small enough for the floor slope angle. For the slope angle of
0.004 [rad] that we use throughout this paper, the inter-spoke angle should be
smaller than 0.4 [rad] [15], otherwise it would slow down and eventually come
to a stop and fall backward. We choose a safe value of 0.3 [rad], i.e. a stance leg
angle θ = 0.15[rad] at the start of a step, which corresponds to the natural gait of
the simplest walking model at this slope (see Fig. 3.3). Fig. 3.6 shows the basin
of attraction of the rimless wheel with this inter-spoke angle of 2 · 0.15 [rad].

The fixed inter-spoke angle makes it impossible to start the rimless wheel
with a larger initial leg angle than 0.15 [rad], unless it were started at the top
edge of a table. But even then, it would converge to its fixed point. Other than
that, the only important gap in the basin of attraction is the small corner in the
top, bounded by a line of constant energy through the point where Line (1)
crosses θ = −0.15 [rad]. In that corner, the initial energy of the rimless wheel
is enough to make it through the first step, but the fixed inter-spoke angle is too
large to make it through the second.
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Figure 3.6: Basin of attraction of the rimless wheel (model: see inset) with an inter-spoke
angle of 0.3 [rad]. The initial conditions to the right of the dashed line can only be realized
by starting at the top edge of a table. The ‘+’ indicates the fixed point of this model at a
slope of γ = 0.004 [rad].
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In conclusion, only considering swing leg control, the maximally obtain-
able basin of attraction can be achieved with a controller mimicking the rimless
wheel.

3.3.3 A realistic actuation model

The previous section indicates that the stability behavior of the rimless wheel is
very close to the maximum achievable with swing leg control. So, now it is time
to devise a simple but realistic form of actuation that mimics the rimless wheel
behavior, acknowledging that instantaneous leg positioning is impossible. We
propose to use a spring and a damper at the hip joint with a variable setpoint
which can provide for an extra internal torque T to the swing leg, extending the
equations of motion to[

θ̈

φ̈

]
=

[
sin(θ − γ)
sin(φ)(θ̇2 − cos(θ − γ)) + sin(θ − γ) + T

]
(3.9)

with

T = −k(φ − φsp) − cφ̇ (3.10)

The setpoint φsp is set to 0.3 [rad] corresponding to the fixed point of the passive
walker at a slope of γ = 0.004 [rad]. The stiffness k is the parameter that we
vary, where k = 0 corresponds to the fully passive simplest walker and k = ∞
corresponds to the rimless wheel. The damping factor c is set as a function of k
to provide critical damping:

c = 2
√

k (3.11)

Note that a physical realization of this type of actuation requires an active shift
of the setpoint after each heel strike from φsp to −φsp or vice versa.

Fig. 3.7 presents the stability results for different stiffness values. A higher
stiffness results in a faster swing leg motion and thus provides a better resis-
tance against falling forward. The drawback is in energy consumption, but un-
fortunately the model with its massless feet is too much a simplification of real
walking machines to allow for quantitative statements on energy expenditure.
With this active hip spring stiffness we can arbitrarily make the basin of attrac-
tion as large as necessary up to complete coverage of the maximally obtainable
area, so the problem of falling forward can be considered to be solved. More-
over, this is achieved without any feedback control other than a setpoint shift at
heel strike.

Remember that this is just one possible way of speeding up the swing leg.
It is not this particular implementation that counts, but the main idea behind
it that the swing leg should be swung forward quickly, and then kept there at
a not-too-large leg angle. We should emphasize here that, although simulated
with a floor slope γ = 0.004 [rad], this control rule works equally well for any
slope larger than that. For smaller slopes, the preset leg angle should be de-
creased accordingly.
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Figure 3.7: Basin of attraction of the simplest walker with active hip spring. The setpoint
of the hip spring is φsp = 0.3 and critical damping is applied. The higher the hip spring
stiffness, the larger the basin of attraction; k = 25 leads to area (1), k = 50 leads to
area (2), and k = 100 leads to area (3). The fixed point is for all three stiffness settings
approximately the same, located at the ‘+’. A disturbance from a step down in the floor
would result in initial conditions away from the fixed point in the approximate direction of
the white arrow.

3.4 Prototype experiments

3.4.1 Mike

We applied the proposed swing leg control to our prototype ‘Mike’ (Fig. 3.1). An
elaborate description of ‘Mike’ can be found in [94] while movie clips of ‘Mike’
in action are available at our web site [85]. ‘Mike’ has four legs symmetrically
paired, giving it approximate 2D behavior. It differs from the simplest walking
model by having knees, a distributed leg mass, round feet and by walking on a
level floor (no slope!), all of which we will discuss in Section V.

A B

DC

Inner legsOuter legs

Figure 3.8: Schematic structure and muscle attachments of ‘Mike’.
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‘Mike’ is actuated with a total of eight McKibben muscles; lightweight pneu-
matic actuators that act like springs with a stiffness proportional to the internal
pressure [14, 76]. The McKibben muscles are arranged according to Fig. 3.8. The
hip joint is actuated with an antagonistic pair of muscles (A) and (B) providing a
combined joint stiffness. The knees are actively extended with McKibben mus-
cles (C) and (D) which are counteracted by weak passive springs. There is no
ankle actuation; the arc feet are rigidly attached to the shanks.

3.4.2 Actuation system

The McKibben muscles are fueled from a 5.8 [MPa] CO2 container via a two-
stage pressure regulator and via electromagnetic valves that are activated by
switches underneath the feet. The second-stage pressure regulator output is
manually adjustable between 0.1 and 0.6 [MPa] resulting in a hip joint stiffness
up to 5 [Nm/rad] and a damping somewhat less than critical damping (esti-
mated by observation). It is not feasible to perform a proper mapping between
this stiffness in ‘Mike’ and the scaled stiffness in the simplest walking model
due to the extensive differences between the two, such as leg mass, foot arc
radius, muscle non-linearities and significant air flow dynamics. Therefore the
comparison between the two will be of qualitative nature only.

If a valve is switched ‘on’, the muscle is filled from the pressure regulator
output; if switched ‘off’ it reliefs into atmosphere. For example, at activation
of the inner leg foot switch, the outer knee muscles (muscle C in Fig. 3.8) are
switched ‘off’ to allow this knee to bend. A manually tuned 400 [ms] later they
are switched back ‘on’, ensuring a properly extended knee for the next step.

The proposed swing leg control in Eq. 3.10 is implemented by alternating the
states of the antagonistic hip muscles. When the foot switch of the inner legs is
activated, muscle B in Fig. 3.8 is switched ‘on’ and muscle A is switched ‘off’.
At the next step this is inverted. As a result, the hip joint has a constant stiffness
but a setpoint that alternates between φsp and −φsp. The joint stiffness can be
adjusted without altering the setpoint. We want to emphasize that there is no
feedback control other than this once-per-step switching between preset muscle
pressures. We dub this ‘feet-forward control’.

3.4.3 Stability results

‘Mike’ walks well. Fig. 3.9 shows a sample of the sustained gait for a hip mus-
cle pressure of 0.55 [MPa], see [85] for video evidence. We would have liked to
create a figure of its basin of attraction like Fig. 3.7. However, the combined lim-
itations on the number of experiments to be performed and on the physical pos-
sibilities to create controlled disturbances have led us to concentrate on one rep-
resentative disturbance, namely a step-down. In the experiments the prototype
walks steadily and then takes a step down of increasing height, see Fig. 3.10.
Such a step down results in a larger stance leg velocity at the subsequent step
as sketched with the white arrow in Fig. 3.7. The larger the step down height,
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Figure 3.9: Typical walking result with active hip muscles (0.55 [MPa]) on a level floor.
The prototype completes 10 steps in this trial, showing convergence toward its fixed point
after a manual launch.

the larger the arrow. If a larger hip muscle stiffness indeed allows a bigger step
down, then our swing leg control rule is validated.

Figure 3.10: Experiment with ‘Mike’ walking on level floor and taking a step down as a
representative disturbance.

The stability results are shown in Fig. 3.11. A hip muscle pressure lower than
0.35 [MPa] did not provide stable walking at all, not even without disturbances.
When the pressure was increased, a larger step down could be handled. The
muscles prohibit pressures higher than 0.55 [MPa]. Fig. 3.11 clearly shows a bet-
ter robustness against falling forward with a higher hip pressure which corre-
sponds to a higher joint stiffness.



3 How to keep from falling forward; Elementary swing leg action for passive dynamic walkers 47

-15 

-10

  -5

  0

0.35 0.4 0.45 0.5 0.55
Muscle pressure [MPa]

M
ax

im
al

 s
te

p-
do

w
n 

[m
m

]

  0

Figure 3.11: A higher hip muscle pressure setting (corresponding to a higher hip joint
stiffness) results in a larger step-down size and thus in a better resistance against dis-
turbances. The arrows are depicted to indicate correspondence with the white arrow in
Fig. 3.7.

3.5 Discussion

3.5.1 Level floor

One of the differences between ‘Mike’ and the simplest walking model is that
‘Mike’s legs are not massless. When quickly moving the swing leg forward, it is
not only rotated but its center of mass is lifted a little bit. For walkers with non-
massless legs, this provides a way of putting energy into the system. For ‘Mike’
this is sufficient to replace the gravitational energy that the simplest walking
model obtained from walking downhill. As a result, ‘Mike’ can walk on level
terrain.

3.5.2 Distributed leg mass

Another difference between ‘Mike’ and the simplest walking model is that the
swing leg has a non-zero moment of inertia. For the simplest walker, any con-
ceivable hip actuation would not influence the stance leg motion. For ‘Mike’, it
does. The actual influence depends on the exact mass distribution of the swing
leg. If its center of mass were located at the hip joint, the swing leg acceleration
would have the adverse effect of a forward stance leg acceleration. With a cen-
ter of mass more in the middle of the leg, the swing leg acceleration induces a
backward acceleration (i.e. a deceleration) of the stance leg, which buys the pro-
totype some extra time to place its swing leg. A linearized dynamic analysis of
a straight-legged mechanism at mid-stance shows that such advantageous de-
celeration occurs if

I < mc(l − c) (3.12)
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with the leg moment of inertia I , leg mass m, leg length l and the distance be-
tween the hip joint and the leg’s center of mass c. From Eq. (3.12) we deduct
that most normal constructions (I ≈ 1

12ml2) result in a slight (advantageous)
deceleration of the hip.

3.5.3 Feet

The simplest walking model has point feet, whereas ‘Mike’s feet have a circular
shape. Such feet provide extra robustness against the complementary problem
of falling backward. As depicted in Figs 3.4 and 3.5, the walker will fall back-
ward if it has not enough velocity to overcome the vertical position. Circular
feet smoothen the hip trajectory and thus relax the initial velocity requirement.
As a result, the basin of attraction is enlarged in the upper right direction. We
believe that round feet are a stability improvement measure complementary to
the swing leg control rule proposed in this paper. However, a decisive study on
the effect of circular feet on the basin of attraction has yet to be performed.

3.5.4 Knees and muscles

Other differences between ‘Mike’ and the simplest walking model are the knees
and the nonlinear muscle properties. The knees do not essentially change the
global behavior [50] as the swing leg starts and ends fully extended. One detail is
that a violent knee extension at the end of the swing phase (e.g. as an automatic
reaction to toe-stubbing) will decrease the hip angle. As at the end of the swing
phase both the knee muscle and the corresponding hip muscle are activated, it
seems advantageous to engage a bi-articular muscle at that instant.

The muscles do not behave in an exact linear fashion. Especially the damp-
ing and friction losses are strongly dependent on the muscle length, providing
much more resistance when the muscle is close to its maximal extension. For
‘Mike’, this behavior is useful. The swing leg is brought forward without much
resistance and is then effectively slowed down by the elongating hip muscle.

3.5.5 Human walking

We claim that any bipedal walking system can be kept from falling forward
with a controller like Eq. (3.10). Whatever the exact controller algorithm may
be, it should work if it results in speeding up the swing leg to a certain forward
position. For that, an accelerating torque is needed at the beginning of the swing
phase, and a decelerating torque toward the end. The same patterns are found
when measuring human muscle activity during walking (e.g. Inman et al. [40],
Winter [87]), although these measurements provide no evidence for keeping the
swing leg in the forward position. Similarly, it was found that a purely passive
model of the human leg would not swing forward as quickly as in reality, indi-
cating that there must be an accelerating hip torque [72]. Kuo [44] suggests that
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humans might speed up their swing leg to improve walking energetics. We sug-
gest that humans might benefit from the stability improvement that this brings.
Probably both suggestions hold.

Another remark is that our proposed swing leg control rule is always active,
even if no disturbance is present. A more efficient controller would monitor (or
even predict) the size of the disturbances and adjust the applied torques corre-
spondingly. It seems reasonable to compare this to a walking human being who
will violently throw forward his swing leg as a reflexive reaction to tripping.

3.6 Conclusion

We started this research asking ourselves the question: “Can we achieve global
stability for the simplest walking model with a simple swing leg control rule?”
The answer is two-staged.

First, we showed that swing leg control can only address the problem of
falling forward. If the simplest walker falls backward, there is no way that any
swing leg control can change this; there is simply not enough energy in the sys-
tem to move past the vertical position.

Second, we showed that a simple controller can completely solve the prob-
lem of falling forward; all it needs to do is to get the swing leg timely in a for-
ward position. A damped hip spring with a forward setpoint already suffices.
The specific control and actuation details are not important as the same result
can be achieved with any configuration if it is based on the following rule: “You
will never fall forward if you put your swing leg fast enough in front of your stance leg.
In order to prevent falling backward the next step, the swing leg shouldn’t be too far in
front.” A controller designed according to this rule is easy to implement, because
no a-priori knowledge of the passive dynamic walking motion is needed.

We validated this rule with experiments with an autonomous, two-dimensional
(four-legged) prototype with knees. The hip joint was actuated with McKibben
muscles which provide a joint stiffness proportional to their internal CO2 pres-
sure. By using only one muscle of a pair of antagonistic muscles, the hip joint
was given a stiffness and a forward setpoint each step. In this manner, the swing
leg was accelerated forward according to our proposed control rule. The proto-
type was made to take a step-down during a steady walk, and the maximal
step-down height was recorded as a function of the hip muscle pressure (hip
joint stiffness). It was shown that a higher pressure indeed allows a higher step-
down. The resultant robust gait can be viewed at [85].
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Passive Dynamic Walking Model with
Upper Body

M. Wisse, A.L. Schwab and F.C.T. van der Helm
To appear in Robotica, 2004.

This paper presents the simplest walking model with an upper body. The model
is a passive dynamic walker, i.e. it walks down a slope without motor input
or control. The upper body is confined to the midway angle of the two legs.
With this kinematic constraint, the model has only two degrees of freedom. The
model achieves surprisingly successful walking results: it can handle distur-
bances of 8% on the initial conditions and it has a specific resistance of only
0.0725(-).
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4.1 Introduction

How much of the human walking motion can be modeled with passive dynam-
ics? The more we can, the more likely we are to find simple designs for e.g.
walking rehabilitation or entertainment robots. This question arose when Mo-
chon and McMahon [53] discovered that the free swing motion of the human
leg can be modeled quite convincingly (though not completely [72]) as a passive
double pendulum.

In the late eighties, McGeer [49] showed that passive dynamic modeling is
not only suitable for the swing leg motion, but for the stance leg motion as well.
He built models and prototypes which he called ‘passive dynamic walkers’, that
can walk down a shallow slope with no actuation and no control. Increasingly
complex prototypes (e.g [19]) show that passive dynamic walking results in a
particularly elegant and natural bipedal gait.

Passive dynamic walking provides two interesting features: inherent stabil-
ity and low energy consumption. First, for certain parameter values, the passive
models can resist small disturbances without the need for control. If human lo-
comotion is based on passive walking, this could explain why keeping our bal-
ance seems so easy for us. Second, the energy consumption of passive walkers
(gravitational energy from walking downhill) is much lower than that of con-
ventional bipedal robots, it is actually even lower than that of human walking.
All in all, passive dynamic walking is an attractive concept for models of human
walking.

However, there is one major shortcoming. Up till now, none of the existing
passive dynamic walking models has a fully passive upper body. These models
either consist only of a pair of legs, or they have an upper body with active sta-
bilization [51, 79]. In contrast, for applicable results for instance in the fields of
entertainment or rehabilitation, the upper body is an essential part of the sys-
tem. Recognizing this, many researchers work on advanced control paradigms
for the hip joint, e.g. [13, 67, 54]. It would be advantageous, however, if the upper
body could be stabilized in a completely passive manner. Before we endeavor
building a prototype with such an upper body, we will demonstrate theoreti-
cally the feasibility with a computer model.

The research aim is to incorporate the upper body in the concept of Passive
Dynamic Walking. The goal of this paper is to present a fully passive walking
model with an upper body, and to investigate the effects of the parameters of
the upper body on the walking characteristics such as stability and energy effi-
ciency.

4.2 Passive walking model with upper body

The goal of this research is a passive walking model with an upper body. This
model should be as simple as possible for the sake of a minimal set of parame-
ters, so a natural starting point would be the ‘simplest walking model’ of Garcia
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et al. [27]. The simplest walking model consists of two rigid massless legs, with
small pointmasses mf as feet and a finite pointmass at the frictionless hip joint.
For slopes up to 0.015 (rad), this model performs a stable walk downhill.
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Figure 4.1: Model of the simplest walker with upper body; parameters (left) and degrees
of freedom (right).

Their model deserves an accordingly simple upper body. A pointmass will
do, connected to a rigid, massless stick that rotates around the hip joint (Fig. 4.1).
The upper body is parameterized with body length lb and body mass mb. The
default parameter values are somewhat arbitrarily chosen to have some rele-
vance to human walking or to future prototypes (Table 4.1). We made the pa-
rameter values dimensionless for comparison with other models: all sizes are
scaled with the leg length, so that the leg length is 1(−), and all masses are
scaled with the sum of the pelvis mass and the upper body mass, so that the
pelvis mass is 1−mb(−). The foot mass is not included in this sum for reasons of
compatibility with older models [71]. Time is scaled so that the resulting grav-
ity is 1(−). Notice that, because of this scaling, parameters become unit-less,
hence the ‘(−)’. There are also two non-human parameters: 1) slope angle γ,
with which we can tune the walking speed, and 2) hip spring stiffness k, which
allows tuning of the step frequency. The spring will turn out to be necessary for
stable walking as will be described in Section IV(C). With the default parameter
values according to Table 4.1, the model walks with human-like speed and step
length, see Section IV(A).

As such, the model would have three degrees of freedom (Fig. 4.1): absolute
stance leg angle θ (counter-clockwise), relative swing leg angle φ (clockwise),
and absolute body angle ψ (clockwise). However, the upper body is then just
an inverted pendulum jointed around the hip. Without any active control acting
on it, one can expect that it will not be kept upright passively. To keep a fully
passive upper body upright, A. Ruina (personal communication) suggests four
possibilities:

1. Use a light upper body that has its actual center of mass below the hip. This
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Table 4.1: Default parameter values for the simplest walker with upper body, from a rough
estimation of human proportions. The parameters are nondimensionalized by scaling:
mass is divided by (pelvis mass + upper body mass), length is divided by leg length,
time is divided by

√
leg length/gravity.

parameter symbol human scaled
approx.

Foot mass mf 7 (kg) 0.1 (-)
Upper body mass mb 49 (kg) 0.7 (-)
(Pelvis mass) (1 − mb) 21 (kg) 0.3 (-)
Leg length - 1 (m) 1 (-)
Body length lb 0.4 (m) 0.4 (-)
Hip spring stiffness k 0.4 (-)
Slope angle γ 0.0725 (rad)

option is not very useful in realistic prototypes.

2. Use springs that keep the upper body upright [79]: This also has the utility
that it should give more efficient walking by making the steps smaller at a
given speed [44].

3. Use a compass mechanism: a kinematic coupling that keeps the body mid-
way between the two legs (Fig. 4.2).

4. Keep the model as is, and hope that for some special mass distribution a
stable gait emerges.

Figure 4.2: Kinematic coupling of the upper body to the midway leg angle according to
Eq. (4.1).

Intuitively, option three is most promising because the number of degrees
of freedom is reduced, which improves the chances of finding stable walking
cycles. Human beings do not have such a kinematic coupling, but the assembly
of pelvic muscles and reflexes could possibly perform a similar function. Also,
such a construction can be found in certain reciprocating gait orthoses [39]. In
robot prototypes such a kinematic coupling can be easily realized. In the model
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Table 4.2: Initial conditions that result in a cyclic walking pattern for the simplest walker
with upper body, using the default parameter values (Table 4.1).

θ0 0.3821 (rad)
(φ0 = 2θ0) (0.7642 (rad))

θ̇0 -0.3535 (rad/-)
φ̇0 0.0736 (rad/-)

it is introduced according to:

ψ = φ/2 − θ. (4.1)

The other options could provide valuable results, although the first is not inter-
esting as a model for human walking. We intend to investigate options two and
four in the future, but in this paper we will focus on the behavior of the model
with the compass-like kinematic constraint.

4.3 Results

4.3.1 Walking motion

The walking motion is analyzed with the help of the methods as described in
the Appendix. With the default parameter values, the model takes something
like a human walking step if started with the initial conditions from Table 4.2.
However, due to its quintessential nature our model shares some typical non-
human characteristics with Garcia’s simplest walking model. First, the feet are
no more than points, hence the application point of the ground contact force is
at a fixed location during one step. Second, there are no actuators, so that the
model will only walk if placed on a slope. Third, the legs cannot change length,
hence there are not enough degrees of freedom to allow a double support phase.

The step starts and ends immediately after ‘heel strike’ (Fig. 4.3). The hip
moves forward like an inverted pendulum with an almost constant speed, while
at the same time the swing leg swings to a forward position. Naturally, the kine-
matic constraint keeps the upper body at the intermediate leg angle. The motion
of the swing leg appears to be that of a free pendulum, while actually it is mainly
the result of the dynamics of the upper body and the hip spring.

The trajectories of the various pointmasses are no surprise; the hip moves
forward on a circular path (often referred to as ‘compass gait’ [40], while the
swing foot remains close to the floor. The upper body follows a path almost
identical to the hip trajectory at a distance lb above the hip, only slightly smoother
at the heel strike discontinuities. There are two peculiarities. First, the hip tra-
jectory equals that of an inverted pendulum, but its speed does not. Due to the
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influence of the upper body and the hip spring, the speed of the hip is nearly
constant, as can be deducted from the nearly constant stance leg velocity in
Fig. 4.3. Second, the swing foot travels briefly below floor level. Inevitable for a
2D walker with straight legs, we allow this to happen in our simulation. Human
beings and our more sophisticated models [90] and prototypes [94] have knees
to solve this problem.

With a step length of 0.746(−) and a step time of 1.77(−) the model attains a
(scaled) walking velocity of 0.42(−). Back on a human scale this corresponds to
1.3(m/s). The scaled velocity is the same as the familiar Froude number,

√
v2/gl,

where {Froude number = 1} represents the maximum walking speed for any
biped. At higher speeds the foot contact force would become negative, so the
biped should switch to running or maybe to Groucho walking. With a Froude
number of 0.42(−) our model is well below that boundary, firmly stepping its
way.

The energy consumption of the model at this speed is low. This is usually
represented in the non-dimensional form of ‘specific resistance’: energy con-
sumption per distance traveled per kilogram mass per gravity. For passive dy-
namic walkers the specific resistance is equal to the slope angle γ as gravity
is the only means of energy input. So, our model has a specific resistance of
0.0725(−) at a (scaled) speed of 0.42(−). This is much more efficient than human
beings walking at the same speed with a specific resistance of approximately
0.38(−) [65], although the comparison is somewhat unfair as muscle efficiency
is unaccounted for. Also, this is much more efficient than the current generation
of walking robots.

4.3.2 Inherent stability

To classify the stability of the walking motion there are two useful but essen-
tially different definitions. First, we can regard stability in its most strict way.
The basis is a walking motion in cyclic equilibrium, called a ‘limit cycle’; a cer-
tain combination of initial conditions (Table 4.2) keeps repeating itself for all
subsequent steps. If started slightly away from the limit cycle, the walking mo-
tion is stable if the subsequent step is closer to the limit cycle. Note that this
‘local stability’ requires the existence of a limit cycle, and that only small distur-
bances are investigated. By application of the method as described in Section F
of the appendix we found that the model with the parameter values from Ta-
ble 4.1 and started with the initial conditions from Table 4.2 is indeed stable for
small disturbances.

Second, we can regard the stability of walking in the broadest and most in-
tuitive form: ‘The robot is stable if it does not fall’. We can even allow ourselves
to use the formally incorrect term ‘more stable’ for a robot that can handle larger
disturbances. Note that this ‘global stability’ does not require the existence of a
limit cycle (every step may be different, as long as the robot doesn’t fall), but
that it can only be investigated with the costly method of trying out all possible
disturbances.
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Figure 4.3: Cyclic walking motion of the model with upper body. Top: stick figure repre-
sentation, bottom: absolute angles of stance leg, swing leg, and upper body. The simula-
tion is performed using the default parameter values (Table 4.1).

By application of the cell mapping method as described in Section G of the
Appendix, we found that the model performs surprisingly well. The model con-
verges to its limit cycle if started with errors as large as 8% on all initial condi-
tions of Table 4.2, compared to 2% for the simplest walking model [71]. For cer-
tain combinations of errors, the errors can even be much larger. This is inspected
by evaluation of the basin of attraction (Fig. 4.4), the complete set of initial condi-
tions that eventually lead to cyclic walking. For example, the figure shows that
cyclic walking with cyclic initial conditions as in Table 4.2 emerges even if the
initial step is twice as large, e.g. {θ0 = 0.75, θ̇0 = −0.75, φ̇0 = −1}.
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Figure 4.4: Basin of attraction of the simplest walking model with upper body. The
gray layers of points represent horizontal slices of a 3D region of initial conditions that
eventually lead to the cyclic walking motion. The cyclic motion ({θ0 = 0.3821, θ̇0 =
−0.3535, φ̇0 = 0.0736}, Table 4.2) is indicated with a flat asterisk, just above one of
the sample slices.

4.4 Parameter study

4.4.1 Slope and spring stiffness; speed and step length

As mentioned in Section II, the model has two parameters that are essential
to the model’s gait: the slope angle and the hip spring stiffness. Together, they
determine the step frequency and the step length, thereby also determining the
walking velocity.

First, for a fixed set of mass and length parameters, the step frequency is
almost completely determined by the hip spring stiffness. It appears that the
swing leg amplitude, step length, slope angle or walking speed all have a negli-
gible influence on the step frequency [49, 27].

Then, the step length is directly determined by the slope angle; the steeper
the slope, the larger the steps. This is a result of the balance between the gravi-
tational energy input and the impulsive energy losses at heel strike. Although a
larger step means more energy input, it leads to even more energy loss at heel
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strike. As a result, the system will automatically converge to a periodic walking
motion with a step length that corresponds to the slope angle.

With the hip spring stiffness and the slope angle together, we were able to
set both the speed and the step length to human values. It should be noted that
these effects are not unique to our model. In fact, Kuo [44] studied these same
effects extensively for the simplest walking model to investigate energy matters
of human walking.

4.4.2 Upper body height and weight

The upper body is parameterized with body length lb and body mass mb. The
body mass and the pointmass at the pelvis together always sum to 1 for the
purpose of scaling, while the body length is scaled to the length of the leg. The
default parameters of Table 4.1 are chosen so that the model has some relevance
to future prototypes. This section investigates the model behavior when the up-
per body is reduced to nothing or significantly enlarged.

Reduction of the upper body size or mass to zero leads to a model like the
simplest walker, except that the simplest walker has no hip spring and an in-
finitesimally small foot mass. For a very small foot mass, no hip spring is neces-
sary, but for a realistic foot mass as in Table 4.1, stable walking cycles only exist if
a spring is applied. As stated earlier, the hip spring and slope angle together de-
termine the walking speed and the step length. If we set them so that speed and
step length match the original model (Table 4.1), we find that the ‘zero-body-
model’ needs a slope angle of γ = 0.147 (rad). In other words, the model with
upper body is twice as efficient as the same model without upper body! Apart
from that, there is not much difference between the gaits of the two models.

Similarly, an increase in the mass or the size of the upper body will pro-
vide an even higher walking efficiency. We found that an increase in mb has a
similar effect as an increase in lb. As an example, we crudely modeled a per-
son carrying a heavy load on the top of the head by setting mb = 0.9(−) and
lb = 1(−). The hip spring stiffness and slope angle were again adjusted to ob-
tain human walking speed and step length. The required slope angle is now
only γ = 0.0249 (rad); this model walks about three times more efficient than
with the default parameter values! In general it is clear that the presence of an
upper body has a positive influence on the walking efficiency.

