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Abstract 

 
The Three Body Problem (3BP) has been one of the main celestial mechanics problems in the 
past few centuries, for a long time studied by both engineers and mathematicians. Its 
practical purpose is to describe the motion of three particles only under their mutual 
gravitational interaction, thus it actually represents a ‘model’ of the real physical world. In 
fact, it can be seen as an extension of the Two Body Problem (2BP), which solutions are well-
know and have been already employed in many space missions since the launch of Sputnik-1 
in 1957, first artificial Earth satellite. Alternative formulation is given with the “restricted 
problem”, assuming the mass of the third body as negligible with respect to both principal 
ones. Under this assumption, justified by the small size of a general spacecraft compared to 
planets or moons, the ‘unperturbed’ motion of the main masses can be described by a Kepler 
solution, involving elliptic or circular bounded orbits. It follows the existence of an Elliptic 
(ER3BP) and a Circular problem (CR3BP), both admitting five equilibrium points (named 
Lagrange points), where a periodic orbital motion is theoretically possible. In this work three 
main families of periodic solutions (here called Lagrange orbits) have been investigated in a 
neighbourhood of L1/L2, Lagrange points adopted in the last 40 years for many space 
missions, e.g. for space observation and exploration purposes. The main objective here is to 
study these models based on their ‘standard’ formulation, so adopting the Dynamical System 
Theory for the Circular problem and later extending the entire discussion to the Elliptic one. 

In the CR3BP periodic solutions have been found embedded within continuous families, also 
showing different types of bifurcation. A single shooting method (Differential Correction 

algorithm) and a numerical continuation scheme have been applied, starting with the 
analytic approximation based on Perturbation Theory (Linstedt-Poincaré method). Indeed, 
the linear stability assessment, through Variational equations (studying the so-called 
Monodromy matrix), has provided large insights into dynamical proprieties of the problem. 
In some cases, close members within the same family have shown a very different behaviour, 
in the limit of this linear analysis, but still allowing to well-define principal bifurcations in 
their continuous parameters. The analysis and all methodologies presented have been tested 
on a nominal system, here the Earth-Moon-Spacecraft one, while their validity can be 
trivially extended to several other restricted problems.  

The ER3BP has been the second fundamental step of this work, where many additional 
aspects have been presented, e.g. the loss of continuous families. Nonetheless, non-trivial 
difficulties arise within the analytic approach, while many insights for the new dynamics can 
be provided by an analytic approximation of such motion. In support, the numerical 
approach has been able to tackle the problem, thus improving not only the analysis on linear 
stability, but most important revealing the so-called “eccentricity-bifurcation”. The latter is 
one of the most peculiar aspects related to the Elliptic problem, which now involves a new 
time-constraint (nominally the shooting-time), and leads to two branches of solutions 
(Left/Right family or Peri/Apo group) in agreement with most recent literature. A very 
different behaviour has been shown between these branches, while only resonance orbits 
actually survive within the ER3BP, once again highlighting the essentiality of adopting this 
more complete model for an accurate real space mission design. 
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Introduction 

 
In the past decades, main interest in celestial mechanics has been given to the so-called 
3-Body Problem (3BP), concerning the definition of the trajectory for three masses only 
under their mutual gravitational force and subjected to Newton’s acceleration law. 
However, an analytic expression of the general solution does not exist yet, as 
consequence the “restricted problem” is usually being investigated, where the third mass 
is assumed many orders smaller than the two principal bodies. Nonetheless, a simpler 
model commonly adopted, is the 2-Body Problem (2BP), with very well-known “closed 
form solutions given in terms of elementary functions” (Musielak & Quarles, 2014). 

Originally, the general 3-Body Problem has been analysed and formulated in the 
“Philosophiæ naturalis Principia Mathematica” (simply known as Principia) published 
in the 1687 by Sir. I. Newton (1642-1726). Later, following his work, the two French 
mathematicians, J.B.R. D’Alember (1717-1783) and A.C. Clairaut (1713-1765), tried to 
tackle the problem, as described in the memories collected with the “Histoires” of the 
Académie Royale des Sciences for 1745. With L. Euler (1707-1783) and then with J.L. 
Lagrange (1736-1813), two kinds of periodic solutions were respectively found: the first 
named straight line (1767) and the second equilateral triangle (1772), both better known 
as central configurations solutions. From that moment until the publication of “Les 

Méthodes Nouvelles de la Mécanique Céleste” (1892) by J.H. Poincaré (1854-1912), many 
attempts have been made in order to investigate solutions of this problem. Several 
famous scientists have been involved, as P.S. Laplace (1749-1827), K.G.J. Jacobi (1804-
1851), G.W. Hill (1838-1914), W.R. Hamilton (1805-1865), with a great interest on the 
dynamical proprieties of the simpler Restricted 3-Body Problem (R3BP). 

With the advent of Poincaré, the Dynamical System Theory (DST) was founded, as mean 
to provide a “geometrical view for the set of all possible states of a system” (Vázquez, 
Pallé, & Rodríguez, 2010). Even if, unfortunately, its work did not provide any real 
solutions, it was the ‘pivot’ of an exhaustive study of specific solutions, known as periodic 

solutions. Studied by many authors as I.O. Bendixson (1861-1935), F.R. Moulton (1872-
1952), G.D. Birkhoff (1884-1944), their stability was later analysed by mathematicians as 
T. Levi-Civita (1873-1941) and A.M. Lyapunov (1857-1918). Only in 1912, a solution in a 
series expansion was presented by K.F. Sundman (1873-1949), which “converges very 
slowly and it cannot be used for any practical applications” (Musielak & Quarles, 2014).  

In the past century, different approaches (both numerical and analytical) have been 
adopted, leading to many results as it will be shown steps by steps within this work. For 
more historical notes the reader is referred to (Barrow-Green, 1997), while strongly 
suggested is here (Szebehely, 1967), for a complete survey on the ‘restricted problem’. 
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1.1 Problem formulation 
The problem here investigated concerns the inspection of some periodic solutions in the 
dynamical model provided by the Restricted 3-Body Problem. Based on its foretold 
assumption, it is possible to well-approximate the motion of a small body (e.g., a 
spacecraft or an asteroid) under the gravitational influence of the other two principal 
masses. These last two are supposed to move in simple Kepler orbits, as consequence of 
their expression in a general 2-Body Problem, while the third body has a negligible mass. 
With this scheme, and adopting some particular reference frames, the existence of five 
equilibrium points (called Lagrange or libration points) has been proved, as also the 
possibility of having a bounded motion in their neighbourhood. (Szebehely, 1967) 

As clarified in the next Section 1.2, main interest is related to two libration points, named 
L1, L2 and by convention located here near the Secondary mass M2. Together with L3, 
they are defined as collinear points (known to be linearly unstable), where two mono-
parameter families of periodic solutions arise, also denoted as Horizontal and Vertical 
Lyapunov families. Moving away, additional families with a similar continuous character 
can be found, e.g. the Halo family, mentioned for the first time in (Farquhar, 1968), 
almost a decade after preliminary studies on “low-energy lunar transfer” based on the 
3BP, performed by C.C. Conley (1933-1984) and R.P. McGehee (1943-). 

First analytic results at L2 in the Earth-Moon-Spacecraft restricted problem have been 
shown in (Farquhar & Kamel, 1973) using the Perturbation Theory, in particular the 
Linstedt-Poincaré method. In their work they have taken into account also “non-

linearity, lunar orbit eccentricity and the Sun’s gravitational field”, as later discussed in 
Section 2.1.3, while few years later a numerical extension was presented in (Breakwell, 
1979), mostly focused on the determination of Halo solutions. Next milestones in the 
process were the third-order analytic approximation presented in (Richardson, 1980a) 
and the extensive numerical investigation performed in (Howell, 1984), based on a 
numerical shooting algorithm. Both aforementioned works have been examined in the 
framework of the Circular Restricted 3-Body Problem (CR3BP), where both masses (here 
the Earth and the Moon) are assumed to move in circular orbits respects the centre of 
mass (barycentre) of the system. Extension to a more complete dynamical model is well 
represented by the Elliptic Restricted 3-Body Problem (ER3BP), where Kepler motion is 
now described by ellipses around their barycentre and periodic trajectories for the third 
mass are assumed to exist, mostly due to the ‘periodic character’ of main variations 
within the gravitational field. (Szebehely, 1967)   

Both CR3BP and ER3BP are indeed only models, approximations of the more complete 
‘real’ dynamics, nevertheless this full dynamics is anything but simple. It follows that the 
research progress is usually easier to be achieved steps by steps, so starting with a model, 
analysing it and later extending it, thus in a continuous process towards a better 
approximation of the real physical world. Under this perspective, in this work the CR3BP 
will be analysed, limiting the investigation to three main families of periodic orbits at the 
two collinear Lagrange point (L1, L2). As discussed in Section 2.1, test-case here 
considered is the Earth-Moon system, while the analysis could be easily extended to 
other systems following a similar procedure. Successive step is the extension to the 
ER3BP, in order to highlight differences for what is supposed to be a more complete 
model, nevertheless involving a much more complex “mathematical structure”. 
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1.2 Heritage of past missions 
The importance of investigating periodic motion around Lagrange points is due to many 
possible applications in space-observation missions, as also for communication purposes. 
First spacecraft orbiting around L1 (Sun-Earth) has been the Sun/Earth Explorer 3 
(ISEE-3), able to prove that such a suspension between gravitational fields is feasible 
only when considering two bodies at the same time. Moreover, starting from a Halo orbit, 
it entered in a Lissajous orbit around L2, after a Moon fly-by, making use of a thruster 
burn. A bounded motion near these points, even if unstable, is very profitable for space 
operations, in particular for solar observations, astrophysics researches or more in 
general for scientific missions. Successful example is the Solar and Heliospheric 
Observatory (SOHO), launched in December 1995 (Domingo, Fleck, & Poland, 1995) 
within a Halo orbit at L1 (Sun-Earth) in collaboration between the National Aeronautics 
and Space Administration (NASA) and the European Space Agency (ESA). In fact, it has 
been able to discover around 2007 comets over the past decades, while also remarkable 
are the Advanced Composition Explorer (ACE) mission by NASA, for solar research 
studies, and the Deep Space Climate Observatory (DSCOVR), which is a recent space 
weather satellite launched in February 2015. (Shirobokov, 2014) 

Many other scientific missions can be find in the general literature as (Dunham & 
Roberts, 2001), while worthy here to be mentioned is the James Webb Space Telescope 
(JWST), planned to be launched in 2018 (Abraham, 2014) in a Halo orbit around the L2 
point (Sun-Earth) as join project of ESA, NASA and the Canadian Space Agency (CSA). 
Considering the L2-point for the Earth-Moon system, it is indeed feasible “to create 
constellations that are not possible in Earth orbit, while still being able to communicate 

with Earth constantly” (Rohner, 2014). As stated, for L2 in the Earth-Moon system, a 
greater interest is usually related to communication purposes, initially suggested in 
(Farquhar & Kamel, 1973). More recently, such aspects have been examined for the 
Orbiting Low-Frequency Antennas for Radio astronomy (OLFAR) mission at L2, “where 
the Moon can additionally shield the satellites from Earth-emitted interfering radio 

waves” (Vermeiden, 2014).  

For what concerns the L3 point, situation becomes more complex due to “severe 
communication limitations” as fully explained in (Tantardini et al., 2010). Only with the 
recent ESA Cosmic vision, the Evolved Laser Interferometer Space Antenna (eLISA) 
mission has been selected as major candidate for a possible L3 mission (Sun-Earth), in 
order to detect and study gravitation waves (Wilson, European Space, European Space, & 
Technology, 2005). Nonetheless, also the triangular points L4-L5 have been not 
investigated here due to their less suitability and higher costs in practical scientific 
missions. Consequences related to their linear stability has been investigated in (Giorgilli 
& Skokos, 1997), when considering “the Sun-Jupiter model and the Trojan asteroids in 

the neighbourhood of the point L4”.  

For these last two triangular equilibrium points the reader is referred to the extensive 
analysis performed in (Gómez, 2001b) and later revised in (Gómez, 2001d). With a very 
similar approach, more information on the collinear points here investigated, can be 
found in (Gómez, 2001a), again later revised in (Gómez, 2001c). At this point we can 
continue defining some fundamental Research Objectives relevant to our work. 
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1.3 Research objectives and tasks 
Before presenting main guidelines and tasks for this work, a brief discussion is required 
in relation to “An Analytic approach to find periodic and quasi-periodic Lagrange 

orbits” (Massarweh, 2015), Literature Study previously performed by the author for the 
Master thesis work. Indeed, an investigation has been made on the feasibility of using 
analytic techniques (as the cited Linstedt-Poincaré perturbation method) in order to 
completely approximate solutions at collinear libration points. As it will be discussed in 
Chapter 2 and Chapter 4, in a preliminary stage of the work, these methods have been 
found as not really efficient. Furthermore, the indispensable numerical validation of 
these results has contributed to the decision of considering both approaches as 
complementary parts of a sole investigation. In this way, the entire procedure has shown 
a very high efficiency, balancing accuracy and computation efforts, as later explained. 

In this report, we will always refer to this preliminary work always as “Literature Study”, 
while here we still need to establish a main scientific question and relative sub-questions, 
along with main research objectives. 

Main Scientific Question:  
“Which are the most critical aspects that arise in the dynamics of main periodic 

solutions at L1/L2 Lagrange points, after extending them from the Circular Restricted 

3-Body Problem to the Elliptic problem?” 

Sub-Questions: 

I. How it is possible to locate and characterized families of periodic solutions in the 
dynamics of the CR3BP? Are there limitations or particular behaviours 
associated to this class of solutions? 

II. How is it possible to investigate bifurcations within each previously generated 
family? Are they fundamental for assessing the linear stability of these particular 
bounded trajectories? 

III. How can the so-called “elliptical perturbations” change the dynamics? What are 
the principal consequences of considering the Elliptic problem? 

IV. Do periodic solutions survive when considering the Elliptic problem and what 
are the main conditions for their extension in such a new advanced model? 

V. Are there practical advantages of considering this more complex model? Which 
main strategies allow retrieving useful insights into its dynamical structure and 
what are their prominent limitations?  

Research Objectives: 

i. Develop a general procedure in order to completely analyse some main families of 
periodic solutions near collinear L-points (here L1 and L2), thus exploiting 
proprieties like linear stability and some possible bifurcations. 

ii. Investigate the principal aspects of the Elliptic Restricted 3-Body Problem, in this 
way highlighting differences respect to the simpler Circular problem.  

iii. Assess to what extent the new model provides a better approximation of the real 
physical world, thus examining some major consequences when its different 
dynamics is omitted. 
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1.4 Content and structure of this report 
The structure for this Master report has been illustrated in Figure 1, based on major 
subsequent blocks. As mentioned, first we will investigate the Circular problem (CR3BP) 
in Chapter 2, where an introduction to the problem and its proprieties is given. Within 
the same chapter, the Dynamical System Theory is presented, later discussing two main 
approaches (respectively analytical and numerical) as complementary parts of this 
analysis. In Chapter 3, results will be shown for both L1 and L2 Lagrange points of the 
Earth-Moon systems (selected in all simulations), thus taking into account three main 
families of periodic solutions: both Horizontal/Vertical Lyapunov families and the Halo 
one. For all these six cases, the possible existence of few main resonance orbits will be 
discussed. It follows an extension to the Elliptic problem (ER3BP) in Chapter 4, in a very 
analogous way as shown for the CR3BP, while main results will be presented in Chapter 5 
in relation to some resonance solutions previously found. Second part involves a 
comparison between both models, mostly based on their linear stability, while at the very 
end conclusions and recommendations for future work are summarized in Chapter 6.  

Ch. 2 
CR3BP Dynamics: 

- Introduction  &  Dynamical System Theory 
- Analytic + Numeric approach 

Ch. 3 

  

CR3BP 
Results: 

Bifurcations within each family 

Linear stability 
Existing resonance orbits 

 

Ch. 4 
ER3BP Dynamics: 

- Introduction  &  Dynamical System Theory 
- Analytic + Numeric approach 

Ch. 5 

  

ER3BP 
Results: 

Analysis resonance solutions 

Differences in bifurcated families 
Linear stability 

 

Comparison models 
with linear stability: Circular vs Elliptical 

 

Ch. 6 Conclusions 

 
Figure 1: Workflow diagram of the content and structure of this Master thesis report. In 
orange colour the two chapters related to the description of main analyses and methodologies 
for both two models (Circular and Elliptical). In green all chapters relative to results and last, 
in red the final chapter related to the conclusions. See text for more details and information. 

 

NOTE:  
Appendices-A/B/C follows the main structure, as supplements for this Master work. 
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2  

CR3BP: Analysis and Methods 

 
In this Chapter 2 we consider the Circular Restricted 3-Body Problem (CR3BP). First, in 
Section 2.1 we present some main aspects of the dynamical model, with a brief overview 
of its proprieties and the choice of a “test-case”, later adopted in all simulations. Thus, in 
Section 2.2, the Dynamical System Theory (DST) is introduced for this circular case, 
using concepts from Floquet Theory in order to investigate linear stability and possible 
bifurcations in certain families of periodic solutions. After this analysis, Sections 2.3-2.4 
will illustrate two different methodologies (the first Analytic and the second Numeric) 
that could be considered as complementary parts of an exhaustive investigation of the 
problem introduced here. 

 

2.1 Introduction to the Circular problem 
The Circular problem is an approximation of a more general model given by the so-called 
3-Body Problem (3BP), originally formulated by Sir I. Newton (1642-1727) in his 
“Principia”, concerning the motion in space of three bodies ଵܲ, ଶܲ, ଷܲ exclusively under 
their mutual gravitational attraction and subjected to Newton’s gravitational law. This 
general model has been simplified considering the mass of the third body as negligible 
respect to the other two, and consequently the motion of ଷܲ does not affect the mutual 
interaction between ଵܲ and ଶܲ bodies (henceforth defined as Primary and Secondary). 
(Musielak & Quarles, 2014) 

Under this last assumption, we refer to the Restricted 3-Body Problem (R3BP), fully 
justified by the fact that in most of real space missions the mass of the spacecraft is many 
orders of magnitude smaller than planets or other celestial bodies involved in the system 
(Szebehely, 1967). Consequently, the motion of ଵܲ, ଶܲ is given by the Kepler solution to 
the general 2-Body Problem (2BP), where their relative distance ݎ can be defined as 

ݎ = ܽ ∙ ሺͳ − ݁ଶሻͳ + ݁ ∙ �o�ሺ�ሻ (2-1) 

 
with ܽ semi-major axis of the orbit, ݁ eccentricity and � phase between both principal 
masses in some specific reference frames. All basics aspects related to this motion have 
been fully discussed within the previous Literature Study, and are also well-known in 
common literature, so we refer the reader to main textbooks as (Szebehely, 1967), 
(Marchal, 1990) and (Barrow-Green, 1997). 
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A very interesting outcome of such motion is related to the existence of different models, 
depending on the eccentricity value ݁, thus leading to four possible formulations: 

 Circular problem for  ݁ = Ͳ 
 Elliptic problem for  ݁ א ሺͲ,ͳሻ 
 Parabolic problem for  ݁ = ͳ 
 Hyperbolic problem  for  ݁ > ͳ 

As discussed in Chapter 1, in this work we consider always a bounded motion between 
principal masses and so we restrict the analysis to the case ݁ < ͳ, while the model  ݁  ͳ 
is not treated. Due to the continuous nature of this small positive parameter ݁, many 
observations on these last two cases could directly follow from our investigation, but it is 
important to proceed gradually, starting with the simpler model: the Circular case. 

2.1.1 Dynamical model and reference frame 

The dynamics of the Circular Restricted 3-Body Problem has been originally studied in 
(Euler, 1767), making use of a synodic reference frame with the origin fixed in the centre 
of mass of the system and uniformly co-rotating with both masses. The latter is clearly a 
non-inertial reference frame, therefore the dynamics of ଷܲ is subject to both the 
gravitational acceleration by ଵܲ, ଶܲ and all additional “inertial accelerations”, such that ݀ଶݐ݀ࡾଶ = ݀ଶݐ݀ܖ�ࡾଶ − ʹ࣓ × ݐ݀ࡾ݀ − ࣓ × ሺ࣓ × ሻࡾ − ݐ࣓݀݀ ×  (2-2) ࡾ

 
where ࡾ = ,ݔ] ,ݕ ܖ�ࡾ ,is the ଷܲ position vector (the third mass-less body) in this new frame [ݖ = ,ݔ] ,ݕ ࣓ is the system’s time and ݐ ,] refers to the inertial frameݖ = [݊, Ͳ,Ͳ] is 
the angular velocity of the system (here the same of the Kepler mean motion ݊). In the 
following Figure 2 we can observe the system with the convention of having the larger 
mass (the Primary) always on the negative side of the rotating ̂ݔ-axis (known as Syzygy). 

 

Figure 2: Inertial in red {̂ࢄ�, ,�̂ࢅ ,̂࢞} and synodic co-rotating in magenta {�̂ࢆ ,̂࢟  reference frame {ࢠ̂

for the Earth-Moon-Satellite Circular Restricted 3-Body Problem. 
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First three terms in Eq. (2-2) are respectively the contribution of Gravitational, Coriolis 
and Centrifugal accelerations, while the last term is zero for the circular case, due to the 
fact that the synodic frame is rotating with an uniform velocity (mean motion ݊), so 

݊ = ଵܯሺܩ√ ଶሻܽܯ+ ≡ ଵߤ√ + ଶܽߤ   = ை்்ܽߤ√  (2-3) 

 
such that ܩ is the univesal gravitational parameter, ܯ is the mass of each principal body 
and ߤ the product of both these previous quantities. The position of the two masses is 
completely fixed in this new frame and the dynamics of ଷܲ can be fully defined by three 
second-order non-linear differential equations (see Literature Study), such that ݀ଶݐ݀ݔଶ = ଵߤ− ଵଷݎଵ௫ݎ − ଶߤ ଶଷݎଶ௫ݎ + ʹ݊ ݐ݀ݕ݀ + ݊ଶݔ ݀ଶݐ݀ݕଶ = ଵߤ− ଵଷݎଵ௬ݎ − ଶߤ ଶଷݎଶ௬ݎ − ʹ݊ ݐ݀ݔ݀ + ݊ଶݕ ݀ଶݐ݀ݖଶ = ଵߤ− ଵଷݎଵ௭ݎ − ଶߤ ଶଷݎଶ௭ݎ  

(2-4) 

 
with ݎଵ,  ଶ as scalar distances from the Primary and Secondary body, and their subscriptsݎ
referring to each projection on reference axes. As common in literature, the non-
dimensional form is given, where time, space and mass have been adimensionalize as 

 SPACE  [km]:   ܽ = ͳ 
 MASS     [kg]:   ்ܯை் = ଵܯ ଶܯ+ = ͳ 
 TIME    [1/s]:   ߱ = ݊ = ͳ   

leading to ܩ/߱ଶ = ͳ and with a main orbital period given as ܶ =   (Szebehely, 1967) .ߨʹ
The final non-dimensional form, once defining ߤ =  ை், is given below்ܯ/ଶܯ

ሷݔ − ሶݕʹ = ݔ − ሺͳ − ሻߤ ሺݔ + ଵଷݎሻߤ − ߤ ሺݔ + ߤ − ͳሻݎଶଷ ሷݕ  + ሶݔʹ = ݕ ∙ [ͳ − ሺͳ − ሻߤ ͳݎଵଷ − ߤ ͳݎଶଷ] ݖሷ = ݖ− ∙ [ሺͳ − ଵଷݎሻߤ −  [ଶଷݎߤ
(2-5) 

ଵݎ  = √ሺݔ + ሻଶߤ + ଶݕ + ଶݎ ଶݖ = √ሺݔ + ߤ − ͳሻଶ + ଶݕ +  ଶݖ

(2-6) 

 
while from the previous adimensionalization it follows that ଵܲ, ଶܲ are located respectively 
at ݔଵ = ,ߤ− ଶݔ = ͳ −  axis (see Figure 2). By convention, the Primary has been-ݔ̂ on the ߤ
placed on the negative ̂ݔ-axis, allowing to consider a range for the mass-ratio parameter 
as ߤ א [Ͳ,Ͳ.ͷ]. Boundary cases for ߤ = Ͳ (Restricted 2-Body Problem) or for ߤ = Ͳ.ͷ 
(known also as Copenhagen problem) are here not considered, since they present only 
particular situations that are not very relevant for a realistic space mission’s orbit design. 
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2.1.2 Lagrange points and existing symmetries  

The dynamics described by Eq.(2-5) fully defines the ଷܲ motion within the synodic frame, 
and for a specific initial condition there is a unique trajectory, as it will be explained in 
Section 2.2.1. Furthermore, there are particular points where all forces balance each 
other allowing ଷܲ maintaining unperturbed its position for any time ݐ > Ͳ arbitrarily 
large.  Two classes for these five equilibrium points (sometimes called libration points) 
can be found, all located within the ̂ݕ̂ݔ-plane (sometimes referred as ecliptic plane) for ݖ = Ͳ  and described in (Musielak & Quarles, 2014) as follows: 

1. The Collinear points ܮଵ, ,ଶܮ  ଷ discoved by L. Euler (1707-1783) in 1767 with theܮ
“De moto rectilineo trium corporum se mutuo attrahentium”. They are located 
along the syzygy direction, and are defined by 

ݔ − ሺͳ − ሻߤ ሺݔ + ݔ|ሻߤ + ଷ|ߤ − ߤ ሺݔ + ߤ − ͳሻ|ݔ + ߤ − ͳ|ଷ = Ͳ          ∀ݕ = Ͳ (2-7) 

 

2. The Equilateral points ܮସ,  ହ discovered later by J.L. Lagrange (1736-1813) inܮ
1772 with the “Essai sur le probléme des trois corps”. They are located at the 
vertex of an equilateral triangle connected to both main masses, and defined by 

{  
ݔ   − ሺͳ − ሻߤ ሺݔ + ଵଷݎሻߤ − ߤ ሺݔ + ߤ − ͳሻݎଶଷ = Ͳͳ − ሺͳ − ଵଷݎሻߤ − ଶଷݎߤ = Ͳ                                              ∀ݕ ≠ Ͳ (2-8) 

 
A graphical example of this distribution for all libration points (also known as Lagrange 
points or L-points) is given in Figure 3, relative to the Earth-Moon Circular problem. 

 

Figure 3: Location in the co-rotating synodic frame {̂࢞, ,̂࢟  of all five libration points within {ࢠ̂
the ̂࢟̂࢞-plane for the Earth-Moon Circular problem. The size of masses has been enlarged [× ]. 
Note that L-points still exist in the original inertial frame, moving all together with P1 
and P2, while their proper definition holds only within the synodic frame, where the 
location is totally fixed by the mass-ratio ߤ-value, along with many other proprieties. 
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The two equilateral points can be computed by solving  analytically Eq. (2-8), and their 
linear stability has been intensively studied in the CR3BP by many authors, e.g. (Murray, 
1999), leading to the definition of the “Routh value” for ߤோ ≈ Ͳ.Ͳ͵ͺͷʹ, “value at which 

linear unstability is reached” (Sicardy, 2010). As discussed before, these two locations 
are less suitable for practical space observation missions due to the higher energy 
required in order to reach them, so they will not be considered in following sections. 

The location of the three collinear points is fixed on the syzygy axis after numerically 
solving Eq. (2-7), ‘quintic equation’ given in (Szebehely, 1967) respect to a ߛ-parameter 
(scalar distance between the libration point and the nearest mass), so leading to  ߛହ ∓ ሺ͵ − ସߛሻߤ + ሺ͵ − ଷߛሻߤʹ − ଶߛߤ ± ߛߤʹ − ߤ = Ͳ (2-9) 

 
where the upper sign refers to L1 and the lower one to L2. For what concerns L3, we are 
able to define its position simply solving the same ‘lower’ equation once adopting ߤ∗ = ͳ −  such that the the system is simply reversed, while keeping the convention of ,ߤ
having the Primary always on the negative ̂ݔ-axis. Collinear libration points are shown in 
Figure 4 for the entire ߤ-range [Ͳ,ͳ], highlighting this symmetry for ߤ larger than 0.5 . 

 

Figure 4: Location of all five libration points on the ̂࢟̂࢞-plane with a varying ࣆ-parameter 
between  and . Note the symmetric behaviour respect to ࣆ = . , as explained in the text. 

The two limit cases, previously mentioned, are visible here where L1/L2 shrink near M2 
when ߤ ՜ Ͳ (called Hill’s Problem), while L3 is exactly in opposition to M2 respect to M1 
(so on the negative ̂ݔ-axis).  Symmetric distribution is given for ߤ ՜ Ͳ.ͷ, since L1 exists at 
the barycentre of this almost perfect binary configuration, while both L2 and L3 would be 
symmetrically located along the syzygy direction. (Szebehely, 1967) 
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2.1.2.1 Integral of motion: the Jacobi constant 

Before presenting main symmetries in the equations of motion, a very brief note has to 
be discussed in relation of the so-called Jacobi constant, the only existing Integral of 
Motion determined by (Jacobi, 1836) and later used in (G. W. Hill, 1886) to “determine 

the motion of an asteroid in the three-body problem and to introduce the so-called zero 

velocity curves (ZVC), which establish regions in space where the bodies are allowed to 

move” (Musielak & Quarles, 2014). 

The previous can be simply illustrated by considering the existence of a potential 
function Ω = Ωሺݔ, ,ݕ  ሻ, such that Eq. (2-5) is reduced to a more compact form asݖ

ሷݔ} − ሶݕʹ = Ω,௫ݕሷ + ሶݔʹ = Ω,௬ݖሷ = Ω,௭            (2-10) 

 
with the subscript referring to each first partial derivatives (so each component of the 
gradient -operator). After few manipulations well-known in common literature, we have  

ܥ = ʹΩ − ܸଶ = ʹ ଶݔ] + ʹଶݕ + ͳ − ଵݎߤ + [ଶݎߤ − ሺݔሶଶ + ሶݕ ଶ +  ሶଶሻ (2-11)ݖ

 
where the Jacobi constant ܥ (non-dimensional) is totally defined by the initial condition. 

Most of this theory has been covered by several authors and is well documented in 
general textbooks, as listed before, while a very remarkable aspect here is the relation of 
the ܥ with the physical energy of the system.  

In fact, as detailed in (Szebehely, 1967), the Jacobi constant can be seen as twice the P3 
total energy 1, where for the Restricted problem the most correct assumption is that ݉ଷ ≪ ଶ. Often misleading in literature is the assumption that ݉ଷܯ,ଵܯ = Ͳ, while Eq.(2-2) 
actually requires to divide both terms by the non-zero P3 mass. Furthermore, the energy 
conservation that holds for the general 3-Body Problem is consequently here also 
approximated by this “uncoupling nature” of the Restricted problem, thus justifying the 
possibility of considering P1/P2 in a Kepler motion (also conservative). As described in 
the cited paper, the Jacobi integral “is not an expression of the conservation of energy” 
and “it should be simply regarded as an integral of the differential equations of the 

restricted problem”.2 

On this point we will come back once talking about the Non-Existence of First Integrals 
for elliptic case (Section 4.1.4), while now we can proceed exploiting symmetries of the 
Circular problem, above the one already discussed and related to the ߤ-parameter. In 
fact, the latter will be fixed for all our simulations (defined by the Earth-Moon system), 
as later discussed in Section 2.1.3. 

                                                           

1 The Jacobi constant can be expressed also in an inertial frame, and this was exactly the case 
originally published in (Jacobi, 1836), even if, according to (Wintner, 1941), he has been the one 
“re-discovering the synodic frame”. 
2 For sake of completeness we have to point out that commonly in literature the Jacobi integral 
includes also a constant term as ߤሺͳ − ሻߤ ʹ⁄ , not used in this work. The latter does not affect the 
equations of motion but was only used to obtain a different expression for ܥ. (Szebehely, 1967). 
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2.1.2.2 Symmetries in the equations of motion 

The differential system in Eq. (2-5) can provide many insights into this dynamical model, 
especially when considering all the existing symmetries in the equations of motion.  
In (Miele, 1960), the author presents two theorems, which can be summarized as follow: 

Theorem 1.1 (The Irreversibility Theorem)  
“If a trajectory is physically possible in the xyz-space, the reverse trajectory is not 

physically possible”. 

Theorem 1.2 (The Theorem of Image Trajectory)  
“If a trajectory is physically possible in the xyz-space, three image trajectories are 

physically possible:  

a) The image with respect to the xy-plane, flown in the same sense of the original 

trajectory. 

b) The image with respect to the xz-plane, flown in the opposite sense.  

c) The image with respect to the x-axis, flown in the opposite sense. ” 

The model adopted for both theorems is once again the CR3BP, in particular the Earth-
Moon system, while his results are evidently valid for any other systems, therefore for 
any constant ߤ-values. Both theorems refer to synodic coordinates, where it has been 
shown in the previous Literature Study that the Lagrangian can be expressed as 

ℒோை் = ሺݔሶ − ሻଶݕ + ሺݕሶ + ʹሻଶݔ + [ͳ − ଵݎߤ +  ଶ] (2-12)ݎߤ

 
If considering the Irreversibility Theorem we refer to the “reverse trajectory” as the path 
followed after a time-transformation as ݐ∗ ՜  Consequently it is trivial to observe that .ݐ−
the Lagrangian is not invariant under such transformation (Wintner, 1941), and the 
reverse trajectory cannot exists. In fact, for a general coordinate ݍ = ݐ݀ݍ݀ ሻ, we have thatݐሺݍ = − ሻݐ−ሺ݀ݍ݀ ≡ − ∗ݐ݀ݍ݀         ୧୲ ୭୪୪୭୵ୱ ୲୦ୟ୲→                    ݀ݐ݀ݍ ≠  (13-2) ∗ݐ݀ݍ݀

 

and velocity terms are not more equivalent to previous ones, as also for the value of ℒܴܱܶ. 

The Theorem of Image Trajectory is fundamental for the study of periodic motion in the 
neighbourhood of collinear libration points, as also reviewed in (Miele, 2010) for the 50th 
anniversary of the original theorem. Starting with Eq. (2-5), two main transformations 
can be found, here denoted as Mirrored and Backward transformation. 

MIRRORED TRANSFORMATION: ݖ∗ ՜  (14-2) ݖ−

 
BACKWARD TRANSFORMATION: ݕ∗ ՜ −ݐ    ,ݕ∗ ՜  (15-2) ݐ−
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Both previous transformations are described in point “a” and “b” of Theorem 1.2 and 
from the moment that they are not mutually exclusive, it is possible to combine both in a 
third type, defined as Backward Mirrored, indeed symmetric respect to the ̂ݔ-axis.  

BACKWARD MIRRORED TRANSFORMATION: ݕ∗ ՜ −ݕ, ∗ݖ ՜ −ݖ, ∗ݐ ՜  (16-2) ݐ−

 
In fact, point “c” of the Theorem 1.2 refers exactly to this last type of symmetry at the 
same time respect to both the ̂ݖ̂ݔ-plane and ̂ݕ̂ݔ-plane, consequently respect to the ̂ݔ-axis. 

Once again, from Eq. (2-12) the expression of the Lagrangian in synodic coordinates 
confirms all these proprieties, which the reader could prove simply applying the given 
transformations on the full differential system shown in Eq. (2-5). The application of all 
symmetries will be discussed later. In Figure 5 an example of the three “image 
trajectories” has been presented starting from a nominal one, integrated numerically for 
a certain time in the Earth-Moon CR3BP, where also initial conditions ሺ" ⋄ "ሻ have been 
changed according to each proper transformation, so assuring consistency in results. 

 

Figure 5: Main three symmetries for the Earth-Moon Circular Restricted 3-Body Problem 
given in synodic coordinates. The masses’ size has been enlarged [× ૡ] for graphical reasons. 
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2.1.3 TEST-CASE: the Earth-Moon system 

So far, main basic proprieties have been shown for the general Circular problem (CR3BP) 
and later they will be employed for the analysis of certain families of periodic solutions 
near collinear Lagrange points. What has been analysed in this work is a “model”, later 
extended and compared with a more complete one, once considering the Elliptic problem 
(ER3BP). Unfortunately, the real physical world involves a dynamics much more 
complex and for a realistic mission’s design it is absolutely necessary to take into account 
all different perturbations acting on the system. (Lynch, 2001) 

Despite this last consideration, one of the main purposes here is the investigation and 
comparison of two basic models, commonly adopted for studies in many space-related 
fields (e.g., interplanetary transfers, space observation missions, etc.…). Both these 
models represent already a revision and upgrade of older theories, for example the very 
well-known 2-Body Problem with its several proprieties and solutions, successfully 
employed for decades in hundreds of space missions. (Szebehely, 1967) 

For all the mentioned reasons, we feel the necessity to underline again that the 
investigation presented in this paper has not to be treated as an attempt to design or 
neither to optimize a real specific space mission, but it can be seen more as a “theoretical 
pivot”, necessary step for improving the current knowledge on a problem that “has 
attracted the attention of many scientists for more than 300 years” (Musielak & 
Quarles, 2014). Furthermore, a very broad analysis for various ߤ-parameters on the 
entire range is not really suitable and some boundary cases will be physically worthless. 
In fact, in the Solar system most of known mass-ratios are confined within certain limits, 
and in addition to this, none of such binary systems discovered “has been yet visited by a 
spacecraft” (Bosanac, Howell, & Fischbach, 2015). 

Here the decision of fixing the ߤ-value and to consider a specific three body system, 
adopted later also for the Elliptic problem. Our analysis will aim to create a “robust 
procedure” for the investigation of particular solutions in the general CR3BP and later in 
the ER3BP. The same could also be applied to different ߤ-values, in this way studying 
different physical systems as well as binary ones (e.g., binary stars/asteroid or double 
planets), recently arising much more interest among scientists and researchers.3 

Hence, we will consider the Earth-Moon system as the nominal one, modelling its 
dynamics as a perfect Circular Restricted 3-Body Problem, thus focusing on the 
investigation of periodic motion near both libration points L1 and L2. As discussed in 
Section 1.2, for the L3-point there are currently only few “mission concepts designed to 

detect and accurately measure gravitational waves“ (Mueller, 2014), while several 
dynamical aspects of periodic motion at L3 have been already studied in (Barrabés & 
Ollé, 2006). Additional reason for the exclusion of L3 is due to the fact that, at the time of 
writing, no space mission is active or has been confirmed; beside that, many other 
complications arise at L3 for its application in real space scientific missions, as 
adequately documented in (Tantardini et al., 2010). At this point we can proceed 
providing some numerical data and further discussing the ‘real’ Earth-Moon system. 

                                                           

3 Worthy to be mentioned are some recent researches performed at Delft University of Technology 
detailed in (J. Feng, Noomen, Yuan, & Ambrosius, 2014), (J. L. Feng, Noomen, Visser, & Yuan, 
2015), (J. Feng, Noomen, & Yuan, 2015) and (J. Feng, Noomen, Visser, & Yuan, 2016), concerning 
an extensive research over different types of periodic motion in a contact binary asteroid system. 
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2.1.3.1 Additional simplifications in the Earth-Moon model 

As stated at the beginning of this Chapter, the CR3BP is usually modelled considering 
M1, M2 as point-masses orbiting in circular Keplerian orbits around their barycentre, 
while the third mass ݉ଷ is negligible and has not influence on them. Nonetheless, in the 
real physical world several other dynamical elements are present, for example the already 
mentioned eccentricity. Without getting lost in the definition of all possible 
“perturbations”, e.g. general relativity effects, additional bodies perturbation (N-Body 

Problem) and so on, here we are going to briefly present few principal contributors to the 
real Earth-Moon system’s dynamics, and in general for many other 3-Body systems. 

 

Figure 6: The geometry and the motion of the Earth-Moon system is shown, with a sketch of 
all main reference planes involved (in purple) and relative angles (in green).  

In Figure 6, an example for the Earth-Moon system is given, with relative basic geometry 
and main angles, while in the following Table 1 some planetary data has been provided. 

Table 1: Bulk and Orbital parameters relative to both Earth and Moon body (NASA, 2016) 

 Units Earth Moon 

Bulk Parameters 

Mass ͳͲଶସ �� ͷ.ͻʹͶ Ͳ.Ͳ͵Ͷ 

Equatorial Radius �� ͵ͺ.ͳ ͳ͵.Ͷ 

Polar Radius �� ͵ͷ.ͺ ͳ͵.Ͳ 

J2-term ͳͲ− ͳͲͺʹ.͵ ʹͲʹ. 

Orbital Parameters 

Semi-major axis ͳͲ �� ͳͶͻ.Ͳ Ͳ.͵ͺͶͶ 

Eccentricity − Ͳ.Ͳͳ Ͳ.ͲͷͶͻ 

 
Once taking into consideration a more realist model for the Earth-Moon system, it is 
possible to summarize most important additional forces in three main contributors: 

 The barycentre of the entire EM-system is revolving around the Sun in a not 
perfect circular orbit (݁ ≈ Ͳ.Ͳͳ), making the system not inertial anymore. 

