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Summary

Understanding human behavior has been an intriguing topic studied by many disciplines,
including social science, neuroscience, etc. Humans exhibit social behaviors, through
for example, interacting, conversing, empathizing with each other. Systematically and
scientifically studying these behaviors often requires granular observations and measure-
ments. With increasing digital sensor and computer sensing and processing capability,
accurately measuring and recording large amount of real-life human social behavior has
become possible. Computational methods, such as machine learning, can be developed
to analyze these data in unprecedented ways by detecting and learning patterns in the
signals. However, even with the available data and advanced machine learning methods,
understanding human social behavior is still challenging, as it is contextual and could
result in variations.

This thesis focuses on analyzing human behaviors in complex conversational scenes. It
proposes novel computational methods that incorporate the context, which is the conver-
sation group and the interaction scene. Prominent behavioral cues in social interaction
include head and body orientations, as they are proxy indicators for visual attention and
conversation group membership. This thesis first covers methods for head and body ori-
entation estimation (under data-scarce and data-rich settings), and conversation group
detection. These methods have an emphasis on learning from multimodal data and context
modeling, and their efficacy is shown empirically. Then, the thesis addresses an open
challenge in acquiring human social data in real-life by proposing an accurate and scalable
method for data synchronization. Lastly, this thesis introduces a new dataset collected by
the aforementioned synchronization method, capturing real-life interaction in a conference
settings. Therein, results of tasks such as keypoint detection, action recognition, and
conversation group detection are reported, which also motivate future research in this
area. Combining these contributions in both computational method development and
data collection, this thesis takes a step forward in understanding human behaviors in
conversation scenes.
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Samenvatting

Het begrijpen van menselijk gedrag is een boeiend onderwerp en wordt dan ook door vele
disciplines zoals bijvoorbeeld sociale wetenschappen of neurowetenschappen bestudeerd.
Mensen vertonen sociaal gedrag door bijvoorbeeld met elkaar te communiceren, te con-
verseren of zich in te leven. Het systematisch en het wetenschappelijk bestuderen van
deze gedragingen vereist vaak zeer gedetailleerde waarnemingen en metingen. Met de
toenemende mogelijkheden van digitale sensoren en computerondersteunde detectie en
verwerking is het nauwkeurig meten en het vastleggen van grote hoeveelheden menselijk
sociaal gedrag in reallife mogelijk geworden.

Computationele methoden, zoals bijvoorbeeld machinaal leren, kunnen worden ont-
wikkeld om deze data op ongekende manieren te analyseren door patronen in de signalen
op te sporen en hier van te leren. Maar zelfs met alle beschikbare data en geavanceerde
methoden voor machinaal leren blijft het begrijpen van menselijk sociaal gedrag een echte
uitdaging omdat het contextgebonden is en in kleine variaties kan resulteren.

Deze thesis richt zich op het analyseren van menselijk gedrag in complexe gesprekssitu-
aties. Het stelt nieuwe computationele methoden voor die rekening houden met de context,
te weten de gespreksgroep en de interactieve omgeving. Prominente gedragsaanwijzingen
in de sociale interactie zijn de positie van het hoofd en de lichaamsoriëntatie omdat dit
proxy-indicatoren zijn voor de visuele aandacht en het deel uitmaken van de gespreksgroep.

Deze thesis behandelt allereerst de methoden voor het inschatten van de hoofd- en
lichaamsoriëntatie (op basis van dataschaarse en datarijke settings) en detectie en verloop
van de gespreksgroep. Deze methoden leggen de nadruk op de manier waarop multimodale
data het leren en de contextmodellering kunnen ondersteunen. De doeltreffendheid hiervan
zal in deze thesis empirisch worden aangetoond. Vervolgens behandelt deze thesis de
enorme uitdaging van het verwerven van menselijke sociale data in reallife door een
nauwkeurige en schaalbare methode voor datasynchronisatie voor te stellen.

Tenslotte introduceert deze thesis een nieuwe dataset, verzameld door de bovenge-
noemde synchronisatiemethode, die de reallife interactie tijdens een overleg vastlegt.
Daarin worden de resultaten gerapporteerd van taken zoals de detectie van kernpunten, de
herkenning van acties en detectie van gedrag tijdens het bijwonen van gespreksgroepen,
die ook meteen de motivatie vormen voor toekomstig onderzoek op dit gebied. Door deze
bijdragen voor zowel de ontwikkeling van computationele methoden als het verzamelen
van data te combineren, kan deze thesis een grote stap voorwaarts betekenen voor het
beter begrijpen van menselijk gedrag in gesprekssituaties.
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1.1 Human Interactions
Human beings are inherently social [1]. A large number of behaviors occur in the context
of commonplace social interactions, including greeting, conversing, negotiating, turn-
taking, and group-forming activities [2]. Even in this digital age of the world, face-to-face
interactions remain relevant as a powerful way of communication that carries a rich
collection of visual, vocal, and verbal information, where humans see, hear, and interact
with each other. There is a rich history in studying human interactions, particularly through
a social science lens (e.g., [3]). However, to build more socially-aware automatic systems
for application such as conversation agents and human-robot collaboration, we could
benefit from the sensing capabilities and modeling approaches to date. The automated
detection and perception of human behaviors in the real world under naturalistic settings,
which provide quantitative and more objective measurements of how humans behave and
interact, is a feasible approach towards obtaining more insights. This moves away from the
traditional approach (such as ethnography) rooted in sociology and psychology disciplines
[4]. Hence, this thesis focuses on machine perception of human behavior (specifically in
small group interactions) and makes advances at the intersection of computer science,
engineering, and social science in this setting.

How humans interact with each other and how their behaviors manifest could drasti-
cally vary in different social scenarios [5]. For background, we first explain a framework
to characterize different social settings. Dimensions to consider include (i) unfocused vs.
focused (commonly or jointly) encounters, (ii) group size, (iii) static vs. dynamic organiza-
tion, (iv) scripted/staged vs. in-the-wild. The nature of each setting carries corresponding
implicit assumptions and social norms. Figure 1.1 extends the framework summarized by
Setti et al. [6] by dividing different types of social scenes with respect to the presence of
groups. We illustrate some examples of representative settings along these dimensions.
Particularly, in taxomonizing groups, we use the definition of "group", a type of social
entity that is often called the small group. In small groups, feelings of "groupness" occur in
settings in which participants temporarily involve in shared and coordinated activity [7].

Goffman [8] conceptualized the difference between focused and unfocused interactions,
where focused ones involve people who show involvement and pay visual and cognitive
attention to each other. The distinction of commonly focused and jointly focused encounters
is further explained by Kendon [9], where the latter describes settings that are more open
and conducive to interpersonal conversation without a single common focus of attention
(e.g., movie theatre). This thesis is situated at the last row of social settings in Figure 1.1,
usually found in cocktail parties, networking events, etc.

1.1.1 Social SignalProcessing inComplexConversational Scenes
The formal study of nonverbal communication and social signals originated from social
science. However, more recently, Vinciarelli et al. [10] proposed studying social signals
through automated methods and coined the term, social signal processing (SSP). Through
multimodal sensing and analysis of human behaviors, we could endow machines with
the ability to comprehend and express social signals to achieve social intelligence. Social
signals include various non-verbal behavioral cues which could be defined by (i) physical
appearance, (ii) gesture and posture, (iii) face and eye behavior, (iv) vocal behavior, and
lastly (v) space and environment (i.e., the way people share and organize the space they
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Figure 1.1: Examples of different social scenes (extended from [6]). For completeness, different examples of
interaction scenes are shown. This thesis focuses on the last row, and more specifically, for conversational
interaction.

have at disposition [10], which could affect their relationship with each other [11]. Upon
understanding these behavioral cues, high level and downstream social behaviors such as
turn-taking, dominance, empathy, etc. can be studied, especially with the aid of automated
perception and analysis through modern sensing and machine learning methods.

Out of these behavioral cues, face and eye behaviors express social signals with highest
effectiveness as they are direct and naturally preeminent means of communicating [10].
Important social cues such as focus of attention in social settings could be inferred from
eye gaze. Additionally, space and environment also directly shapes how people arrange
themselves and interact. Intuitively, if the space is small (and more crowded) or restricted
by furniture, the interpersonal dynamics would be affected. This can be best described by
Edward Hall’s theory on proxemics, which could be characterized by location, interpersonal
distance, and orientation [11], as well as Kendon’s theory on F-formation shaping [12].

Apart from these proxemics characteristics, complex conversational scenes are
unstructured interaction scenes for which organization is not only spatially constrained but
also socially driven. These scenes exhibit behavioral and conversation dynamics involving
multiple members [13] and multiple groups that are physically co-present. During mingling
(i.e. an example of complex conversational scene), the close interpersonal distance enables
interactionwithin personal and close social space [11] which creates unique social dynamics
that is not commonly observed in other social situations.

To capture behavioral cues in these complex conversational scenes, we rely on mul-
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timodal sensors. We aim to measure and record human behaviors unintrusively while
preserving ecological validity for in-the-wild settings. It becomes increasingly difficult, if
not impossible, to capture behaviors such as eye gaze and facial expression for inference of
focus of attention, compared to structure settings such as meetings.

Because of its importance to downstream and socially relevant studies (i.e., conversation
quality/engagement estimation [14], modeling of interaction processes [15], etc.), the task
of estimating head and body orientations is one of the main focuses of this thesis (Chapter
2 and 3). Head orientation is an important cue for social attention, particularly in the
absence of eye gaze measurements [16]. Body orientation is an indicator for conversation
group membership [12]. The incorporation of temporal and conversation dynamics is
essential when modeling these behavioral cues because social interactions often involve
multiple people and are constantly evolving. Subsequently, the resulting head and body
orientations could serve as informative cues for the task of pairwise interactant affinity
estimation (Chapter 4) which is the building block for extracting interaction groups) [17].
Once interaction groups are automatically detected, we could track conversation group
evolution (breaking, forming, reforming, etc) and ultimately obtain more understanding of
social scenes. Quantities such as head and body orientations, as well as pairwise affinity,
constitute the main ingredients of social signals in mingling scenarios, that could enable
further analysis, understanding, and synthesis of social behaviors.

1.1.2 Free-standing Conversation Groups in Complex Conver-
sational Scenes

Most existing research on social behavior analysis focused on pre-arranged, staged, or
scripted settings (specifically for commonly focused encounters) such as meetings with
a small number of people (typically no more than six) [18–21]. The fixed nature of such
settings and the low number of people do not reflect the complexity of the types of
interactions that arise during mingling events such as networking events, which are more
spontaneous and ad-hoc. The number of participants in a conversation group is not
restricted and could change dynamically. To model social behaviors of individuals and
groups more systematically, free-standing conversation group (FCG) was introduced
and defined as a jointly focused interaction group during a social occasion, such as a party,
event, or next to the coffee machine [22]. An FCG can best be formalized and described by
Kendon’s definition of facing-formation or F-formation, which is socio-spatial formation
in which participants of the same formation have and maintain a convex space (o-space)
to which all participants have direct and equal access [23] (See Figure 1.2). F-formation is
one of the most fundamental concepts of interaction in an interaction scene. While it is
possible to infer interacting partners purely through social dynamics (e.g., body motion)
[24], the identification of the F-formation is primarily driven by the participants’ locations
and orientations (i.e., proxemics).

Studies that model human behaviors in FCGs rely on the unique properties of the social
interaction scene that cannot be ignored or exactly approximated with another type of
social scenario (e.g., lab-based) since insights and conclusions may not be transferable.
Laidlaw et al. corroborates this point of view through empirical evidence that suggests
the mere opportunity and presence of social interactions in the surrounding could alter
where people look and how they behave [25]. In this thesis, we argue that it is important
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Figure 1.2: Visualization of an F-formation. Each subject has individual transactional segment. All of the subjects
maintain a shared interaction in the middle (o-space).

to develop specific models for these scenarios rather than retrofitting pre-trained models
or use data from other contexts for our use case to solve the automated inference problem.

1.1.3 Social Signal Processing Approaches and Challenges
To study behavioral cues in these conversation groups, we adopt the general approach com-
mon in SSP. A high level breakdown of tasks involves (1) data collection and preprocessing
(2) extraction of informative behavioral cues (e.g., head and body orientations, speaking
status), and (3) interpretation from behavioral cues, social signals, and/or social concepts
by incorporating context-awareness, leading to social behavior understanding. This thesis
contains work in data collection, and the automatic extraction of behavioral cues such as
orientations and detection of social concepts such as F-formations. This thesis focuses on
the boxed region of Figure 1.3.

Challenges related to the data collection include privacy and ethical concerns, ecological
validity, and measurement fidelity. The design choice is often a trade-off among these
considerations. Data collection involving human subjects studies needs to be carefully
planned and executed to ensure privacy by addressing ethical concerns. Approvals from
ethical board of institutions, in which details regarding informed consent, anonymization,
data sharing, etc., must be documented beforehand. For example, collecting biometric
information (e.g., facial images) and high frequency audio for transcription of verbal
content is more sensitive compared to the recording of body movement. Therefore, sensor
choices used in this type of data collection and their placement require strategization for
the trade-off between unintrusiveness and fidelity, while preserving ecological validity.
More specifically, we chose to use elevated side-view or top-down view, as opposed to
frontal or egocentric view, which is more intrusive. Wearable sensors can be specifically
designed and placed to reduce participants noticing their presence. As opposed to wearable
sensors like full body suits, smart garment, etc., we chose to use single-worn wearable
sensors (e.g., around the neck) to capture body movement without the participants noticing.
With less intrusive sensors (both the camera view and placement of wearable sensors),
participants acclimatize to the scenarios and quickly forget that they are being recorded,
thereby maximizing ecological validity [26].

To extract behavioral cues from related upstream tasks from the data, relevant tasks for
automated methods include person detection, person re-identification, speaker diarization,
etc. These are active research topics in computer vision and speech communities, but
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Figure 1.3: Social signal processing approach. This thesis includes works related to topics in dashed box.

remain challenging in our setting. Since the top-down viewpoint in the data is relatively
uncommon compared to elevated side-views, and audio signals capture cocktail party noise
in social interactions, off-the-shelf methods do not work directly and do not give results
well enough for SSP researchers to employ downstream tasks. Hence, we often resort
to using manually labelled data instead of automatically acquired ones to remove some
upstream uncertainties and errors that could propagate to downstream tasks.

As motivated in Section 1.1.1, this thesis focuses on the modeling of posture, more
specifically, head and body orientations, with context-awareness encoding space and
the surroundings, not limited to location but also the context in social dynamics (i.e.,
conversational dynamics which arises from the multiple levels of coordination during
conversing such as converging on speaking patterns and speech rate, speech rhythm and
postural synchrony, etc. [27]). Themethods proposed in this thesis incorporates multimodal
data such as body motion measurements and speaking status in complex conversational
scenes for modeling human head and body orientations, which constitute an extension of
the previous works [28, 29], by accounting for the inherent social dynamics in-the-wild
through the more flexible deep-learning based methods.

The steps leading up to social behavior understanding are necessary prerequisites
for tasks such as modeling social relationships (e.g., role recognition, conversation group
membership) and social attitudes (e.g., emotion, expression recognition). These high-level
social phenomena are complex and rely on context (e.g., environment) and the nature of
social interactions (e.g., formal vs. informal). Role recognition such as speaker/non-speaker
identification could be achieved using video, audio or multimodal approaches [24], where
speaking behavior such as turn-taking, interjections, overlaps, etc. serve as important
cues. Modeling other social relationships like leader-follower is less formalized, and is
limited to social science theories in group dynamics and processes [30]. Social attitudes
such as dominance [31, 32], deception [33, 34], etc. are group-level behaviors. Past works
in dominance estimation utilized speech activities, along with body movement and gaze.
Additionally, there has been works in negotiation, rapport [35], agreement, among other
socially relevant tasks. While there are many possibilities of social concepts that can be
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modeled, this thesis focuses on studying conversation group membership through pairwise
relationship (Chapter 4).

The expanded walk-through of the workflow of social signal processing shows that
processing and understanding social signals involves multiple steps. It is difficult to
combine them into a single end-to-end procedure, especially when different research fields
are focusing on subsets of the tasks. Some works have expanded into modeling social
relationships (e.g., looking at each other [36]) using behavioral cues such as gaze. However,
when in complex and crowded conversational scenes, extracting behavior cues is still
challenging since phenomena such as social relationship and attitudes could be related
to context [37], and data including annotations could be especially subjective, when the
concepts are abstract, involving the individual’s cognitive perception of the situation (e.g.,
engagement), and not directly observable.

