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“Will you understand what I’m going to tell you?..
No, you’re not going to be able to understand it.
..that’s because I don’t understand it.
Nobody does.”

-Richard P. Feynman
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Abstract

The Three Body Problem (3BP) has been one of the main celestial mechanics problems in the
past few centuries, for a long time studied by both engineers and mathematicians. Its
practical purpose is to describe the motion of three particles only under their mutual
gravitational interaction, thus it actually represents a ‘model’ of the real physical world. In
fact, it can be seen as an extension of the Two Body Problem (2BP), which solutions are well-
know and have been already employed in many space missions since the launch of Sputnik-1
in 1957, first artificial Earth satellite. Alternative formulation is given with the “restricted
problem”, assuming the mass of the third body as negligible with respect to both principal
ones. Under this assumption, justified by the small size of a general spacecraft compared to
planets or moons, the ‘unperturbed’ motion of the main masses can be described by a Kepler
solution, involving elliptic or circular bounded orbits. It follows the existence of an Elliptic
(ER3BP) and a Circular problem (CR3BP), both admitting five equilibrium points (named
Lagrange points), where a periodic orbital motion is theoretically possible. In this work three
main families of periodic solutions (here called Lagrange orbits) have been investigated in a
neighbourhood of Li1/L2, Lagrange points adopted in the last 40 years for many space
missions, e.g. for space observation and exploration purposes. The main objective here is to
study these models based on their ‘standard’ formulation, so adopting the Dynamical System
Theory for the Circular problem and later extending the entire discussion to the Elliptic one.

In the CR3BP periodic solutions have been found embedded within continuous families, also
showing different types of bifurcation. A single shooting method (Differential Correction
algorithm) and a numerical continuation scheme have been applied, starting with the
analytic approximation based on Perturbation Theory (Linstedt-Poincaré method). Indeed,
the linear stability assessment, through Variational equations (studying the so-called
Monodromy matrix), has provided large insights into dynamical proprieties of the problem.
In some cases, close members within the same family have shown a very different behaviour,
in the limit of this linear analysis, but still allowing to well-define principal bifurcations in
their continuous parameters. The analysis and all methodologies presented have been tested
on a nominal system, here the Earth-Moon-Spacecraft one, while their validity can be
trivially extended to several other restricted problems.

The ER3BP has been the second fundamental step of this work, where many additional
aspects have been presented, e.g. the loss of continuous families. Nonetheless, non-trivial
difficulties arise within the analytic approach, while many insights for the new dynamics can
be provided by an analytic approximation of such motion. In support, the numerical
approach has been able to tackle the problem, thus improving not only the analysis on linear
stability, but most important revealing the so-called “eccentricity-bifurcation”. The latter is
one of the most peculiar aspects related to the Elliptic problem, which now involves a new
time-constraint (nominally the shooting-time), and leads to two branches of solutions
(Left/Right family or Peri/Apo group) in agreement with most recent literature. A very
different behaviour has been shown between these branches, while only resonance orbits
actually survive within the ER3BP, once again highlighting the essentiality of adopting this
more complete model for an accurate real space mission design.
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Introduction

In the past decades, main interest in celestial mechanics has been given to the so-called
3-Body Problem (3BP), concerning the definition of the trajectory for three masses only
under their mutual gravitational force and subjected to Newton’s acceleration law.
However, an analytic expression of the general solution does not exist yet, as
consequence the “restricted problem” is usually being investigated, where the third mass
is assumed many orders smaller than the two principal bodies. Nonetheless, a simpler
model commonly adopted, is the 2-Body Problem (2BP), with very well-known “closed
form solutions given in terms of elementary functions” (Musielak & Quarles, 2014).

Originally, the general 3-Body Problem has been analysed and formulated in the
“Philosophiae naturalis Principia Mathematica” (simply known as Principia) published
in the 1687 by Sir. I. Newton (1642-1726). Later, following his work, the two French
mathematicians, J.B.R. D’Alember (1717-1783) and A.C. Clairaut (1713-1765), tried to
tackle the problem, as described in the memories collected with the “Histoires” of the
Académie Royale des Sciences for 1745. With L. Euler (1707-1783) and then with J.L.
Lagrange (1736-1813), two kinds of periodic solutions were respectively found: the first
named straight line (1767) and the second equilateral triangle (1772), both better known
as central configurations solutions. From that moment until the publication of “Les
M¢éthodes Nouvelles de la Mécanique Céleste” (1892) by J.H. Poincaré (1854-1912), many
attempts have been made in order to investigate solutions of this problem. Several
famous scientists have been involved, as P.S. Laplace (1749-1827), K.G.J. Jacobi (1804-
1851), G.W. Hill (1838-1914), W.R. Hamilton (1805-1865), with a great interest on the
dynamical proprieties of the simpler Restricted 3-Body Problem (R3BP).

With the advent of Poincaré, the Dynamical System Theory (DST) was founded, as mean
to provide a “geometrical view for the set of all possible states of a system” (Vazquez,
Pallé, & Rodriguez, 2010). Even if, unfortunately, its work did not provide any real
solutions, it was the ‘pivot’ of an exhaustive study of specific solutions, known as periodic
solutions. Studied by many authors as I.0. Bendixson (1861-1935), F.R. Moulton (1872-
1952), G.D. Birkhoff (1884-1944), their stability was later analysed by mathematicians as
T. Levi-Civita (1873-1941) and A.M. Lyapunov (1857-1918). Only in 1912, a solution in a
series expansion was presented by K.F. Sundman (1873-1949), which “converges very
slowly and it cannot be used for any practical applications” (Musielak & Quarles, 2014).

In the past century, different approaches (both numerical and analytical) have been
adopted, leading to many results as it will be shown steps by steps within this work. For
more historical notes the reader is referred to (Barrow-Green, 1997), while strongly
suggested is here (Szebehely, 1967), for a complete survey on the ‘restricted problem’.
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1.1 Problem formulation

The problem here investigated concerns the inspection of some periodic solutions in the
dynamical model provided by the Restricted 3-Body Problem. Based on its foretold
assumption, it is possible to well-approximate the motion of a small body (e.g., a
spacecraft or an asteroid) under the gravitational influence of the other two principal
masses. These last two are supposed to move in simple Kepler orbits, as consequence of
their expression in a general 2-Body Problem, while the third body has a negligible mass.
With this scheme, and adopting some particular reference frames, the existence of five
equilibrium points (called Lagrange or libration points) has been proved, as also the
possibility of having a bounded motion in their neighbourhood. (Szebehely, 1967)

As clarified in the next Section 1.2, main interest is related to two libration points, named
L1, L2 and by convention located here near the Secondary mass M2. Together with L3,
they are defined as collinear points (known to be linearly unstable), where two mono-
parameter families of periodic solutions arise, also denoted as Horizontal and Vertical
Lyapunov families. Moving away, additional families with a similar continuous character
can be found, e.g. the Halo family, mentioned for the first time in (Farquhar, 1968),
almost a decade after preliminary studies on “low-energy lunar transfer” based on the
3BP, performed by C.C. Conley (1933-1984) and R.P. McGehee (1943-).

First analytic results at L2 in the Earth-Moon-Spacecraft restricted problem have been
shown in (Farquhar & Kamel, 1973) using the Perturbation Theory, in particular the
Linstedt-Poincaré method. In their work they have taken into account also “non-
linearity, lunar orbit eccentricity and the Sun’s gravitational field”, as later discussed in
Section 2.1.3, while few years later a numerical extension was presented in (Breakwell,
1979), mostly focused on the determination of Halo solutions. Next milestones in the
process were the third-order analytic approximation presented in (Richardson, 1980a)
and the extensive numerical investigation performed in (Howell, 1984), based on a
numerical shooting algorithm. Both aforementioned works have been examined in the
framework of the Circular Restricted 3-Body Problem (CR3BP), where both masses (here
the Earth and the Moon) are assumed to move in circular orbits respects the centre of
mass (barycentre) of the system. Extension to a more complete dynamical model is well
represented by the Elliptic Restricted 3-Body Problem (ER3BP), where Kepler motion is
now described by ellipses around their barycentre and periodic trajectories for the third
mass are assumed to exist, mostly due to the ‘periodic character’ of main variations
within the gravitational field. (Szebehely, 1967)

Both CR3BP and ER3BP are indeed only models, approximations of the more complete
‘real’ dynamics, nevertheless this full dynamics is anything but simple. It follows that the
research progress is usually easier to be achieved steps by steps, so starting with a model,
analysing it and later extending it, thus in a continuous process towards a better
approximation of the real physical world. Under this perspective, in this work the CR3BP
will be analysed, limiting the investigation to three main families of periodic orbits at the
two collinear Lagrange point (L1, L2). As discussed in Section 2.1, test-case here
considered is the Earth-Moon system, while the analysis could be easily extended to
other systems following a similar procedure. Successive step is the extension to the
ER3BP, in order to highlight differences for what is supposed to be a more complete
model, nevertheless involving a much more complex “mathematical structure”.
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1.2 Heritage of past missions

The importance of investigating periodic motion around Lagrange points is due to many
possible applications in space-observation missions, as also for communication purposes.
First spacecraft orbiting around L1 (Sun-Earth) has been the Sun/Earth Explorer 3
(ISEE-3), able to prove that such a suspension between gravitational fields is feasible
only when considering two bodies at the same time. Moreover, starting from a Halo orbit,
it entered in a Lissajous orbit around L2, after a Moon fly-by, making use of a thruster
burn. A bounded motion near these points, even if unstable, is very profitable for space
operations, in particular for solar observations, astrophysics researches or more in
general for scientific missions. Successful example is the Solar and Heliospheric
Observatory (SOHO), launched in December 1995 (Domingo, Fleck, & Poland, 1995)
within a Halo orbit at L1 (Sun-Earth) in collaboration between the National Aeronautics
and Space Administration (NASA) and the European Space Agency (ESA). In fact, it has
been able to discover around 2007 comets over the past decades, while also remarkable
are the Advanced Composition Explorer (ACE) mission by NASA, for solar research
studies, and the Deep Space Climate Observatory (DSCOVR), which is a recent space
weather satellite launched in February 2015. (Shirobokov, 2014)

Many other scientific missions can be find in the general literature as (Dunham &
Roberts, 2001), while worthy here to be mentioned is the James Webb Space Telescope
(JWST), planned to be launched in 2018 (Abraham, 2014) in a Halo orbit around the L2
point (Sun-Earth) as join project of ESA, NASA and the Canadian Space Agency (CSA).
Considering the L2-point for the Earth-Moon system, it is indeed feasible “to create
constellations that are not possible in Earth orbit, while still being able to communicate
with Earth constantly” (Rohner, 2014). As stated, for L2 in the Earth-Moon system, a
greater interest is usually related to communication purposes, initially suggested in
(Farquhar & Kamel, 1973). More recently, such aspects have been examined for the
Orbiting Low-Frequency Antennas for Radio astronomy (OLFAR) mission at L2, “where
the Moon can additionally shield the satellites from Earth-emitted interfering radio
waves” (Vermeiden, 2014).

For what concerns the L3 point, situation becomes more complex due to “severe
communication limitations” as fully explained in (Tantardini et al., 2010). Only with the
recent ESA Cosmic vision, the Evolved Laser Interferometer Space Antenna (eLISA)
mission has been selected as major candidate for a possible L3 mission (Sun-Earth), in
order to detect and study gravitation waves (Wilson, European Space, European Space, &
Technology, 2005). Nonetheless, also the triangular points L4-L5 have been not
investigated here due to their less suitability and higher costs in practical scientific
missions. Consequences related to their linear stability has been investigated in (Giorgilli
& Skokos, 1997), when considering “the Sun-Jupiter model and the Trojan asteroids in
the neighbourhood of the point L4”.

For these last two triangular equilibrium points the reader is referred to the extensive
analysis performed in (Gémez, 2001b) and later revised in (Gomez, 2001d). With a very
similar approach, more information on the collinear points here investigated, can be
found in (Gomez, 2001a), again later revised in (Gomez, 2001c). At this point we can
continue defining some fundamental Research Objectives relevant to our work.
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1.3 Research objectives and tasks

Before presenting main guidelines and tasks for this work, a brief discussion is required
in relation to “An Analytic approach to find periodic and quasi-periodic Lagrange
orbits” (Massarweh, 2015), Literature Study previously performed by the author for the
Master thesis work. Indeed, an investigation has been made on the feasibility of using
analytic techniques (as the cited Linstedt-Poincaré perturbation method) in order to
completely approximate solutions at collinear libration points. As it will be discussed in
Chapter 2 and Chapter 4, in a preliminary stage of the work, these methods have been
found as not really efficient. Furthermore, the indispensable numerical validation of
these results has contributed to the decision of considering both approaches as
complementary parts of a sole investigation. In this way, the entire procedure has shown
a very high efficiency, balancing accuracy and computation efforts, as later explained.

In this report, we will always refer to this preliminary work always as “Literature Study”,
while here we still need to establish a main scientific question and relative sub-questions,
along with main research objectives.

Main Scientific Question:

“Which are the most critical aspects that arise in the dynamics of main periodic
solutions at L1/L2 Lagrange points, after extending them from the Circular Restricted
3-Body Problem to the Elliptic problem?”

Sub-Questions:

I.  How it is possible to locate and characterized families of periodic solutions in the
dynamics of the CR3BP? Are there limitations or particular behaviours
associated to this class of solutions?

II. How is it possible to investigate bifurcations within each previously generated
family? Are they fundamental for assessing the linear stability of these particular
bounded trajectories?

III.  How can the so-called “elliptical perturbations” change the dynamics? What are
the principal consequences of considering the Elliptic problem?

IV. Do periodic solutions survive when considering the Elliptic problem and what
are the main conditions for their extension in such a new advanced model?

V.  Are there practical advantages of considering this more complex model? Which
main strategies allow retrieving useful insights into its dynamical structure and
what are their prominent limitations?

Research Objectives:

i.  Develop a general procedure in order to completely analyse some main families of
periodic solutions near collinear L-points (here Li and L2), thus exploiting
proprieties like linear stability and some possible bifurcations.

ii.  Investigate the principal aspects of the Elliptic Restricted 3-Body Problem, in this
way highlighting differences respect to the simpler Circular problem.

iii.  Assess to what extent the new model provides a better approximation of the real
physical world, thus examining some major consequences when its different
dynamics is omitted.
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1.4 Content and structure of this report

The structure for this Master report has been illustrated in Figure 1, based on major
subsequent blocks. As mentioned, first we will investigate the Circular problem (CR3BP)
in Chapter 2, where an introduction to the problem and its proprieties is given. Within
the same chapter, the Dynamical System Theory is presented, later discussing two main
approaches (respectively analytical and numerical) as complementary parts of this
analysis. In Chapter 3, results will be shown for both L1 and L2 Lagrange points of the
Earth-Moon systems (selected in all simulations), thus taking into account three main
families of periodic solutions: both Horizontal/Vertical Lyapunov families and the Halo
one. For all these six cases, the possible existence of few main resonance orbits will be
discussed. It follows an extension to the Elliptic problem (ER3BP) in Chapter 4, in a very
analogous way as shown for the CR3BP, while main results will be presented in Chapter 5
in relation to some resonance solutions previously found. Second part involves a
comparison between both models, mostly based on their linear stability, while at the very
end conclusions and recommendations for future work are summarized in Chapter 6.

Figure 1: Workflow diagram of the content and structure of this Master thesis report. In
orange colour the two chapters related to the description of main analyses and methodologies
for both two models (Circular and Elliptical). In green all chapters relative to results and last,
in red the final chapter related to the conclusions. See text for more details and information.

NOTE:
Appendices-A/B/C follows the main structure, as supplements for this Master work.
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CR3BP: Analysis and Methods

In this Chapter 2 we consider the Circular Restricted 3-Body Problem (CR3BP). First, in
Section 2.1 we present some main aspects of the dynamical model, with a brief overview
of its proprieties and the choice of a “test-case”, later adopted in all simulations. Thus, in
Section 2.2, the Dynamical System Theory (DST) is introduced for this circular case,
using concepts from Floquet Theory in order to investigate linear stability and possible
bifurcations in certain families of periodic solutions. After this analysis, Sections 2.3-2.4
will illustrate two different methodologies (the first Analytic and the second Numeric)
that could be considered as complementary parts of an exhaustive investigation of the
problem introduced here.

2.1 Introduction to the Circular problem

The Circular problem is an approximation of a more general model given by the so-called
3-Body Problem (3BP), originally formulated by Sir I. Newton (1642-1727) in his
“Principia”, concerning the motion in space of three bodies P;, P,, P; exclusively under
their mutual gravitational attraction and subjected to Newton’s gravitational law. This
general model has been simplified considering the mass of the third body as negligible
respect to the other two, and consequently the motion of P; does not affect the mutual
interaction between P; and P, bodies (henceforth defined as Primary and Secondary).
(Musielak & Quarles, 2014)

Under this last assumption, we refer to the Restricted 3-Body Problem (R3BP), fully
justified by the fact that in most of real space missions the mass of the spacecraft is many
orders of magnitude smaller than planets or other celestial bodies involved in the system
(Szebehely, 1967). Consequently, the motion of P, P, is given by the Kepler solution to
the general 2-Body Problem (2BP), where their relative distance r can be defined as

a-(1-e?)

- 1+ e-cos(0) D

r

with a semi-major axis of the orbit, e eccentricity and 6 phase between both principal
masses in some specific reference frames. All basics aspects related to this motion have
been fully discussed within the previous Literature Study, and are also well-known in
common literature, so we refer the reader to main textbooks as (Szebehely, 1967),
(Marchal, 1990) and (Barrow-Green, 1997).
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A very interesting outcome of such motion is related to the existence of different models,
depending on the eccentricity value e, thus leading to four possible formulations:

e Circular problem for e=0
e Elliptic problem for e € (0,1)
e Parabolic problem for e =1
e Hyperbolic problem for e > 1

As discussed in Chapter 1, in this work we consider always a bounded motion between
principal masses and so we restrict the analysis to the case e < 1, while the model e > 1
is not treated. Due to the continuous nature of this small positive parameter e, many
observations on these last two cases could directly follow from our investigation, but it is
important to proceed gradually, starting with the simpler model: the Circular case.

2.1.1 Dynamical model and reference frame

The dynamics of the Circular Restricted 3-Body Problem has been originally studied in
(Euler, 1767), making use of a synodic reference frame with the origin fixed in the centre
of mass of the system and uniformly co-rotating with both masses. The latter is clearly a
non-inertial reference frame, therefore the dynamics of P; is subject to both the
gravitational acceleration by P, P, and all additional “inertial accelerations”, such that

d’R d?Ry, dR dw
—_—= -2 —_— R) ——XR (2-2)
dt? dt? w X dt ® X (@ X R) dt %

where R = [x,y, z] is the P; position vector (the third mass-less body) in this new frame,
Rin = [Xin, Yin, Zin] refers to the inertial frame, t is the system’s time and w = [n, 0,0] is
the angular velocity of the system (here the same of the Kepler mean motion n). In the
following Figure 2 we can observe the system with the convention of having the larger
mass (the Primary) always on the negative side of the rotating x-axis (known as Syzygy).

Figure 2: Inertial in red {X;,¥,,Z,} and synodic co-rotating in magenta {%, 7,2} reference frame
for the Earth-Moon-Satellite Circular Restricted 3-Body Problem.



Introduction to the Circular problem |9

First three terms in Eq. (2-2) are respectively the contribution of Gravitational, Coriolis
and Centrifugal accelerations, while the last term is zero for the circular case, due to the
fact that the synodic frame is rotating with an uniform velocity (mean motion n), so

N G(M1+M2)= U1+ Uy _ ’/’LTOT
a - a a

such that G is the univesal gravitational parameter, M; is the mass of each principal body
and y; the product of both these previous quantities. The position of the two masses is
completely fixed in this new frame and the dynamics of P; can be fully defined by three
second-order non-linear differential equations (see Literature Study), such that

(2-3)

d?x Tix Tox dy

PZ—Hl?—MZE-FZTLE-an

d?y Ty T2y dx

AR L B Pl 2-4
acz Mg TR T g Y 4
d’z_  mp Ty

dt? ‘ulrf H2 Ty

with ry, 7, as scalar distances from the Primary and Secondary body, and their subscripts
referring to each projection on reference axes. As common in literature, the non-
dimensional form is given, where time, space and mass have been adimensionalize as

e SPACE [km]: a=1
o MASS [kg]: MTOT = Ml + MZ =1
e TIME [1/s]: w=n=1

leading to G/w? = 1 and with a main orbital period given as T = 2m. (Szebehely, 1967)
The final non-dimensional form, once defining 4 = M, /M7, is given below

x+p) (x+p-1)

9.6'—2_’)'/=x—(1—ﬂ) 3 U 3
£} )

o 1 1

y+2x=y-(1-1-pw=5-us3 (2-5)
£} P

P (D

3 S

r =+ @)% +y? + 22 (2-6)

r=yJ@+u—12+y? +22

while from the previous adimensionalization it follows that P;, P, are located respectively
at x; = —u,x, = 1 — p on the x-axis (see Figure 2). By convention, the Primary has been
placed on the negative x-axis, allowing to consider a range for the mass-ratio parameter
as u € [0,0.5]. Boundary cases for u =0 (Restricted 2-Body Problem) or for u = 0.5
(known also as Copenhagen problem) are here not considered, since they present only
particular situations that are not very relevant for a realistic space mission’s orbit design.
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2.1.2 Lagrange points and existing symmetries

The dynamics described by Eq.(2-5) fully defines the P; motion within the synodic frame,
and for a specific initial condition there is a unique trajectory, as it will be explained in
Section 2.2.1. Furthermore, there are particular points where all forces balance each
other allowing P; maintaining unperturbed its position for any time t > 0 arbitrarily
large. Two classes for these five equilibrium points (sometimes called libration points)
can be found, all located within the £j-plane (sometimes referred as ecliptic plane) for
z =0 and described in (Musielak & Quarles, 2014) as follows:

1.

The Collinear points L;, L,, L3 discoved by L. Euler (1707-1783) in 1767 with the
“De moto rectilineo trium corporum se mutuo attrahentium”. They are located
along the syzygy direction, and are defined by

(x+w) +p=-1)
x+ul? Flxru—1p

x—(1-p) 0 vy =0 (2-7)

The Equilateral points L,, Ls discovered later by J.L. Lagrange (1736-1813) in
1772 with the “Essai sur le probléme des trois corps”. They are located at the
vertex of an equilateral triangle connected to both main masses, and defined by

( x + x+u—1

jx_(l_ )( r13#)_#( 7‘1':3 ) o

|1_(1_“)_£ ; Vy #0 (2-8)
k N r

A graphical example of this distribution for all libration points (also known as Lagrange
points or L-points) is given in Figure 3, relative to the Earth-Moon Circular problem.
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Figure 3: Location in the co-rotating synodic frame {%,7,2} of all five libration points within
the xy-plane for the Earth-Moon Circular problem. The size of masses has been enlarged [x 4].

Note that L-points still exist in the original inertial frame, moving all together with P1
and P2, while their proper definition holds only within the synodic frame, where the
location is totally fixed by the mass-ratio p-value, along with many other proprieties.
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The two equilateral points can be computed by solving analytically Eq. (2-8), and their
linear stability has been intensively studied in the CR3BP by many authors, e.g. (Murray,
1999), leading to the definition of the “Routh value” for uy =~ 0.03852, “value at which
linear unstability is reached” (Sicardy, 2010). As discussed before, these two locations
are less suitable for practical space observation missions due to the higher energy
required in order to reach them, so they will not be considered in following sections.

The location of the three collinear points is fixed on the syzygy axis after numerically
solving Eq. (2-7), ‘quintic equation’ given in (Szebehely, 1967) respect to a y;-parameter
(scalar distance between the libration point and the nearest mass), so leading to

Vi FB-wyi+B-2wWyl —uyft2uy —pu=0 (2-9)

where the upper sign refers to L1 and the lower one to L2. For what concerns L3, we are
able to define its position simply solving the same ‘lower’ equation once adopting
u* =1 —pu, such that the the system is simply reversed, while keeping the convention of
having the Primary always on the negative £-axis. Collinear libration points are shown in
Figure 4 for the entire u-range [0,1], highlighting this symmetry for ux larger than 0.5 .

CR3BP: Motion Lagrange points Ll, Lz’ L,, L with p € [0,1]
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Figure 4: Location of all five libration points on the Xy-plane with a varying u-parameter
between 0 and 1. Note the symmetric behaviour respect to u = 0.5, as explained in the text.

The two limit cases, previously mentioned, are visible here where L1/L2 shrink near M2
when u — 0 (called Hill’s Problem), while L3 is exactly in opposition to M2 respect to M1
(so on the negative x-axis). Symmetric distribution is given for u — 0.5, since L1 exists at
the barycentre of this almost perfect binary configuration, while both L2 and L3 would be
symmetrically located along the syzygy direction. (Szebehely, 1967)
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2.1.2.1 Integral of motion: the Jacobi constant

Before presenting main symmetries in the equations of motion, a very brief note has to
be discussed in relation of the so-called Jacobi constant, the only existing Integral of
Motion determined by (Jacobi, 1836) and later used in (G. W. Hill, 1886) to “determine
the motion of an asteroid in the three-body problem and to introduce the so-called zero
velocity curves (ZVC), which establish regions in space where the bodies are allowed to
move” (Musielak & Quarles, 2014).

The previous can be simply illustrated by considering the existence of a potential
function Q = Q(x, y, z), such that Eq. (2-5) is reduced to a more compact form as

-2y =0,
j} + 2x = Q’y (2-10)
i=Q,

with the subscript referring to each first partial derivatives (so each component of the
gradient V-operator). After few manipulations well-known in common literature, we have

xZ+y? 1-
C;=20-V*=2 zy + r“+rﬂ—(5c2+y2+z‘2) (2-11)
1 2

where the Jacobi constant C; (non-dimensional) is totally defined by the initial condition.
Most of this theory has been covered by several authors and is well documented in
general textbooks, as listed before, while a very remarkable aspect here is the relation of
the C; with the physical energy of the system.

In fact, as detailed in (Szebehely, 1967), the Jacobi constant can be seen as twice the P3
total energy !, where for the Restricted problem the most correct assumption is that
ms < My, M,. Often misleading in literature is the assumption that m; = 0, while Eq.(2-2)
actually requires to divide both terms by the non-zero P3 mass. Furthermore, the energy
conservation that holds for the general 3-Body Problem is consequently here also
approximated by this “uncoupling nature” of the Restricted problem, thus justifying the
possibility of considering P1/P2 in a Kepler motion (also conservative). As described in
the cited paper, the Jacobi integral “is not an expression of the conservation of energy”
and “it should be simply regarded as an integral of the differential equations of the
restricted problem”.2

On this point we will come back once talking about the Non-Existence of First Integrals
for elliptic case (Section 4.1.4), while now we can proceed exploiting symmetries of the
Circular problem, above the one already discussed and related to the u-parameter. In
fact, the latter will be fixed for all our simulations (defined by the Earth-Moon system),
as later discussed in Section 2.1.3.

1 The Jacobi constant can be expressed also in an inertial frame, and this was exactly the case
originally published in (Jacobi, 1836), even if, according to (Wintner, 1941), he has been the one
“re-discovering the synodic frame”.

2 For sake of completeness we have to point out that commonly in literature the Jacobi integral
includes also a constant term as (1 — p)/2, not used in this work. The latter does not affect the
equations of motion but was only used to obtain a different expression for C;. (Szebehely, 1967).
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2.1.2.2 Symmetries in the equations of motion

The differential system in Eq. (2-5) can provide many insights into this dynamical model,
especially when considering all the existing symmetries in the equations of motion.
In (Miele, 1960), the author presents two theorems, which can be summarized as follow:

Theorem 1.1 (The Irreversibility Theorem)
“If a trajectory is physically possible in the xyz-space, the reverse trajectory is not
physically possible”.

Theorem 1.2 (The Theorem of Image Trajectory)

“If a trajectory is physically possible in the xyz-space, three image trajectories are
physically possible:

a) The image with respect to the xy-plane, flown in the same sense of the original
trajectory.

b) The image with respect to the xz-plane, flown in the opposite sense.

¢) The image with respect to the x-axis, flown in the opposite sense. ”

The model adopted for both theorems is once again the CR3BP, in particular the Earth-
Moon system, while his results are evidently valid for any other systems, therefore for
any constant p-values. Both theorems refer to synodic coordinates, where it has been
shown in the previous Literature Study that the Lagrangian can be expressed as

(2-12)

E—=y)P+@+x)? [1-u u
Lror = =
kot 2 +[ 1 +r2

If considering the Irreversibility Theorem we refer to the “reverse trajectory” as the path
followed after a time-transformation as t* — —t. Consequently it is trivial to observe that
the Lagrangian is not invariant under such transformation (Wintner, 1941), and the
reverse trajectory cannot exists. In fact, for a general coordinate q = q(t), we have that

d_q _ dq _ _d_q it follows that d_q ~ dq (2_13)
dt d(—t) dt* dt = dt*

and velocity terms are not more equivalent to previous ones, as also for the value of Lp(7.

The Theorem of Image Trajectory is fundamental for the study of periodic motion in the
neighbourhood of collinear libration points, as also reviewed in (Miele, 2010) for the 50t
anniversary of the original theorem. Starting with Eq. (2-5), two main transformations
can be found, here denoted as Mirrored and Backward transformation.

MIRRORED TRANSFORMATION:
z' > —z (2-14)
BACKWARD TRANSFORMATION:

y' o -y, tto -t (2-15)
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Both previous transformations are described in point “a” and “b” of Theorem 1.2 and
from the moment that they are not mutually exclusive, it is possible to combine both in a
third type, defined as Backward Mirrored, indeed symmetric respect to the £-axis.

BACKWARD MIRRORED TRANSFORMATION:
y* o —y, z¥ > —z t* - —t (2-16)

In fact, point “c” of the Theorem 1.2 refers exactly to this last type of symmetry at the
same time respect to both the XZ-plane and x£j-plane, consequently respect to the X-axis.

Once again, from Eq. (2-12) the expression of the Lagrangian in synodic coordinates
confirms all these proprieties, which the reader could prove simply applying the given
transformations on the full differential system shown in Eq. (2-5). The application of all
symmetries will be discussed later. In Figure 5 an example of the three “image
trajectories” has been presented starting from a nominal one, integrated numerically for
a certain time in the Earth-Moon CR3BP, where also initial conditions (" ¢ ") have been
changed according to each proper transformation, so assuring consistency in results.

CR3BP: "Theorem of Image Trajectories''. CR3BP: "Theorem of Image Trajectories''.

[— Original (t — +t,y — +y)
—— Mirrored (z — -z)
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Figure 5: Main three symmetries for the Earth-Moon Circular Restricted 3-Body Problem
given in synodic coordinates. The masses’ size has been enlarged [x 8] for graphical reasons.
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2.1.3 TEST-CASE: the Earth-Moon system

So far, main basic proprieties have been shown for the general Circular problem (CR3BP)
and later they will be employed for the analysis of certain families of periodic solutions
near collinear Lagrange points. What has been analysed in this work is a “model”, later
extended and compared with a more complete one, once considering the Elliptic problem
(ER3BP). Unfortunately, the real physical world involves a dynamics much more
complex and for a realistic mission’s design it is absolutely necessary to take into account
all different perturbations acting on the system. (Lynch, 2001)

Despite this last consideration, one of the main purposes here is the investigation and
comparison of two basic models, commonly adopted for studies in many space-related
fields (e.g., interplanetary transfers, space observation missions, etc....). Both these
models represent already a revision and upgrade of older theories, for example the very
well-known 2-Body Problem with its several proprieties and solutions, successfully
employed for decades in hundreds of space missions. (Szebehely, 1967)

For all the mentioned reasons, we feel the necessity to underline again that the
investigation presented in this paper has not to be treated as an attempt to design or
neither to optimize a real specific space mission, but it can be seen more as a “theoretical
pivot”, necessary step for improving the current knowledge on a problem that “has
attracted the attention of many scientists for more than 300 years” (Musielak &
Quarles, 2014). Furthermore, a very broad analysis for various p-parameters on the
entire range is not really suitable and some boundary cases will be physically worthless.
In fact, in the Solar system most of known mass-ratios are confined within certain limits,
and in addition to this, none of such binary systems discovered “has been yet visited by a
spacecraft” (Bosanac, Howell, & Fischbach, 2015).

Here the decision of fixing the u-value and to consider a specific three body system,
adopted later also for the Elliptic problem. Our analysis will aim to create a “robust
procedure” for the investigation of particular solutions in the general CR3BP and later in
the ER3BP. The same could also be applied to different u-values, in this way studying
different physical systems as well as binary ones (e.g., binary stars/asteroid or double
planets), recently arising much more interest among scientists and researchers.3

Hence, we will consider the Earth-Moon system as the nominal one, modelling its
dynamics as a perfect Circular Restricted 3-Body Problem, thus focusing on the
investigation of periodic motion near both libration points L1 and L2. As discussed in
Section 1.2, for the L3-point there are currently only few “mission concepts designed to
detect and accurately measure gravitational waves“ (Mueller, 2014), while several
dynamical aspects of periodic motion at L3 have been already studied in (Barrabés &
Ollé, 2006). Additional reason for the exclusion of L3 is due to the fact that, at the time of
writing, no space mission is active or has been confirmed; beside that, many other
complications arise at L3 for its application in real space scientific missions, as
adequately documented in (Tantardini et al., 2010). At this point we can proceed
providing some numerical data and further discussing the ‘real’ Earth-Moon system.

3 Worthy to be mentioned are some recent researches performed at Delft University of Technology
detailed in (J. Feng, Noomen, Yuan, & Ambrosius, 2014), (J. L. Feng, Noomen, Visser, & Yuan,
2015), (J. Feng, Noomen, & Yuan, 2015) and (J. Feng, Noomen, Visser, & Yuan, 2016), concerning
an extensive research over different types of periodic motion in a contact binary asteroid system.
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2.1.3.1 Additional simplifications in the Earth-Moon model

As stated at the beginning of this Chapter, the CR3BP is usually modelled considering
M1, M2 as point-masses orbiting in circular Keplerian orbits around their barycentre,
while the third mass mj; is negligible and has not influence on them. Nonetheless, in the
real physical world several other dynamical elements are present, for example the already
mentioned eccentricity. Without getting lost in the definition of all possible
“perturbations”, e.g. general relativity effects, additional bodies perturbation (IN-Body
Problem) and so on, here we are going to briefly present few principal contributors to the
real Earth-Moon system’s dynamics, and in general for many other 3-Body systems.

Figure 6: The geometry and the motion of the Earth-Moon system is shown, with a sketch of
all main reference planes involved (in purple) and relative angles (in green).

In Figure 6, an example for the Earth-Moon system is given, with relative basic geometry
and main angles, while in the following Table 1 some planetary data has been provided.