The changes of the mass or size of the upper body have little effect on the sta-
bility. We investigated the three previously mentioned situations: a) zero upper
body mass, b) default parameters (Table 4.1), and c) someone carrying a heavy
load on the head (lb = 1,mb = 0.9). In terms of linearized stability, all three situ-
ations are stable for small disturbances. In terms of global stability, the allowable
errors on all initial conditions are about 8% for all three situations. However, the
resultant basins of attraction (as in Fig. 4.4) have different shapes, so that con-
vergence from larger errors occurs for different combinations of errors. It seems
odd that the size or mass of the upper body has no apparent influence on the
allowable errors (all 8%), whereas there is such a large difference with the sim-
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plest walking model (only 2%). We believe that this is a result of the increased
speed and step frequency; the simplest walking model walks slower than our
model, which we tuned to walk with human speed. We intend to investigate
this effect in the near future.

4.4.3 Limits to stability

Our upper-body walker has a remarkably stable gait if provided with the para-
meter values from Table 4.1. For certain other parameter values, however, the
model has unstable gaits or even no cyclic walking motions at all. Usually this
can be solved by sufficiently increasing the hip spring stiffness k, with a few ex-
ceptions. At slopes steeper than γ ≈ 0.35 (rad) the equilibrium speed is so high
that the stance foot would loose ground contact and the model should start run-
ning. The foot mass mf and the body size and mass lb and mb can be chose
arbitrarily small or large; with a high enough value for k the model still walks
fine, although this could result in correspondingly small or large step lengths,
which in turn could lead to the loss of floor contact.

Inside these boundaries, for each combination of parameter values there ex-
ists a minimal value for k that ensures stability. For the model with the default
parameter values of Table 4.1, we studied the effect of variations in k on the
cyclic walking motion. For k > 0.218 we found steady, stable cyclic walking as
described in Section III(A). However, for the same value of k there also exists
a second, unstable gait. The steps are shorter and faster, and the motion looks
like the model is stumbling forward. McGeer and Garcia discovered this second
solution for their models and refer to it as the ‘short-period gait’, as opposed
to the normal, stable solution which is termed ‘long-period gait’. We are only
interested in the last type of gait, the behavior of which we have studied as a
function of the parameter value for k.

Above the boundary value, an increase in k results in faster and smaller steps
as discussed in section IV(A). If we decrease k below 0.218, we cross a bifurca-
tion to asymmetric gaits, first encountering two-period solutions and for lower
k even higher-period solutions. These solutions are still stable. Below k = 0.162,
we found only unstable gaits or even no cyclic solutions at all. Garcia found a
similar bifurcation to chaos for the simplest walking model when increasing the
slope above γ = 0.015(rad).

We tracked the first bifurcation point over a range of parameter values be-
cause that point represents the minimally required value for k to obtain normal,
stable walking. The relation between the minimal value for k and the other pa-
rameters is not linear, and there is not an obvious and simple non-linear rela-
tionship. Qualitatively, the required hip spring stiffness k needs to be increased
if lb, mb, mf or γ are increased.
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4.5 Conclusion

This paper presented the simplest walking model with a passive upper body.
The solution for a fully passive upper body is to confine the upper body angle
to the intermediate leg angle with a kinematic coupling. With this kinematic
constraint, the model has only two degrees of freedom, similar to the Simplest
Walking Model.

The presence of such an upper body results in a better energy efficiency and
in a slightly better robustness against disturbances. A spring in the hip joint is
essential for stability. An increase in the hip spring stiffness results in a higher
step frequency, whereas the slope angle of the floor determines the step length.

These results are convincing enough to commence the construction of a pro-
totype walking robot with a similar upper body construction.
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Appendix: Simulation methods and procedures

This appendix describes the methods used to simulate the motion of the sim-
plest walker with upper body. In order of appearance after the start of a new
walking step, a simulation contains the following aspects: A) equations of mo-
tion, B) numerical integration, C) end-of-step (heel strike) detection, and D) heel-
strike impact equations. Then the biped starts a new step. For continuous walk-
ing, we must study the step-to-step behavior to E) find periodic solutions and
F) determine the linearized stability, and finally G) investigate the basin of at-
traction of these periodic solutions. This section focuses on the current model;
the applied simulation method is elaborated in detail in [71] and [90].

Equations of motion

The configuration of the walker is defined by the coordinates of the four point-
masses (stance foot, hip, swing foot, and upper body), which can be arranged in
a global vector x = (xst, yst, xh, yh, xsw, ysw, xb, yb)T . In order to obtain a min-
imal set of equations, the eight coordinates of x are expressed as functions of
the independent coordinates θ and φ. To allow inspection of the ground reac-
tion forces, we introduce two more independent coordinates (u and v), repre-
senting respectively the x- and y-coordinates (orthogonal to the walking slope)
of the stance foot, which will obviously be fixed during the walking motion.
The expression of x as a function of the vector of independent coordinates q =
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(u, v, θ, φ)T reads:

x = x(q) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xst

yst

xh

yh

xsw

ysw

xb

yb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v
u − sin(θ)
v + cos(θ)
u − sin(θ) + sin(θ − φ)
v + cos(θ) − cos(θ − φ)
u − sin(θ) − lb sin(θ − φ/2)
v + cos(θ) + lbcos(θ − φ/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2)

Notice the use of the term (θ − φ/2) from Eq. (4.1). For the walker the global
coordinate related mass matrix is

M = Diag(mf ,mf , 1 − mb, 1 − mb,mf ,mf ,mb,mb), (4.3)

The reduced mass matrix Mr is created via

Mr = TT MT, (4.4)

with the Jacobian T = ∂x
∂q from Eq. (4.2), which can be automatically generated

with a symbolic math package.
The gravity forces, contact forces and the spring torque are compiled into a

reduced force vector fr via

fr = TT [fg − MT2] + Q, (4.5)

with the convective accelerations T2 = ∂(Tq̇)
∂q · q̇, again obtained automatically.

The vector of gravity forces reads

fg = M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(γ)
− cos(γ)

sin(γ)
− cos(γ)

sin(γ)
− cos(γ)

sin(γ)
− cos(γ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

and the spring torque and unknown contact forces are represented in the vector
with generalized forces Q:

Q =

⎡
⎢⎢⎣

Qu

Qv

0
−kφ

⎤
⎥⎥⎦ . (4.7)

This amounts to the reduced equations of motion:

Mrq̈ = fr. (4.8)
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The contact condition on the stance foot gives the boundary conditions u =
constant and v = 0. This contact is only valid for compressive vertical contact
force, Qv > 0, and will be checked during the simulation. The resulting set of
linear equations can be solved for Qu, Qv, θ̈ and φ̈ by numerical evaluation and
subsequent solution.

Numerical integration

The second order differential equations of motion are numerically integrated
using the Runge-Kutta method. It must be taken into account that only two of
the generalized coordinates are independent (θ and φ), the other two are fixed
by the boundary condition of keeping the stance foot at the floor, and should
therefore not be incorporated in the numerical integration.

Away from round-off errors, the integration accuracy is estimated according
to:

q∗ − q∆t ≈ 1
2n − 1

(q∆t − q2∆t), (4.9)

where q∗ is the real state after one walking step, q∆t is the numerically calcu-
lated state, q2∆t is the same calculation with twice the integration step size, and
n = 4 is the order of the integration scheme. Simulation results show that for
an integration step size of ∆t = 0.05 the absolute error in the state variables
{θ, φ, θ̇, φ̇} after one walking step is smaller than 1 · 10−7.

End-of-step detection

The end of a walking step is defined as the instant that the swing foot makes
contact with the floor. This is detected during the simulation by monitoring the
swing foot clearance (g)

g = v + cos(θ) − cos(θ − φ), (4.10)

which is the sixth element of x in Eq. 4.2.
However, our model has two straight legs of equal length, and no leg retrac-

tion mechanisms. In fact, the model is too simple for the real world. When the
swing leg passes the stance leg, the swing foot would inevitably ‘scuff’ the floor.
We have to ignore this instance of foot contact, and continue simulation as if the
floor were not there, until the ‘real’ heel strike occurs. This is detected if all of
the following statements are true:

1. g has crossed zero,

2. ġ is negative,

3. the stance leg has passed the vertical position, and

4. the absolute angles of the swing and stance leg have opposite signs.
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Now that we know that heel strike must have occurred between the last and
the previous integration step (between tn and tn−1), we must pinpoint the exact
instant of contact. This is solved by fitting a third order polynomial through
the foot clearance function g, for which we need its derivative which can be
automatically generated from the state variables. The polynomial is zero at the
time of contact tc, which we express as the fraction

ξ =
tc − tn−1

tn − tn−1
. (4.11)

A fast and accurate approach to calculate q(tc), as proposed by Meijaard [52],
is interpolating q between tn−1 and tn with a third-order interpolation polyno-
mial, since we know both q and q̇ at these instants:

q(tc) =

⎡
⎢⎢⎣

(1 − 3ξ2 + 2ξ3)
(ξ − 2ξ2 + ξ3)δt

(3ξ2 − 2ξ3)
(−ξ2 + ξ3)δt

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

q(tn−1)
q̇(tn−1)
q(tn)
q̇(tn)

⎤
⎥⎥⎦ . (4.12)

The results of this method have the same accuracy as the numerical integration
procedure in Section B. The interpolation method is efficient because we avoid
solving the equations of motion all together.

Impact equations

We assume that the heel strike behaves as a fully inelastic impact (no slip, no
bounce). Also, double stance is assumed to occur instantaneously, which is in
accordance with observations on existing passive dynamic walking prototypes.
As soon as the swing foot hits the floor the stance foot lifts up, not interacting
with the ground during impact. The resulting vertical velocity of the lifting foot
should then be pointed upward, which is checked during the simulation. If it
points downward, the assumption was incorrect and there actually was interac-
tion between the former stance foot and the floor. Without calculation one can
see that in that case the walker comes to a complete stop.

The instantaneous velocity changes during impact can be calculated using
the original reduced Equations of motion (4.8). As described in [71], the impact
equations read

[
Mr DT

D 0

] [
q̇+

ρ

]
=

[
Mrq̇−

−eDq̇−

]
, (4.13)

with Newtons coefficient of restitution e = 0 and the swing foot contact im-
pulses ρ. D represents the partial derivatives of the impact constraints with
respect to q. Since there is no interaction between the old stance foot and the
floor during impact, the easiest way to derive the impact equations is by first
swapping stance and swing leg coordinates. This must be done anyway before
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simulating the next step, and by doing this swap immediately before heel strike,
the impact constraints become simply u = constant and v = 0, resulting in

D =
[

1 0 0 0
0 1 0 0

]
. (4.14)

The impact affects only q̇ and leaves q constant. With the new velocities and
the swapped stance and swing leg, the walker is ready for the next walking step.

Limit cycle analysis

With the above procedure (numerically integrating equations of motion, impact-
detection and calculation and stance-swing leg swapping) the initial conditions
v = (q̇,q) can be mapped from one step onto the next by a step-to-step function
S [51]:

vn+1 = S(vn). (4.15)

A walking cycle is specified by the requirement that the vector of initial con-
ditions vn results in identical initial conditions for the subsequent step:

vn+1 = vn. (4.16)

A vector with initial conditions satisfying this requirement is a cyclic solution
vc, which maps onto itself:

S(vc) = vc. (4.17)

A cyclic solution can be found by a linearization of the step-to-step function

S(v + ∆v) ≈ S(v) + J∆v,
with J = ∂S/∂v,

(4.18)

and applying a Newton-Raphson iteration procedure, starting with a set of ini-
tial conditions v close to the cyclic solution vc

repeat
∆v = [I − J]−1(S(v) − v)

v = v + ∆v
until |∆v| < ε,

(4.19)

where I is the identity matrix. The Jacobian J is calculated by a perturbation
method, which involves simulation of a full walking step for every initial condi-
tion. The result of this depends on the model parameters and the initial estimate
for the solution. If the parameters are such that no cyclic gait exists or if the ini-
tial estimate is poor, then the solution will diverge. If the solution converges we
find one of possibly multiple cyclic solutions.
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Local stability

If the walker starts a step exactly with vc, it will walk forever. However, if small
errors εn appear, the periodic solution needs to be stable for the robot to main-
tain gait. The stability is described with the Jacobian J from the previous sub-
section, which is the linearized multiplication factor for errors from one step to
the next:

vc + εn+1 = S(vc + εn) ≈ S(vc) + Jεn. (4.20)

Errors will asymptotically die out if all eigenvalues of the Jacobian J have an
absolute value smaller than 1, and in that case the periodic solution is stable for
small disturbances.

Global stability

The global behavior of the step-to-step function S can be studied with the aid
of the cell mapping method [36]. The region of feasible initial conditions is sub-
divided into a large number (N) of small cells. All unfeasible initial conditions
are regarded as a small number (z) of very large cells, so called sink cells. The
cells are numbered 1 to N+z. By application of the step-to-step function S to
the center of each cell, all of the N+z cells point to initial conditions inside one
of the other cells, except the sink cells which point to themselves by definition.
Starting with cell 1, a sequence of cells appears by following the pointers. This
sequence either ends in a sink cell or in a repetitive cycle. This cycle can consist
of one self-repeating cell (a fixed point), or a number of cells (representing an
asymmetric gait, Section IV C). The repetitive cycle is identified and all cells in
the sequence are labeled as basin of attraction of that cycle. Then the procedure
is repeated with all N cells. As soon as a known cell (from a previous sequence)
is encountered, the procedure can be stopped, and all cells in that sequence are
labeled as basin of attraction of that last cell.

Application of the cell mapping method results in a list with all attractors
(cyclic solutions) and classification of all discretization points into this list. Not
only period-one walking gaits can be found, also period-k walking gaits. Results
of the cell mapping method are as accurate as the discretization, within these
tolerances fixed points may come and go. For example, what appears to be a
fixed cell might in fact be slowly changing initial conditions (smaller changes
than the discretization) of subsequent steps.
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One of the grand challenges in the development of passive dynamic walking
robots (useful for an understanding of human gait and for future applications
in entertainment and the like) is the stabilization of 3D motions. This is a difficult
problem due to the inherent interaction between fore-aft motions and sideways
motions. This paper proposes a simple solution. Conceptually, one can avert a
sideways fall by steering in that direction, similar to skateboards and bicycles.
The paper proposes to implement this concept for walking robots by the intro-
duction of an ankle joint that kinematically couples lean to yaw. The ankle joint
has an unusual orientation; its axis points forward and downward, without any
left-right component. The effect of the ankle joint is investigated in a simple 3D
model with three internal degrees of freedom. It has cylindric feet and an ac-
tuator at the hip joint which quickly moves the swing leg to a preset forward
position. The simulations show that it is easy to find a stable configuration, and
that the resultant walking motion is highly robust to disturbances. Similar to
skateboards and bicycles, there exists a critical velocity (as a function of the pa-
rameters) above which stable walking motions occur. The critical velocity can
be lower for a more vertical ankle axis orientation. As an additional benefit, the
ankle joint allows a straightforward implementation for steering; a simple side-
ways offset of the mass distribution will cause the model to gently steer in that
direction. The results show great potential for the construction of a real-world
prototype with the proposed ankle joint.
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5.1 Introduction

Passive dynamic walking [49] is a well-known concept for the design of energy
efficient bipedal (two-legged) robots with a natural looking gait. In their purest
form, such walkers are fully unactuated (and thus uncontrolled), while walk-
ing stably down a shallow slope. The swing leg moves forward in its natural
frequency as a passive pendulum while the stance leg rotates forward as an in-
verted pendulum, usually rolling on an arc-shaped foot. For passive walkers
with lateral constraints (i.e. only possessing two-dimensional dynamics) it has
been shown that stable walking motions exist for a wide range of parameter
values for prototypes both with and without knees. Moreover, it is straightfor-
ward to add elementary hip actuation for level-floor walking with a consider-
able robustness [93] and to add an upper body through the use of a bisecting
hip mechanism [92].

One of the grand challenges is to find the key to stability in three dimensions.
In addition to the fore-aft motions (roll), also sideways motions (lean) and rota-
tions around the vertical axis (yaw) are possible. It is the interaction between all
three of these that renders the problem of 3D stability so difficult. Consequently,
most of the known successful solutions to this problem are successful because
they reduce the interaction in one way or another:

• Ignore yaw by assuming sufficient yaw resistance in the foot contact [43,
60].

• Apply large moments of inertia against yaw [18, 17].

• Walk with short steps [79, 18, 75].

• Counteract yaw with a counter-rotating body [90] or with counter-swinging
arms [19].

In this paper, however, we aim not at a reduced interaction between the degrees of
freedom, but conversely we show how a purposefully induced interaction between
lean and yaw can actually benefit the stability of the walking motion. First, in
Section 5.2 the related problems of skateboard and bike stability are studied,
then in Section 5.3 an elementary walking model is introduced, followed by the
simulation results in Section 5.4 and the discussion and conclusion in Sections
5.5 and 5.6.

5.2 Two examples of advantageous lean-to-yaw cou-
pling

5.2.1 Skateboard

The skateboard is one of the most elementary examples of a system with a kine-
matic lean-to-yaw coupling, hence its treatment here at the start of this paper. In
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the skateboard, the two sets of wheels are attached to the board via tilted steer-
ing axes (Fig. 5.1). Although the main purpose of this construction is to give the
rider the ability to steer, here we’ll show how this also provides stability. The
following analysis is a simplified version of the skateboard stability analysis by
Hubbard [37] in 1979.
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Figure 5.1: Parameters of the skateboard model.

The board and wheels are assumed to be massless and the height between
the board and the floor is neglected. Also, we assume that there is always contact
between all four wheels and the floor; the model cannot tip over. The rider is
modeled as a single point mass at height h above the floor, rigidly attached to the
skateboard. The distance between the front and rear wheels is w. The steering
axes are mounted at an angle α with respect to the vertical such that sideways
leaning of the rider results in steering in that direction. The steering axes are
equipped with rotational springs with stiffness k. The model has fore-aft and
sideways symmetry.

The skateboard is a non-holonomic system, i.e. it cannot slip sideways but it
can move to a sideways position by a sequence of steering actions. Therefore it
has a smaller velocity space (lean and ride) than coordinate space (lean, x- and
y-position and orientation in plane). Here we will consider the linearized equa-
tions of motion in which the forward velocity can be considered as a parameter.
The linearized model only has one degree of freedom, namely the sideways lean
angle of the rider θ (Fig. 5.2). With zero forward velocity, the behavior equals
that of an inverted pendulum with a de-stabilizing gravity torque and a stabi-
lizing spring torque. Although the two springs act on the tilted joints, in their
projected torques the tilt angle α cancels out.

When riding with a velocity v, the skateboard makes a turn if there is a non-
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θ

rc

v

a

Figure 5.2: Degrees of Freedom of the linearized skateboard model. Left is a hind view,
right a top view.

zero lean θ. The velocity together with the radius of curvature rc (Fig. 5.2) deter-
mine the sideways acceleration of the board according to

a =
v2

r
=

2v2

w tan α
θ (5.1)

Therefore, the total system equation describing the linearized model becomes

mh2θ̈ + (2k − mgh +
2mh

w tan α
v2)θ = 0 (5.2)

This result can be interpreted as follows. If the spring stiffness k is high enough
to counteract the inverted pendulum instability, then the system is never unsta-
ble. If not, then it can always be made stable by its velocity. The larger angle α,
the higher the required velocity. The critical velocity reads:

vmin =

√
(mgh − 2k)w tan α

2mh
(5.3)

Note that the system can at best only be marginally stable. The introduction
of damping in the steering axis could make it asymptotically stable. Also note
that Eq. (5.3) suggests that it is best to make angle α equal to zero. In real life
there is a lower limit to α dependent on the width of the skateboard because of
the unilateral contact between the wheels and the floor.

5.2.2 Bicycle

Most of us know from experience that a bicycle is highly unstable at rest but
can easily be stabilized at a moderate speed. Moreover, some uncontrolled bi-
cycles can be asymptotically stable in a certain speed range. To demonstrate
this phenomena we will consider one of the simplest bicycle models: an uncon-
trolled bicycle with a rigid rider attached. This is an example of a dynamically
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Figure 5.3: Bicycle model together with the coordinate system, the degrees of freedom,
and the parameters from [70].

coupled lean-to-yaw motion due to the hands-free operation of the bicycle. The
following analysis is based on an earlier publication by Schwab, Meijaard, and
Papadopoulos [70].

The mechanical model of the bicycle consists of four rigid bodies, viz. the
rear frame with the rider rigidly attached to it, the front frame being the front
fork and handle bar assembly and the two knife-edge wheels. These bodies are
interconnected by revolute hinges at the steering head between the rear frame
and the front frame and at the two wheel hubs. The contact between the stiff
non-slipping wheels and the flat level surface is modelled by holonomic con-
straints in the normal direction and by non-holonomic constraints in the longitu-
dinal and lateral direction. There is no friction, apart from the idealized friction
between the non-slipping wheels and the surface, nor propulsion and no rider
control, the so-called hands free coasting operation. Note that these assumptions
make the model energy-conserving.

The mechanical model of the bicycle has three degrees of freedom: the roll
angle φ of the rear frame, the steering angle δ, and the rotation θr of the rear
wheel with respect to the rear frame. The forward speed is taken as v = −θ̇rRrw,
where Rrw is the radius of the rear wheel. Due to the non-holonomic constraints
there are four extra kinematic coordinates which describe, together with the de-
grees of freedom, the configuration of the system [69]. The four kinematic co-
ordinates are taken here as the Cartesian coordinates x and y of the rear-wheel
contact point, the yaw angle ψ of the rear frame, and the rotation θf of the front
wheel with respect to the front frame. The dimensions and mechanical proper-
ties of the benchmark model are those of a regular 18 kg bicycle with an average
76 kg rider. For the precise values we refer to [70].
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To investigate the stability of the bicycle in the upright steady motion at con-
stant forward speed we consider the linearized equations of motion expressed
in the remaining degrees of freedom q = (φ, δ)T which takes the form

Mq̈ + [C1 · v]q̇ + [K0 + K2 · v 2]q = f , (5.4)

with a constant mass matrix, M, a “damping” matrix, C1, which is proportional
to the forward speed v, and a stiffness matrix which has a constant part, K0, and
a part, K2, which is proportional to the square of the forward speed. Typical
values for the entries in the matrices are,

M =
[

80.812 2.3234
2.3234 0.30127

]
,C1 =

[
0 33.774

−0.84823 1.7070

]
,

K0 =
[ −794.12, −25.739

−25.739 −8.1394

]
,K2 =

[
0 76.406
0 2.6756

]
,

(5.5)

where we use the standard units kg, m, and s. The forces on the right-hand side,
f , are the applied forces which are energetically dual to the degrees of freedom
q. For the bicycle model the first is Mφ, the action-reaction roll moment between
the fixed space and the rear frame. In practice such a torque could be applied by
side wind, or by ’training wheels’ located at the rear wheel hub, or by a parent
teaching a child to ride by applying either a pure rolling moment or a lateral
force. The second force is Mδ , the action-reaction steering moment between the
rear frame and the front frame. This is the torque that would be applied by a
rider’s hands, or a steering spring-damper, or even an electronic controller. In
the case of an ordinary uncontrolled bicycle, both of these moments are taken to
be zero.

To investigate the stability of the upright steady motion we start from the
homogeneous linearized equations of motion Eq. (5.4). Next we assume for the
small variations in the degrees of freedom an exponential motion with respect
to time which then takes the form q = q0 exp(λt). This leads to an eigenvalue
problem for which in this case the characteristic equation is a polynomial in the
eigenvalues λ of order four. The coefficients in this polynomial are themselves
polynomials in the forward speed v, since some coefficients of the linearized
equations of motion have a linear or quadratic dependency on v. The solutions
of the characteristic polynomial for a range of forward speeds are the root loci
of the eigenvalues λ, which are shown in Figure 5.4. Eigenvalues with a positive
real part correspond to unstable motions whereas eigenvalues with a negative
real part result in asymptotically stable motions. Complex conjugated eigenval-
ues give rise to oscillatory motions.

For the bicycle model there are two significant eigenmodes, called capsize
mode and weave mode. The capsize motion is a non-oscillatory motion in which,
when unstable, the bicycle just falls over like a capsizing ship. The weave motion
is an oscillatory motion in which the bicycle sways about the headed direction.
Both eigenmodes show the dynamically coupled lean-to-yaw motion. At very
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Figure 5.4: Eigenvalues λ from the linearized stability analysis for the benchmark bi-
cycle from Figure 5.3 and [70] where the solid lines correspond to the real part of the
eigenvalues and the dashed line corresponds to the imaginary part of the eigenvalues,
in the forward speed range of 0 ≤ v ≤ 10 m/s. The zero crossings of the real part of
the eigenvalues are for the weave motion at at vw = 4.301 611 m/s and for the capsize
motion at vc = 6.057 011 m/s, giving the bicycle an asymptotically stable speed range of
vw < v < vc

low speed, 0 < v < 0.7 m/s, there are two positive and two negative eigen-
values which correspond to an inverted pendulum-like motion of the bicycle.
At v = 0.693 713 m/s two real eigenvalues become identical and start forming a
conjugated pair; this is where the oscillatory weave motion emerges. At first this
motion is unstable but at vw = 4.301 611 m/s these eigenvalues cross the real
axis in a Hopf bifurcation and the weave motion becomes stable until infinity.
After this bifurcation the frequency of the weave motion is almost proportional
to the forward speed. Meanwhile the capsize motion, which was stable for low
speed, crosses the real axis in a pitchfork bifurcation at vc = 6.057 011 m/s and
the motion becomes mildly unstable. We call a motion mildly unstable when the
eigenvalues have a absolute value which is smaller than 2 s−1, in which case it
is fairly easy to stabilize the motion manually. With further increase in speed,
the capsize eigenvalue approaches zero.

We conclude that the speed range for which the bicycle shows asymptoti-
cally stable lean-to-yaw behaviour is vw < v < vc. In addition, from a practical
point of view one could say that the bicycle is easy to balance for all speeds
above 3 m/s.
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5.3 Simplest passive walking model with lean-to-
yaw coupling

5.3.1 Model

The purpose of the simulation model is to show the essential dynamic effects of
lean-to-yaw coupling in walking systems. The simplest model for this purpose
is a 3D cousin of Garcia’s two-dimensional ‘Simplest walking model’ [27] which
consisted of one finite point mass at the hip joint, two infinitesimally small point
masses at the feet, and massless rigid links in between, interconnected with a
frictionless hinge at the hip. Our model (Fig. 5.5) is a 3D extension of this; the
hip has gained a finite width and the hip mass is divided into two point masses
at the extremes of the massless hip axle. For numerical reasons the point masses
at the feet of our model are not infinitesimally small but just very small. The
degrees of freedom are the coordinates and the yaw and lean angles of the center
of the hip axle {xh, yh, zh, u1, u2}, the two leg pitch angles {u3, u4}, and the two
ankle angles {u5, u6}. The ankle axes are mounted in the x-y plane at an angle α
with respect to the vertical. Note that the ankle axes have no component in the
z-direction, unlike conventional robot designs or the human ankle. The ‘normal’
ankle functionality, rotation around the z-axis, is realized by means of the roll-off
motion of the feet.
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Figure 5.5: Degrees of freedom (left) and parameters (right) of our simple walking model
with ankle joints that couple lean to yaw. The global coordinate system is XY Z whereas
the local coordinate system of the foot (inset) is xyz.

The feet are (partial) cylinder shells with the cylinder axis perpendicular to
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the ankle axis. They are mounted such that the cylinder axis is in the leg (not
displaced forward or backward) and that the total leg length (when standing
upright) is independent of the cylinder radius. The foot contact is modeled as a
perfectly rigid cylinder-plane contact with only one degree of freedom; roll in a
direction perpendicular to the cylinder axis. The width of the feet is not speci-
fied and is assumed to be sufficient to prevent sideways tipping over the edge.
The feet in the model have a finite size but no inertia, so the foot of the swing
leg contributes to the system dynamics only as a point mass. For the detection of
heel contact, the swing foot is assumed to preserve its parallel orientation with
respect to the floor surface. Heel contact itself is modeled as a rigid plastic im-
pact with immediate and full contact to the floor, while at the same instant the
previous stance foot loses contact.

The model walks down a shallow slope γ. All parameters are scaled so that
gravity g, the leg length l and the total robot mass (2mhip) are all equal to one1.
The simulation results can be scaled back to obtain results for example for an
earthly gravity regime. This scaling exposes the minimal set of adjustable pa-
rameters; hip width d, foot radius r, ankle mounting angle α, and slope angle γ
as listed in Table 5.1. Additionally, a (small) torque can be exerted at the hip joint
to move the swing leg quickly to a forward position, a feature that will prove
necessary for stable walking (Section IV).

Table 5.1: Parameters and their default values.

hip width d 0.3
foot radius r 0.5
ankle mounting angle α 0.55
slope angle γ 0.01

5.3.2 Equations of motion

The equations of motion for the system without foot contact constraints were
generated with the method of virtual power as described in [71], where the
twelve dependent degrees of freedom ({x, y, z} for each point mass) were ex-
pressed in terms of the nine generalized coordinates {xh, yh, zh, u1..u6}. In ad-
dition, there are three coordinates that change value only once per step; the foot
roll-off direction φ and the foot contact location {xc, zc}. The five foot contact
constraints are expressed as follows:

1. No yaw; the foot cylinder axis must remain perpendicular to its initial roll-
off heading,

1Due to the applied scaling, most quantities in this text are dimensionless, which explains the
frequent use of seemingly incomplete statements such as ‘a velocity of 0.36’.
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2. No lean; the foot cylinder axis must remain perpendicular to the normal
of the floor,

3. Contact with plane; the center of the foot cylinder axis must remain a dis-
tance r (foot radius) above the floor,

4. No lateral slip

5. No forward slip; the forward disposition should match with the roll-off
angle.

These constraint conditions (either for the right foot or for the left foot depend-
ing on which one is in stance phase) were added to the equations of motion
to obtain a system of Differential Algebraic Equations which solves for the 9
generalized coordinates and 5 Lagrange multipliers (one extra unknown per
constraint condition).