From extracting behavioral cues and modeling social concepts, we can then begin
to understand the underlying social signals for building truly socially-aware perceptive
systems. Social signals associated with seemingly intuitive concepts such as conversations
are not yet fully understood, and ones for advanced concepts such as empathy, flirtation, etc.
remain to be open research topics. However, we argue that that the data and methods/tools
resulting from the workflow, as well as the insights gained are crucial in achieving social
awareness of automatic approaches.

1.1.4 Modeling Social Dynamics
Social dynamics (i.e., the underlying behavioral processes) is a complex and challenging
phenomenon to model. We can begin to unpack some aspects of the social dynamics by
associating speech and prosodic activities with conversation dynamics and body move-
ment activities. Speaking status of individuals indicates turn-taking which reflects the
conversation dynamics. Past works in conversation analysis model the temporal changes
with dynamic Bayesian networks and other Markov models [38, 39]. Additionally, it has
been found that interactions contain interpersonal coordination (i.e., coordinated bodily
movements of co-actors in time) [40]. It is necessary to take into account the social dy-
namics when modeling human behaviors such as head and body orientations during social
interactions.

Concretely, we argue and show that we could capture some aspects of the social dynam-
ics through modeling temporal dynamics using multimodal signals. With the advancement
of using sensors, we are able to measure human behaviors continuously and granularly.
Signals from video, wearable sensors, or even labels through time have inherent temporal
dynamics. Irregular variations in time series, which are nonrandom sources of variations,
could be particularly interesting in the context of social dynamics which encapsulates a
system of behavioral and psychological processes occurring in or between social groups. In
face-to-face interactions, these variations could be manifested as, for example, changes in
head/body orientations during a period of irregular activities (sudden movements resulting
from changes in the social scene) relative to trends on a larger time scale. More generally,
the individual behavioral time signals, with joint consideration of signals from others in the
social groups, make the very fabric of the underlying social dynamics which is ultimately
what automatic methods need to capture. Importantly, the interpretation of observed or
predicted social behavioral cues need to be situated in the temporal dimension and its
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dynamics [10].
As opposed to making assumptions (e.g., wide-sense stationary processes) for autore-

gressive approaches such as Autoregressive Moving Average methods (ARMA, ARIMA,
etc.), we opted for developing deep learning approaches for time series modeling are not
based on statistical assumptions and could serve as arbitrary approximators. While tradi-
tional approaches are still valid, using neural networks for time series modeling, especially
in the multivariate case with multidimensional signals frommultiple modalities in modeling
human behaviors, offers flexibility and simplifies the modeling process for practitioners.

Similar to previous works [21, 28], we motivate the use of multimodal data (audio
for speech activities, and/or accelerometers/inertial measurement units (IMUs) for body
movements) to complement information that are not available in unimodal (image/video)
data, which has been the standard approach in the past. This thesis investigates the
feasibility of deep learning sequence-based methods using this combination of sensors to
model social dynamics that occur specifically in settings like FCGs.

1.2 Current Limitations
1.2.1 Sensing and Data Acqisition
Sensing human behaviors has been a long standing challenge for the social signal processing
community. The technical and logistical difficulty is coupled with the need for maximizing
ecological validity (i.e., ensuring the naturalness in the data acquired), as well as for
accommodating data streams of multiple modalities. Many datasets contain recordings
of human pedestrian behavior for person detection and tracking. Unfortunately, they are
insufficient for modeling head and body orientations in social situations since the setting
is not focused [9] and the location of subjects in crowded scenes is largely static, without a
motion cue. Therefore, the need for developing new datasets was evident.

In most cases, video and audio sensors are affixed to the ceiling (e.g., [41, 42], table (e.g.,
[43, 44]), etc. When these sensors are in direct line of sight of the human participants, they
introduce some bias towards how humans act under observation. Fortunately, subjects tend
to acclimatize to the setting if they get sufficiently comfortable with the recording setup. For
visual data, existing datasets for social interactions and human behaviors utilize elevated
side-views [22, 45, 46] and top-down views [41, 42]for avoiding concerns of ecological
validity, while egocentric ones are more intrusive (e.g., [47]). From the elevated side-view,
automated methods such as person detection and tracking have been employed to further
derive visual features from head and body bounding boxes. However, for elevated side-
view cameras mounted in the scene (though unintrusive), there could be considerable
occlusions which cause missing visual information. This could be alleviated by using a
multi-view elevated-side view setup but requires choosing the best viewpoint manually
[45]. Additionally, to compensate for the loss of visual information (e.g. occlusions),
infrastructure such as the Panoptic dome [48] was built and equipped with hundreds of
cameras. 3D human poses could be extracted to directly infer 2D head and body orientations.
However, such infrastructure is impossible (cost and logistic efforts) to replicate at real-life
events, compared to a smaller number of cameras/sensors capturing the whole interaction
scene.

For audio data, microphone arrays placed on the meeting table have been used to record



1.2 Current Limitations

1

9

meeting interactions. Personally worn microphones have been incorporated in wearable
smart ID badges along with other sensors. While microphones used in more structured
settings are also used to capture audio information (typically at high sampling rates) for
tasks such as speaker diarization, wearable microphones in smart ID badges have been
adjusted to operate on low sampling frequency for privacy preservation. The types of data
that could be derived include speaker identification, prosody, turn-taking, etc., but not
necessarily verbal transcription.

Body motion is traditionally captured using full body motion capture, and typically
involves a fully calibrated multi-camera setup and wearing a sensor suit. This setup is ex-
pensive and in practice difficult to fit in with data streams of multiple modalities, especially
from the synchronization perspective in terms of signal alignment. New technology and
sensors focus on sensor minimization and do not require a physical connection from the
suit to the data capturing system. Figure 1.4 shows examples of representative complex
conversation scene and the set of wearable sensors that have been used for data collection.
In the wearable smart ID badge form-factor (see Figure 1.4(d)), body motion is captured
using an inertial measurement unit (IMU), which contains accelerometer, gyroscope, and
magnetometer. IMU units are commonly found and inexpensive. Mobile phones and smart
bracelets/watches also contain an IMU sensor. For scenes shown in Figure 1.4, wearable
smart ID badge worn around the neck can be deployed in a conference setting and other
similar in-the-wild settings. They incorporate different sensors able capture speech and
torso activities, and serve as an alternative sensing method than mobile phones.

While these design choices for each individual modality are justified, the integration of
multimodal streams for data acquisition in-the-wild is a non-trivial task. Because of the
standing technical challenges and monumental logistical effort in data collection, there is
only a handful of datasets (with small sample size) for complex conversational scenes. This
hinders the development of automated methods.

1.2.2 Modeling Approaches
Head and body orientation estimation
Head and body orientation estimations have been extensively studied in the past in the
computer vision community. Representative works [28, 49, 50] focus on using elevated
side-views in an 8-class classification setting. More recently, there has been advances in
2D pose estimation methods that detect human skeletal keypoints. Orientations cannot be
directly extracted from these detected 2D keypoints without an indication of directional
vector. Works related to the Panoptic studio [18, 51] have relied on 3D body motion and
face motion outputs to compute the body orientation and face orientation by finding the
3D normal vector direction of the torso and face. However, without overlapping views of
the scenes using RGB cameras, 3D information is difficult to reconstruct. Importantly, these
existing methods on head and body orientations mostly rely on visual facial information
or motion cues and they are not directly applicable to the top-down view (as shown in the
keypoint estimation task Chapter 6).

Some previous methods capture temporal dynamics in modeling conversation patterns
through dynamic Bayesian network models [52] and Markov models up to an order [39].
The complexity of these approaches increase dramatically when longer temporal context
is considered. Other models that take the temporal patterns into context such as ones
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proposed by [45] and [53] do not consider the interaction dynamics, such as speaking
activity or fine grained body movement explicitly. This points to the advantage of novel
methods, as ones included in thesis, to model for the temporal dependency in the inputs.

Multimodal modeling of head and body orientations have been studied in [28, 54], using
a combination of video, microphones, and wearable sensors like smart ID badges. Labels of
head and body orientations could be inferred from these sensors, though they could be less
reliable than ones obtained from videos, especially ones obtained through multiple views
(see Chapter 3). Aside from ensuring the temporal smoothness in the approaches, there
has not been any explicit modeling of the temporal context of the task for head and body
orientation estimation. Social context also has not been explicitly accounted for, except in
[29, 50] primarily using the visual modality. However, we argue that social context in which
we express ourselves can be better captured with the additional modalities such as speech
(via speaking status) and body movement (via acceleration), to account for conversation
dynamics and movement synchrony patterns, respectively.

Conversation Group Detection
Social relationships and attitudes arise generally in the presence of interactions. Here we
focus on automatic detection of conversation groups. Knowing who is talking to whom,
and detecting who is interacting with whom is a critical step from modeling individual
behaviors to group behaviors, in order to understand more high level social phenomena.
There is a feedback relationship between behavioral cues and interaction dynamics: cues
like head and body orientations are social signals that decide the interaction dynamics,
and the generated dynamic also affects how people display subsequent behavioral cues (i.e.
how people responded to the process of interaction)[55–58].

Formulating this concept into one that can be modeled automatically has been a
challenging. Past works such as [22] model the o-space explicitly. Other works such as
[17] constructed affinity matrix of the scene and developed a clustering approach based on
Dominant Set for conversation group extraction. More recent deep learning approaches
(e.g., [59, 60]) have made significant improvements in performance in typical datasets for
this task (e.g., [45, 46]). However, these approaches do not model the temporal context,
and hence miss capturing part of the underlying social dynamics. The main types of
dynamics in human face-to-face social interactions in networking scenes are the changing
proxemics (i.e., location and orientations), conversation dynamics, and body coordination
dynamics. The evolving landscape of the interaction scenes is determined by how people
move around each other to a large extent. In this thesis, we tackle this task by accounting
for the spatio-temporal context in detecting conversation groups (Chapter 4).
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Figure 1.4: Typical setup of data collection experiments of complex conversation scenes with different sensor
options. (a) shows a typical overhead top-down view of the interaction scene [41]. (b)-(e) exemplifies wearable
sensors that resemble a conference badge form-factor. (b) shows Sociometric badge [61]. (c) is the chalcedony
badge [62]. (d) is the rhythm badge [63]. (e) is the midge badge.

1.3 Addressing the Limitations - A Two-Pronged Ap-
proach

This thesis aims to address these aforementioned challenges, which are separated in two
broader categories: (1) related to data acquisition (i.e., data collection and annotations),
and (2) related to modeling.

In modeling social behavioral cues, it is crucial to consider the availability and quality
of data, as behaviors are context-sensitive. High quality data (high fidelity, fine-granularity)
with reliable labels are scarce, difficult and expensive to acquire. While researchers are
urged to evaluate the amount and variety of data required, as well as requirements of gen-
eralization, this thesis proposes an interpretation and arrangement of the works applicable
under the following scenarios: (i) when there is available data (Chapter 2,3), (ii) when
there is low data availability (Chapter 4), and (iii) when there is no data (Chapter 5,6). In
this thesis, modeling-related works focusing on head and body orientation estimation and
group detection are situated in the first two scenarios in light of general multimodal data
scarcity and working with existing datasets. Sensing-related and data collection works are
situated in the third scenario, with the goal of enabling future research on social behavior
understanding and synthesis.

1.3.1 Sensing and Data Acqisition
Data capturing, related to sensor perception, synchronization, and annotation acquisition
have been a challenge in the social signal processing field. This is illustrated by the scarcity
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of human social behavior dataset captured in in-the-wild settings (unscripted/unstaged),
as data collection experiments require extensive logistical coordination and annotations
are costly and labor-intensive [64, 65]. As motivated in Section 1.3.1 (data sources and
fidelity), capturing human behaviors involve using multimodal sensors. Previously in more
structured settings like meetings with fewer participants, the acquisition method has relied
on physical connections to a computer node (e.g., a multi-channel audio interface) where
all the sensor data is recorded [66, 67]. However, this setup is not practical when the space
of interactions spans over a large area and the event involves many participants.

For capturing human social interaction in-the-wild (e.g., networking event and confer-
ence), two types of sensor networks are commonly used for multimodal data acquisition:
camera network [45, 46, 68] and wearable sensors network [69]. Not only does each net-
work have to achieve intramodal synchronization, both networks need to be cross-modally
synchronized in order to provide faithful data input to downstream multimodal machine
learning models. Past works involved using post-processing or event-driven synchroniza-
tion based on a subset of anchor frames [70, 71]. Cabrera-Quiros et al. [41] utilized a
gossiping sychronization network approach [62] that guarantees global timestamps for
wearable sensors to be accurate up to 1 second, but the synchronization with video data
was also done manually.

Having identified the sensing challenges, new solutions for distributed and scalable
multi-sensor data acquisition are needed. The proposed approach is to propagate a common
time reference based onNetwork Time Protocol (NTP) to edge devices (i.e., wearable sensors
and cameras) during acquisition. The NTP signal is converted to Linear Time Code (LTC)
for the cameras and is converted to UNIX time for the wearable sensors. The crossmodal
synchronization is achieved while preserving the existing modality-specific timekeeping.
This approach not only alleviates manual or error-prone event based post-processing,
but also ensures synchronization across modalities within milliseconds range. It is also
scalable, reproducible, and cost-effective, which are also key requirements to increase the
adoptability of this approach.

Annotation Acqisition
The quality of collected annotations of behavioral cues depends on the nature of the data
and annotation strategy. The types of data are consistently multimodal in this setup, and
therefore, the annotation method needs to be adapted accordingly. In previous works such
as MatchNMingle, bounding boxes and social actions are annotated using the Vatic tool [72]
where annotators are presented with images at 1 Hz frequency and the intermediate samples
are interpolated. This thesis uses annotations such as head and body orientations, speaking
status, and conversation group membership. While there are design choices in speaking
status annotations visual, audio, or audiovisual) and conversation groupmembership (based
on definition of F-formation), they are not the focus for the annotation acquisition aspect
in this thesis. I discuss more specifically the annotations for head and body orientation
which are the emphasis of Chapter 2 and 3.

For the augmentation of MatchNMingle, the head and body orientations were annotated
via an adaptation of LabelMe [73], where annotators are presented with images for labelling
keypoints. Specifically, we labelled head and body orientations for identifying upper body
skeletal keypoints including left and right shoulder, center of the head, and the tip of
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the nose (Chapter 2). With these keypoints, head and body orientations can be derived
by taking the vector orientation from the center of the head to the nose, and taking the
perpendicular orientation between left and right shoulder vector, respectively.

Figure 1.5: Data annotation strategies. (a) shows that from the overhead view, yaw axis corresponds the head
movement panning in the scene. (b) shows annotation of upper body keypoints and face direction for extracting
head and body orientations (from shoulders). (c) shows full body skeletal keypoints that provide more granular
information than just upper body keypoints.

With this annotation strategy, the recent covfee tool was built to address the lack
of temporal continuity in annotations [65] (used in Chapter 6). It seamlessly allows for
keypoint annotation of videos with high frequency. Covfee reduces annotation time and
achieves better inter-rater agreement [65]. Despite Covfee taking a great step in annotations
for social signal processing, obtaining labels from various datasets is still time-consuming
and expensive. Importantly, annotations can be subjective and noisy, which motivate
modeling approaches that can account for these inevitable data characteristics.

Sensor Development
Existing wearable sensors that have been designed as conference smart-badges include
Sociometric Badges, Chalcedonies, Rhythm Badges, etc. Rhythm Badges [63] possess the
most enriched sensing capabilities with accelerometer, microphone, and Bluetooth prox-
imity sensor. An extension of the accelerometer to IMU provides possibilities for derive
orientations, as opposed to just body movement measurement. By including additional mi-
crophones, a microphone array could be used to estimate direction of arrival by leveraging
phase information in signals from the spatially separated sensors. The recently developed
Midges provides these extensions and have been deployed to enable future research in
using these additional sensing capabilities.

1.3.2 Modeling Approaches
Further unpacking the modeling-related works that this thesis covers, which includes head
and body orientation estimation, head orientation estimation in conversation groups, and
conversation group detection in social interaction scenes, suggests that an interpretation
of modeling social behavioral cues, which falls into three scales: (i) individual-level, (ii)
group-level, and (iii) scene-level.