Table 1: Bulk and Orbital parameters relative to both Earth and Moon body (NASA, 2016)

| Units | Earth | Moon
Bulk Parameters
Mass 10%* kg 5.9724 0.07346
Equatorial Radius km 6378.1 1737.4
Polar Radius km 6356.8 1736.0
J2-term 10°¢ 1082.63 202.7
Orbital Parameters
Semi-major axis 10° km 149.60 0.3844
Eccentricity — 0.0167 0.0549

Once taking into consideration a more realist model for the Earth-Moon system, it is
possible to summarize most important additional forces in three main contributors:

e The barycentre of the entire EM-system is revolving around the Sun in a not
perfect circular orbit (e = 0.0167), making the system not inertial anymore.

e Both masses are not exactly spheres, but they can be described as oblate
spheroids, so the gravitational potential will include additional terms, based on
two types known as Zonal and Tesseral harmonics (Cunningham, 1970).

e The Sun generates a solar radiation pressure, which could affect not only the
motion of the spacecraft, but also the entire CR3BP dynamics, as for example the
location itself of equilibrium points. (Simo & McInnes, 2009)
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The effects of the Moon on the Sun-Earth circular problem has been numerically studied
in (Farquhar, 1970), showing a shift in the location of L2 of around 300 km, where “the
maximum distance to the perturbed path is about 20 km”. For what concerns our EM-
model, in Section 1.9 from (Szebehely, 1967) many different perturbations has been
presented, as also for the Moon effect on the Earth motion compared to the probe one
(around 16 orders of magnitude smaller). The latter totally justifies the possibility of
adopting the “restricted problem”, while neglecting one of the two main masses can have
much larger effects depending on the relative P3-position.

Many models have been proposed in the past decades for what can be seen as a
Restricted 4-Body Problem, having the Sun-Earth-Moon-Satellite system. In this system
some periodic solutions has been study originally by (Cronin, Richards, & Russell, 1964)
where the model has been “regarded as a perturbation of the R3BP”. Very extensive
investigation was later made by (K. Hill, Lo, & Born, 2006), showing that “in the four-
body problem, there are no longer any periodic solutions because the same positions of
the primaries do not repeat within any reasonable length of time. Instead, trajectories
must be computed that are fairly close to periodic, at least for the time interval desired”.

Moon

Earth-Moon
Barycenter

Sun-Earth/Moon
Barycenter

Figure 7: Geometry of the inclined Inertial Bi-circular Model by courtesy of (K. Hill et al.,
2006). For the notation adopted and more details on the model used, we refer to their paper.

For sake of completeness, here in Figure 7 we have provided the sketch of the more
correct and complete inclined Inertial Bi-circular Model adopted in (K. Hill et al., 2006).
All details can be found in their paper, where the inclination between planes (in Figure
6), has been taken into account also with Solar Radiation Pressure (SRP) effects.

As results of that analysis, some consequences on the orbit determination error by
LiAISON4 (Linked Autonomous Interplanetary Satellite Orbit Navigation) have been
summarized as roughly 3% for the Sun’s gravity and 1% due to the relative inclination
w.r.t. the ecliptic plane, while the SRP “does not seem to effect the dynamics enough to
cause an increase in the orbit determination error” (K. Hill et al., 2006).

4 More Information can be found on the NASA Website, Jason Leonard, University of Colorado,
Boulder, 2013. https://www.nasa.gov/spacetech/strg/2013 nstrf leonard.html#.V5iBArhg6hc
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All mentioned aspects are very significant and necessary to further improve the
dynamical model, as suggested in Section 6.2 (“Recommendations for future works”).
Here, once again we only consider both Circular and Elliptic problems, in their ‘standard’
formulation and using the Earth-Moon system only as main reference model. The latter
is commonly used in some recent papers for the examination of the ER3BP and periodic
motions around libration points, in this way allowing having reliable results to be
compared with, as also in order to validate and then verify the final outcome of this work.

Last step of this systematic examination over perturbations involves an example of the
extended CR3BP dynamics, with the Primary radiating and the Secondary as an oblate
(e.g., as for the Sun-Earth system). Following the notation adopted in (Sharma, 1987) for
the planar 2D-problem and later in (Tiwary & Kushvah, 2015) for the spatial 3D-
problem, it is possible to express the motion similarly to Eq. (2-10), so leading to

X —2n,.,y = Q_Tx"
V+2n,,x = QY (2-17)
7=Q7°

with the definition of a new mean motion n,, and a new pseudo-potential function Q",
both referring to the new Radiating-Oblate Circular problem. Clearly, n,, is affected by
the oblateness of the Secondary mass, as also for its orbital period T, (here expressed in
non-dimensional units), such that we arrive at

3 (R2 — R? by definition 21
Ny = 1 +§< 65r2 p) s TTO [ — (2-18)

with r distance between the two masses (here r = a) and R, R,, respectively equatorial
and polar radii of the oblate M,. The new pseudo-potential function Q" is written as

x2+y? 1-u U 1 (R%— RZ
Q70 = n? + 1-Bl+—=|1+—=-=2L
fro ™ T [1=Fl T [ 21} < 5r2

(2-19)

with 7,7, distances previously defined in Eq. (2-6), while § = F,,4/F, is ratio between
solar radiation and gravitational attraction forces, sometimes expressed by ¢ =1 — 8,
with q as mass reduction factor, constant for a given particle. A very complete survey on
this radiation parameter 8 can be found in (Schuerman, 1980), while typical values for
spacecraft without solar sail have been computed as f ~ 1.5 X 10~ for the Sun-Earth
system when considering both L1 and L2 points. (McInnes, 2000)

More details of all these dynamical aspects can also be found in the cited papers, and
most of these researches are currently being carried out in order to improve the standard
dynamical model. For a general overview on some state-of-the-art works we suggest to
consider (Musielak & Quarles, 2014), while now we will continue the analysis relative to
the standard Circular problem (CR3BP), so introducing the Dynamical System Theory,
one of the most important concepts in this work.
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2.2 Dynamical System Theory for the circular case

The Dynamical System Theory (DST) is a field of mathematics introduced by J.H.
Poincaré (1854-1912) for studying the 3-Body Problem in “Les Methodes Nouvelles de la
Mecanique Celeste”, published between 1892-99 (Musielak & Quarles, 2014). As reported
in (Barrow-Green, 1997), “his objective was to provide a geometrical study of the
solution curves of a first-order differential equation, and indeed it was his geometrical
insight which becomes one of the hallmarks of his work on differential equations”.

All background knowledge has been covered in the Literature Study and main basic
definitions or theorems can be found in many common textbooks as (Barrow-Green,
1997), (Verhulst, 2000) and (Perko, 2001), while here we provide some theoretical key
elements for a better interpretation of all results given in Chapter 3.

2.2.1 Proprieties of “autonomous differential systems”

We start considering the Circular Restricted 3-Body Problem, defined by a system of
three second-order differential equations, as shown in Eq. (2-5). The latter is known to be
an autonomous differential system from the moment that each equation does not depend
explicitly upon the time-like parameter used (so far ¢, non-dimensional physical time).

One of the most important advantages of the Dynamical System Theory (DST) is the
possibility of re-writing a general n-order differential system into a new first-order one.
For example, we can start with a time-dependent variable g = q(t), such that

dnq B ( dq dn—1q>

— = — 2-20
den Taer a1 (2-20)

with g general function. We can define new variables based on some transformations as

dq dn—lq
CI1 = q, qZ = E' vy qu = —dtTL—l (2-21)
and then, re-writing the differential system in Eq. (2-20), we arrive at
(o _da
q1 - dt - qz
. dq
142 = ar as (2-22)
. dqn
\Gn =7 = 904192, . qn)
The latter can be also expressed in a more compact vector form, so leading to
. dQ
0=2,=f©@ (223

where f is a vector-function, while Q is the state-vector of the system, VQ € R™,Vt € R.
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Expressions in Eq. (2-22) and Eq. (2-23), can describe a n-dimensional space, in literature
also denoted as “Phase-space” of the dynamical system, in this way allowing having a
complete geometrical view of each solution and of the vector-field described by f(Q).

NOTE:

Before going further in the description of the DST, one important remark is given by the
so-called “Existence and Uniqueness Theorem” (but here not formulated), which
assures that the solution exists and for some given initial conditions it is also unique.
Basically at each time t, a phase-point describes the particular state of the original
differential system, thus basically it is a solution of the system itself. (Verhulst, 2000)

2.2.1.1 Critical points and their neighbourhoods

In this n-dimensional Phase-space each trajectory represents a specific solution that can
be periodic or not. Moreover, straightforward is to shown that orbits in the Phase-space
can never really intersect in a finite time, direct consequence of the previous theorem.
However, as seen in Section 2.1.2, the CR3BP has some particular equilibrium solutions,
such that they are usually referred as critical points (or stationary points) of the system,
as points Q = a of the domain where f has its zeros, so with f(a) = 0. (Perko, 2001)

Looking at the Circular problem, it is trivial to understand that each Lagrange point is
exactly a critical point of the dynamical system, but only when considering synodic
coordinates. Moreover, all components of the P;-velocity can be seen simply as additional
variables of our differential system, based on the Eq. (2-21), and consequently they
generate a six-dimensional Phase-space, defined by the following expression

(X = Uy

}7=17y

Z=1,

: x+p) (x+p-1)
Uy =20, +x— (1 —p) T — U 3
] n ) (2-24)

1-w wu

v, =20, +y (1 ————-—

y x yl 2 2

N [t D

L7 e 7

where the transformation v, = dq/dt has been used for all three variables as g = {x,y, z}.
In this six-dimensional geometrical view, coordinates of each L-point can be defined as

XLi = [xLi' YiirZLis 0,0, O] (2'25)

with the new state-vector X = X(t) € R® (Vt € R), involving all positions coordinates
described by Egs. (2-7)(2-8). Usually main interest point in real space missions is the
behaviour within a certain neighbourhood of these “mathematical points”. In fact, it is
almost impossible to achieve such exact initial conditions, thus this so-called “stability”
can have a great influence on the costs (e.g., DV-budget for station-keeping manoeuvres)
necessary in order to maintain the spacecraft as close as possible to a nominal trajectory
or sufficiently close to these points. (Koon, Lo, Marsden, & Ross, 2008)
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Before further proceeding, we introduce the definition for some different types of
stability, which can also be found in the suggested textbooks. Now, we take a differential
system for the general state-vector Q € R™,Vt € R with the definition of a generic vector
function f € C°[Q, t], Lipschitz in Q, and Q = a as critical point. (Verhulst, 2000)

Definition 1.1a (Lyapunov Stability)
Assuming that 36 = §(ty,€) > 0,Ve > 0 such that

if 1Q(to; to, Qo) —all <6 then [[Q(t;ty, Qo) —all <€ ,Vt =t

the critical point is Stable in the “sense of Lyapunov” and, starting sufficiently close to it,
the solution will remain always bounded in its neighbourhood.

Definition 1.1b (Asymptotic Stability)
Assuming that 36 = §(ty,€) > 0,Ve > 0 such that

i [1Q(to; to, @) —all <& then lim|IQ(t; to, Qo) — all = 0

the critical point is Asymptotically Stable and, starting sufficiently close to it, the
solution will tend asymptotically toward it.5

Based on these previous definitions we will refer to linear stability as the stability
assessed by looking at the dynamics linearized in a neighbourhood of each critical point.
Consequently considering a first-order Taylor expansion around L-points, we obtain

: of
X=X+ Mu+OBXL)  VAXu(D)=XO-Xu 226
L;

with the 0-Landau notation (Landau, 1974), where by definition f(X;;) = 0 and after
neglecting higher order terms, we can define the displacement motion X(t) = AX L;(t) as

X 1 0 0 0 1 0 O' F X
y 8 g g 0o 1 o0|]|¥ -
d|z 00 1| |2 . dX(t -
E Tyl ™ 'Q‘,xx ‘Q,xy 'Q,xz 0 2 0 . Uy = dt AIXLi - X(t) (2-27)
ﬁy ny Q,yy Qyz -2 00 ﬁy
[T, ] -Q,zx -Q,zy Q .z 0 0 0 L7,

where Q = Q(x,y,z) is again the pseudo-potential function, where its Hessian matrix®
generates the third quadrant of the constant A-matrix, usually referred as State
Propagation Matrix (SPM). All these aspects have been previously treated in the
Literature Study, and are really well-known in the suggested general literature. However
these last definitions serve as main reference points, later adopted for the numerical
approach (Section 2.4), as also for extending these main concepts to the elliptic case.

5 The mentioned “Existence and Uniqueness theorem” assures that the critical point cannot be
reached in a finite time, thus this explains the use of a limit and its appellative ‘asymptotic’.

6 Squared matrix that involves all the second-order partial derivatives of the scalar potential Q,
while its symmetry is due to the Schwarz’s theorem. See (James, 1966) for more information.
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At this point, worthy to be mentioned is the so-called “Hartman-Grobman Theorem” (or
also known as Linearization Theorem), able to show, under certain hypotheses, that
“near an hyperbolic equilibrium point a, the non-linear system has the same qualitative
structure as the linear system” (Perko, 2001). In fact, Eq. (2-27) can be seen as a
Variational Equation respect to the initial condition, so again being represented by a
simply linear system of six first-order differential equations. It follows an associated
Eigen-problem, here studied in order to characterize the behaviour of each L-point. In
brief, this “Linearization Theorem” assures that in a neighbourhood of hyperbolic points”
the linear behaviour found is qualitatively the same also for the original non-linear
system. A general classification of such points in 2-dimensional (or also n-dimensional)
differential systems can be found in common literature, and for the Circular problem
their stability has been extensively assessed in (Szebehely, 1967), so we can proceed here
by introducing some essential concepts related to periodic solutions.

2.2.1.2 Periodic solutions and their stability
Concept of periodic solutions is related to the existence of a solution X(t) = ¢(t) to the
differential system, dependent on the time-like parameter ¢, such that

Pp(t)=¢p(t+T) VtER (2-28)

where T is a positive scalar that defines the period. As observed in (Verhulst, 2000), if a
solution is T-periodic, it means that it is also 2T-periodic, 3T-periodic and so on. This
concept will be further discussed later, when introducing “Resonance orbits”, types of
solutions that can ‘survive’ in the Elliptic problem (see Section 4.2). For now we only
provide an important propriety within Lemma 1, concerning autonomous systems.

Lemma 1
“A periodic solution of the autonomous equation Q = f(Q) corresponds with a closed
orbit (cycle) in phase-space and a closed orbit corresponds with a periodic solution.”

Significance of Lemma 1 becomes more clear considering the Poincaré Map theory,
known also as First Recurrence Map P!Y. The latter represents a powerful tool for
analysing and assessing the existence of periodic solutions, which by definition need to
repeat after a period T (returning at the same initial phase-point, named as Initial or
Shooting Condition). Such theory is so extensive that will require an entire chapter in
order to be summarized (but it is not the purpose here), therefore we suggest to look at
(Teschl, 2012) for a deeper comprehension of all following mathematical concepts. Here
we only re-define some types of stability, but now mainly related to periodic orbits.

Definition 1.2 (Lyapunov Stability for periodic solutions)
Assuming that 3§ = §(ty,€) > 0,Ve > 0 such that

if  [1Q(to; to, Qo) — P(to)ll <6 then [[Q(t;t0, Qo) — POl <€ ,VEt =1t

the periodic solutions is Stable in the “sense of Lyapunov”, as seen in Definition 1.1a.

7 With “hyperbolic points” we refer to points in the Phase-space having real eigenvalues with
different signs when studying Eq. (2-27), such that orbits in their neighborhood are defined
hyperbolic. The latter is easy to visualize on a 2D-case, while considering a general n-dimensional
Phase-space the situation becomes more complex, as it will be shown later.
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Definition 1.2 requires that a phase-point in the n-dimensional Phase-space, which is
initially close to the one belonging to a periodic solution, needs to remain close enough
during its entire motion. However, in trajectories near to the nominal one, but having
slightly different T-period, the displacement in time can grow fast due to an initial phase-
shift.8 It follows now a new definition of stability, necessary for periodic solutions and
based on the so-called First Recurrence Map (evaluated on a Poincaré Sections). The
example in Figure 8 shows two Poincaré Maps (blue diamonds) on a 2D-plane (the
Poincaré Section in violet) for both a periodic and non-periodic orbits (in dashed red).

| z-axis
0.2 ‘
0.1 —

0 ‘

-0.1 ‘

\
02—
D3-E= -

0 — Oincars

0.2 . €aré Sectj,,
' 0.6 = = 0.2
0.8 o 0
12 — .02

Figure 8: Illustration of two Poincaré Maps (blue diamonds) on a 2-dimensional Poincaré
Section (in violet) for periodic/no-periodic solutions (respectively X} and X;" in dashed red).

In continuous dynamical systems we are able to fix one or more coordinates in order to
define a sub-space V ¢ R" of the original n-dimensional Phase-space M € R™. In this
way we are able to study closed orbits simply as points within V, referred as Transversal
(Verhulst, 2000), as it requires to intersect the Phase-flow transversally. So considering
the closed trajectory as fixed point on a specific V-Transversal, we define a third type of
stability starting from Eq. (2-28), thus looking at the ‘local’ dynamics within such sub-set.

Definition 1.3 (Orbital Stability for periodic solutions)

Assuming that it is possible to define a Poincaré Map P™ on the V-Transversal for the
periodic solution ¢ (t), such that a is a fixed point on it with the initial condition Q4 € V.
Now 36 = 6(¢e) > 0,Ve > 0 such that

if ||Qp—all <& then |P"(Qp)—al<e ,vn=>1

it follows that the periodic solutions is Orbitally Stable.o

® In order to better visualize this concept, it is possible to think about a phase-shift as ~ 7 in a sine
or cosine component of the solution, so leading to a large displacement during this new motion.

9 Note that Definition 1.3 clearly matches with both Definition 1.1a and Definition 1.1b, and it
also admits the “asymptotic formulation” once considering the new condition

lim |[P*(Qg) —al[=0 ,vn=>1
n—-oo
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2.2.2 The Monodromy matrix and its eigenvalues

After giving the main basic concepts of this Dynamical System Theory, it is necessary to
provide much more insights into the dynamics of the CR3BP, consequently linking it
with some practical aspects of real space missions. So far we have seen how it is possible
to study the local dynamics near libration points, while great interest is usually also given
to the possible existence of periodic solutions around collinear L-points. Once again, only
L1/L2 will be considered in this work and the investigation will focus on three different
types of periodic solutions, as described later in Section 2.3.

As seen in the Eq. (2-26), we are capable of studying the stability in a neighbourhood of a
nominal periodic motion, when linearizing the dynamics around it. Considering here a
shooting condition X, for the periodic solution ¢ (t; X), this last one can be expressed as
shown in Eq. (2-28), but differentiated at t = t; respect to the initial condition, such that

d
0X(t1) = Pp(t1; Xo +8Xp) — P(t1; Xp) = 6_)(11:) - 8Xo + 0(16X,|%) (2-29)

Neglecting again higher order terms 0(]|8X,|?) it is possible to related both the initial
and the final displacement using the State Transition Matrix (STM) defined as

0¢(t1; Xo)
D(ty,ty) =————— 2-30
(1 to) = =% (2:30)
and it can be shown through few manipulations (Gémez et al., 2004) that
d
Ecb(tl: to) = A~ ®(ty,tp) VO (ty, to) =1, (2-31)

where A has been already presented as SPM in Eq. (2-27), while I, is the identity matrix.
At this point, the STM can be propagated and evaluated at each instant for an entire
period till t; =ty + T, and so leading to the definition of M, the Monodromy Matrix.
Using Eq. (2-29) we are trying to determine effects due to an initial displacement after a
complete revolution of the nominal trajectory (closed curve in the phase-space), with

85Xy = O(ty + T, t;) - 6Xo = M- 6X, (2-32)

Note that M is here constant and the associated Eigen-problem could be studied to assess
this “linear stability”. Indeed, one major constraint is related to the approximation of the
dynamics respect to a reference trajectory, thus the validity itself of Eq. (2-29) holds only
as long as the term 0(|6X,|?) remains small. Many previous notions are part of a more
general theory called Floquet theory, and better described in Section 4.2.2 for the elliptic
case, meanwhile here we are still discussing main aspects related to the Circular problem.

10 This system requires to be numerically integrated since the State Propagation Matrix has to be
evaluated along the nominal solution, which is not known analytically (even if there are some
approximations as described in Section 2.3, “Analytic approach”). Applications and all main
numerical aspects will be discussed later in Section 2.4 (“Numerical Approach”).
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2.2.3 Symplectic form: behaviour of “characteristic multipliers”

The discussion over linear stability involves not only closed trajectories around libration
points, but more in general almost any periodic solutions of the CR3BP. Furthermore,
eigenvalues A; of the Monodromy matrix (sometimes referred as Variational matrix) are
also called “characteristic multipliers” from the moment that given a general component
Xi(t) of the State vector X(t) it is possible to write, for a general n-dimensional case, that

SXL=2;-6X¢ Vi=1..n (2-33)

with 4; € C, complex eigenvalue and §X}, X% respectively initial and final displacements.
At this point, one wise way to proceed is questioning if there are proprieties of the system
that can help further simplifying such analysis. In general literature (Goldstein, Poole, &
Safko, 2002) it is well-known that the CR3BP involves an Hamiltonian system, thus it
can be fully defined by the so-called “Hamiltonian”, scalar function H = H(p, q,t). After
describing the system with generalized coordinates as (p, q) € R?", such that q and p are
respectively defined as ‘position’ and ‘momentum’, the associated Hamilton equations
can be written based on the following system

(dq _ 0H

dt  op
{dp az 2-34)
\ac = " oq

The previous formulation, even though mathematically elegant, is not completely
suitable for our problem since these generalized coordinates sometimes does not provide
a direct physical interpretation of the problem, as also discussed in the Literature Study.
However, first very important feature of Hamiltonian systems is that they have a
structure denoted as Symplectic, which means that the evolution differential equations
can be written (Ott, 2002) in the subsequent form

(’)qH(q, p)l more compactly as) dr

drq
= [p = S,y [ oH(ap) = = Son VH(D) (2-35)

with the new State vector r = [q,p]" € R*" , its Jacobian V,= [d,, ap]Tand S,y € R¥X2n
defined by a block matrix [2n X 2n], such that

_ ©)n Hn
Son = [_Hn @n] (2-36)

composed by @, as null matrix [n X n] and I,, as identity matrix [n X n]. Obviously, this
particular structure has substantial implications on the aforementioned characteristic
multipliers, as also on the T-mapping discussed in relation to the Monodromy matrix, for
indeed defined as a symplectic map in (Howell & Campbell, 1999).
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In order to fully comprehend practical consequences of having such symplectic structure,
we need to briefly enunciate the well-known Liouville’s Theorem, with respect to
autonomous differential system. (Goldstein et al., 2002)

Theorem 1.3 (Liouville’s Theorem)
“The flow generated by a time-independent Hamiltonian system is volume preserving.”

The latter can be easily visualized in the Phase-space as the propriety of an infinitesimal
volume element (in our case six-dimensional) to be constant under the flow. The
mathematical proof is very straightforward, as given in (Verhulst, 2000), but it requires
additional notions/theorems not relevant in this work. Hence, we will just present the
expression for the variation at t = t,, of a general infinitesimal volume v, such that

dv

— =f V-fdQ =0 (2-37)
dt|to D(0)

where D(0) € R" is a domain with initial volume v(0), f and Q are vector-functions
described before in Eq. (2-23) and {V -} is the divergence respect to Q-coordinates. From
the Eq. (2-24), it can be observed that the divergence of the vector-field will be always
zero, thus any infinitesimal volumes of the Phase-space is preserved in time. (Ott, 2002)

With some basic linear algebra proprieties, it has been shown by (Howard & MacKay,
1987) that the characteristic multipliers come always in complex conjugate pairs, denoted
as quadruplets (1,171, 1*, 7*) with the asterisk symbol meaning conjugate. Their paper
treats in a very complete way the “four-dimensional” symplectic maps, commonly related
to six-dimensional autonomous differential problems, as explained later. Nonetheless,
the product of all eigenvalues is always +1, as also the value of the determinant of M,
while applying Theorem 1.3 on the system given with the Eq. (2-31) we obtain that
det(M) = det(P(to + T, ty)) = +1,Vt > ¢y, due to the initial condition as ®(¢y, to) = I,.

2.2.4 Geometrical meaning of “characteristic multipliers”
The principal outcome of studying eigenvalues of the Monodromy matrix can be easily
summarized in three main points, thus following (Howell & Campbell, 1999).

e The CR3BP is Hamiltonian (time-independent) and consequently symplectic as
given in Eq. (2-35). It follows that the STM can be considered as a Symplectic
Map, so having pairs of reciprocal eigenvalues.

e The Monodromy matrix M (STM over a T-period) is real and for the symplectic
propriety it has all its eigenvalues 1 in quadruplets (1,172, 2%, 2" 1). It follows
from a positive initial condition in Eq. (2-31) that its determinant is always +1.

e When M is associated to a periodic solution ¢(t) there exists at least areal 1 = +1
and there will always exists an additional A, = +1, for what seen in the first point.

The last point is one of the most important features of the Circular problem, where
periodic solutions are always enclosed in continuous families, differently from what it
will be extensively discussed for the elliptic case (in Chapter 4). Indeed, once looking at
these periodic trajectories in a time-invariant six-dimensional Phase-space, it seems
obvious how any initial displacements “along” such closed trajectory, remains bounded
within this solution, and its orbital period does not change at all. (Perko, 2001)
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In a very recent work by (Nagata et al., 2016) the geometrical meaning of characteristic
multipliers is fully exploited using the Centre Manifold Theory, originally applied in
(Jorba & Masdemont, 1999) using a normal form scheme “to semi-analytically construct
the high-order solutions about the dynamics in the centre manifolds of the collinear
libration points”. More historical aspects can be found in (Shirobokov, 2014). At this
point, it is clear why even if starting with a six-dimensional Phase-space, we have a four-
dimensional symplectic map, even if the meaning of 1, still needs to be clarified. With a
multiplicity larger than one, for its associated eigenvector v, we can write that

M'szlz'VZ'i‘E'Vl (2'38)

where v, “corresponds to the direction to another closed orbit near the original closed
orbit, and € is not zero due to the variation of the orbital period by the orbit shift”
(Nagata et al., 2016). Focusing on the remaining four eigenvalues of the M-matrix, it is
possible to summarize them within few possible cases, and starting with a general
complex value as A = a + ib ,Va, b € R, we are able to arrive at

/11 = il,/’{” = il ,V|/1| == 1
ifb=0(1€R = 1 2-39
' ( ) {AI = a,lu = a ,VIAI 1 ( )
A[ = A,A” =1 ,Vlll =1
ifb#0(A€eC = 1 1 2-40
: ( ) {/11 = /1, A” = /1*,/11” = E,AIV = F ,V|A| * 1 ( )

as main combinations possible for the last two pairs of eigenvalues. Each of them can
actually increases the order of instability, while an initial small displacement remains
bounded to the periodic solution, as long as all eigenvalues are on the unit circle. The
meaning of first case given in Eq. (2-40) is quite evident, especially if writing eigenvalues
in a polar form, where p is the module and y the complex phase, such that

considering the N—mapping

A=p-el AN = pN . giNy (2-41)

where Vp = 1 we have the existence of a quasi-periodic orbit, as part of an invariant tori
surrounding the nominal closed trajectory (Gomez, Masdemont, & Simd, 1998). More

precisely, with ¢ = Zn% (Vk = 1) the new quasi-periodic motion will repeat itself after

exactly N-revolutions of the nominal one. Interesting is also to observe that when 1 = —1
we have ¢ = m and since N = 2k the trajectory will repeat only every 2k revolutions, and
consequently doubling the original orbital T-period. (Howell & Campbell, 1999)

! Here with p-order of instability we refer to the existence of p-directions that diverge from the
nominal periodic solutions. Due to the symplectic form and its proprieties (as also the time-
independence) the max order here is 2, while a 3-order cannot be related to periodic solution,
since no eigenvalues would be equal to +1. The latter can be an additional constraint for testing
and further validate the numerical computation of periodic solutions. Very important indeed to
not forget that the existence of a 1 = +1 is only a propriety related to the periodic motion in
autonomous systems, while the symplectic structure holds in general for most of the Hamiltonian
systems. (Howard & MacKay, 1987)
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For both first cases in Egs. (2-39)(2-40) there are no effects on the order of instability
since |A| =1, so an initial small displacement will not expand and neither shrinks in
time. However, the second case in Eq. (2-39) is related to the so-called Manifolds Theory,
documented in many textbooks and in the most recent literature related to the CR3BP.
Eigen-vectors associated with eigenvalues in module larger (or smaller) than one, indeed
define particular directions, called invariant manifolds'2, able to collect asymptotic
solutions leaving (or reaching) a neighbourhood of the nominal periodic solution. In a
similar way, we can note that in the second case of Eq. (2-40) the existence of a
combination of both oscillating and growing (or shrinking) effects, nonetheless they are
indeed related to a 2-ordeer instability, so involving all four remaining eigenvalues.

COMMENT

It is possible to conclude that for periodic solutions (p.s.) of Hamiltonian time-invariant
systems (such as the CR3BP) the innate symplectic structure leads to the existence of at
least two real eigenvalues +1 (so leading to continuous families). Furthermore, seven
possible behaviours can be found in a neighbourhood of each periodic solution, based on
all different combinations of the four remaining eigenvalues, as given in Egs. (2-39)(2-40).

2.2.5 Bifurcation Theory: types and consequences

Successive step to all the previous discussion is related to the Bifurcation Theory,
originally introduced in (Poincaré, 1885) for the study of dynamical systems's. This
theory can be applied to both continuous and discrete dynamical systems, but in our case
we will consider the discrete case when looking at the Poincaré Map for small
displacements in a neighbourhood of periodic solutions. Example of bifurcations in
continuous system has been given before with the Routh parameter ug, value after which
the equilateral libration points start to be linearly unstable (Section 2.1.2).

A definition of “bifurcation” is given in (Vladimir, 1972) “to describe any situation in
which the qualitative, topological picture of the object we are studying alters with a
change of the parameters on which the object depends”. Basically each bifurcation
depends upon a “bifurcation parameters”, as the mass-ratio u in the previous example or
the eccentricity when considering the extension to the Elliptic problem. In our case, to
analyse bifurcations within a continuous family of closed trajectories, we are going to
make use of the distance from the relative L-point, starting point for the generation of the
entire family. More details on the numerical computation are given later in Section 4.4.

As shown in the previous section, there are multiple possible combinations (seven in
total) for the remaining two pairs of characteristic multipliers {13, 1,4 and 15, A¢}, thus now
we should be fully capable of locating (within each family) all main bifurcations in the
qualitatively behaviour of eigenvalues, as also for changes in the order of instability.

12 In (Gomez et al., 2002) and (Gomez et al., 2004) it has been shown that “these tubes can be
used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of
Jupiter”, and without any doubts they represent one of the most promising research field for
future interplanetary low cost transfers. However, here they have not been considered for both the
time constraint related to the Master thesis and other aspects, as discussed later.

13 First studies on bifurcation were made in (Euler, 1744), but “modern development of the subject
starts with Poincaré and the qualitative theory of differential equations” (Crawford, 1991).
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For four-dimensional symplectic maps, this linear stability (or “spectral stability”) can be
lost in three different ways, so leading to three different types of bifurcation points. They
can be summarized as in (Howard & MacKay, 1987), so assuming all four eigenvalues
initially disposed within the unit circle (as represented below in Figure 9):

i. Tangent (or Fold) bifurcation [T-B]

“Two eigenvalues coalesce at +1 and split on the real axis, so increasing the order of
instability from zero to one.”

ii.  Period-Doubling (or Flip) bifurcation [P-D]

“Two eigenvalues coalesce at —1 and split on the real axis, so increasing the order of
instability from zero to one.”

iii. Krein collision [K-C]

“Two complex conjugate pairs of eigenvalues collide and split on the complex plane, so
increasing the order of instability from zero to two.”

First type of bifurcation leads to the generation of one stable/unstable manifold, while
the second type has been already discussed before, with a new periodic solution having
twice the original period. Last, the Krein collision in 4D symplectic maps completely fix
the behaviour of the remaining eigenvalues, so generating two stable/unstable manifolds.

r— - ; = *  Tangent Bifurcation
s C—— - * - Period Doubling
—_— - . - Krein Collision

Figure 9: The three possible bifurcations considered here, leading to the destabilization of the
4-dimensional symplectic map and consequently increasing the order of instability.

For the sake of completeness we mention an additional bifurcation that can take place
within a family, without influencing the order of instability. (Howell & Campbell, 1999)

iv. Modified secondary Hopf bifurcation

“Two real pars of eigenvalues collide on the real axis (but not at +1) and separate on
the complex plane.”

In this last case “iv”, even if the 2-order of instability does not change, the new solution is
qualitatively different, due to the existence of an oscillating motion around the solution.
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2.3 The Analytic approach

Objective of the previous discussion is only to introduce some principal aspects of the
Dynamical System Theory related to the Circular problem. Nonetheless, this theory is
much more extensive, and has been successfully applied within several works as (Gomez
Jorba, Masdemont, & Simé, 1993), (Howell, Barden, & Lo, 1997), and most recently
(Vaquero & Howell, 2014). These works have been mostly focused on transfer problems
using the Invariant Manifolds Theory, as for the Genesis spacecraft mission “to collect
solar wind samples from a Halo orbit about the Sun-Earth L1 point” (Lo et al., 2001).
Regardless this fact, here we are principally looking at some families of periodic solutions
around the L1/L2 points, without any real remarks about transfer trajectories (Lo & Ross
1998), possible connecting orbits (Gémez et al., 2004) or the so-called ballistic capture
problem (Belbruno & Miller, 1993).

The DST can already be seen as an analytic way to tackle the problem, but now it is
necessary to exploit a more specific technique, in particular for accurately studying
stability at collinear libration points. Moreover, from the previous linear analysis
provided in Eq. (2-27), a solution can be easily found, described also by general literature
as (Hénon, 1974), such that the complete linearized motion of small displacements
around each collinear libration points is described by a solution in the following form, as

() = ay - cos(wyyt) + by - sin(wyyt) + ¢y - et + d, - e H0t
§(t) = ay, - cos(wyyt) + by - sin(wyyt) + ¢, - et + d, - e~ A0t (2-42)
Z(t) = a, - cos(w,t) + b, - sin(w,t)

with a,b,c,d integration constants, w, and w,, respectively as vertical and horizontal
pulsations, with 1, as the real eigenvalue directly associated to the unbounded motion.
The expression for these last three values can be written respect to the mass-ratio i as

1-p [0
w, = + (2-43)
11+y.® yl?
( 0} o,
Wyy = [1——+—=+/902 — 8
using w 2 2
g wz
— 3 (2-44)

2

w w
Xy = 72—1+7Z\/9w22—8

A

\

with y; positive distance found previously from Eq. (2-9). Particular initial conditions
allow removing the unbounded dynamics, thus considering only bounded solutions in
what represents only a linear approximation around L-points. Furthermore, for any p,
the in-plane and out-of-plane pulsation are fixed, while in a close neighbourhood to
equilibrium point they are different (Howell, 1984). It follows the possibility of having
still bounded trajectories, where %, ¥, Z are non-dimensional distances from L-points, but
no more properly periodic, thus leading to three dimensional “quasi-periodic” orbits,
better known in literature as Lissajous orbits. (Howell & Pernicka, 1988)
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Periodicity can be achieved only if the ratio between out-of-plane and in-plane motion is
a rational number larger than 1, case not really possible since w, # w,, ,Vu € (0,0.5). A
general example is given in Figure 10, showing some possible periodic trajectories (where
tenp = 18 X 21) compared with Lissajous curves for some irrational ratios. Note that the
general pulsation can be referred for example to the orbital 2z-revolution of both M;, M,.