5.3.3 Simulation procedure

The simulation procedure is a succession of simulations of walking steps which
begin and end at the instant immediately after heel strike. Within one step, the
system of DAE’s is numerically integrated until heel strike is detected, followed
by an impact calculation. The end state of the walker is then used as the starting
state for a second step. After the second heel strike, the end state ({q, q̇}n+1) is
compared to the initial state of the walker ({q, q̇}n) and the entire two steps can
be summarized as the non-linear stride function S which maps the end states
on the initial states:[

qn+1

q̇n+1

]
= S

([
qn

q̇n

])
(5.6)

Note that we do not apply the common procedure of state-mirroring at the end
of the step which is used in most of the 2D analyses to confine the simulation to
only one walking step instead of two consecutive steps.

According to the Poincaré Mapping method, if the end state equals the ini-
tial state, we have found a fixed point representing a cyclic walking motion. The
stability is determined by the effect of deviations εn in the initial state on devi-
ations εn+1 in the end state. For small deviations, we assume linearity around
the fixed point, such that:

εn+1 = Jεn with J =
∂S

∂(qn, q̇n)
(5.7)

J is the Jacobian of the stride function S and is determined by performing the
simulation procedure once for all deviations εn, one for each independent initial
condition. The stability characteristics are described by the eigenvalues λ of the
Jacobian J; if all are smaller than 1 in magnitude, errors decay over subsequent
steps. The smaller the eigenvalues, the faster the walker converges toward the
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fixed point. Note that the definition of eigenvalues here differs from Section II
B; the analysis of the walking model is discrete (−1 < |λ| < 1 is stable) whereas
the bicycle analysis is continuous (|λ| < 0 is stable).

For the stability analysis, there are 6 relevant independent initial conditions
{q, q̇}n for the start of a step. The 9 independent coordinates for the free model
are reduced by 5 foot contact constraints to 4 independent degrees of freedom
when one foot is in contact with the floor. The angle of the swing foot is not con-
nected to any inertia, so this leaves only 3 independent degrees of freedom and
thus 6 states, namely {u3, u4, u6, u̇3, u̇4, u̇6} for left stance. The Poincaré Section
removes one state (one of the hip angles) so that there would be 5 independent
initial conditions. In addition, there are three coordinates that change only once
per step, namely xc, zc and φ. The linear coordinates xc and zc are not relevant
to the walking motion, but the foot roll-off direction φ is, so it must be added to
the set of independent initial conditions. Therefore, in total there are 6 relevant
independent initial conditions as listed in Table 5.2.

Table 5.2: Fixed point initial conditions for left stance, valid for the parameter values in
Table 5.1.

foot roll-off heading φ2 0.0016
stance leg angle u4 0.155
stance ankle angle u6 -0.0041
stance leg angular velocity u̇4 -0.42
stance ankle angular velocity u̇6 -0.070
swing leg angular velocity u̇3 -0.42

5.4 Simulation results

This section presents the behavior and stability of five simulation models of
increasing complexity. The first model (Fig. 5.6A) is Garcia’s two-dimensional
‘simplest walking model’ [27]. This fully passive model has straight legs with
point feet (with infinitesimally small point masses) and a large point mass at the
hip. The second model (Fig. 5.6B) is similar except that it has arc feet instead of
point feet. The third model (Fig. 5.6C) is equal to the second model except that it
is three-dimensional. It has no hip width but it can move out-of-plane. Also, this
model is equipped with the proposed ankle joints. The fourth model (Fig. 5.6D)
differs in that it has a non-zero hip width, and the fifth model (Fig. 5.6D) has an
additional actuator at the hip joint [93].
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(A) (E)(D)(C)(B)

Figure 5.6: Models with increasing complexity. A) 2D point foot walker [27], B) 2D arc foot
walker, C) flat 3D walker (passive or active), D) passive 3D walker with finite hip width, E)
active 3D walker.

5.4.1 Fully passive model

Garcia et al. [27] researched the simplest walking model in 2D that could still
demonstrate a passive walking motion, Fig. 5.6A. The model consists of three
point masses, one of mass 1 at the hip and two infinitesimally small point masses
at the feet, with rigid, massless links as legs interconnected with a frictionless
hinge. Therefore it has two degrees of freedom when in stance phase and thus
2 · 2 − 1 = 3 independent initial conditions for a step starting with the hind leg
just leaving the floor. With its point feet (no radius of curvature), the simplest
walking model is a special 2D case of the model presented in this paper.

The model shows a stable walking pattern when walking on a shallow slope
with a downward angle smaller than 0.015 (rad) [27]. For example, Table 5.3
presents the eigenvalues λ for the cyclic motion that exists for a typical slope
of 0.004 (rad). It has been shown, however, that the simplest walking model is
highly susceptible to disturbances [71], and that this sensitivity can be greatly
reduced by the application of arc feet with a substantial radius [94]. Therefore
we continue this paper with a model with arc feet with a radius of (a somewhat
arbitrarily chosen) 0.5 times the leg length. For comparison within this paper
and with previous publications [71, 93], the arc foot model is given the same
step length and approximately the same velocity as the point foot model by
adjustment of the slope angle. The step length is determined by the initial stance
leg angle θ0. On a slope of γ = 0.004 (rad) the point foot model has a limit cycle
with θ0 = 0.15 (rad). The arc foot walker only needs a slope of γ = 0.00058 (rad)
for the same step length, i.e. it is about 7 times more efficient while walking at
the approximate same velocity, see Fig. 5.7. The eigenvalues have moved closer
to 1 and thus do not suggest a stability improvement (Table 5.3). However, we
performed a crude analysis of the basin of attraction which showed that the arc
foot walker can handle deviations from the initial conditions of 8% versus 2%
for the point foot walker, indicating a better practical applicability of the model.

An interpretation of the eigenvectors corresponding to the last set of eigen-
values in Table 5.3 has shown that the first three eigenvalues are indeed only
related to the fore-aft motions whereas the last three eigenvalues are related to
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point foot model (Fig. 4A), at γ = 0.004 (rad)
arc foot model (Fig. 4B), at γ = 0.00058 (rad)

Stance leg

Swing leg

Figure 5.7: Leg angles versus time for a point foot model (Fig. 5.6A) and an arc foot
model (Fig. 5.6B) with a foot radius r = 0.5. The displayed cyclic walking motion (only
one step is shown) is valid both for 2D models and for 3D models with zero hip width
(Fig. 5.6C).

3D motions in which both the sideways and fore-aft direction are present. The
most important conclusion to be drawn from Table 5.3 is that there exists a sta-
ble 3D walking motion for our model with no hip width and an almost upright
ankle axis (α = 0.15 rad).

Further research shows that the eigenvalues are highly sensitive to the ori-
entation of the ankle axis and that only a small region leads to stable motions,

Table 5.3: Eigenvalues of the cyclic walking motion for the simplest walking model with
point feet, a 2D walker with arc feet, and a flat (d = 0) 3D walker with ankle axes oriented
at α = 0.15 (rad). Note that all eigenvalues result from two successive steps.

eigenvalues 2D point 2D arc 3D with
foot walker foot walker arc feet
(Fig. 5.6A) (Fig. 5.6B) (Fig. 5.6C)

at γ = 0.004 at γ = 0.00058 at γ = 0.00058
λ1 -0.3 + 0.27 i 0.69 0.69
λ2 -0.3 - 0.27 i 0.12 0.12
λ3 0 0 0
λ4 - - 0.72
λ5 - - 0.51
λ6 - - 0
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see Fig. 5.8. The first three eigenvalues are not a function of the ankle axis ori-
entation as it only influences 3D motions. Therefore the figure only shows the
last three eigenvalues. The small region of stable values for α is located around
the maximal stance leg angle (0.15 rad, see Fig. 5.7). This means that, during the
walking motion, the orientation of the ankle axis will move from 0.3 to 0 (rad)
with respect to an absolute reference frame, i.e. it will have a completely vertical
orientation at the end of each step. This, in turn, means that the model must be
in an upright position at that instant, as it has no degree of freedom for sideways
lean. This is a problem for realistic prototypes because it would require feet that
overlap inward to prevent tipping over on the inside edge of a foot. And such a
solution would make the entire exercise of this paper unnecessary!

0.14 0.145 0.15 0.155 0.16
0

1

2

3

4

5

Stable range α (rad)

|λ|

Figure 5.8: Typical plot of the absolute values of the eigenvalues |λ| as a function of the
ankle joint orientation α for a fully passive 3D model (Fig. 5.6C). This plot is generated
with hip width d = 0 and foot radius r = 0.5, walking on a slope of γ = 0.00058 (rad).

We hypothesized that a finite hip width d > 0 might add to stability. A graph
of the eigenvalues as a function of both the ankle orientation α and the hip width
d is sketched in Fig. 5.9. The sketch is based on a number of cross-sections in
the parameter space of α and d. The stable region for α narrows down with
an increaseing d up to d ≈ 0.05, beyond which no stable solutions were found
for any α. A search up to d = 0.2 provided ever increasing eigenvalues, so we
extrapolate the result to conclude that no stable 3D walking motions exist for a
hip width of more than 0.05 times the leg length.

Another hypothesis was that a steeper slope might improve the stability;
on a steeper slope the passive walker will take larger steps and thus walk faster,
and the skateboard and bike models predict a beneficial stability effect for higher
velocities. However, the simulation has shown only marginal effects. Up to the
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maximal slope of 0.046 (rad) beyond which no stable motions exist, the 3D graph
in Fig. 5.9 remains similar in shape. The stable region shifts to higher values of
α along with the increase in step length. For example, a slope increase from
0.00058 to 0.004 (rad) causes the initial stance leg angle to increase from 0.15 to
0.29 (rad) and also shifts the stable values for α from around 0.15 to around 0.29
(rad).

These marginal stability result, together with the required vertical orienta-
tion of the ankle axis, indicate that the fully passive model is not sufficiently
applicable for real-world prototypes and warrant a search for a model with sta-
ble behavior for larger values of α and d.
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Figure 5.9: A sketch of the dependency of the eigenvalues as a function of ankle joint
orientation α and hip width d for a model (Fig. 5.6D) with foot radius r = 0.5 and slope
angle γ = 0.00058 (rad). The left face of the figure is equal to Fig. 5.8.

5.4.2 Model with hip actuation

In this subsection we propose to improve the overall (3D) walking behavior
through the addition of a stabilizing feature that was originally intended for
2D machines. In two dimensions, the most persistent failure is a fall forward
which can be averted by simply accelerating the swing leg to bring it quickly to
a forward position and subsequently keeping it there [93]. This simple form of
swing leg control can be implemented on our 3D model without energy impli-
cations; the swing leg is nearly massless, so any control action can be applied
(almost) without reaction torques to the rest of the model. Therefore, the model
still requires a downhill slope for a sustained walking motion. This also means
that the swing leg can be moved arbitrarily fast; in the remainder of this article
the swing leg is assumed (and simulated) always to be in the forward position
before heel strike occurs.
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We can arbitrarily set the forward angle that the swing leg is quickly moved
to. Let’s maintain the value of 0.15 (rad) as initial stance leg angle in accordance
with the passive models described earlier. The controller therefore has to move
the swing leg quickly to an inter-leg angle of 2 · 0.15 = 0.3 (rad). The immediate
effect of the controller is that disturbances on the initial swing leg velocity do
not affect the end state, thus one of the eigenvalues of the model becomes zero,
as shown in Fig. 5.10. The top graph shows that also the active model knows
stable values for α in the neighborhood of the initial stance leg angle of 0.15
(rad).
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Figure 5.10: Typical plot of the absolute values of the eigenvalues |λ| as a function of
the ankle joint orientation α for a 3D model with simple swing leg control (Fig. 5.6C).
This plot is generated with hip width d = 0 and foot radius r = 0.5, walking on a slope
of γ = 0.00058 (rad) (left) and γ = 0.01 (rad) (right). The two graphs exemplify that the
upper boundary for α increases with an increasing γ; the steeper the slope, the larger
the region of stability. Note the difference in scale of the two graphs.

Looking at the behavior for γ = 0.00058, there seems to be little difference
between the active model (Fig. 5.10, left) and the passive model (Fig. 5.8). The
reason is that the main improvements are to be found for larger slopes. For the
active model, a change of slope does not lead to a change of step length, while
the swing leg control ensures that the model cannot fall forward, so any arbitrar-
ily steep slope can be used. These two effects of the swing leg control together
result in a much more favorable behavior. In contrast to the passive model, for
the active model an increase of γ does not lead to a translation of the stable re-
gion for α but rather to an increase of this region, shown in the right graph of
Fig. 5.10.

The stable region in the right graph of Fig. 5.10 has two independent bound-
aries. The lower boundary for α is directly related to the step length; if α is
lower than 0.15, the ankle axis would reach a vertical orientation at the end of
the step which leads to directional instability. With a fixed step length due to
the swing leg controller, this lower boundary for α is more or less static. The
upper boundary is directly related to the slope angle; the steeper the slope, the
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higher α can be. Or, in other words, for a given value of α the slope angle must
be above a certain critical value for stable walking. In Fig. 5.11 this is depicted
for α = 0.55, the upper boundary from Fig. 5.10. Note the correlation between
the two graphs; the upper boundary α = 0.55 in Fig. 5.10 corresponds to the
stability boundary γ = 0.01 in Fig. 5.11.
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Figure 5.11: Typical plot of the absolute values of the eigenvalues |λ| as a function
of slope angle γ for a 3D model with simple swing leg control (Fig. 5.6C). This plot is
generated with hip width d = 0, a foot radius r = 0.5, and an ankle joint orientation
α = 0.55 (rad). For γ > 0.01 the model is stable. This boundary corresponds to the the
upper stability boundary in the right graph of Fig. 5.10.

With respect to the passive model, the active model has a much larger stable
region; when walking on a slope of γ = 0.01 (rad), the ankle orientation angle
can be anything between 0.15 < α < 0.55 (rad) for stable walking. This gives
good hopes for models with a finite hip width. Fig. 5.12 presents the eigenvalues
as a function of both α and the hip width d, where the left front plane equals the
right graph of Fig. 5.10. Apparently, for the active model an increase of the hip
width is even beneficial to the stability, in sharp contrast with the passive model.

5.4.3 Stability versus velocity

For the active model, it is easy to find a parameter combination that results in
stable walking. Fig. 5.11 basically suggests that for any parameter combination,
it is just a matter of increasing the slope angle past a critical value. This effect
has the same feel to it as the velocity relation in skateboards and bicycles, in
which for most parameter values there exists a critical velocity above which sta-
ble motions occur. Therefore it is interesting to investigate the relation between
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Figure 5.12: Sketch of the eigenvalues of the active model as a function of ankle joint
orientation α and hip width d for a model (Fig. 5.6E) with foot radius r = 0.5 and slope
angle γ = 0.01 (rad). The left face is equal to the right graph of Fig. 5.10. The asterisk
indicates the parameter set of Table 5.1.

the slope angle, the walker’s velocity, and its stability, with the goal to answer
the question: ‘Is there a direct relationship between velocity and stability?’

To answer that question, we need to bring r into the equation because the
velocity is determined by γ and r for a given step length. For manageability
of the model and calculations, we will answer this question only for the flat
version of the 3D model, i.e. d = 0 (Fig. 5.6C). The result is stunning; according
to Fig. 5.13 there is almost a one-to-one relationship between the velocity and the
stability, irrespective of the specific values of r and γ that cause that velocity!

The result in Fig. 5.13 was obtained as follows. First, the plot contains con-
tour lines of constant velocity. The walking velocity is a result of the gravita-
tional energy input and the energy loss at the heel strike impact which are in
balance when the walker is in a limit cycle. An analysis of the energy balance
(not shown here for brevity) leads to the following approximate relationship:

v ≈ 1
(1 − r)

√
γ

θ
(5.8)

where v is the walking velocity and θ is the stance leg angle at the start of the
step (equal to half of the preset inter-leg angle). This approximation ignores the
velocity decrease at midstance and therefore slightly overestimates the walking
velocity. Eq. (5.8) clearly shows that if r equals the leg length 1, then the walker
could have any velocity at a slope of 0 while no equilibrium exists for any other
slope angle, because no energy is lost during heel strike. In Fig. 5.13 we used the
exact velocities (from the non-linear simulations) rather than the approximation
in Eq. 5.8.
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Figure 5.13: Stability regions and walking velocity as a function of the slope angle γ and
the foot radius r for an active, flat 3D model (Fig. 5.6C). The velocity is determined by
the parameters r and γ and is independent of α. The stability is dependent on all three
parameters. The graph shows that a more vertical ankle axis (smaller α) provides stability
for lower velocities; For α = π/4 the critical velocity is v ≈ 0.72, whereas for α = π/8
the critical velocity is v ≈ 0.36. The velocity lines are obtained with the simulation, not
with the approximation in Eq. (5.8). Note how the stability boundaries almost completely
coincide with lines of constant velocity.

The second ingredient of Fig. 5.13 is the shape of the region of stability. The
figure shows for two different values of the ankle joint orientation α what com-
binations of values for the slope angle γ and the foot radius r lead to stable
walking. The figure shows what was already known from Fig. 5.10; a steeper
slope (larger γ) allows for a more horizontal ankle joint (larger α). The addi-
tional information in Fig. 5.13 is how the stability boundary depends on both
γ and r, which apparently coincides with contour lines of constant velocity. A
heuristic formula for the boundary value of α as a function of the velocity v
can easily be extracted from the data scattered in this paper. From Figures 5.10
and 5.13 we can extract four data points that show an almost one-to-one linear
relationship, vmin ≈ α.

5.4.4 Walking and steering

The previous subsections have shown that it is easy to find stable parameter
combinations for the active model. This subsection will investigate the resultant
walking motion for one characteristic set of parameter values (Table 5.1).

For a steady walk, the projection of the center of mass and the footprints are
shown in Fig. 5.14. The step length of 0.3 times the leg length is a direct result
of the swing leg controller. The center of mass makes sideways excursions of
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±0.008 times the leg length.
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Figure 5.14: Projection of the center of mass on the floor together with footprints for the
full model (Fig. 5.6E). The grid on the floor is in units of leg length. The model walks from
left to right in a steady motion. The footprint direction φ is exaggerated; the true value
φ = 0.00155 (see Table 5.2) would be invisible in the figure.

The model’s inherent stability means that is will react to any (not too large)
disturbance by asymptotically moving back to its steady limit cycle. This fact
can be used for intentional steering; if the model were placed on the slope in
a direction other than steepest descent, it will automatically steer toward that
direction. Or, even more useful, a sideways mass offset will also induce steering
in that direction. In Fig. 5.15, which contains a sequence of 500 walking steps,
the center of mass was displaced slightly (0.006 times the leg length) to the right.
The result is that the model asymptotically moves toward a heading direction of
0.64 (rad) with respect to the direction of steepest descent. With its new heading,
the model has found balance between the mass offset to the right and the offset
effect of the slope to the left.

The model is robust enough to handle a much larger mass offset. Even if the
center of mass is sideways displaced with 0.05 times the leg length, a steady
(though somewhat limping) walking motion exists. With this offset, the model
will turn with a radius of about 8 times the leg length, as shown with the dashed
line in Fig. 5.15. It stops and falls not because of the direct effect of the mass off-
set, but because it has turned more than 90 degrees and thus receives no energy
input. If the slope would turn with the walker, it would walk indefinitely in
circles.

As a final stability test we investigated the disturbance rejection of the model.
The model was started with the initial conditions for the steady walking motion
plus an error on one of them. The model is able to recover from an increase of
at least 200% or a decrease of 100% on any of the initial conditions, except for
the velocity of the stance leg angle. The stance leg’s angular velocity can only be
decreased with 50%, otherwise the model falls backward. All in all, the model
predicts great potential for practically applicable prototypes.
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Figure 5.15: Projection of the center of mass on the floor together with footprints for 500
steps. The model has a mass offset to the right and thus steers asymptotically toward
a direction in which the sideways slope effect is in balance with the effect of the mass
offset. A much larger mass offset results in a tighter turn as shown with the dashed line.
After a turn of more than 90 degrees, the walker receives no energy input and eventually
stops and falls.

5.5 Discussion

5.5.1 Applicability in walking robots

The simulations predict successful walking for prototypes with the special ankle
joint that couples falling sideways (lean) to turning in that direction (yaw). The
solution to any instability is to increase the walking velocity. There is, however,
a practical limit to the walking velocity. The simulation assumes that the (al-
most massless) swing leg is always in time to catch the walker for its next step,
but a physical swing leg with substantial mass cannot move instantaneously. Its
velocity is not only limited by practical considerations (actuator capacity), but
also by the fact that its reaction torque might exceed the friction torques that the
stance foot can supply.

Our model is not equipped with springs in the ankle joints for the sake of
simplicity. The skateboard analysis, however, predicts a beneficial influence of
such springs. It is recommended for future research to investigate the possible
stability benefit that such springs can provide for walking robots.

The implication of this paper for the creation of stable prototypes goes be-
yond the concept of the tilted ankle joint. Even if proposed ankle joint is not
implemented in a prototype, it is still possible to benefit from the idea behind it;
any control algorithm anywhere in the body can have similar beneficial stability
effects, as long as its effect is a lean-to-yaw coupling. We hypothesize that such
an effect is also present in the human body, albeit well disguised by the simul-
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taneous presence of two other control strategies for sideways stability, namely
sideways foot placement and inertial reaction torques from the upper body.

5.6 Conclusion

This paper shows that a special ankle joint that couples falling sideways (lean)
to turning in that direction (yaw) can lead to stable 3D walking models. A prac-
tical robustness against disturbances requires a basic form of swing leg con-
trol which moves the swing leg quickly to a forward position. With this control
rule in place, the model shows behavior that corresponds to bicycles and skate-
boards; stable motions exist above a certain critical forward velocity, depending
on the tilt angle α of the ankle axis. The more vertical the axis (smaller α), the
lower the critical velocity. There is a minimum, however; the tilt angle α must al-
ways remain larger than the maximal stance leg angle, otherwise it would have
a completely vertical orientation at the end of a step. This does not only lead to
instabilities but also requires impractically wide feet to prevent tipping over on
the inside of the foot.

The ankle joint provides an effective means for direction control; a slight
asymmetry in any of the parameters (such as a sideways mass offset) results in
a walk on a curved path. The simulations with the elementary model presented
in this paper predict a sufficient robustness against disturbances to warrant the
construction of a physical 3D prototype.
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Chapter 6

Design and Construction of ‘Mike’; A 2D
autonomous biped based on passive

dynamic walking

M. Wisse and J. van Frankenhuyzen
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2003; Kyoto, Japan

For research into bipedal walking machines, autonomous operation is an impor-
tant issue. The key engineering problem is to keep the weight of the actuation
system small enough. For our 2D prototype ‘Mike’, we solve this problem by
applying pneumatic McKibben actuators on a passive dynamic biped design. In
this paper we present the design and construction of Mike and elaborate on the
most crucial subsystem, the pneumatic system. The result is a fully autonomous
biped that can walk on a level floor with the same energy efficiency as a human
being. We encourage the reader to view the movies of the walking results at
http://dbl.tudelft.nl/.
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(A) (B)

Figure 6.1: (A) Close copy of McGeer’s walker by Garcia et al., (B) 2D biped prototype
Mike.

6.1 Introduction

We are performing research into bipedal walking robots with two long-term
goals in mind. First, we expect that it increases our understanding of human
walking, which in turn can lead to better rehabilitation of the impaired. Sec-
ond, autonomous walking robots could greatly enhance the entertainment ex-
perience for visitors of theme parks and the like. Both long-term goals impose
identical requirements on bipedal robots. They should be anthropomorphic in
function and appearance, their locomotion should be robust, natural and energy
efficient, and they should be easy to construct and control.

A solution for energetic efficiency is the exploitation of the ’natural dynam-
ics’ of the locomotion system. In 1989 McGeer [49] introduced the idea of ‘pas-
sive dynamic walking’. He showed that a completely unactuated and therefore
uncontrolled robot can perform a stable walk when walking down a shallow
slope. His most advanced prototype (Figure 6.1A) has knees and a hip joint,
which connect in total four thighs and shanks (with rigidly attached circular
feet). The inner two legs form a pair and so do the outer legs, so that the ma-
chine essentially has 2D behavior.

We believe that passive dynamic walking should be the starting point for
successful biped design. For a human-like robot walking on level ground, a ne-
cessity of actuation arises for energy input (instead of walking down a slope),
and for stabilization against large disturbances. We propose a robot design that
can perform a robust motion as a result of the passive dynamics, while the actu-
ators only compensate for friction and impact energy losses.

We are materializing this combination of passive dynamic walking and ac-
tuation in the form of our new prototype ‘Mike’ (see Figure 6.1B). On top of
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the specifications of McGeer’s machine, Mike is provided with McKibben mus-
cles (pneumatic actuators) in the hip and knee joints that can provide energy
for propulsion and control, thus eliminating the need for a slope and providing
an enhanced stability. In this paper we will describe the design and construc-
tion of Mike, focusing in sections II - V on the key construction elements; foot
shape, McKibben muscles, pneumatic system, pressure control unit. Section VI
presents walking experiments of Mike walking downhill and on a level floor.

6.2 Foot Shape

6.2.1 Foot shape in literature

The human foot is shaped so that the center of pressure (the average contact
point) travels forward during the progression of a walking step. This effect is
known as ‘foot roll-over’. When replicating the human foot for prostheses or
for walking robots, many designers apply a curved foot sole with an approxi-
mately circular foot roll-over shape. For contemporary foot prostheses, Hansen
et al. [31] shows the effective foot roll-over shapes of different makes. From his
graphs we conclude that they all have a foot radius of 30-35 cm. Apparently that
was empirically determined to be the best foot shape.

In passive dynamic walking robot research, many computer models and pro-
totypes are equipped with circular feet, following McGeer’s example. McGeer [49]
determined the effect of the foot radius on the local stability (i.e. small distur-
bances) of his walkers and so concluded that a foot radius of about 1/3 of the
leg length would be a good choice. However, we argue that a good local stabil-
ity does not imply a good disturbance rejection for larger disturbances. As an
example, we compare the findings of Garcia et al. [27] on the simplest walking
model with our own. Their simplest walking model was equipped with point
feet (foot radius equal to zero), and showed stable downhill walking for slopes
up to 0.015 rad. However, when studying the allowable size of the disturbances
for that model [71], we found that even a 2% change of the initial stance leg ve-
locity could make the model fall over. In conclusion, more information is needed
about the effect of the foot roll-over shape on the allowable size of the distur-
bances.

6.2.2 Test machine for foot roll-over shape

We built a test machine (Figure 6.2) to answer the question: ‘with what foot
radius can the largest disturbance be handled?’ The test machine weighs 3 kg
and is, with a leg length of 38 cm, approximately half the size of Mike. It has
no knees, the only joint is at the hip. The test machine was placed on a shallow
slope with a disturbance half-way. The disturbance was realized by lowering the
second half of the walkway. The stability was quantified as the largest amount
of lowering that the test machine could still recover from and continue walking
to the end of the slope.
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Figure 6.2: Stability results of the test machine (left) tested with four different foot radii:
50, 100, 190 and 380 mm with a foot length limited to approx. 8 cm. Apparently a larger
foot radius is always better.

We built four different sets of feet with radii from 50 mm to 380 mm, but lim-
ited the foot length to about 8 cm. The results are plotted in Figure 6.2. Appar-
ently, the larger the foot radius the better, as coincides with intuition. Of course,
when the foot length is limited, there is no gain in increasing the foot radius
above a certain value; the walker would just spend more time on the heel and
toe.

6.2.3 Construction

Theoretically, Mike needs feet with a radius as large as possible. In practice how-
ever, there is a limitation to the length of the foot due to the required foot clear-
ance. If the foot is long, bending the knee will not result in enough clearance
for the swing leg, but rather in the opposite. Based on the empirically deter-
mined prosthetic foot shape and some experimenting with Mike, eventually we
decided on a foot radius of 25 cm and a length of 13 cm. This is pretty close to
McGeer’s recommended 1/3 of the leg length.

Another practical consideration is the place of attachment of the foot to the
shank. McGeer shifted the feet somewhat forward from the center, so that the
passive reaction torques would keep the knees locked during the stance phase.
We don’t need this, for we have muscles to actively extend the knees. However,
empirical study showed that the best stability results were obtained indeed with
the feet shifted forward about 6 cm, see Figure 6.3.
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Figure 6.3: In practice, we obtained the best results with a foot radius of 25 cm, a foot
length of 13 cm, and a forward displacement of 6 cm. The foot switch allows the controller
to adapt to the actual step time by registering the exact instant of heel strike.

