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In the 40 years since the relation between arsenic (As)
toxicity and groundwater extraction was first documented

from the Holocene alluvial basin of West Bengal, India,1 we
have become more aware that groundwater contamination
with naturally occurring (geogenic) As poses a serious health
threat of global proportions.2 With the aim of implementing
effective and sustainable mitigation strategies, research into the
occurrence and location of toxic As levels in drinking and
irrigation water and in the food chain provided insight into all
aspects of the As-contamination issue, including (a) geogenic
As provenance in volcanic and metamorphic rocks, hydro-
thermal additions to groundwater and hot springs, and
weathering of rocks in orogenic mountain belts, (b) its

accumulation in sedimentary-basin aquifers, (c) the mobi-
lization and transport of the contaminant into the ground-
water, and (d) the associated health risks of sustained As
ingestion for >200 million people around the world.3,4 A wide
range of potential As-mitigation measures have been proposed
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over the years, ranging from in situ chemical and biological
oxidative processes for immobilizing As to subsequent filtration
methods and social awareness programs for the affected
population.5−7

The apparently random spatial variation of groundwater As
concentrations in alluvial basins underpins the enigmatic
nature of the As hot spot occurrence as the large remaining
challenge that hampers the focused and economically viable
application of sustainable mitigation measures. It is comparable
to a well-equipped fire brigade at a loss to extinguish the raging
fire, unaware of the exact coordinates of the peril. In terms of
the surface area and number of people in potential harm,
Holocene alluvial basins such as the Ganges-Brahmaputra
Basin in southeast Asia with a combined drainage area of 1.6 ×
106 km2 are by far the largest As-contamination-prone
environment. To date, attempts to locate sites with high levels
of As contamination in groundwater in the vast area of alluvial
basins focused on contour mapping based on geostatistical
interpolation of As-concentration spot measurements from
tube wells. These maps offer a global but unfocused view of
high As concentrations at best and, depending on the
interpolation algorithm (Kriging, inverse-distance weighting),
erroneously feature apparent As peaks in ridges or in so-called
“bull’s eye” patterns around data points.8,9 A promising new
research approach is the construction of predictive As-
distribution maps with random forest geospatial machine-
learning algorithms that incorporate a wide variety of soil types
as predictor variables and result in smoother maps that cover
large areas of potential As risk.10,11

In this Viewpoint, we outline the path toward efficient As
hot spot mapping with the aid of machine-learning techniques
that take into account the pivotal, interacting factors that
control the release and accumulation of As in sedimentolog-
ically confined units: (a) alluvial geomorphology that
comprises the heterogeneity between geomorphological units
and the inherent porosity−permeability anisotropy that

controls groundwater flow paths and recharge efficiency and
(b) biogeochemical processes that favor the release of As from
its solid state and subsequent entrapment in isolated porous
geomorphological units in the anisotropic aquifer domain. The
approach is analogous to the exploration of hydrocarbon
accumulations in porous and permeable sediment bodies by
reservoir modeling of the source rock−reservoir rock−cap rock
triad.

Recent research advances indicate that detached, abandoned
meandering-river bends (or oxbow lakes), their fine-grained
sediment-filled counterparts (or clay plugs), and associated
sand-prone point bars are potential sites with high levels of As
contamination in the alluvial-basin landscape on a global scale
(Figure 1).12,13 Porous and permeable sandy point bars stand
out, induced by differential compaction, as topographical high
grounds in the alluvial landscape, whereas fine-grained alluvial
plain and clay-plug sediment is compacted, thereby reducing
its porosity and permeability. Population nuclei on elevated
point bars provide protection from yearly monsoonal river
inundation. Here, excess tube well groundwater extraction
leads to pressure gradients and draw-up of As-contaminated
water to the well heads.

The oxbow lake’s oxygen-deprived lower part of the water
column (hypolimnion) stores organic carbon from dead
biomass of invasive macrophytes eradicated by annual
monsoon floods. This adds high-molecular weight dissolved
organic carbon (HMW-DOC) to the oxbow-lake sediment. A
high HMW:TOC ratio and a low total organic carbon (TOC)
indicate microbial activity. Fecal markers suggest anthropo-
genic enrichment, promoting methane-producing microbes.
The HMW-DOC reaches the oxygen-depleted aquifers and
triggers the reduction of As(V) to As(III) and its release.
Dissolved As(III) then migrates to sandy point bars by
diffusion and advection along the porosity−permeability
gradient, driven by gravity and clay compaction.13,14 The
compacted alluvial plain and clay plug are the low-permeable