V2 V3

: KPS

1 ) | | B |
o R |

Tw, Periodic Motion Lissajous Curves

Figure 10: Illustration on the yz-plane of some possible periodic orbits (LEFT) and Lissajous
curves (RIGHT) using a general unitary reference pulsation, with w,, and w, respectively
horizontal and vertical pulsations of the dynamics linearized around L-points. See text above.

NOTE ON LISSAJOUS ORBITS

Even if only periodic solutions have been considered here, one main remark has to be
made on a possible application of Lissajous orbits around L-points in observation space
missions, due to their bounded motion, as explained before. Examples given in
(Shirobokov, 2014) are the WMAP mission at the Sun-Earth L2, ACE and DSCOVR at
Sun-Earth L1, as also the aforementioned Genesis mission. (Lo et al., 2001)

2.3.1 Existence of two mono-parametric Lyapunov families

Under the assumption of having a linearized motion, so neglecting terms as 0(AX%;) in
Eq. (2-26), we still are able to define two families of solutions ‘theoretically’ bounded in
two distinctive motions (in-plane and out-of-plane). As we will see, once considering also
non-linear terms with perturbation techniques (Section 2.3.2), the situation becomes
more complex, but as long as we remain close enough to the libration point, the
expression in Eq. (2-42) can well approximate the dynamics. (Gomez & Mondelo, 2001)

Two families of solutions can be considered, also called Lyapunov families and, indeed
their continuous character can be clearly observed also from Eq. (2-42), where different
initial conditions lead to different possible amplitudes for each possible orbit. An
example of few trajectories for the Horizontal (in red) and Vertical (in green) family is
shown in Figure 11, where the Earth-Moon Lagrange points have been considered in
relation to the Circular Restricted 3-Body Problem.
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Figure 11: Illustration of Horizontal and Vertical Lyapunov families at L1 (LEFT) and at L2
(RIGHT) in the Earth-Moon CR3BP, where the size of the Moon has been enlarged [x 2].

For real space observation missions is necessary to extend the previous analysis,
including non-linear terms, thus studying other possible families beside those two found.
In a certain way, the latter can be seen as an inspection of the non-linear stability for
collinear L-points, where basic techniques previously shown are not really adequate,
neither sufficient for such purpose. A semi-analytic method has already been mentioned
as the Centre Manifold Reduction given in (Jorba & Masdemont, 1999), also known as
“normal form scheme”. Here we are going to consider an alternative, defined as the
Lindstedt-Poincaré method (or “method of strained coordinates”), commonly used in
order “to find convergent series of periodic solutions” (Verhulst, 2000)

2.3.2 Perturbation technique: the Lindstedt-Poincaré method

The Lindstedt -Poincaré technique (or LP-method) is based on the assumption that in
differential systems dependent upon a small parameter ¢, the solution of the perturbed
system is also periodic and its frequency can consequently be expressed simply as a
perturbation of the one related to the unperturbed problem (Waters & McInnes, 2007).
Second important assumption is associated with the so-called Poincaré Expansion
Theorem (or PE-Theorem), here not given but very well described in some specific
textbooks, for example in (Kevorkian & Cole, 1996) and (Nayfeh, 2007).

Considering an autonomous case, the PE-Theorem briefly states that if a Taylor
expansion exists (in a certain X-domain) at € = 0 for the vector-function f = f(X, €), such
that it is convergent respect to the small parameter € « 1, it follows that

fX,e) = f(X,0)+e-f1(X)+ €% fo(X)+ ... (2-45)

and also the solution X = X(t,¢) can be expanded in a Taylor series, convergent for any
€ < €y on a time-scale O (1), where ¢, is the radius of convergence of the series, reliant on
the m-order chosen for the truncation. Neglecting terms as 0(e™*1), we arrive at

XPP(t) = Xo(t) + - X,(t) + €2 X5(t) + ... + €™ X,(0) (2-46)

with an approximation error as || X(t) — X®P(t)|| = 0(e™*?), valid on a time-scale 0(1).
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More correctly, all previous assumptions refer to general perturbation techniques, while
a more general background with many historical details can be found in the mentioned
textbooks. Very remarkable here is to note that one of the principal field for the
application of Perturbation Theory in the 18 century was exactly the description of the
motion of celestial bodies under different perturbations, e.g. the presence of an
additional mass (Verhulst, 2000). Such techniques have been adopted in many other
fields, in general to determine solutions of partial and ordinary non-linear differential
equations, as also as an approximation for particular integrals (Nayfeh, 2007) and in
algebraic equations, for example to approximate the quintic equation in Eq. (2-9).

Such technique has been successfully applied in (Masdemont, 2005) “for computing the
stable and unstable manifolds of libration point orbits in series expansions” (as also for
the mentioned Hill’s Problem, Vu — 0), while crucial to remember here that we are
looking at bounded periodic solutions, so consequently there could be additional
constraints on these approximations. In fact, one limitation of general perturbation
techniques is usually related to the presence of secular terms, arising at higher orders of
the expansion and for which time t appears as an amplitude factor.’4 These terms clearly
destroy any periodicity, from the moment that the subsequent approximated solution
grows indefinitely with time t. In fact, sometimes they are also called mixed-secular as
consequence of the fact that they are “product of both linear and trigonometric functions
of time” (Kevorkian & Cole, 1996). In general, substituting the expansion in Eq. (2-46)
within the original differential system, all terms at the same e-order are collected and
later equations are recursively solved at each level, as discussed in the Literature Study.

2.3.2.1 The introduction of “strained coordinates”
Starting with a general perturbed harmonic oscillator in the non-dimensional variable
x = x(t) € R,Vvt € R and a time-independent function f = f(x, %, €), such that

X+x =€ f(x%¢€) (2-47)
we are able to substitute a general n-order expansion, as described before, leading to

[Xo + €Xq+... +€™X, ] + [xo + €y +... +€™x,] = €~ [fy + €f; +... +€ ;] (2-48)

and, after collecting all terms with a same e-order, we arrive at

XO + XO = 0
i1 + X1 = fO (XO’XO) (2_49)

Xp + Xy = n—1(X0’X0,X1,X1' s Xn—1,Xn-1)

where f;,(x(,%,) includes solutions as x, = a, - cos(t) + by - sin(t), but also parts of the
homogeneous solution x™ = x%™(t), thus leading to new particular solutions in the form
as “t- cos(t)” or “t - sin(t)”. The latter trivially shows the formation of these secular terms,
while a similar pattern repeats for all the other orders of the expansion in Eq. (2-49).

' More correct way is to consider them as resonance effects at a certain order of the expansion,
due mostly to solutions found at lower orders of the expansion. (Verhulst, 2000)
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At this point the principal idea of the Lindstedt-Poincaré method is to introduce a
coordinate transformation on the original time t, in such way that new periodic solutions
of the perturbed problem have same T-periodicity, but in a new time-like variable. We
have already encountered a similar time transformation, adopting the non-dimensional
time-like parameter in Section 2.2.1, such that the motion of the principal masses was
2n-periodic. Now, for our example the situation is slightly different since the
transformation is no more a simple rescaling, but dependent upon the small parameter e
and this explains the appellative “strained coordinate method”. In fact, we can write

n

1 ,
0 =wt with W=—=—= ,Vn(e) = z €' ni(e) (2-50)

J1+e-n(e) e

where w is a new pulsation. With the notation x’ = dx/d6 we use Eq. (2-47) to arrive at 5

!
x" + 12 =€- w S X"+x=¢€e-g(xx,€) (2-51)
w w
in this way having a system similar to the previous one, but now knowing that periodic
solutions are 2m-periodic in 0. Is it exactly this last imposed condition (known as
“periodicity condition”) that allows us removing secular terms at each order of the
expansion of Eq. (2-49). Consequently, it is possible to fix initial conditions at a lower
level in such way that we avoid the appearance of resonance terms. Very last step, after
iteratively solving the system, is to express the approximated solution x*"P = x?PP(0)
considering constraints on initial conditions found, so leading to

x(0) = x?PP(0) = x7(0) + €-x,(0) + ... + €™ -x,(0) (2-52)

and the new T-period of the perturbed solution will be simply given in a e-series as
n
T ~ TPP(e) = T, + Z € Ti(e) (2-53)
i=1

where the nominal period is T, = 2m, while TP (€) is the new approximated perturbed
period, converged for any € < ¢,.

2.3.2.2 Third-order analytic approximation by (Richardson, 1980a)

At this point we can briefly introduce the third-order analytic approximation found using
the LP-method and given in (Richardson, 1980a, 1980b). Purpose is here not to re-
discover what has been already presented in his work, but only to identify critical aspects
of that expansion (and the method itself), thus to use such approximated solution as first
guess for the numerical method presented in the following Section 2.4. For a very well
detailed description of his procedure we strongly suggest (Thurman & Worfolk, 1996).

15 Note that both forms in Eq. (2-51) are equivalent and related by the following expression

g(x,x',e) =f(x,x",€) - [1 + €-n(e)] —x-[e n(e)]
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We start with a system linearized respect to the libration point, as presented in Eq. (2-27),
but now considering only collinear libration points (more precisely only L1 and L2, for
the reasons earlier discussed). In (Richardson, 1980a) all positions {%,7,Z} have been
adimensionalize by y;;, distance between M2 and each L;-point, which represents a
simply rescaling that can only influence the numerical value of coefficients in each
equations, without really altering the dynamics. ¢ It follows a system in {x, y, z}, such that

’ N
=2y —(1+2¢c)x = Z ¢ frxj(x,¥,2)
j=3
N
{y+2x+(c; — 1y = Z ¢ fyi(x,y,2) (2-54)
j=3
N
Z+ C2Z = ZC] 'ij(xly;Z)
L J=3

with fy;, fyj, fzj functions of all three position variables, outcomes of the Taylor N-order
expansion of the potential Q and having order [j-1]. The nominal system, after neglecting
the right side of Eq. (2-54) is exactly the same one as given in Eq. (2-27), but here
evaluated at the Lagrange point, with a vertical pulsation expressed by ¢, = —Q,, = w?.
As discussed before, the mismatch between in-plane and out-of-plane is unavoidable
once close enough to the L-point, where the linearization represents a very accurate
approximation. However, nothing can be stated for non-linear terms, and as additional
assumption we have that w? = w7, — Aw, with Aw = 0(x?,y?%,2z%) as correction on the
Eigen-frequency, neglectable in the first-order approximation, so leading to

xo = Ay cos(wyyt + @)
Yo = kA sin(wyyt + @) (2-55)
Zy =4, sin(wxy + 1,11)

that is again directly comparable with Eq. (2-42), but now having a synchronized motion
due to the last assumption made. Moreover, unbounded solutions from Eq. (2-42) have
been removed (see previous example), while both phases ¢ and i are related by the
initial conditions of the physical problem. For this first-order approximation, we see a
constant term k relating both x, and y, solutions, where first and second equations in the
system of Eq. (2-54) are actually coupled (Szebehely, 1967), such that

L wiy +t1+2wf 2Wyy

20y T wi +1 - w?

(2-56)

16 Note that the rescaling introduced in (Richardson, 1980a, 1980b) changes the numerical value
of ¢;, related to the order [j-1] and consequently having that ¢/ (used by Richardson in his paper)
are related to the coefficients used here simply as

L 1—p
Fro/*t - A Fy )
with the negative sign for L1 and the positive one for L2.

- .
f =c¢ vyl Vg=(-1)-
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The third order solution from (Richardson, 1980a) is given in Table 2 and with the same
notation, so we refer to his paper for the calculation of all coefficients {a, b, d}. Moreover,
interesting is the correction on the T-period by the perturbed pulsation wy,,, such that

2 21
Wpert  Wxy * 1+ SlAazc + SzAg)

Tpert = (2-57)

where, the previous Taylor expansion is based on small displacement-amplitudes, here
named as A, and A,. Both two are related simply to the two Lyapunov families shown in
Figure 11, while main objective is here to look also at non-linear terms of this expansion.
The latter allows identifying possible 3D motions, where both in-plane and out-of-plane
equations are synchronized, so leading to two additional constraints on the motion as

Amplitude Constraint: [LA2 + 1,A2 + Aw = 0

- (2-58)
Phase Angle Constraint: Y = ¢ + >

Both previous arise only at the third-order and are related to terms 0 (42, A2), as also for
Wpere, correction of the unperturbed pulsation w,,, since no terms 0(4,,4,) have been
found. An incredible result is the appearance of what can be considered an “analytic
bifurcations” within the Horizontal Lyapunov family, due to the Amplitude Constraint,
since [; < 0, I, > 0 for each u-value (numerically checked) in a valid range Vu € (0,0.5).
Consequently it follows the existence of a boundary real value A¥'N for the 3D motion as

Ay = AN = JAw/-1, (2-59)

different at each p-value, while 4, > A¥'N = 0 for what has been declared before.

Table 2: The third order analytic approximation of periodic solutions near L1/L2. Here {x,y, z}
are displacement-positions from both L-points, while w,,.,, and w,, respectively the perturbed
and unperturbed pulsation of the approximated solution. See (Richardson, 1980a).

I° order II° order III° order

x —A,cos(1y) | Ailay; + azscos(21y)] ... Ay laz A2 — az,A%] cos(31y)
+ AZ[az, — ap4 c0s(274)]
Yy kA, sin(zy) [b214% — bypAZ] sin(214) Ay [b31A% — b3y A7) sin(3ty)

Z A, cos(ty) dp14,A,[cos(2t,) — 3] Agld3,A% — d3qA7] cos(31,)
Wpert

- 1 0 5142 + 5,42
Wyy

LEGEND: A,, A, are amplitude-terms and ¢ phase-term, all constant outcomes of the
recursive integrations, where the time-argument is given as 7, = 7+ ¢ = Wpepe -t + .77

7 Time transformation used in (Richardson, 1980a) is T = wy,, - t, with its relative expansion
respect to the small parameter, as shown in the previous example. Look to Eq. (2-50) at page 34.
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2.3.2.3 A third family of periodic solutions: the Halo family

The new family of 3D orbits found is well-known in literature and usually called “Halo”,
name originally provided in the PhD thesis (Farquhar, 1968) and successfully considered
for several missions described in Section 1.2. As it will be discussed later, for their
numerical computation “halo orbits are difficult to obtain because the problem is highly
non-linear and small changes in the initial conditions break the periodicity of the
orbits”. (Bernelli, Topputo, & Massari, 2004)

Differently from Horizontal and Vertical Lyapunov orbits (once setting respectively
A, = 0 and A, = 0), the Halo family is totally dependent upon only one single amplitude
parameter from the moment that the “Amplitude Constraint” relates both in-plane
and out-of-plane amplitudes, so AZAL0 = AHALO(y AHALOY Qverview of all three families
of periodic trajectories investigated in this report at L1/L2 is given in next Figure 12.

015~ -

-0.1 o 0.8 0.9

Figure 12: Illustration of investigated families at L1/L2 in the Earth-Moon system: Horizontal
Lyapunov (red), Vertical Lyapunov (green) and Halo (blue) are shown at same energy-level.

The analytic approach, as described in the Literature Study, was originally supposed to
be the main tool for our analysis, nonetheless due to its complexity and low efficiency,
the investigation turn out to be mostly numerical (the “Numerical Approach” in Section
2.4), but still strongly supported by all the aforementioned mathematical theories. The
limited accuracy of such types of approximations for a full analysis of all three families
does not allow having robust results and indeed the LP-method ‘fails’ far away from
libration points (Howell, 1984), while higher orders in the expansion involves very
‘tedious’ expressions (Jorba & Masdemont, 1999). Moreover, “since the (out of plane)
halo orbits have a minimum amplitude, it is not clear whether the approximation is
valid” (Thurman & Worfolk, 1996), thus results from (Richardson, 1980a) have been
used here only as first guess for an initial numerical generation of all periodic solutions.

Furthermore, the LP-method is strictly driven to find specific periodic solutions, while
the CR3BP the system is known to be Hamiltonian and the existence of a continuous
family leads to additional complications. In fact, as discussed, isolated periodic solutions
do not actually exist and consequently the “Unicity conditions” of the method is not
satisfy, while integration terms can be fixed only taking higher orders of expansion
(without additional benefits on the accuracy). More information can be found within
Section 10.4 from (Verhulst, 2000), while here we continue with the numerical approach.




38 | Chapter-2

2.4 The Numeric approach

The numerical approach, here presented, is based on an algorithm written in a MATLAB
software environment. Further description and main settings adopted can be found in
Appendix-B, very important for having a reliable analysis and in particular to assure
reproducibility of all results obtained. Here we focus on methodologies, underlining main
limitations and advantages, in a similar way to what has been done before for the analytic
approach. Nonetheless, similar application of such technique can be found in other
recent Master theses at Delft University of Technology, as (Van der Ham, 2012),
(Vermeiden, 2014) and (Rohner, 2014). For a more complete and accurate discussion on
numerical techniques we remind to (Szebehely, 1967), but more suitable for our problem
is (Howell, 1984), where the ‘standard method’ has been taken from. Modifications
added to this ‘standard method’ will be justified step by step, based on what we have seen
so far, while for Lissajous solutions (not treated here) the discussion over numerical
multi-shooting methods in (Howell & Pernicka, 1988) could be a good starting point.

2.4.1 Differential Correction algorithm

The main technique described here has been originally adopted'® in (Howell, 1984) for “a
largely numerical study of families of three dimensional, periodic, ‘halo’ orbits near
collinear libration points”. The method is basically a single shooting method, applied in
many other boundary-value problems and based on the Dynamical System Theory.

As seen in Section 2.2.2, the State Transition Matrix ®(¢t;,t,) is able to relate the initial
and final displacement (at ¢, and t;) relatively to a reference solution. In this way it is
possible to correct the initial conditions (or shooting conditions), so looking at the
trajectory that better satisfies some boundary conditions at t = t, as given in Figure 13.
We remind once again that STM comes from a linearized dynamics in Eq. (2-30) and its
suitability is related to the error-term 0(|6X|?), which needs to be small enough in order
to have convergence of the DC-algorithm, consequently the necessity of having a first
“sufficiently close” guess.

Perturbed Trajectory = -~ i
e OX(ty)

L &= <= Nominal Trajectory &

X(ty)g’ .

5X(tg) I .

X'(to)

Figure 13: Example of perturbed trajectory X(t) deviating respect to the nominal one defined
by X*(t), where 6X(t,) and 6X(t;) are respectively the initial and the final displacement.

18 More correctly first application of numerical methods for periodic solution at L1/L2 is given in
(Breakwell, 1979), but considering only the Earth-Moon mass ratio. As reported in (Howell, 1984),
in their work very significant is the range of stable (linear stability or what we call zero-instability)
“roughly halfway between the libration point and the Moon”.
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In order to define constraints on the periodicity it is necessary to re-consider for a
moment both symmetries previously found, thus applying them to periodic solutions.
First type, described in Eq. (2-14), does not involve any time-transformation and it is
correlated only to the existence of two Halo families: a Southern and a Northern family,
symmetric in the z-coordinate. Meanwhile, for both Lyapunov families there is not such
distinction, in fact Horizontal Lyapunov orbits are totally bounded within the £y-plane
(without any z-components). Regarding Vertical Lyapunov orbits, actually they follow the
third symmetry in Eq. (2-16), crossing the x-axis twice at the same point during a
complete orbital revolution (so also named doubly-symmetric). (X. Y. Hou & Liu, 2009)

In general, for all 3-dimensional periodic solutions in the CR3BP (so in particular for the
Halo family), it holds a second symmetry as given in Eq. (2-15), inborn propriety of the
equations of motion. Nonetheless, for closed trajectories crossing the %Z-plane (here
plane of symmetry) it is also possible to define additional constraints starting within such
plane (Vy, = 0). In fact, Eq. (2-15) assures that a symmetric reverse orbit exists, and from
the transformation {y,t} - {—y, — t} it follows that new initial conditions are also given
as {xg, 0, 2o, Xo, Yo, Zo} = {x0,0, g, —%g, Vo, —Zo}. Once setting t, = 0, the state-vector X(t)
at t =T and t = —T needs to be the same as X(0), due to the definition of T-periodicity.
As consequence of this previous symmetry (Miele, 2010), we obtain two conditions as

5('0 = x(to) = 0, ZO = Z(to) = 0 (2'60)

and it is also possible to shown that starting at any t, # 0 within the plane of symmetry,
both conditions in Eq. (2-60) do not change for this non-autonomous system. At this
point, the DC-algorithm can be formulated in mathematical terms, where now we also
consider an uncertainty on the T-period, differently from Eq. (2-29). More conveniently,
we can numerically integrate till half of the orbital T-period, as shown in Figure 14, thus
evaluating conditions at different crosses within the xZ-plane.

-0.05

-0.1

-0.15 = Corrected orbit =

0.8 ) —— = First guess

1.3 -0.1

Figure 14: Example of initial guess (red) and final path (blue) corrected by the DC-algorithm,
having the “orthogonality conditions” at the shooting (¢) and at the first cross (blue star).

19 Note that for autonomous systems, the time t does not appear directly in the equations of
motion, but only through the “derivative operator”. As consequence it is always possible to define
a general time-transformation as 7 =t + ¢, with ¢ constant and having that 7, = 0. The latter
represents simply a time-shift that does not alter at all the dynamical motion. (Verhulst, 2000)
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It follows an expression (neglecting higher order terms) for the final displacement as

0X
It1

where §X(t,) and &t; needs to be uniquely determined. Nevertheless, constraints within
the XZ-plane holds for each cross and consequently at t; = t, + T/2 we have that

i 1 ox
/53’\ Dyq D3 Dy / \ /y\
d 6z Z
|6w T Dur D Dz D Dug '| | ot w| (2-62)
T
ov, t [ Dy D3 D5 - to VU, t,

with values of 0X/dt evaluated at t; based on Eq. (2-24), while §X(t,) has been evaluated
on the %Z-plane following symmetry conditions. This linear system can be solved as
shown in the Literature Study, also well described in (Howell, 1984), while after
removing unused terms (in grey colour) we arrive at a more compact form, such that

. 8xg

8y, Dy Py3 Py y / 52, \

6y = [Py1 Py3 Dus Uy \ 5vy0 / (2-63)
To/2 \§[T, /2]

8,1 Qg1 Pz Pes U
for 8[T,/2] correction on the expected orbital period T, and {§xo, 6z, 6vy0} corrections

To/2

on all three shooting conditions, while {5x1, 671,06 vyl} are values found numerically after
integrating the system from t, till t; = t, + Ty /2, thus leading to

Y1 5y, 0
XV 4 x50 = (g +( 80m = (o (2-64)
Vz1/ values found 0V, 0

correction

This previous relation is called “correction step” of the DC-algorithm, aiming to minimize
the final displacement at t;. Again, settings and threshold values for the numerical
computation can be found in both Appendices-A/B, while here we principally focus on
methodologies. Note that the linear system in Eq. (2-63) is defined by a [3 X 4] matrix, so
underdetermined since having four variables but with only three conditions.2° One way
to overcome this problem is to find a solution in a “Least Square sense”2!, minimizing a
cost function, which in our case it is supposed to be the final displacement norm || X{*||.

20 Also when considering the Horizontal Lyapunov family (totally bounded in the Zy-plane), we
have that §z,, §v,; = 0 and the new system is given by [2 X 3] matrix, so still undetermined.

21 The Least Squared method has been applied by C.F. Gauss (1777-1855) in 1809 for calculating
the motion of celestial bodies (Gauss, Davis, & Gauss, 1963), but this fact caused a severe dispute
with A.M. Legendre (1752-1833), who published the method in (Legendre, 1806) few years before.
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Unfortunately, using a Least Square method, the solution found is unique and most likely
it is the one that better minimize the cost function. As seen before, periodic solutions in
the CR3BP arise in a continuous family, thus with the Least Square method we cannot
really ‘control’ the generation of each member of the family, as explained later for the
Numerical Continuation technique (Section 2.4.3). Furthermore, other possible closed
trajectories can exists in a neighbourhood within the Phase-space, as also periodic
solutions orbiting around both M; or M,, as mentioned in Appendix-C.

Strategy here adopted is to fix one of the four unknowns, usually x, or z, for what
concerns the generation of each family, while we can fix the orbital period T, only when
looking to particular resonance solutions, necessary step for the extension to the ER3BP,
(see Section 4.4.1). Before presenting the Numerical Continuation technique, we need to
briefly discuss how assessing periodicity, so numerically validating each periodic orbit.

2.4.2 Periodicity constraints and numerical validation

We have seen that the algorithm works iteratively, starting with an initial guess (e.g.,
using the analytical approximation), fixing one of the two position coordinates {x,, z,}
and then correcting all remaining shooting conditions, based on outputs of the numerical
integration from t, till ¢t;. The latter uses both the state-vector X(t) and the State
Transition Matrix ®(t, t,), which requires to be evaluated at each time-step. It follows a
new ‘total’ state-vector of 36+6=42 components and a new differential system,
combination of Eq. (2-24) and Eq. (2-31), that is once again non-linear since we are
numerically integrating the full dynamical motion.

These corrected shooting conditions are re-processed in a similar way till reaching the
convergence of the iterative algorithm. Clearly, this convergence is achieved only when
both following criteria have been simultaneously satisfied at ¢, = T/2 (Vt, = 0):

i.  The scalar value of the velocity within the xZ-plane “v,,” is smaller than a certain
tolerance AV,,, such that

e, (T/2) = vE(T/2) + v3(T/2) < AV, (2-65)

({2

ii.  The absolute value of the position “y” is smaller than a certain tolerance AY, as
ly(T/2)|l < AY (2-66)

where it is possible to consider the first condition also as an estimation of DV-budget
necessary for manoeuvres or for trajectory adjustments. Nonetheless, as we will see later,
both thresholds have been chosen to be very small, thus allowing us to have a very robust
analysis on eigenvalues for the linear stability assessment (consequently also for
bifurcations). Obviously, a perfect zero displacement is unlikely, where there are
numerically limitations due to a limited precision of the floating-point format (double-
precision), as also related to the accuracy of the integration scheme here adopted. All this
aspects have been carefully detailed in Appendix-B, where main settings are justifying by
a rigorous trade among the minimum accuracy, the computation time (e.g., maximum
number of iterations for convergence) and most important on a necessary reliability for
all the simulations performed.
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Results and family plots will be given later, while now an example is given in Figure 15,
where a “periodicity-validation” is shown for the Halo family generated at L2 in the
Earth-Moon system. On the right, we can see all three displacements at T/2 with a
threshold of 107*2? (used in the iterative algorithm), as described before. On the left, we
see also an additional condition, later described, for the periodicity when t = T, while
also the number of necessary iteration for each member of the family is shown. Note that
the maximum number has been fixed here to 25, for practical computational reasons.

L2 Halo: PERIODICITY VALIDATION at p = 0.012151

5Vu, 5\/\, 0V (displacements at T/2)

Displacement position:
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1012
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L L L L L L L L L
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Number Iterations N° [0-25]

[ 1 1074 |
5 J
0 \ . . f

200 400 600 800 1000 200 400 600 800 1000
N° Orbits N° Orbits

dy (displacements at T/2)

Figure 15: Example of “periodicity-validation” for the Halo family at L2 in the Earth-Moon
system (u = 0.012151). The complete description will be given in Chapter 3, with also results.

Even if not really used as “exit-points” in the algorithm (Figure 15, left), two additional
conditions are now introduced in order to further verify the periodicity, also defined as

I — CLOSING CONDITION:

First condition is related simply to the definition of periodicity, thus evaluating the error
after one complete revolution at t = T (again assuming t, = 0). The latter can be given
separately for both position P = P(t) and velocity V = V(t) displacement-vectors as

IP(T) — Poll < APy & IV(T) = Voll < AVr (2-67)

where APy, AV, are scalar threshold values (see again Appendix-A).

II — EIGENVALUES CONDITIONS:

Second condition is related with all the previous discussion on Hamiltonian systems and
the symplectic form, such that the Monodromy matrix for periodic solutions always
involves at least two real eigenvalues as 1; = 1, = +1. See Section 2.2.4 for more details.
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Without any doubts, periodicity conditions could also be verified on a longer time-span,
for example looking at t; = 2T, 3T, etc ..., as it will be shown later for resonance orbits.
One important remark is related to a really unstable dynamics, here under investigation,
due to the presence of unstable manifolds that complicate much more the entire analysis.
This is not only a consequence of the numerical integration, which we will prove to be
extremely accurate, but mostly to the very unstable behaviour in a neighbourhood of
periodic solutions, where trajectories are actually “trapped” within these manifolds.
More details can be found in the Appendix-B, while here we continue presenting the
“Numerical Continuation” technique adopted for the generation of each family.

2.4.3 Numerical continuation

As stated before, the algorithm starts with a first analytical guess very close the libration
points (where the approximation is supposed to be more accurate), thus the DC-method
leads to a precise numerical periodic solution, fixing for example x, and so correcting all
remaining shooting variables. These guesses come from the III-order analytic expression
in (Richardson, 1980a), e.g. setting arbitrary22 small amplitudes A, and 4,, to ~1073.

At this point the successive orbit can be generated starting from X2, the corrected initial
condition, and after slightly changing the previously fixed parameter we arrive at

xi with  x™ = x4 Ax, (2-68)

Numerical Continuation {n
0

with Ax, as step-size within the family. The choice of z, as main variable to generate the
family along a vertical direction (so correcting the horizontal shooting position x,) is also
possible, except for the Horizontal Lyapunov family for obvious reasons. Nonetheless,
the correction works on the linearized dynamics, therefore a too large step-size will cause
the algorithm to diverge, especially if the next member within the same family has
substantial different shooting conditions. For CR3BP with small u-values we have also
L1/L2 very close to the mass M, and this is why it is here recommended to express Ax, as
fraction of v, = y,, (1), again the distance between M, and each collinear L-point.

During this generation process the algorithm stops if it reaches the maximum number of
iterations without satisfying all mentioned criteria or when the “Eigenvalues condition”
has been violated. The latter is indeed a fundamental propriety of periodic solutions in
the CR3BP, while the “Closing condition” has not been used as exit-point for the
algorithm but only as a benchmark, but still visible in the analysis output (see Figure 15).

2.4.3.1 Numerical continuation by “Pseudo-Arclength”

This previous Numerical continuation by “natural parameter” unfortunately reveals
some issues near bifurcation-points, especially due to the existence of other families, for
example requiring a too high number of iterations in order to converge (Bosanac, 2012).
In fact, a unique solution is assured for each six-dimensional initial condition in the
Phase-space due to the “Existence and Uniqueness Theorem”, while the algorithm
could literally “jumps” to a different family located near these bifurcation points.

22 Tt is important to take in consideration the Amplitude Constraint for the Halo family as given
in Eq. (2-58) and Eq. (2-59). Note that, as explained in Sub-Section 2.3.2.2, both amplitudes 4,, 4,
are scaled by Richardson respect y,, so their values in the example are actually equal to {1073 -y, }.
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A more advanced type of Numerical continuation (usually defined “Pseudo-Arclength”) is
based on the knowledge of two solutions X E,’}, X f,"}, where a third one can be expressed as

xg™ = x84 axy® with  axy? = (x57 - () (2-69)

Consequently, we are in a certain way guessing the successive initial state-vector using a
“linear extrapolation”, supported by the fact that each family of N-orbits is continuous
and I.Cs. within the Phase-space are represented by a continuous set Xg} ,Vi=1..N.
Making use of such “linear trend” in Eq. (2-69), we are basically approximating the real

set X f,i} for each member of the family. Given both shooting positions on the £Z-plane in
Figure 16, we are able to qualitatively observe the different outcome of both techniques,
thus using Ax, as family step-size, meanwhile x},x{! are actually components of the
shooting solutions for the family generated (in dark yellow).

NUMERICAL CONTINUATION

Example: shooting conditions Halo at L,

pseudo-arclength

Vil
y
V,

¢ natural parameter

z-axis

- Moon
L'l AX

o o

x-axis x:) x:,'

Figure 16: Example is given of Numerical continuation by “natural parameter” (RED) and
“pseudo-arclength” (GREEN), where we consider the X¥z-plane of the Earth-Moon system. In
blue both initial solutions, while in dark yellow the set of corrected shooting positions {x,, zy};.

It is clear that, in general, AXE)"} comes from the knowledge of two previous shooting

conditions X g_l}, X g‘Z}. Adopting this new continuation method, we are capable of better
predicting the successive guess for the DC-method, while first two steps will be given
again from the third-order analytic approximation. In Figure 15, it can be seen that the
algorithm needs usually 4-5 iterations to converge, leading to a very fast computation.23
The Pseudo-Arclength continuation can be also based on more than two known
solutions, for example adopting a spline extrapolation able to provide a much more
accurate guess (Doedel et al., 2007). Of course, for a general polynomial extrapolation

“Polyn”, m-solutions need to be known, thus having X gm+1} = Polyn (X E)l}, X BZ}, ¢ E)m}).

23 From this discussion, it seems plausible to conclude that smaller step-sizes lead to a more
accurate guess, where the linear extrapolation is more efficient and the DC-algorithm requires less
iteration. On the other hand, trade has to be made, due to the fact that with smaller step-size the
generation of the entire family will requires more orbits and a larger overall computational time.
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2.4.4 Summary of the numerical algorithm

The main steps of the numerical algorithm are here summarized, while in the next
Chapter 3 results will be presented and discussed, while for the accuracy and thresholds
adopted in the computation we refer again to Appendix-B.

ALGORITHM: Periodic L-Orbit Generator

10.

11.
12.

Select a u-value and a family of orbits (H-Lyapunov, V-Lyapunov or Halo).
Compute the location and energy level of the selected libration point (L1 or L2).
Calculate coefficients for the third-order analytic approximation as presented in
(Richardson, 1980a). See Section 2.3.2.2.

Select two small amplitudes A;, 4;; to obtain two different initial conditions, as
also two guesses for the integration period, such that

T
xg? =[x 0,287 0,05 0] & TP (2-70)

Correct previous guesses with the DC-method (Section 2.4.1), thus use X%ldand

X gZC} in order to find a third one X, 83}, as described in Eq. (2-69). Perform the same

for finding the new guessed period TO{?’}, based again on TO{”} and TO{ZC}.

Start Iterative cycle:
Correct with DC-method the shooting guess Xf)i} integrated till To{i}, so leading to

new corrected values as X0 and T,
Check the exit-criteria given by Eq. (2-65) and Eq. (2-66):
a. If not satisfied (so the maximum number of iterations has been reached),
the iterative cycle stops.
b. If both satisfied, proceed with the next point.
Integrate the STM and the state-vector for one complete revolution till T(){iC},

starting with the corrected shooting condition X f,iC}.