The fundamental component of a conversation group is individual members. Head and
body orientations are naturally associated with properties of an individual (e.g., ranging
from height and size of an individual which determines their body inertia and affects
magnitude of their movement, to personality traits leading to more (e.g., extraversion)
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or less expression and movement). On the other hand, head and body orientations of an
individual could also be affected by group-level dynamics. Phenomena such as turn-taking,
synchrony, proxemics, etc. and concepts such as dominance, deception, etc. are mostly
defined in a group (>1 person) context as it requires social interaction in the first place.
There is significant motivation to model head and body orientations on a group-level
accounting for intragroup dynamics, as they are part of the behavioral cues that ultimately
lead to social signals between interactants.

In addition to the intragroup dynamics, interaction scenes also feature intergroup
dynamics when multiple groups are co-present. In complex conversational scenes, conver-
sation groups are informal, but there is not restriction on them being interest, functional,
or task, -focused as long as individual share the common activities. A common framework
on group development, breaking the process into five stages, was proposed by Bruce
Tuckman [74]. According to Tuckman’s theory, the stages include: forming, storming,
norming, performing, and adjourning. While the groups stabilize in storming, norming,
and performing in a mostly self-regulating fashion, forming and adjourning of groups are
directly related to scene level dynamics, as it is usually characterized by some confusion
and uncertainty when individuals freely move around the scene or event. For the task
of detecting conversational groups which has traditionally been done from a bottom-up
perspective (constructing affinity matrix through pairwise affinities), it is also worthy to
explicitly model the surrounding context, which is especially important in states where
groups undergo many change.

1.4 Contributions
In light of the standing challenges, this thesis tackles a subset of those, by focusing on
novel methods to model human behavior in free-standing conversation groups in complex
conversation scenes, and sourcing a high-fidelity in-the-wild interaction dataset with
accurate multimodal synchronization. All methods-oriented studies in this thesis use
multimodal data collected in-the-wild and account for the social context. All data-oriented
studies in this thesis have been developed specifically to capture human interaction data
in-the-wild. The intention is to develop methods based on data that are as ecologically-valid
and close to real-life as possible.

The organization and contribution of the thesis is as follows:

• Chapter 2 presents a novel multimodal approach for joint head orientation estimation
in a conversation group by leveraging the proxemics and dynamics within a social
group, and the methods show to have some generalizable capability when applied to
an unseen social interaction scene. The contribution also includes a large-scale upper
keypoints and orientation annotation augmentation towards an existing dataset,
MatchNMingle [41].

• Chapter 3 focuses on scene understanding and presents a conversational group
detection method for an interaction scene using temporal based inputs such as
positions, head, and body orientations. Approaching the task in two stages (i) affinity
prediction and (ii) group detection via clustering results in an interpretation of the
intermediate continuous affinity values based on the past, rather than only binary
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group membership from direct clustering. Furthermore, this contribution includes a
forecasting method that predicts future affinity values and conversation groups that
may be useful in studying group and scene evolution.

• Chapter 4 introduces a transductive method developed for joint estimation of head
and body orientation using multimodal data when annotations are scarce. The
method takes advantage of the physical priors and inherent nature of the social
interaction scene as additional information to elevated side-view videos and wearable
sensor signals. It results in decent head and body orientation estimation especially
in the low-data regime.

• Chapter 5 presents a hardware synchronization of multisensor multimodal data
during acquisition based on network time protocol. It eliminates the time-consuming
post-hoc manual alignment and/or ad-hoc event based synchronization which may
not generalize to wearable sensors.

• Chapter 6 describes an instantiation of best practices in collecting human interaction
data, and offers a novel high-fidelity dataset collected during a real-life professional
networking event. The fine-granular annotations and high-quality of multimodal
data closes the gap for future development of automated methods.

Respective publication information is indicated in each chapter title page.
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2 Multimodal Joint Head Orientation Estimation in Interacting Groups via Proxemics and

Interaction Dynamics

2.1 Introduction
Social interactions are one of themost fundamental aspects of human behaviors. If machines
were able to understand these behavioral patterns, they would have more potential to
perceive, interpret, predict and even influence behavior. In the context of conversing
groups, the behavioral patterns of a conversant are not isolated but rather coupled with the
behaviors of other participants. In this paper, we focus on the automated analysis of head
orientation, which is an important cue for social attention, particularly in the absence of
eye gaze measurements. In the context of conversations, humans orient their heads based
on the flow of a conversation, such as re-orientating their head when there is a change
of speakers [75], when a new participant joins the conversation [76], or when there is
a change of head and body orientation of other participants [77]. Head orientations, as
a proxy for direction of attention [16, 78], can be reflective of the participant’s mental
processes and therefore, the interaction quality which is valuable information towards
social intelligence [79]. In order to obtain such information, a deeper understanding of the
interaction between conversing people is required. These interplays include the evolving
proxemics (relative positions and orientations) and conversation dynamics (e.g., turn taking
behavior, spontaneous responses to a speaker or listener) of an interacting group. This
paper focuses on the automatic estimation of head orientation in relation to these complex
phenomena, specifically in crowded mingling (in-the-wild) social scenes.

We first establish the importance of the interaction context that we are interested
in, which is different from the ones in previous studies and their interpretations. While
human interactions in focused settings [19, 20, 38], e.g., seated meetings (Figure 2.1(a)),
have been studied extensively, a closer analysis of complex conversational scenes [80], e.g.,
networking events or cocktail parties [6] (Figure 2.1(b) and 2.1(c)), is more challenging.
We differentiate interacting groups in complex conversational scenes from free-standing
conversations group (FCG) which have been studied in the past [6]. FCGs form sponta-
neously as soon as people gather in close vicinity to sustain a common space and they are
motivated by proxemics alone. On the other hand, an interacting group in complex conver-
sational scenes has another layer of complexity when modelling its members’ behaviors. A
group could contain multiple conversation (sub)groups and thus more varied interaction
dynamics, though still sharing the common physical space [81]. Due to the noisiness and
unstructuredness of in-the-wild settings, the underlying conversational and behavioral
patterns are different from those of seated meetings and other formal interactions, and
further, are not attributed to only proxemics as with FCGs. In addition, social scientists
have shown that interacting people tend to exhibit movement coordination [12, 24]. Body
movement could serve as informative cues towards head orientation estimation due to
anatomical constraints, and also account for the possibility of group level phenomenon
such as movement mimicry and synchrony [82]. We argue that head orientations should be
studied in consideration of the interaction context, which is coupled with the underlying
interaction dynamics, represented by changes in proxemics, speech, and body movement.

Previous methods do not explicitly address the dynamic context for interacting groups
in complex conversational scenes. Many existing methods are designed for head orientation
estimation specifically for meeting analysis (e.g., strapping sensors onto participants’ head
[19] (Figure 2.1(a)), OpenFace [83], etc., among other methods that use audio data [84, 85]).
For our setting (Figure 2.1(b) and Figure 2.1(c)), adopting a wired connection for direct
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Figure 2.1: Examples of types of scenes where people interact with each other in groups. (a)[19] and (b)[45] show
a meeting and poster session in which participants have shared targets of attention (screen, poster board, etc.). In
(c)[41], the unstructuredness makes studying the social interactions hard.

measurement of subjects that span a large physical space or placing close-up (third or first
person) cameras for facial images is not feasible and also undesirable. Other appearance-
driven methods (e.g.,[29, 50, 86])) for head orientation estimations have been developed
for these complex conversational social scenes. They typically rely on a small number of
overhead or elevated cameras. While these camera perspectives capture the whole ground
plane, head orientation estimation remains challenging [50] because of – (i) low-resolution
images, (ii) a high degree of self-occlusion and occlusion by other people, and (iii) missing
informative features such as facial attributes. In some of these works, the dynamics context
of interacting people was utilized to improve head orientation estimation, but it was
motivated from only the proxemics aspect. Despite this additional consideration of context,
occlusions are generally the main factor causing poor estimations [50, 87]. The Panoptic
studio [18] solution more explicitly addressed challenges related to occlusions but is only
realized by using hundreds of cameras in a specialized infrastructure which would be hard
to replicate in real life. For these reasons, modeling head orientation estimation using
appearance features for crowded settings in-the-wild remain as open question. Multimodal
methods [28, 88] have shown promise towards improved head orientation estimation by
utilizing additional modalities.

In this light, we propose a multimodal approach towards head orientation estimation
method that takes advantage of a small number of room mounted overhead cameras and
wearable sensors. In particular, we consider a single wearable sensor worn around the
neck, like a smart ID badge, which records body inertial motion, speaking status, and
proximity, akin to the ones used in [41] and [63]. The multimodal solution aligns well
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with estimating head orientations by considering the dynamics in proxemics, speech and
body movement, as we motivated. We show that it is possible to accurately model head
orientations for in-the-wild conversation scenes solely based on a novel integration of
proxemics (relative position and orientations) and interaction dynamics (speaking status
and tri-axial acceleration from a single accelerometer hung around the neck) and without
relying on vision-based appearance data.

Further, we argue that since head orientations are a proxy for attention and could be
dynamically changing in more chaotic settings, head orientation estimation should be
formulated as a regression task. Existing orientation estimation methods (e.g., [28, 29, 50,
86, 88]) treat the task as 8-class classification problem. This discretization may result in a
loss of fine-grained information. Additionally, a classification setting assumes that each
class is independent from one another, which is an incorrect assumption for estimating
head orientations, which are intrinsically continuous.

To this end, we adopt a long short-term memory (LSTM) based approach wherein we
take signals of different modalities over time to estimate continuous head orientations.
Different modalities provide complementary information and lead to a multivariate time
series modeling problem. To account for the group context using a more rigorous concept
based on social science, we consider interacting groups as F-formations [12], in which
participants collaborate to maintain an interaction space by establishing spatial and ori-
entational relationship. The inputs of our system are temporally aligned sequences of
position, body orientation, speaking status and tri-axial acceleration of all members of an
F-formation; the outputs of our system are the head orientations (i.e., continuous angles)
of the same group of people at the last timestep of the aforementioned sequences.

More importantly, the underlying intuition is that humans orient their heads based
on the behavior of other people in their conversation group. This motivates us to build a
model which accounts for the dynamic interaction of members in the same social group
when estimating their head orientations. Our results show that (1) estimating head ori-
entations considering the group context is better than considering individuals only; (2)
temporal context is more advantageous than only estimating at a temporal snapshot; (3)
including tri-axial acceleration and speaking statuses (indicative of body movements and
conversation dynamics, respectively) contributes positively to model performance; (4) the
model generalizes well to estimating head orientations in groups of different sizes and
also unseen data; and (5) training with continuous labels results in lower errors than with
discretized labels (head orientation angles binned into pre-defined sectors).

To this end, we list our contribution as follows:

1. a novel feature set for estimating head orientations in crowded settings,

2. a pooling module that explicitly integrates information of all interaction partners to
jointly model the dependence between each person in an interaction segment,

3. a detailed analysis of head orientation estimation performance with respect to differ-
ent methods, generalization to unseen data, and sensitivity to different modalities,

4. an experimental validation of formulating head orientation estimation as a regression
task, as opposed to an 8-class classification task,
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5. and lastly, a large-scale annotated data resource containing upper body keypoints
(shoulders and head), head and body orientations, and F-formation groupmembership
based on the MatchNMingle dataset [41].

In Section 2.2, we review the related works on head orientation estimation. Section
2.3 presents the details of our approach, methodology, and implementation. Section 2.4
discusses the dataset and our design choice based on it. Section 2.5 presents the relevant
results and analyses. We close by discussing future work and conclusion in Sections 2.6
and 2.7.

2.2 Related Work
In this section, we introduce relevant previous works on orientation recoveries and esti-
mation, using wearable sensors and cameras. Human head orientation estimation, as a
subtopic in general orientation estimation, has attracted much attention from researchers
working on human-computer interaction, pose estimation, and other related topics. In
Section 2.2.1, we summarize related works in orientation measurement and estimation
using wearable sensors. In Section 2.2.2, we present some representative works on head
orientation estimation using room mounted cameras, particularly in social settings similar
to ones that we are interested in.

2.2.1 Wearable Sensor Based Orientation Measurement and
Estimation

IMUs containing accelerometer, gyroscope, and magnetometer can be used to obtain
orientation estimations. Kok et al. [89] provide a comprehensive overview of methods
that integrate raw sensor outputs into orientation recoveries and estimations. However,
IMUs suffer from heading drift during continuous operation and the accuracy of the
resulting angle estimations could be compromised, especially in indoor scenarios where
magnetometer measures are noisy [90]. Manymotion capture systems feature large number
of IMUs attached to custom made suits to capture positions and orientations in everyday
surroundings [91]. However, these approaches do not align with the reconstruction using
video and do not address the drifting issue [92]. To compensate for the drift, multiple
cameras and IMUs are combined to estimate orientations [93, 94]. Most of these previous
works focus on human pose estimation and takes advantage of placing of sensors on
different limbs and optimizing via consistency in joints and segments [92, 93]. If we are
only interested in head orientation estimation, multiple sensors would have to be placed
on the head, in conjunction with setting up other cameras. This quickly becomes infeasible
in in-the-wild settings. For lab-like settings, the IDIAP head pose dataset [19] was collected
using a 3D location and orientation tracker that supported tracking four sensors strapped
onto the participant heads using the Flock-of-Birds magnetic sensing technology at a 50Hz
sampling rate, in order to enable the study of higher-order behavior such as visual attention
via head pose. This particular solution only supports up to four sensors and requires a
wired connection, which makes it difficult to scale up and deploy for in-the-wild social
interactions. More recent IMU-based solutions that are more mobile, such as the earables

Available upon requesting access from http://matchmakers.ewi.tudelft.nl/matchnmingle/pmwiki/
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[95], have been proposed. However, their study has shown that great variability exists in
how people wear the sensor in the ear (i.e., different angle/orientations), which further
complicates estimating head pose between different subjects. While it is also possible
to estimate head orientation using only wireless wearable sensors (e.g., smart ear pieces
and head bands) [96, 97], these technology are still in nascent stages and are not able
to estimate orientations accurately. A recent technology based on near-infrared sensing
utilizes pairwise light sensing to infer the incident angle and distance between two sensors
[98]. However, there are collisions in transmission when there are multiple (>2) sensors
involved. Using this approach, sensor reading is dropped when there are detected collisions,
hence reducing the detection frequency (once in five seconds) to an even lower and variable
rate. This technology is also not readily extendable to detecting head orientations and
studying human behaviors on a finer temporal granularity in crowded scenarios. Aside from
the technical limitations, putting these sensors on people’s head to measure orientations
raises concerns of social acceptability [99]. Such practice would violate the ecological
validity [100] of the observations of human behaviors. On the other hand, the use of
wearable badges around the neck is less intrusive [101] and could be used in settings where
devices such as Google Glass or cell phones are considered impolite or forbidden.

2.2.2 Room Mounted Camera-Based Head Orientation Estima-
tion

Image-based head orientation estimation is represented by a large body of literature
[87, 102–110]. When the face features are available, these methods are able to predict head
orientation in all 3 axes (roll, pitch, and yaw), more generally called head pose estimation.
Note the majority of these works in this topic do not consider room-mounted cameras but
using cameras (e.g., webcams) that allow for capturing facial images. Hence, they are not
directly applicable in the surveillance setting where subjects are far away and images are
lower-resolution. For the rest of the discussion in this section, we focus on works that
use camera inputs acquired from an angled height. In the setting of predicting poses of
pedestrians, previous works [49, 111] take advantage of the motion prior from trajectories
and/or the coupled body orientation to compensate for the lack of high-quality visual input.
However, in a crowded scenario where human subjects are mostly static and occlusions
are frequent, these approaches become ineffective. Ricci et al. [50] explicitly tackle the
occlusion problem when jointly estimating head and body orientations. The method
requires determination of the level of occlusion based on targets’ feet and head locations
obtained from tracking, which is feasible in elevated side-views but remains challenging in
overhead views where head and body crops overlap. Moreover, head orientation estimation
under these adverse settings has usually been formulated as a classification problem.
Typically, orientations are divided into 8 classes, with a bin size of 45◦ [28, 88] since most
available datasets for head orientation estimation in low resolution only include discretized
class labels. Even though some works such as by Yan et al. [87] reported estimation errors
in degrees, they converted the estimates from discretized class labels according to the
center of the bins and the results do not imply that the model was trained with respect
to continuous outputs. With recent advances in deep learning methods and increased
efficacy of convolution neural networks, Prokudin et al. [112] have shown high accuracy
on low resolution head images. However, for the scope of this paper, our contribution is
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orthogonal to comparing against state-of-the-art vision based methods, as we wish to show
the efficacy of a new set of inputs.