6.3 McKibben Muscles as Adjustable Springs

6.3.1 Background and requirements

For autonomous systems, it is crucial to apply lightweight actuators. For a pas-
sive dynamic walker, another requirement is that the actuators should not in-
terfere with the passive swinging motions of the legs. McGeer says the follow-
ing about this matter: “The geared motors or fluidic actuators used on most
mechanical bipeds do not satisfy this requirement; lift one of their legs, and it
will hang catatonically or, at best, grind slowly to a halt at the bottom of its
swing.” We chose to use pneumatic McKibben muscles as actuators that fulfill
these requirements. In comparison to other alternatives, such as commercially
available pneumatic cylinders, McGeer’s LITHE [51], Direct Drive torque mo-
tors, or MIT Leglab’s Series Elastic Actuators [61], the McKibben muscles are
very lightweight and simple in construction and application.

Under constant pressure the McKibben muscles behave like a spring with
low hysteresis. Because the muscles can only provide tension force, we use them
in a pair of antagonists, counteracting on the same passive joint (see Figure 6.4).
Increasing the internal pressure results in a higher spring stiffness, which in turn
increases the natural frequency of the limb.

6.3.2 Operating principle, technical realization and results

A McKibben muscle consists of flexible rubber tube, covered by a weave of flex-
ible yet non-extensible threads, see Figure 6.5. The operating principle is best
explained when starting with a non-attached, pressurized muscle. If from that
state the muscle is extended, the non-extensible threads are forced into an ori-
entation with a smaller inter-thread angle, thus decreasing the diameter of the
muscle. The cumulative effect of muscle extension and diameter reduction is
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Figure 6.4: Overview of the McKibben muscles on Mike. Each muscle drawn represents
two parallel muscles in the machine.
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Figure 6.5: McKibben muscles; (left top) operating principle, (left bottom) photograph
of the Shadow muscle, (right) force-length diagram.

a decrease of muscle volume. Against an assumed constant muscle pressure,
reducing the muscle volume costs work. This work can only be supplied by
a tension force in the muscle attachments. In other words; muscle extension
causes a counteracting force, which makes the muscles act like tension springs.
A more detailed study of the McKibben muscle used as an adjustable spring can
be found in [77], where the relation between muscle extension and tension force
is presented as:

F =
b2P ′

2πn2L0
∆L (6.1)

with F = muscle force, b = length of weave threads, P ′ = relative muscle pres-
sure, n = number of turns of a thread, L0 = muscle rest length, and ∆L = relative
muscle extension. This relation reveals the most important characteristics of a
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McKibben muscle:

• The muscles behave like linear springs,

• The spring constant is proportional to the muscle pressure.

McKibben muscles are based on a simple concept and are generally easy to
construct. However, it is our experience that the choice of materials and con-
nectors is important for the muscle lifetime. Therefore, we use commercially
available muscles (Figure 6.5) made by the Shadow Group [4], which they sell
at £6 each. The muscles weigh less than 10 grams and can produce a force of 40
N at 0.40 MPa.

Figure 6.5 shows the mechanical behavior of one type of Shadow muscle
(6 mm diameter, 150 mm length) at different pressure levels. Note that indeed
the muscles behave like linear springs (in this range). Also, note that there is a
small but noticeable hysteresis-loop, representing losses mainly due to friction
between the scissoring threads and the rubber tube.

6.4 Pneumatic System

6.4.1 Background and presumptions

Because a McKibben muscle needs pressurized gas for functioning, our au-
tonomous biped Mike needs to be provided with an efficient, lightweight and
properly working pneumatic system. First of all, we have to carry along our own
reservoir of pressurized gas. The gas should be stored at saturation pressure in
order to keep the necessary container volume as small as possible. Secondly, the
high pressure from this container has to be reduced to various operation pres-
sure levels between 0.1 MPa and 0.4 MPa.

Minimizing gas consumption helps to increase the autonomous operation
time. Van der Linde [77] developed the so called ‘Actively Variable Passive
Stiffness’-system. This system includes a solenoid 3/2 valve that switches the
internal muscle pressure between two preset pressure levels. In this way, only
a small volume of gas is needed every time the muscle is activated, because the
muscle pressure is never completely vented to ambient pressure.

6.4.2 Requirements

To have time for proper experiments, we need a few minutes of autonomous
operation time on one gas container. Measurements on the amount of exhaust
gas, during a pressure decrease from 0.35 to 0.15 MPa in one muscle, tell us that
we need 44 milligrams CO2 per actuation. During each step 4 muscle activations
take place, so that we need 176 milligrams of gas each step. The step time is 0.6
seconds. By choosing an ISI CO2-bulb [2] with 86 grams of gas, we have an
acceptable 5 minutes of continuous experimental time.
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     CARBONDIOXIDE-CONTAINER

Figure 6.6: Overview of the pneumatic system on Mike.

Because our goal is to build a transportable and easy to handle biped, we
(intuitively) put the maximum total weight on 7 kg. Regarding the amount (and
weight) of the electrical and mechanical sub-systems, a total weight of the pneu-
matic system of 1 kg seems to be acceptable.

Since the muscle pressure is directly related to the stiffness, it is important
to be able to control the pressure levels with high accuracy. A relatively short
response time is needed to make it possible to execute control actions during a
step time of 0.6 seconds.

6.4.3 System overview

The pneumatic system provides the actuation for our prototype Mike. The pneu-
matic system receives input from the on-board controller in the form of valve
control signals. The controller determines when each muscle is activated or de-
activated. The two respective muscle pressures are to be preset manually when
tuning the prototype. The output of the pneumatic system obviously has the
form of joint torques that influence the passive dynamic leg motions.

To provide for this desired input-output behavior, the pneumatic system
consists of four components (see Figure 6.6): 1) gas container, 2) manually ad-
justable pressure reduction valves, 3) electronically controlled 3/2-way switch-
ing valves, and 4) McKibben muscles. The pressure reduction system is the most
crucial part of the pneumatic system. We developed this system and will present
it in the next section. For the valves we use the pilot pressure operated VQZ
115 valves from SMC [5]. Although these are about the most efficient commer-
cially available valves, they still consume 0.5 Watts each. We are encouraging
suppliers to develop more efficient valves. The McKibben muscles have been
discussed in the previous section.
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Figure 6.7: Working principle of (a) pressure regulator valve and (b) pressure relief valve.

6.5 Pressure Control Unit

6.5.1 Background and requirements

The pressure control unit must be able to regulate the desired muscle pressures
accurately and fast (well within the step time of 0.6 seconds). Second, applica-
tion in an autonomous biped requires a compact, lightweight and gas efficient
solution.

There are two commercially available regulator principles, each of which can
only fulfill part of the above requirements. The indirectly controlled pressure
regulators (flapper-nozzle type) provide fast and accurate pressure control at
the cost of a high internal gas consumption and relatively large physical dimen-
sions. Directly controlled pressure regulators (piston type) are generally small
and lightweight and need no extra gas supply for internal consumption, but
are not sensitive and accurate enough for our application. We used the directly
controlled principle, as small size and gas efficiency are the most important re-
quirements, and minimized the disadvantages.

6.5.2 Operating principle

The piston type pressure regulator is drawn in Figure 6.7. A valve separates the
input pressure from the output pressure. The output pressure acts on a spring
loaded piston, where the manually adjustable spring load represents the output
pressure level. If the output pressure falls below this preset value, the spring
loaded piston opens the valve and the output pressure level is restored. To as-
certain that the pressure regulator is sensitive, it needs to be constructed with a
high ratio of A:C (see Figure 6.7) and with low internal friction.

The low preset pressure level is realized by integrating a separate pressure
relief valve (see Figure 6.7) in the muscle outlet. The spring loaded piston in the
pressure relief valve is open as long as the muscle pressure is higher than the
preset level (drawn situation).
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Figure 6.8: (left) technical drawings of pressure reduction system, (right) dynamic re-
sponse of the complete pneumatic system.

6.5.3 Technical realization and results

The principles discussed above are translated into functioning prototypes. Ex-
periments have convinced us that the required relatively high accuracy can-
not be met by a single-stage pressure regulator, due to pressure overshoot and
steady state offset. Therefore we have divided the pressure reduction in two
stages, see Figure 6.8.

First, one main pressure regulator directly on the gas bulb brings the pres-
sure from 5.8 MPa to about 1.0 MPa. Second, a second-stage reduction from 1.0
MPa to 0.2 – 0.4 MPa, with 4 different preset manually adjustable pressure levels,
is realized in the input pressure control block (‘IN’, Figure 6.8). In these valves,
the pistons are equipped with diaphragms to minimize friction effects and to
provide the required sensitivity and accuracy. The output pressure control block
(‘OUT’) includes four adjustable pressure relief valves. Basically the same pis-
ton construction as in the input pressure reduction valves has been used. The
two pressure-control blocks together weigh about 180 gram and have a volume
of less than 8 x 5.5 x 1.5 cubic centimeter.

After assembling the complete pneumatic system, it is possible to evaluate
the behaviour by measuring the muscle pressure in time, during a switching-
action of the described solenoid valve. Figure 6.8 shows the dynamic response
of the complete system (see Figure 6.6) when pressurized from 0.15 MPa to 0.35
MPa and back. We obtain an accuracy/repeatability of about 10 kPa, and a rela-
tively slow response as was to be expected with the choice of pressure regulator
type. However, the system is fast enough according to the successful walking
results.
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Figure 6.9: Walking results (left) with stiff knees on a floor with stepping stones on a
0.06 rad slope, (right) with active knees on a 0.06 rad slope. The prototype completes 7
symmetrical steps until the end of the walking surface.

6.6 Walking Experiments

6.6.1 Downhill walking

We performed walking experiments with an increasing number of active de-
grees of freedom, starting with walking down a slope with rigid knees. With
rigid knees, foot scuffing is inevitable. To eliminate this problem for our initial
experiments, we constructed ’stepping stones’ at the expected footfall locations.
Together with the slope angle this required some tuning, eventually resulting in
stable walking with steps of 0.24 m at a slope angle of 0.06 rad.

In this setting, we could start with experiments with rigid knees, similar to
the testing machine in Figure 6.2. With the Agilent HEDS-5540 incremental op-
tical encoder on the hip joint, the hip angle was recorded during a successful
run as shown in Figure 6.9. As is apparent from the figure, the gait was not sym-
metrical. When the middle legs were swinging (positive hip angle), the step was
much longer in duration. Heel strike only occurred when they were already far
on their way back, noticeable by the small bump (impact shock) in the graph.
It is not clear whether this asymmetry resulted from a non-perfect launch or
from the machine’s natural dynamics. A simulation study in the near future
should reveal this. Although not symmetrical, the emergent gait was encourag-
ing enough to continue with experiments with bending knees.

By bending the knee for the appropriate time interval during the swing
phase of a leg, the prototype can gain just enough foot clearance for continu-
ous walking without stepping stones. As McGeer has shown, it is possible to
obtain the appropriate timing with pure passive dynamics by tuning the me-
chanical properties. In our experience, it is then essential to keep the center of
mass of the shank very close below the knee joint. However, we want the ability
to actively interfere with the knee motion for future rough terrain walking ex-
periments, so Mike was provided with knee-stretching muscles. Having these
muscles there anyway, we decided to actively control the knee motion rather
than completely rely on the passive dynamic motion.
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The knee is stretched actively with a McKibben muscle counteracted by a
passive spring, see Figure 6.4. The default knee muscle pressure is ‘high’ (0.35
MPa), which is switched to ‘low’ (0.08 MPa) at the other leg’s heel strike, and
switched back to ’high’ after an empirically determined 400 ms. With this activa-
tion pattern we obtained steady walking for the entire length of the slope (5 m)
with the appearance to be able to continue to walk indefinitely, see Figure 6.9. It
is easy to launch the prototype by hand, so we would call it ‘pretty stable’. We
have not yet performed experiments to determine the exact stability of the gait.

In these walking experiments Mike has about the same specific resistance
as a walking human being, using about 10 W to pull its 7 kg along at a speed
of 0.4 m/s. The energy consumption consists of three components. First, the
propulsion is obtained from gravity by walking down a 0.06 rad slope, which
counts for 1.6 W. Second, the knee muscles use approximately 0.4 MPa CO2

which accounts for 5.3 W. Actually, to keep the storage volume small, the CO2

is stored and supplied at the saturation pressure, 5.8 MPa. The inevitable loss
of energy in the process of pressure reduction from 5.8 to 0.4 MPa is not taken
into account. Third, the prototype is equipped with a number of sensors and a
a low power (less then 1 W) Strong-Arm based Linux machine (the LART [3]),
which use together about 3 W. Obviously, the bulk of the energy consumption
goes to the architecture for improving the stability even when using low-power
components. We hope to increase the walking stability without increasing the
energy consumption even more by using the timing of the muscle activations as
a control parameter [77].

6.6.2 Walking on level floor

Finally, we activated the hip muscles and leveled out the walking surface. That
made the robot lose its natural tendency to tilt and walk forward, so we had to
shift the center of mass forward with a few centimeters. The hip muscles are the
same as the knee muscles, but operate as antagonistic pairs. When heel strike is
detected one muscle is set to high, its antagonist to low, so that the swing leg
is pulled forward. We have not yet performed accurate measurements on the
torque that the muscles exert on the hip, but it is estimated to be below 2.5 Nm,
approximately the same as the maximal torque from gravity. This simple form
of hip control is sufficient to obtain a robust gait, see [93].

Mike performs a steady walk on a level floor, as demonstrated with video’s
at http://dbl.tudelft.nl/. It can handle irregularities in the terrain, such as the
sidewalk in front of our building.

With the ability to walk on level ground, we finally had the opportunity to
perform an endurance test. On the 86 grams of CO2, Mike can walk 3.5 minutes.
After a continuous walk that long, the main pressure regulator is deeply frozen
due to gas expansion; apparently it is a little undersized for the actual gas flow.
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6.7 Conclusion

We started this research with the question: “How to keep the actuators and en-
ergy storage device lightweight enough to enable autonomous operation for a
walking biped?” Our solution is provide the biped with a pneumatic actuation
system. This form of actuation is successful when applying the following two
ideas: 1) use McKibben muscles as adjustable springs and 2) develop a compact
and well performing pneumatic system. With these developments we were able
to construct a fully autonomous biped. We have succeeded in making it walk in
a stable manner on a level floor, see http://dbl.tudelft.nl/.

Now that we have concluded the first phase of this project, we are aiming
at the following goals: first to add an upper body while maintaining passive
dynamic properties, and finally to extend to three dimensions.
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Chapter 7

Adding the upper body to passive
dynamic walking robots by means of a

bisecting hip mechanism
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Passive dynamic walking is a promising idea for the development of simple and
efficient two-legged walking robots. One of the difficulties with this concept is
the addition of a stable upper body; on the one hand a passive swing leg motion
must be possible, whereas on the other hand the upper body (an inverted pen-
dulum) must be stabilized via the stance leg. This paper presents a solution to
the problem in the form of a bisecting hip mechanism. The mechanism is stud-
ied with a simulation model and a prototype based on the concept of passive
dynamic walking. The successful walking results of the prototype show that
the bisecting hip mechanism forms a powerful ingredient for stable, simple and
efficient bipeds.
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7.1 Introduction

Two-legged walking robots exert a strong attractive appeal due to the resem-
blance with human beings [66]. Consequently, some major research institutions
and private companies have started to develop bipedal (two-legged) robots,
which has led to sophisticated machines [59, 68, 46]. To enable economically
viable commercialization (e.g. for entertainment), the challenge is now to re-
duce the design complexity of these early successes, in search for the ideal set of
characteristics: stability, simplicity, and energy efficiency.

A promising idea for the simultaneous reduction of complexity and energy
consumption, while maintaining or even increasing the stability, is McGeer’s
concept of ‘passive dynamic walking’ [49]. On a shallow slope, a system con-
sisting of two legs with well-chosen mass properties can already show stable
and sustained walking [19]. No actuators or controls are necessary as the swing
leg moves in its natural frequency. An elegant solution indeed, but thus far only
the legs have been considered.

The addition of an upper body to passive dynamic walkers remains an active
research topic. The problem is that the upper body should be stabilized in the
upright position, while at the same time the alternating swing leg should be able
to swing passively to a forward position. Previously proposed solutions include
McGeer’s ‘levered isotonic tendons’ [51], variable springs [79] or a controllable
‘backlash clutch’ in the hip joints [56], all fairly complex solutions.

In this paper, we propose to design the hip joint as a passive bisecting mecha-
nism, similar to that in a pair of compasses. First, Section II will give an overview
of the main concepts used in this paper. Section III will present the two-dimensional
simulation model and prototype (Fig. 7.1) developed for this study. The results
will be presented in Section IV followed by a discussion in Section V. Finally,
Section VI will conclude that a bisecting hip mechanism indeed provides an el-
egantly simple solution for stable and efficient walking.

7.2 Main concepts

7.2.1 Passive dynamic walking

In search for simple, stable and efficient walking machines, McGeer pioneered
the idea of passive dynamic walking. The concept is analogous to the approach
of the Wright Brothers to flying; first they mastered motor-less gliding until
they had a design that was intrinsically stable, could be manually controlled,
and glided with only a small descent angle (i.e. could travel far on little grav-
itational energy). Similarly, McGeer focused on finding a completely passive
construction that could walk stably and efficiently, requiring only a minimal
downward slope in the walking surface. With dynamic simulations, and based
on the method of Poincaré Mapping, he analyzed the stability of such walkers
and subsequently built increasingly complex prototypes, the most advanced of
which had two legs with knees (Fig. 7.2a). With symmetrically paired legs, its
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Figure 7.1: Prototype ‘Max’; a 2D passive dynamic walking robot with an upper body
connected to a bisecting mechanism at the hip.

motions were confined to two dimensions, a solution also adhered to in this
paper. Since McGeer’s work, the idea of passive dynamic walking has gained
in popularity [30, 60, 63, 44]. The most advanced fully passive walker yet, con-
structed at Cornell University, has two legs (genuine three-dimensional dynam-
ics) with knees, and counter-swinging arms [19] (Fig. 7.2b). It has no upper body.

7.2.2 Hip actuation for stability

The purely passive walking prototypes demonstrate convincing walking pat-
terns. However, all prototypes require a smooth and well adjusted walking sur-
face. A small disturbance (e.g. from small errors introduced with a manual launch)
can still be handled, but larger disturbances quickly lead to a failure [71]. Two-
dimensional models can suffer from three types of failure: collapsing through
the stance knee, falling backward, or falling forward. The first type of failure,
knee collapse, is related to the ground reaction force. If this force results in a
flexing torque in the knee, a knee collapse could occur. The problem is solved
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a b c

Figure 7.2: Previous walkers. a) Garcia’s copy [26] of McGeer’s 2D walker with
knees [50], at Cornell University, b) fully passive 3D walker with knees and arms by
Collins et al. [19], also at Cornell University c) kneed walker with hip actuation [93], at
Delft University of Technology.

by attaching the feet more forward to the shank, and additionally a knee latch
can be installed. The second type of failure, falling backward, is related to the
fluctuations in kinetic and potential energy. In the extreme situation of a robot
with point feet, the robot’s center of mass would make a circular path with mid-
stance as the apex. A shortage of initial kinetic energy could cause a failure to
pass the apex, resulting in a fall backward. The problem is solved by applying
arc feet with a reasonably large radius. This leaves us with the third type of
failure, falling forward.

Falling forward occurs when the swing leg is not timely moved to a forward
position where it can catch the robot in preparation for its next step. The solution
to this problem is correspondingly straightforward; the faster the swing leg is
swung forward (and then kept there), the more robust the walker is against dis-
turbances. The exact motion of the swing leg is irrelevant. This idea was tested
in simulation models and in a prototype [93] (Fig. 7.2c). We implemented the
idea with a variable spring at the hip joint. The stiffness and damping were kept
constant, but the equilibrium angle alternated at each step, always pulling the
swing leg forward with respect to the stance leg. As a result, the walker could
cope with larger disturbances when the hip spring provided more acceleration,
the known trade-off between energy consumption and stability. Note that the
prototype in Fig. 7.2c is the direct predecessor of the prototype presented in this
paper.

7.2.3 Bisecting hip mechanism

The topic of this paper, a bisecting hip mechanism, was first explored in a sim-
ulation model based on Garcia’s ‘simplest walking model’ [27]. Our model con-
sisted of four point masses connected by rigid, massless links [92] (Fig. 7.3). The
study revealed the possibility of fully passive walking with an upper body by
means of a bisecting hip mechanism; a mechanism which keeps the upper body
always at the bisection angle of the two legs. For a lightweight upper body, the
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dynamic effects of the passive legs are dominant. When the weight of the upper
body increases, a hip spring is required to maintain the upright position as the
equilibrium position. The study showed that a suitable spring stiffness can be
found for any mass distribution.

Figure 7.3: Simple model for preliminary study of passive bisecting hip mechanism [92].
The bisecting mechanism maintains the upper body in the bisection angle of the legs. In
addition, the hip joint is equipped with a restoring spring.

A parameter study with the simple model showed the effects of the upper
body on the stability and the energy efficiency of the walking motion. One dis-
tinct result is that the fore-aft mass distribution has a strong influence on the
existence and the stability of the cyclic walking motion. This matches McGeer’s
finding of a similar influence of the fore-aft mass distribution in the legs of his
walkers. Conversely, the walking motion is very tolerant to changes in the verti-
cal mass distribution. A counterintuitive effect was found, as a higher center of
mass provided a slightly better robustness against disturbances. Moreover, ele-
vation of the center of mass also improves the energy efficiency. Altogether, the
preliminary study was strongly encouraging to the construction of a prototype
with an upper body connected through the proposed bisecting hip mechanism,
and thus formed the start for the study presented in this paper.

7.3 Methods

7.3.1 Simulation model

The basis of the present study is a two-dimensional 5-link model (Fig. 7.4). The
model has a common topology; the upper body is a single rigid link, whereas
each leg consists of a thigh and a shank interconnected through a knee joint.
The knees are provided with a hyperextension stop (assuming fully inelastic
impacts) and a locking mechanism (latch) which is released just after the start of
the swing phase. With the bisecting hip mechanism, the total number of degrees
of freedom is at most 3; absolute upper body angle φ, inter-leg angle θ, and
relative swing knee angle ψ. At the end of a step when the swing knee is fully
extended, only two independent degrees of freedom remain (four states; two
angles and their velocities). Note that this is the same number of degrees of
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freedom as for kneed walkers without an upper body ([25]) due to the constraint
of the bisecting hip joint.

Ankle joints are not present, as rigidly attached arc feet have proven to be
a simple and sufficient solution for stable passive walking. We assume that the
links suffer no flexible deformation and that the joints are free of damping or
friction. Also, we assume a perfect bisecting mechanical coupling between the
legs and the upper body. The contact between the foot and the floor is idealized,
assuming perfectly circular feet that do not deform or slip, while the heel strike
impact is modeled as an instantaneous, fully inelastic impact where no slip and
no bounce occurs. The walker walks on level ground and thus requires a small
amount of energy input per step. This is provided by means of the hip muscles
which accelerate the swing leg to a forward position. Their main function is to
provide fore-aft stability (cf. Section II B), but their secondary effect is the input
of just enough energy into the system to maintain the cyclic walking motion.
Finally, the floor is assumed to be a rigid, flat, and level surface.
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Figure 7.4: Two-dimensional 5-link model. Left the parameter definition, right the degrees
of freedom (φ is not measurable in the prototype).

7.3.2 Simulation procedure

The simulation procedure is similar to that applied in previous researches [71,
93]. The procedure is a succession of nonlinear numerical dynamic simulations
of walking steps which begin and end at the instant immediately after heel
strike. Within one step, the equations of motion are numerically integrated until
an event is detected such as knee strike or heel strike, followed by an impact
calculation. After the heel strike impact the simulation of the walking step is
ended. The end state of the walker can then be used as the starting state for the
next step, or it can be compared to the initial state of the walker. This compar-
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ison provides insight in the existence and stability of cyclic walking motions; if
the end state equals the initial state, we have found a fixed point representing
a cyclic walking motion. If a deviation from the fixed point in the initial state
results in a smaller deviation in the end state, the cyclic walking motion is sta-
ble (this is the Poincaré Mapping method for stability analysis). Additionally,
to investigate ‘how stable’ the walking motion is, we perform an approximate
search for the boundaries of the basin of attraction of the fixed point. A walk-
ing step is simulated with initial conditions that deviate from the fixed point in
different combinations of states (e.g. a positive deviation on the stance leg angle
combined with a negative deviation on the angular velocity of the body). We
search for the largest allowable deviations that still lead to successful walking.
The resulting estimate for the boundaries of the basin of attraction are a measure
for the size of disturbances (at the start of a step) that the walker can still recover
from.

7.3.3 Default parameter values

A set of physically realistic parameter values that lead to stable walking was
readily found. Re-using partial designs from previous research [94] we arrived
at a 10 kg machine with a 0.6 m leg length and 1.1 m total height. The physical
properties, such as the mass distribution were initially determined by conve-
nient placement of the supplementary electronic and pneumatic components
(Section IV). The resultant configuration resulted in stable walking in the simu-
lation, so we have adopted these parameter values as the default values listed
in Table 7.1.

Table 7.1: Default parameter values for the prototype with two full CO2 canisters.

upper lower
body leg leg

mass m [kg] 8 0.7 0.7
mom. of Inertia I [kgm2] 0.11 0.005 0.005
length l [m] 0.45 0.3 0.33
vert. dist. CoM c [m] 0.2 0.15 0.16
hor. offset CoM w [m] 0 0 0
foot radius fa [m] - - 0.25
foot hor. offset fh [m] - - 0.01

7.3.4 Construction of the prototype

The central part of the prototype (Fig. 7.1) is its bisecting hip mechanism. Of
the many possible forms of implementation we chose to apply an auxiliary axle
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connected to the legs with one straight and one cross-over chain (Fig. 7.5). In
hindsight, it is valuable to report that this solution requires extra attention to
the problem of slack in the chains. Also, one must be aware that rather large
torques are transmitted through the chainwheels and axles, especially when the
prototype occasionally falls. Nonetheless, for our relatively lightweight proto-
type this solution is satisfactory. Other possible mechanisms include a four-bar
linkage, a differential gearbox, or cables and pulleys (as applied in some gait or-
thoses [39]). Alternatively, the bisecting hip action can also be obtained in fully
actuated robots where a sub-controller maintains the upper body in the dissec-
tion angle [64, 12].

Figure 7.5: The bisecting hip mechanism in the prototype. The outer legs are rigidly
attached to the hip axle, the inner legs can rotate freely. The hip axle is connected through
bike chains via an auxiliary axle to the inner legs.

The prototype is autonomously powered with an on-board pneumatic sys-
tem. The pneumatic components are displayed in Fig. 7.6, clockwise arranged
according to the CO2 flow through the system. The returnable Alco2jetTM canis-
ter (widely available for home soda machines) contains 450 g CO2 at the satura-
tion pressure of 5.8 MPa and weighs 1.2 kg when completely full. The pressure
is reduced in two stages, first to approximately 1.2 ± 0.2 MPa and then to 0.6
± 0.02 MPa. Both levels are manually adjustable. We developed the regulators
specially for this project because they are not commercially available in the re-
quired small and lightweight design (the small 40x20x10 mm block in Fig. 7.6
actually contains four second stage regulators). The second stage pressure out-
put is fed via low-power SMCTM valves to four tiny SMCTM cylinders that con-
trol the knee latches and to four ShadowTM McKibben muscles that act as two
antagonistic pairs between the robot’s body and the outer legs (attached with a
moment arm of 60 mm).

The McKibben muscles are an unorthodox choice of actuators. Their char-
acteristics are quite unlike those of the commonly used DC motors and seem
disadvantageous at first. They behave like springs with a stiffness proportional
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Figure 7.6: The pneumatic components and a 30 cm ruler to indicate their sizes. The
components are clockwise arranged according to the CO2 flow through the system; 5.8
Mpa CO2 canister, the first stage pressure regulator to 1.2 Mpa, a block of four second
stage regulators to 0.6 Mpa, one of four low-power SMCTM valves, one of four small
SMCTM cylinders and one of four ShadowTM McKibben muscles.

to the internal CO2 pressure (Fig. 7.7). The use of such muscles is quite energy
efficient if they are only required to change pressure once per step, but they are
rather unsuitable for continuous control (e.g. to obtain a position servo). The
spring behavior is fairly linear for most part of the 30% extension range, but be-
comes highly non-linear near maximal extension where the stiffness and damp-
ing increase dramatically. We modeled this with two stiffnesses as shown in
Fig. 7.7, together with a high damping ratio near maximal extension. In addition,
the CO2 flow through our pneumatic system to fill the muscles is a slow first-
order system with a time constant of τ = 0.25 s. Altogether, the muscles intro-
duce 5 parameters in the model that cannot be determined exactly because they
are linear approximations of a highly non-linear behavior, namely the nominal
muscle stiffness, the stiffness near maximal extension, the pre-load, the damp-
ing near maximal extension and the time constant. We use these parameters to
fit the model behavior to the prototype measurements.