Study eigenvalues 4; of the Monodromy matrix (STM over a T-period) in order to

assess the linear stability. Also check the “Eigenvalue condition” (Section 2.4.2):
a. If there are no real eigenvalue 2 = +1 (so orbit found is not periodic), the

iterative cycle stops.

b. Ifthere are at least two real 1 = +1, proceed with the next point.

Save parameters and analysis relative to this i-member of the family.

Set new shooting conditions X g“} and TO{iH}, as described in Eq. (2-69).

Iterate again from point 6.

End Iterative Cycle.

= Plot Family results.

= Save Family parameters.

END ALGORITHM
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CR3BP: Results

In this Chapter 3 we present main results for the investigation of the Circular Restricted
3-Body Problem (CR3BP), previously analysed in Chapter 2. Most of the theory has been
already described as also principal methodologies discussed, while here we proceed with
more practical aspects. Once again, we refer to the Earth-Moon Circular problem as
“Test-Case” (see Section 2.1.3), considering both L1 and L2 libration points and three
families of periodic solutions: both Horizontal/Vertical Lyapunov families and the Halo
one. For the latter, we present only the “Southern family”, since for symmetry results
holds also in the “Northern family”, as explained in Section 2.4.

In Sections 3.1, 3.2 and 3.3 we focus on the Li-point, while in Sections 3.4, 3.5 and 3.6 we
treat orbits at the L2-point, so again investigating all three aforementioned families,
generated using the algorithm of Section 2.4.4. For each one of these six analyses we
present a graphical plot of the family (every 50 orbits), thus its main proprieties, order of
instability and consequently bifurcations. It follows a Verification and Validation part as
outlined in Section 2.4.2, thus the existence of some “resonance orbits” is given,
fundamental step for the extension to the Elliptic problem. Last, in Section 3.7,
conclusions on all these six sections allow having a complete summary of all three
families at L1/L2 (Earth-Moon CR3BP). Note that for each one, the Phase-space of initial
conditions has been reduced to three dimensions defined by three shooting variables as
{x0,20,Vy0}, while in Appendix-C we provide a more general overview, as also for an
additional family here not considered. Now, before proceed with the graphic results, we
briefly mention few additional settings involved in the research process.

ADDITIONAL SETTINGS

The computation starts at each L-point with the two solutions given by an analytic
approximation (Section 2.3.2.2), thus applying differential correction and continuation
on each member of the family. In addition to the “exit-conditions”, the algorithm stops
also if the shooting x,-position (current orbit) cross the M, (so x,), since we consider
only a range in the x-direction spanning from the L-point to the Secondary mass. For the
V-Lyapunov family, mostly extended along the z-direction, the algorithm stops once the
“Initial Conditions” (I.C.) trend starts to reverse its direction, so going from M, to the
relative L-point. Last setting to be mentioned is related to the numerical continuation by
pseudo-arclength, used for guessing a close I.C. for the next member of each family, so
following the Eq. (2-69). The latter has been normalized in order to have a distance on the
X2-plane between members of around y; /1000, thus minimizing “lacks or holes” during
the propagation process. All constants, settings and threshold values adopted can be
found in Appendices-A/B, while here we proceed presenting the results.
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3.1 The Horizontal Lyapunov family at L1

L1 H-Lyap: PLOT at zz = 0.0121506
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Figure 17: Graphical plot of the H-Lyapunov family of periodic orbits, every 50 members with
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with
the L-points (mmagenta star), shooting conditions (black dots) and last orbit (black line).

3.1.1 Proprieties and main bifurcations

The orbital period (T) and orbital energy (J) are here shown in magenta for each member
of the family. In addition, using the Jacobi constant, the energy-error in the integration
along each orbit is given as mean value (blue) and standard deviation (red).

L1 H-Lyap: ORBITAL ENERGY/PERIOD at p = 0.0121506

J QOrbllaI Energy)_ : 4 ‘ . . JvsT
35 ¢ 1 3.5
= 31f 1 3.1t
53.05¢ 1 3.05F
£ elk el e s o e e, lm sl i
B ap : 3
-
295} 1 2951
29k . . . . . s 29k . s s s s I n
084 08 088 09 092 094 096 335 4 45 5 55 6 65
o2 Error AJ: meantstandard deviation T (Orbital Period)
& 0.96
=
S0t 4 0.94
[ - 5
= 092
;L 1074} =
5 : 09+
=
T 0.88
21 0.86
0.84

0.84 086 088 09 092 094 096 3035 4 45 5 55 6 65
x-axis [-] T-Period [-]

Figure 18: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).

L1 H-Lyap: ANALYSIS Monodromy matrix at p = 0.0121506
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Figure 19: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.

L1 H-Lyap: EIGENVALUES ); & STABILITY INDEX v; at p = 0.0121506
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Figure 20: Illustration of six eigenvalues 4; and three stability indices v; = |4; + 4;!|/2 , given
for each pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and
Stability Index (Bottom) are shown, as they will be explained in the Final comment section.
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3.1.1.1 Verification and Validation

L1 H-Lyap: PERIODICITY VALIDATION at p = 0.0121506
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Figure 21: Illustration of the Validation and Verification performed during the Numerical
continuation process. All relative information and notation can be found in the Section 2.4.2 .

3.1.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T, = 27 - N/M as explain in Section 4.4.1.

L1 H-Lyap: MAIN RESONANCE PERIODS "T" at 2 = 0.0121506

T-Period [-]

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
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Figure 22: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,,, = 12 and N,,,,, = 4.
The system 27m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.1.2 Final comment on the family results

The Horizontal Lyapunov family has been generated starting from L1, thus
extending it to M2 with a total of 887 members. The propagation has stopped since last
orbit was no more periodic24, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for t, = 0 and
to = T¢/2). The color-notation for each order-of-instability is described in the LEGEND.

L1 H-Lyap: SHOOTING CONDITIONS [Vt = 0,T/2] at x = 0.0121506
LEGEND: V! , Li, O-instability, 1-instability, 2-instability
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Xy -] Xy -]

Figure 23: Set of shooting conditions at both ¥z-plane crossings [t, = 0,T./2] with the relative
order of instability. Look at the LEGEND for information on the colour-notation adopted.

FINAL COMMENT

The orbital period T, increases monotonically far from the L-point, thus spanning a
range approximatively between 2.6917 and 6.7695 (in non-dimensional units), and
consequently between around 11.70 and 29.44 days. Interesting to note that this is the
only family (in the limits of our generation) that shows orbits with period equal or larger
than one for the system revolution (27), allowing extension of the resonance orbit MIN1.
Near the libration point we have I-order instability till the first bifurcation, which
actually generates the Halo family. In Figure 19 and Figure 20, the H-Lyapunov family is
II-order unstable till a second Tangent-Bifurcation, which reduces again the instability.
The latter is well-known to be related to the Axial family, here not treated but briefly
discussed in Appendix-C. Differently, the last bifurcation occurs at the point —1 in the
complex plane, so it is a Period-Doubling Bifurcation (not related to any new family) and
leading again to a II-order of instability. It is possible to also observe a v; index, as
stability parameter defined for each pairs of characteristic multipliers, such that

vi =05 ||+ A7 L vi=123 (3-1)

while additional main aspects will be examined and summarized in Section 3.7.

24 The last computed orbit has a 3-order instability where the unitary eigenvalues was found as
Al =1+ 1.122 - 1073, outside our “boundary margin” of 10~3 from the unit circle (for |1| = 1).
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3.2 The Vertical Lyapunov family at L1

L1 V-Lyap: PLOT at = 0.0121506 L1 V-Lyap: PLOT at = 0.0121506
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Figure 24: Graphical plot of the V-Lyapunov family of periodic orbits, every 50 members with
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line).

3.2.1 Proprieties and main bifurcations

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each
member of the family. In addition, using the Jacobi constant, the Energy-error in the
integration along each orbit is given as mean value (blue) and standard deviation (red).

L1 V-Lyap: ORBITAL ENERGY/PERIOD at p =0.0121506
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Figure 25: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).

L1 V-Lyap: ANALYSIS Monodromy matrix at ;= 0.0121506
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Figure 26: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.
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Figure 27: Illustration of eigenvalues 4; and stability indices v; = |Ai + /1{1| /2 , given for each
pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability
Index (Bottom) are shown and they will be explained in the Final comment section.
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3.2.1.1 Verification and Validation

L1 V-Lyap: PERIODICITY VALIDATION at p = 0.0121506
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Figure 28: Illustration of the Validation and Verification performed during the Numerical
continuation process. All relative information and notation can be found in the Section 2.4.2 .

3.2.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T = 27 - N/M as explain in Section 4.4.1.

L1 V-Lyap: MAIN RESONANCE PERIODS "T_" at p = 0.0121506

T-Period [-]

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
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Figure 29: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,,, = 12 and N,,,,, = 4.
The system 2m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.2.2 Final comment on the family results

The Vertical Lyapunov family has been generated starting from L1, thus extending it
to M2 with a total of 2044 members. The propagation has stopped since last orbit
reached a turning point, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for t, = 0 and
to = T¢/2). The color-notation for each order-of-instability is described in the LEGEND.

L1 V-Lyap: SHOOTING CONDITIONS [Vt =0,T/2] at xx = 0.0121506
LEGEND: 1 , Li, O-instability, 1-instability, 2-instability
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Figure 30: Set of shooting conditions at both xz-plane crossings [t, = 0, T;/2] with the relative
order of instability. Look at the LEGEND for information on the colour-notation adopted.

FINAL COMMENT

The orbital period T, increases monotonically far from the L-point, thus spanning a
range approximatively between 2.7734 and 4.6835 (in non-dimensional units), and
consequently between around 12.06 and 20.37 days. Looking at the trend in Figure 29,
we expect an increasing period beyond the turning point (where the algorithm has
stopped), while at the same location we observe also a reverse trend of the shooting
velocity in the Phase-space (Figure 30, Right-Bottom). In the three-dimensional Phase-
space the double-symmetry of Vertical Lyapunov solutions (mentioned in Section 2.4.1)
is clear, while the vertical extension is not really visible due to a different scale used for
both the x and z axes (Figure 30, Left-Bottom).

Talking about instability, the I-order is almost constant and it only increases at the
bifurcation point, which is a Tangent-Bifurcation (at +1 in the complex plane) and
consequently related to a new family of periodic solutions. As seen for the H-Lyapunov
one, this new family is again the Axial family (described in Appendix-C) intersecting
the x-axis at two different points, originally referred also with the name Y-family in
(Doedel et al., 2007) and later in (Shirobokov, 2014). The former, in his work, has fully
investigated this new family, well-known in literature to be a connection between both
the Horizontal and the Vertical Lyapunov family. Additional details on bifurcations will
be discussed in Section 3.7, while an example is shown in Figure 96.
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3.3 The Halo family at L1
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Figure 31: Graphical plot of the Halo family of periodic orbits, every 50 members with their
relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), the L-points
(magenta star), shooting conditions (black dots) and last orbit (black line).

3.3.1 Proprieties and main bifurcations

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each
member of the family. In addition, using the Jacobi constant, the Energy-error in the
integration along each orbit is given as mean value (blue) and standard deviation (red).
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Figure 32: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).
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Figure 33: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.
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Figure 34: Illustration of eigenvalues A; and stability indices v; = |4; + 4;*|/2 , given for each
pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability
Index (Bottom) are shown and they will be explained in the Final comment section.
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3.3.1.1 Verification and Validation

L1 Halo: PERIODICITY VALIDATION at p = 0.0121506
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Figure 35: Illustration of the Validation and Verification performed during the Numerical
continuation process. All relative information and notation can be found in the Section 2.4.2.

3.3.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T, = 27 - N/M as explain in Section 4.4.1.

L1 Halo: MAIN RESONANCE PERIODS "T" at 2 = 0.0121506

[N}
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x-axis [-]

Figure 36: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,, = 12 and N,,,,, = 4.
The system 27m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.3.2 Final comment on the family results

The Halo family has been generated starting from L1, thus extending it to M2 with a
total of 1259 members. The propagation has stopped since last orbit has reached the x,
position of M,, while in the figure below we provide an image of the Phase-space of
shooting conditions where both crosses have been considered (for t, = 0 and t, = T/2).
The color-notation for each order-of-instability is described in the LEGEND.
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Figure 37: Set of shooting conditions at both XZ-plane crossings [t, = 0,T./2] with the relative
order of instability. Look at the LEGEND for information on the color-notation adopted.

FINAL COMMENT
The orbital period T, starts increasing and then decreases going toward the M2 mass,

with an initial value as 2.7434 (~12 days) and a maximum one at around xgm“x = 0.9045,
and consequently around 32000 km from the Moon (along the syzygy) and 26000 km
from Li. However, the T-range spans approximatively between 2.2362 and 2.7872 (in
non-dimensional units), so consequently between around 9.72 and 12.12 days. As shown
in Figure 37 (Left-Bottom), the family is getting closer to the Moon, where for the last
member generated (with xENP = x,) we have that zEN? = 0.05 (equivalent to 19200 km
out-of-plane). Very interesting to note in Figure 33 that the entire family has I-order of
instability except for a narrow area between 11779 and 11452 km from M2 (with a very
small horizontal range of 327 km). Here there is a peak as |1] = 1 + 1.696 - 1072, not
related to the very small determinant error (~10~11). More information will be presented
in Section 3.7, in particular based on additional literature for a very similar analysis. As
last, another very important aspect visible is the ‘probable’ stability reached at the end of
the family when looking at the trend in Figure 33, in a strong agreement with results of
(Breakwell, 1979). Moreover, in their paper, they have further extended the generation at
L1 for the Earth-Moon CR3BP, so leading to a “second narrow band of stable orbits with
perilune, however below the lunar surface”. In (Doedel et al., 2007) this bifurcation also
exists (VA; = +1) and it is actually related to the new-born W4/5-family, as connection
with V-Lyapunov orbits existing at the L, s-points.
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3.4 The Horizontal Lyapunov family at L2
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Figure 38: Graphical plot of the H-Lyapunov family of periodic orbits, every 50 members with
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line).

3.4.1 Proprieties and main bifurcations
The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each
member of the family. In addition, using the Jacobi constant, the Energy-error in the
integration along each orbit is given as mean value (blue) and standard deviation (red).
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Figure 39: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).
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Figure 40: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.
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Figure 41: IMlustration of eigenvalues 4; and stability indices v; = |/1i + Ai_l|/ 2 , given for each
pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability
Index (Bottom) are shown and they will be explained in the Final comment section.
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3.4.1.1 Verification and Validation

L2 H-Lyap: PERIODICITY VALIDATION at p =0.0121506
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Figure 42: Illustration of the Validation and Verification performed during the Numerical
continuation process. All relative information and notation can be found in the Section 2.4.2 .

3.4.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T = 27 - N/M as explain in Section 4.4.1.

L2 H-Lyap: MAIN RESONANCE PERIODS "T" at p = 0.0121506

T-Period [-]
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Figure 43: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,, = 12 and N,,,,, = 4.
The system 2m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.4.2 Final comment on the family results

The Horizontal Lyapunov family has been generated starting from L2, thus
extending it to M2 with a total of 899 members. The propagation has stopped since last
orbit was no more periodic2s, while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for t, = 0 and
to = T¢/2). The color-notation for each order-of-instability is described in the LEGEND.
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Figure 44: Set of shooting conditions at both Xz-plane crossings [t, = 0, T/2] with the relative
order of instability. Look at the LEGEND for information on the colour-notation adopted.

FINAL COMMENT

The orbital period T, increases monotonically far from the L-point, thus spanning a
range approximatively between 3.3734 and 5.7127 (in non-dimensional units), and
consequently between around 14.67 and 24.84 days. The analysis resembles the one
presented for H-Lyapunov orbits at L1, nonetheless effects due to the Centrifugal force
should have a major effects as we are father from the barycentre/origin of the system.
Clearly in Figure 17, compared to Figure 38, effects of the gravitational attraction of M1
are more evident in the ‘deformed’ shape of larger orbits. Interesting in this comparison
is also the existence of both bifurcations, respectively related to the creation of Halo and
Axial families, as further confirmation of what has been discussed in the mentioned
literature. Unfortunately close to M2 the integration of the Total system (state-vector +
STM) has some issues, as visible in an increasing error on the Monodromy determinant
in Figure 40. In the same figure (Right-Bottom) a more clear behaviour is shown, where
the eigenvalue 1 is subject to larger noise, still within a boundary 41072 from the unit
circle. This noise in the dynamics near M2 starting from L2, clearly affects the order of
instability (now oscillating between I° and II°); in particular it can be noted in Figure 41
where both v, and v; lose their “continuous trend”, based on Eq. (3-1), mostly due to the
characteristic multipliers motion in the complex plane for different orbits of the family.

25 The last computed orbit has a 3-order instability where the unitary eigenvalues was found as
|Al =1+ 2.397 - 1073, outside our “boundary margin” of 10~3 from the unit circle (¥|1| = 1).
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3.5 The Vertical Lyapunov family at L2
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Figure 45: Graphical plot of the V-Lyapunov family of periodic orbits, every 50 members with
their relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), with
the L-points (magenta star), shooting conditions (black dots) and last orbit (black line).

3.5.1 Proprieties and main bifurcations

The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each
member of the family. In addition, using the Jacobi constant, the Energy-error in the
integration along each orbit is given as mean value (blue) and standard deviation (red).
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Figure 46: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).
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Figure 47: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.
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Figure 48: Illustration of eigenvalues 1; and stability indices v; = |4; + 4;!|/2 , given for each
pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability
Index (Bottom) are shown and they will be explained in the Final comment section.
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3.5.1.1 Verification and Validation

L2 V-Lyap: PERIODICITY VALIDATION at p = 0.0121506
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Figure 49: Illustration of the Validation and Verification performed during the Numerical
continuation process. All relative information and notation can be found in the Section 2.4.2 .

3.5.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T = 27 - N/M as explain in Section 4.4.1.

L2 V-Lyap: MAIN RESONANCE PERIODS "T_" at p = 0.0121506
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Figure 50: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,,, = 12 and N,,,,, = 4.
The system 2m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.5.2 Final comment on the family results

The Vertical Lyapunov family has been generated starting from L2, thus extending it
to M2 with a total of 1787 members. The propagation has stopped since last orbit has
reached the x,-value (of M,), while in the figure below we provide an image of the Phase-
space of shooting conditions where both crosses have been considered (for t, = 0 and
to = T¢/2). The color-notation for each order-of-instability is described in the LEGEND.

L2 V-Lyap: SHOOTING CONDITIONS [Vt =0,T/2] at ;. = 0.0121506
LEGEND: ! , Li, O-instability, 1-instability, 2-instability

zy |-

0.12 0.1 0.08 0.06 0.04 0.02 0
Vyo IF]

Figure 51: Set of shooting conditions at both xz-plane crossings [ty = 0, T¢/2] with the relative
order of instability. Look at the LEGEND for information on the color-notation adopted.

FINAL COMMENT

The orbital period T, increases monotonically far from the L-point, thus spanning a
range approximatively between 3.5192 and 4.4234 (in non-dimensional units), and
consequently between around 15.30 and 19.24 days. Order of instability is always
constant and equal to the I-order, while at the very end of this family we have a
bifurcation very close to the x-location of M2 (where the algorithm stops). This last is
again a Tangent-Bifurcation, as demonstrated in Figure 48, and again related to the
Axial family, which actually exists at all collinear libration points. (Doedel et al., 2007)

Even if not really evident in the 3D plot, V-Lyapunov orbits are expected to be very
elongated along the Z-direction, where indeed the last orbit (Figure 45, in black) is
located ‘above’ the Moon at zENP = 0.2554, meaning more than 98000 km out-of-plane.
This orbits have been studied in (Vermeiden, 2014) in relation to the OLFAR mission, so
we refer to that Master thesis for some more details, while many additional graphics
plots of the extended family can be found in (Doedel et al., 2007), where all five Lagrange
points have been considered, thus highlighting the principal bifurcation points.
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3.6 The Halo family at L2
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Figure 52: Graphical plot of the Halo family of periodic orbits, every 50 members with their
relative order of stability (0-green, 1-blue, 2-red). It also shows the Moon (Grey), the L-points
(magenta star), shooting conditions (black dots) and last orbit (black line).

3.6.1 Proprieties and main bifurcations
The Orbital Period (T) and Orbital Energy (J) are here shown in magenta for each
member of the family. In addition, using the Jacobi constant, the Energy-error in the
integration along each orbit is given as mean value (blue) and standard deviation (red).
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Figure 53: Graphical representation of orbital energy “J” (Top-Left), with its error along each
trajectory (Bottom-Left) based on mean and standard deviation. Last, the Orbital Period “T”
(Bottom-Right) is shown also compared with the same orbital energy (Top-Right).
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The analysis of the Monodromy matrix and its eigenvalues A; (characteristic multipliers)
is here shown focusing on different orders of instability, eigenvalues module with a zoom
at its boundary value (10~3) adopted to define A; still “lying on” the unit circle. Note that
the error on the "Det(M) " has been found after using directly the MATLAB det-function
(in blue) or also using the product of eigenvalues (in orange).
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Figure 54: Analysis on the Monodromy matrix, showing on the Left the orders of instability
(o-green, 1-blue, 2-red) and the error on the determinant, as described in Section 2.2.4. On
the Right, the module of all six “characteristic multipliers” is shown, with a zoom on the
threshold value used for calculating the order-of-instability (Right-Bottom).

The following plot shows more in details the eigenvalues’ behaviour in the generation of
the family, separating each “pair” due to the Symplectic propriety (Section 2.2.3). Main
parameters and considerations will be given later in the Final comment section.
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Figure 55: Illustration of eigenvalues 4; and stability indices v; = |4; + 4;'|/2 , given for each
pair of reciprocal value. Motion on complex plane (Top), relative phase (Middle) and Stability
Index (Bottom) are shown and they will be explained in the Final comment section.
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3.6.1.1 Verification and Validation

L2 Halo: PERIODICITY VALIDATION at p = 0.0121506
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Figure 56: Illustration of the Validation and Verification performed during the numerical
continuation process. All relative information and notation can be found in the Section 2.4.2 .

3.6.1.2 Existing “resonance orbits”

The location of few main resonance orbits within the family is here shown, based on the
ratio N/M with M number of orbit-revolutions and N number of system-revolutions,
limited to N < 4 and M < 12. It follows a period T = 27 - N/M as explain in Section 4.4.1.

L2 Halo: MAIN RESONANCE PERIODS "T_" at y = 0.0121506
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Figure 57: Main resonance orbits existing within the family are given using combinations of
M-value (orbit revolutions) and N-value (system revolutions), with M,,,, = 12 and N,,,,, = 4.
The system 27m-period is given by N = 1, while more details can be found later in Section 4.4.1.
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3.6.2 Final comment on the family results

The Halo family has been generated starting from L2, thus extending it to M2 with a
total of 1142 members. The propagation has stopped since last orbit has reached the x,
position of M,, while in the figure below we provide an image of the Phase-space of
shooting conditions where both crosses have been considered (for t, = 0 and t, = T/2).
The color-notation for each order-of-instability is described in the LEGEND.

L2 Halo: SHOOTING CONDITIONS [Vt=0,T/2] at p =0.0121506
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Figure 58: Set of shooting conditions at both Xz-plane crossings [t, = 0,T/2] with the relative
order of instability. Look at the LEGEND for information on the color-notation adopted.

FINAL COMMENT

The orbital period T, decreases monotonically far from the L-point, thus spanning a
range approximatively between 2.0433 and 3.4149 (in non-dimensional units), so as
consequence between around 8.88 and 14.8493 days. As for the Halo at L1, we have a
zone with a II°-order instability involving only 4-5 members at around x§ = 1.007, so
covering a small range of around 150 km. The latter however is related to a Period-
Doubling Bifurcation as eigenvalues “escape” from the unit circle at —1 (see Section
2.2.5), and it is surprising to see a very similar result also for the CR3BP studied in
(Howell & Campbell, 1999). In particular, they show for the Halo at L2 a subsequent
Fold-Bifurcation and again a Period-Doubling one, in the very similar way as given by the
computed phase of 1, in Figure 55. This is not the only confirmation of our results, based
on similar methodologies, as also in (Breakwell, 1979) they noted that “the L2 family
shrinks in size as it approaches the Moon, becoming stable again shortly before
penetrating the lunar surface”. Obviously, as stated before, the analysis here performed
is not extended till the lunar surface or beyond its x-location (x,), but it offers a very
valid sketch of each family behaviour (at least within small p-variations), useful for a
later extension to the elliptic case, not performed in those papers. We refer to (Howell &
Campbell, 1999) for a very nice comparison of the investigation over Halo orbits, even if
based on a different system, while very remarkable is the catalogue of several families in
the extensive study (on a very large u-range), presented in (Doedel et al., 2007).
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3.7 Conclusive discussion on results

Three main families around L1 and L2 in the Earth-Moon system have been investigated
so far in this Chapter 3, while here we simply further discuss some aspects, in particular
related to bifurcations existing in each one of these six cases. In fact, in a x-range
between the L-point and M2 (here the Moon) we have observed many changes in the
order-of-instability, while using the analysis on eigenvalues it has been possible to define
the type of each bifurcation, based on what has been explained in Section 2.2.5.

In Table 3, the list of these bifurcations is shown considering a family (Fam), the
number of orbits within the family (IN°), the order of instability (OI) with the member
(Me) where it changes. Then, for all these last orbits, types of bifurcation (Type) as
Tangential-Bifurcation [T-B], Period-Doubling [P-D] and Krein-Collision [K-C] have

been given with the respective non-dimensional shooting coordinates {x§'", z§'", v5"}.

Note that these values are provided up to the 15% decimal in order to allow future studies
comparing these results, but the reader should carefully consider all settings and
methodologies as explained in Section 2.4, as also in both Appendices-A/B.

Table 3: Detailed data related to bifurcations points and order-of-instability within each one
of the three families investigated at L1/L2 libration points in the dynamics of the CR3BP for

the Earth-Moon system. For the notation adopted, the reader is referred to the text above.

Fam | N° | OI | Me | Type xBIF zBF vie"
I
109 | T-B | 0.854746068332264 0 —0.133372161705627
HL II
1i | 887 611 | T-B | 0.930515109540220 0 —0.603318504951302
I
806 | P-D | 0.959947306822195 0 —0.935511886340790
11
I
201 | T-B | 1.120421768004934 0 0.175872005992750
HLL II
1o | 899 742 | T-B | 1.029624211956750 0 0.724089536008752
I
828 | P-D | 1.015190589368683 0 0.926762357699208
‘?’
V-L I
Lo | 2044 1605| T-B | 0.922240504670069 | 0.239946985133986 |—0.065278557049110
II
V-L I
Lo | 1787 1784| T-B | 0.988085224026283 | 0.255170595137716 | 0.135229358005970
11
I
953 | P-D | 0.957063987485636 | 0.081910490155745 |—0.450741645058225
Halo | 1,09 11
L1 960 | P-D | 0.958058233074258 | 0.081549999736737 |—0.454183971737394
I
I
899 | P-D | 1.007309771070823 | 0.063626789517973 | 0.539125695884842
11
903 | P-D | 1.006781668335796 | 0.063209547140279 | 0.542335262224073
Halo | 4,01 1
L2 1042| T-B | 0.992517674589760 | 0.045042269428916 | 0.686370335822180
0
1106| P-D | 0.988990905929304 | 0.034926868166713 | 0.792858036634374
I

* note the ‘?’-symbol, due to the uncertainty as described in Section 3.4.2
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Main results have been discussed in each relative section, while in Table 3 bifurcations
have been summarized more in details. At this point, before proceeding with the
introduction of the Elliptic problem (extension from the circular case), few additional
aspects require some considerations.

First of all, in agreement with most of the mentioned literature, no Krein-Collision exists
within those families, at least in the limit of our propagation from each L-point till the
Secondary mass M2. Only uncertainty is given for the last bifurcation of Horizontal
Lyapunov orbits at L2, but from the trend shown in Figure 41 (eigenvalue’s phase), it
seems plausible to have a Period-Doubling bifurcation as it is approaching the real value
—1, right before leaving the unit circle. It follows that no new family of periodic solutions
can be found in that neighbourhood.

Also important to be mentioned is the presence of one bifurcation for Vertical Lyapunov
and two bifurcations for the Horizontal Lyapunov, in agreement with recent literature.
These two are related respectively to the Halo orbit as discussed in Section 2.3.2.3, and to
the Axial one that connects both Vertical and Horizontal families. In addition, also at L1
the Halo family stops right before the bifurcation related to the W4/5-family in
connection with V-Lyapunov orbits at L, ,s-points, as described in (Doedel et al., 2007).

Last, the bifurcation in the Halo at L2 before the “Spectral Stable” green area (with all
eigenvalues lying on the unit circle), is actually a Tangent-Bifurcation that has been
studied for the Sun-Earth/Moon system in (Howell & Campbell, 1999). As stated, “every
local extremum of the Jacobi Integral, where the order of instability changes, indicates
a cyclic-fold bifurcation.” At the 1042™ member of this family, we have indeed a
minimum of the energy shown in Figure 53 with a value as J¥'N = 3.01517762183665,
and consequently it is related to a so-called Cyclic-Fold Bifurcation, where all four
eigenvalues 1;,A71,15,43 are real and equal to +1, as illustrated in Figure 55. Again as
discussed in (Howell & Campbell, 1999), for periodic solutions in the CR3BP, “the cyclic-
fold bifurcation represents only a change of instability of the family and no new
periodic solutions exist; the only qualitative change is in the order of instability”. This
also explains why this bifurcation has not been mentioned in (Doedel et al., 2007), where
the investigation has been focused only on new families of general periodic orbits, thus
without taking into account possible Period-Doubling bifurcations.

Let’s now proceed with the theory concerning the Elliptic problem, where main interest is
now focused on resonance orbits and changes in their liner stability (order-of-stability).
All the discussion refers to the eccentricity parameter, while bifurcations within the
family itself are not studied from the moment that periodic solutions do not arise
anymore in continuous family, as previously seen for the circular case (see Section 4.2.3).
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ER3BP: Analysis and Methods

In this Chapter 4 we consider the Elliptic Restricted 3-Body Problem (ER3BP). First, in
Section 4.1 we present main aspects of the dynamical model in comparison to what has
been shown for the Circular problem (Section 2.1). Hence, in Section 4.2, the Dynamical
System Theory (DST) is given for what concerns the elliptic case, so further exploiting
Floquet Theory in order to study the linear stability. Last, both Sections 4.3-4.4 focus
respectively on Analytic and Numeric methodologies, as evolution of main techniques
adopted for the circular case. Both approaches will involve mainly “resonance orbits”, as
one of the most critical aspects of the ER3BP dynamics.

4.1 Introduction to the Elliptic problem

The Elliptic problem is a much more complete dynamical model able to well describe the
motion of a small mass ms in the gravitational field produced by two principal masses
(again the Primary M; and Secondary M,). In Section 2.1, we have defined four different
formulations for the restricted problem (m; « M;, M,), all dependent upon the positive
e-parameter (also defined as eccentricity). Consequently for the elliptical case we are able
to re-consider all assumptions made so far for the ‘standard’ CR3BP, but this time we will
describe the Kepler motion of P;-P, considering a non-zero eccentricity in Eq. (2-1), such
that e € (0,1). (Szebehely, 1967)

Under this perspective, it is straightforward to understand how the previous Circular
problem can be simply be considered as a particular case, setting e = 0 in the dynamical
model of the ER3BP. The latter is fully justified by the continuous character of equations
respect to the e-parameter (Bennett, 1965), while it will be shown later how this dynamic
changes radically when e > 1. For this last case, both principal masses are constrained in
an unbounded motion and trajectories for P; are mostly unlikely periodic solutions. In a
very recent study (Barrabés, Cors, & Ollé, 2015) over the so-called Parabolic problem
(PR3BP) for e = 1, it has been asserted that periodic orbits cannot exists at all, differently
from what it will be shown later in Section 4.1.4.

Once again, test-case selected is the Earth-Moon system having e = 0.0549, while the
entire discussion given in Section 2.1.3 on additional perturbations is still valid. In fact,
they could be used in future works also for this elliptic case, thus improving the
‘standard’ dynamical model (ER3BP) here analysed. At this point, we continue providing
the definition of this new dynamical model within some suitable reference frames.
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4.1.1 Dynamical model and reference frame

The dynamics of the Elliptical Restricted 3-Body Problem (ER3BP) has been studied by
many authors in the past few years, using different reference frames in order to describe
the problem mathematically in the most efficient way possible. Well-known reference
frame usually adopted has been provided in (Szebehely, 1967), using Pulsating synodic
coordinates, as it will be shown later. However, here we decide to proceed gradually, so
starting by a very similar reference system as the one adopted for the CR3BP: the synodic
frame (Figure 2), co-rotating with both the Primary M; and the Secondary M,. Its origin
is fixed at the barycentre, while the mass m; (e.g., the satellite) is once again neglectable
and has no consequences on the Kepler motion (elliptical) of the two principal masses.
An illustrative example is shown in the following Figure 59.
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Figure 59: Illustration of both inertial (red) and synodic frames (magenta) for the Elliptical
Restricted 3-Body Problem, with distances x4, x, referring to the position of M, M, along the
syzygy. In white, the 0-phase is shown starting from the peri-apsis, while also r = r(e, 0) is
shown as time-dependent relative distance between both masses, as described in Eq. (2-1).

At this point we can use Eq. (2-2) to define2¢ the dynamics of P; in what it is known to be
a time-varying gravitational field. Main characteristics and proprieties of the 2-Body
Problem (associated to M;-M,) have been omitted here since very well-documented in
common literature or textbooks as (Goldstein et al., 2002). However, very first difference
within the Elliptic problem is this new “oscillation” in the synodic co-rotating frame of
both the two masses, such that their position along the syzygy direction can be found
from the definition of centre of mass. Their expression follows as

X, =-1-& & X, =4+r-§& (4-1)

w.r.t.
with r relative distance (M, — M,) of Eq. (2-1) and ¢; = M; /M, ratio between masses.