We point out that some existing vision-based methods have taken the social context into
account when estimating head orientations, such as [28, 29, 50, 86]. They provide solutions
for the joint estimation of group membership and head and body orientations. However, we
differentiate our paper from these works as we explicitly model for the interplay between
subjects, with the consideration of evolving proxemics and dynamics captured by speech
behavior and body movement. In that regard, our work is most similar to that of Otsuka
et al. [113] where a multimodal and multiparty fusion method was proposed to estimate
visual focus of attention, albeit a different task from ours. Their experiments showed that a
group based model outperformed individual based model in certain cases (a promising clue
that inspired our paper). However, this work, among others such as [19, 20], is constrained
to estimating visual focus of attention in a focused and structured meeting scenario, which
lacks changes in proxemics and body movement. Instead, our work focuses more on
in-the-wild settings, with inputs that could be obtained without using close-up cameras.

2.3 Methodology
2.3.1 Approach

Figure 2.2: Graphical illustration of our approach for head orientation estimation in the group context.

For a given group of size 𝐺, let 𝐱𝛼
𝑡
∈ ℝ

𝑁 denote the feature vector for member 𝛼 ∈  at
sequence step 𝑡 ∈ {1,… ,𝑇}, where  = {1,… ,𝐺} is the set of members in the group, 𝑇 is the
sequence length, and 𝑁 is the number of features. The feature vector 𝐱𝛼

𝑡
is a concatenation

of the following:

• speaking status of member 𝛼 ,

• three-channel (raw) signal from tri-axial accelerometer of member 𝛼 ,

• body orientation of member 𝛼 ,
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• positions of all the members {𝛽 ∈  ∶ 𝛽 ≠ 𝛼} relative to the member 𝛼 in polar
coordinates (radial distance and angular orientation).

To capture the group context, we adopt a shared LSTM-network based approach.
Here, we exemplify the recurrent step of the proposed model from 𝑡 to (𝑡 + 1) which is
schematically summarized in Figure 2.2. Let 𝐡𝛼

𝑡
∈ ℝ

𝐻 denote the hidden states associated
with member 𝛼 at sequence step 𝑡 , where 𝐻 is the number of hidden states (chosen as a
hyperparamter). The hidden states at 𝑡 = 1 are initialized as 𝐡𝛼

1
= 𝟎. At any step 𝑡 < 𝑇 , the

hidden states from the current step of all the members in the group are concatenated into
a hidden representation 𝐣𝑡 ∈ ℝ

𝐺×𝐻 as

𝐣𝐭 = [𝐡
1

𝑡
;𝐡

2

𝑡
;… ;𝐡

𝐺

𝑡
], (2.1)

where [⋅; ⋅] denotes concatenation. 𝐣𝑡 is then mapped into a lower dimension 𝐾 (𝐾 < 𝐺 ×𝐻 )
using a linear layer 𝜔 with rectified linear unit (ReLU) as activation function to obtain
𝐤𝑡 ∈ ℝ

𝐾 as
𝐤𝑡 = ReLU(𝜔(𝐣𝐭)), (2.2)

where 𝜔 denotes the set of weights and biases of the linear layer. This step performs context
pooling, i.e., the information stored in the hidden states associated with each individual are
combined together to obtain a group-level context represented by 𝐤𝑡 . Thereafter, for each
member 𝛼 , the respective hidden state 𝐡𝛼

𝑡
as well as the concatenation of 𝐱𝛼

𝑡
(individual

member’s input) and 𝐤𝑡 (group-level context) are passed to an LSTM cell 𝜏 (parameterized
by the set 𝜏 ) to obtain the output hidden states

𝐡
𝛼

𝑡+1
= 𝜏 ([𝐱

𝛼

𝑡+1
;𝐤𝑡 ],𝐡

𝛼

𝑡
). (2.3)

The LSTM operation 𝜏 is described by the following series of transformations

𝐟
𝛼

𝑡+1
= 𝜎

(
𝜉

𝑓
([𝐱

𝛼

𝑡+1
;𝐤𝑡 ;𝐡

𝛼

𝑡
])
)

(forget gate’s activation vector)

𝐢
𝛼

𝑡+1
= 𝜎 (𝜉𝑖

([𝐱
𝛼

𝑡+1
;𝐤𝑡 ;𝐡

𝛼

𝑡
])) (input gate’s activation vector)

𝐨
𝛼

𝑡+1
= 𝜎 (𝜉𝑜

([𝐱
𝛼

𝑡+1
;𝐤𝑡 ;𝐡

𝛼

𝑡
])) (output gate’s activation vector)

�̃�
𝛼

𝑡+1
= tanh(𝜉𝑐

([𝐱
𝛼

𝑡+1
;𝐤𝑡 ;𝐡

𝛼

𝑡
])) (cell input activation vector)

𝐜
𝛼

𝑡+1
= 𝐟

𝛼

𝑡+1
⊙ 𝐜

𝛼

𝑡
+ 𝐢

𝛼

𝑡+1
⊙ �̃�

𝛼

𝑡+1
(cell state vector)

𝐡
𝛼

𝑡+1
= 𝐨

𝛼

𝑡+1
⊙ tanh(𝐜

𝛼

𝑡+1
) (output hidden state vector),

(2.4)

where 𝜎 is sigmoid activation, ⊙ denotes the Hadamard product, and 𝐜
𝛼

𝑡
and 𝐜

𝛼

𝑡+1
denote

the cell state at 𝑡 and (𝑡 + 1), respectively. 
(⋅)
denotes a linear layer with parameters

indicated in the subscript. The trainable parameters are contained in the set 𝜏 = {𝜉𝑓 , 𝜉𝑖 , 𝜉𝑜 , 𝜉𝑐}.
Importantly, the LSTM parameters 𝜏 are shared among all the members of the group.

After recursing through the LSTM cell (3.3) upto 𝑡 = 𝑇 , the hidden states 𝐡𝛼
𝑇
are passed

through another linear layer 𝜅 (parameterized by 𝜅),

𝐪
𝛼
=𝜅(𝐡

𝛼

𝑇
), (2.5)

where 𝐪𝛼 ∈ ℝ
2; followed by a normalization layer

𝐲
𝛼
=

𝐪
𝛼

‖𝐪
𝛼
‖

. (2.6)
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Similar to the LSTM cell, the parameters 𝜅 are shared among all the members. Note that
this step is only performed after all the timesteps are processed. Due to the normalization,
𝐲
𝛼
= (𝑦1, 𝑦2)

⊺ may be interpreted as cosine and sine of the head orientation prediction 𝜃
𝛼

ℎ
.

To this end, we obtain 𝜃
𝛼

ℎ
from 𝐲

𝛼 as

𝜃
𝛼

ℎ
= atan2(𝑦2, 𝑦1), (2.7)

where atan2 ∶ ℝ×ℝ→ (−𝜋,𝜋] is the 2-argument arctangent.
To train the model, we use the cosine similarity loss function [112, 114] summed up

over all the members in 

𝓁 =

𝐺

∑

𝛼=1

(1−𝐲
𝛼
⋅(cos𝜃

𝛼

ℎ,𝐺𝑇
,sin𝜃

𝛼

ℎ,𝐺𝑇 )

⊺
) , (2.8)

where 𝜃𝛼
ℎ,𝐺𝑇

represents the ground truth head orientation. Considering a training set of
𝑛 such sequences, we minimize the loss over all the sequences to optimize the model
parameters

𝜔
∗
, 𝜏

∗
, 𝜅

∗
= argmin

𝜔,𝜏 ,𝜅

𝑛

∑

𝑖=1

𝓁𝑖 , (2.9)

where 𝓁𝑖 is the loss associated for the 𝑖th sequence in the dataset. Note that the group size
(𝐺) may vary within the dataset.

2.3.2 Implementation Details
The feature set is obtained through manual annotations from the overhead camera view,
except the tri-axial acceleration which are obtained from the wearable sensor directly. As
described earlier, we use these annotations, where applicable, as proxy to avoid confounding
sources of error in our inputs. The comparison of different methods to acquire automated
inputs of better quality is out of scope for this paper. Speaking status is a binary value where
0 and 1 denote "not speaking” and "speaking”, respectively. The body orientation is given
by the angular direction of the person’s body in (−𝜋,𝜋]. The relative positions of the group
members are given by the radial distance (measured in pixels) and angular orientation (in
(−𝜋,𝜋]). In practice, the positional angular orientations are computed in reference to the
circular mean of the same over all the group members (except the member in question),
i.e., the latter serves as the zero-degree reference. This removes the discontinuous jump in
angles as they wrap around (−𝜋,𝜋] and removes sensitivity to the group location in the
scene as well as other group-specific attributes. Body orientations of all group members are
also corrected by the same zero-degree reference. Continuous feature values (acceleration,
body orientation, relative distance and orientation) are normalized to the range [0,1] by
min-max scaling. Finally, we note that group membership is considered as pre-determined
and assigned based on Kendon’s definition of F-formation [12].

We perform a three-fold split of the available groups (not the sequences as described
below) for cross-validation such that groups in the validation splits do not appear in training.
Given the lifetime of a group (i.e., the duration in which no new member joins and no

The circular mean �̄� of a set of angles {𝛼1,… ,𝛼𝑛} is computed as the arctangent of mean of sine and cosine of all
the angles, i.e., 𝛼 = atan2( 1

𝑛
∑

𝑛

𝑗=1
sin𝛼𝑗 ,

1

𝑛
∑

𝑛

𝑗=1
cos𝛼𝑗 ), where atan2 ∶ℝ×ℝ→ (−𝜋,𝜋] is the 2-argument arctangent.
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existing member leaves), we generate several sequences using a sliding window of stride
equal to one. The sequences are of length 𝑇 = 10, which is a design choice that we further
justify in Section 2.4. The number of model outputs is catered to the biggest group size
of 𝐺 = 7 members (observed over 300 distinct groups in 90 minutes of video recordings
in the MatchNMingle dataset [41]). The members are arranged in a random order. The
training dataset is augmented by shuffling the member order to achieve better results
on the validation set. More details on the data augmentation procedure can be found in
the auxiliary materials. Only the outputs corresponding to the relevant group size are
considered for evaluation, since the group size is known a priori. Missing feature values
in smaller groups are padded with a constant value which we set to -2, which suffices to
inform the neural network for missing values rather than noise in the inputs. We find that
choosing different padded values does not affect the model performance.

The performance is reported for the following hyperparameters which was obtained
through a grid-search on a subset (10 min) of the MatchNMingle data. The dimension of
the LSTM hidden states is set to 𝐻 = 20. The output from the context pooling module is
of dimension 𝐾 = 32. ADAM optimizer is used to train the model for 100 epochs with a
learning rate of 10−4 and batch size of 16.

To intuitively understand the model performance, we choose the root mean squared
error RMSE =

√

1

𝑛
∑

𝑛

𝑗=1
𝛥
2

𝑗
over 𝑛 test samples, where we define the angular difference 𝛥 as

𝛥(𝜃1, 𝜃2) = min(|𝜃1 − 𝜃2| ,2𝜋 − |𝜃1 − 𝜃2|) , with 𝜃1, 𝜃2 ∈ (−𝜋,𝜋], (2.10)

since (head-orientation) angles wrap around with period 2𝜋 .

2.3.3 Baseline Methods
We compare the proposed method to three baseline methods. We first consider a rule-based
method, which is engineered based on knowledge of patterns in conversation dynamics.
Two other methods representing controlled settings of our proposed method are considered
to illustrate the effects of the temporal context and individual vs. group based inputs.

The rule-based method of head orientation estimation is inspired by previous works
[19, 21, 38, 75] for the task of estimating visual focus of attention (VFoA) in meeting
scenarios. They utilize Bayesian methods (e.g., dynamic Bayesian networks) to model the
roles of contextual information such as head pose, speaking status, conversation structure,
etc. These models are built on domain knowledge, which is expressed in a causal structure
relating different variables. Though these methods focus on a different task, there is high-
level similarity to the proposed method, which is to include multimodal, multiparty, and
contextual information. In the spirit of designing a model that uses expert knowledge
of the phenomena in question, we devise the simplified rule-based method to capture a
specific type of dynamics; i.e., listeners tend to orient their head towards the speaker. At
any given time, a listener’s head orientation is given by the orientation of the positional
vector from the listener to the speaker. If there are two or more speakers in the group,
then the circular mean is computed over the respective orientations. A speaker’s head
orientation is given by the circular mean of the orientation of the positional vectors from
the speaker to each of the listener. The speakers and listeners are identified based on the
speaking status.
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Without including the temporal information, we propose a frame-based method as
follows. For a given member in the group, we use a multi-layer perceptron (MLP) that
takes as input the accelerometer signals of the member in question, the relative positions
(radial distance and angular orientation) of all the other members, and the speaking status
and body orientation of all the members in the group. The MLP does not consider temporal
information and only predicts on a frame-wise basis.

To include the temporal information, we propose a sequence-based method which uses
an LSTM-based network, acting on a sequence of the same set of inputs as the frame-based
method. The sequence length is also chosen to be 𝑇 = 10 to match with the design choice
of the proposed model. This model is a simplified version of the proposed model which
does not pool the hidden states of other members of the group.

The frame-based and sequence-based methods are both considered as individual models
because they use inputs arranged from an individual group member’s perspective. In
our proposed method, which we consider as group model, we jointly estimate the head
orientations of all members in an interacting group by considering the relative information
between all possible pairs of individuals and context pooling the hidden states between
subsequent steps of LSTM. This conceptual difference is illustrated in Figure 2.3. Each
colored area indicates the area of influence of an individual. The hexagon in Figure 2.3(b)
delineates an interaction space containing three individuals interacting with one another, as
an example. Figures 2.3(a) and 2.3(c) represent the frame-based and sequence-based method,
respectively, and the estimation only concerns the bottom individual (denoted in pink).
Figure 2.3(a) shows that the frame-based method only considers inputs at a single time
step, whereas Figure 2.3(c) shows the inputs progressing in time, which is reflected by the
sequential inputs to the sequence-based method. Although considering the presence and
the information of other two members (top) in the same interaction space, these methods
do not take into account that the interaction space is shaped by all 3 individuals (Figure
2.3(b)). On the contrary, this factor is incorporated in the proposed group-based model,
where the hidden states of all members are pooled into a unified representation at each
timestep to track how members influence each others’ head orientations in an evolving
interaction (Figure 2.3(d)).
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Figure 2.3: Conceptual visualization of the motivation behind different methods. (a) The inputs and output are
designed from an individual’s perspective in the group. The frame-based method is designed for this scenario. (b)
The inputs and outputs are designed from a group perspective. (c) A sequential version of (a) where the change
of interaction space in time is modeled using the sequence-based method (d). The proposed method, which is
group-based, considers the change of the joint interaction space given that individuals influence each other during
the course of an interaction.

2.4 Head orientations in complex social scenes: a
case study

2.4.1 Dataset
We develop and test our model on theMatchNMingle dataset [41] which is one of the largest
multimodal datasets capturing human interactions in-the-wild. The dataset was recorded
in casual networking events over 3 days and includes 90 minutes of unscripted and free
interactions among 92 unique participants. There are 32, 30, and 30 participants for each
day of the event, respectively, for 30 minutes each day. Subject positions, speaking status,
body orientation, head orientation, and F-formation group membership were annotated by
human annotators through visual perception of the overhead-surveillance video data at
1 Hz. The wearable sensor directly outputs raw tri-axial accelerometer data at 20 Hz. As
a preprocessing step, we downsampled accelerometer data to 1 Hz by taking an average
for each of the axis for each 1 second window. While using a higher frequency signal is
understandably desired, human head rotation of 1 Hz and considered as a medium level
of activity from a physiological point of view. Vigorous head motion activities, which
are rare (head impulses), are in the range of 2.6 Hz [115]. Therefore summarizing the
information from the tri-axial accelerometer into 1Hz should already capture predominant
head behaviors.

This dataset is suitable for our studies because it contains a large number of people
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Table 2.1: Comparison of different datasets available/used for head orientation estimation. Here, annnotations
pertain to the head orientations in the respective datasets.

Dataset Context No. of subjects Length [minutes]
× no. of segments Modality Annotation

resolution [Hz]
Annotation
method

IDIAP [19] seated meeting 4; ×8 meetings 10; ×8 meetings Video N/A FOB† sensor
TownCentre[110] pedestrian 2200 22 Video N/A Human
CAVIAR[116] pedestrian (scripted) 40 1; ×17 segments Video 25 Human
CocktailParty [50] ‡ FCG 6 30 Video N/A Automatic
Coffeebreak[22] FCG 14 2; ×2 segments Video N/A Automatic
SALSA-Cocktail Party[45] FCG 18 25 Video,

Wearables
1/3 Human

MatchNMingle[41] FCG 32, 30, 30
(3 events)

30; ×3 events†† Video,
Wearables

1 Human

† Flock-of-Birds: head pose tracking using 3D magnetic sensors
‡ While more annotations of body and head orientations have been used in previous works [50, 86], only

automated estimations of positions and head orientations are publicly available.
†† Due to occlusions near the edges of the camera field-of-view and design choices of strategically annotating
before and after the lifetime of a group, the estimate is an approximation of the total number of annotations.