Altogether, McKibben muscles do not seem attractive as robot actuators.
For the specific task of walking, however, the spring-like behavior, the non-
linearities near maximal extension, and the efficiency when controlled only once
per step together with the low weight and flexibility make them highly suitable.
With these characteristics, the muscles perform three simultaneous tasks paral-
lel to the three main concepts in Section II:

1. They power the walking motion [77]. A difference of internal pressure
between two antagonists results in an asymmetry that pulls forward the
swing leg. By alternation of pressures at each step, the muscles inject a
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Figure 7.7: Muscle force-length diagram at different pressures and the approximation
used in the simulations. The dashed line represents one instance of the stiffness (vari-
able with muscle pressure) in the normal operation range, whereas the dash-dotted line
models the rigid behavior near maximal extension (invariable). The muscles are mounted
with a pre-load. By their functioning as antagonistic extension stops, a leg can only rotate
between -0.35 and +0.35 radians with respect to the upper body, so that only a part of
the muscle’s extension range is utilized as indicated in the graph.

small amount of energy into the system and thus replenishes the energy
lost in damping and impacts.

2. They provide robustness against falling forward [93]. Especially the non-
linear behavior near maximal extension is beneficial for this, as the mus-
cles effectively slow down the forward-rushing swing leg and then keep it
in that forward position.

3. They provide the required hip spring stiffness for the upper body [92].

Due to this combination of functions, McKibben muscles are a satisfactory
choice of actuators for the prototype.

The control system is extremely simple. The prototype has one foot switch
per pair of legs which triggers only two valve actions per step. If the inner leg’s
switch is contacted, the front hip muscles are switched to high pressure and
the antagonists to low pressure, effectively pulling the outer legs forward. Si-
multaneously, the knee latches of the outer legs are released briefly. Then, the
system just waits for the outer leg’s foot switch to make contact, assuming that
knee extension takes place before heel contact. The entire control algorithm is
easily implemented in any microcontroller (we have experimented both with a
MicrochipTM PIC16f877 and with a LEGO MindstormsTM RCX controller).

For measurements, however, a more elaborate electronic system is required.
The prototype is equipped with four optical encoders (hip, inner knee, left and
right outer knee) and with one gyroscope mounted in the robot’s body. The low-
level processing (counters and A/D conversion) is still done in a PIC microcon-
troller, while the data is collected at 50 Hz in a J-stickTM Java board that can be
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read out after the experiments. Even with the measurement system active, the
entire robot remains fully autonomous.

7.4 Results

7.4.1 Resultant motion and gait characteristics
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Figure 7.8: Comparison of the walking motion of the simulation (dashed lines) and the
prototype (solid lines). The absolute body angle φ and the clearance were not measured
in the prototype. The inter-leg angle shows a slight asymmetry in the prototype’s gait.
The knees of the prototype show approximately 0.05 rad play of the latch.
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The resultant walking motion is depicted in Figure 7.8, in which we have
plotted both the simulation results and the actual prototype recordings. The
figure presents the absolute body angle (simulation only, not measured in the
prototype), the relative hip angle and the knee angles as a function of time, to-
gether with the foot clearance (also simulation only). The clearance amounts to
5 mm or more throughout the step. The body remains approximately upright
with maximal excursions of ± 0.15 rad. The knee reaches full extension 0.5 s af-
ter the start of the swing phase. The maximal inter-leg angle is ± 0.65 rad, but at
the time of heel strike this is ± 0.55 rad, leading to a step length of 0.35 m. The
model is walking in its limit cycle, taking 1.2 steps per second thus walking at
0.42 m/s (Table 7.2).

Table 7.2: Gait characteristics when walking with the default parameter values.

Step length 0.35 m
Step frequency 1.2 Hz
Velocity 0.42 m/s
Nominal clearance 5 mm
Specific resistance 0.2 J/(kgm2s−2)

The differences between the motions of the model and the prototype are
small, especially when considering that the model is walking in its limit cycle
while the prototype is only close to its limit cycle due to constant disturbances;
the floor is far from perfectly flat and level. A noticeable difference is in the
amount of knee flexion. Especially the knees of the outer legs bend less than pre-
dicted by the simulation, probably caused by friction and damping in the knee
joint or by a slight delay in the knee latches. The overall effect on the walking
motion is small, except for the foot clearance which then decreases significantly
and indeed causes most of the failures.

7.4.2 Stability

The stability of the cyclic walking motion is usually analyzed by investigating
the initial states of each step in a sustained walking motion. We choose to de-
fer from this and to investigate the end states instead of the initial states. The
difference is that our analysis is based on the velocities just before heel strike in
contrast to the tradition of using the velocities just after heel strike. The reason
is that the velocity measurements in the prototype are unreliable just after an
impact due to transient oscillations in the mechanical system.

At the end of a step, with both feet simultaneously on the floor and with
both knees extended, there are only three independent states; inter-leg angle θ,
its angular velocity θ̇ and the absolute angular velocity of the body φ̇. Their fixed
point values given in Table 7.3 are determined with the computer simulation
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for the parameter values in Table 7.1. A linearized stability analysis with the
computer model predicts that the walking motion is stable, i.e. that small errors
on the end states in Table 7.3 decay step after step.

Table 7.3: Fixed point values for the three independent end states just before heel strike,
valid for the parameter values from Table 7.1. The difference between simulation and
prototype arises from the simplified model for the non-linear muscle behavior.

sim. proto.
(aver. ±s.d.)

Inter-leg angle θ (rad) 0.55 0.55 ±0.06
Inter-leg ang. vel. θ̇ (rad/s) -0.58 -1.15 ±0.61
Upper body ang. vel. φ̇ (rad/s) 1.04 1.03 ±0.17

Fig. 7.9 shows the walking results of over 200 steps (measured in series of 40
steps on average) depicted in the phase plane. The graph only represents two
out of the three independent states because the inter-leg angular velocity θ̇ is
not relevant; Table 7.3 shows a high variability for this state and the simulations
have shown us that even much larger variations on this state can be allowed
without resulting in a failure. The reason for this insensitivity is the fact that the
inter-leg angle is controlled by the hip muscles toward a fixed end position, in-
dependent of the initial velocity. The difference between the measured average
and the simulated value for θ̇ is a direct result of the simplified model for the
muscle non-linearities at maximal extension.

The experimental results are indicated with black dots in Fig. 7.9. The last
step in a series is indicated with an encircled cross, because it is the last step
before a fall. These experimental results correspond well with the simulation
results, which are indicated in the figure with the gray area. According to the
simulation model, the gray area is the basin of attraction; a start outside the area
will either lead to a fall Forward or a fall Backward. The average state (indicated
in Fig. 7.9 with a white encircled dot) also corresponds neatly to the fixed point
from the simulation model (white circle), see also Table 7.3.

The stability results indicate that the prototype can be easily started with a
manual launch (illustrated in Fig. 7.10). After such a launch the prototype can
walk indefinitely on a level floor until it runs out of power or into a wall. In
contrast to the robustness against disturbances in a manual launch, the walker
appears to be not too robust against variations in height in the floor surface. The
variability of the measurements is quite large. This is a result from the irregular-
ities in the hallway floor. The floor has variations in height of maximally 3.5 mm
in one step, amounting to a local slope of ± 0.5o. These irregularities are close to
the maximal allowable disturbances as predicted by the simulation model, ex-
plaining why some of the measurement points are close to the boundaries of the
basin of attraction. The simulation predicts that the walker can handle a step
down in the floor of maximally 3 mm. We verified this with an experimental
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Figure 7.9: A section of the basin of attraction in the Poincaré map. The figure shows
the two most sensitive states at the end of a step, namely the inter-leg angle θ and the
angular velocity of the upper body φ̇. The walker is not sensitive to variations in θ̇, the
third independent end state, which is therefore not shown. The black dots represent 200
measured states during continuous walking, whereas the last step of each series of steps
(the last before a fall) is indicated with an encircled ‘x’. The boundaries of the basin of
attraction as derived from the simulation are given by the solid black lines. Below the
lower boundary, the robot falls Backward, above the upper boundary it falls Forward as a
result of foot-scuffing. The dashed line represents maximal extension of the hip muscles.
Due to the hip actuation the robot is not likely to arrive in the lower left part of the basin
of attraction, but if it would, it would return stably to its limit cycle. The fixed point of the
simulation is a white circle, the average measured state is a white circle with a dot.

setup where it walked on a rigid, flat and level surface (not the hallway floor)
and then took a step down. Indeed it could handle not much more than 3 mm.

7.4.3 Parameter sensitivity

The prototype is tolerant to variations in most of the parameters (e.g. 1 kg of
extra mass on the upper body has no noticeable effect), except for those param-
eters that affect the forward velocity. The forward velocity is the net result of
the velocity increase during the stance phase and the instantaneous velocity de-
crease at heel strike. The velocity increase is determined by the amount of time
that the robot’s center of mass spends behind the foot contact point (decelera-
tion) and the amount of time spent in front of the contact point (acceleration).
Any parameter that influences these has a strong effect on the walking motion;
with too much deceleration the walker will have a tendency to fall backward
whereas with too much acceleration the resultant walking velocity will be high



7 Adding the upper body to passive dynamic walking robots by means of a bisecting hip mechanism 119

Figure 7.10: Video stills illustrating the walking motion after a manual launch.

and thus the chances of falling forward increase.
Parameters with a direct influence are bw, uw, and lw (Fig. 7.4 and Table 7.1)

which determine the horizontal position of the center of mass and fa and fh

which determine the foot contact point. The effect of the position of the center of
mass is strong. For our 10 kg walker, a 500 g additional mass that can be attached
up to 100 mm in front or behind the hip joint already provides sufficient tuning
possibilities. In our opinion, the automatic control of the fore-aft balance will be
one of the major improvements for future dynamic walking robots.

The foot radius fa determines how much the foot contact point travels for-
ward during the stance phase and thus a larger radius has a weakening effect on
both the robot’s deceleration and acceleration. Previous experiments and simu-
lations [94] have shown that this effect is beneficial to the robot’s robustness
against disturbances. A forward foot offset fh > 0 creates a forward tilt of the
entire robot (best visualized in a drawing of the heel strike state) and thus re-
sults in faster walking. Therefore, an increase in fh should be accompanied by a
backward displacement of the center of mass. Note that this observation is only
valid for a walker with an upper body with the bisecting hip mechanism and
with a substantial mass at a substantial distance above the hip joint. For walkers
without an upper body, the effect is reversed.

The hip actuation has an indirect but significant influence on the decelera-
tion and acceleration during the stance phase. For any walker with physically
feasible parameter values (also without upper body), the center of mass moves
forward when the swing leg is swung forward. This is best verified in a simpli-
fied analysis without gravity. If the swing leg is moved quickly by a strong hip
actuation, then that forward displacement takes place early in the stance phase,
and thus the center of mass will spend relatively more time in front of the foot
contact point. In other words, the faster the swing leg is moved forward, the
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faster the robot will walk. The strength of this effect depends on the amount
of inertia (of both the legs and the upper body) that is involved when the hip
actuators are engaged.

There seems to be a counterproductive effect here, as the hip actuation was
installed in the first place to reduce the chances of falling forward and now it
appears to increase that chance by increasing the walking velocity. This can be
resolved easily, however, with a backward adjustment of the robot’s center of
mass so that the total effect (of hip actuation and mass displacement) is an en-
largement of the basin of attraction.

In conclusion, the parameters of the upper body barely influence the walking
behavior and the stability. There is almost no effect of an increase of the mass
or a vertical displacement of the center of mass. Only the fore-aft position of the
center of mass is important, as it regulates the average forward walking velocity,
and thus the chances of falling forward or backward.

7.4.4 Energy efficiency

The energy consumption of walking mechanisms is usually expressed with the
non-dimensional ‘specific cost of transport’, i.e. the amount of energy used per
unit transported system weight (m · g) per distance traveled. For comparison,
a walking human being has a specific cost of transport of 0.38 [65], measured
by the amount of O2 uptake. The specific cost of transport of our prototype
is calculated with the CO2 expansion through the muscles from the 0.6 MPa
input pressure to 0.24 MPa relief pressure. The prototype uses 208 mg CO2 per
step (allowing it to walk for 30 minutes on a single canister). The exergy (or
‘availability’), i.e. the amount of work that could theoretically be done with gas
expanding from 0.6 MPa to 0.24 MPa, is 10.6 Joule per step, so the specific cost of
transport equals 0.32. Although the specific cost of transport for the prototype
resembles that of a walking human being, some deliberations must be taken into
account.

On the one hand, one could argue that the prototype is much more efficient
than the human. The pneumatic muscles are not optimal for their task, because
they have a fairly large ‘dead volume’ which must pressurized at each action
cycle. They use much more pneumatic energy than the amount of work they
produce. We determined with the simulation model that the amount of work
produced by the muscles (i.e. their force integrated over their elongation) is only
0.5 Joule per step, leading to a very low specific cost of transport of 0.01. Note
that this value is in the same range of the fully passive walkers as in Fig. 7.2a
and b.

On the other hand, one could argue that the prototype is much less effi-
cient than the human. The specific cost of transport for the human includes the
metabolic cost of the entire system, and specifies how well the available energy
is used. In that respect, it would be fairer for the prototype calculations to also
include the idle pressure reduction from 5.8 MPa to 0.6 MPa. Although exact fig-
ures are not available, it is certain that the total amount of available pneumatic
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energy from the CO2 canister is factors higher than the energy that is used in
the muscles. However, the main cause of this apparent waste of available en-
ergy is not in the applied concept of passive dynamic walking but rather in the
unavailability of pneumatic components that can use the energy of the high-
pressure canister. It is expected that ongoing research in the field of pneumatics
will eventually solve this problem.

7.5 Conclusion

This paper reports on the successful addition of an upper body to a walking
robot based on the concept of passive dynamic walking. The upper body is con-
nected to the legs by means of a bisecting hip mechanism which forms a passive
solution to stabilize the upper body while simultaneously allowing a passive
swing leg motion. The prototype walks stably and efficiently. The fore-aft po-
sition of the center of mass of the upper body is a powerful parameter for the
stability of the walking motion. Conversely, the height of the center of mass, the
total mass and the mass distribution have no noticeable influence on the perfor-
mance. Thus, we conclude that the bisecting hip mechanism forms a practical
and simple solution to construct efficient bipedal walking robots, in agreement
with the concept of passive dynamic walking.
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walking; Actuation, an upper body, and 3D

stability
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One of the main challenges in the design of human-like walking robots (useful
for service or entertainment applications as well as the study of human loco-
motion) is to obtain dynamic locomotion, as opposed to the static form of loco-
motion demonstrated by most of the current prototypes. A promising concept
is the idea of passive dynamic walking; even completely unactuated and un-
controlled mechanisms can perform a stable gait when walking down a shallow
slope. This concept enables the construction of dynamically walking prototypes
that are simpler yet more natural in their motions than the static bipeds. This
paper presents three additions to the concept of passive dynamic walking. First,
hip actuation is added to increase the fore-aft stability and to provide power
to the system, removing the need for a downhill floor. Second, a bisecting hip
mechanism is introduced to allow the addition of a passive upper body without
compromising the simplicity, efficiency and naturalness of the concept of pas-
sive dynamic walking. Third, skateboard-like ankle joints are implemented to
provide 3D stability. These ankles couple the unstable sideways lean motion to
yaw (steering), a kinematic coupling which provides sideways stability when
walking with sufficient forward velocity. The three additions are investigated
both with elementary simulation models and with prototype experiments. All
three prototypes demonstrate an uncannily natural and stable gait while requir-
ing only two foot switches and three on/off actuators.
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8.1 Introduction

Robots that walk in a human-like manner are a fascinating topic of research.
The potential benefits range from robots for entertainment or service jobs via in-
sights in the control of complex dynamical systems to knowledge for the restora-
tion of impaired human locomotion. Currently, one of the major challenges for
research on human-like walking robots is to move from static walking to dynamic
walking.

The main difficulty of human-like walking is the unilateral nature of the foot
contact. The foot can only exert compressive forces to the floor and thus it can
possibly tip over on one of the edges. This makes the system fundamentally
underactuated. Moreover, the unactuated degree of freedom is to be operated
around an unstable equilibrium position. Therefore such systems are a chal-
lenge for classical control techniques. The classical solution is to make sure that
the tipping-over does not happen. A very crude method is static walking where
the center of mass is kept above the floor contact polygon and the acceleration
forces are kept insignificant. A more sophisticated method is the Zero Moment
Point approach [81] in which the ‘Zero Moment Point’ (which coincides with the
center of pressure [28, 82]) is kept within a safe area inside the foot edges. With
these methods the foot remains flat on the floor allowing the control designer to
pretend that the problem of underactuation does not exist. These methods form
the basis of today’s most sophisticated humanoid robots [68, 46].

Although the extra ‘flat-foot’-constraint superficially simplifies the control
problem, in reality it might result in unnecessarily complex walking systems.
Therefore we will investigate systems which do not ignore the fundamental un-
deractuation and thus show dynamic motion in the passive foot-floor contact.
This has been called dynamic walking. An extreme example of dynamic walking
is McGeer’s Passive Dynamic Walking [49] in which not only the foot-floor con-
tact is passive but also all other joints in the system. By showing that such sys-
tems are potentially capable of stable, human-like walking without any control,
his work suggests that human-like walking can be realized with much simpler
machines than the present-day prototypes.

To move from the relatively basic state of the art in Passive Dynamic Walking
(Section 2) toward more versatile and human-like machines, this paper presents
three additions to the concept; hip actuation which greatly enhances the 2D
stability (Section 3), a bisecting hip mechanism which allows the addition of
a passive yet stable upper body (Section 4), and a skateboard-like ankle joint
which provides 3D stability (Section 5). Each of the three additions is investi-
gated through a qualitative comparison of elementary model studies and phys-
ical prototype experiments.
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8.2 Passive Dynamic Walking

8.2.1 Historical background

Biomechanical research has provided several hints toward the possible role of
passive dynamic motions in human walking. A remarkably relevant hypothesis
posed by Weber and Weber [84] as early as 1836 reads: ‘Die Beine können am
Rumpfe wie Pendel hin und her schwingen. (...) Unsere aufmerksamkeit wird
für diese schwingende Bewegung nicht erfordert.’ (‘The leg can swing back and
forth like a pendulum suspended from the body. ... Our attention is not required
to produce this swinging motion.’) Mochon and McMahon [53] arrived at the
same conclusion after comparing the swing leg motion with a passive double
pendulum. Another hint in that direction is given by Ralston [65] who discov-
ered that there exists an optimal walking velocity for humans; at approximately
5 km/h the specific resistance (also termed specific cost of transport, i.e. energy
cost per weight per distance traveled) is minimal, a phenomenon that indicates
the use of natural frequencies of the mechanical system.

Early toy makers [23] proved the applicability of the ideas by showing that
the human walking motion can at least partially be generated with passive
mechanisms that move and oscillate in their natural frequencies. In 1989, McGeer
[49] proposed that those passive mechanisms could serve as an alternative point
of departure for the synthesis of bipedal gait. He parallelled this to the approach
of the Wright Brothers, who first mastered passive gliding before they added an
engine to their aeroplane. McGeer showed that a completely unactuated and
therefore uncontrolled robot can perform a stable walk [48] when walking down
a gentle slope. Since then, his work has been extended gradually by Ruina’s
group at Cornell University [15, 24, 19] up to the point where the passive ap-
proach can be regarded beyond doubt as a valid starting point for bipedal gait
synthesis and robot construction.

The benefits of the passive approach are the inherent efficiency of the walk-
ing motion, the natural-looking motions, and the simplicity of the required con-
struction. The development toward a more human-like versatility should be
taken step-by-step (figuratively), which can be seen as both a benefit and a
drawback of this approach. The drawback is that, although the motions of the
early machines are uncannily natural, the general public is quickly disappointed
with the incompleteness of the system (e.g. no upper body, lateral constraints
to ensure only two-dimensional dynamics, no velocity control). This makes the
passive approach unattractive for industrial developers. The required incremen-
tal addition of versatility does, however, provide ample opportunities to dis-
cover fundamental dynamic properties. As such, the passive approach is the
most appropriate point of departure for academic research into gait synthesis.
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8.2.2 State of the art

Since McGeer, much research has been done on passive dynamic walking, but
even more remains to be done. McGeer left the field after the completion of a
biped with knees which was laterally constrained (2D dynamics) by a symmet-
ric construction with two pairs of legs. Simulation studies on fully passive mod-
els were performed by Garcia [27] and Goswami [30], whereas Hurmuzlu [38],
Spong [73], Van der Linde [78] and Asano [8] added some form of actuation and
control. Wisse [90], Piiroinen [60], Adolfsson [6, 7], and Kuo [43] simulated near-
3D models, whereas Coleman [17] simulated a fully passive, full 3D model. That
last model was one of the few that was matched to a physical prototype [18].
Other prototypes were built by Collins [19], Van der Linde [77], Ono [57, 58]
and Tedrake [75], whereas Pratt [62] included passive dynamics in an otherwise
active robot.

Almost all walkers in this list consist of legs only, most of them are fully
passive, and many exist only as computer models. Also, all of them require
a disturbance-free environment. To advance from this state of the art toward
human-like walking capabilities, at least the following topics need to be ad-
dressed:

• the robustness in 2D must be increased,

• an upper body must be added,

• robustness in 3D must be obtained,

• the walking velocity must be controllable,

• the walker must be able to start and stop,

• the walker must be able to turn,

• the walker must be able to stand up after a fall,

The increase in complexity and actuation must be carried out step-by-step. For
each addition, it should be ensured that the beneficial characteristics of pas-
sive walking (efficiency, naturalness, and simplicity) are preserved, and that the
fundamental dynamic properties and effects in the entire system with the new
addition are understood. The current paper focuses on the first three topics; an
increased robustness in 2D, the addition of an upper body, and the search for
robustness in 3D.

8.2.3 Stability analysis

Dynamic walking requires a special form of stability analysis; not the classi-
cal approach with linearized, continuous control, but rather the numerical tools
from nonlinear dynamic systems theory. The walking system (e.g. Garcia’s ‘Sim-
plest Walking Model’ [27], Fig. 8.1) is regarded as a dynamic system in a limit
cycle; a repetitive motion for all but one of its coordinates (forward progression
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is non-cyclic). To analyze the stability of such systems the standard method of
Poincaré Mapping is applied (originally introduced by Poincaré for the analy-
sis of celestial mechanics and the discovery of chaos). For a well-defined state
of the system (the Poincaré Section), usually the state at heel contact, it is ana-
lyzed how the cyclic coordinates and velocities progress from step to step. In the
limit cycle, the system state is equal at every pass through the Poincaré Section,
termed a fixed point on the Poincaré Map. If errors upon the fixed point decay
step after step, the walking motion is asymptotically stable. If on top of that the
basin of attraction is sufficiently large, the system possesses a practical stability.
The basin of attraction (Figs 8.2 and 8.3) is the range of errors for which the sys-
tem still converges to the limit cycle. If it is sufficiently large, the system under
consideration is a candidate for the synthesis of human-like walking machines.
These analyses must be performed for each addition to the passive walkers to
investigate its practical viability.

φ

g M

mm
θ

γ

l stance
leg

swing
leg

Figure 8.1: A typical passive walking step. The new stance leg (lighter line) has just
made contact with the ramp in the upper left picture. The swing leg (heavier line) swings
until the next heelstrike (bottom right picture). The top-center picture gives a description
of the variables and parameters that we use. θ is the angle of the stance leg with respect
to the slope normal. φ is the angle between the stance leg and the swing leg. M is the
hip mass, and m is the foot mass. l is the leg length. γ is the ramp slope, and g is the
acceleration due to gravity. Reprinted with permission from Garcia et al. [27].

8.3 Hip actuation for power input and stability

8.3.1 Elementary model study

The first addition to the concept of passive dynamic walking is actuation in the
hip joint which greatly enhances the 2D (forward) stability. Although the purely
passively walking prototypes demonstrate convincing walking patterns, they all
require a smooth and well adjusted walking surface. A small disturbance (e.g.
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Figure 8.2: Stylized phase graph of walking motion. The dimensionality of the graph
is usually much higher than the three dimensions drawn here, so this figure should be
considered only as a sketch to convey the ideas behind the stability analysis of cyclic
(walking) motions.

from small errors introduced with a manual launch) can still be handled, but
larger disturbances quickly lead to a failure [71], see Fig. 8.3. The most distinct
failure is a fall forward; the swing leg is not timely in a forward position to catch
the robot for its next step. A second type of failure is an instability that manifests
itself as a diverging alternation of short and long steps. This is the result of the
interaction between step length, energy input, and energy loss at the heel strike
impact.

Both types of failures can be prevented by means of a simple control rule
which accelerates the swing leg to a preset forward position [93]; the faster the
swing leg is swung forward, the more robust the walker is against disturbances.
The exact motion of the swing leg is irrelevant which allows for a wide variety of
possible implementations. In the most extreme (and theoretical) case, the swing
leg is instantaneously brought to its forward position, making the dynamic be-
havior comparable to that of a rimless wheel [16], i.e. a cart wheel without the
rim, walking on its spokes.

For practical robots, instantaneous positioning is impossible because the legs
have a non-zero inertia. We investigated the stability improvement as a function
of different levels of actuation. The hip actuation is implemented in the model
with a critically damped spring with a forward setpoint, where a higher spring
stiffness means a higher level of actuation. Fig. 8.3 shows that the basin of at-
traction increases as a function of the level of actuation, leading to the conclu-
sion that the faster the swing leg is brought forward, the better the model is
resistant against disturbances. Another important effect of the leg inertia in real
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Figure 8.3: Left: Poincaré section for the simplest walker (Fig. 8.1 with initial stance
leg angle θ and velocity θ̇ together with failure modes; falling Forward, falling Backward
and Running, and the basin of Attraction of the cyclic walking motion (θ, θ̇) =
(0.1534,−0.1561) [rad] (indicated with ‘+’) at a slope of γ = 0.004 [rad]. Reprinted from
[71]. Right: Basin of attraction of the simplest walker with active hip spring. The setpoint
of the hip spring is φsp = 0.3 and critical damping is applied. The higher the hip spring
stiffness, the larger the basin of attraction; k = 25 leads to area (1), k = 50 leads to
area (2), and k = 100 leads to area (3). The fixed point is for all three stiffness settings
approximately the same, located at the ‘+’. A disturbance from a step down in the floor
would result in initial conditions away from the fixed point in the approximate direction of
the white arrow. Reprinted from [93].

prototypes is the fact that the hip actuation also provides an energy input into
the system. This side-effect eliminates the need for downhill walking and thus
drastically increases the usability of the concept of passive dynamic walking.

8.3.2 Prototype experiments

We applied the proposed swing leg control to our prototype ‘Mike’ (Fig. 8.4a).
Mike weighs 7 kg and measures h x b = 0.7 x 0.4 m. An elaborate description
of Mike can be found in [94] while movie clips of Mike in action are available
at our web site [85]. Mike has four legs symmetrically paired, giving it approxi-
mately 2D behavior. It differs from the simplest walking model by having knees,
a distributed leg mass, round feet and by walking on a level floor (no slope!).

Mike is actuated with a total of eight McKibben muscles; lightweight pneu-
matic actuators that act like springs with a stiffness proportional to the internal
pressure [14, 76]. The McKibben muscles are arranged according to Fig. 8.5. The
hip joint is actuated with an antagonistic pair of muscles (A) and (B) providing a
combined joint stiffness. The knees are actively extended with McKibben mus-
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ca
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Figure 8.4: 2D machines built during the project: (a) Mike, (b) Latch Walker, (c) Museon
Walker.
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Figure 8.5: Schematic structure and muscle attachments of Mike.

cles (C) and (D) which are counteracted by weak passive springs. There is no
ankle actuation; the arc feet are rigidly attached to the shanks.

The McKibben muscles are fueled from a 5.8 [MPa] CO2 container via a
two-stage pressure regulator and via electromagnetic valves that are activated
by switches underneath the feet. The second-stage pressure regulator output is
manually adjustable between 0.1 and 0.6 [MPa] resulting in a hip joint stiffness
up to 5 [Nm/rad] and a damping somewhat less than critical damping (esti-
mated by observation). It is not feasible to perform a proper mapping between
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this stiffness in Mike and the scaled stiffness in the simplest walking model due
to the extensive differences between the two, such as leg mass, foot arc radius,
muscle non-linearities and significant air flow dynamics. Therefore the compar-
ison between the two will be of a qualitative nature only.

If a valve is switched ‘on’, the muscle is filled from the pressure regulator
output; if switched ‘off’ it reliefs into atmosphere. For example, at activation
of the inner leg foot switch, the outer knee muscles (muscle C in Fig. 8.5) are
switched ‘off’ to allow this knee to bend. A manually tuned 400 [ms] later they
are switched back ‘on’, ensuring a properly extended knee for the next step.