26 Note that here we are still considering a ‘dimensional’ system, and only later it will be
adimensionalize, as performed for the Circular problem at page 5.
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Three second-order non-linear differential equations follow from Eq. (2-2), such that

az (* Tr13 T3 —2(»3:/ —a)zx o
t\z i3 23 0 0 0

with the notation for the P;-position as x = x3,y = y3,z = z3, while y; = GM; and r;3 are
respectively the planetary mass of each i-mass and the relative distance of P; from them.
From now on, the dot-notation will be used only for referring to the derivative respect the
physical time t, while the frame rotates non-uniformly as w = d@/dt. The parenthesis
terms on the right side of Eq. (4-2) are respectively the Coriolis, the Centrifugal and last,
the so-called Euler force, in this case non-zero since w is no more constant. Value for
both the r;5-distances is given based on Eq. (4-1), thus leading to

X — X; x—_|—r-fl-
Ti3 def = [ y l = y ,Vl = 1,2 (4'3)
z Z

As described in Eq. (2-1), we can well define time-dependent parameters in the Eq. (4-2),
such that @ = a(0) is the angular acceleration and 6 is the relative phase (see Figure 59)
between masses starting at the peri-apsis of the Kepler motion (V6, = 0). As described in
the Literature Study=7, also given in (Goldstein et al., 2002), we can write w(e, 6) as

do (1+e-cosB)?
= —=n- 3
dt (1-e2)z

w (4-4)

with n mean motion given in Eq. (2-3), thus the angular acceleration a(e, ) is defined as

do d?o —2e-sinf

o T —w? W= 4-5)
dt  dt? L 2 1+e-cosb

a

using ¢ = (e, 0) as auxiliary variable. As seen in Section 2.1.1, all equations of motion
can be written in a non-dimensional form, where time-space-mass have been set as

e SPACE [km]: a=1
o MASS [kg]: MTOT = Ml + Mz =1
e TIME [1/s]: n=1

leading to G/n? = 1 and with a main orbital period again as T = 2m. Differently from the
Circular problem, here masses are oscillating in time along the x-axis with impressive
effects on the dynamics, as later extensively explain in Section 4.2. In order to present the
non-dimensional differential system, we will make use again of u = M, /M, where we
have that §; = 1 — u, &, = u. A brief discussion on some time-related aspects is necessary,
for example relative to a possible time-rescaling of the previous equations. (Perko, 2001)

27 This is a result of the conservation of the angular momentum for the 2-Body Problem, as also
defined by the so-called Third Kepler’s Law. See (Murray, 1999) for more details.
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From Eq. (4-4) it is possible to define the mathematical relation between the physical
time t and the 6-phase, such that starting with both ¢t,, 8, = 0 we obtain28

1 1—-e 0
t=7—l- 2 - atan -tan(i) +£-\/1—e2 (4-6)

1+e 2

Clearly, for e = 0 we have that 6 = nt, in agreement with what seen for the circular case,
while now the differential system can be expressed in the non-dimensional form as

x+r-u x—r-(1—p)

¥=—-A-p)—=—-u 3 + 2wy + w?x + YPw?y
n r
.. y y .
j=—-1—-p) S—u 52wk +w?y—pox (4-7)
L5} rz

.o (1 ) Z Z
o (l—py) =2
K o K 5

r=y(+r-p)?+y2+z2

rzz\/(x—r-(l—u))2+y2+zz

(4-8)

with all variables previously defined, as also for the dot-notation (meaning d /dt).

4.1.1.1 Time re-scaling respect to a new time-like “f-parameter”

We are dealing with a motion based on three second-order differential equations in the
physical time t. However, once converting Eq. (4-7) into a first-order system, we can also
obtain 1+6=7 differential equations combining Eq. (4-4) and Eq. (4-7). Here, 6 = 6(t) is
the additional t-dependent variable for a new state-vector X* = X*(t), while based on the
chain’s rule, we are able to transform the time-derivative of a general variable Q as

do , do o _do ws)
dt de dt do

that for the circular case is reduced to a simply time-rescaling, since w = n is constant.

With Eq. (4-9) the differential system involves again a six-dimensional state-vector

X = X(0), where the aforementioned 6-phase becomes the new time-like parameter

(Perko, 2001). A similar transformation holds for all orders of derivatives in Eq. (4-7),

and new velocities can be defined at this point as u, ,Vq = {x,y, z} , such that

dq

== 4-10
T (4-10)

d
Vg = d—z 2 %-w(@) =uq - w(f) with u

28 The result can be simply shown using the Leibniz’s notation (or chain’s rule), in such way that it
becomes necessary to analytically solve an elliptical integral (Jordan & Smith, 2002), so having

do (9) it follows that f—t ftdt J't dao
— =W —_— _— = = —_—
dt T, r, 0(0)
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The new differential system is now completely dependent on the §-parameter, while the
physical time t is “intrinsically” bounded within the problem through Eq. (4-6). Referring
to this reference system as “No-Pulsating”, we are able to re-write Eq. (4-7) as®

X+r-u x—r-(1—p

x"+Yx' = —p) —5—= - —— + 2y +x+y
w1 w1y
y
"ty == —p)- —u- —-2X"+y—Yx -
y' iy (1-p) ot d M gz3 y—y (4-11)
sz [A=w u
w? e Ty

where both members have been divided by w?, having w # 0,Vv8 if e < 1. For both 7,7,
it holds the very same expression given in Eq. (4-8), while the apostrophe symbol will
always be adopted as notation for the derivative respect to 6.

Theoretically, at this point we have obtained the full dynamical model of the ER3BP,
again defined by a non-linear differential system in the new time-like 6-variable, but
dependent also upon two parameters: the eccentricity e and the mass-ratio u. After
setting e = 0, it follows that r =1, w =1, ¥ = 0 and the system becomes exactly the
same one given in Eq. (2-5), so in perfect agreement with the Circular problem. However,
determination of Lagrange points seems to be more complex now, and based on their
definition (see Section 2.1.2), we are supposed to solve the following system

(1 +r —r-(1-
X—E'l(l—ﬂ)'x Z . (3 2 ty =
n "2 4-12)
L A-w u _yr=0
y (1)2 7,.13 T23

that is dependent upon the 6-variable, while x',y’,z" = 0 and having again that z = 0. A
precise solution seems difficult to be found, and most likely its expression is time varying
from the moment that masses (and their gravitational potential) are now oscillating. On
the other hand, it is important to consider also that in the CR3BP Lagrange points do not
really exist in an inertial frame, based on the proper definition of “critical point” in the
Phase-space, as given in Section 2.2.1.1. Hence, similarly to (Szebehely, 1967), we are
going to define a new reference frame, also denoted as “Pulsating”.

4.1.1.2 Pulsating reference frame for the ER3BP

The complete transformation from an initial “No-Pulsating” system in Eq. (4-11) to the
“Pulsating” one in Eq. (4-15) is here not given, but can be retrieved with a straightforward
application of following relations in Eqs. (4-13)(4-14). With few additional manipulations,
the final expression has been obtained (using “Maple 2016” software) and later it has
been verified with some general literature, again as (Szebehely, 1967).

29 In red all additional terms coming from the re-scaling of the second derivative, such that
dg? d (dq de) d (dq ) d (dq )
= —_— w]*w
dtZ — dt\de dt)  dt

dq 2 ’
~de?’ +_“’ [WJF_]
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From this previous adimensionalization, all distances have been scaled by a constant
parameter a, semi-major axis of the relative orbital motion of M, respect M;. Major idea
is to re-scale equations using 7y), the 8-dependent distance between M;-M,, such that

(4-13)

X=-"1, v=2, z=
T(6) T'(6) T(6) Ry =1,/7)

X y Z so having {Rl = rl/r(g)
As consequence, the entire system is now pulsating in time, defined by the 6-variable.
However, the definition for the P;-velocity is also changed, and starting with a general
pulsating coordinate Q = Q(8) we have that its §-derivative expressed in the new frame is

_ 17 P _dq

Vg=Q'=—-+Q —~ ,Vy,=—

T(g) 2 de (4-14)

The final expression for the “Pulsating” system of the ER3BP is summarized as follows

X+u - (1 X-(0-w
X// _ ZY, — . X —_ 1 —_ . —
1+ e-cos(9) [ A= R}
—u u
Y'"+2X' = -1 — - — 4-15
* 1+ e-cos(6) [ R} R%l (13
Z 1- b #
7" = — : + 0
14+e-cos(d) | R} R3 e cos( )l

or in a more compact form following (H. Peng & Xu, 2015a, 2015b, 2015¢), such thats°

( dUg
X" =2Y =—
0X
dUg
LY +2X =— 4-16
+ P (4-16)
dUg
ZII —_—
\ 0z

where we have used the gradient components of a pseudo-potential function Ug, which is
dependent upon this pulsating position coordinates, along with the 8-time. The Uz can be
related to O, potential function adopted in Eq. (2-10) for the circular case, so leading to

1 l Zze-cos(H)l X?24+Y2 1—ypu
UE: —_ =

U
S — + +— (417
1+ e-cos(0) 2 R, R, ( )

30 A different formulation has been originally given in (Bennett, 1965), with the definition of a
pseudo-potential function V; = V¢(X,Y, Z, 6) with the last equation as Z"” + Z =V, so having

Ve = ! Q +Z2
E™ 14+ e-cos(6) ¢t

while we will adopt the notation provided in Eq. (4-16), since easily comparable with Eq. (2-10).
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4.1.2 Existence of Lagrange points and the new “symmetry constraint”
Differently from (Szebehely, 1967), with his analysis on the planar Elliptic problem, here
we consider the full spatial problem. The latter is not based on the notation originally
adopted in (Bennett, 1965), but more conveniently the one previously described and also
used in (H. Peng & Xu, 20153, 2015b, 2015c¢). So far, we have seen that libration points
are most likely difficult to find within the No-Pulsating frame, while for such new
formulation in Eq. (4-16) there are many similar features with the Circular problem.

The existence of a function Uy, defined “pseudo-potential” since it depends also upon the
time-like parameter 6, is without doubt a significant advantage for all our investigation.
First of all, in Eq. (4-15) we note that all five libration points can exist and in addition to
that, they actually have the exact same numerical value as the one found solving both the
Eq. (2-7) for the collinear and the Eq. (2-8) for the equilateral ones (H. Peng & Xu, 2015a,
2015b, 2015¢). As consequence of this pulsating reference frame, it means that within the
no-pulsating one (still co-rotating with both masses), their position is oscillating in time
around some nominal values. For example considering collinear L-points we have

VeKL1l

xy, =X, 7(e, 0) — xp, ~ X, [1—e-cos(8) + 0(e?)] (4-18)

with X, numerically computed solving Eq. (2-9). When looking at the Taylor first-order

expansion of r(6, e) respect to a small eccentricity e < 1, we can clearly see the periodic
oscillation having similar period as the system’s revolution one. It is possible to assume
that the Pulsating system, even if physically less intuitive, is most suitable for our
analyses, so providing us a clear definition of libration points. Furthermore, the existence
of the pseudo-potential function in Eq. (4-16) is remarkably similar to what has been
previously observed for the circular case.

4.1.3 Variation in the symmetry: the shooting-time constraint

In comparison with the CR3BP, it is possible now to investigate the possible existence of
particular proprieties or symmetries that could help simplifying the inspection over the
elliptical case. Looking at Eq. (4-15), it seems clear that all three symmetries still exist in
the new system, due to its similar expression with the Circular problem in Eq. (2-5).
Another remarkable aspect is related to the “reverse trajectory”, defined in Theorem 1.2
(with all three possible transformations), but referring now to the #-variable adopted as
new time-like parameter of the differential system.

In the new “Pulsation notation”, evident is the appearances* of time-dependent terms
within the vector-function f = f(X, 8). The latter is one of the most important aspects
characterizing the Elliptic problem, while other perturbations in Egs. (2-17)(2-18)(2-19) as
given in Section 2.1.3.1, did not change radically the nature of the differential system
(Musielak & Quarles, 2014). In fact, in their expression, there are no explicit time-related
terms, while extremely relevant are effects of having a differential system changing in
time. This aspect will be extensively discussed with the Dynamical System Theory, while
now we provide a new time-constraint related to symmetry for the Elliptic problem.

*'In fact, it is possible to observe a term cos(8) in the pseudo-potential function Ug, thus in all
a o a

E’E'E]’ which is involved in the system. See Eq. (4-16).

three components of its gradient V = [
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As consequence of what previously stated, all transformations involving the time should
leave unchanged the equations of motion of the current “Pulsating” notation, as well as in
a “No-Pulsating” frame. Using both Eqgs. (4-11)(4-15), the reader could trivially proof that
a new necessary condition on periodicity requires that

6, =k-m ,Vk € Z (integer) (4-19)

where k is either zero or an integer number (positive or negative). Principal reason is
related to the existence of a cosine function (even function), having a relevant impact on
the possible initial condition for periodic orbits (Section 4.4.2). As already seen in
Section 2.1.2.2, here we present a numerical simulation of such symmetry, considering a
general eccentricity e = 0.1 and starting with 8, = 0 and 6, = /3 . Purpose is here only
to “qualitatively” illustrate the different behaviour of same shooting conditions adopted
in Figure 5, but now integrated for the ER3BP dynamics.

ER3BP: "Theorem of Image Trajectories". [V0, = 0] ER3BP: "Theorem of Image Trajectories". [V0, = 0]
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Figure 60: Main three symmetries for the Earth-Moon Elliptical Restricted 3-Body Problem in
pulsating synodic coordinates, with e = 0.1 and starting at 6, = 0. Compare to Figure 5.

As shown in Figure 60, all major three symmetries still hold in the ER3BP, but the
trajectory is clearly different from Figure 5, since considering a different dynamical
model. In next Figure 61, the same initial conditions have been numerically integrated
for the same period, but starting with a different shooting-time given as 6, = /3.
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Figure 61: Main three symmetries for the Earth-Moon Elliptical Restricted 3-Body Problem in
pulsating synodic coordinates, with e = 0.1 and starting at 6, = /3. Note the loss of both
Backward and Backward-Mirrored symmetries due to the condition given in Eq. (4-19).

Comparing Figure 60 and Figure 61, it is possible to note the breaking of all time-related
symmetries (for a Backward and a Backward-Mirrored transformation), while the first
type of symmetry (Section 2.1.2.2), involving only the z-variable, still perfectly holds.
Further aspects will be treated later in Section 4.4 (“Numerical Approach”), while we
proceed now with few considerations on possible First Integrals of motion in the ER3BP.

4.1.4 The non-existence of First Integrals

In Section 2.1.2.1 we have introduced the Jacobi constant, only First Integral for the
Circular problem, thus logical is to questioning wherever there are similar quantities also
for the elliptic case. In (Contopoulos, 1966), considering a “potential periodic in time”, a
so-called ‘third’ integral of motion can be found, so named in order “to distinguish it
from the classical energy and angular momentum integrals”. Later, its results were
extended by (Sarris, 1982) for a three dimensional ER3BP, but considering both a small
eccentricity and small distance from principal masses (studying planetary orbits).
Moreover, it has been previously shown that the Jacobi constant can somehow be related
to the P;-Energy, mostly due to the fact that in Hamiltonian time-independent systems
the Hamiltonian-Energy is being conserved. (Goldstein et al., 2002)
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Briefly starting with Eq. (4-16) and after few manipulations and we are able to define32, in
agreement with (S. Campagnola, Lot, & Newton, 2008), a particular relation as follows

6

oU
= Ug(6) — Ugo — a_eE do (4-20)
8o

Ve — Vs
2

where Ug,, Ug are respectively the pseudo-function evaluated at 6,6, as also for V,,V
scalar velocity (V2 = V2 + V2 + V2). It follows an expression for J; = Jz(0), here named
as “Elliptic-Jacobi integral”, which is dependent upon the 6-variable and consequently
not really considered as First Integral of Motion®, such that

6 ZZ
Je(8) = V(o) — 2Ux(0) = V§ — 2Ugo + L I(UE(H) + 7) ' 1!’(9)] ae (4-21)

—2e-sin(@)
1+e-cos(8)
it seems clear that this E-Jacobi integral is not constant and looking carefully at the
integral expression we can observe that an explicit expression of the solution is also
necessary, since involving P;-components {X,Y, Z}. As correctly noted in (S. Campagnola
et al., 2008), “choosing different initial conditions within the same trajectory results in
different J;'s” and as consequence it is not more possible to “uniquely associate a
trajectory to a single value of Jz”. A very complete survey has been provided in their
paper, especially for the so-called “sub-regions of motion”, in a very analogous way as
seen for the Hill’s surfaces (or zero-velocity surfaces).

with ¢ © = as auxiliary variable previously given in Eq. (4-5). From Eq. (4-21),

4.2 Dynamical System Theory for the elliptic case

The Dynamical System Theory for the Elliptic problem is briefly discussed here, mostly
focusing on the Pulsating notation and so considering Eq. (4-15) and Eq. (4-16). All basic
knowledge has been given in Section 2.2, while here we provide some main differences
and additional aspects related to the new dynamics investigated. Indeed, the new
differential system is non-autonomous, so dependent on the time-like §-variable and it
can be expressed in a vector notation, differently from Eq. (2-23), such that

. dQ )
0=—5=1(0) (4-22)

where f is a vector-function, Q is a general state-vector Q € R",Vv6 € R.

32 In Eq. (4-20) it is important to remember that Uy = Uz(X,Y, Z, 0), dependent on the time-like
parameter and consequently its differential will include partial derivatives respect to 8, such that

dUp = ) ——=-dgi+—--df Vg ={XY,Z}

33 At the moment of this writing, no Integrals of Motion are known for the ER3BP (S. Campagnola
et al., 2008), nonetheless more information on periodic orbits can be found when properly
adopting averaging techniques. For this last case the reader is referred to (Palacian, 2006).
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4.2.1 Proprieties of “non-autonomous differential system”

We assume that the general differential system in Eq. (4-22) consists of a N-set of first
order non-linear differential equations in the time-like 6-variable. Nevertheless, the
“Existence and Uniqueness Theorem” is still valid, as also the definition of the
Phase-space, but now no more time-independent. This 6-dependence can be easily
shown (Verhulst, 2000), applying the chain-rule to different pairs of equations, such that

dq;  fi(Q.0)

Vi,j=1.N|j#i (4-23)

for each possible combinations of variables and a suitable §-domain (also requiring that
at each phase-point Q = Q* we have a non-zero denominator). In follows that trajectories
in the phase-space change with the 6-time and their geometrical characterization loses
most of its useful proprieties.34

To be mentioned, before analysing the DST in the Elliptic problem, is the possibility of
considering an additional time-rescaling in a new time-like variable “s”, thus combining
both Eq. (4-4) and Eq. (4-15). In this way, it is feasible to arrive at an autonomous system
having dimension 1+6=7, thus with an odd number of equations the system is no more a
Symplectic one. Nevertheless, in general, the use of alternative reference frames could
help the investigation of the problem, as also its expression in a mathematical ‘elegant’

form, even if the physics behind the model chosen is not really changing.

4.2.1.1 Phase-flow in a neighbourhood of critical points

The definition of critical points Q@ = a given in Section 2.2.1.1 remains unchanged, but it
is clear that their location needs to be fixed V6 € R, due to the fact that the Phase-space is
actually changing in time. Within a pulsating notation for the ER3BP, equilibrium points
still exists and numerically are the same as found the CR3BP, while the reference system
itself pulsates in 6-time (Section 4.1.2). However, much more difficult is now the
characterization of their linear stability, since the phase-flow in their neighbourhood is
varying. After linearizing the non-linear system in Eq. (4-16), as did in Eq. (2-26), and

once neglecting higher order terms 0 (||6||2), we are able to obtain a linear differential

system, also written in a matrix form as

X119 9 0 g 0 o] [£]
1'% 0 0 0 0 1 0 %
d|Z 0 0 0 g o 1|]|Z Qo) .
20171 = 1Vexx Vexy Uexz 0 2 ol (Vx| = 4o - = Ajg,, - Q(6) (4-24)
Vy Ueyx Ueyy Ueyz =2 0 0| |14
7,0 1Uggy Ugyy Ugy, 0 0 0] |7,

with Q@ = Q(08) as new state-vector of the Elliptic problem (to distinguish it from the
pulsating X-coordinate), and Q = AQ(0) = Q(6) — Q 1; as displacement from the L-point.

34 For example, the “time-translation propriety” mentioned for autonomous systems (page 35) is
here no more valid and considerations on the initial 8-phase will be undoubtedly relevant.
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In Eq. (4-24), similarly to the Eq. (2-27), we arrive at a matrix AfQL_ = AfQL_(B) as State

Propagation Matrix (SPM), but this time no more constant, where its third quadrant
is constituted by the Hessian of the (time-dependent) pseudo-potential Ug. It follows that
solutions to the linear displacement-dynamics are no more trivial, as in Eq. (2-42) for the
circular case. Furthermore, eigenvalues of Eq. (4-24) are now meaningless, differently
from Egs. (2-43)(2-44), due to the fact that we are dealing here with a system that is still
linear but no more autonomous. (Verhulst, 2000)

At this point we can evaluate the new SPM at each collinear equilibrium Phase-point Qy,,
and consequently from Eq. (4-24) we arrive at the following system

X7 0 0 0 1 0 o7[X]
Y 0 0 0 o 1 0|]|Y
a1z 0 0 0 o0 o0 1] %
—|5 | = |5 4-2
do|Vx| |1+203-3¢ 0 0 0 2 o % 4-25)
Vy 0 1-w? 0 =2 0 0] |V
7] 0 0 w7z 0 0 ol [p,]

with w, = w;(u, e, 0) as pseudo-vertical pulsation, in analogy with w, previously seen for
the Circular problem (from now on called w;,), while { is an auxiliary function such that
( _ e-cos(0)
1+e-cos(6)’
but actually cannot be considered as a real pulsation, due to the fact that it is no more
possible to make use of the so-called “characteristic equation” for non-autonomous

differential systems (Perko, 2001). At the end, value of w, in Eq. (4-25) can be found as

The squared expression of this pseudo-vertical pulsation is given below,

1 | 1-u 4 2
14 e-cos(8) |XLi+M|3 X, +u—1]

w2 = =+ e cos(6) (4-26)

or using the aforementioned circular expression of Eq. (2-43), we arrive at

w3, + e - cos(h)

(4-27)
1+ e-cos(0)

w2 =

Approximations of the non-autonomous linear dynamics around collinear libration
points will be discussed later in Section 4.3.1, where the LP-method has turned out to be
not totally suitable, thus showing its limitations (e.g., very complex expressions), even if
still capable of providing many insights in this new dynamical model.

4.2.2 Floquet Theory for linear stability assessment

In Section 2.2.2, the discussion over the STM, Monodromy matrix and its eigenvalues (or
characteristic multipliers) has taken place, where it has been mentioned that those
results were part of a more general vast theory, known as Floquet Theory, named after
A.M.G. Floquet (1847-1920), and described in many textbooks previously suggested.
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We start with a non-autonomous linear differential system, having a very similar
notation as for Eq. (4-24), such that

dqQ
8 : 4-2
10 =A@ (4-28)

with Q € R" as state-vector, 6 € R time-like variable of the system and A(6) € R™"
differential matrix, continuous in 6, with a T-periodicity so that A(6) = A(6 + T). Hence,
it is possible to formulate the “Floquet’s Theorem” (1883) as follows (Verhulst, 2000)

Theorem 1.4 (Floquet’s Theorem)
“Given system in Eq. (4-28), each fundamental (or STM) matrix ®(0,6,) can be written
as the product of two [n X n]-matrices

®(0,6,) = P(9) - B0~
with P(0) T-periodic and B a constant [n X n]-matrix.”

Trivially to observe at this point that, for what it has been shown in Section 2.2.2, the
Monodromy matrix M = ®(6, + T, 0,) is simply related, for the Circular problem, to the
exponential matrix e#(®~%) and so its characteristic multipliers are equivalent 35 to

A; = eVi®=00) (4-29)

with v; eigenvalues of the constant B-matrix, also called “characteristic exponents”. Once
again, we do not have an analytic expression of the Monodromy matrix, even if a semi-
analytic method for calculating such matrix in the ER3BP (using Chebyshev polynomials)
has been developed in (Gurfil & Meltzer, 2007). Here, we have numerically computed it
using A = AfQLi (8), similarly to Eq. (2-31), and so propagating the STM over a T-period.

Basically, the Theorem 1.4 allows us to reconsider the entire discussion about the use of
characteristic multipliers (Section 2.2.3), thus studying the dynamics linearized around
periodic solutions and with it also possible bifurcations in the Elliptic problem. Main
justification comes from the T-periodicity of the P-matrix, as also from the fact that A(6)
is now T-periodic. Hence, from the T-periodicity it is correct to write that

P(6y+T) =P(6y) = ,,xn (4-30)
with the initial condition (I.C.) on the STM given as ®, = I,,,, such that
®, =P, - eB'(eo—Ho) _p, using the I.C. Py =1, (4-31)

For any time 6, as integer multiple of the T-period, the linearized dynamics can so be
mapped in a very analogous way of what seen in Section 2.2.1.2 for the Circular problem.

35 Small remark is here related to the use of a different notation respect to (Verhulst, 2000), where
characteristic multipliers (“c.m.”) and characteristic exponents (“c.e.”) are defined in the exact

opposite way, so having 4; as “c.e.” and v; as “c.m.”.
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4.2.3 The loss of continuous families in the ER3BP

The differential system for the Elliptic problem is well-known to be still an Hamiltonian
one (Bennett, 1965), so in the form shown by Eq. (2-34). However, the expression of the
Hamiltonian H = H(p, q, 0), with p, q as vectors of generalized coordinates, is now time-
dependent and cannot be related to the energy of the system. (Goldstein et al., 2002)

The Symplectic structure in periodic solution still holds3®, consequently the characteristic
multipliers can be found again in reciprocal quadruplets, and first two points described
in Section 2.2.4 can be consider valid also for this elliptic case. For what concerns the
third point (existence of at least one real eigenvalue 1 = +1 for periodic orbits), it cannot
be taken into account anymore (Broucke, 1969). The geometrical meaning of this last
point is not really trivial, but it could be visualized thinking to an initial displacement
along the periodic solution itself, so 6Q = §Q°(8,) at 6 = 6,. A time-shift is actually able
to change the structure of the phase-space in non-autonomous systems, and it can be
related to a new solution Q™¢%(9), so starting with a new shooting condition as

Qo £ Q" (6,) = Q°(6p) + 8Q°(6y) (4-32)

As stated before, the time-shift propriety is no more applicable here and “in general” we
have that Q°(6, + A9) # Q™" (6,), since it has been already proved that additional time-
constraints on shooting conditions arise in the ER3BP (Broucke, 1969). A graphical
example is given in Figure 62, taken from (S. Campagnola et al., 2008), where two
different splits of 4;,, = +1 are shown after passing from the Circular to the Elliptic

problem.
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Figure 62: Illustration showing two possible “separations” of the two real unitary eigenvalues
of a Halo solution. Branch I (green) leads to additional stable/unstable manifolds, while
Branch II (red) leads to complex conjugate values that do not change the order of instability.
Courtesy of (S. Campagnola et al., 2008).

In the previous illustration a very interesting aspect is shown for the Halo case, where
two different families can be found Ve > 0, allowing to define e = 0 as bifurcation point.
The latter will be further explained later in Section 4.4.3, also defined as eccentric-
bifurcation, while here we continue with a qualitative discussion on possible behaviours
for characteristic multipliers associated with generic periodic solutions.

36 To be more precise, the Symplectic structure holds only “at the end of each revolution in the
periodic case”, as well-described and proved in (Broucke, Lass, & Boggs, 1976).
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In Section 2.2.5, the Bifurcation Theory for the circular case has been introduced,
showing three main bifurcations within each family of periodic solutions, as well as for a
forth one that does not really change the order of instability. In the Circular case, the
bifurcation parameter is the relative x-position from each libration point, as starting
point for the generation of the entire family (Section 2.4.3). However, the loss of both
real unitary eigenvalues leads to the vanishing of continuous families, previously
described in Eq. (2-38), while periodic orbits exists now only within discrete families
based on the so-called “resonance condition”, later discussed in Section 4.3.

From what we have seen so far, it is expected to be able to extend single periodic orbits
found in the Circular problem to the elliptic case, most likely surrounded by their
respective quasi-periodic family (for complex conjugate characteristic multipliers). An
example still in the CR3BP is given for the L2-point in Figure 63 taken from (Nagata,
Sakamoto, & Habaguchi, 2016), where quasi-periodic families (in red) are shown around
their respective periodic solution (in blue), considering both Halo and Lyapunov families.
As discussed before, the Lissajous family exists in the neighbourhood of each libration
point, around both mono-parameter Lyapunov families, due to the mismatch between
wyy and w, , respectively horizontal and vertical linearized pulsations in Egs. (2-43)(2-44).

R £ lissajous 5 ; : quasi-halo
6y s : | ——Vvertical lyapunov x10 ; i |——halo
2 )
~ 04 ) i
N
4 . vy s S
A7 1.012
?\0«_ & __W1 011 1.01
x10>3 2 1.008 1.008
Yy X

Figure 63: Illustration showing two quasi-periodic families at L2 in the CR3BP. On the left,
the Lissajous one exists at each L-point around the Vertical Lyapunov family, while on the
right the Quasi-Halo one. Both are consequences of existing complex conjugate eigenvalues in
the relative Monodromy matrix. Courtesy of (Nagata et al., 2016).

Considering that both 4, , can have general values, as listed in Egs. (2-39)(2-40), it follows
an higher number of possibilities, no more restricted to seven, as also observed and well
summarized in (H. Peng & Xu, 2015b). A remarkable difference is also the existence of
periodic solutions (p.s.) with a 3-order instability, consequently having only
stable/unstable manifolds (H. Peng & Xu, 2015c¢), without any quasi-periodic behaviour
around the periodic orbit. These additional manifolds have been studied in (H. Peng &
Xu, 2015a), revealing that “the redundant stable manifold affects the probability of
feasible transfers in the whole parameter space”. Even so, in this work we are not
considering manifolds or the optimization of general transfer-problems, and so the
existence of such internal/external manifolds will not be treated here. Nonetheless, the
reader is referred to these cited papers, as also to (Parker, 2007) for more details. We can
continue with the description of main approaches adopted to tackle the Elliptic problem.
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4.3 The Analytic approach

As prelude, we prefer to briefly acknowledge the reader about some decisions taken
during the working process of this Master thesis. De facto, during the Literature Study
greater effort has been made in the assessment of possible analytic methods (e.g., the
mentioned Linstedt-Poincaré technique) in order to tackle the Elliptic problem, so
finding approximations of some periodic solutions near collinear libration points. The
last task turned out to be possible, as given in (Farquhar & Kamel, 1973) for a more
general Earth-Moon system, but not really efficient as well discussed in (Gomez &
Mondelo, 2001), where two main analytic methods have been applied. The first is again
the LP-method, able to target particular periodic trajectories but with some limitations in
the stability assessment (see Section 2.3.2.3). In fact, the method actually removes all
unstable ‘modes’ within the approximated solution and consequently it provides a “poor
description of the global picture” in a neighbourhood of L-points. Second one is the
mentioned reduction of the Hamiltonian to Centre Manifold, which “gives a very good
description of the dynamics inside the centre manifold, but it does not produce closed
formulas for the solutions, and it is quite expensive from the computational point of
view”. (Gomez & Mondelo, 2001)

As for the circular case, this part is complementary to the principal one, based again on a
Differential Correction numerical scheme (necessary also for validation and verification
purposes). On the other hand, some insights into the dynamics of the Elliptic problem
will be shown here and in addition to that, a brief discussion over a possible extension
and application of the LP-technique will take place in Section 4.3.2.

4.3.1 Stability under “elliptic perturbations” using LP-method

The initial differential system is given in Eq. (4-24), where we consider the displacement
dynamics on a first-order approximation respect to small amplitudes, and consequently
looking to the linear stability of each L-point within the Pulsating frame. Note that the
system is still linear but now also #-dependent, thus not solvable as did in Section 2.3.
For this reason, we will apply the LP-method respect3” to a small eccentricitye, thus
studying what have been nameds® “elliptical perturbations” in the Literature Study. We
can start re-writing Eq. (4-24) using the definition of Uy as given in Eq. (4-17), such that

S

"_2 X-(1+2c,) 0(e6)
Y +2 Y-(1-c,) 0(e8) (4-33)
7" +7 [c,+e-cos(8)]-a(e,0) =0

?/
X/

with ¢, = ¢, (u) previously defined in Eq. (2-54) and the auxiliary function o = o (e, ), so
leading to a Taylor series at e = 0 that can be expressed as follows

_ 1 ~ N ki_ Kk
o0 = sy = 1T ;e [~ cos(6)] 4-34)

% The discussion is valid here only for small displacements around libration points. In fact we are
still considering just a linearized dynamics, where it is possible to examine full effects due to
ellipticity of the e-parameter, as well as for its first-order effects on the stability.

38 These “elliptic perturbations” are first-order effects due to the introduction of eccentricity in the
problem, but assuming a very small value for it and so neglecting higher order terms as 0(e?).
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From the moment that in Eq. (4-33) we are only considering linear amplitude-terms of
the displacement, it follows that both dynamical motions in-plane and out-of-plane are
again uncouple, thus they can be studied separately. To be noted that so far no
approximation has been made respect to the e-parameter and the previous expression is
trivially computed based on Eq. (4-17), where Uy and Q. have been related. At this point,
considering the Hessian39 of such pseudo-potential (so second derivatives of Uy respect
to the pulsating coordinates), it is possible to neglect higher order terms 0(e?), and so
investigating principal effects related to “elliptical perturbations”.

4.3.1.1 Out-of-plane motion under “elliptical perturbations”
For the out-of-plane displacement it is required to solve the following

7"+7Z-c;=7Z(c;— 1) e-cos(B) (4-35)

Considering a first-order expansion of the solution as Z(6) = Z,(0) + e - Z;(#) and then
collecting all terms at each different order of magnitude in e, we obtain

ZO”+Zo'C2:O

~ I ~ ~ (4'36)
Zl + Zl *Cy = ZO ' (CZ - 1) ) COS(Q)

where solution of the first equation is given using ¢, = w%, (Section 2.3.2.2), such that
ZO = aZO " COS((UZ()H) + bZO " Sin(wzoe) (4'37)

and substituting it in Eq. (4-36), with some trigonometric manipulations, we arrive at

5 1 5 2 _ (w%O - 1)
Zy +Zywzg = ———" azo{cos([1 + wz]0) + cos([1 — wz]6)}
(02— 1) (4-38)
+ " baof{sin([1 + wz,]6) — sin([1 — wz]6)}

The solution consists in the sum of a homogeneous and particular one, so leading to
Zy=70m+ 7P (4-39)
where the homogeneous one is expressed by integration constants ay;, b;; simply as

me = aZl " COS((,I)Z()H) + bZl " Sin((l)zoe) (4'40)

39 It is clear that for the term Uy, ,, it is possible to write it using Eq. (4-17), such that

02U, 02
77~ a7\ 0@ 0 |G-

Z%e - cos(6)
2

) =o(e,0) - [QC,ZZ —e- cos(B)]

where Q¢ ,, = —c, for what we have seen in Section 2.3.2.2.
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At this point, even if considering only a linear approximation (in both amplitude and
eccentricity) we can have a very first insight into the ER3BP dynamics. Note that solution
to Eq. (4-35), in a neighbourhood of the L-point and for a sufficiently small eccentricity,
represents actually a good approximation of the full non-linear system behaviour. This
first-order approximation of the vertical motion for the CR3BP is simply an harmonic
oscillator in wy,, so defined by bounded orbits. However, the new condition on some
possible resonances, having time-forces in [1 — w;] and [1 + w,], is now

satisfied if 1

(l)z = i[l i 0)2] —_— (1)Z = iz (4'41)

so related to an orbit revolving half time during a complete system revolution, which we
found to be 2m-periodic in non-dimensional coordinates. The particular solution to the
Eq. (4-38) can be found based on a resonance or a no-resonance condition, such that

NO-RESONANCE CASE (w; # +1/2)

1- w%o) ) [azo - cos([1 — wzo]0) — bzo - sin([1 — wz0]6)]

ZP(0) =
L 4 wzo—1/2 (4-42)
_ (1 - w%p) _ [azo - cos([1+ wzl0) + bzo - sin([1 + w0]6)]
4 Wzo + 1/2

RESONANCE CASE (w; = +1/2)

- 3 36 36 36 0 0
7P(0) = 3 [azo * cos (7) + by - sin (7)] 7 [bzo * CoS (E) + agz * sin (5)] (4-43)

Clearly, the perturbed period in Eq. (4-35) is now known and has to be 27, differently
from the example in Section 2.3.2.1 when assuming an autonomous system and
introducing strained coordinates. At the same time we known that the value of w; = +/c,
is almost fixed near the libration points by the mass-ratio parameter u, while non-linear
effects could arise when considering higher orders of the expansion. In the third-order
approximation of (Richardson, 1980a), we have seen such non-linear effects, leading to
the existence of Halo orbits when considering a synchronize out-of-plane and in-plane
motion. At the very end, the first-order approximation can be written as

7(0) =~ Z%P(9) = Z,(0) + e [Z0™ + Z7] (4-44)

This brief example shows how the linearized vertical motion can be also driven to
instability under “elliptic perturbation”, mostly due to resonance effects. With a further
expansion in Eq. (4-34), terms as cos?(8),cos3(0), ..., cos™(8) will appear at each level of
the expansion, and in different combinations with solutions from lower-levels. For these
terms as sin(w;60) and cos(w,0), additional resonances can arise and consequently also
many other secular terms, quickly growing fast, as seen in Eq. (4-43).