Figure 2.4: Distribution of group sizes in the MatchNMingle dataset.

forming a large number of different groups. Additionally, various social interaction data
including speaking status as well as wearable sensor information (acceleration and prox-
imity) are available. With the additional annotations of head and body orientations that
we include as part of this paper’s contribution, the MatchNMingle dataset is the most
fitting for our goals, as other datasets are 1) not situated in similar social settings, 2) of
smaller scale and coarser temporal granularity, or 3) not as enriched in terms of data
modalities. We compare the different available datasets for head orientation estimation in
Table 2.1 to illustrate this point. The SALSA-Cocktail Party dataset is the most similar to
the MatchNMingle. For completeness, we demonstrate the generalization of our model to
unseen data from the SALSA dataset in Section 2.5.

The group size distribution of all the three days in the MatchNMingle data is shown in
Figure 2.4. Smaller groups are more common than larger groups. Figure 2.5 shows that
smaller groups have longer duration on average, though the variance is considerably high
in most cases. We note that the group size and group duration distribution differ between
the 3 days of data collection even though the social context is similar.
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Figure 2.5: Distribution of group durations in the MatchNMingle dataset.

2.4.2 Head Orientation Analysis
Annotation. The head orientations are annotated by labeling head and shoulder keypoints.
These annotations are performed by crowdsourcing workers. To quantify annotation
discrepancy, we re-annotate a set of 2000, randomly sampled, data points out of a 10-min
segment from the Day 1 recording of 32 participants. We found the difference in two sets
of annotated head orientations to be 17±5◦.

Justification for regression over classification. Head movements in relatively
intimate social contexts (as opposed to pedestrian contexts) are fast changing. The argument
in favor of regression is two-fold: (i) modeling orientations in a classification setting
assumes classes/categories to be independent from one another, while angles are ordinal;
(ii) head movement could be completely undetected if orientations are expressed in terms
of classes. For the first argument, even if we discretize angles into classes, we can’t easily
model for the "closeness" of class 4 and 5 in a classification setting, for example. This
lends naturally to a regression formulation. A potential argument in favor of classification
applies when the data is so sparse that they could indeed be treated as independent classes.
However, this is not the case in our data as we show that angles in our data span over
the whole 360◦ range (see auxiliary materials). For the second argument, we illustrate
using an example from the MatchNMingle dataset in Figure 2.6. We compare the head
orientation time series of a subject to its discretized version with eight classes (as a 45◦
class bin-width is commonly assumed in previous works [28, 29, 50, 86, 88]). Notably, some
segments of visible head turns of small magnitude are binned into the same class. The
discretization results in a loss of valuable information that could be associated to related
interaction events. This is especially relevant in big groups that span a large physical
area; a small angular shift in head pose from one side of the group could indicate a shift
in interacting partner on the far side. As the discretization over angles is arbitrary, there
can be misleading fluctuations at the class boundaries. Since angles are continuous in
nature and the limitation of low-resolution head images is no longer relevant in our case,
modeling head orientations in a classification setting provides no definite advantages over
regression. To this end, we show the comparison of classification vs. regression in Section
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2.5.

Figure 2.6: Illustrative example of how small but noticeable head turns could result in the same class bin, resulting
in a loss of fine-grained information. From T= 665 to T=666, the head turn with a relatively large magnitude
resulted in the same bin. However, from T=666 to T=667, a head with a smaller magnitude resulted in different
bins.

Sequence length. We make an informed design choice for the sequence length (𝑇 )
in the LSTM by observing the speech behavior in the interactions. More specifically, we
quantify the speech duration by measuring the length of segments when the speaking
status is continuously equal to one. Without considering speech overlap and time delay
in speaker transitions, we find the speech duration to be on average 4.8 seconds in the
dataset. To ensure the possibility of including a speaker transition, we choose the sequence
length for LSTM to be 10 seconds. At 1 Hz of sampling frequency of the feature set, this
corresponds to 𝑇 = 10.

2.5 Results and discussion
In this section, we present our experimental findings. A summary of the performance of
the aforementioned baseline methods (see auxiliary materials for details) and our proposed
method is shown in Table 2.2. In Section 2.5.1, we compare and analyze the performance
of the proposed method and the baseline methods. For the proposed model, we discuss its
generalization to unseen data, contributions and sensitivity of different combinations of
inputs in Section 2.5.2-2.5.3. In Section 2.5.4, we compare our proposed method which is
based on regression to an 8-class classification setting. In Section 2.5.5, we assess the model
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Table 2.2: Summary of head orientation estimation performance of the proposed method and the baseline methods
(introduced in Section 2.3.3). All methods are trained and evaluated with the same cross-validation splits.

Method Type Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Day 1 Day 2 Day 3

rule-based static 47.7 (31.7) 44.1 (28.5) 54.4 (36.6)
frame-based static 26.4 (18.7) 23.9 (15.4) 35.3 (25.7)
sequence-based temporal 25.9 (20.0) 26.4 (16.6) 28.6 (17.5)
(proposed) group-based temporal 22.7 (14.0) 22.0 (12.6) 25.0 (15.9)

sensitivity with respect to body orientations. And lastly in Section 2.5.6, we show how our
model handles dynamic moments in an interaction better than the purely socially-motivated
rule-based method.

We perform all the experiments following the three-fold cross-validation scheme intro-
duced Section 2.3.2 for each day in the dataset. All methods are evaluated with the same
cross-validation splits. For the generalization evaluations in Section 2.5.2, we use data from
different days and datasets, instead of the day-wise cross-validation splits to assess the
transferability of the model. For all results in Table 2 - Table 8, we report the averaged
validation results. For the proposed model, variants with different inputs are all re-trained.

2.5.1 Model Comparison
In Table 2.2, we show that both the frame-based and sequence-based methods perform
better than the rule-based method. While the rule-based method explicitly encapsulates
the social dynamics through the speaking status, the rest of the models are able to learn
the social rules implicitly without the knowledge of a social prior. We observe that the
sequence-based outperforms the frame-based method for Day 1 and Day 3, implying that
a temporal context is still beneficial when estimating head orientations. Among all the
considered methods, the proposed group-based method achieves the lowest RMSE on
average. We perform pairwise t-test to see if the difference in results between the proposed
method and the baselines are statistically significant. We find that the group-based method
provides statistically lower RMSE than all three baselines for all three days with 𝑝 < 0.01.

We further report the group-size-wise performance of the proposed method in Figure
2.7. Dyads typically have the lowest errors while larger groups have higher errors. This
aligns with the intuition and corroborates previous observations [24] that the dynamics
within dyads are typically simpler and easier to model compared to that of larger groups.

As the speaking status is a critical component of the rule-based method, we report the
listener- and speaker-specific performances in Table 2.3. According to the social rules, the
listener’s head orientation is expected to be biased towards the speaker. As the target of
attention is clear for the listeners, we anticipate the estimation errors for listeners to be
lower than that of the speaker (since the speaker typically divides the attention among
several listeners). However, Table 2.3 show that the errors for listeners are consistently
higher than those for speakers. Possible reasons are that, in the crowded and noisy mingling
scenarios, 1) there are multiple speakers in a group, and 2) people direct their attention
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Figure 2.7: Group-size-wise performance of the proposed group-based method in head orientation estimation.
Note that there are no groups with seven members in the Day 1.

Table 2.3: Head orientation estimation performance breakdown of the rule-based method on listeners and speakers
separately based on results in Table 2.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Day 1 Day 2 Day 3

Listener 51.0 (33.5) 46.9 (30.1) 56.0 (37.0)
Speaker 40.7 (27.0) 36.8 (23.6) 50.3 (35.1)

elsewhere due to distractions, which complicates the interaction dynamics. Using the
proposed method, we observe slightly lower performance for the listeners than for the
speakers (Table 2.4), with the difference in performance being small compared to the same
for the rule-based method.

2.5.2 Generalization to Unseen Data
Cross-Day Generalization within the MatchNMingle Dataset
The three days for which the MatchNMingle data are available have different distributions
of group sizes (Figure 2.4) as well as qualitative differences that include demographics,
personality, acquaintance level, etc., of the participants. To this end, we assess the gener-
alization of the proposed model to unseen data by training it on data from one day and
testing on the data from the remaining days. The results are summarized in Table 2.5.

Table 2.4: Head orientation estimation performance breakdown of the proposed group-based method on listeners
and speakers separately based on results in Table 2.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Day 1 Day 2 Day 3

Listener 22.0 (17.0) 22.8 (13.9) 25.9 (16.9)
Speaker 19.9 (16.4) 18.4 (14.6) 22.5 (16.7)
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Table 2.5: Cross-day generalizationwithin theMatchNMingle dataset. Reported are the head orientation estimation
performance of the proposed group-based model when trained and tested on data from different days. We use all
data from a specific day as training data, and subsequently evaluate the model using data from the other two
days as test data.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Test: Day 1 Test: Day 2 Test: Day 3

Train: Day 1 N/A 30.6 (29.5) 24.2 (23.4)
Train: Day 2 17.5 (14.8) N/A 19.6 (16.7)
Train: Day 3 17.3 (14.3) 18.6 (13.6) N/A

Overall, the model shows strong generalization to unseen data of contextually similar but
different social scenarios.

Cross-Dataset Generalization to SALSA-Cocktail-Party Dataset
As shown in Table 2.1, the SALSA-Cocktail-Party dataset [45] is the most similar to Match-
NMingle in terms of data modality. We preprocess the SALSA data analogously to the
MatchNMingle inputs. Subjects’ positions, tri-axial accelerometer signals, body orienta-
tions, and head orientations are arranged into sequences based on group memberships.
The features are available at the frequency of 1/3 Hz. The sequence length is set to 𝑇 = 10

(same as MatchNMingle) which corresponds to 30 seconds in time. Audio data are only
available as summary-level statistics and Mel-frequency cepstral coefficients. Obtaining
binary speaking status signal from these signals is a challenge in itself and beyond the
scope of this generalization test. Hence, we exclude the speaking status from the feature
set. To this end, we train the group-based model on the data from the MatchNMingle
dataset (we use Day-2 data as training data as it contains a more even distribution of group
sizes compared to other days) excluding speaking status from the inputs. Without any
re-training or fine-tuning, the model is evaluated on the SALSA data. We report the RMSE
in head orientation estimations to be 22.5±14.0◦, which implies that the proposed model is
capable of generalization to different datasets.

2.5.3 Contribution of Different Modalities
Given our input modalities (positions, speaking status, body orientations, accelerometer
signals), we re-train the group-based model on a non-exhaustive combination of inputs
relevant to this paper and assess their individual contributions (Table 2.6). Body orientation
contributes the most to the performance, which corroborates previous observations in
head orientation estimation in pedestrian [117] and social settings like poster session [28].
Predictions based on positional information only are worse than those based on body
orientations only. However, combining body orientation and positional information as
well as integration of speaking status and accelerometer signals successively improve the
performance (the rightmost column shows results from the full set of modalities (features)).

2.5.4 Regression vs. Classification
This paper focuses on estimating head orientation in a regression setting. In this section,
we investigate the model performance by framing head orientation estimation as an 8-class
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Table 2.6: Head orientation estimation performance of the proposed group-based model with some of the relevant
combinations of the modalities (features). Abbreviations BO, pos, SS, and acc stand for body orientation, position,
speaking status, and accelerometer signals, respectively. Each column lists the features used in re-training the
model.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
pos pos+SS BO BO+pos+SS BO+pos+acc BO+pos+SS+acc

Day 1 37.2 (22.7) 35.9 (18.2) 25.1 (13.5) 23.7 (13.8) 23.3 (14.2) 22.7 (14.0)
Day 2 42.1 (24.7) 38.5 (16.2) 26.6 (16.8) 23.6 (12.1) 23.7 (11.9) 22.0 (12.6)
Day 3 40.9 (28.7) 36.9 (22.2) 26.0 (14.4) 26.2 (14.6) 27.4 (15.7) 25.0 (15.9)

Table 2.7: Head orientation estimation performance of the group-based model in a regression vs. 8-class classifica-
tion setting. Instead of using continuous labels, we use a discretized version of the labels based on 8 classes to
train the model and showcase the effect of regression vs. classification.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Regression 8-class classification

Day 1 22.7 (14.0) 24.5 (15.7)
Day 2 22.0 (12.6) 23.4 (14.0)
Day 3 25.0 (15.9) 27.6 (19.9)

classification taskwhich is themore common approach [28, 50, 88, 118]. To simulate discrete
orientation class-labels, we categorize the continuous annotations of head orientations in
the MatchNMingle dataset into 8 classes of size equal to 45◦ each. We train the group-based
model using the centers of the bins as labels. During evaluation, we adjust the predicted
labels to the center of the corresponding bins and compute the RMSE with respect to
the undiscretized ground-truth head orientations. We report our findings in Table 2.7,
where we show that estimating head orientation in a regression setting is more accurate
over a 8-class classification setting. We also highlight that it is indeed feasible to obtain
good continuous regression results from discrete training labels using our method. This
is especially promising for application to other datasets, as most of the publicly available
ones only have discretized head orientation labels.

2.5.5 Using Body Orientations
We assess the sensitivity of results with respect to manually labeled body orientation
inputs. To this end, we replace the body orientations with an approximation based on
the interaction space of the group using member positions only. For 2-person groups, the
body orientation of each person is approximated by the positional orientation from the
respective position towards the mean of the positions. For groups of larger sizes, a circle
is fitted geometrically using the Kasa algorithm [119] and the center of the fitted circle is
interpreted as the group center. The body orientation of each member is approximated
by the positional orientation from the member position to the found group center. This
approximation partially relaxes the requirements of body orientation inputs originating
from manual annotations, automated vision-based methods, or other wearable-sensing
capabilities.
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Table 2.8: Head orientation estimation performance of the group-based model with ground-truth (GT) and
approximated body orientations. Instead of using the GT body orientations as features, we re-train the model
and assess the model performance with the use of an approximated version of the body orientations, based on
positions.

Mean RMSE in 𝜃ℎ (std. dev.) [◦]
Body orientation (GT) Body orientation (approximate)

Day 1 22.7 (14.0) 35.6 (22.5)
Day 2 22.0 (12.6) 34.9 (18.3)
Day 3 25.0 (15.9) 36.0 (25.2)

(a) rule-based (b) group-based

Figure 2.8: RMSE distribution of Day 1 validation results using the rule-based and the proposed group-based
approach.

2.5.6 Speech Dynamics vs. Head Orientation Estimation
Including sequences of speech status as the part of the inputs is motivated by how speech
plays an important role in group interactions. While positions and orientations information
capture the proxemics context, speech activity is related to interaction dynamics.

We propose a scheme to categorize samples as dynamic or nondynamic depending on
speaking status switches to further showcase the efficacy of our proposed method. For a
given time 𝑡 , a fixed interval of window 𝑤 is defined such that the speaking status sequence
[𝑡 −𝑤,𝑡] is considered. For the speaking status at 𝑡 , the nearest switch in speaking activity
in this time interval is recorded. If the nearest switch is less than𝑤 , the sample is considered
dynamic and else, it is deemed nondynamic. For this paper, we consider 𝑤 as 10 seconds,
representing the sequence length derived from turntaking duration. An illustration of the
performance of dynamic and nondynamic samples from the validation results of Day 1 data
is shown in Figure 2.8. Figure 2.8(a) shows that the head orientation estimations obtained
from the rule-based method, which is purely driven by speech activities along with position
information and prior knowledge from social science. Dynamic samples have larger errors
compared to nondynamic samples. Figure 2.8(b) shows the error distribution obtained
using the proposed inputs and model. The discrepancy of performance in dynamic and
nondynamic samples is greatly reduced, showing the efficacy of our approach in handling
dynamic scenarios.
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2.6 Discussion and Future Work
2.6.1 Source of Inputs
A remaining question regarding the efficacy of our proposed method is that of practicality,
since it is built on a majority of ground truth inputs. We explain how these inputs (speaking
status, body orientation, relative positions, and accelerometer data) may be acquired using
existing technology and/or automated methods (except accelerometer data which cannot
be replaced by manual annotations) for an end-to-end solution along with some of the
associated challenges.