The proposed swing leg control is implemented by alternating the states of
the antagonistic hip muscles. When the foot switch of the inner legs is acti-
vated, muscle B in Fig. 8.5 is switched ‘on’ and muscle A is switched ‘off’. At
the next step this is inverted. As a result, the hip joint has a constant stiffness
but a setpoint that alternates between φsp and −φsp. The joint stiffness can be
adjusted without altering the setpoint. We want to emphasize that there is no
feedback control other than this once-per-step switching between preset muscle
pressures. We dub this ‘feet-forward control’.

Mike walks at 0.4 m/s (0.6 s per step), see [85] for video evidence. We would
have liked to create a figure of its basin of attraction like Fig. 8.3. However, the
combined limitations on the number of experiments to be performed and on the
physical possibilities to create controlled disturbances have led us to concentrate
on one representative disturbance, namely a step-down.

In the experiments the prototype walks steadily and then takes a step down
of increasing height, see Fig. 8.6. Such a step down results in a larger stance leg
velocity at the subsequent step as sketched with the white arrow in Fig. 8.3. The
larger the step down height, the larger the arrow. If a larger hip muscle stiffness
indeed allows a bigger step down, then our swing leg control rule is validated.

Figure 8.6: Experiment with Mike walking on level floor and taking a step down as a
representative disturbance.

The stability results are shown in Fig. 8.7. A hip muscle pressure lower than
0.35 [MPa] did not provide stable walking at all, not even without disturbances.
When the pressure was increased, a larger step down could be handled. The
muscles prohibit pressures higher than 0.55 [MPa]. Fig. 8.7 clearly shows a bet-
ter robustness against falling forward with a higher hip pressure which corre-
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sponds to a faster swing leg motion.
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Figure 8.7: A higher hip muscle pressure setting (corresponding to a higher hip joint
stiffness) results in a larger step-down size and thus in a better resistance against distur-
bances.

After these successful results, the same form of stabilization by means of an
accelerated swing leg was used to construct two demonstration prototypes. The
‘Latch Walker’ (Fig. 8.4b) walks on level floor using a single, uncontrolled DC
motor (its constant energy input is regulated by means of a wind-up spring and
a latch in the hip joint). The ‘Museon Walker’ (Fig. 8.4c), which was on display
in a hands-on technical exhibit, requires a sloped walking surface and obtains
its swing leg acceleration from a mechanism at the hip joint which effectively
lowers the center of mass to provide energy to the swing leg.

8.3.3 Conclusion

Both the elementary simulation and the prototype experiments demonstrate
that a simple controller can solve the problem of falling forward; all it needs
to do is to get the swing leg timely in a forward position. Both the elementary
simulation and the prototype experiments show a similar qualitative effect; the
higher the level of actuation, the better the robustness against disturbances. For
implementation of this form of control, a damped hip spring with a forward
setpoint already suffices. The specific control and actuation details are not im-
portant as the same result can be achieved with any configuration if it is based
on the following rule: “You will never fall forward if you put your swing leg fast
enough in front of your stance leg. In order to prevent falling backward the next step,
the swing leg shouldn’t be too far in front.” A controller designed according to this
rule is easy to implement, because no a-priori knowledge of the passive dynamic
walking motion is needed.
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8.4 Bisecting hip mechanism for passive yet sta-
ble upper body

8.4.1 Elementary model study

The second addition to the concept of passive dynamic walking is a bisecting hip
mechanism for the addition of a passive upper body. The bisecting hip mecha-
nism was first explored in a highly simplified model consisting of four point
masses connected by rigid, massless links [92] (Fig. 8.8). The study revealed the
possibility of fully passive walking with an upper body by means of a bisect-
ing hip mechanism. For a lightweight upper body, the dynamic effects of the
passively swinging legs are dominant. When the weight of the upper body in-
creases, a hip spring is required to maintain the upright position as the equilib-
rium position. The study showed that a suitable spring stiffness can be found
for any mass distribution.

Figure 8.8: Simple model for preliminary study of passive bisecting hip mechanism.

A parameter study with the simple model showed the effects of the upper
body on the stability and the energy efficiency of the walking motion. One clear
result is that the fore-aft mass distribution has a strong influence on the exis-
tence and the stability of the cyclic walking motion, matching McGeer’s finding
of a similar influence of the fore-aft mass distribution in the legs of his walkers.
Conversely, the walking motion is very tolerant to changes in the vertical mass
distribution. A weak but counterintuitive effect was found, as a higher center of
mass provides a better robustness against disturbances. Moreover, elevation of
the center of mass also improves the energy efficiency. Altogether, the prelimi-
nary study was strongly encouraging to the construction of prototypes with an
upper body connected through the proposed bisecting hip mechanism.

8.4.2 Prototype experiments

The idea is validated in the prototype ‘Max’ [89] (Fig. 8.9), which weighs 10 kg,
measures h x b = 1.1 x 0.5 m and walks at 0.4 m/s (0.8 s per step). Max is the
direct successor of Mike (Fig. 8.4a); the design and the applied components are
more or less identical except for the addition of an upper body and some minor
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Figure 8.9: Left: Prototype Max; a 2D passive dynamic walking robot with an upper body
connected to a bisecting mechanism at the hip. Right: The bisecting hip mechanism in
the prototype. The outer legs are rigidly attached to the hip axle, the inner legs can rotate
freely. The hip axle is connected through bike chains via an auxiliary axle to the inner
legs.

improvements. The improvements include 1) switchable knee latches which re-
move the need for knee muscles, 2) ankle joints which are frozen now but allow
ankle actuation in the near future [34], and 3) a much larger on-board CO2 stor-
age (two canisters of 450 grams, each of which enables 30 minutes of continuous
walking).

The bisecting hip mechanism is implemented with an auxiliary axle con-
nected to the legs with one straight and one cross-over chain (Fig. 8.9). In hind-
sight, it is valuable to report that this solution requires extra attention to the
problem of slack in the chains. Also, one must be aware that rather large torques
are transmitted through the chainwheels and axles, especially when the pro-
totype occasionally falls. Nonetheless, for our relatively lightweight prototype
this solution is satisfactory. Other possible mechanisms include a four-bar link-
age, a differential gearbox, or cables and pulleys (as applied in some gait or-
thoses [39]). Alternatively, the bisecting hip action can also be obtained in fully
actuated robots where a sub-controller maintains the upper body in the bisec-
tion angle [64, 12]. We would like to emphasize that any of these solutions, me-
chanical or controlled, are simple in that they only require local information, i.e.
the absolute angle of the body or legs are irrelevant, only the relative angles
between the three.

Fig. 8.10 illustrates the walking motion after a manual launch. On a reason-
ably flat and level floor (height variations of less than 3 mm per step), the proto-
type could easily perform sustained walking with series of over 50 consecutive
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Figure 8.10: Video stills illustrating the walking motion after a manual launch.

steps. While tuning the prototype for optimal performance, we found the same
parameter influences as predicted by the elementary simulation model. The pro-
totype is tolerant to variations in most of the parameters (e.g. 1 kg of extra mass
on the upper body has no noticeable effect), except for those parameters that
affect the forward velocity. The forward velocity is the net result of the veloc-
ity increase during the stance phase and the instantaneous velocity decrease at
heel strike. The velocity increase is determined by the amount of time that the
robot’s center of mass spends behind the foot contact point (deceleration) and
the amount of time spent in front of the contact point (acceleration). Any para-
meter that influences these has a strong effect on the walking motion; with too
much deceleration the walker will have a tendency to fall backward whereas
with too much acceleration the resultant walking velocity will be high and thus
the chances of falling forward increase. For our 10 kg walker, a 500 g additional
mass that can be attached up to 100 mm in front or behind the hip joint already
provides sufficient tuning possibilities. In our opinion, the automatic control of
the fore-aft balance will be one of the major improvements for future dynamic
walking robots.

8.4.3 Conclusion

In conclusion, the bisecting hip joint allows a straightforward addition of a pas-
sive upper body to the concept of passive dynamic walking. Both the elemen-
tary simulation model and the prototype show that the parameters of the upper
body barely influence the walking behavior and the stability. There is almost no
effect of an increase of the mass or a vertical displacement of the center of mass.
Only the fore-aft position of the center of mass is important, as it regulates the
average forward walking velocity, and thus the chances of falling forward or
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backward.

8.5 Skateboard-like ankle joint for 3D stability

8.5.1 Elementary model study

The problem of lean instability (the walker is an inverted pendulum in the
frontal plane) is usually approached in an isolated fashion; researchers find so-
lutions for the inverted pendulum problem per se such as sideways foot place-
ment or reaction torques from the upper body [43]. However, when the full 3D
system is regarded, another solution presents itself. Similar to skateboards and
bicycles, one could use steering (yaw) to stabilize lean, at least as long as the sys-
tem is moving forward with sufficient velocity. The same principle is applicable
for walking, and can be implemented in walking robots with an ankle joint that
kinematically couples lean to yaw.

γ

α
r

d

Figure 8.11: Simplified point-mass model used to analyze the stabilizing effect of a tilted
ankle axis that couples lean to yaw.

We investigated the concept with a simulation study [91]. The simplest model
for this purpose is a 3D cousin of Garcia’s two-dimensional ‘Simplest Walking
Model’ [27] which consisted of one finite point mass at the hip joint, two in-
finitesimally small point masses at the feet, and massless rigid links in between,
interconnected with a frictionless hinge at the hip. Our model (Fig. 8.11) is a 3D
extension of this; the hip has gained a finite width and the hip mass is divided
into two point masses at the extremes of the massless hip axle. The degrees of
freedom are the coordinates and the yaw and lean angles of the center of the
hip axle, the two leg pitch angles, and the two ankle angles. The ankle axes are
mounted in the x-y plane at an angle α with respect to the vertical. Note that the
ankle axes have no component in the z-direction, unlike conventional robot de-
signs or the human ankle. The ‘normal’ ankle functionality, rotation around the
z-axis, is realized by means of the roll-off motion of the feet. The feet are (partial)
cylinder shells with the cylinder axis perpendicular to the ankle axis. The foot-
floor contact is modeled as a perfectly rigid cylinder-plane contact with only
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one degree of freedom; rotation (pitch) in a direction perpendicular to the cylin-
der axis. The width of the feet is not specified and is assumed to be sufficient to
prevent sideways tipping over the edge.

The simulation results can be summarized in four conclusions. First and
foremost, the ankle joint indeed provides stability for the 3D walking model.
Moreover, the simulation study [91] shows that it is highly robust against distur-
bances (allowing a 100% deviation on most of the initial conditions) and against
parameter changes (allowing a sideways center of mass offset of 5% of the leg
length). Second, the simulation study shows that these stability results can only
be achieved if the ankle joint is applied in combination with the hip actuation as
described in Section 2. Without that, the (fully passive) model is barely stable.
Third, the model is stable only if the forward walking velocity is above a certain
critical value, a behavior which is similar to that of a skateboard or a bicycle. The
critical velocity is a function of the orientation of the ankle joint. The more ver-
tical the joint is oriented, the lower is the critical velocity. Fourth, the ankle joint
provides an effective means for direction control; a slight asymmetry in any of
the parameters (such as a sideways mass offset) results in a walk on a curved
path. All together, the simulations with the elementary model predict a suffi-
cient robustness against disturbances to warrant the construction of a physical
3D prototype.

8.5.2 Prototype experiments

The ankle joint is tested in the prototype ‘Denise’ (Fig. 8.12), which weighs 8 kg,
measures h x b = 1.5 x 0.3 m and walks at 0.4 m/s (0.8 s per step). Denise is a
direct successor of Max (Fig. 8.9) and has the same hip actuation, bisecting hip
mechanism and controllable knee latches. The prototype has five internal de-
grees of freedom (Fig. 8.12); two ankles, two knees, and one at the hip (the arms
are mechanically connected to the opposing leg). The ankle joints are mounted
in the non-human orientation as proposed above, namely pointing forward and
downward without a component in the lateral direction (Fig. 8.13, making an
angle α = 25o with the leg. The ankles are provided with a high torsional stiff-
ness (Fig. 8.13).

The contact between the foot and the floor is meant to constitute one degree
of freedom, namely forward rotation on the foot’s cylindric shape. The foot di-
mensions are given in Fig. 8.13. The foot has two equal contact rails on the sides
to provide as much yaw torque resistance as possible for a given foot width. The
degree of freedom in the ankle allows for ground contact with both rails in all
situations, but due to the ankle spring it is still possible that the foot tips over
sideways on one of the rails (suddenly adding two more degrees of freedom,
namely lean and yaw of the foot). Because the stabilizing effect of the ankle joint
only exists with full foot contact, we tuned the ankle spring so that this unde-
sired loss of contact does not occur normally.

The main result to report is that Denise walks stably. An illustration of the
walking motion is given in Fig. 8.14. With a velocity of 0.4 m/s (0.8 s and 0.3
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Figure 8.12: Denise, a 3D dynamic walking robot with 5 degrees of freedom; two ankles,
two knees, and one at the hip. The arms are rigidly coupled to the hip angle.

m per step), it is slower than a human being. It uses 0.3 gram CO2 per step
which allows it to walk for 20 minutes on a single canister. From observations
during the experiments we conclude that the prototype is not optimal yet. The
prototype demonstrates more frequent failures than the prototypes Mike and
Max (Figs 8.4a and 8.9). First, the ankles of Denise had to be equipped with tor-
sional springs and with purposeful friction in the joint before stable walking was
achieved. These two features were not part of the elementary simulation model
and should not be necessary. We hope to study the influence of the spring and
friction in the near future. Second, the foot contact is not entirely yaw-free; at
the instant of knee strike of the swing leg, the asymmetric impulse cannot be
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Figure 8.13: Details of the (right) foot.

resisted by the friction torque of the stance foot. The prototype is observed to
change heading at some of the knee strikes, which is a source of disturbances.
Therefore, one of the first directions for future research is to decrease the mass
of the foot to decrease the adverse impulse at knee strike. Third, the prototype
falls approximately one out of twenty steps due to irregularities in the floor, and
when this occurs it is always a fall forward. The solution to this problem has
already been presented in Section 3 of this article; apply more power to the hip
actuators to bring the swing leg forward more quickly. Unfortunately, we have
currently reached the upper power limit of our pneumatic system. A redesign
is required before we can increase the level of hip actuation and thereby the
stability of the prototype. This current limitation is the reason that we can only
crudely recognize the effects that were predicted with the elementary simula-
tion model; the prototype does not walk stably 1) when using less than maxi-
mal pneumatic power (with the current system) to bring forward the swing leg,
2) when using a less vertical ankle joint (we tried ankle joints of 45o and 25o

with respect to vertical, it failed with the first and succeeded with the latter),
3) when walking slower than maximally possible (which we tune with the fore-
aft mass distribution). A more powerful actuation system is required before we
can obtain more quantitative results.

8.5.3 Conclusion

Both the elementary simulation model and the prototype demonstrate 3D stabil-
ity. The skateboard-like ankle joint forms a simple mechanical ingredient for the
design of stable dynamic walking bipeds. The stabilizing effect is only present
when walking with a substantial forward velocity and requires the presence of
hip actuation as proposed in Section 3 of this article.

Although the idea is strongly linked to a mechanical implementation in the
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Figure 8.14: Video stills of Denise walking, two steps (one stride). The video shows a
slight turn to the right as a result of a disturbance in the floor.

form of a tilted ankle axis, there are many alternative ways of implementation,
either mechanically or via control, in the foot, ankle, leg, or hip. The central
idea is that, if there exists a forward velocity, a sideways fall can be averted by
steering in that direction.

8.6 General conclusions

In this article we propose three additions to the concept of passive dynamic
walking:

• Actuation at the hip joint results in a drastic increase of the 2D stability of
the walkers; the faster the swing leg is brought to a predefined forward
position, the smaller the chance that the walker falls forward (the most
frequent failure). Additionally, this form of actuation provides sufficient
energy to the system to remove the need for a downhill walking surface.

• A bisecting hip mechanism allows the addition of a passive upper body
without compromising the efficiency, stability, or simplicity of the concept
of passive dynamic walking,

• Skateboard-like ankle joints (which point forward and downward without
a lateral component) provide stability for 3D bipeds. The ankle joints are
only effective when in combination with the proposed hip actuation and
when walking with sufficient forward velocity.
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The three additions have enabled us to construct a prototype with a human
appearance (two legs with knees, upper body, arms) and a stunningly natural
gait. The most significant achievement is that these results were obtained while
using a minimal control system; the entire control system consists of two foot
switches which trigger three on/off actuators (one hip actuator and two knee
latches). Dynamic walking can be obtained with elegantly simple machines.
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Chapter 9

Discussion, conclusions, and future
directions

9.1 Essentials of dynamic walking

The topic of this thesis is the search for the essentials of dynamic, human-like
walking. The previous chapters present design solutions for the three specific
problems that this thesis focuses on: 1) how to increase the robustness of 2D
walking motions, 2) how to add a passive yet stable upper body, and 3) how
to obtain a stability for 3D walking motions. The goal of the current chapter is
to find the overarching effects of the specific solutions to these problems with
respect to stability (Sections 9.2 and 9.3), to actuation (Section 9.4), to simulations
(Section 9.5) and with respect to human walking (Section 9.6). Section 9.7 will
summarize the overarching conclusions of the research in this thesis, followed
by future directions in Section 9.8.

9.2 On general design guidelines for stability

The design solutions in this thesis are strongly focused on the specific problems
that are treated: 1) hip actuation is a solutions for increasing the robustness of
2D motions, 2) a bisecting hip mechanism is a solution to add a passive upper
body, and 3) a skateboard-like ankle joint is a solution for 3D stability. In addi-
tion, throughout the thesis arc feet are used as another mechanical feature that
provides stability. One of the most intriguing questions now is how these solu-
tions fit together, what general ideas lie behind them, and how do they provide
stability to the walking motion?

Stability is one of the main issues in bipedal walking because of the funda-
mental problem of underactuation at the stance foot. The cause of this is the
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limited size of human-like feet combined with the fact that only compressive
forces can be exerted between the foot and the floor. As a result, only limited
torques can be transmitted between the foot and the floor, so that there exist
two degrees of freedom (fore-aft rotation and sideways lean) that can barely be
actuated. This is a cause for instability because the biped system as a whole is
operating around the unstable equilibrium of these fundamentally underactu-
ated degrees of freedom; it can be regarded as an inverted pendulum pivoting
at the foot.

To understand how stability of the walking motion is achieved, the term
‘stability’ must be specified more precisely. Walking is a periodic motion in all
degrees of freedom (except for forward travel). Therefore, in the phase space
(excluding forward travel) the walking motion forms a closed orbit, see Fig. 9.1.
The walking motion is stable if there is orbital stability, i.e. if a deviation from

PoincarØ Section

Phase space (one dimension for each

of the leg angles and angular velocities)

Sensitive to
disturbances

Insensitive to
disturbances

Limit cycle

Basin of 
attraction

Forward mapping
of disturbance on
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Figure 9.1: Stylized phase graph of walking motion. The dimensionality of the graph
is usually much higher than the three dimensions drawn here, so this figure should be
considered only as a sketch to convey the ideas behind the stability analysis of cyclic
(walking) motions.

the orbit decreases over time. It is important to note that there is a discrete event
in the orbit, namely the change-over of foot support (heel strike). Stabilizing ef-
fects can occur during the continuous motion and during the discrete event of
heel strike. For example, the ‘classical’ biped control approach (e.g. Vukobra-
tovic [81]) focuses mainly on stabilizing the orbit during the continuous motion.
The robots follow a prescribed trajectory (the continuous part of the orbit) and
use control to return to this trajectory after a disturbance. Compare this type of
control to a thightrope walker who uses his upper body (plus balancing beam)
to stabilize his unstable inverted-pendulum configuration pivoting around the
feet. A contrasting example is given with the passive dynamic walkers. Here, or-
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bital stability is mainly obtained from the discrete event at heel strike. The stabi-
lizing effect is the fact that the energy loss at impact is dependent on the forward
velocity; if the velocity is too high, more energy is dissipated in the impact and
so it provides a stabilizing effect. The stabilizing effect of this impact is stronger
than the instability of the inverted-pendulum configuration during the contin-
uous motion. In effect, a small error at the beginning of a step increases during
the continuous motion, but the impact strongly brings the motion back to the
nominal orbit and thus there is orbital stability. These two extremes (the clas-
sical approach versus the concept of passive dynamic walking) illustrate that
orbital stability can be realized both by measures during the continous motion
and during the discrete event at heel strike.

The specific solutions presented in this thesis can all be seen as contributions
to stability in the two categories:

• Stabilizing effects during continuous motion. In the search for simple
and efficient mechanical solutions for stability, we do not apply the classi-
cal solution. The classical solution is to stabilize the unactuated and unsta-
ble degrees of freedom at the feet through intensive control of the actuated
degrees of freedom (hip and upper body). This solution is control inten-
sive and requires much energy and high-grade components. In contrast,
our approach is to allow a mild instability in the degrees of freedom at
the foot, and to focus on implementing features that reduce the rate of di-
vergence from the nominal trajectory after a disturbance to an acceptable
level:

– Arc feet reduce the rate of divergence; the walker is still an unsta-
ble inverted pendulum but deviations from the nominal orbit grow
slower than in a walker with point feet.

– The addition of the upper body increases the mass moment of inertia
around the foot and thus also reduces the rate of divergence.

– The ankle joint couples yaw to lean and thus the inertia around the
vertical axis is added to the lean degree of freedom, which reduces
the rate of divergence of this unstable lean degree of freedom. Note
that this requires zero slip in the foot-floor contact. It only works as
long as a sufficiently large foot-floor contact can be maintained; if the
foot would tip over and make ground contact only at a single point,
there would be no yaw friction torque between the foot and the floor.

– All robots in this thesis are actuated such that they walk at a slightly
faster pace than they would if fully passive. As a result, the rate of
divergence is slightly decreased relative to the walking pace.

In addition to these effects which are all related to the unactuated degrees
of freedom at the foot, our design solutions also affect the remaining de-
grees of freedom. These remaining degrees of freedom, e.g. the hip joint,
pose no fundamental instability problem as they can be actuated and con-
trolled directly. The work in this thesis presents simple and efficient ways
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to keep these degrees of freedom under control, all in the form of con-
straints in one form or another:

– The ankle joint couples yaw to lean and so it constrains the yaw de-
gree of freedom; it is no independent degree of freedom and thus it
requires no control. Basically, this reduces the dimension of the phase
space.

– The bisecting hip mechanism also forms a rigid constraint in such a
way that the addition of the upper body does not lead to the addition
of any degrees of freedom.

– The knee latches as used in most prototypes lock the knee at the end
of the swing phase and all through the stance phase. This is also a
reduction of the phase space dimension during an interval at every
step.

– The swing leg control as implemented in the prototypes has the effect
that the swing leg is quickly brought to a fixed forward position and
then kept there. By keeping it in that prescribed position at the end of
the step, again the phase space dimension is reduced during the final
part of the step.

All together, in our robots at the end of the step all degrees of freedom
are locked or fixed by control so that only the unactuated degrees of free-
dom at the foot remain. Hence, all other degrees of freedom do not pose a
stability risk.

• Stabilizing effects during the discrete event at heel strike. To enable a
stabilizing effect during the discrete event at heel strike, it is required that
this event actually takes place. In our walker designs, several features have
been built in to increase the chances that this occurs:

– The swing leg control has the effect that the swing leg is quickly brought
to a forward position. This increases the chances of catching the walker
for its next step and prevents a fall forward.

– The arc feet decrease the chances of falling backward and so they help
with ensuring the completion of the step.

The stabilizing effects during the discrete event at heel strike are the fol-
lowing:

– The impact at heel strike dissipates more energy when the walking
velocity is higher and vice versa, and so it provides a regulating ef-
fect.

– The ankle axis results in a steering motion toward the side that the
robot leans to. Effectively, this ensures that the next foothold is in a
favorable position so that the discrete event at heel strike puts the
walker back on the nominal walking orbit.
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One of the directions for future research is to investigate how exactly do fea-
tures such as the arc feet contribute to the orbital stability. As described above,
they reduce the rate of divergence due to the inverted-pendulum instability.
However, they might also influence the stabilizing effect of the heel strike im-
pact. These effects were not studied in this thesis and warrant further research.

To find and investigate new features that can enhance the stability of the
walkers, we advise to regard the stability problem as sketched above; stable
walking requires orbital stability which can be obtained both during the con-
tinuous motion and through the discrete event at heel strike. The walking orbit
can be subdivided in various sub-regions, where a disturbance in each of the
sub-regions requires a different approach to obtain stability. An example of this
can be found in a recent research result on the human reaction to a tripping dis-
turbance [20]. If the disturbance takes place early in the swing phase it is best
to use the swing leg muscles to quickly bring it back into its normal forward
motion. However, if this disturbance takes place late in the swing phase, it is
better to finish the step without undertaking any special corrective action, and
just use the stabilizing effects during the discrete event at heel strike. In this
manner, it should be possible to obtain highly robust walking machines using
only a handful of simple stabilizing features.

9.3 On stability measures and disturbances

Throughout this thesis, the stability of the walkers is analyzed by means of a
Poincaré mapping analysis; how well do they respond to changes in the initial
conditions of a step? Although this analysis has proven to be both practical and
successful, it should be noted that it is only a limited representation of the com-
plete stability problem in dynamic walking robots. The goal of this subsection is
to indicate the limits of the stability analysis as used in this thesis and to point
to future directions of research.

Before discussing the limitations of the stability analysis in this thesis, it is
useful to briefly recapitulate the essence of the cyclic walking motion. Fig. 9.1
shows a stylized phase space graph of a cyclic walking motion. The axes of
the graph contain the states of the walker, for example the leg angles and their
angular velocities (note that even for the simplest walker, this is already 4-
dimensional, which is why Fig. 9.1 is ‘stylized’ into a 3D figure). A perfect cyclic
walking motion (a limit cycle) is represented in this graph with a closed orbit
which is followed once per stride (two steps). The Poincaré mapping method
uses only one point of that orbit; the point where it crosses a predefined sur-
face, the Poincaré Section. For walking systems, this surface is usually defined
as the instant of heel strike, a condition that occurs only once per step. If the
walker is in a limit cycle, the crossing with the Poincaré Section constitutes a
point that maps onto itself stride after stride; a fixed point. If the walker is not in
a limit cycle, it will cross the Poincaré Section at another point. Following the
walking motion stride after stride, one will observe a sequence of points in the
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Poincaré Section which either converges toward a fixed point or diverges until
a fall occurs and the sequence stops.

In this thesis, all stability analyses were performed in the Poincaré Section.
We used two forms of analysis, namely a linearized stability analysis of the fixed
point, and an analysis of the basin of attraction, i.e. the set of all points in the
Poincaré Section that converge to the fixed point. The first form, the linearized
analysis, has become common for the stability analysis of walking motions since
Hurmuzlu [38] first applied it. For small deviations from the fixed point, this
analysis provides insight into wether the fixed point (and the belonging limit cy-
cle) is stable or not, and how fast these small disturbances decrease from stride
to stride. In addition to the linearized analysis, this thesis applies the analysis
of the basin of attraction. This analysis provides valuable insight into what hap-
pens after larger deviations from the fixed point. We learned to which deviations
the walkers were relatively sensitive, and what type of fall would follow. Most
importantly, the analysis of the basin of attraction pointed us toward the idea
for stabilization by means of hip actuation in Chapter 3.

However, one of the important questions is: is the basin of attraction, or any
abstraction thereof, useful as an objective measure for robustness? In this thesis,
we have pretended that it is, first by measuring the total area of the basin of
attraction in Chapters 2 and 3, and subsequently by measuring (over the prin-
cipal axes) the smallest distance from the fixed point to the boundaries of the
basin of attraction in Chapter 4 and 5. The main objection to the first method,
measuring the total area of the basin of attraction, is the fact that it wrongfully
attaches value to parts of the basin of attraction far away from the fixed point.
For example, assume that the original basin of attraction of a walking motion
has the shape of a triangle, and that the fixed point is located somewhere close
to the top corner. Then, imagine a design change that results in a downward
enlargement of basin of attraction, and simultaneously in an upward shift of the
fixed point, bringing it even closer to the top corner. Obviously, the outcome
of the area measurement of the basin of attraction wrongfully predicts a better
robustness against disturbances.

To avoid the wrongful predictions of the measurement of the area of the
basin of attraction, our second approach was to measure the distance from the
fixed point to the boundaries of the basin of attraction. Starting in the fixed
point, the state variables were varied one by one to find the largest allowable
deviations both in positive and in negative direction. In this way, we found the
distance between the fixed point and the boundary of the basin of attraction in
the direction of the principle axes. After having done this for all the states, the
smallest value was taken as a measure for the robustness of the walking motion.
Although this measure represented an improvement compared to the area mea-
surement, it is still not an objective measure for robustness. The main objection
is that the result of the measure depends on how the state variables have been
chosen. One could try to make the comparison between two walking models
somewhat fair by applying a standardized scaling (as we have done in Chapters
4 and 5 where the models are scaled to unit gravity, leg length and body mass).
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However, even with such scaling, the outcome of the comparison would still be
different if the state variables were chosen differently. In other words, the ‘fixed
point to boundary’-measurement is not an objective measure for robustness.