NOTE: the entire analysis so far has been based only on a linearized motion (for very
small amplitude displacements), while in Section 4.3.2 an extension to non-linear
dynamics will be briefly mentioned. Let’s now briefly consider the horizontal motion,
more complicated since described by two ‘coupled’ differential linear equations.
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4.3.1.2 In-plane motion under “elliptical perturbations”
For the in-plane displacement, once neglecting terms as 0(e?), it is required to solve

X'—=2Y' —X-(1+2c;)=—X-(1+2c,) e-cos(h) (4-45)
Y"+2X' —-V-(1—-c,)=Y-(c; — 1) -e-cos(h)

Considering a first-order expansion of both solutions as X(8) = X,(8) + e- X;(8) and
Y(0) = Y,(8) + e - ¥,(0), then collecting e-terms at each order of magnitude, we obtain

{XOH - 2)70, - XO * (1 + 2C2) = O

o +2% —Yor(1=c)=0 (4-46)
{Xl -2V, =X, -(1+2¢c,) ==X, (14 2c,) - cos(h)

?1” + 2)?1, - Yl " (1 - Cz) = YO " (Cz - 1) : COS(@)

where the solution to the unperturbed system has been already given for the Circular
problem, after removing “modes” related to unbounded solutions (real eigenvalues Ayy).
The remaining part is so given only by a periodic bounded motion defined as

XO = aXO - COS((DXYe) + bXO " Sin(wxye) (4_47)
?0 - aYO ' COS((UXYg) + bYO - Sin(wxya)

and after substituting it in the (perturbed) second system of Eq. (4-46), we arrive at

X -2t -%-(1+2c)=
- (a)%o + %) *axo{cos([1 + wyy]0) + cos([1 — wxy]16)} ...
1
— (@30 +3) - brofsin([1 + wyy16) = sin([1 — wy,16)}
< 2k - (-c) = (4-48)

2 _
((1)20271) . ayo{cos([l + wXY]H) + COS([l - wXY]Q)}

2 _
+(a)20271) byo{sin([1 + wyy]0) — sin([1 — wyy16)}

with an homogenous solution (again removing unbounded modes) expressed as

Xfm =dayq" COS(wXYH) + by - Sin(wXYg) (4-49)
Y™ = ay; - cos(wyyB) + byq - sin(wyy )

At this point, it is possible to solve the system in Eq. (4-48) using common algebraic
manipulation software (e.g., Maple 2016). Solutions X”and ¥/ have been not given here
since not very relevant, while very interesting here are the resonance conditions given as

_ w2, w
+[1 F wyl with  wyy = \/1 - % + % 9wz, — 8 (4-50)

Wxy
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As mentioned at the beginning of this section, only purpose here is to exploit some main
features relative to the elliptic case, without really obtaining an analytic approximation.
First of all, as expected, we have seen that the system is driven by a 2m-periodic force,
caused by periodic variations of the gravitational field due to the motion of both M;, M,.
Furthermore, periodic solutions still exist, but no more embedded in a continuous family
(as explained in Section 4.2.3), while they can be actually compute starting with precise
initial conditions (now involving also the time-like §-parameter).

When discussing the linear stability of collinear L-points under “elliptic perturbations”, a
qualitative result is that the eccentricity (even if small) can creates resonance effects at
some given mass-ratio y. This parameter indeed defines both linearized pulsations, near
each L-points, such that w,; and wyy could match with resonance conditions previously
given (in a first-order approximation) with Eq. (4-41) and Eq. (4-50). Nevertheless, a
general linear instability of collinear points is still visible due to the existence of
unbounded modes, already removed in Eq. (4-47) and Eq. (4-49). An higher order of
expansion in e can lead to additional resonance conditions, discussed before, while now
we briefly consider also non-linear amplitude displacements, where both in-plane and
out-of-plane motions are no more uncoupled, as shown in (Richardson, 1980a).

4.3.2 Extension to a non-linear dynamics and main limitations

The previous example has been based on a first order approximation for small
displacement amplitudes, initially given in Eq. (4-33) and then approximated also for
small eccentricity effects (called “elliptical perturbations”). At this very basic level of
investigation, some insights into the dynamics have been given, while when involving
terms O(e*),vk =2 expressions become very long and tedious. For the sake of
completeness we provide here a more complete system, based on a full non-linear
stability under eccentricity effect. Using Eq. (4-16) and defining Uy as in Eq. (4-17), we are
able to make use of the auxiliary function o(e, 0) from Eq. (4-34) in order to obtain a
compact expression, in pulsating coordinates, for the entire dynamics of the ER3BP.

(v _oyr — 90
2Y' =a(e, 6) F%
0¢
" ' _ 4-51
Y 42X =oa(e,0) v (4-51)

LZ” =a(e,0)- [66% —Z-e- cos(@)]

A Taylor expansion can be performed on the previous expression respect to the
amplitude-displacements X, Y, Z, as well as respect to the eccentricity e. It follows a non-
linear and non-autonomous differential system, which can iteratively be solved applying
general perturbations methods, for example with the LP-technique here presented.

In (Lei, Xu, Hou, & Sun, 2013), a similar procedure has been applied (considering also
unbounded modes) for computing invariant manifolds associated with both Lissajous
and Halo orbits. The Euclidean norm-error of the position has been numerically assessed
after half revolution with a Runge-Kutta-Fehlberg 7(8) integrator and with a relative
tolerance of 10~1%. The reader is referred to their paper for more information, especially
on the practical convergence of these higher order solutions, also directly comparable
with the approximation also found in (Jorba & Masdemont, 1999) for the CR3BP.
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4.4 The Numeric approach

At this point, last part to be presented for the ER3BP is related to some variations on the
Numerical approach, in support to what has been introduced for the circular case in
Section 2.4. Most of the basic notion has been already presented, but some additional
aspects require a further discussion, while the reader is referred to (H. Peng & Xu, 20154,
2015b, 2015¢) for more information or for different applications of similar concepts and
techniques. Let’s now discuss the condition on “resonance orbits” and its consequences,
from a computational point-of-view, relative to the Differential Correction algorithm (as
well as for the numerical continuation), previously adopted in the CR3BP.

4.4.1 Conditions on “MxNy resonance orbits”
As reported in (S. Campagnola et al., 2008), almost 100 years ago a sufficient criterion
for the existence of periodic solutions in the planar Elliptic problem has been formulated
in (Moulton et al., 1920), here re-presented as follows.

Strong Periodicity Criterion

“For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has two
perpendicular crossing with the syzygy-axis, and that the crossings happen at moments
when the two primaries are at an apse, (i.e., at maximum or minimum elongation, or
apo-apsis and peri-apsis).”

The latter, in analogy with the time-symmetry discussed in Section 4.1.2, is a sufficient
condition for the existence of periodic solutions in the p-ER3BP, as for the case of the
Horizontal Lyapunov family. The new time-constraint is related to the Eq. (4-19), so
having the time-like variable 6 = 0, , 2, 3m, ..., at the moment of each cross. It follows
that the orbit considered has to be in “resonance” with the revolution of principal masses,
for example having exactly M-revolutions every N-revolutions of the reference system. As
main consequence, a condition can be found on the T-period, such that

TE =21-N leading to _ N n
{TE _M-T, — Te=2m-3; V{N,M} €L (4-52)

with T, and Ty orbital periods respectively for the circular and the elliptic case. Basically
the period Ty, necessary for a periodic trajectory, is now fixed, thus confirming once
again the non-continuous nature of families in the ER3BP, in opposition to what we have
discussed with Eq. (2-38). On the other hand, it is also true that every combinations of M
and N satisfy Eq. (4-52), and consequently “there are infinite set of {M;, N;}; close to any
desired period since the rational number is dense” (H. Peng & Xu, 2015b).

In (Broucke, 1969), this aspect and the Strong Periodicity Criterion have been used
to investigate almost 1100 two-dimensional periodic orbits with all ranges of eccentricity
e € (0,1) and mass-ratios u € (0,0.5) showing that “the elliptic problem behaves in a way
which is completely different from the circular problem. The main difference is in the
stability proprieties of periodic orbits”. One very first attempt to numerically investigate
periodic solution in the complete ER3BP has been made later in (Sarris, 1989), focusing
on large mass-ratio values as u = 0.4 (so considering mostly binary systems), and using
periodicity conditions in Egs. (2-65)(2-66) given as AVy, = 107 and AY = 1077,
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In (S. Campagnola et al., 2008), the aforementioned criterion has been extended to a
spatial problem, so considering the full ER3BP and leading to the following condition

Elliptic Periodicity Condition

“For an orbit to be periodic in the ER3BP, it is sufficient that it has two perpendicular
crossing with either the normal plane (from S1) or the syzygy axis (from S2), or both of
them, when the primaries are at an apse.”

Clearly, the new sufficient condition is simply an extension of all the discussion given in
Section 2.1.2.2 for the Circular problem, where now the initial shooting time (starting on
the XZ-plane) is also an essential aspect (see Section 4.1.3). However, looking at results
in Chapter 3, we can clearly note that the period T, found for every member within each
family is actually bounded in a definite range, as summarized in Table 4.

Table 4: Range found for the orbital period T, in the three families of periodic solutions
analysed at L1 and L2 (Earth-Moon CR3BP). Note that Min & Max values have been
normalized by 27, so allowing directly observing the ratio "N/M" up to four digits.

Tcrange [X 2n] L1 L2

| Family Min Max Min Max
H-Lyapunov 0.4284 1.0774 0.5369 0.9092
V-Lyapunov 0.4414 0.7454 0.5601 0.7040
Halo 0.3559 0.4436 0.3252 0.5435

In Chapter 3, some possible resonance orbits have been shown within each family, but
only considering a range as N € [1,4] and M € [1,12] leading to 48 possible cases for each
of the six analyses performed (three families at two different L-points). In Table 4, the
entire range is given normalized by 27, so directly showing the ratio "N/M", which will be
the principal feature of each trajectory later investigated. From now on, we will refer to
resonance orbits using “MxNy”, where x and y are actually integer positive numbers.

4.4.2 Modifications in the Differential Correction scheme

In Section 2.4.4 the numerical algorithm has been summarized, where last step was the
saving of all main parameters, e.g. shooting conditions for each member. It is clear that
at this point we cannot rely anymore on the continuous character of each family and
consequently it is necessary to exactly locate the resonance orbit that we are going to
analyse, thus extending it to the elliptic case. Using Eq. (2-63), we see that now the
Differential Correction does not involve anymore the uncertainty on the period, and
consequently the correction can be expressed, within pulsating coordinates, as follows

5Y1 Dy Dy3 Pys 5X0
5VX1 = ¢’41 cb43 ¢’45 520 (4-53)
5Vz1 Tg/2 Dg1 Dz Dgs Tg/2 5Vyo

This is a determined linear system, so solvable in order to apply the correction as given in
Eq. (2-64). Even for the 2D case (for H-Lyapunov orbits), the system is still determined
and leads to a “unique” solution without the necessity of fixing any parameters.
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A small remark on the Differential Correction algorithm is now necessary, from the
moment that the correction is still based on a linearization (see Section 2.4.1) and works
assuming an initial guess ‘sufficiently close’ to the target solution. In addition, other
periodic solutions could exist in the Elliptic problem, having the same period but within
other families, where the algorithm still converge but not on the desired trajectory. For
all the aforementioned reasons, an additional step has been added to the algorithm
before the numerical continuation. Assuming to have selected a “MxNy”-orbit, we look at
the two closest members Xg,X{ in the family (respectively with a smaller and larger
period as T; and T), thus we perform a spline interpolation on shooting conditions, as

N = Interp{Xg, X3} with Ty < Ty < Ty (4-54)

X
with X, as initial state-vector, referred to the circular case, while such initial guess still
requires to be numerically corrected using the DC-method. As shown in Eq. (4-53), in the
Elliptic problem the symmetry involves half of the new orbital period Tg, thus evaluating
crossing conditions on the XZ-plane at a time 6, given as

TE M - TC

91:90""2:90"" 2

V0, = 0,7 (4-55)

Therefore, the necessary integration period is now M times longer, with an obvious
influence on the overall numerical accuracy. To be more precise, two aspects need to be
taken into account for this Elliptic problem:

I.  Taking a large N, the integration period used in Eq. (4-53) is given as "7 - N" and
the algorithm could not be able to satisfy both criteria in Egs. (2-65)(2-66), due to
losses in the final accuracy of the numerical integration itself.

II. Taking a large M, the unstable dynamic related to largest characteristic
multipliers ||[Ay4x|| = 1 becomes much more evident, where the generic initial
displacement is growing at each revolution, so leading to

16X 11 = NIApax ™ - 116X: 1l (4-56)

and, for a too large value, such error-estimation becomes clearly meaningless,
while what has been defined as “linear stability” is also no more valid, as strongly
remarked in Section 2.2.2.

NOTE:

An example of M5N2-Halo orbit at L2, is given in Figure 64 within the Circular problem
(e = 0), so referring to both the co-rotating (synodic) and the inertial frame, while in
Figure 65, some data has been provided for what concerns this numerical integration
over Tg. In the CR3BP the period is still T, = Tz /M, thus it follows a repetitive pattern,
where the absolute displacement in position and velocity is given starting from the
shooting condition. It is expected to have a perfect repetition over a period T, but due to
such unstable dynamics, errors on periodicity (orange circles) increase, as well as for the
Energy variations A/ gy (Right-Top). The latter are based on the definition of the Jacobi
integral (valid only for the CR3BP), as also explained in Appendix-B.



98 | Chapter-4

Module of each one of the six eigenvalues is shown in Figure 65 with the overall order of
instability (Right-Bottom), while using Eq. (4-56) the final error at T; = 2 - 27 is expected
to be in first-order approximation around ~5.8° = 6500 times larger than the initial one.
This trend can be directly observed in Figure 65 (Left-Centre), with a slightly increasing
value of the periodicity-errors Ar, AV after each revolution.

CR3BP: L2 Halo Resonance (M5N2) at i = 0.0121506
LEGEND: M , M, P , 12, Periodic Orbit

Rotating frame Inertial frame

" 105

. x-axis [-] } x-axis [-]
y-axis -] y-axis [-]

Figure 64: Example showing a Southern Halo “resonance” orbit (M5N2) at L1, libration point
for the Earth-Moon CR3BP system in both a Rotating (LEFT) and Inertial frame (RIGHT).

CR3BP: L2 Halo Resonance (M5N2) at u = 0.0121506

Arg =llrg - Tl AV =1V -V A=l - I I

i O A O

Magnitude [-]

0 1 2 3
Period Revolutions [ x 7]

Initial Energy Iy 3.0160178678873177

1019 | _ MODULUS EIGENVALUES |,\i|:
1A, = 0.17159141037193 = 1.7e-01
° 2,1 = 0.99999999999743 = 1.0¢+00
¢ 241 = 0.99999999999743 = 1.0¢+00
1] = 0.99999999999989 ~ 1.0¢+00

w0k

Magnitude with errors " 'TC- Periodicity (0)" |-]

(0] & 101 i |A4] =0.99999999999989 =~ 1.0¢+00
|A | =5.82779754438599 =~ 5.8¢+00
10 : : 3 10 : : x — ORDER INSTABILITY =1
0 1 2 3 4 0 1 2 3 4
Period Revolutions | x 7] Period Revolutions [ x 7]

Figure 65: Example of periodicity assessment considering M-revolutions for the “resonance”
solution illustrated in Figure 64. The modulus of position and velocity-variations (w.r.t. the
Initial Condition) are shown (Left-Centre) with periodicity error (orange circle). Energy error
(Right-Top) and absolute value of characteristic exponents (Right-Bottom) are also given.

The previous example shows possible numerical limitations related to our investigation,
while for the sake of completeness we have to mention an alternative strategy, adopted in
(H. Peng & Xu, 20154, 2015b, 2015¢). The latter is based on a multi-shooting algorithm,
in close analogy with some basic methodologies originally described in (Howell &
Pernicka, 1988) for studying quasi-periodic solutions. In fact, their “Multi-Segment
Optimization Method” fixes multiple conditions between each segment along the entire

trajectory, thus it tries to minimize a cost function, as I' = /2 + v, + v2, , sort of scalar
distance in the Phase-space from the optimal periodicity condition as {y,, vy, V;n = 0}.
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A further characteristic of these multi-shooting technique, as given in (H. Peng & Xu,
20154, 2015b, 2015¢), is that “the convergence increases as n increases, but the time-cost
increases as well”, where with “n” they refer to the number of internal points along the
trajectory. For different reasons (e.g., mostly computational time and an increasing
complexity of the algorithm) we have decided to adopt a single-shooting algorithm,
previously defined in Section 2.4, thus taking it to the possible limits and with
successfully results, as discussed later in Chapter 5. Moreover, for what has been stated

before, we have decided to narrow our analysis to a resonance-range given as

Nmax =2 & Mpax =5 (4-57)

so leading to eight different cases for each simulation, with cases M2N2 and M4N2 not
considered since simply redundant situations as M1N1 and M2N1. In Table 6, these eight
cases has been related to the T-range previously given in Table 4 and so allowing
investigating 11 cases out of the theoretical 48 possible (having 8 resonances, 3 families
and 2 L-points). Important to be mentioned is that other cases can be found further
extending each family, as explained in Chapter 3 in the ADDITIONAL SETTINGS. The
discussion on main periodicity conditions and numerical validation follows again what
has been discussed in Section 2.4.2, while now we continue with the Numerical
Continuation technique, adopted for extending resonance orbits to the ER3BP.

4.4.3 Numerical Continuation in the eccentricity parameter

Last step of this numeric approach is based again on Numerical Continuation, previously
discussed in Section 2.4.3, but here related to a different “continuation parameter”. In
fact, for the Circular problem, the continuation has been made on shooting conditions by
pseudo-arclength, while using their progressive location on the xZ-plane. Now, we are in
a very similar situation but by means of the eccentricity e-parameter, so starting from
e = 0 till a target value (e.g., the nominal eccentricity of the Earth-Moon system).

The eccentricity becomes now a “bifurcation parameter”, and from Figure 62 it seems
clear that all resonance trajectories can be continued in the Elliptic problem based on two
different shooting-times, as mentioned in Eq. (4-55). Following the same notation
adopted in (S. Campagnola et al., 2008), it is possible to investigate two main situations:

i. If M is odd, we can study two groups in the ER3BP, after considering the initial
conditions at 8, = 0 (peri-family) or at 8, = 7 (apo-family).

ii. If M is even, two families arise as left-family or right-family, depending on the
side (left or right x-intercept) of the first crossing.

While the case “i” is very trivial to understand, where both shooting-times are possible
for the existence of periodicity, but with clearly different effects, since masses are
simultaneously close or far away from the barycentre in a No-Pulsating frame. As seen in
Chapter 3, each family has two orthogonal crosses with the “symmetry XZ-plane”, thus
the extension to the Elliptic problem can start with the X, used to generate each solution

({3554

or with X/, state-vector after half revolution. For what concerns the second case “ii”,

after exactly M/2 revolutions, the orbit is back at the very same initial phase-point, which
clearly can be located on the %-left or on the x-right. (H. Peng & Xu, 20153, 2015b, 2015¢)
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Due to time-constraints, only some examples will be provided in Chapter 5, thus using
them as comparison in order to investigate some possible different behaviour between
such bifurcated families. Clearly, this can have a large impact on real mission designs,
especially when focusing on changes in the order-of-stability for different shooting-times.
For the sake of completeness, all four possible cases are here summarized in Table 5, also
described in (H. Peng & Xu, 2015a, 2015b, 2015¢), and then illustrated in Figure 66,
based on the 3D-plot for a No-Pulsating reference frame.

Table 5: Summary of all four possible groups related to periodic solutions extended in the
ER3BP starting from a particular resonance periodic orbit of the Circular problem (CR3BP).

M 6,-value Mi1-M2 X-starting (L, — L,)
Left-group even 0 Peri-apsis Xo — X1/2
Right-group even 0 Peri-apsis X772 — Xo
Apo-group odd T Apo-apsis Xo — Xo
Peri-group odd 0 Peri-apsis Xo — Xo

Here M, and L; are shown respectively in red and magenta for each 3D-plot, while the
nominal CR3BP orbit has been given by a continuous blue line. Last, the periodic
trajectory in the ER3BP is given for e = 0.0549 with an orange dashed line, projected in
grey-colour over all three main planes, while initial condition are denoted by " o ".

ER3BP: L2 Halo Resonance (M =2, N =1) for ¢ = 0.0549 at p = 0.0121506 ER3BP: L2 Halo Resonance (M =2, N = 1) for ¢ = 0.0549 at p = 0.0121506
No-Pulsating Rotating frame: MI' 1.2, CR3BP Orbit, ERIBP Orbit No-Pulsating Rotating frame: MI. 1.2, CR3BP Orbit, ERIBP Orbit

z-axis |-]
z-axis |-]

A xeanis [} A xeais [-]
yeaxis [ yeaxis [+

ER3BP: L2 Halo Resonance (M =3, N = 1) for ¢ = 0.0549 at 2 = 0.0121506 ER3BP: L2 Halo Resonance (M =3, N = 1) for ¢ = 0.0549 at 2 = 0.0121506
No-Pulsating Rotating frame: MI' 1.2, CR3BP Orbit, ERIBP Orbit No-Pulsating Rotating frame: MI' 1.2, CR3BP Orbit, ERIBP Orbit

z-axis |-]
z-axis |-]

.....

Figure 66: Example showing four examples of resonance orbits extended to the ER3BP with
e =0.1 within a No-Pulsating reference frame: Left-Halo "M2N1" (Top-Left), Right-Halo
"M2N1" (Top-Right), Apo-Halo "M3N1" (Bottom-Left) and Peri-Halo "M3N1" (Bottom-Right).

Before presenting all results, in the next section we provide a brief summary of this
“modified” numerical algorithm, adopted for the investigation on the ER3BP, and closely
related to the one previously presented in Section 2.4.4.
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4.4.4 Summary of the extended numerical algorithm

Main steps of this extended numerical algorithm are here summarized, using as starting
point all main parameters previously saved for each family at both Li-L2. These have
been found by the Periodic L-Orbit Generator algorithm described in Section 2.4.4,
followed by a numerical continuation on the eccentricity parameter (with step-size Ae).

ALGORITHM: Resonance L-Orbit Propagator

1. Select a u-value, the L-point (L1 or L2) and one family (H-Lyapunov, V-Lyapunov
or Halo).

2. Retrieve main parameters relative to each member of the family (e.g., initial
conditions X, half-period conditions X7/, and the orbital period Tj).

3. Select a combination {M,N} to compute T, as in Eq. (4-52) and check its
availability within the family chosen.

4. Interpolate as in Eq. (4-54) and then correct the initial condition, using Eq. (4-53)

with a fixed integration period as T /2, in order to obtain X {CM} (Section 4.4.2).

5. Compute a first solution in the Elliptic problem using numerical continuation
with e = Ae/2, small for convergence, and then apply the DC-algorithm. In this
way we have obtained two different solutions as X2 and Q2.

6. With continuation by pseudo-arclength find an initial guess at e = Ae, using both
previous solutions, thus leading to Q{E3} as starting guess of the iterative cycle.

Iterative cycle:

The iterative cycle follows the exact same steps of the one given for the Periodic
L-Orbit Generator, but this time the reference time is always Tz /2, with Ty as
period of the new propagated orbit. For a coherent notation of the state-vector of
Section 4.2, we obtain Qg}, QgC} referring respectively to the guessed and the
corrected value for the state-vector within the Elliptic problem at e; € (0, egy).

Exit conditions:

Differently from the circular case, now we do not consider anymore “point-9”,
relative to the existence of unitary real positive eigenvalues, due to what has been
discussed in Section 2.2.4. Note also that the algorithm clearly stops after
reaching the nominal value for the eccentricity e = e, where the step-size Ae
needs to be sufficiently small for assuring convergence.

END ALGORITHM

At this point of the report we are able to provide all main results for the Elliptic problem,
mostly obtained through the aforementioned procedure. More information, when strictly
necessary, will be given directly within each section of the following Chapter 5.
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ER3BP: Results

In this Chapter 5 we present the main results relative to the Elliptic Restricted 3-Body
Problem (ER3BP), while most of the methodologies have been already discussed within
the previous Chapter 4. In analogy with results of the CR3BP, here we extend the
problem to a more complex dynamics, based on a “Pulsating” reference frame, but also
referring to a “No-Pulsating” frame, both co-rotating with the two principal masses. The
first allows effectively calculating and extending orbits in the Elliptic problem, while the
second one provides a more intuitive physical interpretation of results, as we will see. In
Table 1, the nominal eccentricity for the Earth-Moon system has been approximated to
egy = 0.0549, while all the entire discussion can clearly be generalized to higher values of
eccentricity, still in the limits of a bounded Kepler motion for M;-M,.

In Section 5.1 we present an overview of main resonance orbits found in Chapter 3, thus
in Sections 5.2/5.3 two complete examples are shown for the H-Lyapunov family at L1
(M1N1 and M2N1). It follows a third example in Section 5.4 for the Vertical family at Li.
A detailed description is presented in Section 5.5, about the bifurcation of two branches
during the propagation of single resonance orbits in the ER3BP, taking the Halo family
found at L2 as reference point. Last, in Section 5.6, a numerical comparison on stability
allows verifying these previous results, thus ‘better’ comparing the Circular model with
the Elliptical model and so exploiting major advantages of this last one.

5.1 Feasible main resonance solutions

In Section 4.4.1, few additional conditions for the existence of periodic solutions have
been given, as summarized in the Elliptic Periodicity Condition. Moreover, we have
also discussed the restriction on the possible Tz-period, defined now by Eq. (4-52), while
period-ranges for each family (at both L1 and L2) can be found in Table 4. Considering
the Eq. (4-57), we have limited our analysis on “few” main resonance orbits, as explained
in Section 4.4.2, but also later summarized in Table 6.

S5.1.1 Characteristic multipliers from the CR3BP to the ER3BP

In total, 11 cases are displayed, but only the H-Lyapunov M1N1-resonance at L1 has
actually a 2m-period, equal to the system revolution (non-dimensional units). For what
concerns the other 10 cases, four are in a 3:2 resonance, three in a 2:1, two in a 5:2 and
only one is in a 3:1 resonance. Obviously, this is due to the limitations imposed on the
Npax and M., as well as for the x-range selected (from the L-point to M2) during the
generation of each family. Fundamental remark is related to the discussion of Section
4.4.3, about the existence of a bifurcation in the eccentricity (here called e-bifurcation),
thus having two possible cases for M being an even or an odd integer (see Table 5).
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Last aspect, to be taken into account, is the linear stability assessment, in particular for
the largest eigenvalue’s module |4,,,4,| of the Monodromy matrix. In a trivial way, we can
observe that starting with resonance solutions having M > 1, the |A,,4,| is defined as
given in Eq. (4-56), such that for the elliptic case its initial value at e =~ 0 is

|/1max |ER3BP = |/1max |IgR3BP (5-1)

In the following Table 6, for each possible resonance orbit the initial order-of-instability
(Ve = 0) has been given with the |4,,,,| of both CR3BP and ER3BP. Colour-notation
adopted is given in the LEGEND below, while more information on these last aspects
have been extensively treated in Section 4.2.

Table 6: Main resonance orbits available here for each family (at both Li/L2 in the Earth-
Moon Circular problem). The range has been limited to {N,,,, = 2, M,,,., = 5}, after removing
redundant cases as explained in Section 4.4.2. For each case, the order-of-instability and the
largest characteristic multiplier are shown, bases on what has been stated in the text above.

Family: | H-Lyapunov V-Lyapunov Halo
L-point L, L, L, L, Ly L,

M1N1

M2N1

M3N1

M4N1

M5N1

M1N2

M3N2

M5N2

*LEGEND:

In Grey, resonance orbits (r.0.) not available in our generated families.

In Green, r.o. reaching a nominal eccentricity eg,, with step-size Ae = 107

In Orange, r.0. reaching nominal eccentricity eg,, with step-size Ae = 0.2 - 107%.

In Blue-Marine, r.o. not reaching the nominal eccentricity since diverging, after a value at
around e* = 0.0327, to other different families (see Appendix-C).

With darker colour, resonance orbits having a period equal or larger than 2.
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Very interesting here is the very unstable behaviour of periodic resonance orbits, where
necessary to underline that now we are indeed considering also a longer period (so
multiple orbital revolutions). This variation is mathematically very interested for the
investigation of periodic solutions, but not to forget that in practical space missions the
stability needs usually to be related to a real physical time (e.g. the expected mission
duration) and not exclusively to a nominal orbital revolution. (Parker, 2007)

5.1.2 Additional note on the Differential Correction algorithm

The Resonance L-Orbit Propagator has been schematizing in Section 4.4.4, where
the iterative cycle works till reaching a convergence, only when both conditions given in
Eqgs. (2-65)(2-66) are satisfied. Clearly the numerical continuation (respect to e) stops if
the DC-algorithm fails within a maximum number of iterations, as found in Appendix-A.
As consequence of such new more unstable dynamics, the algorithm is actually stopped
only when the error exceed 100 times the original threshold, so in our case at 10710, The
latter allows propagating orbits till the nominal eccentricity, where the new threshold is
equivalent to around ~ 4 c¢m in position for the Earth-Moon system.

In Figure 67, an example of accuracy validation is provided (comparable to Figure 15 of
Section 2.4.2), where in black-circles we have highlighted solutions exceeding the
original threshold during the propagation, thus reaching the maximum number of
possible iterations. Nevertheless, only displacements at T;/2 (RIGHT) have been
considered as exit-condition, while the Position and the Velocity error at 8 = 6, + Ty
(LEFT) have been employed only to further verify such “assumed” periodicity.

ER3BP: ACCURACY L1 H-Lyap (M2N1) for e =0.0549 at 1 = 0.0121506

% ri\'\, (displacements at T/2)

’
XZ

Position error

1070 ¢

10!

1012

Il ¥(8, + T -r(0y) I

0 0.01 0.02 0.03 0.04 0.05
10"

Velocity error

10

V(0 +T)- V(B Il

0 0.01 0.02 0.03 0.04 0.05

0 0.01 0.02 0.03 0.04 0.05

N° Iterations [0-50] dy (displacements at T,/2)

107

L : L -16 . "
10
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

Eccentricity [-] Eccentricity [-]

Figure 67: Example of the accuracy verification during the propagation of a M2N1 resonance
orbit for the H-Lyapunov family (L1, Earth-Moon system). See Section 2.4.2 for more details.

At this point we can proceed presenting some main examples, where not all cases have
been fully analysed due to time-limitations, thus to provide a more concise presentation
of the overall investigation. Under this perspective, only most important features and
differences within the Elliptic problem have been the focal point of this entire analysis.
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5.2 First example: the H-Lyapunov M1N1 at L1

As mentioned in Section 4.4.3, the extension respect to the eccentricity parameter clearly
involves a bifurcation, where Apo/Peri groups (if M odd) or Left/Right families (if M
even) arise at e =~ 0. Here we present an example considering the Horizontal Lyapunov
family at L1 in resonance 1:1 with the system (so M1N1). Starting orbit has been shown in
the Figure 68 below, based on the discussion of Section 4.4.2.

CR3BP: L1 H-Lyap Resonance (M1IN1) at p = 0.0121506
LEGEND: M, M, P, L1, Periodic Orbit
Rotating frame Inertial frame Arg=llrg -l AV =llV -V ll Al =130~ I |
IV Serm— ) £ Srepec rrm—  r— 3

CR3BP: L1 H-Lyap Resonance (MIN1) at p = 0.0121506

Magnitude |-

2193158782725

13,1 LOVODODNLS255 = 10400

N f 12,1 = LODIOODODO142SS = 1.0c+00
X s e 1w T A= 4SSS0S990S13827 = 4.6e200

2 B 12| 1093523385 188488 = 11102

— el | _, ORDER INSTABILITY =2

o s s g 0s 1 15
= xeaxis [-] : xeais |- Period Revolutions [x ] Period Revolutions [ x|
yoais [-] yoais [-]

Figure 68: Example is shown of the starting resonance orbit (M1N1) at L1 for the H-Lyapunov
family. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the
right the periodicity is shown together with all six characteristic multipliers (in module).

To observe also the energy-error Aj ) computed along the trajectory, making use of the
Jacobi integral since still dealing with the Circular problem (see the Energy condition in
Appendix-B). In the following plots, in No-Pulsating coordinates (TOP) the original orbit
(blue line) has been shown with both Peri-M1N1 and Apo-M1N1 (dashed orange line),

where the position of the L-point and M2 is here obviously “oscillating” around their
nominal values. In comparison, also the Pulsating frame has been shown (BOTTOM).

PERI APO

ER3BP: L1 H-Lyap Resonance (M =1, N=1) for e = 0.0549 at 2 = 0.0121506 ER3BP: L1 H-Lyap Resonance (M =1, N=1) for e = 0.0549 at ;= 0.0121506

s 0 ' s o 0 s
eanis -] xeavis -]

ER3BP: L1 H-Lyap Resonance (M = I, N = 1) for e = 0.0549 at ;¢ = 0.0121506
Pulsating Rotating frame: \||. L1, CR3BP Orbit, ER3BP Orbit

Figure 69: The resonance M1N1 H-Lyapunov orbit at L1 is shown in both No-Pulsating (TOP)
and Pulsating (BOTTOM) coordinates. Note the existence of two different groups where the
shooting time is 8, = 0 on the left (PERI-), while it is 8, = 7 on the right (APO-).
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5.2.1 Periodicity validation and eigenvalues

analysis

As previously explained, here we present the periodicity validation, where in Figure 70
we have on the left the Peri-group (V6, = 0) and on the right the Apo-group (V8, = n).