• Speaking status: A number of wearable badges measure the speaking status directly
[63, 120]. Gedik and Hung [121] have shown that speaking status can also be obtained
from a tri-axial accelerometer alone; they reported an Area-Under-Curve (AUC) score
of 68% (current state-of-the-art performance via this modality).

• Body orientations: Wearable light tags introduced by Montanari et al. [98] allow
for direct measurement of body orientation, but are also limited to low sampling
frequencies.

• Positions: Previous works have demonstrated the use of mobile devices [122],
bluetooth beacons [123], radio frequency identification tags [124], etc. to estimate
the subject positions. It is still an open research problem to estimate subject positions
in dense and crowded settings like the ones we are interested in.

• F-formations: Gedik and Hung [24] have demonstrated the use of tri-axial ac-
celerometers to identify F-formation group membership. However, there is room
for improvement as they only consider the group dynamics but not the inherent
proxemics definition of F-formations.

A seamless integration of different sensors recording multiple modalities in crowded and
unstructured mingling scenarios is challenging and would require a custom solutions which
address issues such as synchronization and unification of signals across different platforms.
While cameras are a possible and easy alternative, occlusions are unavoidable due to
constraints arising from camera placements and ceiling height of the room. Additionally,
cameras-based solutions are not possible in, e.g., outdoor events or low-light scenes. We
argue that a purely sensor-based approach for head orientation estimation has the potential
to be extended to a wide range of settings. This paper serves as a step towards that direction.

2.6.2 Importance of Prior Knowledge
While the group-based method (based on a deep-learning approach) gives the best per-
formance, a simple rule-based method (Section 2.3.3) serves as a decent starting point
(with approximately 48◦ error on average). The rule-based method is solely based on the
knowledge of the group memberships, positions, and speaking status of the subjects, and
does not require large amount of training data (unlike the deep-learning approach). Further
development of rule-based heuristics and hand-crafted models (e.g., dynamic Bayesian
networks [19, 21, 38, 125, 126]) which leverage the prior knowledge are worth considering
if data resources are scarce and if more model interpretability is preferred.
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2.6.3 Multimodal Features and Fusion Methods
Our group-based model can be adjusted to incorporate more or fewer modalities. Additional
relevant modalities such as – gestures, audio, facial expressions, etc., may be introduced
depending on availability. An early fusion approach such as the one proposed here may
not be directly applicable since the representation of each modality can differ vastly.
Early fusion requires the features from multiple modalities to be highly engineered and
preprocessed such that they are synchronized and aligned with each other [127]. These
problems may be solved by using a late fusion approach. In contrast to early fusion where
only one model is trained, different models can be trained for different modalities and all
the unimodal representations or decisions are later fused.

2.6.4 Group-Size-Agnostic vs. Group-Size-Specific Models
A highlight of the proposed group-based model is that it can be applied to head orientation
estimations for groups of different sizes (which are prevalent in real-life social scenarios).
However, previous works [24] suggest that the dynamics can be different between small
and large groups. While our approach is more general, building group-size-specific models
could lend more focused insights into the group interactions.

2.7 Conclusion
In this paper, we have proposed an LSTM-based model for understanding the dynamics of
joint head motion and behavior in human social interactions, particularly in unstructured
and in-the-wild mingling scenarios. Leveraging the implicit coupling between the behavior
of the group members, the model jointly predicts the head orientation of all the members
solely based on their (temporally evolving) proxemics, conversation dynamics, and body
movements. The group context is captured by pooling the hidden states of the group
members at each step during the LSTM unrolling. The specific choice of inputs serves
as a departure from utilizing visual data (which are limiting due to occlusions and poor
lighting) and is a step toward a purely sensor-based and non-intrusive approach for head
orientation estimation in crowded and in-the-wild settings. We tested our approach on
the MatchNMingle dataset which is based on crowded mingling in casual networking
events. Our proposed method outperforms a rule-based method (hand-crafted based
on the knowledge of social manners) and deep-learning baseline methods that do not
explicitly employ the temporal and group context together. The model demonstrated
strong generalization to unseen data across different days of the same event, as well as a
completely different dataset (SALSA-Cocktail-Party) without any re-training or fine-tuning.
We also showed that the model is applicable to groups of different sizes. Our sensitivity
analyses assessing the inputs of speaking status and tri-axial acceleration, in addition
to body orientations, showed that these modalities contribute positively towards model
performance. We showed that formulating head orientation estimation in a regression
setting not only agrees more with the continuous nature of angular data, but is also more
advantageous over the more conventional classification setting. We shed some light on
possible future improvements of this model, particularly in the direction of using automated
inputs and further fusing prior social science knowledge and multimodal signals to better
capture the interaction context which affects head orientation estimation.
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Figure 3.1: Snapshot of a typical social interaction area from the Conflab [128] dataset. Faces blurred for privacy.

3.1 Introduction
The automatic detection of conversation groups is an interesting problem for applications
ranging from social surveillance [6, 17, 129] to social robotics [130–132]. In social settings,
such as cocktail parties or professional networking events, the floor for interactions at the
venue consists of multiple conversation groups that dynamically adapt to the ebb and flow
of the underlying human behaviors that determine the social interactions. Characterizing
the interpersonal relationships (the level of spontaneous affinity between people) that
foster individuals to freely congregate to form a focused encounter and exchange informa-
tion could help us understand more about interaction experience and quality [133, 134].
However, due to the complexity and subtleties in human social dynamics in changing
environments which are also context-specific, automatically detecting conversation groups
in social scenes is an ongoing and challenging research topic.

For this paper, we focus on identifying conversation groups (more specifically, free-
standing conversation groups (FCGs) [6]) in a social scene where individuals physically
come together to interact with each other. In these settings they organize themselves into
groups that define the physical partitions of who is interacting with whom. Figure 3.1
shows a representative scene for the types of social scenarios that we are interested in from
an overhead viewpoint. People’s use of physical space is known as proxemics [135].The
conversation groups can be of varying duration, size, and spatial arrangement. In practice,
these conversation groups have often been conceptually formalized as facing-formation
(F-formations) [6, 17, 28]. As introduced and defined by Kendon [23], an F-formation is
formed when two or more people arrange themselves onto a convex envelope to enclose an
overlap of their interaction transactional segments (i.e., space in front of them where sight
and hearing are most effective [136]). The interactants have equal and exclusive access to
this overlap (i.e., o-space).

The challenges in formulating a social concept such as F-formations into a computa-
tional task for automated machine learning methods are two-fold: (i) representation of the
scene and identifying the appropriate behavior cues to capture the underlying social dy-
namics, and (ii) the potential fuzziness that exists in the ground truth of group membership
due to the fact that interpersonal relationships are not exactly binary in reality.

A social scene such as Figure 3.1 may be represented by an interaction graph with
nodes representing the individuals, and edges representing the relationship between two
individuals. Conversation groups can be deduced from the information in this interaction
graph, where individuals in the same conversation have greater edge weights (affinity)
with one another, and vice versa. Each individuals have behavioral cues such as positions,
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head/body orientations, etc. that are shaped by the surroundings, and also change over
time. Indeed, proximity with directional information could already be indicative of group
membership if one simply considers ’who is standing with whom’. However, in social
scenes such as Figure 3.1, factors such as crowdedness and furniture layout define the
spatial context that affects individual cues that determines conversation group membership.
The temporal context in the behavioral cues plays a role in the interactions which are
dynamic in nature. One type of social dynamics that could be captured by movement
cues (e.g., change in positions and orientations) is synchrony and mimicry patterns which
are known to be important driver for affiliation and interpersonal rapport [137–139]. In
terms of conversation dynamics, since multiple conversation floors are possible within
one F-formation [81], head orientations that change during turn-taking or other types of
conversation dynamics are especially relevant to conversation schisms. The schisming
phenomenonmay lead to two ormore distinct conversation groups [140] and hence possibly
form new F-formations. Therefore, in this paper, we argue that even though F-formation in
its original definition is a static concept, it is important to take into account the temporal
context of the behavioral cues influencing the groups.

The second fold of the challenge is the potential problem in how ground truths of
group membership are defined from pairwise affinities. Past approaches of automatic
detection of conversation groups have identified affinity and group memberships as binary
and operationalized the task based on this design choice, albeit Zhang and Hung have
investigated the subjectivity of annotating groups [42]. Although the assumption of the
binary group membership which existing methods and ours hinge on, is valid to the extent
of how they are reflected in the ground truth annotations, interpersonal relationships are
not binary in reality. The temporally evolving affinity between two individuals, does not
change from zero to one, or one to zero, instantaneously [141–143]. Social interactions
have a rite of passage, from greeting to leaving [144]. We aim to understand how the
affinity scores change in time and encapsulate the changing dynamics of the behavioral
cues, and how they affect group detection, which are not apparent in hard assignments of
group memberships. Our paper takes a step towards this direction which has not been the
focus in previous works.

Following prior works [59, 60], our approach to conversation group detection consists
of two stages: (1) we first estimate continuous pairwise affinities between all individuals in a
social scene, and (2) we use an existing framework to cluster the individuals by leveraging a
graph clustering based on Dominant Set (DS) to identify conversation groups [17]. In order
to account for the temporal context in the behavioral cues, we introduce a deep learning
based Long Short-Term Memory (LSTM) network to predict pairwise affinity scores that
determine the F-formation membership (annotated as ground truth of conversation groups
in existing datasets). The inputs to our network are temporally aligned sequential inputs
(including positions, and head and/or body orientation); the output of our network is
the pairwise affinity value between one individual and all other members in the social
interaction scene.

In contrast to existing works that output an affinity score of all pairs of individuals
independently which scales quadratically with the number of people in the scene [59, 60],
our design for person-wise output scales linearly and follows more intuitively from an
egocentric application point of view (i.e. social robots). DS clustering is applied to the
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affinity matrix corresponding to each scene to detect the conversation groups. The clique
formulation in DS is exploited to identify clusters in the interaction graph, which refines
group detection since the affinity matrix (from estimated pairwise affinities) may not
directly provide self-consistent and symmetric binary group memberships [17, 60, 145].

Additionally, as opposed to previous approaches that only use the intermediate affinity
scores as inputs for clustering for refined conversation group identification, we show the
possibility in using the estimated pairwise affinity values from the past to forecast future
affinity values, which could serve as an underpinning for understanding how conversation
groups evolve. Even without formulating the problem explicitly as a future forecasting
task, our model is able to anticipate affinity values due to the temporal continuity. Our
main contributions are as follows:

• We propose a novel LSTM-based affinity score model to approximate the likelihood of
two people interacting in the same conversation group. The model includes a pooling
module to account for the spatial context of social interactions, inspired by what
[59, 60] captured in their models. Using the proposed model that leverages (temporal)
sequential input features in addition to a pooling module, we simultaneously account
for the spatio-temporal context that affects pairwise affinities that determine the
conversation groups.

• We provide an analysis over the predicted affinity scores in conversation group
detection, characterized by Area under (receiver-operating) Curve (AUC) scores,
followed by qualitative examples showing the continuity of affinity scores. We
also show a comparison of affinity score processing (asymmetric vs. symmetric)
for application in DS and the group detection performance with respect to scene
dynamics.

• We demonstrate the usability of the predicted affinity values via a novel forecast-
ing framework for affinity score prediction based on Gaussian Process Regression
(GPR). The framework also provides inferential uncertainty quantification over the
predictions of future conversation groups.

3.2 Related Works
Conversation group detection in situated interactions has been tackled by a variety of
approaches stemming from different communities (computer vision [6, 50, 129], human-
computer interaction [145–149], etc.). This section discusses the representative works in
this area. Conversation groups and the more formalized F-formation representation are
analogous in terms of group detection in interaction scenes in past works.

Many previous works, especially from the vision community, use features such as
location and head/body orientations for the task of group detection [6, 17, 28, 50, 53].
These quantities could be obtained automatically from vision data using multi-camera
surveillance setups (typically elevated side-views).

Using these features, some methods for F-formation detection have been focused
on optimization-based approaches to mathematically model the physical space. More
concretely, a number of works [6, 150, 151] hypothesised that the o-space can be generated
from a noisy representation of the instantaneous view frustum obtained from the head
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pose. Heat maps generated from samples projected from each individual’s view frustum
were then used to identify o-spaces. Members of the F-formation were then re-identified
as belonging to a particular o-space based a pre-defined metric of closeness.

Another class of methods have formulated social scenes as an edge-weighted graph
where each individual represents a node and the edge represents the pair-wise connection
between individuals. These methods take the part of the F-formation definition related to
equal mutual attention to synonymous with maximal cliques in edge weighted graphs. In
early works, the pair-wise relationships were modeled using feature engineering based
on location and orientation information [17, 42, 53, 152]. Aggregating these estimated
pairwise affinity values, the affinity matrix serves as inputs to graph clustering based
on Dominant Set using game-theoretic approaches [17, 53] to iteratively partition nodes
to extract conversation groups. While the o-space is not explicitly modelled with these
approaches, the maximal clique formulation implicitly models the o-space whilst also
explicitly binding individuals to a specific group as part of the Dominant Set identification
process. However, the representation of pairwise affinity, particularly when only location
and orientation is used, forces a circular shape assumption to the F-formation that does
not always happen in practice [42, 152]

To address this problem and enable more flexibility in modeling pairwise relationships
given the surroundings, deep learning based approaches have been proposed. DANTE
learns the affinity values by explicitly modeling dyadic and context interaction [60] by
using relative positions and head/body orientations after preprocessing as inputs to the
model. More recently, Thompson et al. [59] proposed a graph neural network (GNN) based
approach that leverages the more general message-passing mechanism during training to
predict affinities using raw signal data including absolute positions, accelerometer readings,
and image. Similar to the preceding works [17, 42, 53], both of these deep learning based
approaches also apply the learned affinities values inputs to DS graph clustering. Schmuck
and Celiktutan [153] also proposed a GNN-based approach to predict interpersonal links,
but as opposed to using DS graph clustering, a greedy agreement algorithm was applied to
identify groups [145].

Departing from using visually obtained features such as locations and orientations
of individuals, some works have taken advantage of features from other modalities that
have shown to be helpful when estimating pairwise affinities. For example, [59] take
advantage of a combination of motion based features and visually obtained features. Gedik
and Hung have shown that it is possible to estimate groups purely based on motion
features as phenomena such as body movement synchrony in interactions are indicative of
pairwise relationships [24]. However, in communication with the authors, the predicted
affinities need to be significantly improved for before DS clustering would yield reasonable
performance. This highlights that the nature of the problem lies between the modelling
social dynamics and proxemics (i.e. positions and orientations). Approaches proposed
by the ubiquitous and pervasive computing communities have relied on Bluetooth Smart
(BLE) to measure proximity values in terms of Received Signal Strength Indicator (RSSI)
values which capture distance and orientation information to some extent, represented
by [154]. In the case of [155], data from motion sensors (accelerometer and gyroscope)
were also incorporated with proximity features for multimodal detection of groups using
smart phones. Other custom sensors have been developed to measure proximity, relative
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orientation, motion, and/or a combination thereof (e.g., light tags [156], Rhythm badges
[157] and the Midge [158]). These data also capture the useful information, such as direct
measurement of closeness forming hypotheses of interactions already and the measurement
of nuanced body motion, in determining conversation groups in social interactions, and
methods developed based on these have the potential to scale more easily.

The proposed method differs from early works [17, 42, 53, 152] in F-formation detection
as it is a deep learning method where pairwise affinities are learned. The main limitation
is that the early works are based on feature engineering, which is less flexible than deep
learning models. Compared to existing deep learning methods [59, 60, 153], the proposed
method simultaneously models the spatio-temporal context in F-formation detection. We
aim to capture the underlying evolving social dynamics by modeling the temporal dynamics
in the input features, which has not been investigated before. Our method outperforms
the most relevant deep learning baseline [60] for the ConfLab dataset, especially in scenes
where there is high dynamicity.

Figure 3.2: Visualization of the derivation of the interaction graph: (a): the given scene from an overhead camera;
(b): each subject has person-wise features, such as positions, orientations, etc.; (c): the edge weights (affinity
scores) between each pair of subjects are predicted via the proposed neural network model; and (d): using the DS
[17], conversation groups are extracted as sets of subjects.

3.3 Approach
The overview of the approach to conversation group detection is illustrated in Figure
3.2. Figure 3.2(a) represents an example image from an interaction scene. The individual
attributes such as positions, head and body orientations encode spatial information of an
individual with respect to the scene (labeled in Figure 3.2(b)).