 Both masses are not exactly spheres, but they can be described as oblate 
spheroids, so the gravitational potential will include additional terms, based on 
two types known as Zonal and Tesseral harmonics (Cunningham, 1970).   

 The Sun generates a solar radiation pressure, which could affect not only the 
motion of the spacecraft, but also the entire CR3BP dynamics, as for example the 
location itself of equilibrium points. (Simo & McInnes, 2009) 
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The effects of the Moon on the Sun-Earth circular problem has been numerically studied 
in (Farquhar, 1970), showing a shift in the location of L2 of around 300 km, where “the 
maximum distance to the perturbed path is about 20 km”. For what concerns our EM-
model, in Section 1.9 from (Szebehely, 1967) many different perturbations has been 
presented, as also for the Moon effect on the Earth motion compared to the probe one 
(around 16 orders of magnitude smaller). The latter totally justifies the possibility of 
adopting the “restricted problem”, while neglecting one of the two main masses can have 
much larger effects depending on the relative P3-position. 

Many models have been proposed in the past decades for what can be seen as a 
Restricted 4-Body Problem, having the Sun-Earth-Moon-Satellite system. In this system  
some periodic solutions has been study originally by (Cronin, Richards, & Russell, 1964) 
where the model has been “regarded as a perturbation of the R3BP”. Very extensive 
investigation was later made by (K. Hill, Lo, & Born, 2006), showing that “in the four-

body problem, there are no longer any periodic solutions because the same positions of 

the primaries do not repeat within any reasonable length of time. Instead, trajectories 

must be computed that are fairly close to periodic, at least for the time interval desired”.  

 

Figure 7: Geometry of the inclined Inertial Bi-circular Model by courtesy of (K. Hill et al., 
2006). For the notation adopted and more details on the model used, we refer to their paper. 

For sake of completeness, here in Figure 7 we have provided the sketch of the more 
correct and complete inclined Inertial Bi-circular Model adopted in (K. Hill et al., 2006). 
All details can be found in their paper, where the inclination between planes (in Figure 
6), has been taken into account also with Solar Radiation Pressure (SRP) effects.  

As results of that analysis, some consequences on the orbit determination error by 
LiAISON4 (Linked Autonomous Interplanetary Satellite Orbit Navigation) have been 
summarized as roughly 3% for the Sun’s gravity and 1% due to the relative inclination 
w.r.t. the ecliptic plane, while the SRP “does not seem to effect the dynamics enough to 
cause an increase in the orbit determination error” (K. Hill et al., 2006). 

                                                           

4 More Information can be found on the NASA Website, Jason Leonard, University of Colorado, 

Boulder, 2013. https://www.nasa.gov/spacetech/strg/2013_nstrf_leonard.html#.V5iBArh96hc  

https://www.nasa.gov/spacetech/strg/2013_nstrf_leonard.html#.V5iBArh96hc
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All mentioned aspects are very significant and necessary to further improve the 
dynamical model, as suggested in Section 6.2 (“Recommendations for future works”). 
Here, once again we only consider both Circular and Elliptic problems, in their ‘standard’ 
formulation and using the Earth-Moon system only as main reference model. The latter 
is commonly used in some recent papers for the examination of the ER3BP and periodic 
motions around libration points, in this way allowing having reliable results to be 
compared with, as also in order to validate and then verify the final outcome of this work. 

Last step of this systematic examination over perturbations involves an example of the 
extended CR3BP dynamics, with the Primary radiating and the Secondary as an oblate 
(e.g., as for the Sun-Earth system). Following the notation adopted in (Sharma, 1987) for 
the planar 2D-problem and later in (Tiwary & Kushvah, 2015) for the spatial 3D-
problem, it is possible to express the motion similarly to Eq. (2-10), so leading to 

ሷݔ} − ʹ݊ݕሶ = Ω,௫ݕሷ + ʹ݊ݔሶ = Ω,௬ݖሷ = Ω,௭                  (2-17) 

 

with the definition of a new mean motion ݊ݎ and a new pseudo-potential function Ω, 
both referring to the new Radiating-Oblate Circular problem. Clearly, ݊ is affected by 
the oblateness of the Secondary mass, as also for its orbital period ܶ (here expressed in 
non-dimensional units), such that we arrive at 

݊ = √ͳ + ͵ʹ ቆܴଶ − ܴଶͷݎଶ ቇ           ୠ୷ ୢୣ୧୬୧୲୧୭୬⇒                   ܶ =   (2-18)݊ߨʹ

 
with ݎ distance between the two masses (here ݎ = ܽ) and ܴ , ܴ respectively equatorial 

and polar radii of the oblate ܯଶ. The new pseudo-potential function Ω is written as 

Ω = ݊ଶ ଶݔ + ʹଶݕ + ͳ − ଵݎߤ [ͳ − [ߚ + ଶݎߤ [ͳ + ͳʹݎଶଶ ቆܴଶ − ܴଶͷݎଶ ቇ] (2-19) 

 
with ݎଵ, ߚ ଶ distances previously defined in Eq. (2-6), whileݎ = ௗܨ ⁄ܨ  is ratio between 

solar radiation and gravitational attraction forces, sometimes expressed by ݍ = ͳ −  ,ߚ
with ݍ as mass reduction factor, constant for a given particle. A very complete survey on 
this radiation parameter ߚ can be found in (Schuerman, 1980), while typical values for 
spacecraft without solar sail have been computed as ߚ ≈ ͳ.ͷ × ͳͲ−ହ for the Sun-Earth 
system when considering both L1 and L2 points. (McInnes, 2000) 

More details of all these dynamical aspects can also be found in the cited papers, and 
most of these researches are currently being carried out in order to improve the standard 
dynamical model. For a general overview on some state-of-the-art works we suggest to 
consider (Musielak & Quarles, 2014), while now we will continue the analysis relative to 
the standard Circular problem (CR3BP), so introducing the Dynamical System Theory, 
one of the most important concepts in this work. 
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2.2  Dynamical System Theory for the circular case 
The Dynamical System Theory (DST) is a field of mathematics introduced by J.H. 
Poincaré (1854-1912) for studying the 3-Body Problem in “Les Methodes Nouvelles de la 
Mecanique Celeste”, published between 1892-99 (Musielak & Quarles, 2014). As reported 
in (Barrow-Green, 1997), “his objective was to provide a geometrical study of the 
solution curves of a first-order differential equation, and indeed it was his geometrical 

insight which becomes one of the hallmarks of his work on differential equations”. 

All background knowledge has been covered in the Literature Study and main basic 
definitions or theorems can be found in many common textbooks as (Barrow-Green, 
1997), (Verhulst, 2000) and (Perko, 2001), while here we provide some theoretical key 
elements for a better interpretation of all results given in Chapter 3. 

2.2.1 Proprieties of “autonomous differential systems” 
We start considering the Circular Restricted 3-Body Problem, defined by a system of 
three second-order differential equations, as shown in Eq. (2-5). The latter is known to be 
an autonomous differential system from the moment that each equation does not depend 
explicitly upon the time-like parameter used (so far ݐ, non-dimensional physical time). 

One of the most important advantages of the Dynamical System Theory (DST) is the 
possibility of re-writing a general ݊-order differential system into a new first-order one. 
For example, we can start with a time-dependent variable ݍ = ݐ݀ݍሻ, such that ݀ݐሺݍ = ݃ቆݍ, ݐ݀ݍ݀ , … , ݀−ଵݐ݀ݍ−ଵቇ (2-20) 

 
with ݃ general function. We can define new variables based on some transformations as 

ଵݍ = ,ݍ ଶݍ = ݐ݀ݍ݀ , … , ݍ = ݀−ଵݐ݀ݍ−ଵ  (2-21) 

 
and then, re-writing the differential system in Eq. (2-20), we arrive at 

{   
ଵሶݍ    = ݐଵ݀ݍ݀ = ଶሶݍ                         ଶݍ = ݐଶ݀ݍ݀ = ሶݍ                                       …                                    ଷݍ = ݐ݀ݍ݀ = ݃ሺݍଵ, ,ଶݍ … , ሻݍ

 (2-22) 

 
The latter can be also expressed in a more compact vector form, so leading to 

ሶࡽ = ݐ݀ࡽ݀ =  ሻ (2-23)ࡽሺࢌ

 
where ࢌ is a vector-function, while Q is the state-vector of the system, ∀ࡽ א ℝ , ݐ∀ א ℝ . 
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Expressions in Eq. (2-22) and Eq. (2-23), can describe a ݊-dimensional space, in literature 
also denoted as “Phase-space” of the dynamical system, in this way allowing having a 
complete geometrical view of each solution and of the vector-field described by ࢌሺࡽሻ.  
NOTE:  
Before going further in the description of the DST, one important remark is given by the 
so-called “Existence and Uniqueness Theorem” (but here not formulated), which 
assures that the solution exists and for some given initial conditions it is also unique. 
Basically at each time ݐ, a phase-point describes the particular state of the original 
differential system, thus basically it is a solution of the system itself. (Verhulst, 2000) 

2.2.1.1 Critical points and their neighbourhoods  

In this ݊-dimensional Phase-space each trajectory represents a specific solution that can 
be periodic or not. Moreover, straightforward is to shown that orbits in the Phase-space 
can never really intersect in a finite time, direct consequence of the previous theorem. 
However, as seen in Section 2.1.2, the CR3BP has some particular equilibrium solutions, 
such that they are usually referred as critical points (or stationary points) of the system, 
as points ̅ࡽ = ሻࢇሺࢌ has its zeros, so with ࢌ of the domain where ࢇ = . (Perko, 2001) 

Looking at the Circular problem, it is trivial to understand that each Lagrange point is 
exactly a critical point of the dynamical system, but only when considering synodic 
coordinates. Moreover, all components of the ଷܲ-velocity can be seen simply as additional 
variables of our differential system, based on the Eq. (2-21), and consequently they 
generate a six-dimensional Phase-space, defined by the following expression 

{   
  
    
ሶݔ  = ሶݕ                                                                               ௫ݒ = ௬ݒ ሶݖ                                                                                = ௫ሶݒ                                                                               ௭ݒ = ௬ݒʹ + ݔ − ሺͳ − ሻߤ ሺݔ + ଵଷݎሻߤ − ߤ ሺݔ + ߤ − ͳሻݎଶଷݒ௬ሶ = ௫ݒʹ− + ݕ ∙ [ͳ − ሺͳ − ଵଷݎሻߤ − ௭ሶݒ                         [ଶଷݎߤ = ݖ− ∙ [ሺͳ − ଵଷݎሻߤ −                                             [ଶଷݎߤ

 (2-24) 

 
where the transformation ݒ = ݍ has been used for all three variables as ݐ݀/ݍ݀ = ,ݔ} ,ݕ  .{ݖ
In this six-dimensional geometrical view, coordinates of each L-point can be defined as ࡸࢄ = ,ݔ] ݕ , ,ݖ Ͳ, Ͳ, Ͳ] (2-25) 

 
with the new state-vector ࢄ = ሻݐሺࢄ א ℝ  ሺ∀ݐ א ℝሻ, involving all positions coordinates 
described by Eqs. (2-7)(2-8). Usually main interest point in real space missions is the 
behaviour within a certain neighbourhood of these “mathematical points”. In fact, it is 
almost impossible to achieve such exact initial conditions, thus this so-called “stability” 
can have a great influence on the costs (e.g., DV-budget for station-keeping manoeuvres) 
necessary in order to maintain the spacecraft as close as possible to a nominal trajectory 
or sufficiently close to these points. (Koon, Lo, Marsden, & Ross, 2008) 
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Before further proceeding, we introduce the definition for some different types of 
stability, which can also be found in the suggested textbooks. Now, we take a differential 
system for the general state-vector ࡽ א ℝ , ݐ∀ א ℝ with the definition of a generic vector 
function ࢌ א ,ࡽ]ܥ , [ݐ ̅ࡽ and ,ࡽ ݊݅ ݖݐℎ݅ܿݏ݅ܮ =  as critical point. (Verhulst, 2000) ࢇ

Definition 1.1a (Lyapunov Stability) 

Assuming that  ∃ߜ = ,ݐሺߜ ߳ሻ > Ͳ , ∀߳ > Ͳ such that �f     ‖ࡽሺݐ; ,ݐ ሻࡽ − ‖ࢇ  ;ݐሺࡽ‖     n���     ߜ ,ݐ ሻࡽ − ‖ࢇ  ߳   , ݐ∀   ݐ

the critical point is Stable in the “sense of Lyapunov” and, starting sufficiently close to it, 
the solution will remain always bounded in its neighbourhood. 

Definition 1.1b (Asymptotic Stability) 
Assuming that  ∃ߜ = ,ݐሺߜ ߳ሻ > Ͳ , ∀߳ > Ͳ such that �f     ‖ࡽሺݐ; ,ݐ ሻࡽ − ‖ࢇ  ;ݐሺࡽ‖∞n    ���௧՜���     ߜ ,ݐ ሻࡽ − ‖ࢇ = Ͳ 

the critical point is Asymptotically Stable and, starting sufficiently close to it, the 
solution will tend asymptotically toward it.5 

Based on these previous definitions we will refer to linear stability as the stability 
assessed by looking at the dynamics linearized in a neighbourhood of each critical point. 
Consequently considering a first-order Taylor expansion around L-points, we obtain 

ሶࢄ = ሻࡸࢄሺࢌ + ࡸࢄ|ࢄࣔࢌࣔ ∙ ȟࡸࢄ + ࣩ(ȟࡸࢄ )        ∀ȟࡸࢄሺݐሻ = ሻݐሺࢄ −  (2-26) ࡸࢄ

 
with the ࣩ-Landau notation (Landau, 1974), where by definition ࢌሺࡸࢄሻ =  and after 
neglecting higher order terms, we can define the displacement  motion  ̃ࢄሺݐሻ =  ሻ asݐሺࡸࢄ�

ݐ݀݀ [  
   
  [௭ݒ௬̃ݒ௫̃ݒ̃ݖ̃ݕ̃ݔ̃
   =

[  
   
ͲͲͲΩ,௫௫Ω,௬௫Ω,௭௫
  
ͲͲͲΩ,௫௬Ω,௬௬Ω,௭௬
  
ͲͲͲΩ,௫௭Ω,௬௭Ω,௭௭
  
ͳͲͲͲ−Ͳʹ
   
ͲͳͲʹͲͲ
    
ͲͲͳͲͲͲ]  
   ∙
[  
   
  [௭ݒ௬̃ݒ௫̃ݒ̃ݖ̃ݕ̃ݔ̃
             ݐሻ݀ݐሺ̃ࢄ݀      = ࡸࢄ|ܣ ∙  ሻ (2-27)ݐሺ̃ࢄ

 
where Ω = Ωሺ�, �, �ሻ is again the pseudo-potential function, where its Hessian matrix6 
generates the third quadrant of the constant ܣ-matrix, usually referred as State 

Propagation Matrix (SPM). All these aspects have been previously treated in the 
Literature Study, and are really well-known in the suggested general literature. However 
these last definitions serve as main reference points, later adopted for the numerical 
approach (Section 2.4), as also for extending these main concepts to the elliptic case. 

                                                           

5 The mentioned “Existence and Uniqueness theorem” assures that the critical point cannot be 
reached in a finite time, thus this explains the use of a limit and its appellative ‘asymptotic’. 
6 Squared matrix that involves all the second-order partial derivatives of the scalar potential Ω, 
while its symmetry is due to the Schwarz’s theorem. See (James, 1966)  for more information. 
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At this point, worthy to be mentioned is the so-called “Hartman-Grobman Theorem” (or 
also known as Linearization Theorem), able to show, under certain hypotheses, that 
“near an hyperbolic equilibrium point ࢇ, the non-linear system has the same qualitative 

structure as the linear system” (Perko, 2001). In fact, Eq. (2-27) can be seen as a 
Variational Equation respect to the initial condition, so again being represented by a 
simply linear system of six first-order differential equations. It follows an associated 
Eigen-problem, here studied in order to characterize the behaviour of each L-point. In 
brief, this “Linearization Theorem” assures that in a neighbourhood of hyperbolic points7 
the linear behaviour found is qualitatively the same also for the original non-linear 
system. A general classification of such points in 2-dimensional (or also n-dimensional) 
differential systems can be found in common literature, and for the Circular problem 
their stability has been extensively assessed in (Szebehely, 1967), so we can proceed here 
by introducing some essential concepts related to periodic solutions.  

2.2.1.2 Periodic solutions and their stability 

Concept of periodic solutions is related to the existence of a solution ࢄሺݐሻ = �ሺݐሻ to the 
differential system, dependent on the time-like parameter ݐ, such that  �ሺݐሻ = �ሺݐ + ܶሻ   ∀ݐ א ℝ (2-28) 

 
where T is a positive scalar that defines the period. As observed in (Verhulst, 2000), if a 
solution is T-periodic, it means that it is also 2T-periodic, 3T-periodic and so on. This 
concept will be further discussed later, when introducing “Resonance orbits”, types of 
solutions that can ‘survive’ in the Elliptic problem (see Section 4.2). For now we only 
provide an important propriety within Lemma 1, concerning autonomous systems. 

Lemma 1  

“A periodic solution of the autonomous equation ࡽሶ =  ሻ corresponds with a closedࡽሺࢌ

orbit (cycle) in phase-space and a closed orbit corresponds with a periodic solution.” 

Significance of Lemma 1 becomes more clear considering the Poincaré Map theory, 

known also as First Recurrence Map ࣪[ଵ]. The latter represents a powerful tool for 
analysing and assessing the existence of periodic solutions, which by definition need to 
repeat after a period T (returning at the same initial phase-point, named as Initial or 

Shooting Condition). Such theory  is so extensive that will require an entire chapter in 
order to be summarized (but it is not the purpose here), therefore we suggest to look at 
(Teschl, 2012) for a deeper comprehension of all following mathematical concepts. Here 
we only re-define some types of stability, but now mainly related to periodic orbits. 

Definition 1.2 (Lyapunov Stability for periodic solutions) 
Assuming that  ∃ߜ = ,ݐሺߜ ߳ሻ > Ͳ , ∀߳ > Ͳ  such that �f     ‖ࡽሺݐ; ,ݐ ሻࡽ − �ሺݐሻ‖  ;ݐሺࡽ‖     n���     ߜ ,ݐ ሻࡽ − �ሺݐሻ‖  ߳   , ݐ∀   ݐ

the periodic solutions is Stable in the “sense of Lyapunov”, as seen in Definition 1.1a. 

                                                           

7 With “hyperbolic points” we refer to points in the Phase-space having real eigenvalues with 
different signs when studying Eq. (2-27), such that orbits in their neighborhood are defined 
hyperbolic. The latter is easy to visualize on a 2D-case, while considering a general n-dimensional 
Phase-space the situation becomes more complex, as it will be shown later. 
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Definition 1.2 requires that a phase-point in the ݊-dimensional Phase-space, which is 
initially close to the one belonging to a periodic solution, needs to remain close enough 
during its entire motion. However, in trajectories near to the nominal one, but having 
slightly different T-period, the displacement in time can grow fast due to an initial phase-
shift.8 It follows now a new definition of stability, necessary for periodic solutions and 
based on the so-called First Recurrence Map (evaluated on a Poincaré Sections). The 
example in Figure 8 shows two Poincaré Maps (blue diamonds) on a 2D-plane (the 
Poincaré Section in violet) for both a periodic and non-periodic orbits (in dashed red). 

 

Figure 8: Illustration of two Poincaré Maps (blue diamonds) on a 2-dimensional Poincaré 

Section (in violet) for periodic/no-periodic solutions (respectively �ܘ and �ܘܖ in dashed red).  

In continuous dynamical systems we are able to fix one or more coordinates in order to 
define a sub-space � ⊂ ℝ of the original ݊-dimensional Phase-space � ⊆ ℝ. In this 
way we are able to study closed orbits simply as points within �, referred as Transversal 

(Verhulst, 2000), as it requires to intersect the Phase-flow transversally. So considering 
the closed trajectory as fixed point on a specific �-Transversal, we define a third type of 
stability starting from Eq. (2-28), thus looking at the ‘local’ dynamics within such sub-set. 

Definition 1.3 (Orbital Stability for periodic solutions)  
Assuming that it is possible to define a Poincaré Map ࣪ on the �-Transversal for the 
periodic solution �ሺݐሻ, such that ࢇ is a fixed point on it with the initial condition ࡽ א �. 
Now  ∃ߜ = ሺ߳ሻߜ > Ͳ , ∀߳ > Ͳ  such that �f     ‖ࡽ − ‖ࢇ  ሻࡽn     ‖࣪ሺ���     ߜ − ‖ࢇ  ߳   , ∀݊  ͳ 

it follows that the periodic solutions is Orbitally Stable.9 

                                                           
8
 In order to better visualize this concept, it is possible to think about a phase-shift as ≈  in a sine ߨ

or cosine component of the solution, so leading to a large displacement during this new motion. 
9 Note that Definition 1.3 clearly matches with both Definition 1.1a and Definition 1.1b, and it 
also admits the  “asymptotic formulation” once considering the new condition   

 ���՜∞‖ܲሺࡽሻ − ܽ‖ = Ͳ   , ∀݊  ͳ 
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2.2.2 The Monodromy matrix and its eigenvalues 

After giving the main basic concepts of this Dynamical System Theory, it is necessary to 
provide much more insights into the dynamics of the CR3BP, consequently linking it 
with some practical aspects of real space missions. So far we have seen how it is possible 
to study the local dynamics near libration points, while great interest is usually also given 
to the possible existence of periodic solutions around collinear L-points. Once again, only 
L1/L2 will be considered in this work and the investigation will focus on three different 
types of periodic solutions, as described later in Section 2.3. 

As seen in the Eq. (2-26), we are capable of studying the stability in a neighbourhood of a 
nominal periodic motion, when linearizing the dynamics around it. Considering here a 
shooting condition ࢄ for the periodic solution �ሺݐ;  ሻ, this last one can be expressed asࢄ
shown in Eq. (2-28), but differentiated at ݐ =  ଵ respect to the initial condition, such thatݐ

ଵሻݐሺࢄࢾ = �ሺݐଵ; ࢄ + ሻࢄ� − �ሺݐଵ; ሻࢄ  ≅ ࢄࣔ�ࣔ  ∙ ࢄࢾ + ࣩሺ|ࢄࢾ|ሻ (2-29) 

 

Neglecting again higher order terms ࣩ(|ࢄࢾ|) it is possible to related both the initial 

and the final displacement using the State Transition Matrix (STM) defined as 

Φሺݐଵ, ሻݐ = ߲�ሺݐଵ; ࢄሻࣔࢄ  (2-30) 

 
and it can be shown through few manipulations (Gómez et al., 2004) that  ݀݀ݐ Φሺݐଵ, ሻݐ = ܣ ∙ Φሺݐଵ, ,ݐሻ          ∀Φሺݐ ሻݐ = � (2-31) 

 
where ܣ has been already presented as SPM in Eq. (2-27), while � is the identity matrix. 
At this point, the STM can be propagated and evaluated10 at each instant for an entire 
period till ݐଵ = ݐ + ܶ, and so leading to the definition of Μ, the Monodromy Matrix. 
Using Eq. (2-29) we are trying to determine effects due to an initial displacement after a 
complete revolution of the nominal trajectory (closed curve in the phase-space), with ࢀࢄࢾ = Φሺݐ + ܶ, ሻݐ ∙ ࢄࢾ = Μ ∙   (2-32)ࢄࢾ

 
Note that Μ is here constant and the associated Eigen-problem could be studied to assess 
this “linear stability”. Indeed, one major constraint is related to the approximation of the 
dynamics respect to a reference trajectory, thus the validity itself of Eq. (2-29) holds only 
as long as the term ࣩሺ|ࢄࢾ|ሻ remains small. Many previous notions are part of a more 
general theory called Floquet theory, and better described in Section 4.2.2 for the elliptic 
case, meanwhile here we are still discussing main aspects related to the Circular problem. 

                                                           

10 This system requires to be numerically integrated since the State Propagation Matrix has to be 
evaluated along the nominal solution, which is not known analytically (even if there are some 
approximations as described in Section 2.3, “Analytic approach”). Applications and all main 
numerical aspects will be discussed later in Section 2.4 (“Numerical Approach”). 
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2.2.3 Symplectic form: behaviour of “characteristic multipliers” 
The discussion over linear stability involves not only closed trajectories around libration 
points, but more in general almost any periodic solutions of the CR3BP. Furthermore, 
eigenvalues ߣ of the Monodromy matrix (sometimes referred as Variational matrix) are 
also called “characteristic multipliers” from the moment that given a general component ܺሺ�ሻ of the State vector ࢄሺ�ሻ it is possible to write, for a general ݊-dimensional case, that ܺߜ ் = ߣ ∙ ܺߜ           ∀݅ = ͳ…݊ (2-33) 

 

with ߣ א ℂ, complex eigenvalue and ܺߜ , ܺߜ ்  respectively initial and final displacements. 
At this point, one wise way to proceed is questioning if there are proprieties of the system 
that can help further simplifying such analysis. In general literature (Goldstein, Poole, & 
Safko, 2002) it is well-known that the CR3BP involves an Hamiltonian system, thus it 
can be fully defined by the so-called “Hamiltonian”, scalar function ܪ = ,ሺܪ ,  ሻ. Afterݐ
describing the system with generalized coordinates as ሺ, ሻ א ℝଶ, such that  and  are 
respectively defined as ‘position’ and ‘momentum’, the associated Hamilton equations 
can be written based on the following system 

{ 
ݐ݀݀  = ݐ߲݀݀ܪ߲− = ߲ܪ߲+  (2-34) 

 
The previous formulation, even though mathematically elegant, is not completely 
suitable for our problem since these generalized coordinates sometimes does not provide 
a direct physical interpretation of the problem, as also discussed in the Literature Study. 
However, first very important feature of Hamiltonian systems is that they have a 
structure denoted as Symplectic, which means that the evolution differential equations 
can be written (Ott, 2002) in the subsequent form ݀݀ݐ [] = ܵଶே ∙ ,ሺܪ߲] ,ሺܪሻ߲ [ሻ        ୫୭୰ୣ ୡ୭୫୮ୟୡ୲୪୷ ୟୱ⇒                    ݀�݀ݐ = ܵଶே ∙  ሺ�ሻ (2-35)ܪ࢘

 

with the new State vector � = ,] ࢀ[ א ℝଶ , its Jacobian ࢘= and ܵଶே்[߲,߲] א ℝଶ×ଶ 

defined by a block matrix [ʹ݊ × ʹ݊], such that  

ܵଶ = [ � �−� �] (2-36) 

 
composed by � as null matrix [݊ × ݊] and � as identity matrix [݊ × ݊]. Obviously, this 
particular structure has substantial implications on the aforementioned characteristic 
multipliers, as also on the T-mapping discussed in relation to the Monodromy matrix, for 
indeed defined as a symplectic map in (Howell & Campbell, 1999). 
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In order to fully comprehend practical consequences of having such symplectic structure, 
we need to briefly enunciate the well-known Liouville’s Theorem, with respect to 
autonomous differential system. (Goldstein et al., 2002) 

Theorem 1.3 (Liouville’s Theorem) 
“The flow generated by a time-independent Hamiltonian system is volume preserving.” 

The latter can be easily visualized in the Phase-space as the propriety of an infinitesimal 
volume element (in our case six-dimensional) to be constant under the flow. The 
mathematical proof is very straightforward, as given in (Verhulst, 2000), but it requires 
additional notions/theorems not relevant in this work. Hence, we will just present the 
expression for the variation at ݐ = ݐ݀ݒ݀ such that ,ݒ  of a general infinitesimal volumeݐ |௧బ = ∫ � ∙ ሺሻࡽ݀ ࢌ = Ͳ (2-37) 

 
where ܦሺͲሻ א ℝ is a domain with initial volume ݒሺͲሻ, ࢌ and ࡽ are vector-functions 

described before in Eq. (2-23) and {� ∙} is the divergence respect to ࡽ-coordinates. From 
the Eq. (2-24), it can be observed that the divergence of the vector-field will be always 
zero, thus any infinitesimal volumes of the Phase-space is preserved in time. (Ott, 2002) 

With some basic linear algebra proprieties, it has been shown by (Howard & MacKay, 
1987) that the characteristic multipliers come always in complex conjugate pairs, denoted 

as quadruplets ሺߣ, ,ଵ−ߣ ,∗ߣ  ଵሻ with the asterisk symbol meaning conjugate. Their paper−∗ߣ
treats in a very complete way the “four-dimensional” symplectic maps, commonly related 
to six-dimensional autonomous differential problems, as explained later. Nonetheless, 
the product of all eigenvalues is always ±ͳ, as also the value of the determinant of Μ, 
while applying Theorem 1.3 on the system given with the Eq. (2-31) we obtain that ���ሺΜሻ = ���(Φሺݐ + ܶ, (ሻݐ = +ͳ , ݐ∀  ,ݐ, due to the  initial condition as Φሺݐ ሻݐ = �. 

2.2.4 Geometrical meaning of “characteristic multipliers”  
The principal outcome of studying eigenvalues of the Monodromy matrix can be easily 
summarized in three main points, thus following (Howell & Campbell, 1999). 

 The CR3BP is Hamiltonian (time-independent) and consequently symplectic as 
given in Eq. (2-35). It follows that the STM can be considered as a Symplectic 
Map, so having pairs of reciprocal eigenvalues. 

 The Monodromy matrix Μ (STM over a T-period) is real and for the symplectic 

propriety it has all its eigenvalues ߣ in quadruplets ሺߣ, ,ଵ−ߣ ,∗ߣ  ଵሻ. It follows−∗ߣ
from a positive initial condition in Eq. (2-31) that its determinant is always +ͳ. 

 When Μ is associated to a periodic solution �ሺݐሻ there exists at least a real ߣ = +ͳ 
and there will always exists an additional ߣଶ = +ͳ, for what seen in the first point. 

The last point is one of the most important features of the Circular problem, where 
periodic solutions are always enclosed in continuous families, differently from what it 
will be extensively discussed for the elliptic case (in Chapter 4). Indeed, once looking at 
these periodic trajectories in a time-invariant six-dimensional Phase-space, it seems 
obvious how any initial displacements “along” such closed trajectory, remains bounded 
within this solution, and its orbital period does not change at all. (Perko, 2001) 
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In a very recent work by (Nagata et al., 2016) the geometrical meaning of characteristic 
multipliers is fully exploited using the Centre Manifold Theory, originally applied in 
(Jorba & Masdemont, 1999) using a normal form scheme “to semi-analytically construct 

the high-order solutions about the dynamics in the centre manifolds of the collinear 

libration points”. More historical aspects can be found in (Shirobokov, 2014). At this 
point, it is clear why even if starting with a six-dimensional Phase-space, we have a four-
dimensional symplectic map, even if the meaning of ߣଶ still needs to be clarified. With a 
multiplicity larger than one, for its associated eigenvector ܞ we can write that  Μ ∙ ܞ = ଶߣ ∙ ܞ + ϵ ∙   (2-38)ܞ

 
where ܞ “corresponds to the direction to another closed orbit near the original closed 

orbit, and ߳ is not zero due to the variation of the orbital period by the orbit shift” 
(Nagata et al., 2016). Focusing on the remaining four eigenvalues of the Μ-matrix, it is 
possible to summarize them within few possible cases, and starting with a general 
complex value as ߣ = ܽ + ܾ݅  , ∀ܽ, ܾ א ℝ, we are able to arrive at 

�f ܾ = Ͳ ሺߣ א ℝሻ ூߣ}     ⟹      = ±ͳ, ூூߣ = ±ͳ         , |ߣ|∀ = ͳߣூ = ܽ, ூூߣ = ͳܽ               , |ߣ|∀ ≠ ͳ (2-39) 

�f ܾ ≠ Ͳ ሺߣ א ℂሻ      ⟹ ூߣ}      = ,ߣ ூூߣ = ,                                         ∗ߣ |ߣ|∀ = ͳߣூ = ,ߣ ூூߣ = ,∗ߣ ூூூߣ = ͳߣ , �ூߣ = ͳߣ∗       , |ߣ|∀ ≠ ͳ (2-40) 

 
as main combinations possible for the last two pairs of eigenvalues. Each of them can 
actually increases the order of instability11, while an initial small displacement remains 
bounded to the periodic solution, as long as all eigenvalues are on the unit circle. The 
meaning of first case given in Eq. (2-40) is quite evident, especially if writing eigenvalues 
in a polar form, where ߩ is the module and ߰ the complex phase, such that ߣ = ߩ ∙ ݁ట         ୡ୭୬ୱ୧ୢୣ୰୧୬ ୲୦ୣ −୫ୟ୮୮୧୬→                               ߣே = ேߩ ∙ ݁ேట (2-41) 

 
where ∀ߩ = ͳ we have the existence of a quasi-periodic orbit, as part of an invariant tori 
surrounding the nominal closed trajectory (Gómez, Masdemont, & Simó, 1998). More 

precisely, with ߰ = ߨʹ ே   ሺ∀݇  ͳሻ the new quasi-periodic motion will repeat itself after 

exactly N-revolutions of the nominal one. Interesting is also to observe that when ߣ = −ͳ 
we have ߰ = ܰ and since ߨ = ʹ݇ the trajectory will repeat only every ʹ݇ revolutions, and 
consequently doubling the original orbital T-period. (Howell & Campbell, 1999)  

                                                           
11

 Here with p-order of instability we refer to the existence of p-directions that diverge from the 
nominal periodic solutions. Due to the symplectic form and its proprieties (as also the time-
independence) the max order here is 2, while a 3-order cannot be related to periodic solution, 
since no eigenvalues would be equal to +1. The latter can be an additional constraint for testing 
and further validate the numerical computation of periodic solutions. Very important indeed to 
not forget that the existence of a ߣ = +ͳ is only a propriety related to the periodic motion in 
autonomous systems, while the symplectic structure holds in general for most of the Hamiltonian 
systems. (Howard & MacKay, 1987) 
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For both first cases in Eqs. (2-39)(2-40) there are no effects on the order of instability 
since |ߣ| = ͳ, so an initial small displacement will not expand and neither shrinks in 
time. However, the second case in Eq. (2-39) is related to the so-called Manifolds Theory, 
documented in many textbooks and in the most recent literature related to the CR3BP. 
Eigen-vectors associated with eigenvalues in module larger (or smaller) than one, indeed 
define particular directions, called invariant manifolds12, able to collect asymptotic 
solutions leaving (or reaching) a neighbourhood of the nominal periodic solution. In a 
similar way, we can note that in the second case of Eq. (2-40) the existence of a 
combination of both oscillating and growing (or shrinking) effects, nonetheless they are 
indeed related to a 2-ordeer instability, so involving all four remaining eigenvalues. 

COMMENT 
It is possible to conclude that for periodic solutions (p.s.) of Hamiltonian time-invariant 
systems (such as the CR3BP) the innate symplectic structure leads to the existence of at 
least two real eigenvalues +1 (so leading to continuous families). Furthermore, seven 
possible behaviours can be found in a neighbourhood of each periodic solution, based on 
all different combinations of the four remaining eigenvalues, as given in Eqs. (2-39)(2-40).  

2.2.5 Bifurcation Theory: types and consequences 

Successive step to all the previous discussion is related to the Bifurcation Theory, 
originally introduced in (Poincaré, 1885) for the study of dynamical systems13. This 
theory can be applied to both continuous and discrete dynamical systems, but in our case 
we will consider the discrete case when looking at the Poincaré Map for small 
displacements in a neighbourhood of periodic solutions. Example of bifurcations in 
continuous system has been given before with the Routh parameter ߤோ, value after which 
the equilateral libration points start to be linearly unstable (Section 2.1.2). 

A definition of “bifurcation” is given in (Vladimir, 1972) “to describe any situation in 
which the qualitative, topological picture of the object we are studying alters with a 

change of the parameters on which the object depends”. Basically each bifurcation 
depends upon a “bifurcation parameters”, as the mass-ratio ߤ in the previous example or 
the eccentricity when considering the extension to the Elliptic problem. In our case, to 
analyse bifurcations within a continuous family of closed trajectories, we are going to 
make use of the distance from the relative L-point, starting point for the generation of the 
entire family. More details on the numerical computation are given later in Section 4.4.  

As shown in the previous section, there are multiple possible combinations (seven in 
total) for the remaining two pairs of characteristic multipliers {ߣଷ, ,ହߣ �ସ anߣ  }, thus nowߣ
we should be fully capable of locating (within each family) all main bifurcations in the 
qualitatively behaviour of eigenvalues, as also for changes in the order of instability. 

 

                                                           

12 In (Gómez et al., 2002) and (Gómez et al., 2004) it has been shown that “these tubes can be 
used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of 
Jupiter”, and without any doubts they represent one of the most promising research field for 
future interplanetary low cost transfers. However, here they have not been considered for both the 
time constraint related to the Master thesis and other aspects, as discussed later. 
13 First studies on bifurcation were made in (Euler, 1744), but “modern development of the subject 
starts with Poincaré and the qualitative theory of differential equations”  (Crawford, 1991). 
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For four-dimensional symplectic maps, this linear stability (or “spectral stability”) can be 
lost in three different ways, so leading to three different types of bifurcation points. They 
can be summarized as in (Howard & MacKay, 1987), so assuming all four eigenvalues 
initially disposed within the unit circle (as represented below in Figure 9): 

i. Tangent (or Fold) bifurcation  [T-B] 

“Two eigenvalues coalesce at +ͳ and split on the real axis, so increasing the order of 

instability from zero to one.” 

ii. Period-Doubling (or Flip) bifurcation  [P-D] 

“Two eigenvalues coalesce at −ͳ and split on the real axis, so increasing the order of 

instability from zero to one.” 

iii. Krein collision  [K-C] 

“Two complex conjugate pairs of eigenvalues collide and split on the complex plane, so 

increasing the order of instability from zero to two.” 

First type of bifurcation leads to the generation of one stable/unstable manifold, while 
the second type has been already discussed before, with a new periodic solution having 
twice the original period. Last, the Krein collision in 4D symplectic maps completely fix 
the behaviour of the remaining eigenvalues, so generating two stable/unstable manifolds.  

 

Figure 9: The three possible bifurcations considered here, leading to the destabilization of the 
4-dimensional symplectic map and consequently increasing the order of instability.  

For the sake of completeness we mention an additional bifurcation that can take place 
within a family, without influencing the order of instability. (Howell & Campbell, 1999) 

iv. Modified secondary Hopf bifurcation 

“Two real pars of eigenvalues collide on the real axis (but not at ±ͳ) and separate on 

the complex plane.” 

In this last case “iv”, even if the 2-order of instability does not change, the new solution is 
qualitatively different, due to the existence of an oscillating motion around the solution. 
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2.3 The Analytic approach 
Objective of the previous discussion is only to introduce some principal aspects of the 
Dynamical System Theory related to the Circular problem. Nonetheless, this theory is 
much more extensive, and has been successfully applied within several works as (Gómez, 
Jorba, Masdemont, & Simó, 1993), (Howell, Barden, & Lo, 1997), and most recently 
(Vaquero & Howell, 2014). These works have been mostly focused on transfer problems 
using the Invariant Manifolds Theory, as for the Genesis spacecraft mission “to collect 
solar wind samples from a Halo orbit about the Sun-Earth L1 point” (Lo et al., 2001). 
Regardless this fact, here we are principally looking at some families of periodic solutions 
around the L1/L2 points, without any real remarks about transfer trajectories (Lo & Ross, 
1998), possible connecting orbits (Gómez et al., 2004) or the so-called ballistic capture 
problem (Belbruno & Miller, 1993). 

The DST can already be seen as an analytic way to tackle the problem, but now it is 
necessary to exploit a more specific technique, in particular for accurately studying 
stability at collinear libration points. Moreover, from the previous linear analysis 
provided in Eq. (2-27), a solution can be easily found, described also by general literature 
as (Hénon, 1974), such that the complete linearized motion of small displacements 
around each collinear libration points is described by a solution in the following form, as 

ሻݐሺݔ̃} = ܽ௫ ∙ �o�(߱௫௬ݐ) + ܾ௫ ∙ ��n(߱௫௬ݐ) + ܿ௫ ∙ ݁�ೣ௧ + ݀௫ ∙ ݁−�ೣ௧̃ݕሺݐሻ = ܽ௬ ∙ �o�(߱௫௬ݐ) + ܾ௬ ∙ ��n(߱௫௬ݐ) + ܿ௬ ∙ ݁�ೣ௧ + ݀௬ ∙ ݁−�ೣ௧̃ݖሺݐሻ = ܽ௭ ∙ �o�ሺ߱௭ݐሻ + ܾ௭ ∙ ��nሺ߱௭ݐሻ                                                       (2-42) 

 
with ܽ, ܾ, ܿ, ݀ integration constants, ߱௭ and ߱௫௬ respectively as vertical and horizontal 

pulsations, with ߣ௫௬ as the real eigenvalue directly associated to the unbounded motion. 