ER3BP: ACCURACY L1 H-Lyap (MIN1) for ¢ =0.0549 at ¢ = 0.0121506
GV 40V 0V (displacements at T 2)

Pasition error

an o e s o o am s ue u
Gy (displacements at T,2)

i = =

o oo e am o
Eecentricity |-| Eccentricity [-]

ER3BP: ACCURACY L1 H-Lyap (MIN1) for ¢ = 0.0549 at 1 = 0.0121506

Pasition error

GV 40V L0V (displacements at T 2)

Gy (displacements at T,2)

o oo
Eecentricity |-|

Eccentricity [-]

Figure 70: Periodicity validation shown for both Peri-group (LEFT) and Apo-group (RIGHT),

both generated for the M1N1 H-Lyapunov resonance

solution at L1.

At this point we continue presenting the eigenvalue analysis on the Monodromy matrix,
based on Section 2.2.2 and later in-depth with Section 4.2.2. Once again we remind the
reader that for this elliptic case no constraint exits on real unitary eigenvalues, therefore
it is possible to have up to three stable/unstable manifolds (3-order instability).

ER3BP: Analysis Monodromy matrix for e = 0.0549 at . = 0.0121506
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Figure 71: Analysis of characteristic multipliers for both the Peri-group (TOP) and Apo-group
(BOTTOM) generated for the M1N1 H-Lyapunov resonance solution at Li. Note changes in the
order of instability, due to a different bifurcation of both real unitary eigenvalues (see text).
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From Figure 71, straightforward to note that even if the largest characteristic multiplier
(in module) is almost constant during the e-continuation to eg,;, we have an additional
unstable manifold direction for the Peri-group, leading to a 3-order instability. In fact,
both two real unitary eigenvalues splits from the unit circle and reach respectively values
as ~0.70 and ~1.43 on the real axis. For the second case (Apo-group) the two eigenvalues
move on the unit circle and consequently the order of instability does not really change,
(Stefano Campagnola, 2010), as also well synthetize in the next Table 7.

Table 7: Numerical values of the two real unitary eigenvalues A; in the CR3BP, with the
relative spit due to the extension to the Elliptic problem with eccentricity as ez, = 0.0549.

Real Part Imaginary Part Module
CR3BP 0.999993049810342 0 0.999993049810342
1.000006950235670 0 1.000006950235670
Peri- 0.699273238931320 0 0.699273238931320
group 1.430056155908427 0 1.430056155908427
Apo- 0.931805002659510 | +0.362959277346590 | 0.999999999996624
group 0.931805002659510 | —0.362959277346590 | 0.999999999996624

Incredibly, this last result is in total agreement with what we have seen in Figure 62,
where two branches have been classified and analysed in (S. Campagnola et al., 2008), so
illustrating the clearly bifurcation dependent upon the initial phase 6, selected for the
successive extension to the Elliptic problem.

As consequence, the two groups found respectively as Peri- or Apo- (for M odd), have a
very different linear stability, while not to forget that main driven element of instability is
most-likely associated to the largest eigenvalue, where here we have that

e Max |1| for the Peri-group is equal to around 126.47
e Max |1| for the Apo-group is equal to around 94.29

again both referred at e = eg),. More details on variations in linear stability will be given
later, as also numerical simulations, while now we proceed with a comparison for M
even, so again considering the Horizontal Lyapunov family at L1.

5.3 Second example: the H-Lyapunov M2N1 at L1

In the previous section, an example of e-bifurcation between Apo and Peri groups has
been shown, when considering resonance orbits with M odd. At this point we can present
a very similar comparison, but based on a different situation, with M even, thus
distinguishing between a Left and a Right family (see Section 4.4.3). Starting point is
here the M2N1-resonance for the H-Lyapunov family at L1, as illustrated in Figure 72. In
Table 6, all largest characteristic multipliers have been summarized for the Elliptic
problem, taking into account that M > 1, so considering multiple revolutions. This last
aspect can be better identified in Figure 72 (RIGHT), where periodicity errors (orange
circles) at the second revolution V6 = 6, + 2w are much larger than the ones found in the
first one V6 = 6, + m. Note that 7 is indeed the orbital period T, for the circular case,
while, for what concerns the Elliptic problem, the new period is expressed as Ty = 2.
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Here the starting orbits plotted, as previously did for the M1N1 solution.

CR3BP: L1 H-Lyap Resonance (M2N1) at i = 0.0121506

LEGEND: 14, M,, P, L1, Periodic Orbit CR3BP: L1 H-Lyap Resonance (M2N1) at » = 0.0121506
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Figure 72: Example is shown of the starting resonance orbit (M2N1) at L1 for the H-Lyapunov
family. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the
right the periodicity is shown together with all six characteristic multipliers (in module).

Let’s now continue illustrating these new families generated, as for the previous M1N1
resonance case. Both Left and Right families are shown in next Figure 73, using No-
Pulsating (TOP) and Pulsating (BOTTOM) coordinates, as discussed in Section 4.1.1.

ER3BP: L1 H-Lyap Resonance (M = 2, N = 1) for e = 0.0549 at = 0.0121506 ER3BP: L1 H-Lyap Resonance (M = 2, N = 1) for e = 0.0549 at = 0.0121506
No-Pulsating Rotating frame: M‘, L1, CR3BP Orbit, ER3BP Orbit No-Pulsating Rotating frame: M‘, L1, CR3BP Orbit, ER3BP Orbit
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ER3BP: L1 H-Lyap Resonance (M = 2, N = 1) for e = 0.0549 at 4 = 0.0121506 ER3BP: L1 H-Lyap Resonance (M = 2, N = 1) for e = 0.0549 at 4 = 0.0121506
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Figure 73: The resonance M2N1 H-Lyapunov orbit at L1 is shown in both No-Pulsating (TOP)
and Pulsating (BOTTOM) coordinates. Note the existence of two families where the first
orthogonal cross has been considered respectively at the left and right on the X-axis.

5.3.1 Periodicity validation and eigenvalues analysis

In Figure 74, the Periodicity validation shows always a convergence for the Differential
Correction algorithm, except in a very single case where the algorithm has reached the
maximum number of iterations (here 50). In that case the velocity displacement
continues to oscillate between 2 and 4 - 10~12, thus just above the original threshold. In
that circumstance, for what has been explained at the beginning of this chapter, the
propagation continues without any problems. In fact, the error is still smaller than 10719,
and so capable of reaching the target value for the Earth-Moon system (eg), = 0.0549).
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Here the periodicity validation results, as previously shown also for the M1N1 solution.
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Figure 74: Periodicity validation for both the Left-family (LEFT) and Right-family (RIGHT)
generated for the M2N1 H-Lyapunov resonance solution at Li1.

A brief remark on a possible non-convergence is related to the high unstable dynamics of
some resonance solutions, where even with strict tolerances on the integration it is not
always feasible to push displacements below the nominal threshold, thus requiring more
iterations. The latter can be seen more as a computational disadvantage (e.g., high CPU-
time required), while periodicity has been once again verified here. More details are
given in Appendix-B, while now we continue with the analysis on eigenvalues (Figure 75).
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Figure 75: Analysis of characteristic multipliers for the Left-family (TOP) and Right-family
(BOTTOM) generated for the M2N1 H-Lyapunov resonance solution at Li. Note changes in the
order of instability, due to a different bifurcation of both real unitary eigenvalues (see text).
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A different behaviour can be observed for the two different branches of the same starting
resonance orbit, once again in agreement with (S. Campagnola et al., 2008). Before
further discussing this aspect, a short note is required on the relative higher error found
for the determinant of the Monodromy matrix. In Section 2.2.4, we have seen the
necessary condition of having the determinant equal to +1, as consequence of the
Symplectic form of Hamiltonian problems (so for both the circular and the elliptic case).
The absolute error A, follows directly when considering that

6

6
det(M) = 1+ Ayor = 1—[ 4i(1+4) = H 1(1 +4)) (5-2)
]:

j=1

where product of eigenvalues is nominally +1, while A, is the error shown in the
previous plots and A; = AA;/A is the relative error on each eigenvalue A, Vj=1.2,..6.

Hence, assuming small errors and so neglecting their mutual product (related to higher
order terms), we are able to approximate the total error as

tot ~ T . 2 )
j=1 j=1

J

From Eq. (5-3), it seems clear that a large error is most-likely related to the smallest 4;
when assuming similar values of A4;. Based on this observation, the smallest eigenvalue
found in our simulations and given in Table 6 is around order ~107°. It follows that even
with small values of A4; as 107°/1071, we will have still a large contribution to the error

as 10™*. Nonetheless, the effectiveness of this entire analysis can be better interfered by
the continuous behaviour of all eigenvalues, as shown in Figure 75 (or also in Figure 71).

Last step is to provide some additional data on this e-bifurcation, where with Table 8 this
split of the two real unitary eigenvalues becomes evident. The Left-family shows a new
stable/unstable manifold direction (with a 3-order instability), while no changes actually
exists in the instability order for the Right-family. For this last case, both eigenvalues
indeed move exclusively along the unit circle (within the complex plane).

Table 8: Numerical values of the two real unitary eigenvalues 4; in the CR3BP, with the
relative spit due to the extension to the Elliptic problem with eccentricity as ey, = 0.0549.

Real Part Imaginary Part Module
CR3BP 0.999999999866769 0 0.999999999866769
1.000000000133231 0 1.000000000133231
Left- 0.982722689496750 0 0.982722689496750
group | 1.017581063567953 0 1.017581063567953
Right- 0.999848195281841 | +0.017423770779575 | 1.000000000698267
group 0.999848195281841 | —0.017423770779575 | 1.000000000698267

Basically, if M is even, we have two families for the Elliptic problem, where the largest
eigenvalue found at eg,, is similar for both cases, equal to ~ 1.165 - 10°. At this point, a
third example can be shown for M even, but within the Vertical family, which is known to
be doubly-symmetric (X. Y. Hou & Liu, 2009) in the CR3BP. Look at Section 2.4.1.
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5.4 Third example: the V-Lyapunov M2N1 at L1
Starting resonance orbit is shown in the Figure 76 below, where the double symmetry is
clear with the behaviour of velocity variations respect to the shooting condition (LEFT),

while crossing the X-axis twice at the same point as x' = x'" with v}, = v)], v; = —v]".
CR3BP: L1 V-Lyap Resonance (M2N1) at zz = 0.0121506
LEGEND: M1, M, P, LI, Periodic Orbit CR3BP: L1 V-Lyap Resonance (M2N1) at z = 0.0121506
' Arg =l T -l AV =l V-Vl A=~ dw

Rotating frame Inertial frame
o T

14,/ = 000064651039300
12, = 099999K39677498 = 106100
12, = 1.9999999999995 = 1.0c100
12, = 1999990999990
13, = LOOIOOL6NI227S1 = 106100
3, = 1546765S1T02780 = LSer3

~» ORDER INSTABILITY = 1

is 1 Periad Revolutions [ ] Period Revalations [ 1]

Figure 76: Example is shown of the starting resonance orbit (M2N1) for the V-Lyapunov family
at Li. On the left the 3D-plot is given in both co-rotating and inertial frames, while on the
right the periodicity is shown together with characteristic multipliers.

This double-symmetry based on the Mirrored-Backward transformation, presented in
Eq. (2-16), has an additional evident effect. In fact, for the M2N1-resonance solution
within the Vertical family at Li, we are able to compute both Left (TOP) and Right
(BOTTOM) families, as shown in the next Figure 77. To note that when M is even, the
shooting phase-point repeats itself at 0.5 T (or T - M/2) for e = 0. However, it seems
also evident the fact that the e-bifurcation leads now to a symmetry with respect to the
%y-plane and consequently creating a new pair of distinct Northern/Southern families.

ER3BP: L1 V-Lyap Resonance (M =2, N = 1) for ¢ = 0.0549 at = 0.0121506

ER3BP: L1 V-Lyap Resonance (M =2, N = 1) for ¢ = 0.0549 at = 0.0121506
No-Pulsating Rotating frame: MI' L1, CR3BP Orbit, ER3BP Orbit

No-Pulsating Rotating frame: MI' L1, CR3BP Orbit, ER3BP Orbit

axis -]

xeavis -]

ER3BP: L1 V-Lyap Resonance (M =2, N = 1) for ¢ = 0.0549 at » = 0.0121506

ER3BP: L1 V-Lyap Resonance (M =2, N = 1) for ¢ = 0.0549 at » = 0.0121506
No-Pulsating Rotating frame: MI‘ L1, CR3BP Orbit, ER3IBP Orbit
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:
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Figure 777: The Left-family (TOP) and the Right-family (BOTTOM) are shown respectively on
the xy-plane (LEFT SIDE) and on the Xz-plane in No-Pulsating coordinates. Both families
bifurcated from the M2N1-resonance orbit found within the Vertical Lyapunov family at Li.

In the Circular problem both Northern and Southern Vertical families overlap by cause of
the aforementioned double-symmetry, while this is not more the case in the ER3BP.
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Instead, two different families arise here, but their stability behaviour is not affected at
all, in analogy to Halo orbits in the CR3BP. The latter is due to the fact that the “first
symmetry” in the z-direction is still valid within the Elliptic problem, along with all its
subsequent proprieties. In the following Figure 78, the periodicity validation (TOP) is
shown with the eigenvalue analysis (BOTTOM) for both these two families (the Left and
the Right one), starting again with the M2N1-resonance orbit for the Vertical family at L1.
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Figure 78: Periodicity validation (TOP) and Eigenvalues analysis (BOTTOM) generated for the
M2N1 V-Lyapunov resonance solution at L1, where the Left-family and the Right-family have
been shown, both arising from the e-bifurcation at e = 0. See discussion in the text.

For this last result, in agreement to what has been discussed before, the module of all six
eigenvalues seems to not change significantly, while nothing can be added for higher
values of eccentricity. In order to deeply validate the previous outcome, we provide here
an extension of the analysis to a new nominal value with e;zg; = 0.1. To observe in next
Figure 79, that the increasing eigenvalue (in orange) could probably lead to an additional
unstable manifold for much higher eccentricity values (0.1 < e;gsr < 1,).

ER3BP: Analysis Monodromy matrix for e = 0.1 at z = 0.0121506
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ER3BP: Analysis Monodromy matrix for e = 0.1 at z = 0.0121506
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Figure 79: Analysis of the characteristic multipliers as shown in Figure 78 for both Left and
Right bifurcated families, but now further extended to an high eccentricity with e;zsr = 0.1.
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The analysis defined by Figure 79 has simply shown that an equivalent system (having
the same mass-ratio u) can actually involves very different behaviours when considering
higher values of eccentricity. It seems plausible to infer that instability, in general, is
most-likely increasing, probably due to stronger effects associated to these new “elliptic
effects” on the nominal system. The latter has been further investigated in subsequent
sections, while here, for the sake of completeness, we represent a 3D-plot in No-Pulsating
coordinates for both V-Lyapunov solutions (M2N1-resonance) found at eg,,.

ER3BP: L1 V-Lyap Resonance (M =2, N =1) for e = 0.0549 at 1 = 0.0121506
No-Pulsating Rotating frame: Ml, L1, CR3BP Orbit, ER3BP Orbit

z-axis [-]

x-axis [-] is 1l
y-axis [-

ER3BP: L1 V-Lyap Resonance (M =2, N =1) for e = 0.0549 at 1 = 0.0121506
No-Pulsating Rotating frame: MI, L1, CR3BP Orbit, ER3BP Orbit
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Figure 80: The Left-family (TOP) and the Right-family (BOTTOM), both bifurcating from the
selected M2N1-resonance within the V-Lyapunov family at L1, have been here illustrate in a
3D-plot, based on a No-Pulsating reference frame, with the nominal eccentricity eg, = 0.0549.

Next step is to summarize adequately some fundamental characteristics of e-bifurcations
within the Halo family, also adopted later for stability comparison between the Circular
and the Elliptical problem. Above all, we will highlight advantages of making use of such
elliptic model in a more realistic space mission’s design. For more practical information
and applications of these Elliptic-Halo orbits we refer to (H. Peng & Xu, 2015a, 2015¢).
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5.5 Essential aspects of the “eccentricity-bifurcation”

So far we have seen, in full agreement with (S. Campagnola et al., 2008), that a new
bifurcation exists at e = 0, called e-bifurcation since involving the eccentricity positive
parameter. Depending on the number of orbital revolutions M (even or odd) we have a
division of the original resonance solution in two branches (the Left/Right-family or the
Peri/Apo-group), as extensively discussed in Section 4.4.3. At this point the Halo family
at L2 has been investigated, in order to better characterize and differentiate these two
branches arising in the Elliptic problem.

The importance of considering such comparison is mostly related to time constraints in
real space missions, since now the shooting-time window for having periodic orbits has
been narrowed around two values, respectively when both masses are at their peri-apsis
or apo-apsis. Straightforward is to understand that any deviations from such nominal
conditions will in a certain way increase the mission’s costs, e.g., the DV-budget. In
particular due to the necessity of perform correcting manoeuvres and so fulfilling the
Elliptic Periodicity Condition, in addition to all main station-keeping costs related to
the stability itself, as discussed in (X. Hou, Liu, & Tang, 2011). We start presenting now
respectively the M2N1 and M3N1 Halo Southern resonance orbits, in order to compare
first Left/Right families (Section 5.5.1) and later Peri/Apo groups (Section 5.5.2).

CR3BP: L2 Halo Resonance (M2N1) at z = 0.0121506
LEGEND: M, M,, P, 12, Periodic Orbit

CR3BP: L2 Halo Resonance (M2N1) at z = 0.0121506
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Figure 81: Starting resonance orbit (M2N1) for the Halo family at Li1. It shows the 3D-plot in
both co-rotating and inertial frames (LEFT) and the relative periodicity/eigenvalues (RIGHT).

CR3BP: L2 Halo Resonance (M3N1) at z = 0.0121506
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Figure 82: Starting resonance orbit (M3N1) for the Halo family at Li1. It shows the 3D-plot in
both co-rotating and inertial frames (LEFT) and the relative periodicity/eigenvalues (RIGHT).

As seen in Table 6, the Halo M3N1-resonance at L2 is very stable (liner stability), and
with M = 3 the largest eigenvalue for the Elliptic problem is equal to ~10. For what
concerns the M2N1 case, we have a value for each revolution as ~150, while the former
solution, as evident in Section 3.6.1, is indeed really close to an existing “spectrally”
stable zone. It is possible now to continue further analysing both aforementioned cases.
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5.5.1 Comparison Left/Right families: the Halo “M2N1” at L2

In the following figure, in analogy with all previous results, we show the 3D-plot (TOP) of
the resonance orbit propagated till the nominal value of eccentricity (ez,, = 0.0549), thus
a periodicity validation (MIDDLE) follows with also the analysis on all eigenvalues
(BOTTOM). Also to remember that since M is even, the e-bifurcation leads respectively
to a Left-family and a Right-family, both closely compared in the Figure 83 below.

ER3BP: L2 Halo Resonance (M =2, N =1) for ¢ = 0.0549 at x = 0.0121506 ER3BP: L2 Halo Resonance (M =2, N = 1) for ¢ = 0.0549 at 1« = 0.0121506
No-Pulsating Rotating frame: M , 1.2, CRIBP Orbit, ER3BP Orbit No-Pulsating Rotating frame: M , 1.2, CR3BP Orbit, ER3BP Orbit
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Figure 83: Illustration of the Left/Right-families bifurcating from the M2N1-resonance orbit
of the Halo family at L2. The 3D-plot (TOP), the periodicity validation (MIDDLE) and the
Eigenvalues analysis (BOTTOM) have been shown as well explained in the earlier results.

Both cases computed require only a small number of iterations to converge during the
propagation, while few more iterations of the DC-algorithm for the Left-family are
probably justified by the higher instability found (2-order). The largest eigenvalue is not
very different, while for the Left-family at e  0.005 we can trivially observe an additional
stable/unstable manifold direction. In Section 5.5.3 the data relative to this “split” has
been summarized with Table 9, as previously did in each previous section of this chapter.
Let’s introduce at this point a second comparison, where for odd values of M (number of
orbital revolutions) we arrive at the Apo- or the Peri-group of periodic solutions.
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5.5.2 Comparison Apo/Peri groups: the Halo “M3N1” at L2

In the following figure, in analogy with all previous results, we show the 3D-plot (TOP) of
the resonance orbit propagated till the nominal value of eccentricity (ez, = 0.0549), thus
a periodicity validation (MIDDLE) follows with also the analysis on all eigenvalues
(BOTTOM). Note that since M is odd, we have a bifurcation into a Peri-group and an
Apo-group, both closely compared in the next Figure 84.

ER3BP: L2 Halo Resonance (M = 3, N = 1) for ¢ = 0.0549 at ¢ = 0.0121506 ER3BP: L2 Halo Resonance (M = 3, N = 1) for ¢ = 0.0549 at x = 0.0121506
No-Pulsating Rotating frame: M , 1.2, CR3BP Orbit, ER3BP Orbit No-Pulsating Rotating frame: M , 1.2, CR3BP Orbit, ER3BP Orbit
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Figure 84: Illustration of the Peri/Apo-groups bifurcating from the M3N1-resonance orbit of
the Halo family at L2. The 3D-plot (TOP), the periodicity validation (MIDDLE) and the
Eigenvalues analysis (BOTTOM) have been shown as well explained in the earlier results.

This second comparison is really fascinating, requiring a very high number of iterations
and in few cases non perfectly converging, with final displacements at around 2 - 10712,
In the analysis on the Monodromy matrix, we are able to observe a very curious situation,
where for the Apo-group there is actually an e-range where the M3N1-orbit is actually
linearly stable, while concerning the Peri-group the order of instability only increases
(with two bifurcations found). Nonetheless, at the nominal value e, both groups are

actually linearly unstable, where largest eigenvalue is |1;/x| ~ 1.844 for the Apo-group,

peri

so much smaller than the |}, |  40.784 found for the Peri-group.
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5.5.3 Summary of e-bifurcations for the Halo family at L2

At this point, it seems reasonable to inquiry the effective meaning of all previous results,
since the eccentricity of the Earth-Moon system is indeed well-known and almost fixed.
De facto, we remind the reader that the latter has been selected only as a Test-Case, while
similar methodologies can be applied for a more broad investigation, thus including
different orbital eccentricities "e", along with other mass-ratios "u" (e.g., binary systems).
For time-limitations of this Master work, these possibilities have not been treated here,

while some additional details are now discussed on what has been called “e-bifurcation”.

5.5.3.1 Summary of e-bifurcations for the Halo M2N1-resonance at L2

The initial resonance orbit is I°-order linear unstable, and it is possible to provide some
data on all four eigenvalues initially lying on the unitary circle, as did for MIN1 and
M2N1 cases of Horizontal Lyapunov orbits (both II°-order). In next Table 9 these values
have been shown, where eigenvalues related to the additional manifold have been
highlighted in red, while in green same ones, but preserving their order of instability.

Table 9: Numerical values of the four unitary eigenvalues 4; in the CR3BP for the M2N1 Halo
resonance orbit, with their final values in the Elliptic problem computed at egy = 0.0549.

M2N1 Real Part Imaginary Part Module
—0.899443094610471 | +0.437037892601167 1.000000000005865
CR3BP —0.899443094610471 | —0.437037892601167 1.000000000005865
+0.999999997444340 | +0.000071857391491 1.000000000026083
+0.999999997444340 | —0.000071857391491 1.000000000026083
—0.904205910024912 +0.427096794938111 0.999999999985193
Left- —0.904205910024912 —0.427096794938111 0.999999999985193
family +0.977893773698392 0 0.977893773698392
+1.022605958621735 0 1.022605958621735
—0.903620115612936 | +0.428334783388860 1.000000000000558
Right- —0.903620115612936 | —0.428334783388860 1.000000000000558
family

As expected, we see the additional order of instability arising within the Left-family,
while for the Right-family we have a motion along the “unitary circle”, with an absolute
complex phase from 7.2 - 107> (theoretically zero in the CR3BP) till 2.2 - 1072 at the egy,.
The previous bifurcation has been analysed in detail and summarized in the following
Table 10, but taking into account only pairs of eigenvalue escaping from the unit circle.

Table 10: Numerical data of the e-bifurcation found within the Left-family, when starting
from a M2N1-resonance orbit of the Halo family at L1. Main settings are given in Appendix-B.

Leﬁ'Family eEIF = 0 0024‘ éBIF el';”;- = 00025

Module 0.999019468647137 . 0.998977975762686
1.000981493468671 1.001023069946239

Real +0.999019468647137 . 4+0.998977975762686

Part +1.000981493468671 +1.001023069946239

Imaginary 0 o 0

Part 0 0
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‘eccentricity-bifurcation”

5.5.3.2 Summary of e-bifurcations for the Halo M3N1-resonance at L2

For this second comparison, the M3N1-resonance of Halo family has been considered.
Initially we have four eigenvalues on the unitary circle, while for both groups (Peri and
Apo) two bifurcations have been found in the propagation till a nominal value eg,,. Main
data on eigenvalues at both e = 0 and e = eg), (for Peri/Apo-groups) is given below in
Table 11, where all six eigenvalues have been considered due to the higher complexity of
bifurcations found in this new comparison (for M odd).

Table 11: Numerical values of all the six eigenvalues 4; for the M3N1 Halo resonance orbit,
where their final values in the Elliptic problem have been computed at egy = 0.0549. In red,

eigenvalues with a module larger or smaller than 1 (so lying outside the unitary circle)

M3N1 Real Part Imaginary Part Module
—0.111442638003795 0 0.111442638003795
0.999995839315048 0 0.999995839315048
CR3BP 0.046769220971739 +0.998905721261439 0.999999999999569
0.046769220971739 —0.998905721261439 0.999999999999569
1.000004160712827 0 1.000004160712827
—8.973226207746997 0 8.973226207746997
0.024519216502122 0 0.024519216502122
0.587892983628985 +0.267830791396652 0.646027470793888
Peri- 0.587892983628985 —0.267830791396652 0.646027470793888
group 1.408627963372916 +0.641739147651266 1.547921791572269
1.408627963372916 —0.641739147651266 1.547921791572269
40.784337464183267 0 40.784337464183267
—0.056858122643957 +0.539427770285132 0.542416044623851
—0.056858122643957 —0.539427770285132 0.542416044623851
Apo- 0.616562343332575 +0.787306088357874 0.999999999990567
group 0.616562343332575 —0.787306088357874 0.999999999990567
—0.193253541352812 +1.833446516722492 1.843603281871466
—0.193253541352812 —1.833446516722492 1.843603281871466

Once again we see a clear difference in final values, as also mentioned in Section 5.5.2,
where for the Peri-group the linear stability assessment shows three stable/unstable
manifolds against the only two of the Apo-group. In order to have a more coherent
discussion we will now briefly review+° the two bifurcations found for both cases, as
previously illustrated with Figure 84 (BOTTOM).

Peri-group bifurcations:
peri
I.  Foreg,

peri
1I. For e,

€ (0.0454,0.0455), with instability from I-order to 0-order.
€ (0.0468,0.0469), with instability from 0-order to II-order.

Apo-group bifurcations:

apo

I.  Forep; € (0.0008,0.0009), with instability from I-order to 0-order.
II.  Foregh’ € (0.0228,0.0229), with instability from 0-order to II-order.

40 Data are here not provided in order to not overload this section with many tables, not really
necessary for our qualitative discussion. Furthermore, one of the main objectives is here indeed to
exploit differences and particular characteristics between groups/families, bifurcated once
considering the dynamics of the Elliptic Restricted 3-Body Problem.
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For the sake of completeness we provide in Figure 85 a graphic plot in the complex-plane
of the full motion Ve: 0 — eg,, for all previous six eigenvalues associated to the Peri/Apo-
groups. We refer again to the M2N1-resonance solution in the Halo family at L2. With
blue and magenta dots, respectively eigenvalues are shown for both Circular and Elliptic
problems, thus the ‘asserted’ bifurcation points as black diamonds. Last, in red the full
motion based on the eccentricity step-size adopted for Ae = 10~* (see Appendix-B).
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Figure 85: Illustration of the motion in the complex-plane of all six eigenvalues for the Peri-
group (TOP) and the Apo-group (BOTTOM) bifurcated from the M3N1-resonance of the Halo
family at L2. In blue/magenta the initial/final values, while in red the full “path” is shown.

Both previous plots show the motion of eigenvalues with both two bifurcations found
during the propagation. A smaller step-size Ae allows having a better image of the real
behaviour, thus leading to the possibility of evaluating also systems with a slightly
different eccentricity. However, some additional bifurcations within this motion (without
changes in the instability order) could be also interesting to be investigated, but here not
treated. Moreover, even more important is the evident difference found, as previously
demonstrated, with two distinct groups bifurcated from the exactly same Halo resonance
orbit. The latter has been related to the specific initial phase adopted once propagating
this reference orbit toward the Elliptic problem. More details on additional very similar
e-bifurcations, also for no changes in the order of instability, has been well described in
(H. Peng & Xu, 2015b). At this point, we proceed with the last very step of this chapter:
an example for the numerical comparison between the Circular and the Elliptic model.
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5.6 Linear stability comparison: Circular vs Elliptical

In this section we numerically test one among all the previous cases investigated. Main
objective here is not to compute an effective periodic trajectory for the Earth-Moon
system, but mostly to highlight the importance of considering the ER3BP as reference
model for practical space mission planning and optimization. Again, we need to remind
the reader that optimal transfer orbits, along with the characterization of stable/unstable
manifolds, are not parts of this work, nonetheless we focus on two principal aspects:

i.  The consequence of adopting shooting conditions found from the Circular model
into the full dynamics of the ER3BP, which better exemplify the real physical
Earth-Moon system, as fully treated in Section 2.1.3.

ii. At what extend it is possible to consider acceptable a small mismatch in the
shooting-phase required by the Elliptic Periodicity Condition, while clearly
that aspect does not affect at all the numerical integration within the CR3BP,
since dealing with a time-invariant differential system (see Section 2.2.1).

({3424
1

For what concerns the first point “i”, we start considering the M3N1-resonance of the
Southern Halo family at L2, previously treated in Section 5.5.2, while both two groups
(Peri and Apo) bifurcated at e = 0 have been represented in Figure 84. At this point we
consider again the Pulsating frame, where libration points have been found to be
numerically the same for both models (Section 4.1.2). Thus, it is possible to consider
initial conditions found from the CR3BP and the ER3BP, starting with 6, = 0 or 6, = m.

The resonance orbit shown in Figure 86 is very close to the Moon, perfect for observation
missions of the gravity field, but with an apogee far enough for assuring communication
and data transfer with the Earth. Under this perspective, an example is given where the
trajectory is numerically integrated till divergence. This divergence is delineated by a
boundary zone at 1.5 X R, where Ry is the Hill’s radius (here ~0.160) that ‘nominally’
define the so called Sphere-of-Influence of a single mass. (Musielak & Quarles, 2014)

Final Time: 1.248 [ x27]

0.1

0.05

-0.05

z-axis [-]

-0.1

-0.15

x-axis [-]

y-axis [-]

Figure 86: Illustration of the M3N1-resonance orbit integrated in the full dynamics of the
Elliptic problem (eg, = 0.0549), starting with the shooting condition previously found in the
Circular model. In magenta both libration points have been shown.
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In the previous Figure 86 we can clearly note that the “Circular shooting condition” is not
able to well-propagate the resonance orbit within the full dynamics of the ER3BP, which
is supposed to be a much more correct approximation of the real EM-system. Clearly, the
trajectory diverges in around one system revolution, so around three orbital rounds
around the Moon. It follows that a mission based on such “design” is still possible but
most-likely it involves higher costs for station-keeping and correcting manoeuvres.

5.6.1 Numerical stability of Peri/Apo-Halo M3N1-resonances at L2

At this point, we can compare the previous result with a numerical propagation (in a very
similar way) but starting with initial conditions found for the Peri and Apo groups
bifurcated at e = 0. Shooting conditions are given in Table 12, where we again stress the
fact that this comparison has been placed within a Pulsating frame. Indeed, for this
frame the location of masses and L-points is numerically the same for both models.

Table 12: Shooting conditions found in the Circular and Elliptic model for a M3N1-resonance
Halo orbit at L2 in the EM-system. Data refers to Pulsating coordinates (see Section 4.1.1.2).

I.C. CR3BP Peri-ER3BP Apo-ER3BP

Xo | +1.063785954070617 | +1.061252432204949 | +1.063712371738405
Zy, | —0.200401559160425 | —0.177952611695976 | —0.212459411426779
Vyo | —0.177610250323491 | —0.206741611293892 | —0.163118549852345
0o Not relevant 0 s

Graphical results are shown in the figure below, where clearly both new simulations are
able to exhibit a ‘longer’ stability. Considering an hypothetical DV-budget, it seems
reasonable to assume that lower costs will be involve for these last two cases. More
interesting is also the confirmation of what has been found in Section 5.5.2, with the
M3N1 Apo-group much more stable than the Peri-group, due to the smaller ||1,4x|| (see
Table 11). In both cases, the trajectory is able to remain bounded near M, for a very long
period, while additional manoeuvres are still necessary for much more accurate missions,
in order to assure that the spacecraft correctly follows this “operative orbit”.

PERI-GROUP Final Time: 9.092 [x27] APO-GROUP Final Time: 40.340 [x27]

X-axis [- . X-axis [-
y-axis [-] -l y-axis [-] -l

Figure 87: Numerical integration of the M3N1 Halo at L2, using the full ER3BP-dynamics and
starting with shooting conditions found respectively for the Peri-group (LEFT) and for the
Apo-group (RIGHT). In magenta both libration points have been shown.



Linear stability comparison: Circular vs Elliptical | 123

For a clearer picture of such “assumed” higher accuracy, we show in Figure 88 both the
Position and the Velocity displacement respect to each shooting condition previously
given in Table 12. These two displacements are shown, still in Pulsating coordinates, with
their “periodicity error” (given with red dots) being evaluated at 6§ = 6, + k- Ty, vk > 1,
thus considering both the Peri-group (TOP) and the Apo-group (BOTTOM).

L2 Halo (M3N1): STABILITY DATA with 0,=0 [ =0.0121506, e = 0.0549]

LEGEND: CR3BP, ER3BP, period-TE with errors (*)
[P(0)-P(@y)

IV(0)-V(Gy)|
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Magnitude Relative Velocity [-]

N
~

izl v L L L L i ITc) —— z L ! 1 L |
1 2 3 4 5 7 i 1 2 3 6 7 8

5 [ 4 s
O-time [ x 2] O-time [ x2x]
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Figure 88: Numerical integration of the M3N1 Halo resonance orbit at L2 for the Peri-group
(TOP) and the Apo-group (BOTTOM), where position and velocity displacements from
respective initial conditions (in orange). All Tg-periodicity errors are shown (in red-dots).

An increasing trend is clearly observed, where errors grow at each revolution due to the
linear instability. At the very end, we are able also to see that the phase synchronization
has been lost, with red-dots not more related to the smaller displacement found at a
specific n-revolution (green arrows). The displacement for the circular case is shown in
blue, but related to very large errors order 1072 (so thousands of km). The last example
can be regarded as an additional confirmation of the necessity to take into account
“ellipticity effects”, above the nominal dynamics given by the less accurate CR3BP model.