Module (b) represents the core of our contribution, which is a novel deep learning neural
network for pairwise affinity estimation, based on a joint Long Short-TermMemory (LSTM)
network that simultaneously accounts for the temporal context of the input signals and
spatial context in the scene with spatially-motivated context pooling. In (c), the pairwise
affinities are combined to a affinity matrix, and following previous approaches, Dominant
Set was used to extract groups by iteratively identifying maximal cliques in edge-weighted
graphs (module (d)). Our contribution focuses on the neural network architecture for
affinity prediction, and assumes that the inputs are acquired and preprocessed upstream.
We use the Dominant Set clustering method on graphs downstream of affinity prediction
because it is state-of-the-art method for this use-case.

The details of the neural network architecture is described in Sec. 3.3.1, and the details
of the dominant set method is described in in Sec. 3.3.2.
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Figure 3.3: Visualization of the methodology. (a): a scene representation of individuals and preprocessed features
with respect to person i; (b): a graphical representation of the time roll out from 𝑡 to 𝑡 +1 with the aggregate
pooling layer along with the attention mechanism; (c) the filtering and aggregation of person-wise affinity output
at 𝑡 = 𝑇 into an affinity matrix; (d): application of DS clustering for group identification from the affinity matrix.

3.3.1 Affinity Prediction
For a given social interaction scene , let 𝑃𝑡 represent the number of individuals in the scene
at time step 𝑡 ∈ {1, ...,𝑇} where 𝑇 is the sequence length, and 𝑛 represent the maximum
number of individuals present at all scenes of concern, i.e., 𝑃𝑡 ≤ 𝑛. Let 𝐯𝑗,𝑖

𝑡
∈ ℝ

𝑁 denote the
𝑁 -dimensional feature vector for the 𝑖th member of the scene with respect to the 𝑗th member
(with 1 ≤ 𝑖, 𝑗 ≤ 𝑃𝑡 and 𝑖 ≠ 𝑗) at the sequence step 𝑡 . The feature vector is a concatenation of
features based on the following:

• head and/or body orientations of member 𝑖,

• position, and head and/or body orientations of all members 𝑗 relative to the member
𝑖,

• indicator mask 𝐼
𝑗

𝑡
= {1,0} – denoting if member 𝑗 is present in the scene at time 𝑡

(assumed to be known a priori),

the details of which are discussed in Section 3.4.4.
Module (b) in Figure 3.3 demonstrates one recurrent step of the proposed model from

time 𝑡 to 𝑡 +1. Let 𝐡𝑗,𝑖
𝑡
∈ ℝ

𝐻 denote the hidden representations associated with member 𝑖 at
sequence step 𝑡 , where 𝐻 is the dimension of hidden states (chosen as a hyperparameter).
The hidden states at 𝑡 = 0 are initialized as 𝐡𝑗,𝑖

0
= 𝟎. To capture the spatial context defined

by all members in the interaction scene, we pool the hidden states of all the members
𝑗 ≠ 𝑖 as follows. To discount for the persons absent in the scene at time 𝑡 , the hidden
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state are first processed through a masking layer (with element-wise multiplication) to
obtain intermediate masked hidden states representation 𝐠

𝑗,𝑖

𝑡
= 𝐼

𝑗

𝑡
𝐡
𝑗,𝑖

𝑡
. Note that the masked

representation reflects the presence of members 𝑗 in the scene, which may be dynamically
changing between different time steps. All masked representations 𝐠𝑗,𝑖

𝑡
are processed

through an aggregate pooling layer to obtain a scene level representation 𝑖

𝑡
given by

𝑖

𝑡
=

∑

𝑗≠𝑖

𝐠
𝑗,𝑖

𝑡

∑

𝑗≠𝑖

𝐼
𝑗

𝑡

. (3.1)

The context-pooled representation𝑖

𝑡
is then combined with each of the individual hidden

states 𝐠𝑗,𝑖
𝑡
through an attention mechanism to obtain 𝐨

𝑗,𝑖

𝑡
,

𝐨
𝑗,𝑖

𝑡
= 𝜆𝑡 + (1−𝜆)𝐠

𝑗,𝑖

𝑡
, (3.2)

where 𝜆 ∈ [0,1] is a trainable parameter that adjusts the contributions from pairwise
interaction and surrounding representations.

For each member 𝑖, the respective hidden state 𝐡𝑗,𝑖
𝑡
as well as the concatenation of the

feature 𝐯𝑗,𝑖
𝑡+1

and the processed context representation 𝐨
𝑗,𝑖

𝑡
are passed through an LSTM cell

𝜏 (parameterized by 𝜏 ) to obtain 𝐡
𝑗,𝑖

𝑡+1
(i.e., the hidden states for the subsequent time step),

𝐡
𝑗,𝑖

𝑡+1
= 𝜏 ([𝐯

𝑗,𝑖

𝑡+1
;𝐨

𝑗,𝑖

𝑡
],𝐡

𝑗,𝑖

𝑡
). (3.3)

The LSTM operation 𝜏 is described by the following series of transformations

𝐟
𝑗,𝑖

𝑡+1
= 𝜎

(
𝜉

𝑓 (
[𝐯

𝑗,𝑖

𝑡+1
;𝐨

𝑗,𝑖

𝑡
;𝐡

𝑗,𝑖

𝑡
]))

(forget gate’s activation vector)

𝐢
𝑗,𝑖

𝑡+1
= 𝜎 (𝜉𝑖 (

[𝐯
𝑗,𝑖

𝑡+1
;𝐨

𝑗,𝑖

𝑡
;𝐡

𝑗,𝑖

𝑡
])) (input gate’s activation vector)

𝐨
𝑗,𝑖

𝑡+1
= 𝜎 (𝜉𝑜 (

[𝐯
𝑗,𝑖

𝑡+1
;𝐨

𝑗,𝑖

𝑡
;𝐡

𝑗,𝑖

𝑡
])) (output gate’s activation vector)

�̃�
𝑗,𝑖

𝑡+1
= tanh(𝜉𝑐 (

[𝐯
𝑗,𝑖

𝑡+1
;𝐨

𝑗,𝑖

𝑡
;𝐡

𝑗,𝑖

𝑡
])) (cell input activation vector)

𝐜
𝑗,𝑖

𝑡+1
= 𝐟

𝑗,𝑖

𝑡+1
⊙ 𝐜

𝑗,𝑖

𝑡
+ 𝐢

𝑗,𝑖

𝑡+1
⊙ �̃�

𝑗,𝑖

𝑡+1
(cell state vector)

𝐡
𝑗,𝑖

𝑡+1
= 𝐨

𝑗,𝑖

𝑡+1
⊙ tanh(𝐜

𝑗,𝑖

𝑡+1)
(output hidden state vector),

(3.4)

where 𝜎 is sigmoid activation, ⊙ denotes the Hadamard product, and 𝐜
𝑗,𝑖

𝑡
and 𝐜

𝑗,𝑖

𝑡+1
denote

the cell state at 𝑡 and (𝑡 + 1), respectively. 
(⋅)
denotes a linear layer with parameters

indicated in the subscript. The trainable parameters are contained in the set 𝜏 = {𝜉𝑓 , 𝜉𝑖 , 𝜉𝑜 , 𝜉𝑐}.
Importantly, the LSTM parameters 𝜏 are shared among all the members in the scene.

After the time roll out in each LSTM time step until 𝑡 = 𝑇 , the hidden states 𝐡𝑗,𝑖
𝑇
are

passed through a linear layer parameterized by set of weights 𝐖𝑚 and biases 𝐛𝑚 to obtain
the final pairwise edge predictions with respect to member 𝑖. Subsequently, they are passed
through a sigmoid activation (denoted by 𝜎 ) to obtain pairwise affinity 𝑎

𝑗,𝑖
∈ [0,1] as

𝑎
𝑗,𝑖
= 𝜎 (𝐖𝑚𝐡

𝑗,𝑖

𝑇
+𝐛𝑚), (3.5)

where the values of 0 and 1 denote no and perfect pairwise affinity, respectively. The
output of the model 𝑎𝑗,𝑖 is strategically designed to be continuous, which lends naturally to
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a probability interpretation of pairwise interaction. We further motivate this choice, the
performance evaluation, and the connection to downstream tasks such as conversation
group forecasting in Section 3.4.3.

To train the model, we use the mean squared error loss function given by

𝓁 =∑


∑

𝑗≠𝑖

(𝑎
𝑗,𝑖
−𝑎

𝑗,𝑖

𝐺𝑇 )

2

, (3.6)

where 𝑎𝑗,𝑖
𝐺𝑇

∈ {0,1} represents the ground truth affinity value betweenmember 𝑗 andmember
𝑖.

3.3.2 Dominant Set Clustering
As shown in Figure 3.3 (c), for each member 𝑖 in the scene, the affinity prediction model
predicts 𝑛−1 pairwise affinity values with respect to all other members 𝑗 for all time steps
irrespective of whether they are visible at that moment or not. To evaluate the group
identification performance, we use the output at the last time step at 𝑡 = 𝑇 . After filtering
with the indicator masks, a 𝑃 ×𝑃 affinity matrix for the scene in question is obtained, where
𝑃 is the actual number of subjects at a particular scene.

After the predicted affinities are arranged into an affinity matrix, following prior
approaches, [17, 53, 59, 60], the F-formations are extracted using Dominant Sets (DS)
clustering. The resulting clusters representing F-formations could be of any size. The
stopping criterion of the optimization formulation is either when the relative mutual affinity
of internal nodes and external nodes of a dominant set do not satisfy the constraints, or
when the mutual affinity of a group is lower than a chosen threshold. The second part of the
stopping criterion enables improvement to detect singletons in the scene as it accounts for
the global context (i.e., when there are only few people left after maximal clique extraction
iterations, it is not likely that they are in the same group). We follow the implementation of
F-formation clustering of [60]. For the theoretical background and more detailed reference
to the application of Dominant Set Clustering for F-formation detection, please refer to
[17, 159].

3.4 Experimental Setup
3.4.1 Baseline Methods
The baseline methods considered in this work are GTCG [53], GCFF [6], and DANTE [60].
GTCG and GCFF are both non deep learning based methods which rely on engineered
position and orientation based features. GTCG models pairwise affinity values using
distance between distributions over the plausible regions determined by the visual frustums,
followed by a refined game theoretic approach for group extraction based on [17] and [22].
GCFF models the probability of individuals belonging to o-space centers (i.e. center of
conversation groups), and uses a graph-cut approach in conjunction with constraint based
on direct access to extract the groups.

DANTE proposes a deep learning based approach to model pairwise affinities using
positions and orientations, and utilizes the Dominant Set clustering for extracting conver-
sation groups. During training of the deep learning model, DANTE uses data augmentation
strategy The recently proposed graph neural network based approach takes advantage
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of image-based features and a rich collection of social action semantic labels, in addition
to proxemics and body motion based features, for conversation group detection [59]. We
omit comparison against this recent approach for the scope of the paper, since the focus
of our paper is on modeling the social dynamics in conversation scene using temporal
information rather than a thorough investigation of using different input modalities.

3.4.2 Datasets
To align with the closest state-of-the-art approaches, we compare our method on the same
representative datasets including Cocktail Party [46] and SALSA [45]. We also report
benchmark results on the recently released Conflab dataset [128], capturing professional
networking social interactions in-the-wild.

With conversation groups annotated at 1Hz and behavioral cues sampled and annotated
at 60Hz then summarized to 1Hz, the Conflab dataset is apt to investigate our research
question which is leveraging temporal continuity in behavior cues and pairwise relation-
ships in estimating affinity scores. In comparison, the conversation groups and behavior
cues in Cocktail Party and SALSA are annotated at 1/5 Hz and 1/3Hz, respectively. We
hypothesize that the temporal continuity in the signals and the ground truth of these two
datasets can be decimated due to this sampling and annotation frequency.

Most of the existing datasets were collected to serve F-formation detection using visual
information, i.e. using an elevated side-view. Bounding boxes and head/body orientations
are acquired either through automated methods or manual annotations. For datasets that
have a top-down view, positions and orientations are acquired through manual annotations
because automated methods result in error prone inputs to subsequent models [128]. The
overview of the datasets used is as follows:
-Cocktail Party [46]: contains 30 minute recordings of six people interacting with one
another, captured by four elevated side view cameras in the corners of the space. Positions
and head orientations of the subjects are obtained automatically using a particle filter-based
body tracking method. The conversation groups were annotated at 1/5 Hz.
-SALSA [45]: contains 60 minute recordings of 18 people interacting with one another,
captured by four elevated side view cameras in the corners of the space. Positions, head
and body orientations, conversation groups of the subjects are annotated manually at 1/3
Hz. This dataset contains wearable sensor data captured by the Sociometric badges.
-Conflab [128]: contains 15 minute recordings of 49 people interacting with one another,
captured by 5 (non-overlapping) overhead cameras. Positions, head and body orientations
of the subjects are annotated manually at 60Hz. Note that even though locations and
orientations can be acquired automatically, some previous works have pointed out that the
automatic methods produce erroneous results, especially in orientation estimation [46]. To
avoid confounding sources of errors in these behavioral cues which are quite nuanced as
we motivated in Section 3.1, we follow other works that have relied on provided ground
truth data as inputs assuming that these will be provided upstream during application
[160]. Conversation groups are annotated manually at 1Hz.

3.4.3 Evaluation Metrics
We evaluate on both stages of our model: (1) pairwise affinity estimation and (2) group
detection. For pairwise affinity prediction, the neural network is trained with binary ground
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truth, but the predicted affinities are continuous values between 0 and 1, which enables us
to do further analysis using these affinity scores. Given the dynamic nature of the proposed
model, we introduce an additional evaluation compared to the existing state-of-the-art
methods. Existing methods (e.g., [59, 60]) omit assessing the learned affinities only and
use them directly for F-formation detection via DS clustering. We argue that there may be
nuances in the learned pairwise continuous valued affinities that may anticipate changes
in the group membership that may not be apparent from the hard cluster assignment.

The evaluation metric for affinity estimation is the Area Under Curve (AUC) score of
the Receiver Operator Curve (ROC). We use AUC due to the high imbalance of the data;
there are typically far fewer positive pairwise memberships than negative in the entire
scene.

For the second stage of evaluating group detection, we used the standard evaluation
metric used in prior work [17, 22, 42, 53, 60] which involves considering an entire group
in the ground truth as a single sample. A detected group 𝑘 is considered to be correctly
estimated if ⌈𝑇ℎ𝑟*‖𝑔𝑘‖⌉ of the members are correctly estimated, where ‖𝑔𝑘‖ indicates the
cardinality or the size of the ground truth group, and ⌈𝑥⌉ rounds 𝑥 to the next largest
integer. The threshold 𝑇ℎ𝑟 ∈ [0,1] tunes the tolerance of the evaluation to the number of
mis-attributed members in a group. It is commonly set to 𝑇ℎ𝑟 = 2

3
or 𝑇ℎ𝑟 = 1, representing

greater than majority overlap at 67% and complete overlap with the ground truth mem-
bership, respectively. A True positive (TP) is therefore any correctly detected group; false
negative (FN) is a missed group; and a false positive (FP) is an estimated group that does not
exist in the ground truth. The metrics for group detection performance is then computed
using F1 measure over the entire image scene which could contain multiple groups.

3.4.4 Implementation Details
In the case of Conflab, the features were extracted to align with the ground truth at 1Hz
by averaging all 60 samples before the label. While it is desired to use a higher frequency
signal, this preprocessing step should already allow capturing of social dynamics that exist
on a second level, such as synchrony and convergence patterns [161, 162], the associated
postural sways [163], and some turn-taking dynamics (e.g., turn transitions) [164].

The head and/or body orientation is given by the angular direction of the person’s body
in (−𝜋,𝜋]. The relative positions of the group members are given by the radial distance
(measured in camera or pixel coordinates) and angular orientation in (−𝜋,𝜋]. The circular
mean of the body orientations of all the members in the scene are computed as a zero-degree
reference for the scene. This addresses the discontinuity in angles as they wrap around
(−𝜋,𝜋] . All orientation related features are corrected by the same zero-degree reference.
All features are normalized to [0,1] via min-max scaling. Labels for conversation group
membership are annotated manually and the annotation method are described in each
dataset respectively.