The expression for these last three values can be written respect to the mass-ratio ߤ as 

߱௭ = √ ͳ − ͳ|ߤ + |ଷߛ +  |ଷ (2-43)ߛ|ߤ

୳ୱ୧୬  ఠೋ→         
{  
  ω୶୷ = √ͳ − ߱௭ଶʹ + ߱௭ʹ √ͻ߱௭ଶ − ͺ
௫௬ߣ = √߱௭ଶʹ − ͳ + ߱௭ʹ√ͻ߱௭ଶ − ͺ  (2-44) 

 
with ߛ positive distance found previously from Eq. (2-9). Particular initial conditions 
allow removing the unbounded dynamics, thus considering only bounded solutions in 
what represents only a linear approximation around L-points. Furthermore, for any ߤ, 
the in-plane and out-of-plane pulsation are fixed, while in a close neighbourhood to 
equilibrium point they are different (Howell, 1984). It follows the possibility of having 
still bounded trajectories, where ̃ݔ, ,ݕ̃  are non-dimensional distances from L-points, but ݖ̃
no more properly periodic, thus leading to three dimensional “quasi-periodic” orbits, 
better known in literature as Lissajous orbits. (Howell & Pernicka, 1988) 
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Periodicity can be achieved only if the ratio between out-of-plane and in-plane motion is 
a rational number larger than 1, case not really possible since ߱௭ ≠ ߱௫௬  , ߤ∀ א ሺͲ,Ͳ.ͷሻ. A 

general example is given in Figure 10, showing some possible periodic trajectories (where ݐாே = ͳͺ ×  compared with Lissajous curves for some irrational ratios. Note that the (ߨʹ
general pulsation can be referred for example to the orbital ʹߨ-revolution of both ܯଵ,ܯଶ.  

 

Figure 10: Illustration on the ࢠ̂̂࢟-plane of some possible periodic orbits (LEFT) and Lissajous 
curves (RIGHT) using a general unitary reference pulsation, with ࣓࢟࢞ and ࣓ࢠ respectively 

horizontal and vertical pulsations of the dynamics linearized around L-points. See text above.  

NOTE ON LISSAJOUS ORBITS  

Even if only periodic solutions have been considered here, one main remark has to be 
made on a possible application of Lissajous orbits around L-points in observation space 
missions, due to their bounded motion, as explained before. Examples given in 
(Shirobokov, 2014) are the WMAP mission at the Sun-Earth L2, ACE and DSCOVR at 
Sun-Earth L1, as also the aforementioned Genesis mission. (Lo et al., 2001) 

2.3.1  Existence of two mono-parametric Lyapunov families 

Under the assumption of having a linearized motion, so neglecting terms as ࣩ(�ࡸࢄ ) in 

Eq. (2-26), we still are able to define two families of solutions ‘theoretically’ bounded in 
two distinctive motions (in-plane and out-of-plane). As we will see, once considering also 
non-linear terms with perturbation techniques (Section 2.3.2), the situation becomes 
more complex, but as long as we remain close enough to the libration point, the 
expression in Eq. (2-42) can well approximate the dynamics. (Gómez & Mondelo, 2001) 

Two families of solutions can be considered, also called Lyapunov families and, indeed 
their continuous character can be clearly observed also from Eq. (2-42), where different 
initial conditions lead to different possible amplitudes for each possible orbit. An 
example of few trajectories for the Horizontal (in red) and Vertical (in green) family is 
shown in Figure 11, where the Earth-Moon Lagrange points have been considered in 
relation to the Circular Restricted 3-Body Problem. 
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Figure 11: Illustration of Horizontal and Vertical Lyapunov families at L1 (LEFT) and at L2 
(RIGHT) in the Earth-Moon CR3BP, where the size of the Moon has been enlarged [× ].  
For real space observation missions is necessary to extend the previous analysis, 
including non-linear terms, thus studying other possible families beside those two found. 
In a certain way, the latter can be seen as an inspection of the non-linear stability for 
collinear L-points, where basic techniques previously shown are not really adequate, 
neither sufficient for such purpose. A semi-analytic method has already been mentioned 
as the Centre Manifold Reduction given in (Jorba & Masdemont, 1999), also known as 
“normal form scheme”. Here we are going to consider an alternative, defined as the 
Lindstedt-Poincaré method (or “method of strained coordinates”), commonly used in 
order “to find convergent series of periodic solutions” (Verhulst, 2000) 

2.3.2 Perturbation technique: the Lindstedt-Poincaré method 

The Lindstedt -Poincaré technique (or  LP-method) is based on the assumption that in 
differential systems dependent upon a small parameter ߳, the solution of the perturbed 
system is also periodic and its frequency can consequently be expressed simply as a 
perturbation of the one related to the unperturbed problem (Waters & McInnes, 2007). 
Second important assumption is associated with the so-called Poincaré Expansion 
Theorem (or PE-Theorem), here not given but very well described in some specific 
textbooks, for example in (Kevorkian & Cole, 1996) and (Nayfeh, 2007). 

Considering an autonomous case, the PE-Theorem briefly states that if a Taylor 
expansion exists (in a certain ࢄ-domain) at ߳ = Ͳ for the vector-function ࢌ = ,ࢄሺࢌ ߳), such 
that it is convergent respect to the small parameter ߳ ≪ ͳ, it follows that ࢌሺࢄ, ߳ሻ ≅ ,ࢄሺࢌ Ͳሻ + ߳ ∙ ሻࢄሺࢌ + ߳ଶ ∙ ሻࢄሺࢌ + … (2-45) 

 
and also the solution ࢄ = ,࢚ሺࢄ ߳ሻ can be expanded in a Taylor series, convergent for any ߳ < ߳ on a time-scale ࣩሺͳሻ, where ߳ is the radius of convergence of the series, reliant on 
the m-order chosen for the truncation. Neglecting terms as ࣩሺ߳୫+ଵሻ, we arrive at  ࢇࢄሺݐሻ = ሻݐሺࢄ + ߳ ∙ ሻݐሺࢄ + ߳ଶ ∙ ሻݐሺࢄ + … + ϵ୫ ∙  ሻ (2-46)ݐሺܕࢄ

 
with an approximation error as ‖ࢄሺݐሻ − ‖ሻݐሺࢇࢄ = ࣩሺ߳୫+ଵሻ, valid on a time-scale ࣩሺͳሻ.  
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More correctly, all previous assumptions refer to general perturbation techniques, while 
a more general background with many historical details can be found in the mentioned 
textbooks. Very remarkable here is to note that one of the principal field for the 
application of Perturbation Theory in the 18th century was exactly the description of the 
motion of celestial bodies under different perturbations, e.g. the presence of an 
additional mass (Verhulst, 2000). Such techniques have been adopted in many other 
fields, in general to determine solutions of partial and ordinary non-linear differential 
equations, as also as an approximation for particular integrals (Nayfeh, 2007) and in 
algebraic equations, for example to approximate the quintic equation in Eq. (2-9). 

Such technique has been successfully applied in (Masdemont, 2005) “for computing the 
stable and unstable manifolds of libration point orbits in series expansions” (as also for 
the mentioned Hill’s Problem, ∀ߤ ՜ Ͳ), while crucial to remember here that we are 
looking at bounded periodic solutions, so consequently there could be additional 
constraints on these approximations. In fact, one limitation of general perturbation 
techniques is usually related to the presence of secular terms, arising at higher orders of 
the expansion and for which time ݐ appears as an amplitude factor.14 These terms clearly 
destroy any periodicity, from the moment that the subsequent approximated solution 
grows indefinitely with time ݐ. In fact, sometimes they are also called mixed-secular as 
consequence of the fact that they are “product of both linear and trigonometric functions 

of time” (Kevorkian & Cole, 1996). In general, substituting the expansion in Eq. (2-46) 
within the original differential system, all terms at the same ߳-order are collected and 
later equations are recursively solved at each level, as discussed in the Literature Study. 

2.3.2.1 The introduction of “strained coordinates” 
Starting with a general perturbed harmonic oscillator in the non-dimensional variable � = �ሺ�ሻ א ℝ , ∀� א ℝ  and a time-independent function f = fሺ�, �ሶ , ϵሻ, such that �ሷ + � = ϵ ∙ fሺ�, �ሶ , ϵሻ (2-47) 

 
we are able to substitute a general n-order expansion, as described before, leading to [�ሷ + ϵ�ሷଵ+. . . +ϵ୬�ሷ୬] + [� + ϵ�ଵ+. . . +ϵ୬�୬] = ϵ ∙ [f + ϵfଵ+. . . +ϵ୬f୬] (2-48) 

 
and, after collecting all terms with a same ߳-order, we arrive at 

{�ሷ  + � = Ͳ                                                          �ሷଵ + �ଵ = fሺ�, �ሶሻ                                                          …                                                         �ሷ୬ + �୬ = f୬−ଵሺ�, �ሶ , �ଵ, �ሶଵ, … , �୬−ଵ, �ሶ୬−ଵሻ (2-49) 

 
where fሺ�, �ሶሻ includes solutions as � = a ∙ �o�ሺ�ሻ + � ∙ ��nሺ�ሻ, but also parts of the 
homogeneous solution �ଵ୭୫ = �ଵ୭୫ሺ�ሻ, thus leading to new particular solutions in the form 
as “� ∙ �o�ሺ�ሻ” or “� ∙ ��nሺ�ሻ”. The latter trivially shows the formation of these secular terms, 
while a similar pattern repeats for all the other orders of the expansion in Eq. (2-49). 

                                                           
14

 More correct way is to consider them as resonance effects at a certain order of the expansion, 
due mostly to solutions found at lower orders of the expansion. (Verhulst, 2000) 
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At this point the principal idea of the Lindstedt-Poincaré method is to introduce a 
coordinate transformation on the original time �, in such way that new periodic solutions 
of the perturbed problem have same T-periodicity, but in a new time-like variable. We 
have already encountered a similar time transformation, adopting the non-dimensional 
time-like parameter in Section 2.2.1, such that the motion of the principal masses was ʹߨ-periodic. Now, for our example the situation is slightly different since the 
transformation is no more a simple rescaling, but dependent upon the small parameter ߳ 
and this explains the appellative “strained coordinate method”. In fact, we can write 

Ʌ = ��          ����          � = ͳ√ͳ + ϵ ∙ Ʉሺϵሻ   , ∀Ʉሺϵሻ =∑ϵ୧ ∙ Ʉ୧ሺϵሻ୬
୧=ଵ  (2-50) 

 
where � is a new pulsation. With the notation �′ = ��/�Ʌ we use Eq. (2-47) to arrive at 15 

�′′ + ��ଶ = ϵ ∙ fሺ�, �′, ϵሻ�ଶ           ୭୰՞          �′′ + � = ϵ ∙ �ሺ�, �′, ϵሻ (2-51) 

 
in this way having a system similar to the previous one, but now knowing that periodic 
solutions are ʹߨ-periodic in Ʌ. Is it exactly this last imposed condition (known as 
“periodicity condition”) that allows us removing secular terms at each order of the 
expansion of Eq. (2-49). Consequently, it is possible to fix initial conditions at a lower 
level in such way that we avoid the appearance of resonance terms. Very last step, after 

iteratively solving the system, is to express the approximated solution �a�� = �a��ሺɅሻ 
considering constraints on initial conditions found, so leading to �ሺɅሻ ≈ �ୟ୮୮ሺɅሻ = �ሺɅሻ + ϵ ∙ �ଵሺɅሻ + … + ϵ୬ ∙ �୬ሺɅሻ (2-52) 

 
and the new T-period of the perturbed solution will be simply given in a ߳-series as 

� ≈ �୬ୟ୮୮ሺϵሻ = � +∑ϵ୧ ∙ �୧ሺϵሻ୬
୧=ଵ  (2-53) 

 

where the nominal period is � =  while �୬ୟ୮୮ሺϵሻ is the new approximated perturbed ,ߨʹ
period, converged for any ߳ < ߳. 

2.3.2.2 Third-order analytic approximation by (Richardson, 1980a) 

At this point we can briefly introduce the third-order analytic approximation found using 
the LP-method and given in (Richardson, 1980a, 1980b). Purpose is here not to re-
discover what has been already presented in his work, but only to identify critical aspects 
of that expansion (and the method itself), thus to use such approximated solution as first 
guess for the numerical method presented in the following Section 2.4. For a very well 
detailed description of his procedure we strongly suggest (Thurman & Worfolk, 1996). 

                                                           

15 Note that both forms in Eq. (2-51) are equivalent and related by the following expression  
 �ሺ�, �′, ϵሻ = fሺ�, �′, ϵሻ ∙ [ͳ + ϵ ∙ Ʉሺϵሻ] − � ∙ [ϵ ∙ Ʉሺϵሻ] 
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We start with a system linearized respect to the libration point, as presented in Eq. (2-27), 
but now considering only collinear libration points (more precisely only L1 and L2, for 
the reasons earlier discussed). In (Richardson, 1980a) all positions {̃ݔ, ,ݕ̃  have been {ݖ̃
adimensionalize by ߛ, distance between M2 and each ܮ-point, which represents a 
simply rescaling that can only influence the numerical value of coefficients in each 
equations, without really altering the dynamics. 16 It follows a system in {ݔ, ,ݕ  such that ,{ݖ

{  
  
   
ሷݔ  − ሶݕʹ − ሺͳ + ʹܿଶሻݔ ≅  ∑ ܿ ∙ ௫݂ሺݔ, ,ݕ ሻேݖ

=ଷݕሷ + ሶݔʹ + ሺܿଶ − ͳሻݕ ≅  ∑ ܿ ∙ ௬݂ሺݔ, ,ݕ ሻேݖ
=ଷ   

ሷݖ + ܿଶݖ ≅  ∑ ܿ ∙ ௭݂ሺݔ, ,ݕ ሻேݖ
=ଷ                          

 (2-54) 

 
with ௫݂, ௬݂, ௭݂ functions of all three position variables, outcomes of the Taylor N-order 

expansion of the potential Ω and having order [j-1]. The nominal system, after neglecting 
the right side of Eq. (2-54) is exactly the same one as given in Eq. (2-27), but here 
evaluated at the Lagrange point, with a vertical pulsation expressed by ܿଶ = −Ω,௭௭ = ߱௭ଶ. 
As discussed before, the mismatch between in-plane and out-of-plane is unavoidable 
once close enough to the L-point, where the linearization represents a very accurate 
approximation. However, nothing can be stated for non-linear terms, and as additional 
assumption we have that ߱௭ଶ = ߱௫௬ଶ − ȟω, with ȟ߱ = ࣩሺݔଶ, ,ଶݕ  ଶሻ as correction on theݖ

Eigen-frequency, neglectable in the first-order approximation, so leading to 

{ ݔ = ௫ܣ �o�(߱௫௬ݐ + ݕ(� = ௫ܣ݇ ��n(߱௫௬ݐ + ݖ(� = ௭ܣ ��n(߱௫௬ + ߰)  (2-55) 

 
that is again directly comparable with Eq. (2-42), but now having a synchronized motion 
due to the last assumption made. Moreover, unbounded solutions from Eq. (2-42) have 
been removed (see previous example), while both phases � and ߰ are related by the 
initial conditions of the physical problem. For this first-order approximation, we see a 
constant term ݇ relating both ݔ and ݕ solutions, where first and second equations in the 
system of Eq. (2-54) are actually coupled (Szebehely, 1967), such that 

݇ = ߱௫௬ଶ + ͳ + ʹ߱௭ଶʹ߱௫௬    ʹ߱௫௬߱௫௬ଶ + ͳ − ߱௭ଶ (2-56) 

                                                           

16 Note that the rescaling introduced in (Richardson, 1980a, 1980b) changes the numerical value 
of ܿ, related to the order [j-1] and consequently having that ܿோ (used by Richardson in his paper) 
are related to the coefficients used here simply as 

ܿோ = ܿ ∙ ∀    −ଵߛ ܿ = ሺ−ͳሻ ∙ [ ሻ+ଵߛ∓ሺߤ + ͳ − ሺͳߤ ∓  [ሻ+ଵߛ
with the negative sign for L1 and the positive one for L2. 
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The third order solution from (Richardson, 1980a) is given in Table 2 and with the same 
notation, so we refer to his paper for the calculation of all coefficients {ܽ, ܾ, ݀}. Moreover, 
interesting is the correction on the T-period by the perturbed pulsation ݓ௧, such that 

ܶ௧ = ௧ݓߨʹ = ௫௬߱ߨʹ ∙ ሺͳ + ௫ଶܣଵݏ +  ௭ଶሻ (2-57)ܣଶݏ

 
where, the previous Taylor expansion is based on small displacement-amplitudes, here 
named as ܣ௫ and ܣ௭. Both two are related simply to the two Lyapunov families shown in 
Figure 11, while main objective is here to look also at non-linear terms of this expansion. 
The latter allows identifying possible 3D motions, where both in-plane and out-of-plane 
equations are synchronized, so leading to two additional constraints on the motion as  ࢚ࢇ࢚࢙࢘ ࢋࢊ࢛࢚:         ݈ଵܣ௫ଶ + ݈ଶܣ௭ଶ + ȟ߱ = Ͳ 

߰     :࢚ࢇ࢚࢙࢘ ࢋࢍ ࢋ࢙ࢇࢎࡼ  = � ±  ߨʹ

(2-58) 

 
Both previous arise only at the third-order and are related to terms ࣩሺܣ௫ଶ , ௫ܣ௧, correction of the unperturbed pulsation ߱௫௬, since no terms ࣩሺݓ ௭ଶሻ, as also forܣ ,  ௭ሻ have beenܣ

found. An incredible result is the appearance of what can be considered an “analytic 
bifurcations” within the Horizontal Lyapunov family, due to the ࢚ࢇ࢚࢙࢘ ࢋࢊ࢛࢚, 
since ݈ଵ < Ͳ, ݈ଶ > Ͳ for each ߤ-value (numerically checked) in a valid range ∀ߤ א ሺͲ,Ͳ.ͷሻ. 
Consequently it follows the existence of a boundary real value ܣ௫ெூே for the 3D motion as ܣ௫  ௫ெூேܣ = √ȟω −݈ଵ⁄  (2-59) 

 
 different at each ߤ-value, while ܣ௭  ௭ெூேܣ = Ͳ for what has been declared before.  
________________________________________________________ 

Table 2: The third order analytic approximation of periodic solutions near L1/L2. Here {࢞, ,࢟  {ࢠ
are displacement-positions from both L-points, while ࢚࢘ࢋ࢝ and ࣓࢟࢞ respectively the perturbed 

and unperturbed pulsation of the approximated solution. See (Richardson, 1980a). 

 I° order II° order III° order ܣ− ݔ௫ �o�ሺ�ଵሻ ܣ௫ଶ[ܽଶଵ + ܽଶଷ �o�ሺʹ�ଵሻ]… + ܣ௭ଶ[ܽଶଶ − ܽଶସ �o�ሺʹ�ଵሻ] ܣ௫[ܽଷଵܣ௫ଶ − ܽଷଶܣ௭ଶ] �o�ሺ͵�ଵሻ ܣ݇ ݕ௫ ��nሺ�ଵሻ [ܾଶଵܣ௫ଶ − ܾଶଶܣ௭ଶ] ��nሺʹ�ଵሻ ܣ௫[ܾଷଵܣ௫ଶ − ܾଷଶܣ௭ଶ] ��nሺ͵�ଵሻ ܣ ݖ௭ �o�ሺ�ଵሻ ݀ଶଵܣ௫ܣ௭[�o�ሺʹ�ଵሻ − ௫ଶܣ௭[݀ଷଶܣ [͵ − ݀ଷଵܣ௭ଶ] �o�ሺ͵�ଵሻ 
௧߱௫௬ݓ   1 Ͳ ݏଵܣ௫ଶ +  ௭ଶܣଶݏ

 
LEGEND: ܣ௫ ,  ௭ are amplitude-terms and � phase-term, all constant outcomes of theܣ
recursive integrations, where the time-argument is given as  �ଵ = � + � = ௧ݓ ∙ ݐ + �.17 

                                                           

17 Time transformation used in (Richardson, 1980a) is � = ௧ݓ ∙  with its relative expansion ,ݐ
respect to the small parameter, as shown in the previous example. Look to Eq. (2-50) at page 34. 
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2.3.2.3 A third family of periodic solutions: the Halo family 

The new family of 3D orbits found is well-known in literature and usually called “Halo”, 
name originally provided in the PhD thesis (Farquhar, 1968) and successfully considered 
for several missions described in Section 1.2. As it will be discussed later, for their 
numerical computation “halo orbits are difficult to obtain because the problem is highly 
non-linear and small changes in the initial conditions break the periodicity of the 

orbits”. (Bernelli, Topputo, & Massari, 2004) 

Differently from Horizontal and Vertical Lyapunov orbits (once setting respectively ܣ௭ = Ͳ and ܣ௫ = Ͳ), the Halo family is totally dependent upon only one single amplitude 
parameter from the moment that the “࢚ࢇ࢚࢙࢘ ࢋࢊ࢛࢚” relates both in-plane 
and out-of-plane amplitudes, so ܣ௭ுை = ,ߤ௭ுைሺܣ  ௫ுைሻ. Overview of all three familiesܣ
of periodic trajectories investigated in this report at L1/L2 is given in next Figure 12. 

 

Figure 12: Illustration of investigated families at L1/L2 in the Earth-Moon system: Horizontal 
Lyapunov (red), Vertical Lyapunov (green) and Halo (blue) are shown at same energy-level. 

The analytic approach, as described in the Literature Study, was originally supposed to 
be the main tool for our analysis, nonetheless due to its complexity and low efficiency, 
the investigation turn out to be mostly numerical (the “Numerical Approach” in Section 
2.4), but still strongly supported by all the aforementioned mathematical theories. The 
limited accuracy of such types of approximations for a full analysis of all three families 
does not allow having robust results and indeed the LP-method ‘fails’ far away from 
libration points (Howell, 1984), while higher orders in the expansion involves very 
‘tedious’ expressions (Jorba & Masdemont, 1999). Moreover, “since the (out of plane) 
halo orbits have a minimum amplitude, it is not clear whether the approximation is 

valid” (Thurman & Worfolk, 1996), thus results from (Richardson, 1980a) have been 
used here only as first guess for an initial numerical generation of all periodic solutions.   

Furthermore, the LP-method is strictly driven to find specific periodic solutions, while 
the CR3BP the system is known to be Hamiltonian and the existence of a continuous 
family leads to additional complications. In fact, as discussed, isolated periodic solutions 
do not actually exist and consequently the “Unicity conditions” of the method is not 
satisfy, while integration terms can be fixed only taking higher orders of expansion 
(without additional benefits on the accuracy). More information can be found within 
Section 10.4 from (Verhulst, 2000), while here we continue with the numerical approach.  
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2.4 The Numeric approach 
The numerical approach, here presented, is based on an algorithm written in a MATLAB 
software environment. Further description and main settings adopted can be found in 
Appendix-B, very important for having a reliable analysis and in particular to assure 
reproducibility of all results obtained. Here we focus on methodologies, underlining main 
limitations and advantages, in a similar way to what has been done before for the analytic 
approach. Nonetheless, similar application of such technique can be found in other 
recent Master theses at Delft University of Technology, as (Van der Ham, 2012), 
(Vermeiden, 2014) and (Rohner, 2014). For a more complete and accurate discussion on 
numerical techniques we remind to (Szebehely, 1967), but more suitable for our problem 
is (Howell, 1984), where the ‘standard method’ has been taken from. Modifications 
added to this ‘standard method’ will be justified step by step, based on what we have seen 
so far, while for Lissajous solutions (not treated here) the discussion over numerical 
multi-shooting methods in (Howell & Pernicka, 1988) could be a good starting point. 

2.4.1 Differential Correction algorithm 

The main technique described here has been originally adopted18 in (Howell, 1984) for “a 
largely numerical study of families of three dimensional, periodic, ‘halo’ orbits near 
collinear libration points”. The method is basically a single shooting method, applied in 
many other boundary-value problems and based on the Dynamical System Theory. 

As seen in Section 2.2.2, the State Transition Matrix Φሺݐଵ,  ሻ is able to relate the initialݐ
and final displacement (at ݐ and ݐଵ) relatively to a reference solution. In this way it is 
possible to correct the initial conditions (or shooting conditions), so looking at the 
trajectory that better satisfies some boundary conditions at ݐ =  ., as given in Figure 13ݐ

We remind once again that STM comes from a linearized dynamics in Eq. (2-30) and its 

suitability is related to the error-term ࣩሺ|ࢄࢾ|ሻ, which needs to be small enough in order 
to have convergence of the DC-algorithm, consequently the necessity of having a first 
“sufficiently close” guess.  

 

Figure 13: Example of perturbed trajectory ࢄሺ࢚ሻ deviating respect to the nominal one defined 
by ࢄ∗ሺ࢚ሻ, where ࢄࢾሺ࢚ሻ and ࢄࢾሺࢌ࢚ሻ are respectively the initial and the final displacement. 

                                                           

18 More correctly first application of numerical methods for periodic solution at L1/L2 is given in 
(Breakwell, 1979), but considering only the Earth-Moon mass ratio. As reported in (Howell, 1984), 
in their work very significant is the range of stable (linear stability or what we call zero-instability) 
“roughly halfway between the libration point and the Moon”.  
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In order to define constraints on the periodicity it is necessary to re-consider for a 
moment both symmetries previously found, thus applying them to periodic solutions. 
First type, described in Eq. (2-14), does not involve any time-transformation and it is 
correlated only to the existence of two Halo families: a Southern and a Northern family, 
symmetric in the z-coordinate. Meanwhile, for both Lyapunov families there is not such 
distinction, in fact Horizontal Lyapunov orbits are totally bounded within the ̂ݕ̂ݔ-plane 
(without any z-components). Regarding Vertical Lyapunov orbits, actually they follow the 
third symmetry in Eq. (2-16), crossing the x-axis twice at the same point during a 
complete orbital revolution (so also named doubly-symmetric). (X. Y. Hou & Liu, 2009) 

In general, for all 3-dimensional periodic solutions in the CR3BP (so in particular for the 
Halo family), it holds a second symmetry as given in Eq. (2-15), inborn propriety of the 
equations of motion. Nonetheless, for closed trajectories crossing the ̂ݖ̂ݔ-plane (here 
plane of symmetry) it is also possible to define additional constraints starting within such 
plane ሺ∀ݕ = Ͳሻ. In fact, Eq. (2-15) assures that a symmetric reverse orbit exists, and from 
the transformation {ݕ, {ݐ ՜  it follows that new initial conditions are also given {ݐ −,ݕ−}
as {ݔ, Ͳ, ,ݖ ,ሶݔ ,ሶݕ {ሶݖ ՜ ,ݔ} Ͳ, ,ݖ ,ሶݔ− ,ሶݕ ݐ ሶ}. Once setting19ݖ− = Ͳ, the state-vector ࢄሺݐሻ 
at ݐ = ܶ and ݐ = −ܶ needs to be the same as ࢄሺͲሻ, due to the definition of T-periodicity. 
As consequence of this previous symmetry (Miele, 2010), we obtain two conditions as ݔሶ = ሻݐሶሺݔ = Ͳ, ሶݖ = ሻݐሶሺݖ = Ͳ (2-60) 

 
and it is also possible to shown that starting at any ݐ ≠ Ͳ within the plane of symmetry, 
both conditions in Eq. (2-60) do not change for this non-autonomous system. At this 
point, the DC-algorithm can be formulated in mathematical terms, where now we also 
consider an uncertainty on the T-period, differently from Eq. (2-29). More conveniently, 
we can numerically integrate till half of the orbital ܶ-period, as shown in Figure 14, thus 
evaluating conditions at different crosses within the ̂ݖ̂ݔ-plane. 

 

Figure 14: Example of initial guess (red) and final path (blue) corrected by the DC-algorithm, 
having the “orthogonality conditions” at the shooting (⋄) and at the first cross (blue star). 

                                                           

19 Note that for autonomous systems, the time ݐ does not appear directly in the equations of 
motion, but only through the “derivative operator”. As consequence it is always possible to define 
a general time-transformation as � = ݐ + ܿ, with c constant and having that � = Ͳ. The latter 
represents simply a time-shift that does not alter at all the dynamical motion. (Verhulst, 2000)   
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It follows an expression (neglecting higher order terms) for the final displacement as 

ଵሻݐሺࢄߜ ≅ Φሺݐଵ, ሻݐ ∙ ሻݐሺࢄߜ + ݐ߲ࢄ߲ |௧భ ∙  ଵ (2-61)ݐߜ

 
where ࢄߜሺݐሻ and ݐߜଵ needs to be uniquely determined. Nevertheless, constraints within 
the ̂ݖ̂ݔ-plane holds for each cross and consequently at ݐଵ = ݐ + ܶ/ʹ we have that 

( 
  
 (௭ݒߜ௬ݒߜ௫ݒߜݖߜݕߜݔߜ
  
௧భ
=
[  
   
ΦଵଵΦଶଵΦଷଵΦସଵΦହଵΦଵ
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ΦଵଷΦଶଷΦଷଷΦସଷΦହଷΦଷ

  
ΦଵସΦଶସΦଷସΦସସΦହସΦସ

  
ΦଵହΦଶହΦଷହΦସହΦହହΦହ

  
ΦଵΦଶΦଷΦସΦହΦ]  
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 (௭ݒߜ௬ݒߜ௫ݒߜݖߜݕߜݔߜ
  
௧బ
+ ଵݐߜ ∙

( 
  
 (ሶ௭ݒሶ௬ݒሶ௫ݒሶݖሶݕሶݔ
  
௧భ

 (2-62) 

 
with values of ߲ݐ߲/ࢄ evaluated at ݐଵ based on Eq. (2-24), while ࢄߜሺݐሻ has been evaluated 
on the ̂ݖ̂ݔ-plane following symmetry conditions. This linear system can be solved as 
shown in the Literature Study, also well described in (Howell, 1984), while after 
removing unused terms (in grey colour) we arrive at a more compact form, such that  

( (௭ଵݒߜ௫ଵݒߜଵݕߜ బ்/ଶ = [
ΦଶଵΦସଵΦଵ  ΦଶଷΦସଷΦଷ  ΦଶହΦସହΦହ  ݕሶݒሶ௫ݒሶ௭] బ்/ଶ ∙ ( 

]ߜ௬ݒߜݖߜݔߜ ܶ ʹ⁄ ])   (2-63) 

 

for ߜ[ ܶ/ʹ] correction on the expected orbital period ܶ and {ݔߜ, ,ݖߜ  ௬} correctionsݒߜ

on all three shooting conditions, while {ݔߜଵ, ,ଵݖߜ  ௬ଵ} are values found numerically afterݒߜ

integrating the system from ݐ till ݐଵ = ݐ + ܶ/ʹ, thus leading to 

ܞࢄ + ࢘࢘ࢉࢄߜ = ( ܌ܖܝܗ ܛ܍ܝܔ܉ܞ(௭ଵݒ௫ଵݒଵݕ + ( ܖܗ�ܜ܋܍ܚܚܗ܋(௭ଵݒߜ௫ଵݒߜଵݕߜ = (ͲͲͲ) (2-64) 

 
This previous relation is called “correction step” of the DC-algorithm, aiming to minimize 
the final displacement at ݐଵ. Again, settings and threshold values for the numerical 
computation can be found in both Appendices-A/B, while here we principally focus on 
methodologies. Note that the linear system in Eq. (2-63) is defined by a [͵ × Ͷ] matrix, so 
underdetermined since having four variables but with only three conditions.20 One way 
to overcome this problem is to find a solution in a “Least Square sense”21, minimizing a 

cost function, which in our case it is supposed to be the final displacement norm ‖ࢄܞ‖. 

                                                           

20 Also when considering the Horizontal Lyapunov family (totally bounded in the ̂ݕ̂ݔ-plane), we 
have that ݖߜ, ௭ଵݒߜ = Ͳ and the new system is given by [ʹ × ͵] matrix, so still undetermined. 
21 The Least Squared method has been applied by C.F. Gauss (1777-1855) in 1809 for calculating 
the motion of celestial bodies (Gauss, Davis, & Gauss, 1963), but this fact caused a severe dispute 
with A.M. Legendre (1752-1833), who published the method in (Legendre, 1806) few years before.  
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Unfortunately, using a Least Square method, the solution found is unique and most likely 
it is the one that better minimize the cost function. As seen before, periodic solutions in 
the CR3BP arise in a continuous family, thus with the Least Square method we cannot 
really ‘control’ the generation of each member of the family, as explained later for the 
Numerical Continuation technique (Section 2.4.3). Furthermore, other possible closed 
trajectories can exists in a neighbourhood within the Phase-space, as also periodic 
solutions orbiting around both ܯଵ or ܯଶ, as mentioned in Appendix-C. 

Strategy here adopted is to fix one of the four unknowns, usually ݔ or ݖ for what 
concerns the generation of each family, while we can fix the orbital period  ܶ only when 
looking to particular resonance solutions, necessary step for the extension to the ER3BP, 
(see Section 4.4.1). Before presenting the Numerical Continuation technique, we need to 
briefly discuss how assessing periodicity, so numerically validating each periodic orbit.  

2.4.2 Periodicity constraints and numerical validation 

We have seen that the algorithm works iteratively, starting with an initial guess (e.g., 
using the analytical approximation), fixing one of the two position coordinates {ݔ,  {ݖ
and then correcting all remaining shooting conditions, based on outputs of the numerical 
integration from ݐ till ݐଵ. The latter uses both the state-vector ࢄሺݐሻ and the State 
Transition Matrix Φሺݐ,  ሻ, which requires to be evaluated at each time-step. It follows aݐ
new ‘total’ state-vector of 36+6=42 components and a new differential system, 
combination of Eq. (2-24) and Eq. (2-31), that is once again non-linear since we are 
numerically integrating the full dynamical motion. 

These corrected shooting conditions are re-processed in a similar way till reaching the 
convergence of the iterative algorithm. Clearly, this convergence is achieved only when 
both following criteria have been simultaneously satisfied at  ݐଵ = ܶ/ʹ ሺ∀ݐ = Ͳሻ: 

i. The scalar value of the velocity within the ̂ݖ̂ݔ-plane “ݒ௫௭” is smaller than a certain 
tolerance ȟ ௫ܸ௭, such that ݒ௫௭ሺܶ ʹ⁄ ሻ = ௫ଶሺܶݒ√ ʹ⁄ ሻ + ௭ଶሺܶݒ ʹ⁄ ሻ  ȟ ௫ܸ௭ (2-65) 

 

ii. The absolute value of the position “ݕ” is smaller than a certain tolerance ȟܻ, as ‖ݕሺܶ ʹ⁄ ሻ‖  ȟܻ (2-66) 

 
where it is possible to consider the first condition also as an estimation of DV-budget 
necessary for manoeuvres or for trajectory adjustments. Nonetheless, as we will see later, 
both thresholds have been chosen to be very small, thus allowing us to have a very robust 
analysis on eigenvalues for the linear stability assessment (consequently also for 
bifurcations). Obviously, a perfect zero displacement is unlikely, where there are 
numerically limitations due to a limited precision of the floating-point format (double-

precision), as also related to the accuracy of the integration scheme here adopted. All this 
aspects have been carefully detailed in Appendix-B, where main settings are justifying by 
a rigorous trade among the minimum accuracy, the computation time (e.g., maximum 
number of iterations for convergence) and most important on a necessary reliability for 
all the simulations performed.  
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Results and family plots will be given later, while now an example is given in Figure 15, 
where a “periodicity-validation” is shown for the Halo family generated at L2 in the 
Earth-Moon system. On the right, we can see all three displacements at ܶ/ʹ with a 
threshold of ͳͲ−ଵଶ (used in the iterative algorithm), as described before. On the left, we 
see also an additional condition, later described, for the periodicity when ݐ = ܶ, while 
also the number of necessary iteration for each member of the family is shown. Note that 
the maximum number has been fixed here to 25, for practical computational reasons. 

 

Figure 15: Example of “periodicity-validation” for the Halo family at L2 in the Earth-Moon 
system ሺࣆ = . ሻ. The complete description will be given in Chapter 3, with also results. 

Even if not really used as “exit-points” in the algorithm (Figure 15, left), two additional 
conditions are now introduced in order to further verify the periodicity, also defined as 

I – CLOSING CONDITION:  
First condition is related simply to the definition of periodicity, thus evaluating the error 
after one complete revolution at ݐ = ܶ (again assuming ݐ = Ͳ). The latter can be given 
separately for both position ࡼ = � ሻ and velocityݐሺࡼ = �ሺݐሻ displacement-vectors as 

ሺܶሻࡼ‖ − ‖ࡼ  ȟ ்ܲ          &          ‖�ሺܶሻ − �‖  ȟ்ܸ  (2-67) 

 
where ȟ ்ܲ, ȟ ்ܸ are scalar threshold values (see again Appendix-A). 

II – EIGENVALUES CONDITIONS:  
Second condition is related with all the previous discussion on Hamiltonian systems and 
the symplectic form, such that the Monodromy matrix for periodic solutions always 
involves at least two real eigenvalues as  ߣଵ = ଶߣ = +ͳ. See Section 2.2.4 for more details. 
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Without any doubts, periodicity conditions could also be verified on a longer time-span, 
for example looking at ݐଵ = ʹܶ, ͵ܶ, ܿݐ݁ …, as it will be shown later for resonance orbits. 
One important remark is related to a really unstable dynamics, here under investigation, 
due to the presence of unstable manifolds that complicate much more the entire analysis. 
This is not only a consequence of the numerical integration, which we will prove to be 
extremely accurate, but mostly to the very unstable behaviour in a neighbourhood of 
periodic solutions, where trajectories are actually “trapped” within these manifolds. 
More details can be found in the Appendix-B, while here we continue presenting the 
“Numerical Continuation” technique adopted for the generation of each family. 

2.4.3 Numerical continuation 

As stated before, the algorithm starts with a first analytical guess very close the libration 
points (where the approximation is supposed to be more accurate), thus the DC-method 
leads to a precise numerical periodic solution, fixing for example ݔ and so correcting all 
remaining shooting variables. These guesses come from the III-order analytic expression 
in (Richardson, 1980a), e.g. setting arbitrary22 small amplitudes ܣ௫ and ܣ௭ to ~ͳͲ−ଷ. 

At this point the successive orbit can be generated starting from ࢄ{�}, the corrected initial 
condition, and after slightly changing the previously fixed parameter we arrive at 

{�}ࢄ    ୳୫ୣ୰୧ୡୟ୪ C୭୬୲୧୬୳ୟ୲୧୭୬→                     ࢄ{��}       ����       ݔ{ூூ} = {ூ}ݔ + ȟݔ (2-68) 

 
with ȟݔ as step-size within the family. The choice of ݖ as main variable to generate the 
family along a vertical direction (so correcting the horizontal shooting position ݔ) is also 
possible, except for the Horizontal Lyapunov family for obvious reasons. Nonetheless, 
the correction works on the linearized dynamics, therefore a too large step-size will cause 
the algorithm to diverge, especially if the next member within the same family has 
substantial different shooting conditions. For CR3BP with small ߤ-values we have also 
L1/L2 very close to the mass ܯଶ and this is why it is here recommended to express ȟݔ as 
fraction of ߛ� =  .ଶ and each collinear L-pointܯ ሻ, again the distance betweenߤ�ሺߛ

During this generation process the algorithm stops if it reaches the maximum number of 
iterations without satisfying all mentioned criteria or when the “Eigenvalues condition” 
has been violated. The latter is indeed a fundamental propriety of periodic solutions in 
the CR3BP, while the “Closing condition” has not been used as exit-point for the 
algorithm but only as a benchmark, but still visible in the analysis output (see Figure 15). 

2.4.3.1 Numerical continuation by “Pseudo-Arclength” 
This previous Numerical continuation by “natural parameter” unfortunately reveals 
some issues near bifurcation-points, especially due to the existence of other families, for 
example requiring a too high number of iterations in order to converge (Bosanac, 2012). 
In fact, a unique solution is assured for each six-dimensional initial condition in the 
Phase-space due to the “Existence and Uniqueness Theorem”, while the algorithm 
could literally “jumps” to a different family located near these bifurcation points. 

                                                           

22 It is important to take in consideration the ࢚ࢇ࢚࢙࢘ ࢋࢊ࢛࢚ for the Halo family as given 
in Eq. (2-58) and Eq. (2-59). Note that, as explained in Sub-Section 2.3.2.2, both amplitudes ܣ௫,  ௭ܣ
are scaled by Richardson respect ߛ, so their values in the example are actually equal to {ͳͲ−ଷ ∙  .{ߛ
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A more advanced type of Numerical continuation (usually defined “Pseudo-Arclength”) is 

based on the knowledge of two solutions ࢄ{�}, {���}ࢄ {��}, where a third one can be expressed asࢄ = {��}ࢄ + ȟࢄ{��}          ����          ȟࢄ{��} = ቀࢄ{��} −  {�}ቁ (2-69)ࢄ

 
Consequently, we are in a certain way guessing the successive initial state-vector using a 
“linear extrapolation”, supported by the fact that each family of N-orbits is continuous 

and I.Cs. within the Phase-space are represented by a continuous set ࢄ{} , ∀݅ = ͳ. . ܰ. 
Making use of such “linear trend” in Eq. (2-69), we are basically approximating the real 

set ࢄ{} for each member of the family. Given both shooting positions on the ̂ݖ̂ݔ-plane in 
Figure 16, we are able to qualitatively observe the different outcome of both techniques, 
thus using ȟݔ as family step-size, meanwhile ݔூ ,  ூூ are actually components of theݔ
shooting solutions for the family generated (in dark yellow).   