As stated in (H. Peng & Xu, 20153, 2015b, 2015¢), “In the Earth-Mon system, a reference
orbit designed in the CR3BP requires frequent station-keeping manoeuvres to offset
perturbations introduced by model errors. Energy cost can be reduced if a better
nominal orbit in a more realistic model is adopted”. The latter very well summarizes
what has been stated so far, in relation to all major advantages of using an ER3BP model.
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5.6.2 Numerical stability due to shooting-phase errors

On the point “ii”, we briefly consider again the previous case, starting with an Apo-Halo
Ms3Ni-resonance at L2 and later numerically integrating it for 18 system revolutions
(equivalent to 1.5 year integration in the Earth-Moon case). Furthermore, Position and
Velocity displacements from the shooting-condition have been shown, but now only
referring to the T-periodicity. Basically we are looking at the magnitude of red-dots, as

found in Figure 88, but using shooting-phases slightly different from the nominal one.

We consider a maximum error in the initial shooting-phase as A8)4% = +7/360, so equal

to around 3280 seconds (or around 50 minutes), while step chosen is 50 times smaller,
thus equivalent to around 1 minutes in the Earth-Moon case. This serves just to show
that errors can grow in multiple revolutions not only for the dynamical instability, but
also due to an initial phase-shift (see the Elliptic Periodicity Condition). However,
absolute errors have been shown here in a 2D-plot based on a log10 colour-scale, where
in blue we have the simulation with a nominal shooting-phase (as in Figure 88). For this
last case the periodicity error has been found to be initially smaller than 10712, as
consequence of the threshold adopted by the DC-algorithm.
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Figure 89: Illustration of position and velocity “periodicity errors” referring to 18 system
revolutions and a range of phase-shift from the nominal shooting-time as +7/360. Absolute
errors are given in a Log10 scale, while time-shift is based on minutes for the EM-system.

Very last observation, we underline that the darker area found in both previous plots is
related to absolute errors still in an acceptable range below 10™* (so dozens of km).
Nonetheless, the smaller the errors, the smaller are corrections required and with it the
overall maintenance costs of the mission (Koon et al., 2008). In addition, a generic
phase-shift could also be combined with other shooting errors (but here not shown), thus
further complicating the dynamical motion, already subjected to the highly unstable
dynamics, as established during this investigation over the ER3BP.




Conclusions

In the last Chapter 6, the research journey of this Master thesis report comes to an end.
Many aspects have been deeply investigated, many others have been only mentioned and
several analyses also performed to provide the reader with an exhaustive overview on the
celestial mechanics problem treated in this work. Primary effort has been devoted to well
summarize the current state-of-the-art knowledge, involving most recent literature, so
comparing it with our major results, along with a more general background ‘picture’ of
what has been inspected here.

In Section 6.1, leading conclusions have been presented, based on what discussed so far,
thus following the central workflow structure of this Master thesis project, as illustrated
in Figure 1. Later, in Section 6.2, some recommendations on this research topic have
been introduced, as well as for all main methodologies adopted. This last brief discussion
serves to complete and to conclude this entire analysis, but most important aiming to
establish a fundamental research’s step, as pivotal starting point for future investigations
on very similar research topics.

6.1 Conclusions

The examination over some types of solutions has been the focal point of this Master
thesis, when considering two dynamical models, first with the Circular Restricted 3-Body
Problem (CR3BP) and later with the Elliptic problem (ER3BP). Main purpose has been
the analysis and comparison between both models, while the Earth-Moon system has
been test-case for all the numerical simulations. Particular solutions have been studied at
two equilibrium points of the system, nominally L1 and L2, while three different families
have been taken into account: both the Horizontal/Vertical Lyapunov families and a
third one well-known as the Halo family.

With the use of the Dynamical System Theory, it has been possible to deeply observe
main features of what we remind to be just part of the more complex real dynamics
described by such models. Above all, periodic solutions have been examined, along with
their linear stability and possible bifurcations in the continuous families found within the
Circular problem. Next, specific members of these families (here resonance orbits) have
been extended, under some particular assumptions, into the ER3BP model, while the
named eccentricity-bifurcation has shown some additional peculiar characteristics to
these solutions.
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In the CR3BP it has been shown that, for a particular co-rotating reference system (also
defined as synodic), both main masses are fixed and they generate indeed a gravitation
potential field, along with all the “fictitious forces” introduced when considering a non-
inertial frame. Due to symmetries within the differential problem, some conditions arise
on the existence of periodic orbits, while a closer analysis on their linear stability (based
on characteristic multipliers of the Monodromy matrix) has been able to shows how such
solutions are actually embedded in continuous families. When extending periodic
solutions from the Circular model to the Elliptic one, a dominant role is played by the
time-like parameter of the system, here defined by the relative orbital phase 6 between
main masses. At this point, it should be possible to answer to the Main Scientific
Question (as given in Section 1.3), in this way emphasizing some most critical aspects of
the dynamics related to the Elliptic Restricted 3-Body Problem.

ANSWER TO THE MAIN SCIENTIFIC QUESTION:

The destruction of continuous families is here a very first critical element, where periodic
solutions still exist but only at some resonance points, thus theoretically generating
discrete families. Even under small “elliptic perturbations”, resonance effects remain
predominant and can strongly influence costs of orbit maintenance and station-keeping
manoeuvres. In addition to that, a second critical element arises due to the new time-
constraint on shooting conditions, well summarized in the so-called Elliptic
Periodicity Condition. The latter allows having distinct situations, where each
solution actually bifurcates into two different branches, based on the specific shooting-
time chosen. Main consequence is the possible very different behaviour, still referring to
a linear stability, while periodic solutions in the ER3BP seem to be in general much more
unstable. In comparison with this model, other types of perturbations (as listed in
Section 2.1.3) do not actually involve such time-dependence, but they are still able to well
approximate the motion of a more complicate physical world. Practically, the major
consequence of extending_the standard Circular problem to the Elliptic one can be
properly shortened in the new “direct” time-dependence found within the differential
system, due to this elliptic bounded Kepler motion of both main masses.

ANSWER TO RELATIVE SUB-QUESTION:

Five main sub-questions have been given in Section 1.3, in order to better define what is
the aim of this Master work, along with major focal points of the research here proposed.
First of all, it has been necessary to comprehensively well define the Circular Restricted
3-Body Problem, in the limit of some choices made for the simulations (e.g., Lagrange
points and families selected). In this first step (as shown in Figure 1), the linear stability
has been assessed with the use of the Monodromy matrix, thus looking at the local
dynamics around such trajectories. The latter has allowed discovering bifurcations within
each family, where we remind that the bifurcation parameter is here the distance of each
member from the nearest Lagrange point, as measured along the syzygy direction
(connecting both M; and M,). Type and location of all bifurcations is related to the
selected u-parameter, but here fixed to ug,, for the Earth-Moon system. Moreover, the
very fascinating aspect is here the birth of additional periodic families, starting from
Tangent-bifurcations (Section 2.2.5), along with the existence of quasi-periodic ones.
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Bifurcations treated here are connected to changes in the order of instability, where the
linear stability of members within a family could be related to the X-position of these
“division points”. In Appendix-B, a further verification has been presented in relation to
the unstable dynamics of the CR3BP (with numerical implications), as also for the
importance of considering such bifurcation points. In fact, close members within the
same family can have a very different behaviour, due to a different order of linear
instability, and so involving a different number of stable/unstable manifolds.

The inspection of the Elliptic problem has shown many interesting characteristics. In
first approximation, “elliptic perturbations” have been considered for a very small
eccentricity value, principally based on an analytic approach. It has been possible to
observe resonance effects related to this new dynamics, while the higher instability has
been exploited later by the numerical computation of periodic orbits, in agreement with
most recent literature. This type of trajectories still can exists for the general elliptic case,
but subjected now to more strictly conditions, thus adding difficulties in their precise
determination. Only solutions in resonance with the system can survive in this new
model, while also indispensable is here the Elliptic Periodicity Condition. From this
last condition it follows the existence of two different branches of the same solution,
depending on the precise shooting-time for the third negligible mass.

Last, sub-question “V” is actually more generic and has not really a unique answer, where
advantages of using a more complex dynamical model need often to be traded with other
additional aspects. For example, the accuracy required by the model itself, depending
also on what are the designed “mission objectives”, along main tolerances allowed for the
nominal mission. For this reason, this entire research has been carefully described steps
by steps within this report, providing all main settings and relative assumptions, in what
can be regarded as a coherent and robust procedure.

COMMENT ON THE RESEARCH OBJECTIVES:

This Master work has introduced many methodologies, with the combination of both the
analytic and the numeric approach for investigating principal features of these two
models. The analysis, mostly based on the Dynamical System Theory, has presented an
extensive survey of proprieties for the Circular model (in Chapter 2) and later for the
Elliptic one (in Chapter 4). In this way it has been possible to delineate a systematic
process, capable of leading to large insights in the dynamics. In addition to that, to be
underlined that a similar scheme could have also been applied for any other 3-Body
systems, as long as assumptions remain valid (or at least are acceptable).

Second objective has been to highlight distinctive elements of the ER3BP, for example
related to resonance effects found under small “elliptical perturbations”, as well as for
new constraints on the shooting-time suitable for such particular trajectories.
Displacements from ideal conditions lead indeed to an unbounded drift, far away from
the target orbit, while the non-existence of a First integral (the so-called Jacobi constant)
complicates even more the situation. Moreover, the direct dependence on the time-like
parameter has been designated as peculiar aspect of the Elliptic problem, while other
perturbations, as oblateness or solar radiation, can be still characterized by an
autonomous differential system (or by a time-independent potential function).
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Last, not less important, we have seen in Section 5.6 some major outcomes when
considering the more complete dynamics of the Elliptic problem. In particular, shooting-
time becomes a very strict constraint, where also small shooting-phase displacements
can have large effects on periodicity errors. Neglecting the ellipticity of main masses, the
third small mass most-likely will deviate from its “operative trajectory”, with a clear
consequence on the maintenance and station-keeping costs. However, most relevant is
here the very different behaviour of bifurcated solutions, due to the fact that their
stability proprieties (in a linear analysis) will now depend upon the shooting-time
initially selected at the starting point of such periodic orbits.

6.2 Recommendations for future works

As discussed, the work represents a general investigation over different models, with an
analysis limited to only certain families of periodic solutions, involving “Lagrange orbits”
found in a neighbourhood of two equilibrium points of the system (here L1 and L2).
Nonetheless, the reader should be aware that many parts of the discussion are still
currently being investigated by many researchers and could be subjected to substantial
modifications, thus reinforcing the necessity to always validate results with the most
recent literature available. In the next list, some possible further developments for this
Master thesis work are given, as summary of principal aspects already discussed inside
this report. Here we have seven major bulleted points:

e The analysis of all the three families can be continued beyond the limits
introduced and defined in Chapter 3 (see ADDITIONAL SETTINGS). In this
way it is possible to look at additional bifurcations (here not shown), as well as for
new resonances to be later propagated and analysed within the ER3BP.

¢ Considering very analogous analyses and procedures, the same investigation can
be performed for different values of the p-parameter, focusing also on some
possible p-bifurcations in all the six cases presented here.

e For a single p-value, as the one here adopted for the Earth-Moon system, the
analysis can be extended to higher values of the eccentricity, similarly to what has
been briefly shown in Figure 79 (at page 113).

e For all previous points, it is also theoretically feasible to include other families of
periodic solutions, so taking into account additional libration points or also
planetary orbits, as briefly summarized in Appendix-C.

e The research can be also complete by including quasi-periodic solutions in this
investigation. These lasts have been shown indeed to exist around each family
studied in this Master thesis report (see Section 2.2.4).

¢ A more complete model can be considered, based on “additional perturbations”,
as previously discussed in Section 2.1.3 (TEST-CASE: the Earth-Moon system),
for example including the oblateness and solar radiation effects.

e As alternative research proposal, the entire discussion of this work can be
enhanced by the analysis of stable/unstable manifolds, starting with some specific
periodic solutions and later relating them to feasible “transfer problems”.
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Constants and main
parameters used

In this Appendix-A, we briefly summarize constants and main parameters used in our
simulations, e.g. thresholds used in both the Periodic L-Orbit Generator and
Resonance L-Orbit Propagator algorithms. First of all, we need to present some
further details related to the Earth-Moon system, Test-Case adopted in all simulations.

Principal constants for the Earth-Moon system

An extensive description of the Earth-Moon system has been given in Section 2.1.3, so
delineating the model adopted with all its major simplifications, as also for few main
additional perturbations existing in the ‘real’ (or better approximated) dynamics.
Moreover, in Table 1, Bulk and Orbital main characteristics have been listed, mostly with
the objective of giving the reader a “more tangible measure” of the system. One remark,
is that different Master theses, PhD theses and even articles provide usually different
values for the u-parameter (the mass-ratio). Clearly, a mathematically precise value is
not very realistic, nonetheless we have pointed out many times that our analysis is not
strictly designated for a particular real space mission design but theoretically applicable
to any 3-Body systems. Under this perspective, first objective is to assure consistency in
the procedure, while values for the parameters can change and this change itself could be
analyse in future investigations, for example looking at bifurcations along the p-value, as
also performed in (Doedel et al., 2003; Doedel et al., 2007).

We start with the value for Earth and Moon mass-ratio, so leading to

My
MEM_ME+MM_1+O__1

= 0.012150584460351 ~ figy = 0.0121506 (A-1)

where the ratio ¢ = M;,;/M; is equal to 0.0123000371 + 4 - 1071°, as given in the “IAU
2009 System of Astronomical Constants” (Luzum et al., 2011). Adopted for all simulation
is its approximation figy in Eq. (A-1), still in agreement with textbooks as (Vallado &
McClain, 1997), or also used in (Parker, 2007). Furthermore, we have performed our
analysis also on slightly different values rounded to 0.012150 and 0.012151 (here not
given) without noting any substantial different behaviours at each family, while a very
different situation can been observed for near binary systems (Doedel et al., 2007).
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As seen in Section 2.1.2, in the Circular problem the system is fixed once given a u-value,
as also its main proprieties (e.g., location of the five Lagrange points). L-points can be
calculated using both Eq. (2-7) and Eq. (2-8), with an analytic solution for triangular
points Ly/s, as shown in Figure 4. For the three collinear points L, /3, it is also possible
to use and solve Eq. (2-9), quintic equation in y; = y;, , scalar distance of each L-point
from the nearest mass. Using the mass-ratio value figy , we obtain

Table 13: Location of collinear Lagrange points (L-points) and their scalar distance y; from
the nearest mass. All three found along the syzygy in a co-rotating frame for fi;,; = 0.0121506.

Collinear L-point x-position y.-value
L +0.836915054964205 0.150934345035795
1 ~ +321710.147 [km] ~ 58019.162 [km]
L +1.155682220791537 0.167832820791537
2 ~ +444244245 [km] ~ 64514.936 [km]
L —1.005062651805919 0.992912051805918
3 ~ —386346.083 [km] ~ 381675.392 [km]

Note that we have used the nominal semi-major axis, as agy = 384400 [km], in order to
dimensionalize these coordinates (so using values in Table 1), but still referring to the
origin of the reference frame (centre of mass of the co-rotating system).

Comment on the “non-dimensional” system

Almost the entire investigation has been performed adopting a non-dimensional
reference system, where in Section 2.1.1 and Section 4.1.1 we have introduced the
transformations for space, time and mass. In order to have more insights in the physical
meaning of such analysis, here we can simply define each unit-value respect to the
numerical ones found within this report, thus adopting the following transformations

1 [meter] = 2.6 -107° [—] _

it follows

1 [second] & 21 ~ 266210 [-] —— 1[Km/s] = 0.97671 [-] (A-2)
=7 =2

EM

it follow
1[kg] = 1.654-10725[] Y 1[MJ] = 0.15779- 1024 [—] (A-3)

with the energy is defined in MJ (millions of Joule) and the Moon orbital period around
the Earth has been approximated to Ty = 2360595 [s]. (NASA, 2016)

PS: physical shooting velocity is not directly related to the previous relation, since the
system adopted is synodic (so co-rotating), as also for the Pulsating frame, where the
situation becomes even more complex. This work focuses mainly on the investigation of
the general dynamical model, nonetheless such aspects needs to be taken into account for
real space mission designs or in particular for the transfer trajectories’ optimization.

At this point, as conclusions, we present some main values used (e.g., thresholds) in the
numerical computation, while others have been already discussed within the main text.
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Parameters adopted for all main simulations

For what has been previously shown, we have decided to adopt specific thresholds in the
numerical computation as trade between computational restrictions (e.g., the Matlab
numerical precision) and limitations from the physical dynamics (e.g., physical units).
We refer once again to (Vallado & McClain, 1997) for more accurate information, in
particular on practical aspects related to common space missions, while here we simply
list main values adopted, in comparison to similar simulations found in literature. Within
the report the reader can found description and use of each one of these parameters,
while their corresponding dimensional value can be computed using Eq. (A-2).

Table 14: Main parameters used for the numerical computation in both CR3BP and ER3BP
are here shown, meanwhile their “dimensional values” can be computed using Eq. (A-2).

Parameter Value at L, [—] Value atL, [—]

Circular Problem:

e

I1?(i)2[i)tlie(l)cneI;lent of AY 10-12 10712

Elliptic Problem:

Ereentiy be

Il))(i;}i)tlia(l)(fr;ent of AY 10-10 10~10
FINAL COMMENT:

In (Hao Peng & Xu, 2014) the accuracy condition involves at the same time both
displacement terms, such that

Total Displacement = JAYZ +AVZ, = \/AYZ + AVZ 4+ AV? (A-4)

On the first crossing the threshold has been fixed at 102, adopting a relative tolerance in
the numerical integration (MATLAB function ode45) as 3-10~1*. Later, in (H. Peng &
Xu, 2015a, 2015b, 2015c¢) this value has been reduced to 1071, in total agreement with
the one used in this work for the elliptic case. Last remark is related to a much stricter
threshold here used for the Circular problem, where the convergence of the DC-algorithm
has been not so problematic, as discussed in Section 4.4.2. Unfortunately, in other
literature cited (mostly related to periodic solutions for the ER3BP) there are not always
enough data on main settings or methodologies, thus not very suitable for a comparison.
A more detailed discussion on numerical integrations has been provided in Appendix-B.
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MATLAB Software
Environment and Settings

In this Appendix-B, we provide a concise survey on numerical aspects of this work, in
particular based on MATLAB software environment (version R2015b). Main critical
element in our investigation is indeed related to the “integration accuracy”, and
consequently the choice of an efficient numerical integrator is fundamental for all our
purposes. All thresholds and physical aspects related have been analysed in Appendix-A,
while for further technicalities the reader is referred to general literature on numerical
methods. Example is (Quarteroni, Sacco, & Saleri, 2000) and above all, in (Shampine &
Reichelt, 1997), an extensive comparison has been given about “programs for solving
ordinary differential equations in Matlab”, reference point for the following discussion.

MATLAB (MATrix LABoratory) uses floating-point numbers, having a finite precision
given by 16 significant decimal digits and an effective range between 1073% and 10%3°8,
where the e-Matlab4! is given as €; ~ 2.22- 10716 at 1 (MathWorks, 2013). In a physical
world, in particular for real space missions, this value can be consider as completely
‘negligible’ (nanometre scale for the Earth-Moon CR3BP), while can be really important
for integration on long periods, as also for stability assessment. A summary on numerical
integrators schemes has been given in Chapter 6 of the Literature Study and is not the
purpose here, thus we will only discuss some settings related to this “Matlab ode suite”.

MATLAB ode suite: the “ode113”.

Since considering orbits mostly near L-points and far from gravitational singularities, the
numerical analysis has shown great robustness. Furthermore, for non-stiff problems
Matlab ode suite allows using three functions as “ode23”, “ode45” and “ode 1137,
respectively for a low, medium and high accuracy. In the very initial phase of this Master
work, a choice has been made for using the ode113, which is a variable-step integrator,
variable order (VSVO) Adams-Bashforth-Moulton PECE solver of orders from 1 to 12
(Shampine & Reichelt, 1997). As stated in their paper, “compared to ode4s, the ode113
solver is better at solving problems with stringent error tolerances. A common situation
where ode113 excels is in orbital dynamics problems, where the solution curve is smooth
and requires high accuracy”.

41 Note that with e-Matlab we refer to the “Floating-point relative accuracy”, meaning that the
distance between x = 1 and the next larger double-precision number will be given as ¢,. The latter
for single-precision is given as € = 2723, while for double-precision is €& = 2752,
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The integrator selected is able indeed to define an error threshold, based on both the
“Relative” and the “Absolute” tolerance, well described in (MathWorks, 2013) as

I.  Relative error-tolerance “RelTol”.

“It measures the error relative to the magnitude of each solution component.
Roughly speaking, it controls the number of correct digits in all solution
components, except those smaller than “AbsTol’.

II.  Absolute error-tolerance “AbsTol”.
“It is a threshold below which the value of the solution becomes unimportant. If
the solution |X(t)| is smaller than “AbsTol”, then the solver does not need to
obtain any correct digits in |X(t)|”.

Thus, to be considered successful, each step t; must have an accetable error "err”, so that
llerr(t;)|| < max(RelTol - |X(t;)|, AbsTol(t;)) (B-1)

with X = X(t;) state-vector of the differential system integrated. Clearly conditions on
AbsTol are taken into account only for very small values of |X(t;)|, thus final choice has
been made in relation to non-dimensional units, such that

{RelTol = 100" ¢, (B-2)
AbsTol = 107%*
with €, previously defined as epsilon-Matlab, where RelTol in Eq. (B-2) has been actually
set to the lower boundary admitted by Matlab ode-functions. The latter is justified by the
fact that the integration period T necessary for the Differential Correction algorithm (or
the propagation of the STM) is relatively small (Chapter 3). In fact, the maximum T has
been found for H-Lyapunov orbits at Li, approximatively equal to 6.77 in non-
dimensional time units. As consequence, such strict constraint is balanced by a short
integration time, so leading to an overall efficient and precise computation. Moreover,
the accurate numerical integration is an aspect fundamental for lowering the threshold
used for the “periodicity conditions” described in Section 2.4.2.

NOTE: previous values has been based on a trial-and-error procedure, so balancing
computational time with accuracy, thus defining most suitable thresholds and later
comparing settings with a more general literature previously mentioned.

Unstable dynamics of the Restricted Three-Body Problem

Last step is to explain few major problematics relative to the integration and stability
assessment of periodic (or quasi-periodic) solutions. In this work we have been focused
principally on first-order stability (linear stability) and relative bifurcations, while in real
space mission stability needs to be verified differently, for example based on Poincaré
Mapping (Teschl, 2012), as also considering additional perturbations (Section 2.1.3.1).
Moreover, there exists always a small error within the shooting conditions of periodic
solutions, where the Differential Correction converges only once the threshold has been
reached. When assuming very small uncertainties (in the limit of Matlab precision), the
displacement initially follows the dynamics of the linearized system, in agreement with
the entire discussion on stability given with Sections 2.2.2 (CR3BP) and 4.2.2 (ER3BP).
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Clearly, once the error has grown too much, the first-order stability is no more a valid
model and non-linear effects arise. In order to verify the validity of linear stability for our
discussion, we have selected three member within the Halo family at L2 (Earth-Moon
system), nominally 2-unstable, 1-unstable and o-unstable, as shown in Table 15.

Table 15: Three periodic solutions selected from the Halo family at L2 (Earth-Moon system).
Different orders-of-instability have been chosen and all shooting conditions {xo,vyo,zo} have

been shown together with the largest eigenvalue’s module |1),,x| and the orbital period T.

Member #902 #1041 #1044
Order . 2 1 0
Xo 1.006913190189294 0.992588582490166 0.992377327198552
Vyo 0.541529474357983 0.684998059403458 0.689136385592912
Z 0.063314501881441 0.045194107092875 0.044737905101660
[Apax | 22.138119542987397 1.353402273942142 1.000000000026339
T[X 2m] ~0.4390 ~0.3798 ~0.3783

Note that last two orbits have been taken really close (respectively member #1041 and
#1044) having a relative distance on the £Z-plane as [Ax,, Azy] ~ [2.11,4.56] - 10~* and
consequently around [81,175] km. These three orbits have been numerically integrated
with similar setting for roughly 5 years, equivalent to around 60 system revolutions
(Moon around the Earth) or respectively almost 137, 158, 159 orbital revolutions. In the
following Figure 90, the graphical results have been shown with an evident trend, where
the o-unstable orbit seems to preserve its periodicity for the entire time-duration.

CR3BP: Comparison Linear Stability within the L2-Halo family.

0-unstable (#1044)

2-unstable (#902)

Figure 90: It shows graphical results based on the comparison among different orders of
instability, thus numerically integrating for 60 system revolutions (corresponding to 5 years)
the three members of the Halo family at L2 in the Earth-Moon system (synodic frame).

Obviously, it is necessary also to provide some data in addition to these qualitative plots,
thus in Figure 91 for each solution the periodicity error of the position P(t) and the
velocity V(t) has been shown, both defined as follows

P(t) = [x(t),y(®), z(D)]"

T B-3
V(t) = [Ux (t), vy(t)' Uz(t)] ( )
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In Figure 91, we can observe the absolute error after each revolution, where T is the
orbital period of the solution, and the error is evaluated at t = n-T;,Vn > 0 (integer).
Trivial is to observe that for the 0-unstable case, errors at the 159 revolution are around
9.2:107% and 8.1- 1077, equivalent to ~35 m in position and ~0.1 mm/s in velocity. For
what concerns the real world, initial displacements could also been larger for many
physical reasons (e.g., additional perturbations), while only purpose of this example is to
demonstrate the robustness of the selected numerical integrator itself.

0-unstable (#1044)

2-unstable (#902) 1-unstable (#1041)

| P(T) - P, |

5
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1 1 1
10 10, 10
10° 1 10° 10°

107 1 107 107

3 ! 106 107

| V(T) -V, |

10” 1 107 10°

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1074 1 107 107

] J(t) g J()I

107 10 10°
0 10 20 30 40 50 0 10 20 30 40 50 0 100 20 30 40 50

Time [x 2] Time [x27] Time [ x27]

Figure 91: Plot of three periodic solutions (Halo family at L2 in the Earth-Moon system) with
three different orders-of-instability. Displacement in position (TOP), velocity (MIDDLE) and
energy (BOTTOM) is shown over around 60 systems revolutions, as described in the text.

From previous results, we can conclude that the divergence from a periodic behaviour is
mostly influenced by the existence of unstable manifolds (see Section 2.2.4), and
consequently related to the order of instability. Nonetheless, in the last two simulations,
both members have been selected really close to each other and still outcome of the
integration seems very different. It follows that also this linear stability plays a crucial
role in the design of space observation missions, especially influencing station-keeping
costs, while adjacent periodic solutions could have a very different behaviour, in response
to the so-called “injection errors”. (Utku, Hagen, & Palmer, 2015)

Indeed, in Figure 91 (Bottom), the energy displacement seems to be really small, where
for first two cases it decreases when the trajectory jumps into particular solution,
numerically more stable. This element can be seen as a confirmation of the fact that the
numerical integration is very accurate, while the dynamics of both Circular/Elliptic
restricted problems is highly unstable. As main consequence, such instability can leads to
numerical complications, in particular when looking to specific closed trajectories.
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FINAL NOTE:

In the last plot, an additional test has been performed, involving the only known Integral
of Motion for the Circular problem (Jacobi constant). From the moment that its value
(calculated at the initial time) is supposed to be nominally constant along the entire
trajectory Vt — too, it can be used to check the accuracy during the integration.
Unfortunately, this necessary condition is also not sufficient, due to the fact that the
expression given in Eq. (2-11) does not change when errors of different components
cancel out reciprocally. Furthermore, in addition to both Closing condition and
Eigenvalue condition, it is possible also to use this last Energy condition in order to
assess the validity of results, only for what concerns the Circular Restricted 3-Body
Problem. For the Elliptic Restricted 3-Body Problem it is not possible to adopt such
additional verification to our results, even if a pseudo First Integral exists, as seen from
Eq. (4-21). The latter has been applied indeed by (S. Campagnola et al., 2008) to define a
sort of “Sub-regions of Motion” in opposition to forbidden regions existing within the
circular case, divided by Hill’s surfaces of zero velocity. (Szebehely, 1967)
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Overview of main families at
L1/L2 in the EM-system

In this Appendix-C, the overview of the overall Phase-space is given for both shooting
conditions (t, = 0,T/2) and for all three families at L1/L2 in the Earth-Moon system, in
addition with the respective order of instability (0-yellow, 1-normal line, 2-thick
line). Main bifurcations (¢) are also given, while more details have been previously
discussed in Chapter 3 and main theoretical concepts can be found in Section 2.2.

Overview families in the EM-CR3BP [x = 0.0121506]

LEGEND: Mz’ L 2 V-Lyapunov, H-Lyapunov, Halo, Bif. ()

03} g
Ly /

Z-position [-]

X-position [-]

Figure 92: Illustration of the overall Phase-space of shooting conditions for all three families
analysed in this work, referring to both L1 and L2 librations point of the Earth-Moon CR3BP.
More details can be found in Chapter 3, while for the notation we refer to the LEGEND.
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In the following Figure 93, two additional planes of the overall Phase-space have been
shown (see LEGEND), while very interesting is here to observe the main phase-points
where the Halo bifurcates from the H-Lyapunov one. The latter has been further
examined in the following section of this Appendix-C.

e

vy-velocity [-]
s

&
=

-0.6

-0.8

0.3

Overview families in the EM-CR3BP [ =0.0121506]
LEGEND: Mz’ L

1 V-Lyapunov, H-Lyapunov, Halo, Bif. )

|
0.7 0.8 0.9 1 1.1 12

x-position [-]

Overview families in the EM-CR3BP [ =0.0121506]

LEGEND: Mz’ L, ,» V-Lyapunov, H-Lyapunov, Halo, Bif. ()

c

z-position [-]

s

-0.3

£ I | | | | BN | i | |
B -1 0.8 0.6 0.4 02 0 02 04 06 0.8
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Figure 93: Additional plots for the Phase-space of shooting conditions for all three families
analysed in this work, referring to L1 and L2 librations point of the Earth-Moon CR3BP. More
details can be found in Chapter 3, while for the notation we refer to the LEGEND.

PS: for all three planes shown before, the uncertainty area of the Horizontal family at L2,

as found

in Figure 40, has been removed due to reasons provided within Section 3.4.
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Primary Lyapunov-bifurcation: the Halo family

As shown in both Figure 92 and Figure 93, the Halo family arise from the first bifurcation
in the Horizontal Lyapunov family. All discussion can be found in Chapter 3, while here
we present at L1/L2 an analysis where the Numerical Continuation “jumps” from one
family to another, so highlighting bifurcations in the main parameters of the analysis.
The reader is referred again to Section 2.4 for the interpretation of all following results.

Bifurcation shown at L1
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Figure 94: Illustration of Halo family bifurcations from the H-Lyapunov one at L1 (TOP) with
main parameters considered in our analysis. For the interpretation we refer to Section 2.4.
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Bifurcation shown at L2

L2 Halo: PLOT at p = 0.0121506
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Figure 95: Illustration of Halo family bifurcations from the H-Lyapunov one at L2 (TOP) with
main parameters considered in our analysis. For the interpretation we refer to Section 2.4.

So far, bifurcations seem evident in the interruption of the “natural continuity” for each
parameter as the J-energy or T-period. Note also that for Southern/Northern families
there is not a really difference, while both arise in similar way due to the “Mirrored
symmetry” (Section 2.1.2.2) respect to the Xjy-plane. At this point, for sake of
completeness, we present a very brief discussion on the Axial family, generated from
the additional bifurcation found within both Lyapunov families (Horizontal/Vertical).
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Secondary Lyapunov-bifurcation: the Axial family

This secondary bifurcation found in both Lyapunov families is actually known in
literature, and it is related to a new family of periodic solutions, called “Axial family”. The
latter has been intensively studied in (Doedel et al., 2007), as also several other families
not only restricted to L1/L2, and with many different mass-ratios up to binary systems
(Vu = 0.1). However, this family has been not considered here, due to time-constraints of
the Master work, and consequently only resonance orbits of the three main families have
been studied and later extended to the Elliptic problem. In order to provide the reader a
more complete overview, in Figure 96 an example of Axial orbits is shown, arise from
this second bifurcation in the Horizontal Lyapunov family. We refer to the
aforementioned paper for more details and numerical simulations.

%107
1.5 -

1 <

Figure 96: Illustration of the Axial family (in dark yellow) of periodic solution at L1/L2 (in
magenta) for the Earth-Moon CR3BP (u = 0.0121506). Note their intersection (¢) with the
Horizontal family (in red) on the xz-plane, due to the Tangent Bifurcation. See Section 3.7.

As seen in Section 3.7, this previous family has its origin in the Tangent-Bifurcation
found within both H-Lyapunov and V-Lyapunov families, as for the Halo orbit arising
from the first bifurcation in H-Lyapunov family. In a very similar way it is possible to
study such new periodic solutions, thus exploiting all additional bifurcations connected
to other families. In (Doedel et al., 2007) this has been extended indeed also to Planetary
orbits revolving around the Primary M; or the Secondary M,, while also very distant
orbits “surrounding” both masses have been indicated there as “Circular family”.
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To conclude, in the next Table 16 an example of a possible classification of Lagrange
orbits is given, similarly to what discussed in (Folta, Bosanac, Guzzetti, & Howell, 2015).
Few classes has been defined, for example the Libration Point Orbits (here called
Lagrange orbits), as also Resonance Orbits related to a motion bounded around the
Secondary mass M, (here the Moon). These lasts can be found as prograde or retrograde
depending on their direction of rotation (counter-clockwise or clockwise). Other possible
classes that exist in the Circular Restricted 3-Body problem can be found and have been
well described in their paper.

Table 16: Possible organization in different classes of some families within the dynamical
model of the Earth-Moon system; note the connection between resonance orbit orbiting the
Secondary mass M, (here the Moon), as also for the connection (due to bifurcations) of
families existing around Lagrange points. More details can be found in (Folta et al., 2015).

Libration Point Orbits Resonance Orbits | Moon-Centred Orbits
. 1:1 .
b Lo, Loy L (Interior and Exterior) Conics
V-Lyapunov: .
Lo Ly, Ly Ly, Ls Direct Retrograde
. N:1 .
Halo: Ly, L,, Ly (Resonance) Distant Prograde
Axial: Ly, L,, L3, Ly, Ls Low Prograde
. 1: M
Butterfly: L,, L, (Exterior)
Short Period: L,, Ls
oo N:M
Long Period: Ly, Ls (Interior and Exterior)
Horseshoe
NOTE:

Further details have been treated in a more recent paper as (Guzzetti, Bosanac, Haapala,
Howell, & Folta, 2016), “based upon a ‘dynamic’ catalogue of periodic and quasi-
periodic orbits within the Earth—Moon system”. However, here the only scope has been
to provide the reader with a more general overview of the state-of-art research on some
possible periodic motions within the model of the Circular Restricted 3-Body Problem.
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