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Joint Angle and Delay Estimation
Using Shift-Invariance Properties

Alle-Jan van der Veen,Member, IEEE,Michaela C. Vanderveen, and Arogyaswami J. Paulraj,Fellow, IEEE

Abstract—Assuming a multipath propagation scenario, we
derive a closed-form subspace-based method for the simultaneous
estimation of arrival angles and path delays from measured
channel impulse responses, using knowledge of the transmitted
pulse shape function and assuming a uniform linear array and
uniform sampling. The algorithm uses a two-dimensional (2-D)
ESPRIT-like shift-invariance technique to separate and estimate
the phase shifts due to delay and direction-of-incidence, with
automatic pairing of the two parameter sets. A straightforward
extension to the multiuser case allows to connect rays to users
as well.

I. INTRODUCTION

ONE INTERESTING problem in wireless communica-
tions is to try to estimate the angles of incidence and path

delays of emitted user signals arriving at a base station antenna
array, assuming that a specular multipath channel model holds
true, and that the pulse shape function is known. This problem
has several applications, including, e.g., mobile localization
for directional transmission in the down link or emergency
services. It is, in fact, a classical radar problem.

Various approaches to the joint estimation problem with
known pulse shape have been proposed in the literature (see
e.g., [1]–[4] and references therein). These approaches often
require computationally expensive maximum likelihood (ML)
searches and/or need accurate initial points. Assuming uniform
sampling and a uniform linear array, the algorithm we develop
herein transforms the data by a discrete Fourier transform
(DFT) and a deconvolution by the known pulse shape function
(as in [2] and [3]), and stacks the result into a Hankel matrix.
This reduces the problem to one that can be solved using
two-dimensional (2-D) ESPRIT [5], [6]. Thus, the algorithm
is closed form and computationally attractive. The number
of rays may be larger than the number of antennas, which
overcomes a limitation of the ESPRIT method mentioned in
[2] for initialization.
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II. DATA MODEL

Assume we transmit a digital sequence over a channel,
and measure the response using antennas. The noiseless
received data in general has the form

, where is the symbol rate, which will be normalized to
from now on. A commonly used multiray propagation

model, for specular multipath, writes the channel
impulse response as

where is a known pulse shape function by which
is modulated. In this model, there aredistinct propagation
paths, each parameterized by , where is the
direction-of-arrival (DOA), is the path delay, and
is the complex path attenuation (fading). The vector-valued
function is the array response vector for an array of
antenna elements to a signal from direction.

Suppose has finite duration and is zero outside an
interval , where is the (integer) channel length. We
assume that the received data is sampled at a rate
times the symbol rate. Using either training sequences (known

) or blind channel estimation techniques (e.g., [7]), it is
possible to estimate , at least up
to a scalar.

Collect the samples of the known waveform into a row
vector . The channel model
can be written as

...
... (1)

where , and is a
row vector containing the samples of .

The delay estimation algorithm is based on the property that
the Fourier transform maps a delay to a phase shift. Thus, let

where denotes the DFT matrix of size ,
defined by

...
...

...
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If is an integer multiple of , or if is bandlim-
ited1 and we sample at or above the Nyquist rate, then
it is straightforward to see that the Fourier transform
of the sampled version of is given by

. The same holds
approximately true if is not an integer multiple of ,
depending on the bandwidth of and the number of samples

. Thus we can write the Fourier-transformed data model
as , where

...
...

...

(we usually omit the size index of ). Assume that is
bandlimited with normalized bandwidth . Then has at
most nonzero entries, which can be selected by a selection
matrix . If there are no other (intermittent) zeros,
we can factor out of and obtain

which (up to a possible phase shift in) satisfies the model

(2)

If , then it is possible to estimate the’s and, hence, the
’s from the shift-invariance structure of , independent of

the structure of , which is essentially the ESPRIT algorithm.
To estimate the DOA’s as well, we need to know the array
manifold structure. For simplicity, we will assume a uniform
linear array (ULA) consisting of omnidirectional elements with
interelement spacing of wavelengths, but other configura-
tions are possible. The correct pairing of the’s to the ’s
requires the use of ideas from 2-D DOA estimation (viz., [5],
[6]).

In general, the number of antennas is not large enough to
satisfy . We can avoid this problem by constructing a
Hankel matrix out of .

III. JOINT DELAY AND ANGLE ESTIMATION

A. Algorithm Outline

From , construct a Hankel matrix by left-shifting and
stacking copies of , yielding

...

has a factorization

...

(3)

1This is not in full agreement with the finite impulse response (FIR)
assumption. The truncation introduces a small bias.

where denotes a column-wise Kronecker product

...
...

...
...

The estimation of and from is based on exploiting the
various shift-invariant structures present in . Define
selection matrices

and let .
These data matrices have the structure

(4)

where . If dimensions
are such that these are low-rank factorizations, then we can
apply the 2-D ESPRIT algorithm [5], [6] to estimate and

. In particular, since

the are given by the rank reducing numbers of the pencil
, whereas the are the rank reducing numbers of
. These are the same as the nonzero eigenvalues of

and . ( denotes the Moore–Penrose pseudoin-
verse.)