 

Figure 16: Example is given of Numerical continuation by “natural parameter” (RED) and 
“pseudo-arclength” (GREEN), where we consider the ࢠ̂̂࢞-plane of the Earth-Moon system. In 
blue both initial solutions, while in dark yellow the set of corrected shooting positions {࢞,  .{ࢠ
It is clear that, in general, ȟࢄ{} comes from the knowledge of two previous shooting 

conditions ࢄ{−ଵ},  Adopting this new continuation method, we are capable of better .{ଶ−}ࢄ
predicting the successive guess for the DC-method, while first two steps will be given 
again from the third-order analytic approximation. In Figure 15, it can be seen that the 
algorithm needs usually 4-5 iterations to converge, leading to a very fast computation.23 
The Pseudo-Arclength continuation can be also based on more than two known 
solutions, for example adopting a spline extrapolation able to provide a much more 
accurate guess (Doedel et al., 2007). Of course, for a general polynomial extrapolation 

“Po��n”, ݉-solutions need to be known, thus having  ࢄ{+} = Po��n ቀࢄ{}, ,{}ࢄ … ,   .ቁ{}ࢄ
                                                           

23 From this discussion, it seems plausible to conclude that smaller step-sizes lead to a more 
accurate guess, where the linear extrapolation is more efficient and the DC-algorithm requires less 
iteration. On the other hand, trade has to be made, due to the fact that with smaller step-size the 
generation of the entire family will requires more orbits and a larger overall computational time. 
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2.4.4 Summary of the numerical algorithm 

The main steps of the numerical algorithm are here summarized, while in the next 
Chapter 3 results will be presented and discussed, while for the accuracy and thresholds 
adopted in the computation we refer again to Appendix-B. 

ALGORITHM: Periodic L-Orbit Generator 

 
1. Select a ߤ-value and a family of orbits (H-Lyapunov, V-Lyapunov or Halo). 
2. Compute the location and energy level of the selected libration point (L1 or L2). 
3. Calculate coefficients for the third-order analytic approximation as presented in 

(Richardson, 1980a). See Section 2.3.2.2. 
4. Select two small amplitudes ܣூ ,  ூூ to obtain two different initial conditions, asܣ

also two guesses for the integration period, such that ࢄ{,} = ,{,}ݔ] Ͳ, ,{,}ݖ Ͳ, ,௬{,}ݒ Ͳ]்           &          ܶ{ଵ,ଶ} (2-70) 

  

5. Correct previous guesses with the DC-method (Section 2.4.1), thus use ࢄ{ࢉ}and  ࢄ{ࢉ} in order to find a third one ࢄ{}, as described in Eq. (2-69). Perform the same 

for finding the new guessed period ܶ{ଷ}, based again on ܶ{ଵ} and ܶ{ଶ}.  
 
Start Iterative cycle: 

6. Correct with DC-method the shooting guess ࢄ{} integrated till ܶ{}, so leading to 

new corrected values as ࢄ{ࢉ} and ܶ{}. 
7. Check the exit-criteria given by Eq. (2-65) and Eq. (2-66): 

a. If not satisfied (so the maximum number of iterations has been reached), 
the iterative cycle stops. 

b. If both satisfied, proceed with the next point. 

8. Integrate the STM and the state-vector for one complete revolution till ܶ{}, 
starting with the corrected shooting condition ࢄ{ࢉ}. 

9. Study eigenvalues ߣ of the Monodromy matrix (STM over a T-period) in order to 

assess the linear stability. Also check the “Eigenvalue condition” (Section 2.4.2): 
a. If there are no real eigenvalue ߣ = +ͳ (so orbit found is not periodic), the 

iterative cycle stops. 
b. If there are at least two real ߣ = +ͳ, proceed with the next point.  

10. Save parameters and analysis relative to this i-member of the family. 

11. Set new shooting conditions ࢄ{+} and ܶ{+ଵ}, as described in Eq. (2-69). 
12. Iterate again from point 6.   

End Iterative Cycle.  

 

 Plot Family results.  

 

 Save Family parameters. 

END ALGORITHM 
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3  

CR3BP: Results 

 
In this Chapter 3 we present main results for the investigation of the Circular Restricted 
3-Body Problem (CR3BP), previously analysed in Chapter 2. Most of the theory has been 
already described as also principal methodologies discussed, while here we proceed with 
more practical aspects. Once again, we refer to the Earth-Moon Circular problem as 
“Test-Case” (see Section 2.1.3), considering both L1 and L2 libration points and three 
families of periodic solutions: both Horizontal/Vertical Lyapunov families and the Halo 
one. For the latter, we present only the “Southern family”, since for symmetry results 
holds also in the “Northern family”, as explained in Section 2.4. 

In Sections 3.1, 3.2 and 3.3 we focus on the L1-point, while in Sections 3.4, 3.5 and 3.6 we 
treat orbits at the L2-point, so again investigating all three aforementioned families, 
generated using the algorithm of Section 2.4.4. For each one of these six analyses we 
present a graphical plot of the family (every 50 orbits), thus its main proprieties, order of 
instability and consequently bifurcations. It follows a Verification and Validation part as 
outlined in Section 2.4.2, thus the existence of some “resonance orbits” is given, 
fundamental step for the extension to the Elliptic problem. Last, in Section 3.7, 
conclusions on all these six sections allow having a complete summary of all three 
families at L1/L2 (Earth-Moon CR3BP). Note that for each one, the Phase-space of initial 
conditions has been reduced to three dimensions defined by three shooting variables as {ݔ, ,ݖ  ௬}, while in Appendix-C we provide a more general overview, as also for anݒ

additional family here not considered. Now, before proceed with the graphic results, we 
briefly mention few additional settings involved in the research process. 

ADDITIONAL SETTINGS  

The computation starts at each L-point with the two solutions given by an analytic 
approximation (Section 2.3.2.2), thus applying differential correction and continuation 
on each member of the family. In addition to the “exit-conditions”, the algorithm stops 
also if the shooting ݔ-position (current orbit) cross the ܯଶ (so ݔଶ), since we consider 
only a range in the ̂ݔ-direction spanning from the L-point to the Secondary mass. For the 
V-Lyapunov family, mostly extended along the ݖ-direction, the algorithm stops once the 
“Initial Conditions” (I.C.) trend starts to reverse its direction, so going from ܯଶ to the 
relative L-point. Last setting to be mentioned is related to the numerical continuation by 
pseudo-arclength, used for guessing a close I.C. for the next member of each family, so 
following the Eq. (2-69). The latter has been normalized in order to have a distance on the ̂ݖ̂ݔ-plane between members of around ߛ/ͳͲͲͲ, thus minimizing “lacks or holes” during 
the propagation process. All constants, settings and threshold values adopted can be 
found in Appendices-A/B, while here we proceed presenting the results. 
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3.1 The Horizontal Lyapunov family at L1 

 

Figure 17: Graphical plot of the H-Lyapunov family of periodic orbits, every 50 members with 
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with 
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line). 

3.1.1 Proprieties and main bifurcations 

The orbital period (T) and orbital energy (J) are here shown in magenta for each member 
of the family. In addition, using the Jacobi constant, the energy-error in the integration 
along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 18: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 
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The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange).  

 

Figure 19: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 20: Illustration of six eigenvalues ࣅ and three stability indices ࣇ = ࣅ| +  |/ , given−ࣅ

for each pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and 
Stability Index (Bottom) are shown, as they will be explained in the Final comment section. 
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3.1.1.1 Verification and Validation 

 

Figure 21: Illustration of the Validation and Verification performed during the Numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.1.1.2 Existing “resonance orbits” 
The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 22: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 
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3.1.2 Final comment on the family results 

The Horizontal Lyapunov family has been generated starting from L1, thus 
extending it to M2 with a total of ͺͺ members. The propagation has stopped since last 
orbit was no more periodic24, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). The color-notation for each order-of-instability is described in the LEGEND. 

 

Figure 23: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the colour-notation adopted.  

FINAL COMMENT  

The orbital period ܶ increases monotonically far from the L-point, thus spanning a 
range approximatively between ʹ.ͻͳ and .ͻͷ (in non-dimensional units), and 
consequently between around ͳͳ.Ͳ and ʹͻ.ͶͶ days. Interesting to note that this is the 
only family (in the limits of our generation) that shows orbits with period equal or larger 
than one for the system revolution (ʹߨ), allowing extension of the resonance orbit MͳNͳ. 
Near the libration point we have I-order instability till the first bifurcation, which 
actually generates the Halo family. In Figure 19 and Figure 20, the H-Lyapunov family is 
II-order unstable till a second Tangent-Bifurcation, which reduces again the instability. 
The latter is well-known to be related to the Axial family, here not treated but briefly 
discussed in Appendix-C. Differently, the last bifurcation occurs at the point −ͳ in the 
complex plane, so it is a Period-Doubling Bifurcation (not related to any new family) and 
leading again to a II-order of instability. It is possible to also observe a ߥ index, as 
stability parameter defined for each pairs of characteristic multipliers, such that ߥ = Ͳ.ͷ ∙ ߣ‖ + ,     ‖−ଵߣ ∀݅ = ͳ,ʹ,͵ (3-1) 

 
while additional main aspects will be examined and summarized in Section 3.7. 

                                                           

24 The last computed orbit has a 3-order instability where the unitary eigenvalues was found as |ߣ| = ͳ + ͳ.ͳʹʹ ∙ ͳͲ−ଷ, outside our “boundary margin” of ͳͲ−ଷ from the unit circle ሺfo� |ߣ| = ͳሻ. 
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3.2 The Vertical Lyapunov family at L1 

 

Figure 24: Graphical plot of the V-Lyapunov family of periodic orbits, every 50 members with 
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with 
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line). 

3.2.1 Proprieties and main bifurcations 

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each 
member of the family. In addition, using the Jacobi constant, the Energy-error in the 
integration along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 25: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 
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The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange). 

 

Figure 26: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 27: Illustration of eigenvalues ࣅ and stability indices ࣇ = ࣅ| +  |/ , given for each−ࣅ

pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability 
Index (Bottom) are shown and they will be explained in the Final comment section. 
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3.2.1.1 Verification and Validation 

 

Figure 28: Illustration of the Validation and Verification performed during the Numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.2.1.2 Existing “resonance orbits” 
The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 29: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 



T h e  V e r t i c a l  L y a p u n o v  f a m i l y  a t  L 1  | 55 

3.2.2 Final comment on the family results 

The Vertical Lyapunov family has been generated starting from L1, thus extending it 
to M2 with a total of ʹͲͶͶ members. The propagation has stopped since last orbit 
reached a turning point, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). The color-notation for each order-of-instability is described in the LEGEND. 

 

Figure 30: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the colour-notation adopted. 

FINAL COMMENT  

The orbital period ܶ increases monotonically far from the L-point, thus spanning a 
range approximatively between ʹ.͵Ͷ and Ͷ.ͺ͵ͷ (in non-dimensional units), and 
consequently between around ͳʹ.Ͳ and ʹͲ.͵ days. Looking at the trend in Figure 29, 
we expect an increasing period beyond the turning point (where the algorithm has 
stopped), while at the same location we observe also a reverse trend of the shooting 
velocity in the Phase-space (Figure 30, Right-Bottom). In the three-dimensional Phase-
space the double-symmetry of Vertical Lyapunov solutions (mentioned in Section 2.4.1) 
is clear, while the vertical extension is not really visible due to a different scale used for 
both the ݔ and ݖ axes (Figure 30, Left-Bottom). 

Talking about instability, the I-order is almost constant and it only increases at the 
bifurcation point, which is a Tangent-Bifurcation (at +ͳ in the complex plane) and 
consequently related to a new family of periodic solutions. As seen for the H-Lyapunov 
one, this new family is again the Axial family (described in Appendix-C) intersecting 
the ݔ-axis at two different points, originally referred also with the name Y-family in 
(Doedel et al., 2007) and later in (Shirobokov, 2014). The former, in his work, has fully 
investigated this new family, well-known in literature to be a connection between both 
the Horizontal and the Vertical Lyapunov family. Additional details on bifurcations will 
be discussed in Section 3.7, while an example is shown in Figure 96. 



56 | C h a p t e r - 3  

 

3.3 The Halo family at L1 

 

Figure 31: Graphical plot of the Halo family of periodic orbits, every 50 members with their 
relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), the L-points 
(magenta star), shooting conditions (black dots) and last orbit (black line). 

3.3.1 Proprieties and main bifurcations 

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each 
member of the family. In addition, using the Jacobi constant, the Energy-error in the 
integration along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 32: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 



T h e  H a l o  f a m i l y  a t  L 1  | 57 

The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange). 

 

Figure 33: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 34: Illustration of eigenvalues ࣅ and stability indices ࣇ = ࣅ| +  |/ , given for each−ࣅ

pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability 
Index (Bottom) are shown and they will be explained in the Final comment section. 
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3.3.1.1 Verification and Validation 

 

Figure 35: Illustration of the Validation and Verification performed during the Numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.3.1.2 Existing “resonance orbits” 

The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 36: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 
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3.3.2 Final comment on the family results 

The Halo family has been generated starting from L1, thus extending it to M2 with a 
total of ͳʹͷͻ members. The propagation has stopped since last orbit has reached the ݔଶ 
position of ܯଶ, while in the figure below we provide an image of the Phase-space of 
shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). 
The color-notation for each order-of-instability is described in the LEGEND. 

 

Figure 37: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the color-notation adopted. 

FINAL COMMENT  

The orbital period ܶ starts increasing and then decreases going toward the M2 mass, 

with an initial value as ʹ.Ͷ͵Ͷ (~ͳʹ days) and a maximum one at around ݔ்�ೌೣ ≅ Ͳ.ͻͲͶͷ, 
and consequently around 32000 km from the Moon (along the syzygy) and 26000 km 
from L1. However, the T-range spans approximatively between ʹ.ʹ͵ʹ and ʹ.ͺʹ (in 
non-dimensional units), so consequently between around ͻ.ʹ and ͳʹ.ͳʹ days. As shown 
in Figure 37 (Left-Bottom), the family is getting closer to the Moon, where for the last 
member generated ሺ���� ݔாே ≅ ாேݖ ଶሻ we have thatݔ ≅ Ͳ.Ͳͷ (equivalent to ͳͻʹͲͲ km 
out-of-plane). Very interesting to note in Figure 33 that the entire family has I-order of 
instability except for a narrow area between ͳͳͻ and ͳͳͶͷʹ km from M2 (with a very 
small horizontal range of ͵ʹ km). Here there is a peak as |ߣ| ≈ ͳ + ͳ.ͻ ∙ ͳͲ−ଶ, not 
related to the very small determinant error (~ͳͲ−ଵଵ). More information will be presented 
in Section 3.7, in particular based on additional literature for a very similar analysis. As 
last, another very important aspect visible is the ‘probable’ stability reached at the end of 
the family when looking at the trend in Figure 33, in a strong agreement with results of 
(Breakwell, 1979). Moreover, in their paper, they have further extended the generation at 
L1 for the Earth-Moon CR3BP, so leading to a “second narrow band of stable orbits with 
perilune, however below the lunar surface”. In (Doedel et al., 2007) this bifurcation also 
exists (∀ߣଵ ՜ +ͳ) and it is actually related to the new-born W4/5-family, as connection 
with V-Lyapunov orbits existing at the ܮସ/ହ-points.  
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3.4 The Horizontal Lyapunov family at L2 

 

Figure 38: Graphical plot of the H-Lyapunov family of periodic orbits, every 50 members with 
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with 
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line). 

3.4.1 Proprieties and main bifurcations 

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each 
member of the family. In addition, using the Jacobi constant, the Energy-error in the 
integration along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 39: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 
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The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange). 

 

Figure 40: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 41: Illustration of eigenvalues ࣅ and stability indices ࣇ = ࣅ| +  |/ , given for each−ࣅ

pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability 
Index (Bottom) are shown and they will be explained in the Final comment section. 
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3.4.1.1 Verification and Validation 

 

Figure 42: Illustration of the Validation and Verification performed during the Numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.4.1.2 Existing “resonance orbits” 

The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 43: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 
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3.4.2 Final comment on the family results 

The Horizontal Lyapunov family has been generated starting from L2, thus 
extending it to M2 with a total of ͺͻͻ members. The propagation has stopped since last 
orbit was no more periodic25, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). The color-notation for each order-of-instability is described in the LEGEND. 

 

Figure 44: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the colour-notation adopted. 

FINAL COMMENT  

The orbital period ܶ increases monotonically far from the L-point, thus spanning a 
range approximatively between ͵.͵͵Ͷ and ͷ.ͳʹ (in non-dimensional units), and 
consequently between around ͳͶ. and ʹͶ.ͺͶ days. The analysis resembles the one 
presented for H-Lyapunov orbits at L1, nonetheless effects due to the Centrifugal force 
should have a major effects as we are father from the barycentre/origin of the system. 
Clearly in Figure 17, compared to Figure 38, effects of the gravitational attraction of M1 
are more evident in the ‘deformed’ shape of larger orbits. Interesting in this comparison 
is also the existence of both bifurcations, respectively related to the creation of Halo and 
Axial families, as further confirmation of what has been discussed in the mentioned 
literature. Unfortunately close to M2 the integration of the Total system (state-vector + 
STM) has some issues, as visible in an increasing error on the Monodromy determinant 
in Figure 40. In the same figure (Right-Bottom) a more clear behaviour is shown, where 
the eigenvalue ߣଷ is subject to larger noise, still within a boundary  ±ͳͲ−ଷ from the unit 
circle. This noise in the dynamics near M2 starting from L2, clearly affects the order of 
instability (now oscillating between I° and II°); in particular it can be noted in Figure 41 
where both ߥଶ and ߥଷ lose their “continuous trend”, based on Eq. (3-1), mostly due to the 
characteristic multipliers motion in the complex plane for different orbits of the family. 

                                                           

25 The last computed orbit has a 3-order instability where the unitary eigenvalues was found as |ߣ| = ͳ + ʹ.͵ͻ ∙ ͳͲ−ଷ, outside our “boundary margin” of ͳͲ−ଷ from the unit circle ሺ∀|ߣ| = ͳሻ. 
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3.5 The Vertical Lyapunov family at L2 

 

Figure 45: Graphical plot of the V-Lyapunov family of periodic orbits, every 50 members with 
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with 
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line). 

3.5.1 Proprieties and main bifurcations 

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each 
member of the family. In addition, using the Jacobi constant, the Energy-error in the 
integration along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 46: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 
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The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange). 

 

Figure 47: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 48: Illustration of eigenvalues ࣅ and stability indices ࣇ = ࣅ| +  |/ , given for each−ࣅ

pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability 
Index (Bottom) are shown and they will be explained in the Final comment section. 
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3.5.1.1 Verification and Validation 

 

Figure 49: Illustration of the Validation and Verification performed during the Numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.5.1.2 Existing “resonance orbits” 

The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 50: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 
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3.5.2 Final comment on the family results 

The Vertical Lyapunov family has been generated starting from L2, thus extending it 
to M2 with a total of ͳͺ members. The propagation has stopped since last orbit has 
reached the ݔଶ-value (of ܯଶ), while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). The color-notation for each order-of-instability is described in the LEGEND. 

 

Figure 51: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the color-notation adopted. 

FINAL COMMENT  

The orbital period ܶ increases monotonically far from the L-point, thus spanning a 
range approximatively between ͵.ͷͳͻʹ and Ͷ.Ͷʹ͵Ͷ (in non-dimensional units), and 
consequently between around ͳͷ.͵Ͳ and ͳͻ.ʹͶ days. Order of instability is always 
constant and equal to the I-order, while at the very end of this family we have a 
bifurcation very close to the ݔ-location of M2 (where the algorithm stops). This last is 
again a Tangent-Bifurcation, as demonstrated in Figure 48, and again related to the 
Axial family, which actually exists at all collinear libration points. (Doedel et al., 2007) 

Even if not really evident in the 3D plot, V-Lyapunov orbits are expected to be very 
elongated along the ̂ݖ-direction, where indeed the last orbit (Figure 45, in black) is 
located ‘above’ the Moon at ݖாே ≅ Ͳ.ʹͷͷͶ, meaning more than ͻͺͲͲͲ �� out-of-plane. 
This orbits have been studied in (Vermeiden, 2014) in relation to the OLFAR mission, so 
we refer to that Master thesis for some more details, while many additional graphics 
plots of the extended family can be found in (Doedel et al., 2007), where all five Lagrange 
points have been considered, thus highlighting the principal bifurcation points. 
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3.6 The Halo family at L2 

 

Figure 52: Graphical plot of the Halo family of periodic orbits, every 50 members with their 
relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), the L-points 
(magenta star), shooting conditions (black dots) and last orbit (black line). 

3.6.1 Proprieties and main bifurcations 

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each 
member of the family. In addition, using the Jacobi constant, the Energy-error in the 
integration along each orbit is given as mean value (blue) and standard deviation (red).  

 

Figure 53: Graphical representation of orbital energy “J” (Top-Left), with its error along each 
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T” 
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right). 
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The analysis of the Monodromy matrix and its eigenvalues ߣ (characteristic multipliers) 
is here shown focusing on different orders of instability, eigenvalues module with a zoom 
at its boundary value (ͳͲ−ଷ) adopted to define ߣ still “lying on” the unit circle. Note that 
the error on the " D��ሺMሻ " has been found after using directly the MATLAB det-function 
(in blue) or also using the product of eigenvalues (in orange). 

 

Figure 54: Analysis on the Monodromy matrix, showing on the Left the orders of instability 
(0-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On 
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the 
threshold value used for calculating the order-of-instability (Right-Bottom). 

The following plot shows more in details the eigenvalues’ behaviour in the generation of 
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main 
parameters and considerations will be given later in the Final comment section. 

 

Figure 55: Illustration of eigenvalues ࣅ and stability indices ࣇ = ࣅ| +  |/ , given for each−ࣅ

pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability 
Index (Bottom) are shown and they will be explained in the Final comment section. 



70 | C h a p t e r - 3  

 

3.6.1.1 Verification and Validation 

 

Figure 56: Illustration of the Validation and Verification performed during the numerical 
continuation process. All relative information and notation can be found in the Section 2.4.2 . 

3.6.1.2 Existing “resonance orbits” 
The location of few main resonance orbits within the family is here shown, based on the 
ratio N/M with M number of orbit-revolutions and N number of system-revolutions, 
limited to N  Ͷ and M  ͳʹ. It follows a period ܶ = ߨʹ ∙ N/M as explain in Section 4.4.1. 

 

Figure 57: Main resonance orbits existing within the family are given using combinations of 
M-value (orbit revolutions) and N-value (system revolutions), with ࢞ࢇࡹ =  and ࢞ࢇࡺ = . 
The system �-period is given by ࡺ = , while more details can be found later in Section 4.4.1. 
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3.6.2 Final comment on the family results 

The Halo family has been generated starting from L2, thus extending it to M2 with a 
total of ͳͳͶʹ members. The propagation has stopped since last orbit has reached the ݔଶ 
position of ܯଶ, while in the figure below we provide an image of the Phase-space of 
shooting conditions where both crosses have been considered (for ݐ = Ͳ and ݐ = ܶ/ʹ). 
The color-notation for each order-of-instability is described in the LEGEND.  

 

Figure 58: Set of shooting conditions at both ࢠ̂̂࢞-plane crossings [࢚ = ,  ] with the relative/ࢀ
order of instability. Look at the LEGEND for information on the color-notation adopted. 

FINAL COMMENT  

The orbital period ܶ decreases monotonically far from the L-point, thus spanning a 
range approximatively between ʹ.ͲͶ͵͵ and ͵.ͶͳͶͻ (in non-dimensional units), so as 
consequence between around ͺ.ͺͺ and ͳͶ.ͺͶͻ͵ days. As for the Halo at L1, we have a 
zone with a II°-order instability involving only 4-5 members at around ݔ ≅ ͳ.ͲͲ, so 
covering a small range of around ͳͷͲ ��. The latter however is related to a Period-
Doubling Bifurcation as eigenvalues “escape” from the unit circle at −ͳ (see Section 
2.2.5), and it is surprising to see a very similar result also for the CR3BP studied in 
(Howell & Campbell, 1999). In particular, they show for the Halo at L2 a subsequent 
Fold-Bifurcation and again a Period-Doubling one, in the very similar way as given by the 
computed phase of ߣଶ in Figure 55. This is not the only confirmation of our results, based 
on similar methodologies, as also in (Breakwell, 1979) they noted that “the L2 family 
shrinks in size as it approaches the Moon, becoming stable again shortly before 

penetrating the lunar surface”. Obviously, as stated before, the analysis here performed 
is not extended till the lunar surface or beyond its ݔ-location (ݔଶ), but it offers a very 
valid sketch of each family behaviour (at least within small ߤ-variations), useful for a 
later extension to the elliptic case, not performed in those papers. We refer to (Howell & 
Campbell, 1999) for a very nice comparison of the investigation over Halo orbits, even if 
based on a different system, while very remarkable is the catalogue of several families in 
the extensive study (on a very large ߤ-range), presented in (Doedel et al., 2007).  
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3.7 Conclusive discussion on results 
Three main families around L1 and L2 in the Earth-Moon system have been investigated 
so far in this Chapter 3, while here we simply further discuss some aspects, in particular 
related to bifurcations existing in each one of these six cases. In fact, in a ݔ-range 
between the L-point and M2 (here the Moon) we have observed many changes in the 
order-of-instability, while using the analysis on eigenvalues it has been possible to define 
the type of each bifurcation, based on what has been explained in Section 2.2.5. 

In Table 3, the list of these bifurcations is shown considering a family (Fam), the 
number of orbits within the family (N°), the order of instability (OI) with the member 
(Me) where it changes. Then, for all these last orbits, types of bifurcation (Type) as 
Tangential-Bifurcation [T-B], Period-Doubling [P-D] and Krein-Collision [K-C] have 

been given with the respective non-dimensional shooting coordinates {࢞ࡲ�, ,ࡲ�ࢠ  .{ࡲ�࢟࢜
Note that these values are provided up to the 15th decimal in order to allow future studies 
comparing these results, but the reader should carefully consider all settings and 
methodologies as explained in Section 2.4, as also in both Appendices-A/B. 

Table 3: Detailed data related to bifurcations points and order-of-instability within each one 
of the three families investigated at L1/L2 libration points in the dynamics of the CR3BP for 
the Earth-Moon system. For the notation adopted, the reader is referred to the text above. 

Fam N° OI Me Type ࢞ࢠ ࡲ�࢟࢜ ࡲ�ࡲ� 

H-L 
L1 

ૡૡૠ 

I 
 

II 
 
I 
 

II 

ͳͲͻ 

 ͳͳ 

 ͺͲ 

T-B 
 

T-B 
 

P-D 

Ͳ.ͺͷͶͶͲͺ͵͵ʹʹͶ 

 Ͳ.ͻ͵ͲͷͳͷͳͲͻͷͶͲʹʹͲ 

 Ͳ.ͻͷͻͻͶ͵Ͳͺʹʹͳͻͷ 

Ͳ 

 Ͳ 

 Ͳ 

−Ͳ.ͳ͵͵͵ʹͳͳͲͷʹ 

 −Ͳ.Ͳ͵͵ͳͺͷͲͶͻͷͳ͵Ͳʹ 

 −Ͳ.ͻ͵ͷͷͳͳͺͺ͵ͶͲͻͲ 

H-L 
L2 

ૡૢૢ 

I 
 

II 
 
I 
 

‘?’ 

ʹͲͳ 

 Ͷʹ 

 ͺʹͺ 

T-B 
 

T-B 
 

P-D 

ͳ.ͳʹͲͶʹͳͺͲͲͶͻ͵Ͷ 

 ͳ.ͲʹͻʹͶʹͳͳͻͷͷͲ 

 ͳ.ͲͳͷͳͻͲͷͺͻ͵ͺͺ͵ 

Ͳ 

 Ͳ 

 Ͳ 

Ͳ.ͳͷͺʹͲͲͷͻͻʹͷͲ 

 Ͳ.ʹͶͲͺͻͷ͵ͲͲͺͷʹ 

 Ͳ.ͻʹʹ͵ͷͻͻʹͲͺ 

V-L 
L1 

   I 
 

II 
ͳͲͷ T-B Ͳ.ͻʹʹʹͶͲͷͲͶͲͲͻ Ͳ.ʹ͵ͻͻͶͻͺͷͳ͵͵ͻͺ −Ͳ.ͲͷʹͺͷͷͲͶͻͳͳͲ 

V-L 
L2 

ૠૡૠ 
I 
 

II 
ͳͺͶ T-B Ͳ.ͻͺͺͲͺͷʹʹͶͲʹʹͺ͵ Ͳ.ʹͷͷͳͲͷͻͷͳ͵ͳ Ͳ.ͳ͵ͷʹʹͻ͵ͷͺͲͲͷͻͲ 

Halo 
L1 

ૢ 

I 
 

II 
 
I 

ͻͷ͵ 

 ͻͲ 

P-D 
 

P-D 

Ͳ.ͻͷͲ͵ͻͺͶͺͷ͵ 

 Ͳ.ͻͷͺͲͷͺʹ͵͵ͲͶʹͷͺ 

Ͳ.ͲͺͳͻͳͲͶͻͲͳͷͷͶͷ 

 Ͳ.ͲͺͳͷͶͻͻͻͻ͵͵ 

−Ͳ.ͶͷͲͶͳͶͷͲͷͺʹʹͷ 

 −Ͳ.ͶͷͶͳͺ͵ͻͳ͵͵ͻͶ 

Halo 
L2 

 

I 
 

II 
 
I 
 

0 

 

I 

ͺͻͻ 

 ͻͲ͵ 

 ͳͲͶʹ 

 ͳͳͲ 

P-D 
 

P-D 
 

T-B 
 

P-D 

ͳ.ͲͲ͵ͲͻͳͲͲͺʹ͵ 

 ͳ.ͲͲͺͳͺ͵͵ͷͻ 

 Ͳ.ͻͻʹͷͳͶͷͺͻͲ 

 Ͳ.ͻͺͺͻͻͲͻͲͷͻʹͻ͵ͲͶ 

Ͳ.Ͳ͵ʹͺͻͷͳͻ͵ 

 Ͳ.Ͳ͵ʹͲͻͷͶͳͶͲʹͻ 

 Ͳ.ͲͶͷͲͶʹʹͻͶʹͺͻͳ 

 Ͳ.Ͳ͵Ͷͻʹͺͺͳͳ͵ 

Ͳ.ͷ͵ͻͳʹͷͻͷͺͺͶͺͶʹ 

 Ͳ.ͷͶʹ͵͵ͷʹʹʹʹͶͲ͵ 

 Ͳ.ͺ͵Ͳ͵͵ͷͺʹʹͳͺͲ 

 Ͳ.ͻʹͺͷͺͲ͵͵Ͷ͵Ͷ 

* note the ‘?’-symbol, due to the uncertainty as described in Section 3.4.2 
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Main results have been discussed in each relative section, while in Table 3 bifurcations 
have been summarized more in details. At this point, before proceeding with the 
introduction of the Elliptic problem (extension from the circular case), few additional 
aspects require some considerations.  

First of all, in agreement with most of the mentioned literature, no Krein-Collision exists 
within those families, at least in the limit of our propagation from each L-point till the 
Secondary mass M2. Only uncertainty is given for the last bifurcation of Horizontal 
Lyapunov orbits at L2, but from the trend shown in Figure 41 (eigenvalue’s phase), it 
seems plausible to have a Period-Doubling bifurcation as it is approaching the real value −ͳ, right before leaving the unit circle. It follows that no new family of periodic solutions 
can be found in that neighbourhood.  

Also important to be mentioned is the presence of one bifurcation for Vertical Lyapunov 
and two bifurcations for the Horizontal Lyapunov, in agreement with recent literature. 
These two are related respectively to the Halo orbit as discussed in Section 2.3.2.3, and to 
the Axial one that connects both Vertical and Horizontal families. In addition, also at L1 
the Halo family stops right before the bifurcation related to the W4/5-family in 
connection with V-Lyapunov orbits at ܮସ/ହ-points, as described in (Doedel et al., 2007).  

Last, the bifurcation in the Halo at L2 before the “Spectral Stable” green area (with all 
eigenvalues lying on the unit circle), is actually a Tangent-Bifurcation that has been 
studied for the Sun-Earth/Moon system in (Howell & Campbell, 1999). As stated, “every 

local extremum of the Jacobi Integral, where the order of instability changes, indicates 

a cyclic-fold bifurcation.” At the 1042th member of this family, we have indeed a 
minimum of the energy shown in Figure 53 with a value as  �ெூே = ͵.Ͳͳͷͳʹͳͺ͵ͷ, 
and consequently it is related to a so-called Cyclic-Fold Bifurcation, where all four 
eigenvalues ߣଵ, ,ଵ−ଵߣ ,ଷߣ  ଷ−ଵ are real and equal to +ͳ, as illustrated in Figure 55. Again asߣ
discussed in (Howell & Campbell, 1999), for periodic solutions in the CR3BP, “the cyclic-

fold bifurcation represents only a change of instability of the family and no new 

periodic solutions exist; the only qualitative change is in the order of instability”. This 
also explains why this bifurcation has not been mentioned in (Doedel et al., 2007), where 
the investigation has been focused only on new families of general periodic orbits, thus 
without taking into account possible Period-Doubling bifurcations. 

Let’s now proceed with the theory concerning the Elliptic problem, where main interest is 
now focused on resonance orbits and changes in their liner stability (order-of-stability). 
All the discussion refers to the eccentricity parameter, while bifurcations within the 
family itself are not studied from the moment that periodic solutions do not arise 
anymore in continuous family, as previously seen for the circular case (see Section 4.2.3). 
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4  

ER3BP: Analysis and Methods 

 
In this Chapter 4 we consider the Elliptic Restricted 3-Body Problem (ER3BP). First, in 
Section 4.1 we present main aspects of the dynamical model in comparison to what has 
been shown for the Circular problem (Section 2.1). Hence, in Section 4.2, the Dynamical 
System Theory (DST) is given for what concerns the elliptic case, so further exploiting 
Floquet Theory in order to study the linear stability. Last, both Sections 4.3-4.4 focus 
respectively on Analytic and Numeric methodologies, as evolution of main techniques 
adopted for the circular case. Both approaches will involve mainly “resonance orbits”, as 
one of the most critical aspects of the ER3BP dynamics. 

 

4.1 Introduction to the Elliptic problem 
The Elliptic problem is a much more complete dynamical model able to well describe the 
motion of a small mass ݉ଷ in the gravitational field produced by two principal masses 
(again the Primary ܯଵ and Secondary ܯଶ). In Section 2.1, we have defined four different 
formulations for the restricted problem (݉ଷ ≪  ଶ), all dependent upon the positive ݁-parameter (also defined as eccentricity). Consequently for the elliptical case we are ableܯ,ଵܯ
to re-consider all assumptions made so far for the ‘standard’ CR3BP, but this time we will 
describe the Kepler motion of ଵܲ- ଶܲ considering a non-zero eccentricity in Eq. (2-1), such 
that ݁ א ሺͲ,ͳሻ. (Szebehely, 1967) 

Under this perspective, it is straightforward to understand how the previous Circular 
problem can be simply be considered as a particular case, setting ݁ = Ͳ in the dynamical 
model of the ER3BP. The latter is fully justified by the continuous character of equations 
respect to the ݁-parameter (Bennett, 1965), while it will be shown later how this dynamic 
changes radically when ݁  ͳ. For this last case, both principal masses are constrained in 
an unbounded motion and trajectories for ଷܲ are mostly unlikely periodic solutions. In a 
very recent study (Barrabés, Cors, & Ollé, 2015) over the so-called Parabolic problem 
(PR3BP) for ݁ = ͳ, it has been asserted that periodic orbits cannot exists at all, differently 
from what it will be shown later in Section 4.1.4. 

Once again, test-case selected is the Earth-Moon system having ݁ = Ͳ.ͲͷͶͻ, while the 
entire discussion given in Section 2.1.3 on additional perturbations is still valid. In fact, 
they could be used in future works also for this elliptic case, thus improving the 
‘standard’ dynamical model (ER3BP) here analysed. At this point, we continue providing 
the definition of this new dynamical model within some suitable reference frames. 
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4.1.1 Dynamical model and reference frame 

The dynamics of the Elliptical Restricted 3-Body Problem (ER3BP) has been studied by 
many authors in the past few years, using different reference frames in order to describe 
the problem mathematically in the most efficient way possible. Well-known reference 
frame usually adopted has been provided in (Szebehely, 1967), using Pulsating synodic 
coordinates, as it will be shown later. However, here we decide to proceed gradually, so 
starting by a very similar reference system as the one adopted for the CR3BP: the synodic 
frame (Figure 2), co-rotating with both the Primary ܯଵ and the Secondary ܯଶ. Its origin 
is fixed at the barycentre, while the mass ݉ଷ (e.g., the satellite) is once again neglectable 
and has no consequences on the Kepler motion (elliptical) of the two principal masses. 
An illustrative example is shown in the following Figure 59. 

 

Figure 59: Illustration of both inertial (red) and synodic frames (magenta) for the Elliptical 
Restricted 3-Body Problem, with distances ࢞, ,ࡹ  referring to the position of࢞   along theࡹ
syzygy. In white, the �-phase is shown starting from the peri-apsis, while also ࢘ = ,ࢋሺ࢘ �ሻ is 
shown as time-dependent relative distance between both masses, as described in Eq. (2-1). 