Figure 1. Alluvial geomorphology with teardrop-shaped sandy point bars (each with a surface area of ∼2 km2) encompassed by abandoned
meandering-river bends (oxbow lakes) and (partly) sediment-filled counterparts (clay plugs). m indicates invasive macrophytes (Eichhornia
crassipes sp. and Hydrilla verticillata sp.) on the oxbow-lake surface. Point bars 7 m above the surrounding alluvial plain. Population nuclei (average
population density of 1093 km−2) on elevated point bars and sandy outer river banks. As-concentration data from shallow (≤40 m deep) tube wells.
Highest As concentrations in an enclosed point-bar aquifer.13 Jamuna River Basin, West Bengal, India. 22°58′43.58″N, 88°38′3.31″E. Map Data:
Google, © 2024 Maxar Technologies. Image date: February 28, 2021.
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envelope that forms a four-way closure around the point-bar
reservoir, initially at the surface in the alluvial plain and, upon
burial by continued fluvial sedimentation in the subsiding
Holocene alluvial basin, also overlying the point-bar sand in
the subsurface. The resultant anisotropic sedimentary
architecture constrains the groundwater flow paths and
strongly reduces the recharge efficiency in the aquifer domain
of the enclosed pockets of porous point-bar sand, leading to
the accumulation of As with concentrations on the order of
500 μg/L13 (Figure 1), i.e., far beyond the WHO-
recommended maximum level of 10 μg/L. The point-bar/
oxbow-lake/clay-plug geomorphological units are ubiquitous,
with scattered locations in all major river channel belts in
Holocene alluvial basins around the world, with a total areal
extent of many millions of square kilometers.

With the knowledge that As-contamination hot spots are
preferentially concentrated in porous and permeable point-bar
sands, and with the remediation urgency for an efficient, rapid
detection of similar geomorphological and associated con-
tamination setting, the next step will be to apply a machine-
learning technique for automatic As hot spot detection, i.e.,
finding the needle in the haystack, in the alluvial basins by a
combination of (a) a mask region-based convolutional neural
network (Mask R-CNN) model as a novel, state-of-the-art
technique for the remotely sensed extraction and image
segmentation of complex-shaped geomorphological objects
such as point-bar/oxbow-lake units and (b) a Random Forest
(RF) machine-learning classifier (Figure 2) with a set of
predictor variables that narrow the myriad of geomorpho-
logical objects to those meeting the criteria for As hot spots.
The supervised Mask R-CNN model, trained over Sentinel-2
or PlanetScope satellite imagery,15 has the ability to automati-
cally produce detailed map views of similar geomorphological
objects at alluvial-basin scale. Subsequently, the automatically
generated map views are combined in a RF classifier (Figure 2)
with a set of predictor variables meeting the criteria for As hot

spot remediation targets: oxbow-lake vegetation intensity16

and climate setting for the estimation of the yearly addition of
organic matter to the lake sediment, essential for the process of
reductive dissolution of As,14 and ArcGIS-generated digital
elevation models (DEMs) combined with population density
maps10 in the potential hot spot areas to identify the
coincidence of point-bar locations with topographic high
grounds and population nuclei. The approach will yield
predictive As-risk maps, which serve to pinpoint target areas
for the focused application of mitigation measures. Available
ground-truth As-concentration databases and biogeochemical
and sedimentological information will serve as machine-
learning training sets for the verification of high As
concentrations in the predictive risk maps. To facilitate the
rapid deployment and analysis of verification databases, which
are at present dispersed among government agencies, local
authorities, NGOs, and research institutes, we here advocate
the centralized storage in freely accessible and searchable
online databases, managed by data custodians such as the
Central Ground Water Board (CGWB) in India and the
Department of Public Health Engineering (DPHE) in
Bangladesh.

Point-bar thicknesses in the alluvial plains are in the range of
8−12 m;12 hence, the proposed machine-learning method-
ology is limited to capturing the spatial distribution of As hot
spots in the uppermost part of the Holocene stratigraphy.
However, in the course of fluvial sedimentation in the
subsiding alluvial basin, meandering-river sediment accumu-
lation creates a thick Holocene fluvial stratigraphy (on the
order of 100 m in the Ganges Brahmaputra alluvial basin17)
with high potential of sand-on-sand vertical connectivity of
point-bar deposits12,18 and, hence, shallow tube wells with a
depth of ∼30 m are very likely to tap from deeper-lying point-
bar sands.12

The proposed machine-learning approach has a limited
number of dedicated predictor variables based on the principle

Figure 2. Machine-learning steps toward the automated production of As-risk maps.
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of As accumulation in geomorphologically well-defined objects,
which is much more manageable than the extensive number
(≤17) of soil type variables used to date10,11 without relation
to geomorphological anisotropy. The approach is versatile in
the sense that, if other geomorphological elements such as river
banks or levees19 systematically prove to act as sinks for
dissolved As, the workflow can be extended to capture these
morphological elements. Finding the needle in the haystack
will lead to a focused, localized application of groundwater
treatment technology in As hot spots, thereby potentially
saving lives, reducing operational costs, and limiting the
environmental footprint.
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