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Joint Angle and Delay Estimation
Using Shift-Invariance Properties

Alle-Jan van der Veenyiember, IEEEMichaela C. Vanderveen, and Arogyaswami J. Paukejlow, IEEE

Abstract—Assuming a multipath propagation scenario, we II. DATA MODEL

derive a closed-form subspace-based method for the simultaneous A t it a digital h |
estimation of arrival angles and path delays from measured ssume we transmit a digital sequer{eg } over a channel,

channel impulse responses, using knowledge of the transmitted @nd measure the response usiig antennas. ]'\I:he noiseless
pulse shape function and assuming a uniform linear array and received data in general has the foxft) = >, _, sph(t -

uniform sampling. The algorithm uses a two-dimensional (2-D) rT), whereT is the symbol rate, which will be normalized to
ESPRIT-like shift-invariance technique to separate and estimate T = 1 from now on. A commonly used multiray propagation

the phase shifts due to delay and direction-of-incidence, with del. f | ltinath . hel x 1 ch |
automatic pairing of the two parameter sets. A straightforward model, for specular multipath, writes t x 1 channe

extension to the multiuser case allows to connect rays to usersimpulse response as
as well.
-
h(t) = a(e)Big(t — )
I. INTRODUCTION i=1
NE INTERESTING problem in wireless communica- . . .
O P \Hpereg(t) is a known pulse shape function by whighy }

tions is to try to estimate the angles of incidence and pa dulated. In thi del. th edistinct i
delays of emitted user signals arriving at a base station anteﬁ%%ﬂo ulated. In this model, Iere aredistinct propagation
s, each parameterized Ww;,;,3;), where «; is the

array, assuming that a specular multipath channel model holt 2ction-of-arrival (DOA). is the path delay, and; € @

true, and that the pulse shape function is known. This proble i )
has several applications, including, e.g., mobile localizati R th? comple_x path attenuation (fading). The vector-valued
nction a(«) is the array response vector for an arraydf

for directional transmission in the down link or emergenc . S
ntenna elements to a signal from directien

services. It is, in fact, a classical radar problem. Supposeh(t) has finite duration and is zero outside an
Various approaches to the joint estimation problem wi . :
PP J P i grval [0,L), where L is the (integer) channel length. We

. . t
known pulse shape have been proposed in the literature (gla ume that the received datéf) is sampled at a rat@

e.g., [1]-4] and references therein). These approaches o h bol rate. Usi ither traini K
require computationally expensive maximum likelihood (ML Imes the symDbol rate. Lsing €ither traning sequences ( nown
.}) or blind channel estimation techniques (e.g., [7]), it is

searches and/or need accurate initial points. Assuming unifokit ' ; 1 1
sampling and a uniform linear array, the algorithm we devel pssible Ito estimatta(k),k = 0,5,---,L — 5, at least up
herein transforms the data by a discrete Fourier transfoF a scalar. .
(DFT) and a deconvolution by the known pulse shape functionCOIIeCt the sampl?s of the knowr; wavefoyft) into a row
(as in [2] and [3]), and stacks the result into a Hankel matriyectorg = [9(0) g(3) -+~ g(L — 5)]. The channel model
This reduces the problem to one that can be solved usi‘ﬁ%n be written as
two-dimensional (2-D) ESPRIT [5], [6]. Thus, the algorithm
. . ; B1 g1
is closed form and computationally attractive. The number i
of rays may be larger than the number of antennas, which H=la - a,] L | = ABG (1)
overcomes a limitation of the ESPRIT method mentioned in prd Ler
[2] for initialization.

wherea; = a(«;), andg; = [g(kt — 7:)|x=0,1/P,-...L.—1/P IS @

row vector containing the samples gft — 7;).

The delay estimation algorithm is based on the property that
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If 7 is an integer multiple ofL, or if g(#) is bandlim- whereo denotes a column-wise Kronecker product
itedd and we sample at or above the Nyquist rate, then

it is straightforward to see that the Fourier transfogm ¢1 ¢1
of the sampled version ofj(¢t — 7) is given by g, = TR _ T 7
1§70 (¢7P)2 o ()PP Vdiag(g). The same holds ~ © = gl @ Ao =1 ;
approximately true ifr is not an integer multiple ofk, rln—l s gl
depending on the bandwidth gft) and the number of samples 1 . 1
LP. Thus we can write the Fourier-transformed data model b, - 6,
H = HF as H = ABFdiag(g), where O =diag[f; --- 6,], A= : _

1 ¢ ¢F - pEE 9{\4.—1 9{\4.—1

FLP = . s (7)Z = e_jZTWTi 91 = ejAQTrSiIl(Oéi).