At this point we can use Eq. (2-2) to define26 the dynamics of ଷܲ in what it is known to be 
a time-varying gravitational field. Main characteristics and proprieties of the 2-Body 
Problem (associated to ܯଵ-ܯଶ) have been omitted here since very well-documented in 
common literature or textbooks as (Goldstein et al., 2002). However, very first difference 
within the Elliptic problem is this new “oscillation” in the synodic co-rotating frame of 
both the two masses, such that their position along the syzygy direction can be found 
from the definition of centre of mass. Their expression follows as  ݔଵ = ݎ− ∙ ଶݔ          &          ଶߦ = ݎ+ ∙  ଵ (4-1)ߦ

 

with ݎ relative distance ሺܯଶ ௪..௧.→   ܯଵሻ of Eq. (2-1) and ߦ =   .ை் ratio between masses்ܯ/ܯ

                                                           

26 Note that here we are still considering a ‘dimensional’ system, and only later it will be 
adimensionalize, as performed for the Circular problem at page 5. 
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Three second-order non-linear differential equations follow from Eq. (2-2), such that ݀ଶ݀ݐଶ ቆݖݕݔቇ = ଵߤ− ∙ ଵଷଷݎ࢘ − ଶߤ ∙ ଶଷଷݎ࢘ − ሶͲݔ߱ʹ+ሶݕ߱ʹ−) ) − (−߱ଶݔ−߱ଶݕͲ ) − ቆ−ݔߙ+ݕߙͲ ቇ (4-2) 

 
with the notation for the ଷܲ-position as ݔ = ,ଷݔ ݕ = ,ଷݕ ݖ = ߤ ଷ, whileݖ =  ଷ areݎ  andܯܩ
respectively the planetary mass of each ݅-mass and the relative distance of ଷܲ from them. 
From now on, the dot-notation will be used only for referring to the derivative respect the 
physical time ݐ, while the frame rotates non-uniformly as ߱ =  The parenthesis .ݐ݀/�݀
terms on the right side of Eq. (4-2) are respectively the Coriolis, the Centrifugal and last, 
the so-called Euler force, in this case non-zero since ߱ is no more constant. Value for 
both the ݎଷ-distances is given based on Eq. (4-1), thus leading to 

ଷݎ ؝ ݎ = ݔ] − ݖݕݔ ] = ݔ] ± ݎ ∙ ݖݕߦ ]      , ∀݅ = ͳ,ʹ      (4-3) 

 
As described in Eq. (2-1), we can well define time-dependent parameters in the Eq. (4-2), 
such that ߙ =  ሺ�ሻ is the angular acceleration and � is the relative phase (see Figure 59)ߙ
between masses starting at the peri-apsis of the Kepler motion ሺ∀� = Ͳሻ. As described in 
the Literature Study27, also given in (Goldstein et al., 2002), we can write ߱ሺ݁, �ሻ as 

߱ = ݐ݀�݀ = ݊ ∙ ሺͳ + ݁ ∙ �o� �ሻଶሺͳ − ݁ଶሻଷଶ  (4-4) 

 
with ݊ mean motion given in Eq. (2-3), thus the angular acceleration ߙሺ݁, �ሻ is defined as 

ߙ = ݐ݀߱݀ = ݀ଶ�݀ݐଶ = ߰ ∙ ߱ଶ          , ∀߰ = −ʹ݁ ∙ ��n �ͳ + ݁ ∙ �o� � (4-5) 

 
using ߰ = ߰ሺ݁, �ሻ as auxiliary variable. As seen in Section 2.1.1, all equations of motion 
can be written in a non-dimensional form, where time-space-mass have been set as 

 SPACE [km]:   ܽ = ͳ 
 MASS   [kg]:   ்ܯை் = ଵܯ ଶܯ+ = ͳ 
 TIME   [1/s]:   ݊ = ͳ   

leading to ܩ/݊ଶ = ͳ and with a main orbital period again as ܶ =  Differently from the .ߨʹ
Circular problem, here masses are oscillating in time along the x-axis with impressive 
effects on the dynamics, as later extensively explain in Section 4.2. In order to present the 
non-dimensional differential system, we will make use again of ߤ =  ை் where we்ܯ/ଶܯ
have that ߦଵ = ͳ − ,ߤ ଶߦ =  ,A brief discussion on some time-related aspects is necessary .ߤ
for example relative to a possible time-rescaling of the previous equations. (Perko, 2001) 

                                                           

27 This is a result of the conservation of the angular momentum for the 2-Body Problem, as also 
defined by the so-called Third Kepler’s Law. See (Murray, 1999) for more details. 
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From Eq. (4-4) it is possible to define the mathematical relation between the physical 
time ݐ and the �-phase, such that starting with both ݐ, � = Ͳ we obtain28 

ݐ = ͳ݊ ∙ {ʹ ∙ a�anቌ√ͳ − ݁ͳ + ݁ ∙ �an (�ʹ)ቍ + ߰ʹ ∙ √ͳ − ݁ଶ} (4-6) 

 
Clearly, for ݁ = Ͳ we have that � =  ,in agreement with what seen for the circular case ,ݐ݊
while now the differential system can be expressed in the non-dimensional form as 

ሷݔ = −ሺͳ − ሻߤ ∙ ݔ + ݎ ∙ ଵଷݎߤ − ߤ ∙ ݔ − ݎ ∙ ሺͳ − ଶଷݎሻߤ + ሶݕ߱ʹ + ߱ଶݔ + ߰߱ଶݕ ݕሷ = −ሺͳ − ሻߤ ∙ ଵଷݎݕ − ߤ ∙ ଶଷݎݕ − ሶݔ߱ʹ + ߱ଶݕ − ߰߱ଶݖ ݔሷ = −ሺͳ − ሻߤ ∙ ଵଷݎݖ − ߤ ∙  ଶଷݎݖ

(4-7) 

ଵݎ = √ሺݔ + ݎ ∙ ሻଶߤ + ଶݕ + ଶݎ ଶݖ = ݔ)√ − ݎ ∙ ሺͳ − ሻ)ଶߤ + ଶݕ +  ଶݖ

(4-8) 

 
with all variables previously defined, as also for the dot-notation (meaning ݀/݀ݐ).  

4.1.1.1 Time re-scaling respect to a new time-like “�-parameter” 
We are dealing with a motion based on three second-order differential equations in the 
physical time ݐ. However, once converting Eq. (4-7) into a first-order system, we can also 
obtain 1+6=7 differential equations combining Eq. (4-4) and Eq. (4-7). Here, � = �ሺݐሻ is 
the additional ݐ-dependent variable for a new state-vector ࢄ∗ =  ሻ, while based on theݐሺ∗ࢄ
chain’s rule, we are able to transform the time-derivative of a general variable ࡽ as ݀ݐ݀ࡽ   �݀ࡽ݀  ∙ ݐ݀�݀  = �݀ࡽ݀  ∙ ߱ሺ�ሻ (4-9) 

 
that for the circular case is reduced to a simply time-rescaling, since ߱ = ݊ is constant. 
With Eq. (4-9) the differential system involves again a six-dimensional state-vector ࢄ =  ሺ�ሻ, where the aforementioned �-phase becomes the new time-like parameterࢄ
(Perko, 2001). A similar transformation holds for all orders of derivatives in Eq. (4-7), 

and new velocities can be defined at this point as ݍݑ , ݍ∀ = ,ݔ} ,ݕ  such that , {ݖ

ݒ = ݐ݀ݍ݀   �݀ݍ݀ ∙ ߱ሺ�ሻ = ݑ ∙ ߱ሺ�ሻ             ����             ݑ =  (10-4) �݀ݍ݀

                                                           

28 The result can be simply shown using the Leibniz’s notation (or chain’s rule), in such way that it 
becomes necessary to analytically solve an elliptical integral (Jordan & Smith, 2002), so having 
ݐ݀�݀   = ߱ሺ�ሻ         ୧୲ ୭୪୪୭୵ୱ ୲୦ୟ୲→                 ݐ − ݐ = ∫ ௧ݐ݀

௧బ = ∫ ݀�߱ሺ�ሻ௧
௧బ  
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The new differential system is now completely dependent on the �-parameter, while the 
physical time ݐ is “intrinsically” bounded within the problem through Eq. (4-6). Referring 
to this reference system as “No-Pulsating”, we are able to re-write Eq. (4-7) as29 

′′ݔ ′ݔ߰+ = −ሺͳ − ሻߤ ∙ ݔ + ݎ ∙ ଶ߱ߤ ∙ ଵଷݎ − ߤ ∙ ݔ − ݎ ∙ ሺͳ − ሻ߱ଶߤ ∙ ଶଷݎ + ′ݕʹ + ݔ + ′′ݕ ݕ߰ + ′ݕ߰ = −ሺͳ − ሻߤ ∙ ଶ߱ݕ ∙ ଵଷݎ − ߤ ∙ ଶ߱ݕ ∙ ଶଷݎ − ′ݔʹ + ݕ − ′′ݖ ݔ߰ = − ଶݖ߱ ∙ [ሺͳ − ଵଷݎሻߤ +  [ଶଷݎߤ
(4-11) 

 
where both members have been divided by ߱ଶ, having ߱ ≠ Ͳ , ∀�   �f  ݁ < ͳ. For both  ݎଵ,  ଶݎ
it holds the very same expression given in Eq. (4-8), while the apostrophe symbol will 
always be adopted as notation for the derivative respect to �.  

Theoretically, at this point we have obtained the full dynamical model of the ER3BP, 
again defined by a non-linear differential system in the new time-like �-variable, but 
dependent also upon two parameters: the eccentricity ݁ and the mass-ratio ߤ. After 
setting ݁ = Ͳ, it follows that  ݎ = ͳ, ߱ = ͳ, ߰ = Ͳ and the system becomes exactly the 
same one given in Eq. (2-5), so in perfect agreement with the Circular problem. However, 
determination of Lagrange points seems to be more complex now, and based on their 
definition (see Section 2.1.2), we are supposed to solve the following system 

{  
ݔ   − ͳ߱ଶ ∙ [ሺͳ − ሻߤ ∙ ݔ + ݎ ∙ ଵଷݎߤ − ߤ ∙ ݔ − ݎ ∙ ሺͳ − ଶଷݎሻߤ ] + ݕ߰ = Ͳ
ݕ ∙ [ͳ − ͳ߱ଶ ∙ ቆሺͳ − ଵଷݎሻߤ − [ଶଷቇݎߤ − ݔ߰ = Ͳ                                      (4-12) 

 
that is dependent upon the �-variable, while ݔ′, ,′ݕ ′ݖ = Ͳ and having again that ݖ = Ͳ. A 
precise solution seems difficult to be found, and most likely its expression is time varying 
from the moment that masses (and their gravitational potential) are now oscillating. On 
the other hand, it is important to consider also that in the CR3BP Lagrange points do not 
really exist in an inertial frame, based on the proper definition of “critical point” in the 
Phase-space, as given in Section 2.2.1.1. Hence, similarly to (Szebehely, 1967), we are 
going to define a new reference frame, also denoted as “Pulsating”. 

4.1.1.2 Pulsating reference frame for the ER3BP 

The complete transformation from an initial “No-Pulsating” system in Eq. (4-11) to the 
“Pulsating” one in Eq. (4-15) is here not given, but can be retrieved with a straightforward 
application of following relations in Eqs. (4-13)(4-14). With few additional manipulations, 
the final expression has been obtained (using “Maple 2016” software) and later it has 
been verified with some general literature, again as (Szebehely, 1967). 

                                                           

29 In red all additional terms coming from the re-scaling of the second derivative, such that ݀ݍଶ݀ݐଶ = ݐ݀݀ �݀ݍ݀) ∙ (ݐ݀�݀ = ݐ݀݀ �݀ݍ݀) ∙ ߱) = ݀݀� �݀ݍ݀) ∙ ߱) ∙ ߱ 

         = ଶ݀�ଶݍ݀ ∙ ߱ଶ + �݀ݍ݀ ∙ ߱′ ∙ ߱ = ଶ݀�ଶݍ݀] + �݀ݍ݀ ∙ ߰] ∙ ߱ଶ 
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From this previous adimensionalization, all distances have been scaled by a constant 
parameter ܽ, semi-major axis of the relative orbital motion of ܯଶ respect ܯଵ. Major idea 
is to re-scale equations using ݎሺ�ሻ, the �-dependent distance between ܯଵ-ܯଶ, such that  

ܺ = ሺ�ሻݎݔ , ܻ = ሺ�ሻݎݕ , ܼ = ሺ�ሻݎݖ         ୱ୭ ୦ୟ୴୧୬→              {ܴଵ = ଵݎ ሺ�ሻ⁄ܴଶݎ = ଶݎ ⁄ሺ�ሻݎ  (4-13) 

 
As consequence, the entire system is now pulsating in time, defined by the �-variable. 
However, the definition for the ଷܲ-velocity is also changed, and starting with a general 
pulsating coordinate ܳ̅ = ܳ̅ሺ�ሻ we have that its �-derivative expressed in the new frame is 

ொܸ̅ = ܳ̅′ = ሺ�ሻݎݒ + ܳ̅ ∙ ߰ʹ         , ݒ∀ =  (14-4) �݀ݍ݀

 
The final expression for the “Pulsating” system of the ER3BP is summarized as follows 

ܺ′′ − ʹܻ′ = ͳͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ܺ − ሺͳ − ሻߤ ∙ ܺ + ଵଷܴߤ − ߤ ∙ ܺ − ሺͳ − ሻܴଶଷߤ ] ܻ′′ + ʹܺ′ = ܻͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ͳ − ͳ − ଵଷܴߤ − ′′ܼ [ଶଷߤܴ = − ܼͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ͳ − ଵଷܴߤ + ଶଷߤܴ + ݁ ∙ �o�ሺ�ሻ] 
(4-15) 

 
or in a more compact form following (H. Peng & Xu, 2015a, 2015b, 2015c), such that30 

{  
  ܺ′′ − ʹܻ′ = ߲ܷா߲ܻܺ′′ + ʹܺ′ = ߲ܷா߲ܻܼ′′              = ߲ܷா߲ܼ

 (4-16) 

 
where we have used the gradient components of a pseudo-potential function ܷா, which is 
dependent upon this pulsating position coordinates, along with the �-time. The ܷா  can be 

related to ΩC, potential function adopted in Eq. (2-10) for the circular case, so leading to 

ܷா = ͳͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ΩC − ܼଶ݁ ∙ �o�ሺ�ሻʹ ]       , ∀Ω = ܺଶ + ܻଶʹ + ͳ − ଵܴߤ +  ଶ (4-17)ߤܴ

 
                                                           

30 A different formulation has been originally given in (Bennett, 1965), with the definition of a 
pseudo-potential function �ா = �ாሺܺ, ܻ, ܼ, �ሻ with the last equation as  ܼ′′ + ܼ = �, , so having 
 �ா = ͳͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ΩC + ܼଶʹ] 
 
while we will adopt the notation provided in Eq. (4-16), since easily comparable with Eq. (2-10). 
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4.1.2 Existence of Lagrange points and the new “symmetry constraint” 
Differently from (Szebehely, 1967), with his analysis on the planar Elliptic problem, here 
we consider the full spatial problem. The latter is not based on the notation originally 
adopted in (Bennett, 1965), but more conveniently the one previously described and also 
used in (H. Peng & Xu, 2015a, 2015b, 2015c). So far, we have seen that libration points 
are most likely difficult to find within the No-Pulsating frame, while for such new 
formulation in Eq. (4-16) there are many similar features with the Circular problem. 

The existence of a function ܷா, defined “pseudo-potential” since it depends also upon the 
time-like parameter �, is without doubt a significant advantage for all our investigation. 
First of all, in Eq. (4-15) we note that all five libration points can exist and in addition to 
that, they actually have the exact same numerical value as the one found solving both the 
Eq. (2-7) for the collinear and the Eq. (2-8) for the equilateral ones (H. Peng & Xu, 2015a, 
2015b, 2015c). As consequence of this pulsating reference frame, it means that within the 
no-pulsating one (still co-rotating with both masses), their position is oscillating in time 
around some nominal values. For example considering collinear L-points we have ݔ� = ܺ� ∙ ,ሺ݁ݎ �ሻ         ∀≪ଵ→             ݔ� ≈ ܺ� ∙ [ͳ − ݁ ∙ �o�ሺ�ሻ + ࣩሺ݁ଶሻ] (4-18) 

 

with ܺ݅ܮ  numerically computed solving Eq. (2-9). When looking at the Taylor first-order 

expansion of ݎሺ�, ݁ሻ respect to a small eccentricity ݁ ≪ ͳ, we can clearly see the periodic 
oscillation having similar period as the system’s revolution one. It is possible to assume 
that the Pulsating system, even if physically less intuitive, is most suitable for our 
analyses, so providing us a clear definition of libration points. Furthermore, the existence 
of the pseudo-potential function in Eq. (4-16) is remarkably similar to what has been 
previously observed for the circular case.  

4.1.3 Variation in the symmetry: the shooting-time constraint 

In comparison with the CR3BP, it is possible now to investigate the possible existence of 
particular proprieties or symmetries that could help simplifying the inspection over the 
elliptical case. Looking at Eq. (4-15), it seems clear that all three symmetries still exist in 
the new system, due to its similar expression with the Circular problem in Eq. (2-5). 
Another remarkable aspect is related to the “reverse trajectory”, defined in Theorem 1.2 
(with all three possible transformations), but referring now to the �-variable adopted as 
new time-like parameter of the differential system. 

In the new “Pulsation notation”, evident is the appearance31 of time-dependent terms 
within the vector-function ࢌ = ,ࢄሺࢌ �ሻ. The latter is one of the most important aspects 
characterizing the Elliptic problem, while other perturbations in Eqs. (2-17)(2-18)(2-19) as 
given in Section 2.1.3.1, did not change radically the nature of the differential system 
(Musielak & Quarles, 2014). In fact, in their expression, there are no explicit time-related 
terms, while extremely relevant are effects of having a differential system changing in 
time. This aspect will be extensively discussed with the Dynamical System Theory, while 
now we provide a new time-constraint related to symmetry for the Elliptic problem.  

                                                           
31

 In fact, it is possible to observe a term �o�ሺ�ሻ in the pseudo-potential function ܷா, thus in all 

three components of its gradient � = [ డడ , డడ , డడ], which is involved in the system. See Eq. (4-16). 
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As consequence of what previously stated, all transformations involving the time should 
leave unchanged the equations of motion of the current “Pulsating” notation, as well as in 
a “No-Pulsating” frame. Using both Eqs. (4-11)(4-15), the reader could trivially proof that 
a new necessary condition on periodicity requires that  � = � ∙ ,     ߨ ∀� א ℤ ሺ�n�����ሻ (4-19) 

 
where � is either zero or an integer number (positive or negative). Principal reason is 
related to the existence of a cosine function (even function), having a relevant impact on 
the possible initial condition for periodic orbits (Section 4.4.2). As already seen in 
Section 2.1.2.2, here we present a numerical simulation of such symmetry, considering a 
general eccentricity ݁ = Ͳ.ͳ and starting with � = Ͳ and � =  Purpose is here only . ͵/ߨ
to “qualitatively” illustrate the different behaviour of same shooting conditions adopted 
in Figure 5, but now integrated for the ER3BP dynamics. 

 

Figure 60: Main three symmetries for the Earth-Moon Elliptical Restricted 3-Body Problem in 
pulsating synodic coordinates, with ࢋ = .  and starting at � = . Compare to Figure 5. 

As shown in Figure 60, all major three symmetries still hold in the ER3BP, but the 
trajectory is clearly different from Figure 5, since considering a different dynamical 
model. In next Figure 61, the same initial conditions have been numerically integrated 
for the same period, but starting with a different shooting-time given as � =  .͵/ߨ
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Figure 61: Main three symmetries for the Earth-Moon Elliptical Restricted 3-Body Problem in 
pulsating synodic coordinates, with ࢋ = .  and starting at � = �/. Note the loss of both 
Backward and Backward-Mirrored symmetries due to the condition given in Eq. (4-19). 

Comparing Figure 60 and Figure 61, it is possible to note the breaking of all time-related 
symmetries (for a Backward and a Backward-Mirrored transformation), while the first 
type of symmetry (Section 2.1.2.2), involving only the ݖ-variable, still perfectly holds. 
Further aspects will be treated later in Section 4.4 (“Numerical Approach”), while we 
proceed now with few considerations on possible First Integrals of motion in the ER3BP. 

4.1.4 The non-existence of First Integrals 

In Section 2.1.2.1 we have introduced the Jacobi constant, only First Integral for the 
Circular problem, thus logical is to questioning wherever there are similar quantities also 
for the elliptic case. In (Contopoulos, 1966), considering a “potential periodic in time”, a 
so-called ‘third’ integral of motion can be found, so named in order “to distinguish it 

from the classical energy and angular momentum integrals”. Later, its results were 
extended by (Sarris, 1982) for a three dimensional ER3BP, but considering both a small 
eccentricity and small distance from principal masses (studying planetary orbits). 
Moreover, it has been previously shown that the Jacobi constant can somehow be related 
to the ଷܲ-Energy, mostly due to the fact that in Hamiltonian time-independent systems 
the Hamiltonian-Energy is being conserved. (Goldstein et al., 2002)   
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Briefly starting with Eq. (4-16) and after few manipulations and we are able to define32, in 
agreement with (S. Campagnola, Lot, & Newton, 2008), a particular relation as follows 

ሺܸ�ሻଶ − ܸଶʹ = ܷாሺ�ሻ − ܷா −∫ ߲ܷா߲�  ݀��
�బ  (4-20) 

 
where ܷா, ܷா are respectively the pseudo-function evaluated at �, �, as also for ܸ, ܸ 
scalar velocity ሺܸଶ = ܸଶ + ܸଶ + ܸଶሻ. It follows an expression for �ா = �ாሺ�ሻ, here named 
as “Elliptic-Jacobi integral”, which is dependent upon the �-variable and consequently 
not really considered as First Integral of Motion33, such that 

�ாሺ�ሻ = ሺܸ�ሻଶ − ʹܷாሺ�ሻ = ܸଶ − ʹܷா +∫ [ቆܷாሺ�ሻ + ܼଶʹቇ ∙ ߰ሺ�ሻ]  ݀��
�బ  (4-21) 

 

with ߰ሺ�ሻ = −ଶ∙ୱ୧୬ሺ�ሻଵ+∙ୡ୭ୱሺ�ሻ  as auxiliary variable previously given in Eq. (4-5). From Eq. (4-21), 

it seems clear that this E-Jacobi integral is not constant and looking carefully at the 
integral expression we can observe that an explicit expression of the solution is also 
necessary, since involving ଷܲ-components {ܺ, ܻ, ܼ}. As correctly noted in (S. Campagnola 
et al., 2008), “choosing different initial conditions within the same trajectory results in 
different �ா ′�” and as consequence it is not more possible to “uniquely associate a 
trajectory to a single value of �ா”. A very complete survey has been provided in their 
paper, especially for the so-called “sub-regions of motion”, in a very analogous way as 
seen for the Hill’s surfaces (or zero-velocity surfaces).   
 

4.2 Dynamical System Theory for the elliptic case 
The Dynamical System Theory for the Elliptic problem is briefly discussed here, mostly 
focusing on the Pulsating notation and so considering Eq. (4-15) and Eq. (4-16). All basic 
knowledge has been given in Section 2.2, while here we provide some main differences 
and additional aspects related to the new dynamics investigated. Indeed, the new 
differential system is non-autonomous, so dependent on the time-like �-variable and it 
can be expressed in a vector notation, differently from Eq. (2-23), such that 

ሶࡽ = �݀ࡽ݀ = ,ࡽሺࢌ �ሻ (4-22) 

 
where ࢌ is a vector-function, ࡽ is a general state-vector ࡽ א ℝ , ∀� א ℝ. 

                                                           

32 In Eq. (4-20) it is important to remember that ܷா = ܷாሺܺ, ܻ, ܼ, �ሻ, dependent on the time-like 
parameter and consequently its differential will include partial derivatives respect to �, such that 
 ܷ݀ா =∑߲ܷா߲ݍ ∙ ଷݍ݀

=ଵ + ߲ܷா߲� ∙ ݀�     , ݍ∀ = {ܺ, ܻ, ܼ} 
 
33 At the moment of this writing, no Integrals of Motion are known for the ER3BP (S. Campagnola 
et al., 2008), nonetheless more information on periodic orbits can be found when properly 
adopting averaging techniques. For this last case the reader is referred to (Palacián, 2006). 
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4.2.1 Proprieties of “non-autonomous differential system” 
We assume that the general differential system in Eq. (4-22) consists of a N-set of first 
order non-linear differential equations in the time-like �-variable. Nevertheless, the 
“Existence and Uniqueness Theorem” is still valid, as also the definition of the 
Phase-space, but now no more time-independent. This �-dependence can be easily 
shown (Verhulst, 2000), applying the chain-rule to different pairs of equations, such that ݀ݍ݀ݍ = ݂ሺࡽ, �ሻ݂ሺࡽ, �ሻ    , ∀݅, ݆ = ͳ. . ܰ | ݆ ≠ ݅ (4-23) 

 
for each possible combinations of variables and a suitable �-domain (also requiring that 
at each phase-point ࡽ =  we have a non-zero denominator). In follows that trajectories ∗ࡽ
in the phase-space change with the �-time and their geometrical characterization loses 
most of its useful proprieties.34 

To be mentioned, before analysing the DST in the Elliptic problem, is the possibility of 
considering an additional time-rescaling in a new time-like variable “ݏ”, thus combining 
both Eq. (4-4) and Eq. (4-15). In this way, it is feasible to arrive at an autonomous system 
having dimension 1+6=7, thus with an odd number of equations the system is no more a 
Symplectic one. Nevertheless, in general, the use of alternative reference frames could 
help the investigation of the problem, as also its expression in a mathematical ‘elegant’ 
form, even if the physics behind the model chosen is not really changing.  

4.2.1.1 Phase-flow in a neighbourhood of critical points 
The definition of critical points ࡽ =  given in Section 2.2.1.1 remains unchanged, but it ࢇ
is clear that their location needs to be fixed ∀� א ℝ, due to the fact that the Phase-space is 
actually changing in time. Within a pulsating notation for the ER3BP, equilibrium points 
still exists and numerically are the same as found the CR3BP, while the reference system 
itself pulsates in �-time (Section 4.1.2). However, much more difficult is now the 
characterization of their linear stability, since the phase-flow in their neighbourhood is 
varying. After linearizing the non-linear system in Eq. (4-16), as did in Eq. (2-26), and 

once neglecting higher order terms ࣩ ቀ‖̃ࡽ‖ଶቁ, we are able to obtain a linear differential 

system, also written in a matrix form as  

݀݀� [  
   
 ܼܻܺ̃̃̃
ܸܸܸ̃̃̃]  
   
 =

[  
   
 ͲͲͲ�E,�E,�E,

  
ͲͲͲ�E,�E,�E,
  
ͲͲͲ�E,�E,�E,
  
ͳͲͲͲ−Ͳʹ
   
ͲͳͲʹͲͲ
    
ͲͲͳͲͲͲ]  
   
 ∙
[  
   
 ܼܻܺ̃̃̃
ܸܸܸ̃̃̃]  
   
�ሺ�ሻ݀̃ࡽ݀    ؝        = ாࡸࡽ|ܣ ∙  ሺ�ሻ (4-24)̃ࡽ

 
with ࡽ =  ሺ�ሻ as new state-vector of the Elliptic problem (to distinguish it from theࡽ

pulsating X-coordinate), and ̃ࡽ = ȟࡽሺ�ሻ = ሺ�ሻࡽ −  .as displacement from the L-point ࡸࡽ

                                                           

34 For example, the “time-translation propriety” mentioned for autonomous systems (page 35) is 
here no more valid and considerations on the initial �-phase will be undoubtedly relevant. 
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In Eq. (4-24), similarly to the Eq. (2-27), we arrive at a matrix ܧࡸࡽ|ܣ = ܧࡸࡽ|ܣ ሺ�ሻ as State 

Propagation Matrix (SPM), but this time no more constant, where its third quadrant 
is constituted by the Hessian of the (time-dependent) pseudo-potential ܷா. It follows that 
solutions to the linear displacement-dynamics are no more trivial, as in Eq. (2-42) for the 
circular case. Furthermore, eigenvalues of Eq. (4-24) are now meaningless, differently 
from Eqs. (2-43)(2-44), due to the fact that we are dealing here with a system that is still 
linear but no more autonomous. (Verhulst, 2000) 

At this point we can evaluate the new SPM at each collinear equilibrium Phase-point ࡸࡽ, 
and consequently from Eq. (4-24) we arrive at the following system 

݀݀� [  
   
 ܼܻܺ̃̃̃
ܸܸܸ̃̃̃]  
   
 =

[  
   ͲͲͲͳ + ʹ߱ଶ − ͵�ͲͲ

  
ͲͲͲͲͳ − ߱ଶͲ

  
ͲͲͲͲͲ߱ଶ
  
ͳͲͲͲ−Ͳʹ
   
ͲͳͲʹͲͲ
    
ͲͲͳͲͲͲ]  
   ∙
[  
   
 ܼܻܺ̃̃̃
ܸܸܸ̃̃̃]  
   
         (4-25) 

 
with ߱ = ߱ሺߤ, ݁, �ሻ as pseudo-vertical pulsation, in analogy with ߱௭ previously seen for 
the Circular problem (from now on called ߱), while � is an auxiliary function such that � = ∙ୡ୭ୱሺ�ሻଵ+∙ୡ୭ୱሺ�ሻ. The squared expression of this pseudo-vertical pulsation is given below, 

but actually cannot be considered as a real pulsation, due to the fact that it is no more 
possible to make use of the so-called “characteristic equation” for non-autonomous 
differential systems (Perko, 2001). At the end, value of ߱ in Eq. (4-25) can be found as 

߱ଶ = ͳͳ + ݁ ∙ �o�ሺ�ሻ ∙ [ ͳ − �ܺ|ߤ + ଷ|ߤ + �ܺ|ߤ + ߤ − ͳ|ଷ + ݁ ∙ �o�ሺ�ሻ] (4-26) 

 
or using the aforementioned circular expression of Eq. (2-43), we arrive at 

߱ଶ = ߱ଶ + ݁ ∙ �o�ሺ�ሻͳ + ݁ ∙ �o�ሺ�ሻ  (4-27) 

 
Approximations of the non-autonomous linear dynamics around collinear libration 
points will be discussed later in Section 4.3.1, where the LP-method has turned out to be 
not totally suitable, thus showing its limitations (e.g., very complex expressions), even if 
still capable of providing many insights in this new dynamical model.  

4.2.2 Floquet Theory for linear stability assessment 

In Section 2.2.2, the discussion over the STM, Monodromy matrix and its eigenvalues (or 
characteristic multipliers) has taken place, where it has been mentioned that those 
results were part of a more general vast theory, known as Floquet Theory, named after 
A.M.G. Floquet (1847-1920), and described in many textbooks previously suggested. 
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We start with a non-autonomous linear differential system, having a very similar 
notation as for Eq. (4-24), such that ݀݀ࡽ� = ሺ�ሻܣ ∙  (4-28) ࡽ

 
with ࡽ א ℝ as state-vector, � א ℝ time-like variable of the system and ܣሺ�ሻ א ℝ× 
differential matrix, continuous in �, with a T-periodicity so that ܣሺ�ሻ = �ሺܣ + ܶሻ. Hence, 
it is possible to formulate the “Floquet’s Theorem” (1883) as follows (Verhulst, 2000) 

Theorem 1.4 (Floquet’s Theorem)  
“Given system in Eq. (4-28), each fundamental (or STM) matrix Φሺ�, �ሻ can be written 

as the product of two [݊ × ݊]-matrices  Φሺ�, �ሻ = Ρሺ�ሻ ∙ ݁ሺ�−�బሻ 
with Ρሺ�ሻ  T-periodic and B a constant  [݊ × ݊]-matrix.” 

Trivially to observe at this point that, for what it has been shown in Section 2.2.2, the 
Monodromy matrix Μ = Φሺ� + ܶ, �ሻ is simply related, for the Circular problem, to the 

exponential matrix ݁ሺ�−�బሻ and so its characteristic multipliers are equivalent 35 to  ߣ = ݁��ሺ�−�బሻ (4-29) 

 

with ݅ߥ eigenvalues of the constant ܤ-matrix, also called “characteristic exponents”. Once 
again, we do not have an analytic expression of the Monodromy matrix, even if a semi-
analytic method for calculating such matrix in the ER3BP (using Chebyshev polynomials) 
has been developed in (Gurfil & Meltzer, 2007). Here, we have numerically computed it 
using ܣ = ாࡸࡽ|ܣ ሺ�ሻ, similarly to Eq. (2-31), and so propagating the STM over a T-period. 

Basically, the Theorem 1.4 allows us to reconsider the entire discussion about the use of 
characteristic multipliers (Section 2.2.3), thus studying the dynamics linearized around 
periodic solutions and with it also possible bifurcations in the Elliptic problem. Main 
justification comes from the T-periodicity of the Ρ-matrix, as also from the fact that ܣሺ�ሻ 
is now T-periodic. Hence, from the T-periodicity it is correct to write that Ρሺ� + ܶሻ = Ρሺ�ሻ = �×  (4-30) 

 
with the initial condition (I.C.) on the STM given as Φ = �×, such that 

Φ = Ρ ∙ ݁∙ሺ�బ−�బሻ = Ρ           ୳ୱ୧୬ ୲୦ୣ I.C.→                   Ρ = �× (4-31) 

 
For any time �, as integer multiple of the T-period, the linearized dynamics can so be 
mapped in a very analogous way of what seen in Section 2.2.1.2 for the Circular problem.  

                                                           

35 Small remark is here related to the use of a different notation respect to (Verhulst, 2000), where 
characteristic multipliers (“c.m.”) and characteristic exponents (“c.e.”) are defined in the exact 
opposite way, so having ߣ as “c.e.” and ݅ߥ as “c.m.”.  
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4.2.3 The loss of continuous families in the ER3BP 

The differential system for the Elliptic problem is well-known to be still an Hamiltonian 
one (Bennett, 1965), so in the form shown by Eq. (2-34). However, the expression of the 
Hamiltonian ܪ = ,ሺܪ , �ሻ, with , -as vectors of generalized coordinates, is now time 
dependent and cannot be related to the energy of the system. (Goldstein et al., 2002) 

The Symplectic structure in periodic solution still holds36, consequently the characteristic 
multipliers can be found again in reciprocal quadruplets, and first two points described 
in Section 2.2.4 can be consider valid also for this elliptic case. For what concerns the 
third point (existence of at least one real eigenvalue ߣ = +ͳ for periodic orbits), it cannot 
be taken into account anymore (Broucke, 1969). The geometrical meaning of this last 
point is not really trivial, but it could be visualized thinking to an initial displacement 
along the periodic solution itself, so ࡽࢾ = � ሺ�ሻ atࡽࢾ = �. A time-shift is actually able 
to change the structure of the phase-space in non-autonomous systems, and it can be 
related to a new solution ࢝ࢋࡽሺ�ሻ, so starting with a new shooting condition as ࡽ࢝ࢋ  ሺ�ሻ࢝ࢋࡽ = ሺ�ሻࡽ +  ሺ�ሻ (4-32)ࡽࢾ

 
As stated before, the time-shift propriety is no more applicable here and “in general” we 
have that ࡽሺ� + ȟ�ሻ ≠ -ሺ�ሻ, since it has been already proved that additional time࢝ࢋࡽ
constraints on shooting conditions arise in the ER3BP (Broucke, 1969). A graphical 
example is given in Figure 62, taken from (S. Campagnola et al., 2008), where two 
different splits of ߣଵ/ଶ = +ͳ are shown after passing from the Circular to the Elliptic 

problem. 

 

Figure 62: Illustration showing two possible “separations” of the two real unitary eigenvalues 
of a Halo solution. Branch I (green) leads to additional stable/unstable manifolds, while 
Branch II (red) leads to complex conjugate values that do not change the order of instability. 
Courtesy of (S. Campagnola et al., 2008). 

In the previous illustration a very interesting aspect is shown for the Halo case, where 
two different families can be found ∀݁ > Ͳ, allowing to define ݁ = Ͳ as bifurcation point. 
The latter will be further explained later in Section 4.4.3, also defined as eccentric-
bifurcation, while here we continue with a qualitative discussion on possible behaviours 
for characteristic multipliers associated with generic periodic solutions. 

                                                           

36 To be more precise, the Symplectic structure holds only “at the end of each revolution in the 
periodic case”, as well-described and proved in (Broucke, Lass, & Boggs, 1976). 
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In Section 2.2.5, the Bifurcation Theory for the circular case has been introduced, 
showing three main bifurcations within each family of periodic solutions, as well as for a 
forth one that does not really change the order of instability. In the Circular case, the 
bifurcation parameter is the relative x-position from each libration point, as starting 
point for the generation of the entire family (Section 2.4.3). However, the loss of both 
real unitary eigenvalues leads to the vanishing of continuous families, previously 
described in Eq. (2-38), while periodic orbits exists now only within discrete families 
based on the so-called “resonance condition”, later discussed in Section 4.3. 

From what we have seen so far, it is expected to be able to extend single periodic orbits 
found in the Circular problem to the elliptic case, most likely surrounded by their 
respective quasi-periodic family (for complex conjugate characteristic multipliers). An 
example still in the CR3BP is given for the L2-point in Figure 63 taken from (Nagata, 
Sakamoto, & Habaguchi, 2016), where quasi-periodic families (in red) are shown around 
their respective periodic solution (in blue), considering both Halo and Lyapunov families. 
As discussed before, the Lissajous family exists in the neighbourhood of each libration 
point, around both mono-parameter Lyapunov families, due to the mismatch between ߱௫௬ and ߱௭ , respectively horizontal and vertical linearized pulsations in Eqs. (2-43)(2-44). 

 

Figure 63: Illustration showing two quasi-periodic families at L2 in the CR3BP. On the left, 
the Lissajous one exists at each L-point around the Vertical Lyapunov family, while on the 
right the Quasi-Halo one. Both are consequences of existing complex conjugate eigenvalues in 
the relative Monodromy matrix. Courtesy of (Nagata et al., 2016). 

Considering that both ߣଵ/ଶ can have general values, as listed in Eqs. (2-39)(2-40), it follows 

an higher number of possibilities, no more restricted to seven, as also observed and well 
summarized in (H. Peng & Xu, 2015b). A remarkable difference is also the existence of 
periodic solutions (p.s.) with a 3-order instability, consequently having only 
stable/unstable manifolds (H. Peng & Xu, 2015c), without any quasi-periodic behaviour 
around the periodic orbit. These additional manifolds have been studied in (H. Peng & 
Xu, 2015a), revealing that “the redundant stable manifold affects the probability of 
feasible transfers in the whole parameter space”. Even so, in this work we are not 
considering manifolds or the optimization of general transfer-problems, and so the 
existence of such internal/external manifolds will not be treated here. Nonetheless, the 
reader is referred to these cited papers, as also to (Parker, 2007) for more details. We can 
continue with the description of main approaches adopted to tackle the Elliptic problem. 
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4.3 The Analytic approach 
As prelude, we prefer to briefly acknowledge the reader about some decisions taken 
during the working process of this Master thesis. De facto, during the Literature Study 
greater effort has been made in the assessment of possible analytic methods (e.g., the 
mentioned Linstedt-Poincaré technique) in order to tackle the Elliptic problem, so 
finding approximations of some periodic solutions near collinear libration points. The 
last task turned out to be possible, as given in (Farquhar & Kamel, 1973) for a more 
general Earth-Moon system, but not really efficient as well discussed in (Gómez & 
Mondelo, 2001), where two main analytic methods have been applied. The first is again 
the LP-method, able to target particular periodic trajectories but with some limitations in 
the stability assessment (see Section 2.3.2.3). In fact, the method actually removes all 
unstable ‘modes’ within the approximated solution and consequently it provides a “poor 
description of the global picture” in a neighbourhood of L-points. Second one is the 
mentioned reduction of the Hamiltonian to Centre Manifold, which “gives a very good 
description of the dynamics inside the centre manifold, but it does not produce closed 

formulas for the solutions, and it is quite expensive from the computational point of 

view”. (Gómez & Mondelo, 2001) 

As for the circular case, this part is complementary to the principal one, based again on a 
Differential Correction numerical scheme (necessary also for validation and verification 
purposes). On the other hand, some insights into the dynamics of the Elliptic problem 
will be shown here and in addition to that, a brief discussion over a possible extension 
and application of the LP-technique will take place in Section 4.3.2. 

4.3.1 Stability under “elliptic perturbations” using LP-method 

The initial differential system is given in Eq. (4-24), where we consider the displacement 
dynamics on a first-order approximation respect to small amplitudes, and consequently 
looking to the linear stability of each L-point within the Pulsating frame. Note that the 
system is still linear but now also �-dependent, thus not solvable as did in Section 2.3. 
For this reason, we will apply the LP-method respect37 to a small eccentricity݁, thus 
studying what have been named38 “elliptical perturbations” in the Literature Study. We 
can start re-writing Eq. (4-24) using the definition of ܷா  as given in Eq. (4-17), such that 

{ܺ̃′′ − ʹܻ̃′ = ܺ̃ ∙ ሺͳ + ʹܿଶሻ ∙ �ሺ݁, �ሻ         ܻ̃′′ + ʹܺ̃′ = ܻ̃ ∙ ሺͳ − ܿଶሻ ∙ �ሺ݁, �ሻ           ܼ̃′′ + ܼ̃ ∙ [ܿଶ + ݁ ∙ �o�ሺ�ሻ] ∙ �ሺ݁, �ሻ = Ͳ  (4-33) 

 
with ܿଶ = ܿଶሺߤሻ previously defined in Eq. (2-54) and the auxiliary function � = �ሺ݁, �ሻ, so 
leading to a Taylor series at ݁ = Ͳ that can be expressed as follows 

�ሺ݁, �ሻ = ͳͳ + ݁ ∙ �o�ሺ�ሻ    ≅   ͳ +∑݁[− �o�ሺ�ሻ]∞
=ଵ  (4-34) 

                                                           
37

 The discussion is valid here only for small displacements around libration points. In fact we are 
still considering just a linearized dynamics, where it is possible to examine full effects due to 
ellipticity of the ݁-parameter, as well as for its first-order effects on the stability. 
38 These “elliptic perturbations” are first-order effects due to the introduction of eccentricity in the 
problem, but assuming a very small value for it and so neglecting higher order terms as ࣩሺ݁ଶሻ. 
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From the moment that in Eq. (4-33) we are only considering linear amplitude-terms of 
the displacement, it follows that both dynamical motions in-plane and out-of-plane are 
again uncouple, thus they can be studied separately. To be noted that so far no 
approximation has been made respect to the ݁-parameter and the previous expression is 
trivially computed based on Eq. (4-17), where ܷா  and Ω have been related. At this point, 
considering the Hessian39 of such pseudo-potential (so second derivatives of ܷா  respect 
to the pulsating coordinates), it is possible to neglect higher order terms ࣩሺ݁ଶሻ, and so 
investigating principal effects related to “elliptical perturbations”. 