So, if the measures for robustness as applied in this thesis were not objective
measures, does there exist any objective measure for robustness of the walking
motion? To our knowledge, the answer appears to be negative. Following sug-
gestions by Ruina [personal communication], the best approach appears to be
to first devise a classification of all possible disturbances that can occur dur-
ing the walking motion, and then to produce a robustness score for each of the
different kinds of disturbances. So, a discussion on the robustness of a certain
walking motion should always have a reference to what type of disturbance is
considered. Such a classification has not been made in this thesis, except for the
establishment of the ‘step-down’ experiments in Chapters 3 and 6. A step-down
can be regarded as one kind of disturbances for which an objective measure can
be created (such as step-down height scaled by leg length). A further classifica-
tion is recommended for future research, which should incorporate all possible
deviations from the limit cycle, and not only those in the Poincaré Section, see
Fig. 9.1.

9.4 On actuation

A central theme in this thesis is adding actuation to passive dynamic walk-
ers. The underlying principles and concepts are more important than the actual
physical form of actuation. Therefore, the choice for pneumatic McKibben actu-
ators as used in Chapters 7, 8 and 9 was not based on an elaborate consideration
of all candidate actuation principles but rather on practicality; as a result of the
preceding research by Van der Linde [79] our lab had operational knowledge of
the McKibben muscles and the required pneumatic systems. The original choice
was based on the following benefits of these muscles:

1. High power-to-weight ratio.

2. High efficiency (almost no damping).

3. Compliance which allows passive joint motions.

4. Controllable, linear stiffness which allows modification of system eigen-
frequencies.

5. Cheap because they can be easily self-made.

6. Easy to install.

Strangely enough, none of the above benefits (except the last) really holds. First,
the power-to-weight ratio for the muscles alone is fairly high indeed, but this
should be put in the perspective that a range of other components (pressure
canister, regulators, valves, electric valve control system) are required. Also, the
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McKibben muscles operate only at moderate pressures (up to 0.6 MPa) which
limits their power output. Even a lighter piston cylinder operating at higher
pressures could easily outperform the muscles [Plettenburg, private communi-
cation]. Second, the high efficiency claim is only valid when a muscle is oper-
ated as a spring (at constant pressure) in the linear range. At maximal extension,
the damping increases dramatically. When used as an actuator, the efficiency re-
mains questionable because the muscles have a fairly large ’dead volume’ which
must be filled at every actuation cycle. Moreover, as reported in Chapter 8, the
entire pneumatic system is distinctly inefficient because of the idle pressure re-
duction from 5.8 to 0.6 MPa. The third feature, compliance, is not a very special
feature. Any other actuator can be given compliance through control or through
the combination with mechanical springs. However, the compliance is a disad-
vantage rather than an advantage as soon as some control is to be implemented.
Even the very basic swing leg control applied in the prototypes in this thesis (a
quick forward swing followed by a static position) is already difficult to obtain
with compliant actuators. Fourth, the stiffness of the muscles is not as linear
as was hoped for, see Fig. 7.7. In addition, the miniaturized pneumatic system
that we apply in the prototypes results in fairly slow muscle dynamics; filling
up a muscle is a first-order system with a time constant of 0.25 s in some cases.
If this time constant is compared to the average step time of 0.6 s, it is clear
that the stiffness is highly variable over one step, so one can hardly speak of
a ’controllable’ stiffness. Even research dedicated to the control of pneumatic
muscles [21] has resulted thus far in only slow to moderately fast responses.
Fifth, the muscles are not that easy to produce, as especially the connectors at
both ends are a source of trouble such as leakage or structural weakness. For
that reason, all prototypes in this thesis have been equipped with commercially
available muscles [4] which are more reliable although even these still break fre-
quently. Furthermore, the choice for McKibben muscles also implies a choice for
portable pneumatics. The lack of sufficiently lightweight commercially avail-
able components means that many must be specially developed for the research
project, which makes the choice for McKibben muscles not so cheap after all. All
together, it is not recommended to use McKibben muscles for future biped robot
projects.

Even more strangely, it appears that precisely the originally undesired mus-
cle properties of non-linearity and damping at maximal extension are the main
factors for the success of the prototypes in this thesis. As stated above, with
compliant actuators it is difficult to perform the relatively simple control task
of Chapter 3; bringing the swing leg forward quickly and then keeping it there.
However, thanks to the non-linearity of the muscles (they cannot extend beyond
30% of their length and show a high stiffness near that boundary) they act as ex-
tension stops to the hip joint. Whatever the precise torque on the hip joint is,
the swing leg is always brought forward to the position of maximal muscle ex-
tension. Subsequently, thanks to the relatively high amount of damping in that
position, the leg bounces back only mildly, thus fulfilling the second part of the
control rule (i.e. staying there). Prototype experiments and simulations such as
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presented in Chapter 8 have consistently shown that the more of a rebound the
swing leg makes, the less stable is the walking motion. Much experimenting ef-
fort has therefore gone into tuning the pneumatic system and muscle configura-
tion toward minimal swing leg rebound. For future research it is recommended
to investigate wether the same performance is easier to achieve with alterna-
tive, more controllable actuators, for example electrical DC motors combined
with controllable passive elements (brakes, springs, dampers).

9.5 On foot contact in simulations

The core of the research is formed by numerical simulations of both irreducibly
simple models and more realistic models correlating to the prototypes. Although
the basics of multibody modeling and simulation are considered common knowl-
edge, there are some details that have required special attention for the walk-
ing models. The most complex issue is the foot contact, especially during heel
strike where an impact occurs. Most commercial software packages for multi-
body simulations cannot be trusted; in one of our attempts the model would
take off and fly away at high speed after its first heel strike impact due to a
numerical instability. A mild adjustment of the mysterious contact parameters
would suddenly result in a more normal motion, but who is to say that that
solution is anywhere near reality?

For the development of our simulation equations, it was decided to model
the foot contact as completely rigid, which implies the requirement for impact
calculations at heel strike. The alternative, ’soft’ contact with the use of stiff uni-
lateral springs and dampers underneath the foot, is less attractive due to the
additional stiff degrees of freedom to the model. Not only does this cost calcu-
lation time during the smooth stance phase, but it is especially disruptive for
the stability calculations where all the model states at the beginning of two suc-
cessive steps have to be compared with each other. Our choice for hard contact
with impacts however brings its own peculiarities.

Throughout this thesis, the models are assumed to have an instantaneous
double stance phase; as soon as the swing foot hits the floor at heel contact, the
former stance foot loses contact with the floor and does not participate in the ac-
tual impact (an assumption which is verified if the hind foot ends up with a pos-
itive vertical velocity). Thanks to this instantaneous double stance phase and to
the persistent use of arc feet, there is always only a single contact point between
the robot and the floor. This makes the impact calculations deterministic and
generally solvable. This would not be the case if we would have allowed impacts
with multiple simultaneous contacts in our models. The problem is that the im-
pact cannot be regarded as a simple instantaneous event, because the outcome
is highly affected by the interaction between the contact forces in the multiple
contact points (which are affected by the exact contact stiffness and damping
and by how shockwaves travel through the system). We briefly made an excur-
sion toward this more complicated situation in an attempt to capture behaviors
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such as falling and stopping more realistically. To solve the impact indetermina-
cies we used an algorithm by Chatterjee [11] which generally provides a likely
result in a reasonable amount of time. However, the amount of discussion and
uncertainty that result from such calculations are too much of a distraction from
the main focus of the research. Therefore, a strong recommendation for future
research is to continue to work with the simple impact calculations to avoid the
above deliberations, even if it requires mild adjustments to the prototype under
investigation.

9.6 On human walking

The research in this thesis was performed on the basis of biomechanical knowl-
edge (e.g. [42, 87, 40]). So, how much do the resulting prototypes resemble a
walking human being? The mechanical construction is quite different but the
dynamic principles behind it appear to be the same, as revealed by the natural
appearance of the motions.

First, Chapters 3 and 6 propose to obtain fore-aft stability by accelerating the
swing leg to move faster than a fully passive leg. The required actuator activ-
ity for this corresponds neatly with measurements on muscle activity [40] and
with calculations with inverse-dynamic models [42, 72]. Moreover, the required
feedback control loop in the prototypes is a simple state machine where a switch
underneath the foot signals the transfer to the subsequent state. This can be re-
garded as a very basic replica of how human walking is governed by a Central
Pattern Generator (a neural oscillator in the spinal cord which oscillates in the
walking frequency under strong influence of feedback signals). It also correlates
to the influential role of foot skin reflexes [80] in human walking.

Second, Chapters 4 and 7 propose the use of a bisecting hip mechanism to
obtain a stable upper body. Although the same mechanism can be found in some
orthotic devices [39], this is obviously not a good model of the human locomo-
tive system. In our prototypes, the bisecting mechanism is implemented with
bicycle chains which could be regarded as tendons or muscles under perma-
nent tension. However, this is a very unattractive solution for biology because
of the metabolic energy consumption by the muscle fibers under tension even if
no mechanical work is done. As a result, the models and prototypes in this the-
sis show relatively large excursions of the upper body whereas the human up-
per body remains almost vertical. Nevertheless, the prototype results indicate
that (at least for 2D motions) a simple and local mechanism (or control loop)
around the hip joints already suffices for a stable walking motion; there is no
need for more ’system-wide’ information such as gyroscopic sensory readings
or processed visual information, or even information on which leg is the current
stance leg. Therefore, even though the human body does not contain a mechan-
ical bisecting hip joint, it is hypothesized here that the muscles around the hips
and pelvic body might very well operate largely on local feedback (reflex) loops
alone, as far as the fore-aft motion is concerned.
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Figure 9.2: Robot ankle axis (A) [91] versus human ankle joints (B and C, from In-
man [40]). The robot ankle axis points forward and downward whereas the human ankle
axis points forward and upward. However, it appears that the overall effect is the same;
leaning to the left (or shifting the foot pressure to the left side) results in steering to the
left. More research is required for insight into the precise nature of the differences and
similarities between the two.

Third, Chapters 5 and 8 propose the use of a tilted ankle axis for 3D stability.
This axis is mounted in a completely different orientation than in the human
ankle, see Fig. 9.2. Nevertheless, the effect is similar; a lean angle to the left
results in steering to the left. Again, it is not the physical shape of the design
but rather the conceptual idea behind it that could be of interest to the biome-
chanics research community. The idea is that sideways stability can be obtained
by coupling lean to yaw; a potential fall to the right is averted by steering to
the right. The success of bicycles and skateboards underlines the power of the
concept. It is possible that the human ankle or the entire foot construction con-
tribute to such an effect, but it is equally likely that an active control loop in the
hip region induces such an effect. It will be a difficult task to find such effects in
human locomotion, as the human body is always applying multiple solutions
simultaneously. In the case of sideways stability, it has been found already that
humans apply sideways foot placement as one strong factor of influence and in-
ertial reaction torques (cf. tightrope walking) as the other. This thesis adds a new
possibility; changing the walking direction as a means for sideways stability. It
remains as a recommendation for future research in biomechanics to affirm or
to negate its use in human locomotion.

9.7 General conclusions

This thesis set out to answer three issues:

1. How can the robustness of 2D walking motions be increased?
In 2D the stability problems are manifested in either a fall forward or back-
ward (Chapter 2), as long as a knee collapse is prevented through the use
of knee latches or a proper mechanical design. The chance of both to occur
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can be decreased by applying arc feet with a large radius and by increas-
ing the walking velocity. However, an even stronger effect is obtained with
the application of a simple form of swing leg control, where the swing leg
is quickly brought to a forward position and subsequently kept there until
the end of the step. This form of control can theoretically avert all chances
of falling forward, although this represents a tradeoff between stability
and energy consumption (Chapter 3). This conclusion was validated with
the successfully walking prototype ’Mike’ as presented in Chapter 6.

2. How can an upper body be added?
The simplest and most straightforward solution is the implementation of a
bisecting hip mechanism. It does not decrease the stability and robustness
with respect to the original passive walkers while the efficiency in terms
of energy per meter traveled per unit of weight is even increased (Chapter
4). This conclusion was validated with the successfully walking prototype
’Max’ in Chapter 7.

3. How can robustness for 3D walking motions be obtained?
The 3D walking motion is liable to instabilities in the sideways direction.
Chapter 5 shows that these instabilities can be addressed by coupling the
lean degree of freedom to yaw; a fall to the side is averted by steering
in that direction. This solution only works when walking with a certain
minimal velocity which depends on the design of the vehicle, just as with
bikes and skateboards. Chapter 5 shows that a reasonable amount of dis-
turbance rejection can be expected for a simple model with an ankle joint
that provides this coupling between lean and yaw. This conclusion was
validated with the successfully walking prototype ’Denise’ in Chapter 8.

All three solutions preserve the main attractions of the concept of passive dy-
namic walking, namely a low energy consumption and an extremely simple
control structure.

9.8 Future directions

The introductory chapter of this thesis lists a number of topics that need to be
addressed to make the concept of passive dynamic walking practical for appli-
cable walking robots:

• the robustness in 2D must be increased,

• an upper body must be added,

• robustness in 3D must be obtained,

• the walking velocity must be controllable,

• the walker must be able to start and stop,
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• the walker must be able to turn,

• the walker must be able to stand up after a fall.

The first three topics have been addressed in this thesis. However, the robust-
ness that has been achieved is not yet sufficient to cope with rough (outdoors)
terrain. Therefore, in addition to the remaining points of the above list, future
research must address the issue of robustness of the walking motion.

With respect to the current prototypes, it appears that the robustness of the
walking motion cannot be increased significantly by means of purely mechani-
cal components. The next logical step will be the inclusion of simple, local reflex-
like control loops. We expect that such control loops can help especially with
sideways stability; robot research has shown that this is a problem where me-
chanical solutions alone are not sufficient while there is also biological evidence
for the necessity of control to solve this problem. It is known that human be-
ings use sideways foot placement as a control parameter for sideways stability.
The sensors with the strongest relation to the sideways stability appear to be
the vestibular organ and the pressure distribution sensors underneath the feet.
A first research topic could be to find a simple and straightforward control rule
that uses these sensors to control the sideways foot placement.

Another issue that might be resolved with local reflex loops is a proper reac-
tion to tripping. Human beings use, depending on the progression of the step,
one out of two possible strategies [20], namely 1) quickly setting down the trip-
ping swing foot (shortening the step), or 2) quickly lifting up the tripping swing
foot to overcome the obstacle (elongating the step). Possibly, both of these re-
flexive actions plus the choice between them can be implemented with a simple
and straightforward solution (by proper choice of actuator, sensor, and control
algorithm).

However, such feed-back stability solutions will probably provide only so
much of extra robustness. Human beings obtain much of their robustness from
feed-forward control; mostly through visual input an estimate of the upcoming
obstacles is made, which is incorporated in advance in the muscle control. The
applicability of visual input for walking robot control should be investigated in
a two-way approach; 1) How accurate can the upcoming obstacles be predicted
with a vision system and what are the key visual cues? 2) What accuracy is
required for the predictive information?

As soon as some of the proposed control algorithms are implemented, the
issue of tuning the control parameters must be addressed. Manual tuning will
be necessary initially but automation is inevitable. In our opinion, the best ap-
proach is to provide the system with a set of initial parameter values that are
sure to result in stable walking on a smooth floor, probably at the cost of en-
ergy expenditure and velocity. Then the system should adapt its control param-
eters to optimize for stability, efficiency, and velocity. The research challenge is to
find the proper adaptation or learning algorithms, and to find which parameters
should be tuned in which sequence and on the basis of which measurements.
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It will take many man-years of research effort to arrive at a system with
sufficient robustness for confidential use in real-world applications. However,
we believe that this may happen sooner than one would think; the research
community pursuing the approach in this thesis is quickly gaining momentum
with each successful prototype because of the stunningly human impression
that these machines leave when strolling along in their natural cadence, while
at the same time industrial interest is growing because of the elegant simplicity
of the robot designs.
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Passive dynamic walking is a promising concept for the design of efficient, nat-
ural two-legged walking robots. Research on this topic requires an initial point
of departure; a stability analysis can be executed only after the first successful
walking motion has been found. Experience indicates that it is difficult to find
this first successful walking motion. Therefore, this paper provides the basic
tools to simulate a simple, two-dimensional walking model, to find its natural
cyclic motion, to analyze the stability, and to investigate the effect of parameter
changes on the walking motion and the stability. Especially in conjunction with
the accompanying MATLAB1 files, this paper can serve as a quick and effective
start with the concept of passive dynamic walking.
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Figure A.1: Prototypes of passive dynamic walking bipeds that have been developed
over the years. Left: Copy of Dynamite, McGeer [49], middle: 3D walker, Collins et al. [19],
right: Mike, Wisse and Frankenhuyzen [94].

A.1 Introduction

This text is written for prospective researchers of ’Passive Dynamic Walking’.
Passive Dynamic Walking is an approach to investigate bipedal (two-legged)
walking systems, be it humans or other bipedal animals, or bipedal walking
robots that you want to build or control. Passive Dynamic Walking is a way to
look at bipedal walking. Instead of seeing it as a continuous struggle to keep
balance, bipedal walking is much better understood when regarding it as a con-
tinuous passive fall, only intermittently interrupted by a change of foot contact.
A steady succession of steps can then be analyzed as a cyclic motion.

The approach of Passive Dynamic Walking as originally proposed by McGeer
[49] has led to various insights regarding human walking [44], and has produced
a number of natural and efficient walking machines [19, 49, 94], see Figure A.1.
It is our opinion that huge progress can be made in both fields using the ap-
proach of Passive Dynamic Walking. However, experience indicates that it is
rather difficult to get started with Passive Dynamic Walking, as one can start
analysis only after at least one successful walking motion has been found. This
text serves as a guide to that first start.

We will present the complete simulation procedure for a simple, two-dimen-
sional passive dynamic walker. The model is realistic enough to enable the con-
struction of a physical prototype with corresponding behavior. Section II de-
scribes the required algorithms for a computer simulation that will predict a
walking motion after a proper launch of the biped. This section includes the
model description, the derivation of the equations of motion, numerical inte-
gration, heel strike detection and the derivation of the impact equations. Sec-
tion III focuses on the analysis of the step-to-step progression of disturbances
on the walking motion, encompassing the selection of a Poincaré section and a
linearized stability analysis.

1For availability of the accompanying files, please try http://dbl.tudelft.nl or contact the
first author.
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The text is accompanied by a set of MATLAB (version 5.2 or higher) files
that will provide an operational programming example for a quick start. The
following sections will guide you through the functions and background of each
of the files.

A.2 Forward dynamic simulation

Model

The simplest system that can perform a Passive Dynamic Walking motion con-
sists of two rigid legs interconnected through a passive hinge. We will study a
two-dimensional model for the sake of simplicity. A real-world prototype can
be made to behave (more-or-less) two-dimensional through the construction of
two symmetric pairs of legs, see Figure A.2. The corresponding dynamic model
is shown in Figure A.2.
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Figure A.2: Left: Prototype Passive Dynamic Walking robot with four legs (two-
dimensional walking behavior), walking on a checkerboard surface to prevent foot-
scuffing at mid-stance. Middle: Parameters of the simulation model. Right: four degrees
of freedom of the simulation model; the position of the hip and the absolute leg angles.

We will make a number of assumptions to keep the simulation manageable.
First, we assume that the legs suffer no flexible deformation and that the hip
joint is free of damping or friction. Second, we idealize the contact between the
foot and the floor, assuming perfectly circular feet that do not deform or slip,
while the heel strike impact is modeled as an instantaneous, fully inelastic im-
pact where no slip and no bounce occurs. Finally, the floor is assumed to be a
rigid and flat slope with a small downhill angle.

There is one problem due to oversimplification of the model. Contrary to
humans who have knees, the legs of the model cannot extend or retract, which
inevitably leads to foot-scuffing at mid-stance. In a real-world prototype this
problem is solved by covering the floor with a checkerboard pattern of tiles
that provide foot clearance for the swing foot, see Figure A.2. In the computer
simulation, we will simply assume that there is no interference between the floor
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and the swing foot under certain conditions, as described in the section ’Heel
strike detection’.

Based on these assumptions, the model is defined with 14 parameters, which
is done in the file wse par.m . The world is parameterized with gravity g and
slope angle γ. A leg must be parameterized as a single rigid body with a mass m,
a moment of inertia I , the coordinates for its center of mass with respect to the
hip in vertical direction c and in horizontal direction w, the leg length l and the
foot radius r. An idealized model consists of two completely equal legs. How-
ever, we have noticed that a small difference in parameter values between the
legs can strongly influence the walking behavior, so the model will be prepared
for legs with different parameter values. All parameters are summarized in Ta-
ble A.1 in which we have also provided a set of default parameter values that
should lead to a successfully walking model or prototype.

World
gravity g 9.81 m/s2

slope angle γ 0.01 rad
Leg 1 and 2

length l 0.4 m
foot radius r 0.1 m
CoM location c 0.1 m

w 0 m
mass m 1 kg
mom. of inertia I 0.01 kgm2

Table A.1: Parameters for a simple passive dynamic walking model corresponding to
Figure A.2. The given default parameter values were chosen to 1) comply with a realistic
prototype, and 2) provide stable simulation results.

The number of degrees of freedom of this model requires some attention; al-
though the two legs each have two position and one orientation coordinate in
a two-dimensional world resulting in a total of six degrees of freedom (twelve
states when including the velocities), only three states are independent at the
start of a step. We get from twelve to three by successively considering the hip
joint constraint, the foot contact, and the Poincaré section. First, the hip joint
constrains two degrees of freedom (four states) so that the model has only four
independent generalized coordinates, xh, yh, φ1 and φ2, see Figure A.2. Second,
the foot contact constrains two more degrees of freedom (again four states), leav-
ing only φ1 and φ2 as independent coordinates. The hip coordinates depend al-
ternatingly on the one or the other foot contact, which is calculated in the file
wse dep.m . Third, we take a Poincaré Section of the cyclic walking motion.

This means that we will focus our attention on the start of each step defined
as the instant just after heel strike when both feet are in contact with the floor,
which makes one more state dependent; only one leg angle is independent, the
other is the same but opposite in sign. Together with the two independent ve-
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locities, there are three independent initial conditions that completely define the
state at the start of a step, see Table A.2. The definition of the initial conditions
takes place in the file wse ic.m . The values in Table A.2 together with the de-
fault parameter values in Table A.1 will result in a cyclic and stable walking
motion.

Independent initial conditions
Stance leg (leg 1) angle φ1 0.2015 rad
Stance leg (leg 1) angular velocity φ̇1 -1.4052 rad/s
Swing leg (leg 2) angular velocity φ̇2 -1.1205 rad/s
Dependent initial conditions (wse dep.m)
Swing leg (leg 2) angle φ2 -0.2015 rad
Hip horizontal displacement xh 0.0802 m
Hip vertical displacement yh 0.3939 m
Hip horizontal velocity ẋh 0.5535 m/s
Hip vertical velocity ẏh 0.0844 m/s
Initial foot contact coordinates
Foothold location stance leg (leg 1) xf1 0 m
Foothold location swing leg (leg 2) xf2 0 m

Table A.2: Initial conditions for a simple passive dynamic walking model corresponding
to Figure A.2. Leg 1 is chosen as the initial stance leg. The given default values will,
in combination with the default parameter values in Table A.1, result in a stable cyclic
walking motion.

Next to defining initial conditions for the model coordinates, we also need
to define the foot contact coordinates. The actual foot contact point travels for-
ward as the model ’rolls’ forward over the sole of its circular feet. Therefore we
appoint a single, fixed location as foot contact coordinate for the entire duration
of a step. This location is defined as the actual point of contact if the leg angle is
zero. The piecewise non-holonomic nature of walking systems requires that the
foot contact coordinates are re-evaluated after each step. The initial values for
the foot contact locations are set rather arbitrarily to zero in Table A.2.

Derivation of equations of motion

The equations of motion are the heart of the computer simulation. For our model
we will first derive the generalized equations of motion for the two legs plus hip
joint, then derive the algebraic equations that describe the alternating foot con-
tact, and finally put these together in a system of DAE’s - Differential Algebraic
Equations. The equations in this section correspond to the file wse eom.m .

Let’s first consider the system of legs and hip without foot contact. As ex-
plained above, that system has four independent generalized coordinates q. Their
accelerations are calculated with the set of equations

Mq̈ = f (A.1)
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with the generalized mass matrix M and the generalized force vector f . They are
constructed with the principle of virtual power and d’Alembert inertia forces
(the so-called TMT-method) resulting in

M = TT MT, f = TT [fg − Mh]. (A.2)

In this M and fg are the terms from ’normal’ Newton-Euler equations of motion,
i.e. without hip joint constraints and thus for six coordinates. The matrix T trans-
fers the independent generalized coordinates q̇ into the velocities of the center
of mass of the bodies ẋ. The vector h holds the convective accelerations. T and h
are generated by running wse sde.m once, which creates the file wse mat.m
containing all necessary matrices.

With equation (A.2) we can calculate the accelerations for the two legs while
ensuring that they remain connected at the hip. However, the system is in free
fall like this as we have not yet incorporated the contact between the feet and the
floor. This contact is described with two equations per leg. First, the foot should
be at floor level. Since we apply circular feet, the vertical constraint equations
becomes

gy = yh − (l − r) ∗ cos(φ) − r (A.3)

where gy must be zero to fulfill the constraint. Second, the horizontal displace-
ment of the foot must be related to the leg angle plus some initial offset (xf )
depending on where the foot has landed,

gx = xh + (l − r) ∗ sin(φ) + r ∗ φ − xf (A.4)

where gx must be zero to prescribe pure rolling without slip.
To construct the complete set of DAE’s we must first determine which foot is

in contact, as only one set of foot contact constraints is active at a time. We will
need the second derivative of these constraint equations (in the form of D and
D2) to allow a combination with the equations of motion in the total system of
equations

[
M DT

D 0

] [
q̈
Fc

]
=

[
F

D2(q̇, q̇)

]
(A.5)

Solving these equations at any instant will provide the generalized accelerations
q̈ and the foot contact forces fc at that instant.

Numerical integration

The next step is to go from accelerations at any instant to a continuous motion.
To obtain that motion numerical integration is needed, which is done in the file
wse rk4.m . We use the classical Runge-Kutta 4 method, which calculates in

four intermediate steps the positions and velocities at time t + ∆t.
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One of the problems of numerical integration is the accumulation of numer-
ical errors. The overall error can be checked by inspection of the energy con-
tent of the system, as the sum of kinetic and potential energy should be con-
stant for a passive walker. An example of such energy checks is given in the
file wse ech.m . Otherwise, one could check stride characteristics such as stride
time or stride length, and investigate how much these change by halving the
integration step ∆t.

Next to the overall error, there is the problem of non-satisfied constraint con-
ditions. The accumulating numerical errors easily lead to a foot that sinks into
the ground or flies away. The source of this type of errors is the fact that in equa-
tion (A.5) there are only second derivatives of the constraint equations, which
only impose that the acceleration of the foot is zero. A small round-off error leads
to huge position displacements after a while. Therefore, the file wse rk4.m fre-

quently calls the file wse dep.m which recalculates the hip coordinates and
velocities as a function of the independent leg angles and angular velocities so
that the foot constraints are met.

Heel strike detection

During normal walking some events take place every step, whereas in the case
of a fall a few other events could take place. To start with the latter, falling for-
ward, falling backward, and losing ground contact (too high velocity) are three
possible events. At every step, the file wse evd.m checks for each of these ter-
minal events and reacts by stopping the simulation.

During continuous locomotion, at every step a heel strike impact occurs,
followed by a change of stance foot. This event is detected by monitoring the
clearance of the swing foot (equation A.3). Zero clearance means that either a
genuine heel strike has occurred or that the swing leg has briefly reached floor
level during mid-stance. To distinguish between the two, the file wse evd.m
contains a four-level decision tree; IF

• the vertical distance between the swing foot and the floor has changed
sign, AND

• the stance leg has passed mid-stance (i.e. its direction of motion is away
from the vertical position), AND

• the swing foot is currently below floor level, AND

• the legs are not parallel but in a spread configuration

THEN there must have been a valid heel-strike somewhere between the previous
and the current integration time step.

If this is detected, an interpolation is necessary to determine the exact instant
of heel contact. We approximate the motion between the timesteps tn−1 and
tn with a third order polynomial and determine when this polynomial passes
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Figure A.3: Interpolation with third order polynomial to find the instant of heel strike
between to integration steps. The clearance function gy is given by equation A.3.

through zero, see Figure A.3. This is done in wse int.m . After this operation
we know the precise instant of heel contact and the state of the model at that
instant.