L og @2 R
The estimation oft and®© from 7 is based on exploiting the

(we ulsu.ally om|t the S'Z,e index OF): Assume th?tg(t) IS various shift-invariant structures present iy ¢ Ay. Define
bandlimited with normalized bandwidt*’. Theng has at gjection matrices

mostL P’ nonzero entries, which can be selected by a selection
R } . )

matrix Jg : LPx L. If there are no other (intermittent) zeros, ;. (1. 0] @ Iy, Jup:=In® [Iy—1 04

we can factorg out of H and obtain

H := HF Jg{diag(gJz)}™", (M x LP)

qu5 = [01 Irn—l] & I]\la Jy@ =I,® [01 Il\l—l]

. . . Lo and IetX¢ = qugH,qu = qugH,Xg = JJ;QH,YQ = ng.
which (up to a possible phase shift ) satisfies the model These data matrices have the structure

H = ABF. (2) {X45 — A'BF {Xe = A"BF @)
If » < M, then itis possible to estimate thg's and, hence, the Yy =A®BF |Yy=A"OBF

;s from the shift-invariance structure df, independent of , B ) )
the structure of4, which is essentially the ESPRIT algorithm WhereA’ = Joy(Ag 0 Ag), A” = Jop(Ag 0 A). If dimensions
To estimate the DOA’s as well, we need to know the arrdy/® such that these are low-rank factorizations, then we can
manifold structure. For simplicity, we will assume a uniforn@PPly the 2-D ESPRIT algorithm [5], [6] to estimate and

linear array (ULA) consisting of omnidirectional elements wit/f- [N particular, since
interelement spacing oA wavelengths, but other configura- ,
tions are possible. The correct pairing of thés to the «;'s Yo = AXy = A'[® - AL]BF
requires the use of ideas from 2-D DOA estimation (viz., [5], Yy — AXy = A"[© — M |BF
[6]).

In general, the number of antennas is not large enoughtb® ¢; are given by the rank reducing numbers of the pencil
satisfy M > r. We can avoid this problem by constructing 4Y,, X), whereas the; are the rank reducing numbers of

Hankel matrix out ofH. (Ys, Xo). These are the same as the nonzero eigenvalues of
Xll@ and Xng. (t denotes the Moore—Penrose pseudoin-
[ll. JOINT DELAY AND ANGLE ESTIMATION verse.)
The correct pairing of the; with the 8; follows from the
A. Algorithm Outline fact thatXlY¢ anngYg have the same eigenvectors, which

is caused by the common factér. In particular, there is an

From £, construct a Hankel matrix/ by left-shifting and invertible matrix V' that diagonalizes botIXlY¢ and Xng.

stackingm copies of H, yielding

Hepnr—m+17]

Heo..np—my2
H= DT (mM x LP —m o+ 1).

H.7m...Lp/

‘H has a factorization
Ay ]

AQ(I)
H=| A46®* |BF = (A, Ag)BF

Aeq)m—l_

©)

Various algorithms have been derived to compute such joint
diagonalizations. Omitting further details, we propose to use
the diagonalization method in [5], although the algorithm in
[6] can be used as well. As in ESPRIT, the actual algorithm
has an intermediate step in whicH is reduced to itsr-
dimensional principal column span, and this step will form
the main computational bottleneck.

Once the DOA’s and delays are known, the fading co-
efficients can be estimated straightforwardly: rewrite (1) as
vec(H) = (GT o A)B so that

B =(G¥ o A)fvec(H).

1This is not in full agreement with the finite impulse response (FIRThe fad'ng coefficients can be used to separate multlple users,

assumption. The truncation introduces a small bias.

as demonstrated in Section IV.
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Fig. 1. Standard deviation of estimates. (a)—(b) Varying noise power. (c)—(d) Varying angle and delay separation,=withl5 dB.

B. Data Extension (M — 1)m,r < (m — 1)M. Elimination of m produces the

Since the eigenvaluds;, §;) are on the unit circle, we can Necessary condition

double the dimension of{ by forward-backward averaging. r < 2LP’%J{2, if LP' < $(M—1)(M+2),
In particular, letJ denote the exchange matrix that reverses

r <2(LP' +1)3=;, otherwise
the ordering of rows, and define

which gives an upper bound on the number of rays that can be
He=[H JH), (mMx2LP —m+1)) (5) estimated using this technique for givé” and M. Equal
delays or angles are acceptable, but for identifiability, it is
where (c) indicates taking the complex conjugate. Sinc@ecessary that the total number of rays with (almost) equal
J(Ap o Ap)l@ = (Ay 0 Ag)®~™mO~M, it follows that H. delays is less than, and that the total number of rays with
has a factorization (almost) equal angles is less than otherwiseA’ or A” will
Ho = (Ay 0 Ag)BuF. = (Ay o Ag)[BE, @‘"’@‘MB(C)F(C)]. be singular (or badly conditioned).