4.3.1.1 Out-of-plane motion under “elliptical perturbations” 
For the out-of-plane displacement it is required to solve the following ܼ̃′′ + ܼ̃ ∙ ܿଶ = ܼ̃ ∙ ሺܿଶ − ͳሻ ∙ ݁ ∙ �o�ሺ�ሻ (4-35) 

 
Considering a first-order expansion of the solution as ܼ̃ሺ�ሻ = ܼ̃ሺ�ሻ + ݁ ∙ ܼ̃ଵሺ�ሻ and then 
collecting all terms at each different order of magnitude in ݁, we obtain ܼ̃′′ + ܼ̃ ∙ ܿଶ = Ͳ                                     ܼ̃ଵ′′ + ܼ̃ଵ ∙ ܿଶ = ܼ̃ ∙ ሺܿଶ − ͳሻ ∙ �o�ሺ�ሻ (4-36) 

 
where solution of the first equation is given using ܿଶ = ߱ଶ  (Section 2.3.2.2), such that 

ܼ̃ = ܽ ∙ �o�ሺ߱�ሻ + ܾ ∙ ��nሺ߱�ሻ (4-37) 

 
and substituting it in Eq. (4-36), with some trigonometric manipulations, we arrive at 

ܼ̃ଵ′′ + ܼ̃ଵ߱ଶ = ሺ߱ଶ − ͳሻʹ ∙ ܽ{�o�ሺ[ͳ + ߱]�ሻ + �o�ሺ[ͳ − ߱]�ሻ}                           + ሺ߱ଶ − ͳሻʹ ∙ ܾ{��nሺ[ͳ + ߱]�ሻ − ��nሺ[ͳ − ߱]�ሻ} (4-38) 

 
The solution consists in the sum of a homogeneous and particular one, so leading to ܼ̃ଵ = ܼ̃ଵ + ܼ̃ଵ (4-39) 

 
where the homogeneous one is expressed by integration constants ܽଵ, ܾଵ simply as 

ܼ̃ଵ = ܽଵ ∙ �o�ሺ߱�ሻ + ܾଵ ∙ ��nሺ߱�ሻ (4-40) 

                                                           

39 It is clear that for the term ܷா, it is possible to write it using Eq. (4-17), such that 
 ߲ଶܷா߲ܼଶ = ߲ଶ߲ܼଶ ቆ�ሺ݁, �ሻ ∙ [ΩC − ܼଶ݁ ∙ �o�ሺ�ሻʹ ]ቇ = �ሺ݁, �ሻ ∙ [ΩC, − ݁ ∙ �o�ሺ�ሻ]            
 
where ΩC, = −ܿଶ for what we have seen in Section 2.3.2.2. 
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At this point, even if considering only a linear approximation (in both amplitude and 
eccentricity) we can have a very first insight into the ER3BP dynamics. Note that solution 
to Eq. (4-35), in a neighbourhood of the L-point and for a sufficiently small eccentricity, 
represents actually a good approximation of the full non-linear system behaviour. This 
first-order approximation of the vertical motion for the CR3BP is simply an harmonic 
oscillator in ߱, so defined by bounded orbits. However, the new condition on some 
possible resonances, having time-forces in [ͳ − ߱] and [ͳ + ߱], is now 

߱ = ±[ͳ ∓ ߱]         ୱୟ୲୧ୱ୧ୣୢ ୧→                 ω = ± ͳʹ (4-41) 

 
so related to an orbit revolving half time during a complete system revolution, which we 
found to be ʹߨ-periodic in non-dimensional coordinates. The particular solution to the 
Eq. (4-38) can be found based on a resonance or a no-resonance condition, such that 

NO-RESONANCE CASE  (࣓ࢆ ≠ ±/) 

ܼ̃ଵሺ�ሻ = ሺͳ − ߱ଶ ሻͶ ∙ [ܽ ∙ �o�ሺ[ͳ − ߱]�ሻ − ܾ ∙ ��nሺ[ͳ − ߱]�ሻ]߱ − ͳ ʹ⁄  …     − ሺͳ − ߱ଶ ሻͶ ∙ [ܽ ∙ �o�ሺ[ͳ + ߱]�ሻ + ܾ ∙ ��nሺ[ͳ + ߱]�ሻ]߱ + ͳ/ʹ  

(4-42) 

 
RESONANCE CASE  (࣓ࢆ = ±/) 

ܼ̃ଵሺ�ሻ = ͵ͅ ∙ [ܽ ∙ �o� (͵�ʹ) + ܾ ∙ ��n (͵�ʹ)] − ͵�Ͷ ∙ [ܾ ∙ �o� (�ʹ) + ܽ ∙ ��n (�ʹ)] (4-43) 

 

Clearly, the perturbed period in Eq. (4-35) is now known and has to be ʹߨ, differently 
from the example in Section 2.3.2.1 when assuming an autonomous system and 
introducing strained coordinates. At the same time we known that the value of ߱ = √ܿଶ 
is almost fixed near the libration points by the mass-ratio parameter ߤ, while non-linear 
effects could arise when considering higher orders of the expansion. In the third-order 
approximation of (Richardson, 1980a), we have seen such non-linear effects, leading to 
the existence of Halo orbits when considering a synchronize out-of-plane and in-plane 
motion. At the very end, the first-order approximation can be written as ܼ̃ሺ�ሻ  ≈  ܼ̃ሺ�ሻ = ܼ̃ሺ�ሻ + ݁ ∙ [ܼ̃ଵ + ܼ̃ଵ] (4-44) 

 
This brief example shows how the linearized vertical motion can be also driven to 
instability under “elliptic perturbation”, mostly due to resonance effects. With a further 
expansion in Eq. (4-34), terms as �o�ଶሺ�ሻ , �o�ଷሺ�ሻ , … , �o�ሺ�ሻ will appear at each level of 
the expansion, and in different combinations with solutions from lower-levels. For these 
terms as ��nሺ߱�ሻ and �o�ሺ߱�ሻ, additional resonances can arise and consequently also 
many other secular terms, quickly growing fast, as seen in Eq. (4-43).  

NOTE: the entire analysis so far has been based only on a linearized motion (for very 
small amplitude displacements), while in Section 4.3.2 an extension to non-linear 
dynamics will be briefly mentioned. Let’s now briefly consider the horizontal motion, 
more complicated since described by two ‘coupled’ differential linear equations. 
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4.3.1.2 In-plane motion under “elliptical perturbations” 
For the in-plane displacement, once neglecting terms as ࣩሺ݁ଶሻ, it is required to solve 

{ܺ̃′′ − ʹܻ̃′ − ܺ̃ ∙ ሺͳ + ʹܿଶሻ = −ܺ̃ ∙ ሺͳ + ʹܿଶሻ ∙ ݁ ∙ �o�ሺ�ሻܻ̃′′ + ʹܺ̃′ − ܻ̃ ∙ ሺͳ − ܿଶሻ = ܻ̃ ∙ ሺܿଶ − ͳሻ ∙ ݁ ∙ �o�ሺ�ሻ          (4-45) 

 
Considering a first-order expansion of both solutions as ܺ̃ሺ�ሻ = ܺ̃ሺ�ሻ + ݁ ∙ ܺ̃ଵሺ�ሻ and  ܻ̃ሺ�ሻ = ܻ̃ሺ�ሻ + ݁ ∙ ܻ̃ଵሺ�ሻ, then collecting ݁-terms at each order of magnitude, we obtain 

{ܺ̃′′ − ʹܻ̃′ − ܺ̃ ∙ ሺͳ + ʹܿଶሻ = Ͳܻ̃′′ + ʹܺ̃′ − ܻ̃ ∙ ሺͳ − ܿଶሻ = Ͳ                                             {ܺ̃ଵ′′ − ʹܻ̃ଵ′ − ܺ̃ଵ ∙ ሺͳ + ʹܿଶሻ = −ܺ̃ ∙ ሺͳ + ʹܿଶሻ ∙ �o�ሺ�ሻܻ̃ଵ′′ + ʹܺ̃ଵ′ − ܻ̃ଵ ∙ ሺͳ − ܿଶሻ = ܻ̃ ∙ ሺܿଶ − ͳሻ ∙ �o�ሺ�ሻ          (4-46) 

 
where the solution to the unperturbed system has been already given for the Circular 
problem, after removing “modes” related to unbounded solutions (real eigenvalues ߣ). 
The remaining part is so given only by a periodic bounded motion defined as 

{ܺ̃ = ܽ ∙ �o�ሺ߱�ሻ + ܾ ∙ ��nሺ߱�ሻܻ̃ = ܽ ∙ �o�ሺ߱�ሻ + ܾ ∙ ��nሺ߱�ሻ  (4-47) 

 
and after substituting it in the (perturbed) second system of Eq. (4-46), we arrive at 

{  
   
   
  ܺ̃ଵ′′ − ʹܻ̃ଵ′ − ܺ̃ଵ ∙ ሺͳ + ʹܿଶሻ =−(ܼ߱Ͳʹ + ͳʹ) ∙ ܽ{�o�ሺ[ͳ + ߱]�ሻ + �o�ሺ[ͳ − ߱]�ሻ} …−(ܼ߱Ͳʹ + ͳʹ) ∙ ܾ{��nሺ[ͳ + ߱]�ሻ − ��nሺ[ͳ − ߱]�ሻ}ܻ̃ଵ′′ + ʹܺ̃ଵ′ − ܻ̃ଵ ∙ ሺͳ − ܿଶሻ =(ܼ߱Ͳʹ − ͳ)ʹ ∙ ܽ{�o�ሺ[ͳ + ߱]�ሻ + �o�ሺ[ͳ − ߱]�ሻ} …+ (ܼ߱Ͳʹ − ͳ)ʹ ∙ ܾ{��nሺ[ͳ + ߱]�ሻ − ��nሺ[ͳ − ߱]�ሻ}

 (4-48) 

 
with an homogenous solution (again removing unbounded modes) expressed as 

{ܺ̃ଵ = ܽଵ ∙ �o�ሺ߱�ሻ + ܾଵ ∙ ��nሺ߱�ሻܻ̃ଵ = ܽଵ ∙ �o�ሺ߱�ሻ + ܾଵ ∙ ��nሺ߱�ሻ (4-49) 

 
At this point, it is possible to solve the system in Eq. (4-48) using common algebraic 

manipulation software (e.g., Maple 2016). Solutions ܺ̃ଵand ܻ̃ଵ have been not given here 
since not very relevant, while very interesting here are the resonance conditions given as  

߱ = ±[ͳ ∓ ߱]           ����       ωଡ଼ଢ଼ = √ͳ − ߱ଶʹ + ߱ʹ √ͻ߱ଶ − ͺ (4-50) 
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As mentioned at the beginning of this section, only purpose here is to exploit some main 
features relative to the elliptic case, without really obtaining an analytic approximation. 
First of all, as expected, we have seen that the system is driven by a ʹߨ-periodic force, 
caused by periodic variations of the gravitational field due to the motion of both ܯଵ,ܯଶ. 
Furthermore, periodic solutions still exist, but no more embedded in a continuous family 
(as explained in Section 4.2.3), while they can be actually compute starting with precise 
initial conditions (now involving also the time-like �-parameter). 

When discussing the linear stability of collinear L-points under “elliptic perturbations”, a 
qualitative result is that the eccentricity (even if small) can creates resonance effects at 
some given mass-ratio ߤ. This parameter indeed defines both linearized pulsations, near 
each L-points, such that ߱ and ߱ could match with resonance conditions previously 
given (in a first-order approximation) with Eq. (4-41) and Eq. (4-50). Nevertheless, a 
general linear instability of collinear points is still visible due to the existence of 
unbounded modes, already removed in Eq. (4-47) and Eq. (4-49). An higher order of 
expansion in ݁ can lead to additional resonance conditions, discussed before, while now 
we briefly consider also non-linear amplitude displacements, where both in-plane and 
out-of-plane motions are no more uncoupled, as shown in (Richardson, 1980a). 

4.3.2 Extension to a non-linear dynamics and main limitations 

The previous example has been based on a first order approximation for small 
displacement amplitudes, initially given in Eq. (4-33) and then approximated also for 
small eccentricity effects (called “elliptical perturbations”). At this very basic level of 
investigation, some insights into the dynamics have been given, while when involving 

terms ࣩ(݁) , ∀݇  ʹ expressions become very long and tedious. For the sake of 
completeness we provide here a more complete system, based on a full non-linear 
stability under eccentricity effect. Using Eq. (4-16) and defining ܷா  as in Eq. (4-17), we are 
able to make use of the auxiliary function �ሺ݁, �ሻ from Eq. (4-34) in order to obtain a 
compact expression, in pulsating coordinates, for the entire dynamics of the ER3BP. 

{  
  ܺ′′ − ʹܻ′ = �ሺ݁, �ሻ ∙ ߲ΩC߲ܺ                      ܻ′′ + ʹܺ′ = �ሺ݁, �ሻ ∙ ߲ΩC߲ܻ                      ܼ′′ = �ሺ݁, �ሻ ∙ [߲ΩC߲ܼ − ܼ ∙ ݁ ∙ �o�ሺ�ሻ]

 (4-51) 

 
A Taylor expansion can be performed on the previous expression respect to the 
amplitude-displacements ܺ̃, ܻ̃, ܼ̃, as well as respect to the eccentricity ݁. It follows a non-
linear and non-autonomous differential system, which can iteratively be solved applying 
general perturbations methods, for example with the LP-technique here presented.  

In (Lei, Xu, Hou, & Sun, 2013), a similar procedure has been applied (considering also 
unbounded modes) for computing invariant manifolds associated with both Lissajous 
and Halo orbits. The Euclidean norm-error of the position has been numerically assessed 
after half revolution with a Runge-Kutta-Fehlberg 7(8) integrator and with a relative 
tolerance of ͳͲ−ଵସ. The reader is referred to their paper for more information, especially 
on the practical convergence of these higher order solutions, also directly comparable 
with the approximation also found in (Jorba & Masdemont, 1999) for the CR3BP. 
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4.4 The Numeric approach 
At this point, last part to be presented for the ER3BP is related to some variations on the 
Numerical approach, in support to what has been introduced for the circular case in 
Section 2.4. Most of the basic notion has been already presented, but some additional 
aspects require a further discussion, while the reader is referred to (H. Peng & Xu, 2015a, 
2015b, 2015c) for more information or for different applications of similar concepts and 
techniques. Let’s now discuss the condition on “resonance orbits” and its consequences, 
from a computational point-of-view, relative to the Differential Correction algorithm (as 
well as for the numerical continuation), previously adopted in the CR3BP. 

4.4.1 Conditions on “MxNy resonance orbits”  
As reported in (S. Campagnola et al., 2008), almost 100 years ago a sufficient criterion 
for the existence of periodic solutions in the planar Elliptic problem has been formulated 
in (Moulton et al., 1920), here re-presented as follows.  

Strong Periodicity Criterion  

“For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has two 
perpendicular crossing with the syzygy-axis, and that the crossings happen at moments 

when the two primaries are at an apse, (i.e., at maximum or minimum elongation, or 

apo-apsis and peri-apsis).” 

The latter, in analogy with the time-symmetry discussed in Section 4.1.2, is a sufficient 
condition for the existence of periodic solutions in the p-ER3BP, as for the case of the 
Horizontal Lyapunov family. The new time-constraint is related to the Eq. (4-19), so 
having the time-like variable � = Ͳ, ,ߨ ,ߨʹ  at the moment of each cross. It follows ,…,ߨ͵
that the orbit considered has to be in “resonance” with the revolution of principal masses, 
for example having exactly M-revolutions every N-revolutions of the reference system. As 
main consequence, a condition can be found on the T-period, such that 

{ ாܶ = ߨʹ ∙ ܰாܶ = ܯ ∙ ܶ              ୪ୣୟୢ୧୬ ୲୭→                   ܶ = ߨʹ ∙ ܯܰ    , {ܯ,ܰ}∀ א ℤ+ (4-52) 

 
with ܶ and ாܶ orbital periods respectively for the circular and the elliptic case. Basically 
the period ாܶ, necessary for a periodic trajectory, is now fixed, thus confirming once 
again the non-continuous nature of families in the ER3BP, in opposition to what we have 
discussed with Eq. (2-38). On the other hand, it is also true that every combinations of M 
and N satisfy Eq. (4-52), and consequently “there are infinite set of {M୧, N୧}୧ close to any 

desired period since the rational number is dense” (H. Peng & Xu, 2015b).  

In (Broucke, 1969), this aspect and the Strong Periodicity Criterion have been used 
to investigate almost 1100 two-dimensional periodic orbits with all ranges of eccentricity ݁ א ሺͲ,ͳሻ and mass-ratios ߤ א ሺͲ,Ͳ.ͷሻ showing that “the elliptic problem behaves in a way 
which is completely different from the circular problem. The main difference is in the 

stability proprieties of periodic orbits”. One very first attempt to numerically investigate 
periodic solution in the complete ER3BP has been made later in (Sarris, 1989), focusing 
on large mass-ratio values as ߤ = Ͳ.Ͷ (so considering mostly binary systems), and using 
periodicity conditions in Eqs. (2-65)(2-66) given as ȟ ܸ ≅ ͳͲ− and ȟܻ ≅ ͳͲ−.  
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In (S. Campagnola et al., 2008), the aforementioned criterion has been extended to a 
spatial problem, so considering the full ER3BP and leading to the following condition 

Elliptic Periodicity Condition  
“For an orbit to be periodic in the ER3BP, it is sufficient that it has two perpendicular 

crossing with either the normal plane (from S1) or the syzygy axis (from S2), or both of 

them, when the primaries are at an apse.” 

Clearly, the new sufficient condition is simply an extension of all the discussion given in 
Section 2.1.2.2 for the Circular problem, where now the initial shooting time (starting on 
the ܼܺ-plane) is also an essential aspect (see Section 4.1.3). However, looking at results 
in Chapter 3, we can clearly note that the period ܶ found for every member within each 
family is actually bounded in a definite range, as summarized in Table 4. 

Table 4: Range found for the orbital period ࢀ in the three families of periodic solutions 
analysed at L1 and L2 (Earth-Moon CR3BP). Note that Min & Max values have been 
normalized by �, so allowing directly observing the ratio "ۻ/ۼ" up to four digits. ࢋࢍࢇ࢘ ࢀ [× �] L1 L2 ՝  Min Max Min Max  ࢟ࢇࡲ

H-Lyapunov Ͳ.ͶʹͺͶ ͳ.ͲͶ Ͳ.ͷ͵ͻ Ͳ.ͻͲͻʹ 

V-Lyapunov Ͳ.ͶͶͳͶ Ͳ.ͶͷͶ Ͳ.ͷͲͳ Ͳ.ͲͶͲ 

Halo Ͳ.͵ͷͷͻ Ͳ.ͶͶ͵ Ͳ.͵ʹͷʹ Ͳ.ͷͶ͵ͷ 

  
In Chapter 3, some possible resonance orbits have been shown within each family, but 
only considering a range as N א [ͳ,Ͷ] and M א [ͳ,ͳʹ] leading to 48 possible cases for each 
of the six analyses performed (three families at two different L-points). In Table 4, the 
entire range is given normalized by ʹߨ, so directly showing the ratio "N/M", which will be 
the principal feature of each trajectory later investigated. From now on, we will refer to 
resonance orbits using “M�N�”, where x and y are actually integer positive numbers. 

4.4.2 Modifications in the Differential Correction scheme 

In Section 2.4.4 the numerical algorithm has been summarized, where last step was the 
saving of all main parameters, e.g. shooting conditions for each member. It is clear that 
at this point we cannot rely anymore on the continuous character of each family and 
consequently it is necessary to exactly locate the resonance orbit that we are going to 
analyse, thus extending it to the elliptic case. Using Eq. (2-63), we see that now the 
Differential Correction does not involve anymore the uncertainty on the period, and 
consequently the correction can be expressed, within pulsating coordinates, as follows 

( ߜ ଵܻߜ ܸଵߜ ܸଵ)்�/ଶ = [
ΦଶଵΦସଵΦଵ  ΦଶଷΦସଷΦଷ  ΦଶହΦସହΦହ]்�/ଶ ∙ ቌ

ߜܼߜܺߜ ܸቍ (4-53) 

 
This is a determined linear system, so solvable in order to apply the correction as given in 
Eq. (2-64). Even for the 2D case (for H-Lyapunov orbits), the system is still determined 
and leads to a “unique” solution without the necessity of fixing any parameters. 
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A small remark on the Differential Correction algorithm is now necessary, from the 
moment that the correction is still based on a linearization (see Section 2.4.1) and works 
assuming an initial guess ‘sufficiently close’ to the target solution. In addition, other 
periodic solutions could exist in the Elliptic problem, having the same period but within 
other families, where the algorithm still converge but not on the desired trajectory. For 
all the aforementioned reasons, an additional step has been added to the algorithm 
before the numerical continuation. Assuming to have selected a “M�N�”-orbit, we look at 
the two closest members ࢄ−,  + in the family (respectively with a smaller and largerࢄ
period as ܶ− and ܶ+), thus we perform a spline interpolation on shooting conditions, as ࢄܡۼܠۻ = �n����{ࢄ−, −+}          ����          ܶࢄ  �୶୷  ܶ+ (4-54) 

 
with ࢄ as initial state-vector, referred to the circular case, while such initial guess still 
requires to be numerically corrected using the DC-method. As shown in Eq. (4-53), in the 
Elliptic problem the symmetry involves half of the new orbital period ாܶ, thus evaluating 
crossing conditions on the ܼܺ-plane at a time �ଵ given as 

�ଵ = � + ாʹܶ    � +M ∙ ܶʹ           , ∀� = Ͳ,  (4-55) ߨ

 
Therefore, the necessary integration period is now M times longer, with an obvious 
influence on the overall numerical accuracy. To be more precise, two aspects need to be 
taken into account for this Elliptic problem: 

I. Taking a large N, the integration period used in Eq. (4-53) is given as "ߨ ∙ ܰ" and 
the algorithm could not be able to satisfy both criteria in Eqs. (2-65)(2-66), due to 
losses in the final accuracy of the numerical integration itself.  
 

II. Taking a large M, the unstable dynamic related to largest characteristic 
multipliers ‖ߣெ‖  ͳ becomes much more evident, where the generic initial 
displacement is growing at each revolution, so leading to ‖ߜ ଵܺ‖  ெ‖ߣ‖ ∙ ߜ‖ ଵܺ‖ (4-56) 

 
and, for a too large value, such error-estimation becomes clearly meaningless, 
while what has been defined as “linear stability” is also no more valid, as strongly 
remarked in Section 2.2.2. 

NOTE: 
An example of MͷNʹ-Halo orbit at L2, is given in Figure 64 within the Circular problem ሺ݁ = Ͳሻ, so referring to both the co-rotating (synodic) and the inertial frame, while in 
Figure 65, some data has been provided for what concerns this numerical integration 
over ாܶ. In the CR3BP the period is still ܶ = ாܶ/ܯ, thus it follows a repetitive pattern, 
where the absolute displacement in position and velocity is given starting from the 
shooting condition. It is expected to have a perfect repetition over a period ܶ but due to 
such unstable dynamics, errors on periodicity (orange circles) increase, as well as for the 
Energy variations ȟ�ሺ�ሻ (Right-Top). The latter are based on the definition of the Jacobi 

integral (valid only for the CR3BP), as also explained in Appendix-B. 
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Module of each one of the six eigenvalues is shown in Figure 65 with the overall order of 
instability (Right-Bottom), while using Eq. (4-56) the final error at ாܶ = ʹ ∙  is expected ߨʹ
to be in first-order approximation around ~ͷ.ͺହ = ͷͲͲ times larger than the initial one. 
This trend can be directly observed in Figure 65 (Left-Centre), with a slightly increasing 
value of the periodicity-errors ȟݎ, ȟܸ after each revolution. 

 

Figure 64: Example showing a Southern Halo “resonance” orbit (M5N2) at L1, libration point 
for the Earth-Moon CR3BP system in both a Rotating (LEFT) and Inertial frame (RIGHT). 

 

Figure 65: Example of periodicity assessment considering M-revolutions for the “resonance” 
solution illustrated in Figure 64. The modulus of position and velocity-variations (w.r.t. the 
Initial Condition) are shown (Left-Centre) with periodicity error (orange circle). Energy error 
(Right-Top) and absolute value of characteristic exponents (Right-Bottom) are also given. 

The previous example shows possible numerical limitations related to our investigation, 
while for the sake of completeness we have to mention an alternative strategy, adopted in 
(H. Peng & Xu, 2015a, 2015b, 2015c). The latter is based on a multi-shooting algorithm, 
in close analogy with some basic methodologies originally described in (Howell & 
Pernicka, 1988) for studying quasi-periodic solutions. In fact, their “Multi-Segment 
Optimization Method” fixes multiple conditions between each segment along the entire 

trajectory, thus it tries to minimize a cost function, as Ȟ = ଶݕ√ + ௫ଶݒ + ௭ଶݒ  , sort of scalar 
distance in the Phase-space from the optimal periodicity condition as {ݕ, ,௫ݒ ௭ݒ = Ͳ}. 
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A further characteristic of these multi-shooting technique, as given in (H. Peng & Xu, 
2015a, 2015b, 2015c), is that “the convergence increases as ݊ increases, but the time-cost 

increases as well”, where with “݊” they refer to the number of internal points along the 
trajectory. For different reasons (e.g., mostly computational time and an increasing 
complexity of the algorithm) we have decided to adopt a single-shooting algorithm, 
previously defined in Section 2.4, thus taking it to the possible limits and with 
successfully results, as discussed later in Chapter 5. Moreover, for what has been stated 
before, we have decided to narrow our analysis to a resonance-range given as  N୫ୟ୶ = ʹ     &     M୫ୟ୶ = ͷ (4-57) 

 
so leading to eight different cases for each simulation, with cases MʹNʹ and MͶNʹ not 
considered since simply redundant situations as MͳNͳ and MʹNͳ. In Table 6, these eight 
cases has been related to the T-range previously given in Table 4 and so allowing 
investigating 11 cases out of the theoretical 48 possible (having 8 resonances, 3 families 
and 2 L-points). Important to be mentioned is that other cases can be found further 
extending each family, as explained in Chapter 3 in the ADDITIONAL SETTINGS. The 
discussion on main periodicity conditions and numerical validation follows again what 
has been discussed in Section 2.4.2, while now we continue with the Numerical 
Continuation technique, adopted for extending resonance orbits to the ER3BP. 

4.4.3 Numerical Continuation in the eccentricity parameter 

Last step of this numeric approach is based again on Numerical Continuation, previously 
discussed in Section 2.4.3, but here related to a different “continuation parameter”. In 
fact, for the Circular problem, the continuation has been made on shooting conditions by 
pseudo-arclength, while using their progressive location on the ̂ݖ̂ݔ-plane. Now, we are in 
a very similar situation but by means of the eccentricity ݁-parameter, so starting from ݁ = Ͳ till a target value (e.g., the nominal eccentricity of the Earth-Moon system).  

The eccentricity becomes now a “bifurcation parameter”, and from Figure 62 it seems 
clear that all resonance trajectories can be continued in the Elliptic problem based on two 
different shooting-times, as mentioned in Eq. (4-55). Following the same notation 
adopted in (S. Campagnola et al., 2008), it is possible to investigate two main situations: 

i. If M is odd, we can study two groups in the ER3BP, after considering the initial 
conditions at � = Ͳ (peri-family) or at � =   .(apo-family) ߨ
 

ii. If M is even, two families arise as left-family or right-family, depending on the 
side (left or right ̂ݔ-intercept) of the first crossing. 

While the case “i” is very trivial to understand, where both shooting-times are possible 
for the existence of periodicity, but with clearly different effects, since masses are 
simultaneously close or far away from the barycentre in a No-Pulsating frame. As seen in 
Chapter 3, each family has two orthogonal crosses with the “symmetry ̂ݖ̂ݔ-plane”, thus 
the extension to the Elliptic problem can start with the ࢄ used to generate each solution 
or with ࢀࢄ/ state-vector after half revolution. For what concerns the second case “ii”, 

after exactly M/ʹ revolutions, the orbit is back at the very same initial phase-point, which 
clearly can be located on the ̂ݔ-left or on the ̂ݔ-right. (H. Peng & Xu, 2015a, 2015b, 2015c) 
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Due to time-constraints, only some examples will be provided in Chapter 5, thus using 
them as comparison in order to investigate some possible different behaviour between 
such bifurcated families. Clearly, this can have a large impact on real mission designs, 
especially when focusing on changes in the order-of-stability for different shooting-times. 
For the sake of completeness, all four possible cases are here summarized in Table 5, also 
described in (H. Peng & Xu, 2015a, 2015b, 2015c), and then illustrated in Figure 66, 
based on the 3D-plot for a No-Pulsating reference frame. 

Table 5: Summary of all four possible groups related to periodic solutions extended in the 
ER3BP starting from a particular resonance periodic orbit of the Circular problem (CR3BP). 

 M �-value M1-M2 ࢄ-starting (ࡸ −  (ࡸ

Left-group even Ͳ Peri-apsis ࢄ −  /ࢀࢄ

Right-group even Ͳ Peri-apsis ࢀࢄ/ −  ࢄ

Apo-group odd ߨ Apo-apsis ࢄ −  ࢄ

Peri-group odd Ͳ Peri-apsis ࢄ −  ࢄ

 
Here ܯଶ and ܮଵ are shown respectively in red and magenta for each 3D-plot, while the 
nominal CR3BP orbit has been given by a continuous blue line. Last, the periodic 
trajectory in the ER3BP is given for ݁ = Ͳ.ͲͷͶͻ with an orange dashed line, projected in 
grey-colour over all three main planes, while initial condition are denoted by " ⋄ ".  

 

 

Figure 66: Example showing four examples of resonance orbits extended to the ER3BP with ࢋ = .  within a No-Pulsating reference frame: Left-Halo "ۻۼ" (Top-Left), Right-Halo 
 ." (Bottom-Right)ۼۻ" " (Bottom-Left) and Peri-Haloۼۻ" " (Top-Right), Apo-Haloۼۻ"

Before presenting all results, in the next section we provide a brief summary of this 
“modified” numerical algorithm, adopted for the investigation on the ER3BP, and closely 
related to the one previously presented in Section 2.4.4. 
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4.4.4 Summary of the extended numerical algorithm 

Main steps of this extended numerical algorithm are here summarized, using as starting 
point all main parameters previously saved for each family at both L1-L2. These have 
been found by the Periodic L-Orbit Generator algorithm described in Section 2.4.4, 
followed by a numerical continuation on the eccentricity parameter (with step-size ȟ݁). 

ALGORITHM: Resonance L-Orbit Propagator 

 
1. Select a ߤ-value, the L-point (L1 or L2) and one family (H-Lyapunov, V-Lyapunov 

or Halo). 
2. Retrieve main parameters relative to each member of the family (e.g., initial 

conditions ࢄ, half-period conditions ࢀࢄ/ and the orbital period ܶ). 

3. Select a combination {M, N} to compute ܶ as in Eq. (4-52) and check its 
availability within the family chosen. 

4. Interpolate as in Eq. (4-54) and then correct the initial condition, using Eq. (4-53) 

with a fixed integration period as ாܶ/ʹ, in order to obtain ࢄ{ࢉ} (Section 4.4.2). 
5. Compute a first solution in the Elliptic problem using numerical continuation 

with ݁ = ȟ݁/ʹ, small for convergence, and then apply the DC-algorithm. In this 

way we have obtained two different solutions as ࢄ{ࢉ} and ࡱࡽ{ࢉ}. 
6. With continuation by pseudo-arclength find an initial guess at ݁ = ȟ݁, using both 

previous solutions, thus leading to ࡱࡽ{} as starting guess of the iterative cycle.  
 
Iterative cycle: 

The iterative cycle follows the exact same steps of the one given for the Periodic 

L-Orbit Generator, but this time the reference time is always ாܶ/ʹ, with ாܶ as 
period of the new propagated orbit. For a coherent notation of the state-vector of 

Section 4.2, we obtain {}ࡱࡽ,  referring respectively to the guessed and the {ࢉ}ࡱࡽ

corrected value for the state-vector within the Elliptic problem at ݁ א ሺͲ, ݁ாெሻ.  
 
Exit conditions: 

Differently from the circular case, now we do not consider anymore “point-9”, 
relative to the existence of unitary real positive eigenvalues, due to what has been 
discussed in Section 2.2.4. Note also that the algorithm clearly stops after 
reaching the nominal value for the eccentricity ݁ = ݁ாெ, where the step-size ȟ݁ 
needs to be sufficiently small for assuring convergence. 

END ALGORITHM 

 
At this point of the report we are able to provide all main results for the Elliptic problem, 
mostly obtained through the aforementioned procedure. More information, when strictly 
necessary, will be given directly within each section of the following Chapter 5. 
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5  

ER3BP: Results 
 

In this Chapter 5 we present the main results relative to the Elliptic Restricted 3-Body 
Problem (ER3BP), while most of the methodologies have been already discussed within 
the previous Chapter 4. In analogy with results of the CR3BP, here we extend the 
problem to a more complex dynamics, based on a “Pulsating” reference frame, but also 
referring to a “No-Pulsating” frame, both co-rotating with the two principal masses. The 
first allows effectively calculating and extending orbits in the Elliptic problem, while the 
second one provides a more intuitive physical interpretation of results, as we will see. In 
Table 1, the nominal eccentricity for the Earth-Moon system has been approximated to ݁ாெ ≅ Ͳ.ͲͷͶͻ, while all the entire discussion can clearly be generalized to higher values of 
eccentricity, still in the limits of a bounded Kepler motion for ܯଵ-ܯଶ. 

In Section 5.1 we present an overview of main resonance orbits found in Chapter 3, thus 
in Sections 5.2/5.3 two complete examples are shown for the H-Lyapunov family at L1 
(MͳNͳ and MʹNͳ). It follows a third example in Section 5.4 for the Vertical family at L1. 
A detailed description is presented in Section 5.5, about the bifurcation of two branches 
during the propagation of single resonance orbits in the ER3BP, taking the Halo family 
found at L2 as reference point. Last, in Section 5.6, a numerical comparison on stability 
allows verifying these previous results, thus ‘better’ comparing the Circular model with 
the Elliptical model and so exploiting major advantages of this last one.  
 

5.1 Feasible main resonance solutions 
In Section 4.4.1, few additional conditions for the existence of periodic solutions have 
been given, as summarized in the Elliptic Periodicity Condition. Moreover, we have 
also discussed the restriction on the possible ாܶ-period, defined now by Eq. (4-52), while 
period-ranges for each family (at both L1 and L2) can be found in Table 4. Considering 
the Eq. (4-57), we have limited our analysis on “few” main resonance orbits, as explained 
in Section 4.4.2, but also later summarized in Table 6. 

5.1.1 Characteristic multipliers from the CR3BP to the ER3BP 

In total, 11 cases are displayed, but only the H-Lyapunov MͳNͳ-resonance at L1 has 
actually a ʹߨ-period, equal to the system revolution (non-dimensional units). For what 
concerns the other 10 cases, four are in a 3:2 resonance, three in a 2:1, two in a 5:2 and 
only one is in a 3:1 resonance. Obviously, this is due to the limitations imposed on the N୫ୟ୶ and M୫ୟ୶, as well as for the ݔ-range selected (from the L-point to M2) during the 
generation of each family. Fundamental remark is related to the discussion of Section 
4.4.3, about the existence of a bifurcation in the eccentricity (here called ݁-bifurcation), 
thus having two possible cases for M being an even or an odd integer (see Table 5). 
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Last aspect, to be taken into account, is the linear stability assessment, in particular for 
the largest eigenvalue’s module |ߣ௫| of the Monodromy matrix. In a trivial way, we can 
observe that starting with resonance solutions having ܯ > ͳ, the |ߣ௫| is defined as 
given in Eq. (4-56), such that for the elliptic case its initial value at ݁ ≃ Ͳ is |ߣ௫|ாோଷ = ௫|ோଷெߣ|

 (5-1) 

 
In the following Table 6, for each possible resonance orbit the initial order-of-instability ሺ∀݁ ≃ Ͳሻ has been given with the |ߣ௫| of both CR3BP and ER3BP. Colour-notation 
adopted is given in the LEGEND below, while more information on these last aspects 
have been extensively treated in Section 4.2. 

Table 6: Main resonance orbits available here for each family (at both L1/L2 in the Earth-
Moon Circular problem). The range has been limited to {࢞ࢇࡺ = ,࢞ࢇࡹ = }, after removing 
redundant cases as explained in Section 4.4.2. For each case, the order-of-instability and the 
largest characteristic multiplier are shown, bases on what has been stated in the text above. 

Family: H-Lyapunov V-Lyapunov Halo 

L-point ࡸ ࡸ ࡸ ࡸ ࡸ ࡸ MͳNͳ 
�� − o���� C: [ͳͳͲ] E: [ͳͳͲ]      

MʹNͳ 
�� − o���� C: [ͳͲͺͲ] E: [ͳ.ʹ ∙ ͳͲ]  

� − o���� C: [ͳͷͶ] E: [ʹ.Ͷ ∙ ͳͲ]   

� − o���� C: [ͳͷͷ] E: [ʹͶ ∙ ͳͲଷ] M͵Nͳ      

� − o���� C: [ʹ.ͳ] E: [ͻ.͵] MͶNͳ       MͷNͳ       MͳNʹ       

M͵Nʹ 
� − o���� C: [͵ʹͶ] E: [͵Ͷ.Ͳ ∙ ͳͲ] �� − o���� C: [ʹͺ] E: [ʹ͵. ∙ ͳͲ] �� − o���� C: [Ͷͷ] E: [ͳͲͲ.ͷ ∙ ͳͲ] � − o���� C: [͵ͻ] E: [ʹ. ∙ ͳͲ]   

MͷNʹ     

� − o���� C: [ͳ] E: [ͳ.Ͷ ∙ ͳͲ] � − o���� C: [ͷ.ͺ] E: [ͷͶ] 
*LEGEND:  
In Grey, resonance orbits (r.o.) not available in our generated families. 
In Green, r.o. reaching a nominal eccentricity ݁ாெ with step-size ȟ݁ = ͳͲ−ସ.  
In Orange, r.o. reaching nominal eccentricity ݁ாெ with step-size ȟ݁ = Ͳ.ʹ ∙ ͳͲ−ସ. 
In Blue-Marine, r.o. not reaching the nominal eccentricity since diverging, after a value at 
around ݁∗ ≅ Ͳ.Ͳ͵ʹ, to other different families (see Appendix-C). 
With darker colour, resonance orbits having a period equal or larger than ʹߨ. 
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Very interesting here is the very unstable behaviour of periodic resonance orbits, where 
necessary to underline that now we are indeed considering also a longer period (so 
multiple orbital revolutions). This variation is mathematically very interested for the 
investigation of periodic solutions, but not to forget that in practical space missions the 
stability needs usually to be related to a real physical time (e.g. the expected mission 
duration) and not exclusively to a nominal orbital revolution. (Parker, 2007) 

5.1.2 Additional note on the Differential Correction algorithm 

The Resonance L-Orbit Propagator has been schematizing in Section 4.4.4, where 
the iterative cycle works till reaching a convergence, only when both conditions given in 
Eqs. (2-65)(2-66) are satisfied. Clearly the numerical continuation (respect to ݁) stops if 
the DC-algorithm fails within a maximum number of iterations, as found in Appendix-A. 
As consequence of such new more unstable dynamics, the algorithm is actually stopped 
only when the error exceed 100 times the original threshold, so in our case at ͳͲ−ଵ. The 
latter allows propagating orbits till the nominal eccentricity, where the new threshold is 
equivalent to around ∼ Ͷ cm in position for the Earth-Moon system.  

In Figure 67, an example of accuracy validation is provided (comparable to Figure 15 of 
Section 2.4.2), where in black-circles we have highlighted solutions exceeding the 
original threshold during the propagation, thus reaching the maximum number of 
possible iterations. Nevertheless, only displacements at ாܶ/ʹ (RIGHT) have been 
considered as exit-condition, while the Position and the Velocity error at � = � + ாܶ 
(LEFT) have been employed only to further verify such “assumed” periodicity. 

 

Figure 67: Example of the accuracy verification during the propagation of a M2N1 resonance 
orbit for the H-Lyapunov family (L1, Earth-Moon system). See Section 2.4.2 for more details. 

At this point we can proceed presenting some main examples, where not all cases have 
been fully analysed due to time-limitations, thus to provide a more concise presentation 
of the overall investigation. Under this perspective, only most important features and 
differences within the Elliptic problem have been the focal point of this entire analysis. 
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5.2 First example: the H-Lyapunov ۻۼ at L1 
As mentioned in Section 4.4.3, the extension respect to the eccentricity parameter clearly 
involves a bifurcation, where Apo/Peri groups (if M odd) or Left/Right families (if M 
even) arise at ݁ ≃ Ͳ. Here we present an example considering the Horizontal Lyapunov 
family at L1 in resonance 1:1 with the system (so MͳNͳ). Starting orbit has been shown in 
the Figure 68 below, based on the discussion of Section 4.4.2. 

 

Figure 68: Example is shown of the starting resonance orbit (M1N1) at L1 for the H-Lyapunov 
family. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the 
right the periodicity is shown together with all six characteristic multipliers (in module). 

To observe also the energy-error ȟ�ሺ�ሻ computed along the trajectory, making use of the 

Jacobi integral since still dealing with the Circular problem (see the Energy condition in 
Appendix-B). In the following plots, in No-Pulsating coordinates (TOP) the original orbit 
(blue line) has been shown with both Peri-MͳNͳ and Apo-MͳNͳ (dashed orange line), 
where the position of the L-point and M2 is here obviously “oscillating” around their 
nominal values. In comparison, also the Pulsating frame has been shown (BOTTOM). 