Derivation of impact equations

We assume that heel strike is a fully inelastic impact between the forward foot
and the floor. During the heel-strike impact there are very high forces for a very
short time. This process can be interpreted as an impulsive motion, an instan-
taneous event in which the velocities change but not the positions of the model
elements. To calculate this we can use the same equations of motion as eq. (A.5)
if we apply an integration over the impact duration and take the limit of this
duration to zero. The result is a system of impact equations with much resem-
blance to eq. (A.5):

[
M DT

D 0

] [
q̇+

fc

]
=

[
Mq̇−

0

]
(A.6)

The D matrix again represents the foot constraints, and is equal to the D used
in equation A.5. We must carefully decide which foot constraints are active dur-
ing heel strike and which are not. At heel strike, both feet are at floor level, so
both could possibly participate in the impact. However, the contacts are uni-
lateral which means that only compressive forces can occur. We should only
incorporate those constraint equations that result in a compressive impulse. For
our model during normal walking, it turns out that only the forward foot does
participate whereas the hind foot does not. Presumably the hind foot will ob-
tain an upward velocity as a result from the impact calculation. If it doesn’t,
the assumption was wrong and we should have incorporated both feet in equa-
tion A.6, which would have resulted in a full stop. The file wse evd.m checks
for this.
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Walking cycle

Now we have sufficient tools and algorithms to simulate a continuous walking
motion. Let’s give the model some initial conditions and see how many steps it
will take or how it might fall. The file wse scw.m ties all previously mentioned
files together. Use it by first setting the appropriate parameter values and initial
conditions in wse par.m and wse ic.m and then running wse scw.m . The
simulation results are then stored in the large matrices t t, q t, qd t, f t, and
g t, accessible from MATLAB’s base workspace as global variables. To visualize
the results, one can use and modify wse fig.m which plots some basic graphs

(Figure A.4), or wse ani.m which displays a simple animation of the resulting
motion, see Figure A.5.
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Figure A.4: Result figures produced by wse fig.m.

A.3 Step-to-step stability analysis

Stability

The most important characteristic of a walking machine is its stability; it should
not fall down. According to the classical interpretation, this requires postural
control at every instant of the motion, aimed to keep the center of gravity above
the support polygon. We believe that this static approach (and related approaches
such as ’ZMP’ control [83]) are suitable for standing but not for walking. As said
before, walking should be regarded as a continuous passive fall with intermit-
tent changes of foot contact. Instead of analyzing the balance at every instant we
should analyze the stability of the entire cyclic motion in a step-to-step analysis.

A step-to-step analysis allows us to concentrate on the initial conditions only;
the rest of the step is then a predictable passive motion. We can present the initial
conditions in a phase-space graph (a plot of φ versus φ̇), where any point in the
graph represents one specific combination of values for the three independent
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Figure A.5: Animation screen produced by wse ani.m.

initial conditions. All points lead to a subsequent motion, but only some of them
are successful steps. The end of a successful step is the start of a new one, and so
some points in the graph map to some others. This is called ’Poincaré mapping’.

With a little bit of luck (depending on the model parameter values) there
are one or two points in the graph that map onto themselves. These are called
fixed points. They represent a continuous walking motion with all identical steps,
which is called a limit cycle. With some more luck, one of the fixed points is
stable; if the initial conditions are a small deviation away from the fixed point,
this deviation disappears over a number of steps until the walker is back in
its limit cycle. This stability for small errors is analyzed in the next section. A
question that remains is ’how small is small’; for what initial conditions will
we still find convergence to the limit cycle? That question is answered with an
analysis of the basin of attraction, but that is outside the scope of this paper.

Linearized stability

We need to find a fixed point and to analyze its linear (small-error) stability. This
is easiest understood in reverse order, so for now let’s assume that we already
know a fixed point. Actually we do, see Table A.2. The three independent initial
conditions are represented with v = [φ1, φ̇1, φ̇2]T , whereas we’ll call the fixed
point vfp. The Poincaré mapping is represented with the nonlinear function S,
so that

vn+1 = S(vn) (A.7)

where S is a short notation for the complete simulation of one walking step
including the heel strike impact and a mirroring of the legs to compare vn+1
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with vn. All initial conditions can be written as a sum of the fixed point plus
some deviation:

vn = vfp + ∆vn (A.8)

Although S is highly nonlinear, for small deviations from vfp we can approxi-
mate the mapping with a linearization according to

vfp + ∆vn+1 = S(vfp + ∆vn) ≈ S(vfp) + J∆vn

with J = ∂S
∂v

(A.9)

This equation simplifies to ∆vn+1 = J∆vn . The Jacobian (matrix of partial
derivatives) J here is the key to our linearized stability analysis. Basically it
multiplies the errors at step n to produce those at step n+1. If the multiplication
factor is between -1 and 1, errors decrease step after step and the walker is stable.
The multiplication factors are found in the eigenvalues of J that should all three
have a modulus smaller than 1. In the case of the parameter values of Table A.2
the eigenvalues are 0.65, 0.22 + 0.30i, and 0.22 - 0.30i, so the model is linearly
stable.

Unfortunately, the Jacobian J is not readily available. It must be obtained by
numeric differentiation by means of four full-step simulations; once for the ini-
tial conditions of the fixed point and three times to monitor the effect of a small
perturbation on each of the initial conditions. This is done in the file wse lca.m .
The resulting eigenvalues of J tell us whether a fixed point is stable or not. How-
ever, more than a simple ’yes’ or ’no’ cannot be expected, as the actual eigenval-
ues and eigenvectors do not provide much more insight. To determine which
model is ’more stable’, one should investigate the maximally allowable distur-
bance size, which can be found by analysis of the basin of attraction (not in this
paper).

Finding a fixed point

Now we know how to analyze a fixed point, but how do we find it? The ap-
proximation of equation (A.9) can also be applied to a set of initial conditions
close to the fixed point (which we need to guess). This will provide an estimate
for J. With that estimate and with the difference between the beginning (v)
and the end (S(v)) of a step, a Newton-Raphson iteration can be performed
that will quickly converge to the fixed point. The iteration procedure as used in
wse lca.m is as follows:

repeat
∆v = [I − J]−1(S(v) − v)

v = v + ∆v
until |∆v| < ε

(A.10)

where we can set ε according to the desired accuracy. If this procedure is started
for example with {φ1, φ̇1, φ̇2} = {0.15,−1,−1}, it takes 7 iteration steps (± 20
seconds on a 2GHz PC) to arrive at the fixed point with ε < 10−12 .
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Note that the file wse lca.m always simulates only a single step. In order to
compare the end state with the begin state, the end state must be mirrored. This
is the standard procedure used in most passive dynamic walking researches,
although it is not entirely realistic. In case the model has two legs with different
mass properties or in some other special situations [27], the limit cycle analysis
should be performed on two subsequent steps which eliminates the necessity
for mirroring. The drawback of this is that there is more chance of a fall and
thus more difficulty in finding (unstable) cycles with a bad initial guess for the
initial conditions.

A.4 Conclusion

This paper provides the basic tools to simulate a simple, two-dimensional walk-
ing model, to find its natural cyclic motion, to analyze the stability, and to inves-
tigate the effect of parameter changes on the walking motion and the stability.
Especially in conjunction with the accompanying MATLAB files, this paper can
serve as a quick and effective start with the concept of passive dynamic walk-
ing.



Appendix B

Video material

Martijn Wisse.

The topic of this thesis, walking robots, is one of those fields of research in which
video material plays an essential role, especially when the claim is that the mo-
tions look natural. Therefore, the text of the thesis is accompanied by a collection
of video clips of the various prototypes that were developed during the course
of the PhD-research. This appendix provides a quick introduction to the video
material.

The thesis presents three additions to the concept of passive dynamic walk-
ing, a design concept for the development of human-like walking machines that
require no actuation or control. The state of the art in this field in 2001 was a 3D
walker with knees and counter-swinging arms (Collins Video6 Armed1.mpg),
which could walk stably without any actuation on a slight downhill slope. The
benefits of such passive walkers, as opposed to the more traditional ‘static’ de-
signs (e.g. Honda’s ASIMO) are the low energy consumption, the low control
requirements (resulting in simple designs) and the natural motions. The main
disadvantage is the relatively early state of development; the stability of the
current machines is still meager, and the versatility (number of degrees of free-
dom) is still low. For example, in 2001, no passive walker existed with an upper
body, all prototypes consisted of legs only. This thesis aims to address three of
such shortcomings.

First, the fore-aft stability is increased. The basic problem is that the inherent
stability of purely passive walkers only works for a very limited strength of the
disturbances. Larger disturbances quickly lead to a fall, which is in most cases
a fall forward, as demonstrated with one or our first experimental walkers in
wissejandouwe.avi. The solution to the problem is to accelerate the swing
leg so that it quickly reaches the forward position, ready for the next step. We
implemented this idea in a passive walker which obtained the swing leg acceler-
ation through a mechanism in the hip. The primary goal of the mechanism is to
lift the swing foot to provide clearance (the prototype has no knees), but a sec-
ondary effect is a lowering of the center of mass early in the swing phase, which
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Figure B.1: In order of appearance: State of the art passive dynamic walker (Cornell
University, 2001), Demonstration robot for Museon, Mike, Max, Denise.

in turn provides energy to accelerate the swing leg. The resultant robustness of
the walking motion as shown in museonside.mpg, museonfront.mpg, and
museonkick.mpg, enabled the presentation of the prototype in a hands-on ex-
hibition of a local museum. The idea of swing leg acceleration is also imple-
mented in a powered walking robot, the 7 kg autonomous prototype ‘Mike’.
The actuation at the hip by means of pneumatic McKibben muscles not only pro-
vides extra stability but also provides sufficient power to the system to remove
the need for a downhill walking surface. The prototype walks robustly on a level
floor, see mikelonghall.mpg, mikechangefloor.mpg, or mikestart.mpg,
and even on the more uneven surface of an outdoors sidewalk as shown in
mikeoutside.mpg. With this prototype, the idea of hip actuation for an in-
creased stability is validated.

Second, an upper body is added. The basic problem is the fact that the upper
body is an inverted pendulum with its pivot at the hip joint. To stabilize it, a
torque should be applied between the upper body and the stance leg. Most re-
searchers revert to active control to deal with the complication of the continuous
alternation of leg function between stance phase and swing phase. In contrast,
our solution is purely mechanical and requires no additional actuation or con-
trol. The hip is equipped with a bisecting mechanism so that the upper body al-
ways remains at the dissection angle of the two legs. As a result, the upper body
adds no extra degrees of freedom to the system. The mass and inertia of the
upper body do not significantly change the governing dynamics of the (almost)
passive walking motion. The concept is proven with the successor of ‘Mike’, the
10 kg autonomous prototype ‘Max’, see maxtotaalfilmlego.mpg.

Third, a solution for 3D stability is presented. The previous machines are all
two-dimensional (by means of their four-legged symmetrical construction) and
thus they do not suffer from sideways instabilities. The last robot of the series,
the 8 kg autonomous prototype ‘Denise’ shown in denise collage.mpg, is
much more human-like with only two legs. To obtain more resistance against
disturbances than possible with the fully passive machine in 2001, a special an-
kle joint is introduced. The ankle joint couples the unstable sideways lean mo-
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tion to a yaw motion; the prototype steers in the direction that it is falling. When
walking faster than a critical velocity, this coupling provides stability to the mo-
tion similar to the stability of a riding bicycle.

The three solutions together make it possible to build stable, efficient, and
natural looking human-like walking machines such as ‘Denise’ while requiring
only a minimal amount of control technology and actuation.
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Samenvatting

Mensen kunnen stabiel en efficient lopen op allerlei soorten ondergrond, zonder
dat dit veel moeite lijkt te kosten. Vanuit een technisch oogpunt is deze klaarblij-
kelijke moeiteloosheid merkwaardig, omdat de loopbeweging in feite een zeer
complex dynamisch verschijnsel is. Bij het lopen op twee benen is sprake van
niet-lineaire en multi-variabele dynamica, beperkingen in het voet-vloer con-
tact (er zijn geen trekkrachten mogelijk), een ingebouwde instabiliteit (het sys-
teem is een omgekeerde slinger met het draaipunt bij de standvoet), discrete
gebeurtenissen (zoals het neerkomen van het zwaaibeen) en een variabele con-
figuratie (door de afwisseling van stand- en zwaai-functie van de benen). Om
deze complexe loopbeweging kunstmatig te kunnen nadoen, bijvoorbeeld om
mensen met een handicap weer te laten lopen of voor de ontwikkeling van
lopende robots, is het noodzakelijk om de essentie te begrijpen van het mense-
lijke voortbewegingssysteem.

Om de essentie van menselijk lopen te achterhalen, wordt in dit proefschrift
gebruik gemaakt van synthese (het bouwen van kunstmatige loopsystemen) in
tegenstelling tot het vaker voorkomende analyseren van het bestaande, mense-
lijke loopsysteem. Het kunstmatige loopsysteem wordt elementsgewijs opge-
bouwd. Deze aanpak heeft als groot voordeel dat het de nadruk legt op de es-
sentie van het lopen op twee benen; voor ieder element is het precies duidelijk
waarom het noodzakelijk is en hoe het bijdraagt aan de gehele loopbeweging.

De aanpak in dit proefschrift verschilt van de meeste andere looprobotpro-
jecten. Meestal baseert men het ontwerp en de regeling voor looprobots op
de standaard robottechnologie zoals bekend van de industriële robot-armen;
krachtige motoren en stijve verbindingselementen zorgen samen met ingewik-
kelde regelalgoritmes ervoor dat die robot-armen met hoge naukeurigheid een
voorgeschreven traject kunnen volgen. Wij stellen dat deze aanpak leidt tot on-
nodig complexe, zware, en inefficiënte loopsystemen, omdat de hoge nauwkeu-
righeid bij de loopbeweging niet noodzakelijk is. Het belangrijkste inzicht hier
is dat de stabiliteit niet persé binnen één stap verkregen hoeft te worden, zolang
de loopbeweging als serie van opeenvolgende stappen maar stabiel blijft. Anders
gezegd, de loopbeweging moet beschouwd worden als een periodieke bewe-
ging welke slechts als geheel stabiel hoeft te zijn. Dus, de fundamentele insta-
biliteit die er bestaat binnen één stap (het systeem is een omgekeerde slinger)
hoeft eenvoudigweg niet te worden weggeregeld!

Ons onderzoek is gebaseerd op het bestaande concept van ’passief dynamisch
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lopen’, een concept waarmee op overtuigende wijze gedemonstreerd kan wor-
den wat de mogelijkheden zijn van het inzicht dat de loopbeweging als geheel
gezien moet worden. Passief dynamische loopsystemen zijn constructies van
puur mechanische componenten die een stabiele, periodieke loopbeweging kun-
nen maken wanneer ze op een flauwe neerwaartse helling worden gezet. Met
onaangedreven heup- en kniescharnieren vertonen deze lopers stabiel gedrag
zonder dat daar enige regelactiviteit voor nodig is. Dit soort loopsystemen zijn
niet alleen uiterst eenvoudige constructies, maar de loopbeweging is ook nog
eens zeer natuurlijk en efficiënt; het zwaaibeen slingert naar voren in zijn na-
tuurlijke frequentie, iets wat geen energie vereist en natuurlijk aandoet. Alleen
aan het einde van een stap wordt een beetje energie verloren doordat het zwaai-
been met een klap op de grond neerkomt. Deze botsingsverliezen worden bij de
meeste passief dynamische loopsystemen aangevuld door van een lichte helling
af te lopen. De stabiliteit van deze lopers is een resultaat van het regulerende
effect van die botsingen tussen voet en vloer, een effect dat afhankelijk is van
de parameterwaarden van het loopsysteem. Om de stabiliteit te onderzoeken
wordt doorgaans gebruik gemaakt van methode ‘Poicaré mapping’. Bij deze
methode wordt de toestand van het systeem eenmaal per stap bekeken (op het
moment van neerkomen van het zwaaibeen). Vervolgens wordt geanaliseerd
hoe die toestand verandert stap na stap. Als een bepaalde toestand zichzelf
iedere stap herhaalt, is er sprake van een ’limit cycle’ (grenskringloop). De sta-
biliteit hiervan wordt geanaliseerd door te kijken naar de gelineariseerde ef-
fecten van kleine afwijkingen bovenop de zich herhalende toestand. Dit is de
methode die in eerdere onderzoeken al is gebruikt voor de stabiliteitsanalyse
van lopende systemen, en als zodanig vormt het de basis voor het stabiliteitson-
derzoek in dit proefschrift.

Het doel van dit proefschrift is om de essentie te achterhalen van dynamisch,
menselijk lopen, met het concept van passief dynamisch lopen als startpunt. De
vraag is nu, wat zijn de beperkingen van de huidige stand van onderzoek op dit
gebied? Het antwoord bestaat uit een lange lijst van kenmerken en vaardighe-
den die nog niet zijn toegevoegd of bestudeerd: stabiliteit bij grote verstoringen,
een bovenlichaam, stabiliteit in 3D, starten en stoppen, opstaan na een val, trap-
lopen, enzovoort. Dit proefschrift concentreert zich drie elementen uit deze lijst.
Ten eerste, alhoewel de pure passieve lopers stabiel zijn bij kleine verstoringen,
leiden grote verstoring al snel tot een val. Daarom moet er eerst een methode
komen om het gedrag bij grote verstoringen te analyseren, met behulp waarvan
we in staat zouden moeten zijn om eenvoudige en efficiénte regelalgoritmes of
mechanische oplossingen te vinden om het gedrag bij grote verstoringen te ver-
beteren. Ten tweede, een belangrijke beperking van de huidige passieve lopers
is dat ze allemaal alleen maar bestaan uit benen, omdat er nog geen passieve
oplossing bestaat om er een bovenlichaam aan toe te voegen. Ten derde, qua
stabiliteit in 3D zijn de resultaten tot nog toe erg mager. Bijna alle bestaande pro-
totypes zijn slechts 2D; ze kunnen niet zijwaarts ’uit het vlak’ bewegen door hun
constructie met vier benen in een dubbele, symmetrische configuratie (vergelijk-
baar met het lopen met krukken). De weinige prototypes die echte 3D dynamica
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hebben (ze kunnen ook zijwaarts bewegen en vallen omdat ze maar twee benen
hebben), zijn slechts ternauwernood stabiel. Samengevat, het doel van dit proef-
schrift is om de volgende drie problemen op te lossen:

1. het begrijpen en verbeteren van het gedrag bij grote verstoringen,

2. het toevoegen van een bovenlichaam,

3. het verkrijgen van stabiliteit voor 3D loopsystemen.

Ten eerste, om het gedrag bij grote verstoringen te bestuderen, introduceren
we de analyse van de zogenoemde ’basin of attraction’ (aantrekkingsgebied)
van de limit cycle. De basin of attraction is de verzameling van alle toestanden
van de loper die uiteindelijk leiden tot de limit cycle, de periodieke loopbewe-
ging. Alle toestanden buiten de basin of attraction leiden uiteindelijk tot een val.
We hebben de basin of attraction van het meest elementaire loopmodel geanaly-
seerd, een 2D model met rechte benen en puntmassa’s op de heup en voeten. Uit
de analyse volgt dat het gedrag bij grote fouten voornamelijk is op te delen in
een val achterover (niet voldoende energie om over het dode punt halverwege
de stap te komen) en een val voorover (het zwaaibeen is niet tijdig naar voren
om de loper op te vangen voor de volgende stap). De computersimulatie leidde
tot de volgende conclusies:

• Vergeleken bij de oorspronkelijke, lineaire stabiliteitsanalyse zorgt de ana-
lyse van de basin of attraction voor een beter inzicht in het gedrag bij grote
verstoringen, en dus wordt het beter mogelijk om te voorspellen of een
bepaald loopsysteem succesvol al zijn in realistische omstandigheden.

• Voor de passieve (puur mechanische) loopsystemen is de basin of attrac-
tion erg klein, wat duidt op een zeer lage tolerantie voor verstoringen.

• Het meest voorkomende gedrag bij grote verstoringen is een val voor-
waarts. Het (nu nog) volledig passive zwaaibeen beweegt in zijn natuur-
lijke frequentie en heeft dus een onveranderlijke hoeveelheid tijd nodig
om volledig naar voren te zwaaien. Als de loper door een verstoring tij-
delijk te snel beweegt, is het zwaaibeen niet op tijd om de robot voor de
volgende stap op te vangen.

Om het gedrag bij grote verstoringen te verbeteren, stellen we voor om het
onderzoek niet meer te richten op volledig passieve loopsystemen, maar voegen
we aandrijving toe aan het heupscharnier. Met een actuator in de heup is het
mogelijk om het zwaaibeen te versnellen om zeker te stellen dat de voorwaartse
zwaaibeweging tijdig is voltooid. Met een computersimulatie is aangetoond dat
deze oplossing in principe ieder risico om voorover te vallen wegneemt, al-
hoewel dit wel wat extra energie vergt. Belangrijker nog is het feit dat er voor
deze stabiliteitswinst geen ingewikkelde regelalgoritmes nodig zijn; het volstaat
om het zwaaibeen iedere stap snel naar een vooraf ingestelde voorwaartse posi-
tie te zwaaien. Daarvoor zijn geen metingen nodig van de werkelijke toestand



184 DE ESSENTIE VAN DYNAMISCH LOPEN; ANALYSE EN ONTWERP VAN TWEEBENIGE ROBOTS

van de rest van het systeem, de aandrijving mag elke stap identiek zijn. Een
eenvoudige veer-demper combinatie in het heupscharnier is al voldoende; het
enige dat hoeft te gebeuren is het omschakelen van de nulstand van de veer aan
het begin van elke nieuwe stap. Een bijkomend voordeel van het voorgestelde
systeem voor aandrijving is dat het juist voldoende energie aan het loopsysteem
als geheel toevoegt om niet langer van een helling af te hoeven lopen.

De voorgestelde oplossing is gevalideerd door middel van de bouw en het
testen van een autonoom 2D prototype met knieën. Het prototype weegt 7 kg, is
0.7 m lang, en loopt met een snelheid van 0.4 m/s (0.6 s per stap). Het heupschar-
nier is aangedreven met zgn. ‘McKibben muscles’, pneumatische kunstspieren
die de heup een veerstijfheid geven die proportioneel is met de interne CO2-
druk in de spieren. Door om beurten telkens slechts één van de twee spieren
uit een paar van antagonisten in te schakelen, krijgt het heupscharnier iedere
stap opnieuw een veerstijfheid met een voorwaarts gerichte nulstand. Op deze
manier wordt het zwaaibeen naar voren versneld zoals we hierboven hebben
voorgesteld. Om het effect hiervan te testen, hebben we het prototype van een
afstapje laten lopen, waarbij de maximaal mogelijke afstap-hoogte werd uit-
gezet tegen de druk in de heupspieren. Zoals verwacht, bleek inderdaad dat
een hogere druk (ofwel een hogere heup-veerstijfheid) ervoor zorgt dat het pro-
totype stabiliteit kan behouden bij hogere afstapjes. Dus, de voorgestelde heup-
aandrijving zorgt inderdaad voor een betere stabiliteit bij grote verstoringen.

Ten tweede, om een bovenlichaam toe te voegen hebben we een hoekde-
lingsmechanisme in de heup geintroduceerd. Dit mechanisme is een verbinding
tussen het bovenlichaam en de twee benen die ervoor zorgt dat de hoek van het
bovenlichaam (vanaf de zijkant bezien) altijd het midden houdt van de hoeken
van de twee benen. Op deze manier zorgt de toevoeging van een bovenlichaam
niet voor een vergroting van het aantal vrijheidsgraden. Het bovenlichaam is
zo niet een instabiele omgekeerde slinger (scharnierend om de heup), maar het
is meer alsof de massa en massatraagheid van het bovenlichaam over de twee
benen is verdeeld. Daarom is er geen extra stabiliteitsregeling nodig en kun-
nen we het eenvoudige systeemontwerp van de originele passieve lopers be-
houden. Een computersimulatie wijst uit dat de aanwezigheid van zo’n gekop-
peld bovenlichaam de energie-efficiëntie nog verder verhoogt terwijl het geen
nadelige invloed heeft op de stabiliteit. Hieruit concluderen we dat het hoek-
delingsmechanisme in de heup een praktische en eenvoudige oplossing is om
efficiënte tweebenige lopers met bovenlichaam te construeren, goed passend bij
het concept van passief dynamisch lopen.

De voorgestelde oplossing is gevalideerd door middel van de bouw en het
testen van een tweede prototype. De looprobot is een autonoom 2D prototype
met knieën en een bovenlichaam. Het prototype weegt 10 kg, is 1.1 m lang (0.7
m beenlengte), en loopt met een snelheid van 0.4 m/s (0.8 s per stap). De aan-
drijving en het merendeel van het ontwerp zijn een verbeterde kopie van het
eerste prototype. Dit nieuwe prototype loopt stabiel en efficiënt, en het gedrag
bij verstoringen klopt nauwkeurig met voorspellingen van een gedetailleerde
computersimulatie van het prototype. De resultaten geven aan dat de positie
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van het zwaartepunt in voor- en achterwaartse richting een zeer krachtige para-
meter is voor de stabiliteit van de loopbeweging. De rest van de massaverdeling
daarentegen (massatraagheidsmoment en hoogte van het zwaartepunt) hebben
geen merkbaar effect op de stabiliteit. De experimenten met het tweede pro-
totype valideren het gebruik van een hoekdelingsmechanisme om een passief
bovenlichaam op eenvoudige wijze toe te voegen aan dynamisch lopende sys-
temen.

Ten derde, om stabiliteit voor 3D loopbewegingen te verkrijgen hebben we
een bijzonder enkelscharnier voorgesteld. Dit scharnier heeft een as die vanaf
achter op de hiel schuin naar voren en naar beneden loopt (niet zijwaarts),
nogal afwijkend van het enkelscharnier bij de mens. Het effect van dit scharnier
is een dynamische stabiliteit; het zorgt voor een stabiele loopbeweging in 3D,
maar alleen wanneer de robot voldoende voorwaartse snelheid heeft. Dit effect
is vergelijkbaar met de stabiliserende dynamische effecten bij fietsen en skate-
boards. In al deze systemen is er een (statische of dynamische) koppeling tussen
een zijwaartse scheefstand (de belangrijkste oorzaak van instabiliteit in 3D loop-
systemen) en de richting waarin het systeem stuurt. Hierdoor stuurt het systeem
automatisch in de richting waarin het valt. Bij voldoende voorwaartse snelheid
zorgt deze koppeling voor stabilisatie tegen zijwaarts omvallen. Een computer-
simulatie wijst uit dat de orientatie van het bijzondere enkelscharnier een be-
langrijk effect heeft op de stabiliteit. De algemene regel hier is dat hoe meer
horizontaal dit scharnier is gericht, hoe groter de kritische snelheid is waar-
boven stabiliteit verwacht kan worden. De simulatieresultaten laten ook zien
dat de hierboven voorgestelde heupaandrijving een vereiste is om stabiliteit te
verkrijgen voor 3D loopsystemen met zulke enkels. Een laatste resultaat is dat
dit bijzondere enkelscharnier het zeer eenvoudig maakt om (flauwe) bochten te
maken; een asymmetrie in de massaverdeling leidt automatisch tot het maken
van een bocht, omdat de asymmetrie feitelijk gezien kan worden als een con-
tinue zijwaartse verstoring die gecorrigeerd wordt door (automatisch) in die
richting te sturen. Kort samengevat laten de simulatieresultaten overtuigend
zien dat het voorgestelde bijzondere enkelscharnier voor stabiele 3D loopbe-
wegingen kan zorgen.

Het idee van een bijzonder enkelscharnier voor 3D stabiliteit is gevalideerd
door middel van de bouw en het testen van een derde en laatste prototype. Het
prototype weegt 8 kg, is 1.5 m lang (0.7 m beenlengte) en loopt ook met een
snelheid van 0.4 m/s (0.8 s per stap). Het prototype laat een veel natuurlijker
indruk achter dan alle voorgaande machines. Het heeft twee benen (dus niet,
zoals bij de 2D prototypes, vier benen in twee symmetrische paren) met knieën
en de bijzondere enkelscharnieren, en een bovenlichaam (met daarop een licht-
gewicht hoofd en armen die tegen de beenrichting in zwaaien, maar deze on-
derdelen zitten er voorlopig meer voor de sier). Het mens-achtige voorkomen is
bijzonder sterk wanneer het prototype loopt; de natuurlijke zwaaibeenbeweg-
ing inclusief het passieve kniebuigen en -strekken, de lichte zijwaartse oscillatie
van stap tot stap, en de schijnbaar moeiteloze voortbeweging verschaffen het
prototype een zeer natuurlijk voorkomen. Door de succesvolle loopbewegingen
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is met dit derde prototype het idee gevalideerd dat 3D stabiliteit verkregen kan
worden door middel van een bijzonder enkelscharnier dat zijwaarts vallen kop-
pelt aan sturen in diezelfde richting.

Het belangrijkste van wat er bereikt is met het werk in dit proefschrift is
het feit dat de drie prototypes stabiel, natuurlijk, en efficiënt kunnen lopen met
slechts een zeer minimaal regelsysteem; het complete regelsysteem bestaat uit slechts
twee schakelaars onder de voeten op basis waarvan slechts drie aan/uit actua-
toren (één vergrendeling in elke knie en één uit McKibbenspieren samengestelde
actuator in de heup) geregeld worden, en dit slechts éénmaal per stap. Met deze
resultaten hebben we aangetoond dat kennis van de essentie van het dynamisch,
menselijk lopen een goede basis is voor het ontwerp van uiterst eenvoudige en
toch zeer natuurlijk lopende systemen.

Martijn Wisse, 2004
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