The correct pairing of the with the follows from the
fact that and have the same eigenvectors, which
is caused by the common factor. In particular, there is an
invertible matrix that diagonalizes both and .
Various algorithms have been derived to compute such joint
diagonalizations. Omitting further details, we propose to use
the diagonalization method in [5], although the algorithm in
[6] can be used as well. As in ESPRIT, the actual algorithm
has an intermediate step in which is reduced to its -
dimensional principal column span, and this step will form
the main computational bottleneck.

Once the DOA’s and delays are known, the fading co-
efficients can be estimated straightforwardly: rewrite (1) as

so that

The fading coefficients can be used to separate multiple users,
as demonstrated in Section IV.
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(a) (b)

(c) (d)

Fig. 1. Standard deviation of estimates. (a)–(b) Varying noise power. (c)–(d) Varying angle and delay separation, with�x = �15 dB.

B. Data Extension

Since the eigenvalues are on the unit circle, we can
double the dimension of by forward-backward averaging.
In particular, let denote the exchange matrix that reverses
the ordering of rows, and define

(5)

where indicates taking the complex conjugate. Since
, it follows that

has a factorization

The computation of and from proceeds as before. It
is at this point possible to do a simple transformation to map

to a real matrix, which will keep all subsequent matrix
operations real as well. This has numerical and computational
advantages and is detailed in [6].

C. Identifiability

To identify and from (4), should be “wide,” and
and should be “tall,” i.e.,

. Elimination of produces the
necessary condition

if
otherwise

which gives an upper bound on the number of rays that can be
estimated using this technique for given and . Equal
delays or angles are acceptable, but for identifiability, it is
necessary that the total number of rays with (almost) equal
delays is less than , and that the total number of rays with
(almost) equal angles is less than, otherwise or will
be singular (or badly conditioned).

D. Cramer–Rao Bound

The Cramer–Rao bound (CRB) provides a lower bound on
the variance of any unbiased estimator. The bound for DOA
estimation (without delay spread) was derived in [8], and is
readily adapted to the present situation. Assuming the path
fadings to be deterministic but unknown, we obtain for the
model in (1) that

(6)
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where is the variance of the noise on the entries of
(assumed to be independent identically distributed white

Gaussian noise),
, and

(prime denotes differentiation, where each column is differ-
entiated with respect to the corresponding parameter and all
matrices are evaluated at the true parameter values).

IV. BLIND MULTIUSER SEPARATION

In blind signal separation, we have neither the channel
impulse response available, nor the input data . A
number of techniques have been developed to estimate both
parts from the observed data. One among several techniques
to estimate , up to a scaling, appears in [9]. An exten-
sion of their algorithm to the multiuser case (users, say)
is straightforward (viz., [7]), but the ambiguity becomes a
constant invertible matrix : we can only estimate an
arbitrarybasisof the space spanned by thechannel impulse
responses. Placed in the notation of this paper, this means that
we can construct a matrix , with assumed model
(generalized from (1))

...
...

... (7)

To solve the ambiguity and, hence, to separate the users,
all blind algorithms so far have relied on properties of the
signal matrix, such as its finite alphabet or constant modulus
properties. It is interesting to note that separation can also be
achieved directly from the above model. The assumption is
that each estimated ray belongs to only one user.

Thus, suppose that we have obtained the basis. From (7),
each has model

...
...

(8)
and, hence, contains a mixture of all rays, with fadings.
Note that we can estimate much as before. Indeed, after
the DFT and deconvolution, we construct Hankel matrices

, with assumed models , and
collect all data in , which replaces
in the 2-D ESPRIT algorithm. The joint estimation of the
ray parameters (including fadings) produces ,
where a permutation accounts for the fact that we don’t
know the assignment of rays to users.

The diagonal entries of , put in rows and stacked in
a matrix, satisfy [viz. (8)]

...

Since each column in the matrix at the right has precisely
one nonzero entry, the columns in the matrix at the left can
have only distinct directions, which are the directions of the

columns of . It suffices to determine these directions, after
which and the membership of each ray is known. This will
also determine up to a scaling of its columns (which is the
best we can hope for). Thus, the ray assignment simply calls
for a normalization of the length of each column, followed by
a clustering into distinct directions.

V. SIMULATION RESULTS

To illustrate the performance of the algorithm, we report
some computer simulation results. Here, we assume one user
and an array of sensors. We also assume the
communication protocol uses training bits, from
which the channel is estimated using least squares. The pulse
shape function is a raised cosine with 0.35 excess bandwidth,
truncated to a length of symbols. Fig. 1 shows
the experimental variance of the DOA and delay estimates
as a function of standard deviation of the (independent
identically distributed white Gaussian) noise on the received
data, for a scenario with paths with angles ,
delays , fading amplitudes , a randomly se-
lected but constant fading phase, stacking parameter ,
and times oversampling. It is seen that the difference
in performance compared to the CRB is approximately 4 dB.
The bias of the estimates was at least an order of magnitude
smaller than their standard deviation.

The achievable resolution is demonstrated by varying the
DOA and delay of the second ray, keeping the DOA and delay
of the first ray fixed at . The same parameters as
before were used, with noise power15 dB. As expected, the
performance in comparison to the CRB suffers when both’s
and ’s are closely spaced, since with two antennas we cannot
separate two rays with identical delays using ESPRIT.
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