PERI          APO 

 

 

Figure 69: The resonance M1N1 H-Lyapunov orbit at L1 is shown in both No-Pulsating (TOP) 
and Pulsating (BOTTOM) coordinates. Note the existence of two different groups where the 
shooting time is � =  on the left (PERI-), while it is � = � on the right (APO-). 
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5.2.1 Periodicity validation and eigenvalues analysis 

As previously explained, here we present the periodicity validation, where in Figure 70 
we have on the left the Peri-group ሺ∀� = Ͳሻ and on the right the Apo-group ሺ∀� =  .ሻߨ

 

Figure 70: Periodicity validation shown for both Peri-group (LEFT) and Apo-group (RIGHT), 
both generated for the ۻۼ H-Lyapunov resonance solution at L1. 

At this point we continue presenting the eigenvalue analysis on the Monodromy matrix, 
based on Section 2.2.2 and later in-depth with Section 4.2.2. Once again we remind the 
reader that for this elliptic case no constraint exits on real unitary eigenvalues, therefore 
it is possible to have up to three stable/unstable manifolds (3-order instability). 

 

Figure 71: Analysis of characteristic multipliers for both the Peri-group (TOP) and Apo-group 
(BOTTOM) generated for the ۻۼ H-Lyapunov resonance solution at L1. Note changes in the 
order of instability, due to a different bifurcation of both real unitary eigenvalues (see text). 
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From Figure 71, straightforward to note that even if the largest characteristic multiplier 
(in module) is almost constant during the ݁-continuation to ݁ாெ, we have an additional 
unstable manifold direction for the Peri-group, leading to a 3-order instability. In fact, 
both two real unitary eigenvalues splits from the unit circle and reach respectively values 
as ~Ͳ.Ͳ and ~ͳ.Ͷ͵ on the real axis. For the second case (Apo-group) the two eigenvalues 
move on the unit circle and consequently the order of instability does not really change, 
(Stefano Campagnola, 2010), as also well synthetize in the next Table 7. 

Table 7: Numerical values of the two real unitary eigenvalues ࣅ in the CR3BP, with the 
relative spit due to the extension to the Elliptic problem with eccentricity as ࡹࡱࢋ = . ૢ. 

 Real Part Imaginary Part Module 

CR3BP 
Ͳ.ͻͻͻͻͻ͵ͲͶͻͺͳͲ͵Ͷʹ ͳ.ͲͲͲͲͲͻͷͲʹ͵ͷͲ 

Ͳ Ͳ 

Ͳ.ͻͻͻͻͻ͵ͲͶͻͺͳͲ͵Ͷʹ ͳ.ͲͲͲͲͲͻͷͲʹ͵ͷͲ 

Peri-
group 

Ͳ.ͻͻʹ͵ʹ͵ͺͻ͵ͳ͵ʹͲ ͳ.Ͷ͵ͲͲͷͳͷͷͻͲͺͶʹ 

Ͳ Ͳ 

Ͳ.ͻͻʹ͵ʹ͵ͺͻ͵ͳ͵ʹͲ ͳ.Ͷ͵ͲͲͷͳͷͷͻͲͺͶʹ 

Apo-
group 

Ͳ.ͻ͵ͳͺͲͷͲͲʹͷͻͷͳͲ Ͳ.ͻ͵ͳͺͲͷͲͲʹͷͻͷͳͲ 

+Ͳ.͵ʹͻͷͻʹ͵ͶͷͻͲ −Ͳ.͵ʹͻͷͻʹ͵ͶͷͻͲ 

Ͳ.ͻͻͻͻͻͻͻͻͻͻͻʹͶ Ͳ.ͻͻͻͻͻͻͻͻͻͻͻʹͶ 

 
Incredibly, this last result is in total agreement with what we have seen in Figure 62, 
where two branches have been classified and analysed in (S. Campagnola et al., 2008), so 
illustrating the clearly bifurcation dependent upon the initial phase � selected for the 
successive extension to the Elliptic problem. 

As consequence, the two groups found respectively as Peri- or Apo- (for M odd), have a 
very different linear stability, while not to forget that main driven element of instability is 
most-likely associated to the largest eigenvalue, where here we have that 

 Max |ߣ|  for the Peri-group is equal to around ͳʹ.Ͷ 

 Max |ߣ|  for the Apo-group is equal to around ͻͶ.ʹͻ 

again both referred at ݁ = ݁ாெ. More details on variations in linear stability will be given 
later, as also numerical simulations, while now we proceed with a comparison for M 
even, so again considering the Horizontal Lyapunov family at L1.  
 

5.3 Second example: the H-Lyapunov ۻۼ at L1 
In the previous section, an example of ݁-bifurcation between Apo and Peri groups has 
been shown, when considering resonance orbits with M odd. At this point we can present 
a very similar comparison, but based on a different situation, with M even, thus 
distinguishing between a Left and a Right family (see Section 4.4.3). Starting point is 
here the MʹNͳ-resonance for the H-Lyapunov family at L1, as illustrated in Figure 72. In 
Table 6, all largest characteristic multipliers have been summarized for the Elliptic 
problem, taking into account that M > ͳ, so considering multiple revolutions. This last 
aspect can be better identified in Figure 72 (RIGHT), where periodicity errors (orange 
circles) at the second revolution ∀� = � +  are much larger than the ones found in the ߨʹ
first one ∀� = � +  ,is indeed the orbital period ܶ for the circular case ߨ Note that .ߨ
while, for what concerns the Elliptic problem, the new period is expressed as ாܶ =  .ߨʹ
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Here the starting orbits plotted, as previously did for the M1N1 solution. 

 

Figure 72: Example is shown of the starting resonance orbit (ۻۼ) at L1 for the H-Lyapunov 
family. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the 
right the periodicity is shown together with all six characteristic multipliers (in module). 

Let’s now continue illustrating these new families generated, as for the previous MͳNͳ 
resonance case. Both Left and Right families are shown in next Figure 73, using No-
Pulsating (TOP) and Pulsating (BOTTOM) coordinates, as discussed in Section 4.1.1. 

 

 

Figure 73: The resonance ۻۼ H-Lyapunov orbit at L1 is shown in both No-Pulsating (TOP) 
and Pulsating (BOTTOM) coordinates. Note the existence of two families where the first 

orthogonal cross has been considered respectively at the left and right on the ̂ࢄ-axis. 

5.3.1 Periodicity validation and eigenvalues analysis 

In Figure 74, the Periodicity validation shows always a convergence for the Differential 
Correction algorithm, except in a very single case where the algorithm has reached the 
maximum number of iterations (here 50). In that case the velocity displacement 
continues to oscillate between ʹ an� Ͷ ∙ ͳͲ−ଵଶ, thus just above the original threshold. In 
that circumstance, for what has been explained at the beginning of this chapter, the 
propagation continues without any problems. In fact, the error is still smaller than ͳͲ−ଵ, 
and so capable of reaching the target value for the Earth-Moon system ሺ݁ாெ = Ͳ.ͲͷͶͻሻ. 
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Here the periodicity validation results, as previously shown also for the MͳNͳ solution. 

  

Figure 74: Periodicity validation for both the Left-family (LEFT) and Right-family (RIGHT) 
generated for the ۻۼ H-Lyapunov resonance solution at L1. 

A brief remark on a possible non-convergence is related to the high unstable dynamics of 
some resonance solutions, where even with strict tolerances on the integration it is not 
always feasible to push displacements below the nominal threshold, thus requiring more 
iterations. The latter can be seen more as a computational disadvantage (e.g., high CPU-
time required), while periodicity has been once again verified here. More details are 
given in Appendix-B, while now we continue with the analysis on eigenvalues (Figure 75).  

 

Figure 75: Analysis of characteristic multipliers for the Left-family (TOP) and Right-family 
(BOTTOM) generated for the ۻۼ H-Lyapunov resonance solution at L1. Note changes in the 
order of instability, due to a different bifurcation of both real unitary eigenvalues (see text). 
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A different behaviour can be observed for the two different branches of the same starting 
resonance orbit, once again in agreement with (S. Campagnola et al., 2008). Before 
further discussing this aspect, a short note is required on the relative higher error found 
for the determinant of the Monodromy matrix. In Section 2.2.4, we have seen the 
necessary condition of having the determinant equal to +ͳ, as consequence of the 
Symplectic form of Hamiltonian problems (so for both the circular and the elliptic case). 
The absolute error ȟ୲୭୲ follows directly when considering that 

���ሺMሻ = ͳ + ȟ୲୭୲ =∏ (ͳߣ + ȟ)=ଵ      ∏ (ͳ + ȟ)=ଵ  (5-2) 

 

where product of eigenvalues is nominally +ͳ, while ȟ�o� is the error shown in the 

previous plots and ȟ݆ = ȟ݆ߣ/݆ߣ is the relative error on each eigenvalue ߣ  , ∀݆ = ͳ,ʹ, . . ,. 

Hence, assuming small errors and so neglecting their mutual product (related to higher 
order terms), we are able to approximate the total error as 

ȟ୲୭୲ ≈∑ ȟ=ଵ   ≡  ∑ ቆȟߣߣ ቇ=ଵ  (5-3) 

 

From Eq. (5-3), it seems clear that a large error is most-likely related to the smallest ݆ߣ 
when assuming similar values of ȟߣ. Based on this observation, the smallest eigenvalue 

found in our simulations and given in Table 6 is around order ~ͳͲ−. It follows that even 
with small values of ȟߣ as ͳͲ−ଽ/ͳͲ−ଵ, we will have still a large contribution to the error 

as ͳͲ−ସ. Nonetheless, the effectiveness of this entire analysis can be better interfered by 
the continuous behaviour of all eigenvalues, as shown in Figure 75 (or also in Figure 71). 

Last step is to provide some additional data on this ݁-bifurcation, where with Table 8 this 
split of the two real unitary eigenvalues becomes evident. The Left-family shows a new 
stable/unstable manifold direction (with a 3-order instability), while no changes actually 
exists in the instability order for the Right-family. For this last case, both eigenvalues 
indeed move exclusively along the unit circle (within the complex plane). 

Table 8: Numerical values of the two real unitary eigenvalues ࣅ in the CR3BP, with the 
relative spit due to the extension to the Elliptic problem with eccentricity as ࡹࡱࢋ = . ૢ. 

 Real Part Imaginary Part Module 

CR3BP 
Ͳ.ͻͻͻͻͻͻͻͻͻͺͻ ͳ.ͲͲͲͲͲͲͲͲͲͳ͵͵ʹ͵ͳ 

Ͳ Ͳ 

Ͳ.ͻͻͻͻͻͻͻͻͻͺͻ ͳ.ͲͲͲͲͲͲͲͲͲͳ͵͵ʹ͵ͳ 

Left-
group 

Ͳ.ͻͺʹʹʹͺͻͶͻͷͲ    ͳ.ͲͳͷͺͳͲ͵ͷͻͷ͵ 

Ͳ Ͳ 

Ͳ.ͻͺʹʹʹͺͻͶͻͷͲ ͳ.ͲͳͷͺͳͲ͵ͷͻͷ͵ 

Right-
group 

Ͳ.ͻͻͻͺͶͺͳͻͷʹͺͳͺͶͳ  Ͳ.ͻͻͻͺͶͺͳͻͷʹͺͳͺͶͳ 

+Ͳ.ͲͳͶʹ͵Ͳͻͷͷ −Ͳ.ͲͳͶʹ͵Ͳͻͷͷ 

ͳ.ͲͲͲͲͲͲͲͲͲͻͺʹ ͳ.ͲͲͲͲͲͲͲͲͲͻͺʹ 

 
Basically, if M is even, we have two families for the Elliptic problem, where the largest 
eigenvalue found at ݁ாெ is similar for both cases, equal to ∼ ͳ.ͳͷ ∙ ͳͲ. At this point, a 
third example can be shown for M even, but within the Vertical family, which is known to 
be doubly-symmetric (X. Y. Hou & Liu, 2009) in the CR3BP. Look at Section 2.4.1. 
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5.4 Third example: the V-Lyapunov ۻۼ at L1 
Starting resonance orbit is shown in the Figure 76 below, where the double symmetry is 
clear with the behaviour of velocity variations respect to the shooting condition (LEFT), 
while crossing the ̂ݔ-axis twice at the same point as  ݔூ = ௬ூݒ  ூூ withݔ = ௬ூூݒ , ௭ூݒ =   .௭ூூݒ−

 

Figure 76: Example is shown of the starting resonance orbit (ۻۼ) for the V-Lyapunov family 
at L1. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the 
right the periodicity is shown together with characteristic multipliers. 

This double-symmetry based on the Mirrored-Backward transformation, presented in 
Eq. (2-16), has an additional evident effect. In fact, for the MʹNͳ-resonance solution 
within the Vertical family at L1, we are able to compute both Left (TOP) and Right 
(BOTTOM) families, as shown in the next Figure 77. To note that when M is even, the 
shooting phase-point repeats itself at Ͳ.ͷ ∙ ாܶ (or ܶ ∙ ݁ for (ʹ/ܯ = Ͳ. However, it seems 
also evident the fact that the ݁-bifurcation leads now to a symmetry with respect to the ̂ݕ̂ݔ-plane and consequently creating a new pair of distinct Northern/Southern families. 

 

 

Figure 77: The Left-family (TOP) and the Right-family (BOTTOM) are shown respectively on 
the ̂࢟̂࢞-plane (LEFT SIDE) and on the ࢠ̂̂࢞-plane in No-Pulsating coordinates. Both families 
bifurcated from the M2N1-resonance orbit found within the Vertical Lyapunov family at L1. 

In the Circular problem both Northern and Southern Vertical families overlap by cause of 
the aforementioned double-symmetry, while this is not more the case in the ER3BP. 
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Instead, two different families arise here, but their stability behaviour is not affected at 
all, in analogy to Halo orbits in the CR3BP. The latter is due to the fact that the “first 
symmetry” in the z-direction is still valid within the Elliptic problem, along with all its 
subsequent proprieties. In the following Figure 78, the periodicity validation (TOP) is 
shown with the eigenvalue analysis (BOTTOM) for both these two families (the Left and 
the Right one), starting again with the MʹNͳ-resonance orbit for the Vertical family at L1.  

  LEFT       RIGHT 

 

Figure 78: Periodicity validation (TOP) and Eigenvalues analysis (BOTTOM) generated for the ۻۼ V-Lyapunov resonance solution at L1, where the Left-family and the Right-family have 
been shown, both arising from the ࢋ-bifurcation at ࢋ ≅ . See discussion in the text. 

For this last result, in agreement to what has been discussed before, the module of all six 
eigenvalues seems to not change significantly, while nothing can be added for higher 
values of eccentricity. In order to deeply validate the previous outcome, we provide here 
an extension of the analysis to a new nominal value with ்݁ாௌ் = Ͳ.ͳ. To observe in next 
Figure 79, that the increasing eigenvalue (in orange) could probably lead to an additional 
unstable manifold for much higher eccentricity values ሺͲ.ͳ ≪ ்݁ாௌ் < ͳ, ሻ. 

  

Figure 79: Analysis of the characteristic multipliers as shown in Figure 78 for both Left and 
Right bifurcated families, but now further extended to an high eccentricity with ࢀࡿࡱࢀࢋ = . . 
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The analysis defined by Figure 79 has simply shown that an equivalent system (having 
the same mass-ratio ߤ) can actually involves very different behaviours when considering 
higher values of eccentricity. It seems plausible to infer that instability, in general, is 
most-likely increasing, probably due to stronger effects associated to these new “elliptic 

effects” on the nominal system. The latter has been further investigated in subsequent 
sections, while here, for the sake of completeness, we represent a 3D-plot in No-Pulsating 
coordinates for both V-Lyapunov solutions (MʹNͳ-resonance) found at ݁ாெ. 

 

Figure 80: The Left-family (TOP) and the Right-family (BOTTOM), both bifurcating from the 
selected ۻۼ-resonance within the V-Lyapunov family at L1, have been here illustrate in a 
3D-plot, based on a No-Pulsating reference frame, with the nominal eccentricity ࡹࡱࢋ = . ૢ.  

Next step is to summarize adequately some fundamental characteristics of ݁-bifurcations 
within the Halo family, also adopted later for stability comparison between the Circular 
and the Elliptical problem. Above all, we will highlight advantages of making use of such 
elliptic model in a more realistic space mission’s design. For more practical information 
and applications of these Elliptic-Halo orbits we refer to (H. Peng & Xu, 2015a, 2015c). 
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5.5 Essential aspects of the “eccentricity-bifurcation” 
So far we have seen, in full agreement with (S. Campagnola et al., 2008), that a new 
bifurcation exists at ݁ ≅ Ͳ, called ݁-bifurcation since involving the eccentricity positive 
parameter. Depending on the number of orbital revolutions M (even or odd) we have a 
division of the original resonance solution in two branches (the Left/Right-family or the 
Peri/Apo-group), as extensively discussed in Section 4.4.3. At this point the Halo family 
at L2 has been investigated, in order to better characterize and differentiate these two 
branches arising in the Elliptic problem. 

The importance of considering such comparison is mostly related to time constraints in 
real space missions, since now the shooting-time window for having periodic orbits has 
been narrowed around two values, respectively when both masses are at their peri-apsis 
or apo-apsis. Straightforward is to understand that any deviations from such nominal 
conditions will in a certain way increase the mission’s costs, e.g., the DV-budget. In 
particular due to the necessity of perform correcting manoeuvres and so fulfilling the 
Elliptic Periodicity Condition, in addition to all main station-keeping costs related to 
the stability itself, as discussed in (X. Hou, Liu, & Tang, 2011). We start presenting now 
respectively the MʹNͳ and M͵Nͳ Halo Southern resonance orbits, in order to compare 
first Left/Right families (Section 5.5.1) and later Peri/Apo groups (Section 5.5.2). 

 

Figure 81: Starting resonance orbit (ۻۼ) for the Halo family at L1. It shows the 3D-plot in 
both co-rotating and inertial frames (LEFT) and the relative periodicity/eigenvalues (RIGHT). 

 

Figure 82: Starting resonance orbit (ۻۼ) for the Halo family at L1. It shows the 3D-plot in 
both co-rotating and inertial frames (LEFT) and the relative periodicity/eigenvalues (RIGHT). 

As seen in Table 6, the Halo M͵Nͳ-resonance at L2 is very stable (liner stability), and 
with M = ͵ the largest eigenvalue for the Elliptic problem is equal to ~ͳͲ. For what 
concerns the MʹNͳ case, we have a value for each revolution as ~ͳͷͲ, while the former 
solution, as evident in Section 3.6.1, is indeed really close to an existing “spectrally” 
stable zone. It is possible now to continue further analysing both aforementioned cases. 
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5.5.1 Comparison Left/Right families: the Halo “ۻۼ” at L2 
In the following figure, in analogy with all previous results, we show the 3D-plot (TOP) of 
the resonance orbit propagated till the nominal value of eccentricity ሺ݁ாெ = Ͳ.ͲͷͶͻሻ, thus 
a periodicity validation (MIDDLE) follows with also the analysis on all eigenvalues 
(BOTTOM). Also to remember that since M is even, the ݁-bifurcation leads respectively 
to a Left-family and a Right-family, both closely compared in the Figure 83 below. 

LEFT        RIGHT

 

  

  

Figure 83: Illustration of the Left/Right-families bifurcating from the ۻۼ-resonance orbit 
of the Halo family at L2. The 3D-plot (TOP), the periodicity validation (MIDDLE) and the 
Eigenvalues analysis (BOTTOM) have been shown as well explained in the earlier results. 

Both cases computed require only a small number of iterations to converge during the 
propagation, while few more iterations of the DC-algorithm for the Left-family are 
probably justified by the higher instability found (2-order). The largest eigenvalue is not 
very different, while for the Left-family at ݁ ≈ Ͳ.ͲͲͷ we can trivially observe an additional 
stable/unstable manifold direction. In Section 5.5.3 the data relative to this “split” has 
been summarized with Table 9, as previously did in each previous section of this chapter. 
Let’s introduce at this point a second comparison, where for odd values of M (number of 
orbital revolutions) we arrive at the Apo- or the Peri-group of periodic solutions. 
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5.5.2 Comparison Apo/Peri groups: the Halo “ۻۼ” at L2 
In the following figure, in analogy with all previous results, we show the 3D-plot (TOP) of 
the resonance orbit propagated till the nominal value of eccentricity ሺ݁ாெ = Ͳ.ͲͷͶͻሻ, thus 
a periodicity validation (MIDDLE) follows with also the analysis on all eigenvalues 
(BOTTOM). Note that since M is odd, we have a bifurcation into a Peri-group and an 
Apo-group, both closely compared in the next Figure 84. 

PERI        APO 

 

 

Figure 84: Illustration of the Peri/Apo-groups bifurcating from the ۻۼ-resonance orbit of 
the Halo family at L2. The 3D-plot (TOP), the periodicity validation (MIDDLE) and the 
Eigenvalues analysis (BOTTOM) have been shown as well explained in the earlier results. 

This second comparison is really fascinating, requiring a very high number of iterations 
and in few cases non perfectly converging, with final displacements at around ʹ ∙ ͳͲ−ଵଶ. 
In the analysis on the Monodromy matrix, we are able to observe a very curious situation, 
where for the Apo-group there is actually an ݁-range where the M͵Nͳ-orbit is actually 
linearly stable, while concerning the Peri-group the order of instability only increases 
(with two bifurcations found). Nonetheless, at the nominal value ݁ாெ both groups are 

actually linearly unstable, where largest eigenvalue is |ߣெ | ≈ ͳ.ͺͶͶ for the Apo-group, 

so much smaller than the |ߣெ | ≈ ͶͲ.ͺͶ found for the Peri-group. 
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5.5.3 Summary of e-bifurcations for the Halo family at L2 
At this point, it seems reasonable to inquiry the effective meaning of all previous results, 
since the eccentricity of the Earth-Moon system is indeed well-known and almost fixed. 
De facto, we remind the reader that the latter has been selected only as a Test-Case, while 
similar methodologies can be applied for a more broad investigation, thus including 
different orbital eccentricities "݁", along with other mass-ratios "ߤ" (e.g., binary systems). 
For time-limitations of this Master work, these possibilities have not been treated here, 
while some additional details are now discussed on what has been called “e-bifurcation”.  

5.5.3.1 Summary of e-bifurcations for the Halo M2N1-resonance at L2 

The initial resonance orbit is I°-order linear unstable, and it is possible to provide some 
data on all four eigenvalues initially lying on the unitary circle, as did for MͳNͳ and MʹNͳ  cases of Horizontal Lyapunov orbits (both II°-order). In next Table 9 these values 
have been shown, where eigenvalues related to the additional manifold have been 
highlighted in red, while in green same ones, but preserving their order of instability. 

Table 9: Numerical values of the four unitary eigenvalues ࣅ in the CR3BP for the ۻۼ Halo 
resonance orbit, with their final values in the Elliptic problem computed at ࡹࡱࢋ = .ૢ. 

M2N1 Real Part Imaginary Part Module 

CR3BP 

−Ͳ.ͺͻͻͶͶ͵ͲͻͶͳͲͶͳ −Ͳ.ͺͻͻͶͶ͵ͲͻͶͳͲͶͳ +Ͳ.ͻͻͻͻͻͻͻͻͶͶͶ͵ͶͲ +Ͳ.ͻͻͻͻͻͻͻͻͶͶͶ͵ͶͲ 

+Ͳ.Ͷ͵Ͳ͵ͺͻʹͲͳͳ −Ͳ.Ͷ͵Ͳ͵ͺͻʹͲͳͳ +Ͳ.ͲͲͲͲͳͺͷ͵ͻͳͶͻͳ −Ͳ.ͲͲͲͲͳͺͷ͵ͻͳͶͻͳ 

ͳ.ͲͲͲͲͲͲͲͲͲͲͲͷͺͷ ͳ.ͲͲͲͲͲͲͲͲͲͲͲͷͺͷ ͳ.ͲͲͲͲͲͲͲͲͲͲʹͲͺ͵ ͳ.ͲͲͲͲͲͲͲͲͲͲʹͲͺ͵ 

Left-
family 

−Ͳ.ͻͲͶʹͲͷͻͳͲͲʹͶͻͳʹ −Ͳ.ͻͲͶʹͲͷͻͳͲͲʹͶͻͳʹ +Ͳ.ͻͺͻ͵͵ͻͺ͵ͻʹ +ͳ.ͲʹʹͲͷͻͷͺʹͳ͵ͷ 

+Ͳ.ͶʹͲͻͻͶͻ͵ͺͳͳͳ −Ͳ.ͶʹͲͻͻͶͻ͵ͺͳͳͳ Ͳ Ͳ 

Ͳ.ͻͻͻͻͻͻͻͻͻͻͺͷͳͻ͵ Ͳ.ͻͻͻͻͻͻͻͻͻͻͺͷͳͻ͵ Ͳ.ͻͺͻ͵͵ͻͺ͵ͻʹ ͳ.ͲʹʹͲͷͻͷͺʹͳ͵ͷ 

Right-
family 

−Ͳ.ͻͲ͵ʹͲͳͳͷͳʹͻ͵ −Ͳ.ͻͲ͵ʹͲͳͳͷͳʹͻ͵ +Ͳ.ͻͻͻͷͲͲͲͺͲͷ͵Ͷ͵ +Ͳ.ͻͻͻͷͲͲͲͺͲͷ͵Ͷ͵ 

+Ͳ.Ͷʹͺ͵͵Ͷͺ͵͵ͺͺͺͲ −Ͳ.Ͷʹͺ͵͵Ͷͺ͵͵ͺͺͺͲ +Ͳ.Ͳʹʹ͵ͷͺͻʹʹ͵ͺʹͶͷ −Ͳ.Ͳʹʹ͵ͷͺͻʹʹ͵ͺʹͶͷ 

ͳ.ͲͲͲͲͲͲͲͲͲͲͲͲͷͷͺ ͳ.ͲͲͲͲͲͲͲͲͲͲͲͲͷͷͺ ͳ.ͲͲͲͲͲͲͲͲͲͲͲͷͲ ͳ.ͲͲͲͲͲͲͲͲͲͲͲͷͲ 

 
As expected, we see the additional order of instability arising within the Left-family, 
while for the Right-family we have a motion along the “unitary circle”, with an absolute 
complex phase from .ʹ ∙ ͳͲ−ହ (theoretically zero in the CR3BP) till ʹ.ʹ ∙ ͳͲ−ଶ at the ݁ாெ. 
The previous bifurcation has been analysed in detail and summarized in the following 
Table 10, but taking into account only pairs of eigenvalue escaping from the unit circle. 

Table 10: Numerical data of the e-bifurcation found within the Left-family, when starting 
from a ۻۼ-resonance orbit of the Halo family at L1. Main settings are given in Appendix-B. 

Left-Family ࡲ�ࢋ− = .  ࡲ�ࢋ ࡲ�̂ࢋ+ = .  

Module 
Ͳ.ͻͻͻͲͳͻͶͺͶͳ͵ ͳ.ͲͲͲͻͺͳͶͻ͵Ͷͺͳ 

՜ 
Ͳ.ͻͻͺͻͻͷʹͺ ͳ.ͲͲͳͲʹ͵ͲͻͻͶʹ͵ͻ 

Real 
Part 

+Ͳ.ͻͻͻͲͳͻͶͺͶͳ͵ +ͳ.ͲͲͲͻͺͳͶͻ͵Ͷͺͳ 
՜ 

+Ͳ.ͻͻͺͻͻͷʹͺ +ͳ.ͲͲͳͲʹ͵ͲͻͻͶʹ͵ͻ 

Imaginary 
Part 

Ͳ Ͳ 
՜ 

Ͳ Ͳ 
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5.5.3.2 Summary of e-bifurcations for the Halo M3N1-resonance at L2 

For this second comparison, the M͵Nͳ-resonance of Halo family has been considered. 
Initially we have four eigenvalues on the unitary circle, while for both groups (Peri and 
Apo) two bifurcations have been found in the propagation till a nominal value ݁ாெ. Main 
data on eigenvalues at both ݁ ≅ Ͳ and ݁ = ݁ாெ (for Peri/Apo-groups) is given below in 
Table 11, where all six eigenvalues have been considered due to the higher complexity of 
bifurcations found in this new comparison (for M odd). 

Table 11: Numerical values of all the six eigenvalues ࣅ for the ۻۼ Halo resonance orbit, 
where their final values in the Elliptic problem have been computed at ࡹࡱࢋ = . ૢ. In red, 
eigenvalues with a module larger or smaller than 1 (so lying outside the unitary circle) 

M3N1 Real Part Imaginary Part Module 

CR3BP 

−Ͳ.ͳͳͳͶͶʹ͵ͺͲͲ͵ͻͷ Ͳ.ͻͻͻͻͻͷͺ͵ͻ͵ͳͷͲͶͺ Ͳ.ͲͶͻʹʹͲͻͳ͵ͻ Ͳ.ͲͶͻʹʹͲͻͳ͵ͻ ͳ.ͲͲͲͲͲͶͳͲͳʹͺʹ −ͺ.ͻ͵ʹʹʹͲͶͻͻ 

Ͳ Ͳ +Ͳ.ͻͻͺͻͲͷʹͳʹͳͶ͵ͻ −Ͳ.ͻͻͺͻͲͷʹͳʹͳͶ͵ͻ Ͳ Ͳ 

Ͳ.ͳͳͳͶͶʹ͵ͺͲͲ͵ͻͷ Ͳ.ͻͻͻͻͻͷͺ͵ͻ͵ͳͷͲͶͺ Ͳ.ͻͻͻͻͻͻͻͻͻͻͻͻͷͻ Ͳ.ͻͻͻͻͻͻͻͻͻͻͻͻͷͻ ͳ.ͲͲͲͲͲͶͳͲͳʹͺʹ ͺ.ͻ͵ʹʹʹͲͶͻͻ 

Peri-
group 

Ͳ.ͲʹͶͷͳͻʹͳͷͲʹͳʹʹ Ͳ.ͷͺͺͻʹͻͺ͵ʹͺͻͺͷ Ͳ.ͷͺͺͻʹͻͺ͵ʹͺͻͺͷ ͳ.ͶͲͺʹͻ͵͵ʹͻͳ ͳ.ͶͲͺʹͻ͵͵ʹͻͳ ͶͲ.ͺͶ͵͵ͶͶͳͺ͵ʹ 

Ͳ +Ͳ.ʹͺ͵Ͳͻͳ͵ͻͷʹ −Ͳ.ʹͺ͵Ͳͻͳ͵ͻͷʹ +Ͳ.Ͷͳ͵ͻͳͶͷͳʹ −Ͳ.Ͷͳ͵ͻͳͶͷͳʹ Ͳ 

Ͳ.ͲʹͶͷͳͻʹͳͷͲʹͳʹʹ Ͳ.ͶͲʹͶͲͻ͵ͺͺͺ Ͳ.ͶͲʹͶͲͻ͵ͺͺͺ ͳ.ͷͶͻʹͳͻͳͷʹʹͻ ͳ.ͷͶͻʹͳͻͳͷʹʹͻ ͶͲ.ͺͶ͵͵ͶͶͳͺ͵ʹ 

Apo-
group 

−Ͳ.ͲͷͺͷͺͳʹʹͶ͵ͻͷ −Ͳ.ͲͷͺͷͺͳʹʹͶ͵ͻͷ Ͳ.ͳͷʹ͵Ͷ͵͵͵ʹͷͷ Ͳ.ͳͷʹ͵Ͷ͵͵͵ʹͷͷ −Ͳ.ͳͻ͵ʹͷ͵ͷͶͳ͵ͷʹͺͳʹ −Ͳ.ͳͻ͵ʹͷ͵ͷͶͳ͵ͷʹͺͳʹ 

+Ͳ.ͷ͵ͻͶʹͲʹͺͷͳ͵ʹ −Ͳ.ͷ͵ͻͶʹͲʹͺͷͳ͵ʹ +Ͳ.ͺ͵ͲͲͺͺ͵ͷͺͶ −Ͳ.ͺ͵ͲͲͺͺ͵ͷͺͶ +ͳ.ͺ͵͵ͶͶͷͳʹʹͶͻʹ −ͳ.ͺ͵͵ͶͶͷͳʹʹͶͻʹ 

Ͳ.ͷͶʹͶͳͲͶͶʹ͵ͺͷͳ Ͳ.ͷͶʹͶͳͲͶͶʹ͵ͺͷͳ Ͳ.ͻͻͻͻͻͻͻͻͻͻͻͲͷ Ͳ.ͻͻͻͻͻͻͻͻͻͻͻͲͷ ͳ.ͺͶ͵Ͳ͵ʹͺͳͺͳͶ ͳ.ͺͶ͵Ͳ͵ʹͺͳͺͳͶ 

 
Once again we see a clear difference in final values, as also mentioned in Section 5.5.2, 
where for the Peri-group the linear stability assessment shows three stable/unstable 
manifolds against the only two of the Apo-group. In order to have a more coherent 
discussion we will now briefly review40 the two bifurcations found for both cases, as 
previously illustrated with Figure 84 (BOTTOM).  

Peri-group bifurcations: 

I. For ࢋ࢘ࢋ א ሺͲ.ͲͶͷͶ,Ͳ.ͲͶͷͷሻ, with instability from I-order to Ͳ-order. 

II. For ࢋ࢘ࢋ א ሺͲ.ͲͶͺ,Ͳ.ͲͶͻሻ, with instability from Ͳ-order to II-order. 

Apo-group bifurcations: 

I. For ࢋࢇ א ሺͲ.ͲͲͲͺ,Ͳ.ͲͲͲͻሻ, with instability from I-order to Ͳ-order. 

II. For ࢋࢇ א ሺͲ.Ͳʹʹͺ,Ͳ.Ͳʹʹͻሻ, with instability from Ͳ-order to II-order. 

                                                           

40 Data are here not provided in order to not overload this section with many tables, not really 
necessary for our qualitative discussion. Furthermore, one of the main objectives is here indeed to 
exploit differences and particular characteristics between groups/families, bifurcated once 
considering the dynamics of the Elliptic Restricted 3-Body Problem.  
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For the sake of completeness we provide in Figure 85 a graphic plot in the complex-plane 
of the full motion ∀݁: Ͳ ՜ ݁ாெ for all previous six eigenvalues associated to the Peri/Apo-
groups. We refer again to the M2N1-resonance solution in the Halo family at L2. With 
blue and magenta dots, respectively eigenvalues are shown for both Circular and Elliptic 
problems, thus the ‘asserted’ bifurcation points as black diamonds. Last, in red the full 
motion based on the eccentricity step-size adopted for ȟ݁ = ͳͲ−ସ (see Appendix-B). 

 

Figure 85: Illustration of the motion in the complex-plane of all six eigenvalues for the Peri-
group (TOP) and the Apo-group (BOTTOM) bifurcated from the ۻۼ-resonance of the Halo 
family at L2. In blue/magenta the initial/final values, while in red the full “path” is shown. 

Both previous plots show the motion of eigenvalues with both two bifurcations found 
during the propagation. A smaller step-size ȟ݁ allows having a better image of the real 
behaviour, thus leading to the possibility of evaluating also systems with a slightly 
different eccentricity. However, some additional bifurcations within this motion (without 
changes in the instability order) could be also interesting to be investigated, but here not 
treated. Moreover, even more important is the evident difference found, as previously 
demonstrated, with two distinct groups bifurcated from the exactly same Halo resonance 
orbit. The latter has been related to the specific initial phase adopted once propagating 
this reference orbit toward the Elliptic problem. More details on additional very similar 
e-bifurcations, also for no changes in the order of instability, has been well described in 
(H. Peng & Xu, 2015b). At this point, we proceed with the last very step of this chapter: 
an example for the numerical comparison between the Circular and the Elliptic model. 
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5.6 Linear stability comparison: Circular vs Elliptical  
In this section we numerically test one among all the previous cases investigated. Main 
objective here is not to compute an effective periodic trajectory for the Earth-Moon 
system, but mostly to highlight the importance of considering the ER3BP as reference 
model for practical space mission planning and optimization. Again, we need to remind 
the reader that optimal transfer orbits, along with the characterization of stable/unstable 
manifolds, are not parts of this work, nonetheless we focus on two principal aspects: 

i. The consequence of adopting shooting conditions found from the Circular model 
into the full dynamics of the ER3BP, which better exemplify the real physical 
Earth-Moon system, as fully treated in Section 2.1.3. 

ii. At what extend it is possible to consider acceptable a small mismatch in the 
shooting-phase required by the Elliptic Periodicity Condition, while clearly 
that aspect does not affect at all the numerical integration within the CR3BP, 
since dealing with a time-invariant differential system (see Section 2.2.1). 

For what concerns the first point “i”, we start considering the M͵Nͳ-resonance of the 
Southern Halo family at L2, previously treated in Section 5.5.2, while both two groups 
(Peri and Apo) bifurcated at ݁ ≅ Ͳ have been represented in Figure 84.  At this point we 
consider again the Pulsating frame, where libration points have been found to be 
numerically the same for both models (Section 4.1.2). Thus, it is possible to consider 
initial conditions found from the CR3BP and the ER3BP, starting with � = Ͳ or � =  .ߨ

The resonance orbit shown in Figure 86 is very close to the Moon, perfect for observation 
missions of the gravity field, but with an apogee far enough for assuring communication 
and data transfer with the Earth. Under this perspective, an example is given where the 
trajectory is numerically integrated till divergence. This divergence is delineated by a 
boundary zone at ͳ.ͷ × ܴு, where ܴு is the Hill’s radius (here ~Ͳ.ͳͲ) that ‘nominally’ 
define the so called Sphere-of-Influence of a single mass. (Musielak & Quarles, 2014) 

 

Figure 86: Illustration of the ۻۼ-resonance orbit integrated in the full dynamics of the 
Elliptic problem ሺࡹࡱࢋ = . ૢሻ, starting with the shooting condition previously found in the 
Circular model. In magenta both libration points have been shown. 
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In the previous Figure 86 we can clearly note that the “Circular shooting condition” is not 
able to well-propagate the resonance orbit within the full dynamics of the ER3BP, which 
is supposed to be a much more correct approximation of the real EM-system. Clearly, the 
trajectory diverges in around one system revolution, so around three orbital rounds 
around the Moon. It follows that a mission based on such “design” is still possible but 
most-likely it involves higher costs for station-keeping and correcting manoeuvres. 

5.6.1 Numerical stability of Peri/Apo-Halo M3N1-resonances at L2 
At this point, we can compare the previous result with a numerical propagation (in a very 
similar way) but starting with initial conditions found for the Peri and Apo groups 
bifurcated at ݁ ≃ Ͳ. Shooting conditions are given in Table 12, where we again stress the 
fact that this comparison has been placed within a Pulsating frame. Indeed, for this 
frame the location of masses and L-points is numerically the same for both models. 

Table 12: Shooting conditions found in the Circular and Elliptic model for a ۻۼ-resonance 
Halo orbit at L2 in the EM-system. Data refers to Pulsating coordinates (see Section 4.1.1.2). 

I.C. CR3BP Peri-ER3BP Apo-ER3BP ࢄ +ͳ.Ͳ͵ͺͷͻͷͶͲͲͳ +ͳ.ͲͳʹͷʹͶ͵ʹʹͲͶͻͶͻ +ͳ.Ͳ͵ͳʹ͵ͳ͵ͺͶͲͷ ࢆ −Ͳ.ʹͲͲͶͲͳͷͷͻͳͲͶʹͷ −Ͳ.ͳͻͷʹͳͳͻͷͻ −Ͳ.ʹͳʹͶͷͻͶͳͳͶʹͻ �ࢅ −Ͳ.ͳͳͲʹͷͲ͵ʹ͵Ͷͻͳ −Ͳ.ʹͲͶͳͳͳʹͻ͵ͺͻʹ −Ͳ.ͳ͵ͳͳͺͷͶͻͺͷʹ͵Ͷͷ � Not relevant Ͳ ߨ 

 
Graphical results are shown in the figure below, where clearly both new simulations are 
able to exhibit a ‘longer’ stability. Considering an hypothetical DV-budget, it seems 
reasonable to assume that lower costs will be involve for these last two cases. More 
interesting is also the confirmation of what has been found in Section 5.5.2, with the M͵Nͳ Apo-group much more stable than the Peri-group, due to the smaller ‖ߣெ‖ (see 
Table 11). In both cases, the trajectory is able to remain bounded near ܯଶ for a very long 
period, while additional manoeuvres are still necessary for much more accurate missions, 
in order to assure that the spacecraft correctly follows this “operative orbit”. 

 

Figure 87: Numerical integration of the ۻۼ Halo at L2, using the full ER3BP-dynamics and 
starting with shooting conditions found respectively for the Peri-group (LEFT) and for the 
Apo-group (RIGHT). In magenta both libration points have been shown. 
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For a clearer picture of such “assumed” higher accuracy, we show in Figure 88 both the 
Position and the Velocity displacement respect to each shooting condition previously 
given in Table 12. These two displacements are shown, still in Pulsating coordinates, with 
their “periodicity error” (given with red dots) being evaluated at � = � + � ∙ ாܶ  , ∀�  ͳ, 
thus considering both the Peri-group (TOP) and the Apo-group (BOTTOM). 