The computation oft and® from H, proceeds as before. It D Cramer—Rao Bound
is at this point possible to do a simple transformation to map The Cramer—Rao bound (CRB) provides a lower bound on
‘H. to a real matrix, which will keep all subsequent matrithe variance of any unbiased estimator. The bound for DOA
operations real as well. This has numerical and computatiostimation (without delay spread) was derived in [8], and is
advantages and is detailed in [6]. readily adapted to the present situation. Assuming the path
fadings to be deterministic but unknown, we obtain for the

C. Identifiability model in (1) that

To identify ® and © from (4), F' should be “wide,” and _ O'_;QL * 1y pL -1
A’ and A” should be “tall,” i.e.,r < 2(LP" —m +1),r < CRB(a,7) = 5 {real (B"D" P DB) } ©
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where o7 is the variance of the noise on the entries afolumns of7". It suffices to determine these directions, after
h(t) (assumed to be independent identically distributed whitehich IT and the membership of each ray is known. This will
Gaussian noise)3 = I, @ B,U = A(a) o GT(r),P+ = also determind’ up to a scaling of its columns (which is the
UU*U)~U*, and D = [A'(a) o GT (1), A(a) o G'(T)T] best we can hope for). Thus, the ray assignment simply calls
(prime denotes differentiation, where each column is diffefer a normalization of the length of each column, followed by
entiated with respect to the corresponding parameter and altlustering intod distinct directions.

matrices are evaluated at the true parameter values).

IV. BLIND MULTIUSER SEPARATION V. SIMULATION RESULTS

In blind signal separation, we have neither the channel TO illustrate the performance of the algorithm, we report
impulse responst(#) available, nor the input datés;,}. A some computer simulation results. Here, we assume one user

number of techniques have been developed to estimate bdffl an array ofM = 2 sensors. We also assume the

parts from the observed data. One among several technigG@@munication protocol uses” = 40 ftraining bits, from

to estimateh(), up to a scaling, appears in [9]. An extenWhich the channel is estimated using least squares. The pulse

sion of their algorithm to the multiuser casé (sers, say) shape function is a raised cosine with 0.35 excess bandwidth,

is straightforward (viz., [7]), but the ambiguity becomes Juncated to a length of., = 6 symbols. Fig. 1 shows
constant invertiblel x d matrix T: we can only estimate an the experimental variance of the DOA and delay estimates

arbitrary basisof the space spanned by thechannel impulse @S @ function of standard deviatian, of the (independent
responses. Placed in the notation of this paper, this means {gptically distributed white Gaussian) noise on the regewed
we can construct a matriX : dM x LP, with assumed model data, for a scenario with = 2 paths with angle$—10, 20]°,

(generalized from (1)) delays [0, 1.1]T, fading lamplitudes[1,0.8]', a randomly se-
lected but constant fading phase, stacking parametet 3,
V1 H, ALB1Gy and P = 2 times oversampling. It is seen that the difference
V=|:|=@y)| ' | =TIy : . (7) in performance compared to the CRB is approximately 4 dB.
v, H, AyBaGy The bias of the estimates was at least an order of magnitude

T | h biaui d h h smaller than their standard deviation.
0 solve the ambiguity and, hence, to separate the USerSpi, 4cpievable resolution is demonstrated by varying the

all blind algorithms so far have relied on properties of thBOA and delay of the second ray, keeping the DOA and delay
signal matrix, such as its finite alphabet or constant modul P the first ray fixed a(—10° OT), The same parameters as

properties. It is interesting to note that separation can also Siore were used. with noise powetl5 dB. As expected, the

achieved directly from the above model. The assumption ;5?—:rformance in comparison to the CRB suffers when besh

tha_lrtheach estlmater(]j ray bﬁ Iongsbto_on(ljy r(:neb‘;s_;r. - anda’s are closely spaced, since with two antennas we cannot
us, suppose that we have obtained the bisiSrom (7), separate two rays with identical delays using ESPRIT.
eachV, has model
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