 

Figure 88: Numerical integration of the ۻۼ Halo resonance orbit at L2 for the Peri-group 
(TOP) and the Apo-group (BOTTOM), where position and velocity displacements from 
respective initial conditions (in orange). All ࡱࢀ-periodicity errors are shown (in red-dots). 

An increasing trend is clearly observed, where errors grow at each revolution due to the 
linear instability. At the very end, we are able also to see that the phase synchronization 
has been lost, with red-dots not more related to the smaller displacement found at a 
specific n-revolution (green arrows). The displacement for the circular case is shown in 
blue, but related to very large errors order ͳͲ−ଶ (so thousands of km). The last example 
can be regarded as an additional confirmation of the necessity to take into account 
“ellipticity effects”, above the nominal dynamics given by the less accurate CR3BP model. 

As stated in (H. Peng & Xu, 2015a, 2015b, 2015c), “In the Earth-Mon system, a reference 

orbit designed in the CR3BP requires frequent station-keeping manoeuvres to offset 

perturbations introduced by model errors. Energy cost can be reduced if a better 

nominal orbit in a more realistic model is adopted”. The latter very well summarizes 
what has been stated so far, in relation to all major advantages of using an ER3BP model. 
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5.6.2 Numerical stability due to shooting-phase errors 
On the point “ii”, we briefly consider again the previous case, starting with an Apo-Halo 
M3N1-resonance at L2 and later numerically integrating it for 18 system revolutions 
(equivalent to 1.5 year integration in the Earth-Moon case). Furthermore, Position and 
Velocity displacements from the shooting-condition have been shown, but now only 
referring to the ாܶ-periodicity. Basically we are looking at the magnitude of red-dots, as 
found in Figure 88, but using shooting-phases slightly different from the nominal one. 

We consider a maximum error in the initial shooting-phase as ȟ�ெ =  Ͳ, so equal͵/ߨ±
to around 3280 seconds (or around 50 minutes), while step chosen is 50 times smaller, 
thus equivalent to around 1 minutes in the Earth-Moon case. This serves just to show 
that errors can grow in multiple revolutions not only for the dynamical instability, but 
also due to an initial phase-shift (see the Elliptic Periodicity Condition). However, 
absolute errors have been shown here in a 2D-plot based on a log10 colour-scale, where 
in blue we have the simulation with a nominal shooting-phase (as in Figure 88). For this 
last case the periodicity error has been found to be initially smaller than ͳͲ−ଵଶ, as 
consequence of the threshold adopted by the DC-algorithm. 

 

Figure 89: Illustration of position and velocity “periodicity errors” referring to 18 system 
revolutions and a range of phase-shift from the nominal shooting-time as ±�/. Absolute 
errors are given in a Log10 scale, while time-shift is based on minutes for the EM-system. 

Very last observation, we underline that the darker area found in both previous plots is 
related to absolute errors still in an acceptable range below ͳͲ−ସ (so dozens of km). 
Nonetheless, the smaller the errors, the smaller are corrections required and with it the 
overall maintenance costs of the mission (Koon et al., 2008). In addition, a generic 
phase-shift could also be combined with other shooting errors (but here not shown), thus 
further complicating the dynamical motion, already subjected to the highly unstable 
dynamics, as established during this investigation over the ER3BP. 

 

 



6  

Conclusions 

 
In the last Chapter 6, the research journey of this Master thesis report comes to an end. 
Many aspects have been deeply investigated, many others have been only mentioned and 
several analyses also performed to provide the reader with an exhaustive overview on the 
celestial mechanics problem treated in this work. Primary effort has been devoted to well 
summarize the current state-of-the-art knowledge, involving most recent literature, so 
comparing it with our major results, along with a more general background ‘picture’ of 
what has been inspected here.  

In Section 6.1, leading conclusions have been presented, based on what discussed so far, 
thus following the central workflow structure of this Master thesis project, as illustrated 
in Figure 1. Later, in Section 6.2, some recommendations on this research topic have 
been introduced, as well as for all main methodologies adopted. This last brief discussion 
serves to complete and to conclude this entire analysis, but most important aiming to 
establish a fundamental research’s step, as pivotal starting point for future investigations 
on very similar research topics. 

 

6.1 Conclusions 
The examination over some types of solutions has been the focal point of this Master 
thesis, when considering two dynamical models, first with the Circular Restricted 3-Body 
Problem (CR3BP) and later with the Elliptic problem (ER3BP). Main purpose has been 
the analysis and comparison between both models, while the Earth-Moon system has 
been test-case for all the numerical simulations. Particular solutions have been studied at 
two equilibrium points of the system, nominally L1 and L2, while three different families 
have been taken into account: both the Horizontal/Vertical Lyapunov families and a 
third one well-known as the Halo family. 

With the use of the Dynamical System Theory, it has been possible to deeply observe 
main features of what we remind to be just part of the more complex real dynamics 
described by such models. Above all, periodic solutions have been examined, along with 
their linear stability and possible bifurcations in the continuous families found within the 
Circular problem. Next, specific members of these families (here resonance orbits) have 
been extended, under some particular assumptions, into the ER3BP model, while the 
named eccentricity-bifurcation has shown some additional peculiar characteristics to 
these solutions.  
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In the CR3BP it has been shown that, for a particular co-rotating reference system (also 
defined as synodic), both main masses are fixed and they generate indeed a gravitation 
potential field, along with all the “fictitious forces” introduced when considering a non-
inertial frame. Due to symmetries within the differential problem, some conditions arise 
on the existence of periodic orbits, while a closer analysis on their linear stability (based 
on characteristic multipliers of the Monodromy matrix) has been able to shows how such 
solutions are actually embedded in continuous families. When extending periodic 
solutions from the Circular model to the Elliptic one, a dominant role is played by the 
time-like parameter of the system, here defined by the relative orbital phase � between 
main masses. At this point, it should be possible to answer to the Main Scientific 

Question (as given in Section 1.3), in this way emphasizing some most critical aspects of 
the dynamics related to the Elliptic Restricted 3-Body Problem. 

 

ANSWER TO THE MAIN SCIENTIFIC QUESTION:  
The destruction of continuous families is here a very first critical element, where periodic 
solutions still exist but only at some resonance points, thus theoretically generating 
discrete families. Even under small “elliptic perturbations”, resonance effects remain 
predominant and can strongly influence costs of orbit maintenance and station-keeping 
manoeuvres. In addition to that, a second critical element arises due to the new time-
constraint on shooting conditions, well summarized in the so-called Elliptic 

Periodicity Condition. The latter allows having distinct situations, where each 
solution actually bifurcates into two different branches, based on the specific shooting-
time chosen. Main consequence is the possible very different behaviour, still referring to 
a linear stability, while periodic solutions in the ER3BP seem to be in general much more 
unstable. In comparison with this model, other types of perturbations (as listed in 
Section 2.1.3) do not actually involve such time-dependence, but they are still able to well 
approximate the motion of a more complicate physical world. Practically, the major 
consequence of extending the standard Circular problem to the Elliptic one can be 
properly shortened in the new “direct” time-dependence found within the differential 
system, due to this elliptic bounded Kepler motion of both main masses. 

 

ANSWER TO RELATIVE SUB-QUESTION:  

Five main sub-questions have been given in Section 1.3, in order to better define what is 
the aim of this Master work, along with major focal points of the research here proposed. 
First of all, it has been necessary to comprehensively well define the Circular Restricted 
3-Body Problem, in the limit of some choices made for the simulations (e.g., Lagrange 
points and families selected). In this first step (as shown in Figure 1), the linear stability 
has been assessed with the use of the Monodromy matrix, thus looking at the local 
dynamics around such trajectories. The latter has allowed discovering bifurcations within 
each family, where we remind that the bifurcation parameter is here the distance of each 
member from the nearest Lagrange point, as measured along the syzygy direction 
(connecting both ܯଵ and ܯଶ). Type and location of all bifurcations is related to the 
selected ߤ-parameter, but here fixed to ߤாெ for the Earth-Moon system. Moreover, the 
very fascinating aspect is here the birth of additional periodic families, starting from 
Tangent-bifurcations (Section 2.2.5), along with the existence of quasi-periodic ones. 
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Bifurcations treated here are connected to changes in the order of instability, where the 
linear stability of members within a family could be related to the ̂ݔ-position of these 
“division points”. In Appendix-B, a further verification has been presented in relation to 
the unstable dynamics of the CR3BP (with numerical implications), as also for the 
importance of considering such bifurcation points. In fact, close members within the 
same family can have a very different behaviour, due to a different order of linear 
instability, and so involving a different number of stable/unstable manifolds.  

The inspection of the Elliptic problem has shown many interesting characteristics. In 
first approximation, “elliptic perturbations” have been considered for a very small 
eccentricity value, principally based on an analytic approach. It has been possible to 
observe resonance effects related to this new dynamics, while the higher instability has 
been exploited later by the numerical computation of periodic orbits, in agreement with 
most recent literature. This type of trajectories still can exists for the general elliptic case, 
but subjected now to more strictly conditions, thus adding difficulties in their precise 
determination. Only solutions in resonance with the system can survive in this new 
model, while also indispensable is here the Elliptic Periodicity Condition. From this 
last condition it follows the existence of two different branches of the same solution, 
depending on the precise shooting-time for the third negligible mass. 

Last, sub-question “V” is actually more generic and has not really a unique answer, where 
advantages of using a more complex dynamical model need often to be traded with other 
additional aspects. For example, the accuracy required by the model itself, depending 
also on what are the designed “mission objectives”, along main tolerances allowed for the 
nominal mission. For this reason, this entire research has been carefully described steps 
by steps within this report, providing all main settings and relative assumptions, in what 
can be regarded as a coherent and robust procedure.  

 

COMMENT ON THE RESEARCH OBJECTIVES:  
This Master work has introduced many methodologies, with the combination of both the 
analytic and the numeric approach for investigating principal features of these two 
models. The analysis, mostly based on the Dynamical System Theory, has presented an 
extensive survey of proprieties for the Circular model (in Chapter 2) and later for the 
Elliptic one (in Chapter 4). In this way it has been possible to delineate a systematic 
process, capable of leading to large insights in the dynamics.  In addition to that, to be 
underlined that a similar scheme could have also been applied for any other 3-Body 
systems, as long as assumptions remain valid (or at least are acceptable).  

Second objective has been to highlight distinctive elements of the ER3BP, for example 
related to resonance effects found under small “elliptical perturbations”, as well as for 
new constraints on the shooting-time suitable for such particular trajectories. 
Displacements from ideal conditions lead indeed to an unbounded drift, far away from 
the target orbit, while the non-existence of a First integral (the so-called Jacobi constant) 
complicates even more the situation. Moreover, the direct dependence on the time-like 
parameter has been designated as peculiar aspect of the Elliptic problem, while other 
perturbations, as oblateness or solar radiation, can be still characterized by an 
autonomous differential system (or by a time-independent potential function). 
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Last, not less important, we have seen in Section 5.6 some major outcomes when 
considering the more complete dynamics of the Elliptic problem. In particular, shooting-
time becomes a very strict constraint, where also small shooting-phase displacements 
can have large effects on periodicity errors. Neglecting the ellipticity of main masses, the 
third small mass most-likely will deviate from its “operative trajectory”, with a clear 
consequence on the maintenance and station-keeping costs. However, most relevant is 
here the very different behaviour of bifurcated solutions, due to the fact that their 
stability proprieties (in a linear analysis) will now depend upon the shooting-time 
initially selected at the starting point of such periodic orbits.   
 

6.2 Recommendations for future works 
As discussed, the work represents a general investigation over different models, with an 
analysis limited to only certain families of periodic solutions, involving “Lagrange orbits” 
found in a neighbourhood of two equilibrium points of the system (here L1 and L2). 
Nonetheless, the reader should be aware that many parts of the discussion are still 
currently being investigated by many researchers and could be subjected to substantial 
modifications, thus reinforcing the necessity to always validate results with the most 
recent literature available. In the next list, some possible further developments for this 
Master thesis work are given, as summary of principal aspects already discussed inside 
this report. Here we have seven major bulleted points: 

 The analysis of all the three families can be continued beyond the limits 
introduced and defined in Chapter 3 (see ADDITIONAL SETTINGS). In this 
way it is possible to look at additional bifurcations (here not shown), as well as for 
new resonances to be later propagated and analysed within the ER3BP. 

 Considering very analogous analyses and procedures, the same investigation can 
be performed for different values of the μ-parameter, focusing also on some 
possible μ-bifurcations in all the six cases presented here. 

 For a single μ-value, as the one here adopted for the Earth-Moon system, the 
analysis can be extended to higher values of the eccentricity, similarly to what has 
been briefly shown in Figure 79 (at page 113). 

 For all previous points, it is also theoretically feasible to include other families of 
periodic solutions, so taking into account additional libration points or also 
planetary orbits, as briefly summarized in Appendix-C. 

 The research can be also complete by including quasi-periodic solutions in this 
investigation. These lasts have been shown indeed to exist around each family 
studied in this Master thesis report (see Section 2.2.4). 

 A more complete model can be considered, based on “additional perturbations”, 
as previously discussed in Section 2.1.3 (TEST-CASE: the Earth-Moon system), 
for example including the oblateness and solar radiation effects. 

 As alternative research proposal, the entire discussion of this work can be 
enhanced by the analysis of stable/unstable manifolds, starting with some specific 
periodic solutions and later relating them to feasible “transfer problems”.  
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Constants and main 

parameters used 
 

In this Appendix-A, we briefly summarize constants and main parameters used in our 
simulations, e.g. thresholds used in both the Periodic L-Orbit Generator and 
Resonance L-Orbit Propagator algorithms. First of all, we need to present some 
further details related to the Earth-Moon system, Test-Case adopted in all simulations. 
 

Principal constants for the Earth-Moon system 
An extensive description of the Earth-Moon system has been given in Section 2.1.3, so 
delineating the model adopted with all its major simplifications, as also for few main 
additional perturbations existing in the ‘real’ (or better approximated) dynamics. 
Moreover, in Table 1, Bulk and Orbital main characteristics have been listed, mostly with 
the objective of giving the reader a “more tangible measure” of the system. One remark, 
is that different Master theses, PhD theses and even articles provide usually different 
values for the ߤ-parameter (the mass-ratio). Clearly, a mathematically precise value is 
not very realistic, nonetheless we have pointed out many times that our analysis is not 
strictly designated for a particular real space mission design but theoretically applicable 
to any 3-Body systems. Under this perspective, first objective is to assure consistency in 
the procedure, while values for the parameters can change and this change itself could be 
analyse in future investigations, for example looking at bifurcations along the ߤ-value, as 
also performed in (Doedel et al., 2003; Doedel et al., 2007). 

We start with the value for Earth and Moon mass-ratio, so leading to 

ாெߤ = ாܯெܯ ெܯ+ = ͳͳ + �−ଵ = Ͳ.ͲͳʹͳͷͲͷͺͶͶͲ͵ͷͳ ≈ ࡹࡱࣆ̂ = .  (A-1) 

 
where the ratio � = ா is equal to Ͳ.Ͳͳʹ͵ͲͲͲ͵ͳܯ/ெܯ ± Ͷ ∙ ͳͲ−ଵ, as given in the “IAU 
2009 System of Astronomical Constants” (Luzum et al., 2011). Adopted for all simulation 
is its approximation ̂ࡹࡱࣆ in Eq. (A-1), still in agreement with textbooks as (Vallado & 
McClain, 1997), or also used in (Parker, 2007). Furthermore, we have performed our 
analysis also on slightly different values rounded to Ͳ.ͲͳʹͳͷͲ and Ͳ.Ͳͳʹͳͷͳ (here not 
given) without noting any substantial different behaviours at each family, while a very 
different situation can been observed for near binary systems (Doedel et al., 2007). 
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As seen in Section 2.1.2, in the Circular problem the system is fixed once given a ߤ-value, 
as also its main proprieties (e.g., location of the five Lagrange points). L-points can be 
calculated using both Eq. (2-7) and Eq. (2-8), with an analytic solution for triangular 
points ܮସ/ହ, as shown in Figure 4. For the three collinear points ܮଵ/ଶ/ଷ, it is also possible 

to use and solve Eq. (2-9), quintic equation in ߛ =   , scalar distance of each L-pointߛ
from the nearest mass. Using the mass-ratio value  ̂ࡹࡱࣆ , we obtain 

Table 13: Location of collinear Lagrange points (L-points) and their scalar distance ࡸࢽ from 
the nearest mass. All three found along the syzygy in a co-rotating frame for ̂ࡹࡱࣆ = . . 

Collinear L-point ࢞-position ࡸࢽ-value ܮଵ 
+Ͳ.ͺ͵ͻͳͷͲͷͶͻͶʹͲͷ ≈ +͵ʹͳͳͲ.ͳͶ [��] Ͳ.ͳͷͲͻ͵Ͷ͵ͶͷͲ͵ͷͻͷ ≈ ͷͺͲͳͻ.ͳʹ [��] ܮଶ 
+ͳ.ͳͷͷͺʹʹʹͲͻͳͷ͵ ≈ +ͶͶͶʹͶͶ.ʹͶͷ [��] Ͳ.ͳͺ͵ʹͺʹͲͻͳͷ͵ ≈ ͶͷͳͶ.ͻ͵ [��] ܮଷ 
−ͳ.ͲͲͷͲʹͷͳͺͲͷͻͳͻ ≈ −͵ͺ͵Ͷ.Ͳͺ͵ [��] Ͳ.ͻͻʹͻͳʹͲͷͳͺͲͷͻͳͺ ≈ ͵ͺͳͷ.͵ͻʹ [��] 

 
Note that we have used the nominal semi-major axis, as ܽாெ = ͵ͺͶͶͲͲ [��], in order to 
dimensionalize these coordinates (so using values in Table 1), but still referring to the 
origin of the reference frame (centre of mass of the co-rotating system). 

Comment on the “non-dimensional” system 

Almost the entire investigation has been performed adopting a non-dimensional 
reference system, where in Section 2.1.1 and Section 4.1.1 we have introduced the 
transformations for space, time and mass. In order to have more insights in the physical 
meaning of such analysis, here we can simply define each unit-value respect to the 
numerical ones found within this report, thus adopting the following transformations 

{ͳ [�����] ≅ ʹ. ∙ ͳͲ−ଽ [−]                     ͳ [���on�] ؝ ாܶெߨʹ ≅ ʹ.ʹ ∙ ͳͲ− [−]    ୧୲  ୭୪୪୭୵ୱ→          ͳ[��/�] ≅ Ͳ.ͻͳ [−] (A-2) 

ͳ [��] ≅  ͳ.ͷͶ ∙ ͳͲ−ଶହ[−]             ୧୲  ୭୪୪୭୵ୱ→             ͳ[M�] ≅ Ͳ.ͳͷͻ ∙ ͳͲ−ଶସ [−] (A-3) 

 
with the energy is defined in MJ (millions of Joule) and the Moon orbital period around 
the Earth has been approximated to  ாܶெ ≅ ʹ͵Ͳͷͻͷ [�]. (NASA, 2016) 

PS: physical shooting velocity is not directly related to the previous relation, since the 
system adopted is synodic (so co-rotating), as also for the Pulsating frame, where the 
situation becomes even more complex. This work focuses mainly on the investigation of 
the general dynamical model, nonetheless such aspects needs to be taken into account for 
real space mission designs or in particular for the transfer trajectories’ optimization.  

At this point, as conclusions, we present some main values used (e.g., thresholds) in the 
numerical computation, while others have been already discussed within the main text. 
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Parameters adopted for all main simulations 
For what has been previously shown, we have decided to adopt specific thresholds in the 
numerical computation as trade between computational restrictions (e.g., the Matlab 
numerical precision) and limitations from the physical dynamics (e.g., physical units). 
We refer once again to (Vallado & McClain, 1997) for more accurate information, in 
particular on practical aspects related to common space missions, while here we simply 
list main values adopted, in comparison to similar simulations found in literature. Within 
the report the reader can found description and use of each one of these parameters, 
while their corresponding dimensional value can be computed using Eq. (A-2). 

Table 14: Main parameters used for the numerical computation in both CR3BP and ER3BP 
are here shown, meanwhile their “dimensional values” can be computed using Eq. (A-2). 

 [−] ۺ ܜ܉ ܍ܝܔ܉� [−] ۺ ܜ܉ ܍ܝܔ܉� ܚ܍ܜ܍ܕ܉ܚ܉� 
Circular Problem: 

Distance members 
on ̂ݖ̂ݔ-plane  ȟ�୶ ߛ ∙ ͳͲ−ଷ ߛ ∙ ͳͲ−ଷ 

Displacement of 
velocity on ̂ݖ̂ݔ-plane ȟ ௫ܸ௭ ͳͲ−ͳʹ ͳͲ−ͳʹ 
Displacement of 
position ݕ ȟܻ ͳͲ−ͳʹ ͳͲ−ͳʹ 
Max number of 
iterations ܰ௧ெ 20 20 

Elliptic Problem: 

Eccentricity  
step-size  ȟ݁ ͳͲ−ସ ͳͲ−ସ 
Displacement of 
velocity on ̂ݖ̂ݔ-plane ȟ ௫ܸ௭ ͳͲ−ͳͲ ͳͲ−ͳͲ 
Displacement of 
position ݕ ȟܻ ͳͲ−ͳͲ ͳͲ−ͳͲ 
Max number of 
iterations ܰ௧ெ 50 50 

 

FINAL COMMENT:  
In (Hao Peng & Xu, 2014) the accuracy condition involves at the same time both 
displacement terms, such that 

�o�a� D����a����n� = √ȟܻଶ + ȟܸݖݔʹ ≡ √ȟܻଶ + ȟܸʹݔ + ȟܸʹݖ  (A-4) 

 
On the first crossing the threshold has been fixed at ͳͲ−ଽ, adopting a relative tolerance in 
the numerical integration (MATLAB function ode45) as ͵ ∙ ͳͲ−ଵସ. Later, in (H. Peng & 
Xu, 2015a, 2015b, 2015c) this value has been reduced to ͳͲ−ଵ, in total agreement with 
the one used in this work for the elliptic case. Last remark is related to a much stricter 
threshold here used for the Circular problem, where the convergence of the DC-algorithm 
has been not so problematic, as discussed in Section 4.4.2. Unfortunately, in other 
literature cited (mostly related to periodic solutions for the ER3BP) there are not always 
enough data on main settings or methodologies, thus not very suitable for a comparison. 
A more detailed discussion on numerical integrations has been provided in Appendix-B. 
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MATLAB Software 

 Environment and Settings 
 

In this Appendix-B, we provide a concise survey on numerical aspects of this work, in 
particular based on MATLAB software environment (version R2015b). Main critical 
element in our investigation is indeed related to the “integration accuracy”, and 
consequently the choice of an efficient numerical integrator is fundamental for all our 
purposes. All thresholds and physical aspects related have been analysed in Appendix-A, 
while for further technicalities the reader is referred to general literature on numerical 

methods. Example is (Quarteroni, Sacco, & Saleri, 2000) and above all, in (Shampine & 
Reichelt, 1997), an extensive comparison has been given about “programs for solving 
ordinary differential equations in Matlab”, reference point for the following discussion. 

MATLAB (MATrix LABoratory) uses floating-point numbers, having a finite precision 
given by ͳ significant decimal digits and an effective range between ͳͲ−ଷ଼ and ͳͲ+ଷ଼, 
where the ߳-Matlab41 is given as ߳ଵ ≈ ʹ.ʹʹ ∙ ͳͲ−ଵ at ͳ (MathWorks, 2013). In a physical 
world, in particular for real space missions, this value can be consider as completely 
‘negligible’ (nanometre scale for the Earth-Moon CR3BP), while can be really important 
for integration on long periods, as also for stability assessment. A summary on numerical 
integrators schemes has been given in Chapter 6 of the Literature Study and is not the 
purpose here, thus we will only discuss some settings related to this “Matlab ode suite”.  

MATLAB ode suite: the “ode113”. 
Since considering orbits mostly near L-points and far from gravitational singularities, the 
numerical analysis has shown great robustness. Furthermore, for non-stiff problems 
Matlab ode suite allows using three functions as “ode23”, “ode45” and “ode 113”, 
respectively for a low, medium and high accuracy. In the very initial phase of this Master 
work, a choice has been made for using the ode113, which is a variable-step  integrator, 
variable order (VSVO) Adams-Bashforth-Moulton PECE solver of orders from 1 to 12 
(Shampine & Reichelt, 1997). As stated in their paper, “compared to ode45, the ode113 
solver is better at solving problems with stringent error tolerances. A common situation 

where ode113 excels is in orbital dynamics problems, where the solution curve is smooth 

and requires high accuracy”.  

                                                           

41 Note that with ߳-Matlab we refer to the “Floating-point relative accuracy”, meaning that the 
distance between � = ͳ and the next larger double-precision number will be given as  ϵଵ. The latter 
for single-precision is given as  ߳ଵ௦ = ʹ−ଶଷ, while for double-precision is  ߳ଵௗ = ʹ−ହଶ. 
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The integrator selected is able indeed to define an error threshold, based on both the 
“Relative” and the “Absolute” tolerance, well described in (MathWorks, 2013) as  

I. Relative error-tolerance “RelTol”.   
“It measures the error relative to the magnitude of each solution component. 

Roughly speaking, it controls the number of correct digits in all solution 

components, except those smaller than “AbsTol”. 
II. Absolute error-tolerance “AbsTol”.   

“It is a threshold below which the value of the solution becomes unimportant. If 

the solution |ࢄሺݐሻ| is smaller than “AbsTol”, then the solver does not need to 
obtain any correct digits in |ࢄሺݐሻ|”. 

Thus, to be considered successful, each step ݐ must have an accetable error "���", so that ‖���ሺݐሻ‖  �a�ሺ����o� ∙ ,|ሻݐሺࢄ| A���o�ሺݐሻሻ (B-1) 

 
with ࢄ =  ሻ state-vector of the differential system integrated. Clearly conditions onݐሺࢄ
AbsTol are taken into account only for very small values of |ࢄሺݐሻ|, thus final choice has 
been made in relation to non-dimensional units, such that 

ܔܗ�ܔ܍�} = ͳͲͲ ∙ ߳ଵ �ܔܗ�ܛ܊ = ͳͲ−ଶସ     (B-2) 

 
with ߳ଵpreviously defined as epsilon-Matlab, where RelTol in Eq. (B-2) has been actually 
set to the lower boundary admitted by Matlab ode-functions. The latter is justified by the 
fact that the integration period T necessary for the Differential Correction algorithm (or 
the propagation of the STM) is relatively small (Chapter 3). In fact, the maximum T has 
been found for H-Lyapunov orbits at L1, approximatively equal to 6.77 in non-
dimensional time units. As consequence, such strict constraint is balanced by a short 
integration time, so leading to an overall efficient and precise computation. Moreover, 
the accurate numerical integration is an aspect fundamental for lowering the threshold 
used for the “periodicity conditions” described in Section 2.4.2. 

NOTE: previous values has been based on a trial-and-error procedure, so balancing 
computational time with accuracy, thus defining most suitable thresholds and later 
comparing settings with a more general literature previously mentioned.  

Unstable dynamics of the Restricted Three-Body Problem 
Last step is to explain few major problematics relative to the integration and stability 
assessment of periodic (or quasi-periodic) solutions. In this work we have been focused 
principally on first-order stability (linear stability) and relative bifurcations, while in real 
space mission stability needs to be verified differently, for example based on Poincaré 
Mapping (Teschl, 2012), as also considering additional perturbations (Section 2.1.3.1). 
Moreover, there exists always a small error within the shooting conditions of periodic 
solutions, where the Differential Correction converges only once the threshold has been 
reached. When assuming very small uncertainties (in the limit of Matlab precision), the 
displacement initially follows the dynamics of the linearized system, in agreement with 
the entire discussion on stability given with Sections 2.2.2 (CR3BP) and 4.2.2 (ER3BP).  



A p p e n d i x - B  | 137 

Clearly, once the error has grown too much, the first-order stability is no more a valid 
model and non-linear effects arise. In order to verify the validity of linear stability for our 
discussion, we have selected three member within the Halo family at L2 (Earth-Moon 
system), nominally 2-unstable, 1-unstable and 0-unstable, as shown in Table 15. 

Table 15: Three periodic solutions selected from the Halo family at L2 (Earth-Moon system). 

Different orders-of-instability have been chosen and all shooting conditions {࢞, ,࢟࢜  } haveࢠ

been shown together with the largest eigenvalue’s module |ࢄࡹࣅ| and the orbital period T.  ܚ܍܊ܕ܍ۻ #ૢ # # ࢘ࢋࢊ࢘ࡻ �.    ࢞ ͳ.ͲͲͻͳ͵ͳͻͲͳͺͻʹͻͶ Ͳ.ͻͻʹͷͺͺͷͺʹͶͻͲͳ Ͳ.ͻͻʹ͵͵ʹͳͻͺͷͷʹ ࢟࢜    Ͳ.ͷͶͳͷʹͻͶͶ͵ͷͻͺ͵    Ͳ.ͺͶͻͻͺͲͷͻͶͲ͵Ͷͷͺ    Ͳ.ͺͻͳ͵͵ͺͷͷͻʹͻͳʹ ࢠ    Ͳ.Ͳ͵͵ͳͶͷͲͳͺͺͳͶͶͳ    Ͳ.ͲͶͷͳͻͶͳͲͲͻʹͺͷ    Ͳ.ͲͶͶ͵ͻͲͷͳͲͳͲ |ࢄࡹࣅ  | ʹʹ.ͳ͵ͺͳͳͻͷͶʹͻͺ͵ͻ ͳ.͵ͷ͵ͶͲʹʹ͵ͻͶʹͳͶʹ ͳ.ͲͲͲͲͲͲͲͲͲͲʹ͵͵ͻ ࢀ[× �] ~Ͳ.Ͷ͵ͻͲ ~Ͳ.͵ͻͺ ~Ͳ.͵ͺ͵ 

 
Note that last two orbits have been taken really close (respectively member #1041 and 
#1044) having a relative distance on the ̂ݖ̂ݔ-plane as [ȟݔ, ȟݖ] ≈ [ʹ.ͳͳ, Ͷ.ͷ] ∙ ͳͲ−ସ and 
consequently around [ͺͳ, ͳͷ] km. These three orbits have been numerically integrated 
with similar setting for roughly 5 years, equivalent to around 60 system revolutions 
(Moon around the Earth) or respectively almost 137, 158, 159 orbital revolutions. In the 
following Figure 90, the graphical results have been shown with an evident trend, where 
the 0-unstable orbit seems to preserve its periodicity for the entire time-duration.  

 

Figure 90: It shows graphical results based on the comparison among different orders of 
instability, thus numerically integrating for 60 system revolutions (corresponding to 5 years) 
the three members of the Halo family at L2 in the Earth-Moon system (synodic frame).  

Obviously, it is necessary also to provide some data in addition to these qualitative plots, 
thus in Figure 91 for each solution the periodicity error of the position ܲሺݐሻ and the 
velocity ܸሺݐሻ has been shown, both defined as follows ࡼሺݐሻ = ,ሻݐሺݔ] ,ሻݐሺݕ ሻݐሻ]்      �ሺݐሺݖ = ,ሻݐ௫ሺݒ] ,ሻݐ௬ሺݒ ்[ሻݐ௭ሺݒ  (B-3) 
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In Figure 91, we can observe the absolute error after each revolution, where ܶ is the 
orbital period of the solution, and the error is evaluated at ݐ = n ∙ ܶ  , ∀n > Ͳ ሺ�n�����ሻ. 
Trivial is to observe that for the Ͳ-unstable case, errors at the 159th revolution are around ͻ.ʹ ∙ ͳͲ−଼ and ͺ.ͳ ∙ ͳͲ−, equivalent to ~͵ͷ � in position and ~Ͳ.ͳ ��/� in velocity. For 
what concerns the real world, initial displacements could also been larger for many 
physical reasons (e.g., additional perturbations), while only purpose of this example is to 
demonstrate the robustness of the selected numerical integrator itself.  

 

Figure 91: Plot of three periodic solutions (Halo family at L2 in the Earth-Moon system) with 
three different orders-of-instability. Displacement in position (TOP), velocity (MIDDLE) and 
energy (BOTTOM) is shown over around 60 systems revolutions, as described in the text. 

From previous results, we can conclude that the divergence from a periodic behaviour is 
mostly influenced by the existence of unstable manifolds (see Section 2.2.4), and 
consequently related to the order of instability. Nonetheless, in the last two simulations, 
both members have been selected really close to each other and still outcome of the 
integration seems very different. It follows that also this linear stability plays a crucial 
role in the design of space observation missions, especially influencing station-keeping 
costs, while adjacent periodic solutions could have a very different behaviour, in response 
to the so-called “injection errors”. (Utku, Hagen, & Palmer, 2015) 

Indeed, in Figure 91 (Bottom), the energy displacement seems to be really small, where 
for first two cases it decreases when the trajectory jumps into particular solution, 
numerically more stable. This element can be seen as a confirmation of the fact that the 
numerical integration is very accurate, while the dynamics of both Circular/Elliptic 
restricted problems is highly unstable. As main consequence, such instability can leads to 
numerical complications, in particular when looking to specific closed trajectories. 
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FINAL NOTE:  
In the last plot, an additional test has been performed, involving the only known Integral 
of Motion for the Circular problem (Jacobi constant). From the moment that its value 
(calculated at the initial time) is supposed to be nominally constant along the entire 
trajectory ∀ݐ ՜ ±∞, it can be used to check the accuracy during the integration. 
Unfortunately, this necessary condition is also not sufficient, due to the fact that the 
expression given in Eq. (2-11) does not change when errors of different components 
cancel out reciprocally. Furthermore, in addition to both Closing condition and 
Eigenvalue condition, it is possible also to use this last Energy condition in order to 
assess the validity of results, only for what concerns the Circular Restricted 3-Body 
Problem. For the Elliptic Restricted 3-Body Problem it is not possible to adopt such 
additional verification to our results, even if a pseudo First Integral exists, as seen from 
Eq. (4-21). The latter has been applied indeed by (S. Campagnola et al., 2008) to define a 
sort of “Sub-regions of Motion” in opposition to forbidden regions existing within the 
circular case, divided by Hill’s surfaces of zero velocity. (Szebehely, 1967) 
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Overview of main families at 

L1/L2 in the EM-system 
 

In this Appendix-C, the overview of the overall Phase-space is given for both shooting 
conditions ሺݐ = Ͳ, ܶ/ʹ ሻ and for all three families at L1/L2 in the Earth-Moon system, in 
addition with the respective order of instability (-yellow, 1-normal line, 2-thick 

line). Main bifurcations ሺ⋄ሻ are also given, while more details have been previously 
discussed in Chapter 3 and main theoretical concepts can be found in Section 2.2. 

 

Figure 92: Illustration of the overall Phase-space of shooting conditions for all three families 
analysed in this work, referring to both L1 and L2 librations point of the Earth-Moon CR3BP. 
More details can be found in Chapter 3, while for the notation we refer to the LEGEND. 
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In the following Figure 93, two additional planes of the overall Phase-space have been 
shown (see LEGEND), while very interesting is here to observe the main phase-points 
where the Halo bifurcates from the H-Lyapunov one. The latter has been further 
examined in the following section of this Appendix-C. 

 

Figure 93: Additional plots for the Phase-space of shooting conditions for all three families 
analysed in this work, referring to L1 and L2 librations point of the Earth-Moon CR3BP. More 
details can be found in Chapter 3, while for the notation we refer to the LEGEND. 

PS: for all three planes shown before, the uncertainty area of the Horizontal family at L2, 
as found in Figure 40, has been removed due to reasons provided within Section 3.4. 
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Primary Lyapunov-bifurcation: the Halo family 
As shown in both Figure 92 and Figure 93, the Halo family arise from the first bifurcation 
in the Horizontal Lyapunov family. All discussion can be found in Chapter 3, while here 
we present at L1/L2 an analysis where the Numerical Continuation “jumps” from one 
family to another, so highlighting bifurcations in the main parameters of the analysis. 
The reader is referred again to Section 2.4 for the interpretation of all following results. 

Bifurcation shown at L1 

 

 

Figure 94: Illustration of Halo family bifurcations from the H-Lyapunov one at L1 (TOP) with 
main parameters considered in our analysis. For the interpretation we refer to Section 2.4. 
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Bifurcation shown at L2 

 

 

Figure 95: Illustration of Halo family bifurcations from the H-Lyapunov one at L2 (TOP) with 
main parameters considered in our analysis. For the interpretation we refer to Section 2.4. 

So far, bifurcations seem evident in the interruption of the “natural continuity” for each 
parameter as the J-energy or T-period. Note also that for Southern/Northern families 
there is not a really difference, while both arise in similar way due to the “Mirrored 
symmetry” (Section 2.1.2.2) respect to the ̂ݕ̂ݔ-plane. At this point, for sake of 
completeness, we present a very brief discussion on the Axial family, generated from 
the additional bifurcation found within both Lyapunov families (Horizontal/Vertical).  
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Secondary Lyapunov-bifurcation: the Axial family 
This secondary bifurcation found in both Lyapunov families is actually known in 
literature, and it is related to a new family of periodic solutions, called “Axial family”. The 
latter has been intensively studied in (Doedel et al., 2007), as also several other families 
not only restricted to L1/L2, and with many different mass-ratios up to binary systems ሺ∀ߤ  Ͳ.ͳሻ. However, this family has been not considered here, due to time-constraints of 
the Master work, and consequently only resonance orbits of the three main families have 
been studied and later extended to the Elliptic problem. In order to provide the reader a 
more complete overview, in Figure 96 an example of Axial orbits is shown, arise from 
this second bifurcation in the Horizontal Lyapunov family. We refer to the 
aforementioned paper for more details and numerical simulations. 

 

Figure 96: Illustration of the Axial family (in dark yellow) of periodic solution at L1/L2 (in 
magenta) for the Earth-Moon CR3BP (ࣆ = . ). Note their intersection (⋄) with the 
Horizontal family (in red) on the ࢠ̂̂࢞-plane, due to the Tangent Bifurcation. See Section 3.7. 

As seen in Section 3.7, this previous family has its origin in the Tangent-Bifurcation 
found within both H-Lyapunov and V-Lyapunov families, as for the Halo orbit arising 
from the first bifurcation in H-Lyapunov family. In a very similar way it is possible to 
study such new periodic solutions, thus exploiting all additional bifurcations connected 
to other families. In (Doedel et al., 2007) this has been extended indeed also to Planetary 

orbits revolving around the Primary ܯଵ or the Secondary ܯଶ, while also very distant 
orbits “surrounding” both masses have been indicated there as “Circular family”. 
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To conclude, in the next Table 16 an example of a possible classification of Lagrange 
orbits is given, similarly to what discussed in (Folta, Bosanac, Guzzetti, & Howell, 2015). 
Few classes has been defined, for example the Libration Point Orbits (here called 
Lagrange orbits), as also Resonance Orbits related to a motion bounded around the 
Secondary mass ܯଶ (here the Moon). These lasts can be found as prograde or retrograde 
depending on their direction of rotation (counter-clockwise or clockwise). Other possible 
classes that exist in the Circular Restricted 3-Body problem can be found and have been 
well described in their paper.  

Table 16: Possible organization in different classes of some families within the dynamical 
model of the Earth-Moon system; note the connection between resonance orbit orbiting the 
Secondary mass ࡹ (here the Moon), as also for the connection (due to bifurcations) of 
families existing around Lagrange points. More details can be found in (Folta et al., 2015). 

Libration Point Orbits Resonance Orbits Moon-Centred Orbits 

H-Lyapunov: ܮଵ, ,ଶܮ :ଷ ͳܮ ͳ 
(Interior and Exterior) Conics 

V-Lyapunov: ܮଵ, ,ଶܮ ,ଷܮ ,ସܮ  ହܮ
… Direct Retrograde 

Halo: ܮଵ, ,ଶܮ :ଷ Nܮ ͳ  
(Resonance) Distant Prograde 

Axial: ܮଵ, ,ଶܮ ,ଷܮ ,ସܮ  ହ … Low Progradeܮ

Butterfly: ܮଵ,  ଶ ͳ:Mܮ
(Exterior) 

 

Short Period: ܮସ,  … ହܮ

Long Period: ܮସ,   ହ N:Mܮ
(Interior and Exterior) 

Horseshoe  

 

NOTE: 
Further details have been treated in a more recent paper as (Guzzetti, Bosanac, Haapala, 
Howell, & Folta, 2016), “based upon a ‘dynamic’ catalogue of periodic and quasi-
periodic orbits within the Earth–Moon system”. However, here the only scope has been 
to provide the reader with a more general overview of the state-of-art research on some 
possible periodic motions within the model of the Circular Restricted 3-Body Problem. 
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