Similar to the experimental set up in DANTE, due to the small dataset size, all results
are obtained by averaging the test splits using 5-fold cross validation. The validation split
is selected such that it separates the training set as much as possible from the test data
in time. The test data of a fold is used for results whereas hyperparameters are selected
based on validation data. The hyperparameters are hidden representation dimension of the
LSTM and sequence length of the input sequence. For the Conflab dataset, experimental
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results are obtained for all cameras (camera 2, 4, 6, and 8).
Since 𝑃𝑡 changes dynamically and the model is trained with a fixed size input using the

maximum number of people in all scenes 𝑛, we pad the feature vector from 𝑃𝑡 to 𝑛 with
dummy values of −1. As part of the feature vector, the indicator mask variable represents
if a member is present at time 𝑡 such that the aggregate pooling layer does not account for
the dummy subjects.

3.5 Results and Discussion
3.5.1 Overview
To ensure a fairer comparison with existing methods, we use the same position and head
and/or body orientation based feature set of the individuals in the scene for all methods.
Table 3.1 shows an overview of the results on baseline methods on the Cocktail Party,
SALSA, and Conflab datasets. As we expected, the proposed method outperforms the
baseline methods on the Conflab dataset because of the finer temporal granularity in the
behavioral cues and group labels. As opposed to DANTE which excels in both Cocktail
Party and SALSA dataset, the proposed method may not have leveraged the temporal
context when the social dynamics is undersampled.

Table 3.1: F1 scores comparison 𝑇ℎ𝑟 = 1 across different methods. Standard deviation over test samples are shown
in parenthesis. ∗: results reported by [60]; †: results reported by [59]

Method Cocktail Party SALSA Conflab
GTCG 0.29 (-) ∗ 0.44 (-) ∗ 0.40 (0.12)
GCFF 0.64 (-) ∗ 0.41 (-) ∗ 0.31 (0.23)
DANTE 0.58 (0.43) † 0.65 (-) ∗ 0.66 (0.35)
Proposed 0.48 (0.40) 0.46 (0.23) 0.73 (0.31)

To assess whether or not the efficacy of the proposed model for the Conflab dataset is
indeed associated to the frequency in conversation group labels, we subsample the Conflab
dataset to 1/5 Hz, to match that of the Cocktail Party dataset. The F1 performance at
𝑇ℎ𝑟 = 1 on this subsampled version of the Conflab dataset is 0.58 with standard deviation
0.32. So we see that even with the same setting, there is a decrease in performance due to
an undersampling of key dynamic information that is leveraged by our proposed model.

We observe that results of GTFF and GTCG decrease on the Conflab dataset compared
to Cocktail Party and SALSA. This may be because the number of people in the scenes
of Conflab are dynamically changing, as opposed to the fixed number of people in both
Cocktail Party and SALSA (6 and 18 people, respectively), it may be harder to model o-space
and determine overlapping transactional segments using a single parameter (stride), as
participants’ occupancy of floor space changes. DANTE still performs relatively well on
Conflab as it also takes into account the spatial context of the surroundings. In addition to
modeling the spatial context similar to DANTE, the proposed model relies on the sequential
nature of the LSTM-based network to capture inherent temporal dynamics.

With increased performance in affinity estimations (i.e., the model output), the perfor-
mance in Dominant Set clustering for group extraction also improves. As we argue that
the affinity estimations are critical not only because they are inputs to DS clustering, but
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also contain valuable information on how pairwise relationships change continuously over
time, we include a more detailed analysis of the affinity values and their relationship with
the DS clustering step in the next sections.

3.5.2 Analysis of Affinity Values
To uncover where the difference in group detection results in Table 3.1 originates from,
this section includes an analysis of where the proposed model differs from DANTE in
terms of the predicted affinity value for test sets of the Cocktail Party and the Conflab
dataset. Table 3.2 shows a comparison of the predicted affinity value results from DANTE
and the proposed method using the AUC metric. With its data augmentation strategy
and benefiting from the pairwise output setup, the frame-based DANTE strategy works
better for the sparsely sampled Cocktail Party dataset. For the Conflab dataset with the
higher sampling frequency, the proposed approach takes into consideration the temporal
continuity of labelled cues and affinity values with the data-efficient person-wise training
and output, resulting in improved AUC scores that led to improved conversation group
detection F1 scores. We posit that the temporal granularity could be too coarse in datasets
such as the Cocktail Party for the proposed sequential model to be effective.

Table 3.2: AUC results of DANTE and the proposed method for the Cocktail Party and Conflab dataset.

Cocktail Party Conflab
AUC (DANTE) 0.92 0.91
AUC (Proposed) 0.83 0.93

Figure 3.4 shows a qualitative example of how the affinity values from the proposed
model change temporally as a new conversation group (Subject 2 and 3) forms. We focus
on the right side of the interaction floor in the sequence of the scenes shown. The groups
provided by the ground truth, predictions from the proposed method, and DANTE are
illustrated in the second column. The affinity scores between Subject 1 and 2, and Subjects
2 and 3 from the proposed method are visualized in the third column. The color and value
correspondence is shown in the legend. The pairwise affinity scores between Subject 1 and
2 decrease over time, whereas the score between Subject 2 and 3 increase over time.

3.5.3 Affinity Scores in Dominant Set Clustering
As the predicted affinity scores are continuous values, they are not perfect to directly
extract group memberships. The pairwise values might differ and this results in discrepancy
[60, 145]. Whether to symmetrize and how to symmetrize the predicted pairwise affinity
scores is a design choice not thoroughly assessed previously. Options include using the
asymmetric raw predicted affinity values, taking the minimum, average, or maximum
of the pairwise affinity values. The (a)symmetry could be illustrative of the individual’s
intention in interacting with the other person, and affect the group clustering performance
as this factor may have also affected how the annotators perceived group memberships.

In Table 3.3, we show the sensitivity F1 scores of symmetrizing the affinity matrix using
different strategies for the Conflab dataset. The results show that averaging the pairwise
affinities leads to improved F1 score in group detection at 𝑇ℎ𝑟 = 1. This implies that while
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Figure 3.4: Qualitative example of how affinity values change temporally, in relation to a newly formed conversa-
tion group.

the asymmetric values are interesting in differentiating people’s likelihood in interacting
with each other, a symmetric and averaged representation is better aligned with the binary
group membership.

Table 3.3: F1 scores comparison (𝑇ℎ𝑟 = 1) for
the Conflab datset between different strategies
of processing the affinity scores as inputs to DS
clustering. Standard deviation over test samples
are shwon in parenthesis.

raw average minimum maximum
F1 0.69 (0.33) 0.73 (0.31) 0.72 (0.30) 0.65 (0.35)

Table 3.4: F1 scores comparison (𝑇ℎ𝑟=1) for the Conflab dataset
with respect to scene dynamics quantified by 𝐷. Standard
deviation over test samples are shown in parenthesis.

𝐷 = 1 𝐷 = 2 𝐷 = 3 𝐷 = 4 𝐷 ≥ 5

DANTE 0.69 (0.36) 0.65 (0.36) 0.78 (0.27) 0.68 (0.32) 0.66 (0.23)
Proposed 0.71 (0.34) 0.69 (0.34) 0.77 (0.31) 0.73 (0.33) 0.77 (0.32)
Delta 0.028 (0.33) 0.037 (0.32) -0.004 (0.27) 0.039 (0.33) 0.1 (0.35)

3.5.4 Performance With Respect To Scene Dynamics
We highlight the efficacy of the proposed method when estimating groups especially in
scenes that contain more instances of group formations, breaking, and reforming. These
events quantify scene dynamics as they imply changes in one or more conversation group
reorganization. We define these events based on group presence in the past and future (i.e.
a new group is formed if it doesn’t exist before; a group is broken if it doesn’t sustain to
the next time step; and a group is reformed when it exists but breaks in the past and now
the same members reunite).

We characterize the scenes in the Conflab dataset using this measure of scene dynamics.
In Table 3.4, we showcase the performance difference (indicated by Delta) of group detection
performance using F1 scores at 𝑇ℎ𝑟 = 1 between DANTE and the proposed method. Delta
is calculated by the F1 scores obtained from the proposed method substracted by that of
DANTE. We show the results at different level of scene dynamics denoted as 𝐷, where 𝐷
is the sum of all instances of group formations, breaking, and reformation. We observe
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a slight upward trend of the proposed method’s improved performance (i.e., Delta) as
scenes become more dynamic (with the exception of 𝐷=3). When 𝐷 ≥ 5 (corresponding
to high scene dynamics, whereas 𝐷 = 0 for most of the time where groups are stable), the
advantage of the proposed method over DANTE on average is at 0.1. This further shows
that the temporal context before a group event takes place may be beneficial in estimating
conversation groups.

3.5.5 Conversation Group Forecasting
Using the temporal context of pairwise affinity scores, we further introduce a conversation
group forecasting framework. Given a sequence of edge weights 𝑎edge

𝑡
where 𝑡 = 0,1, ....,𝑇 ,

which is the averaged value between each pair of individuals 𝑖 and 𝑗 (i.e., 𝑎𝑖,𝑗+𝑎𝑗,𝑖
2

), we predict
𝑎
edge
𝑡+1

, 𝑎
edge
𝑡+2

, ..., 𝑎
edge
𝑡+𝑍

where 𝑍 is the time forecast horizon. For each 𝑎
edge
𝑡

sequence, we fit a
Gaussian Process Regressor (GPR) to provide uncertainty measure over the predictions.

GPR assumes a kernel that determines the covariance over target functions and uses the
observations to obtain a likelihood function. A new posterior distribution can be computed
based on Bayes’ theorem. The choice of kernel characterized by a covariance function that
measures the similarity between data points is an essential component in GPR. For the
purpose of this study, this covariance function is chosen to be the popular Radial Basis
Function (RBF). For more technical background on GPR, please refer to [165].

For each GPR corresponding to an edge, we use the observed samples 𝐴edge,t to optimize
the length-scale hyperparameter in the RBF kernel based on maximum-log-likelihood
estimation. Using the fitting regressor function, a set of posterior samples up to the
maximal forecast time horizon are predicted. Leveraging the probabilistic nature of GPR,
we evaluates 𝑁 samples drawn from the GPR at given inputs (in our case, a time step in
the future). These 𝑁 samples drawn from the Gaussian distribution at given 𝑡 provide a
range of values for the edge weight, and ultimately result in an uncertainty quantification
of group membership (after aggregating edge forecasts into affinity matrix and application
of the DS clustering 𝑁 times).

Table 3.5: Performance of forecasting conversation groups at different future time steps for the Conflab dataset
(cam 6). Note that the column 𝑡 = 𝑇 indicates the detection results. Uncertainty quantified by standard deviation
across all scenes are shown in parenthesis.

t = T t = T+1 t = T+2 t = T+3 t = T+5 t =T +10
F1 @ 𝑇ℎ𝑟 = 2/3 0.90 0.88 (0.03) 0.86 (0.04) 0.84 (0.05) 0.80 (0.07) 0.76 (0.08)
F1 @ 𝑇ℎ𝑟 = 1 0.76 0.73 (0.06) 0.69 (0.06) 0.69 (0.08) 0.66 (0.10) 0.62 (0.11)

From the validation sets of the data, we found that a sequence length of 10 was the
optimal hyperparameter for affinity prediction and hence, we set 𝑇 = 10 to acquire cor-
responding observed samples of affinity scores to fit the GPR for this forecasting task.
The forecast horizon 𝑍 represents the time steps beyond 𝑇 (measured in seconds for the
Conflab dataset). Note that the fitted GPR could be sampled continuously; we chose a set
of discrete time steps beyond 𝑇 for the scope of this paper. Table 3.5 shows the forecasting
results of predicting the conversation groups in Conflab (cam 6) using the aforementioned
approach. We report the averaged F1 scores from evaluating the 𝑁 affinity matrix instances
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of each scene (i.e. aggregated from using the 𝑁 samples of affinities drawn from each edge)
for all scenes. The results show that there is a decreasing trend in the group detection
performance as the forecast horizon extends, while the uncertainty in the group prediction
in future scenes increases.

3.6 Conclusion and Future Works
In this work, we introduce and evaluate a deep learning joint-LSTM based neural network
for pairwise affinity prediction, followed by DS clustering approach, for the task of conver-
sation group detection in social settings such as cocktail parties and networking events.
We motivate this LSTM-based approach to leverage the inherent temporal dynamics of
human behaviors who could affect interactions and conversation groups. We showed that
for the Conflab dataset (which has more temporal granularity compared to other existing
datasets), our method shows improved performance in pairwise affinity predictions and
therefore, leading to improved performance of conversation group detection. We further
showed an analysis of the predicted affinity predictions and how they change overtime,
which could be indicative of moments leading up to group formations and breaking. Lastly,
we provide a forecasting framework based on our approach which predicts conversation
groups at future time steps.

One of the limitations of this work include its performance in sparsely labelled data,
such as for the Cocktail Party and SALSA dataset. The lower annotation frequency implies
more varied conversation groups between time steps, and that the continuously changing
group behavior in real life is not captured in the ground truth. Moreover, our use of ground
truth features was partially motivated by what was provided in the existing datasets, and
allows us to investigate the model performance without potential confounding sources of
errors. However, this choice also does not shed light on the sensitivity of the performance
with automatically acquired features, which would ultimately be more relevant in automatic
systems (e.g., a social robot).

The model architecture could be further revised to take advantage of multimodal data at
full sampling rates, for video, audio, and body movement motion. We note that the Conflab
dataset contains manually annotated positions and orientations at 60Hz, as well as full 9
Degrees-of-Freedom IMU motion data captured at 56Hz sampling rate and speaking status
annotations at 60Hz. While the trade-off among the difficulty of acquiring all of these data
in an application setting, building and deploying a larger model, and the potential increase
in performance should be considered, we believe that using more expressive modalities
at finer temporal resolution, conversational group dynamics may be more thoroughly
captured.

For further extension, the proposed forecasting framework presents an opportunity for
researchers to detect individuals’ intent to interact with others. More socially intelligent
automated systems can be built if they are able to forecast affinities as a proxy for intention.
Based on whether or not the predictions align with what actually occurs in the future,
applications that are cognizant of what humans plan or want to do can be designed to
enable better social interactions.
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4.1 Introduction
Studying social scenes that have free-standing conversation groups (FCGs) is of great
interest. FCGs are a type of focused encounters that emerge in many social occasions,
such as a cocktail party, a coffee break, a networking event, etc [6]. We find relevance in
studying these social entities in order to study human interactions as part of the complex
social dynamics. Prominent non-verbal cues that depict the social interplays are participant
head and body orientations. With accurate estimations of head and body orientations,
high-level social concepts such as conversation group formations and schisms can become
more explainable.

Head and body orientations of participants are necessary prerequisites for many down-
stream tasks such as turn-taking patterns, conversation group memberships, estimation of
social attention, etc [19]. Some tasks may only require either the head or body orientation.
When identifying addresser/addressee or speaker/listener in conversations, head orienta-
tions are the primary cues [166]. When estimating group memberships, body orientations
are the primary cues [23]. However, Langton et al. [16] have shown that head and body
orientations are both important cues for estimating social attention. In social scenes such
as Figure 4.1, eye gaze direction cannot be reliably observed; the attention target positions
are not fixed throughout time, and the number of attention targets is not predefined. Un-
der these adverse circumstances, attention direction is difficult to estimate. Hence, the
importance of robust and accurate head and body orientations becomes more evident.

While there are many successes in human pose estimation and orientation estimation
using deep learning frameworks [167–170], these methods only work well when human
faces and body parts are easily discernible. Head and body orientation estimation re-
main challenging, especially for crowded scenes with relatively static subjects captured by
videos from elevated side-views which result in low resolution, low light visibility, back-
ground clutter and occlusions (Figure 4.1 for example) [171]. In these settings, off-the-shelf
deep learning methods are not effective [172] and retraining/finetuning them requires
a considerable number of labelled samples. This motivates our proposed method under
the transductive and few-labels setting which simultaneously estimates head and body
orientations by leveraging wearable sensor data in addition to videos.

Recent advances have shown the efficacy in using a multi-view camera and multi-sensor
scenario [28, 173]. The multi-view camera setting offers different viewpoints on people in

Figure 4.1: Examples of head and body orientation estimation challenges from the SALSA dataset [45] as
highlighted in red: (a) low resolution, (b) low visibility, (c) background clutter, and (d) occlusion.
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the scene for better acquisitions of head and body orientations. More interestingly, wear-
able sensors such as inertial measurement units (IMUs), microphones, infrared or Bluetooth
proximity sensors, etc. have demonstrated an ability to recover subject orientations inde-
pendently of the video modality [89, 174, 175]. In scenarios where video and microphone
audio data are both recorded, a multimodal approach of head orientation estimation can
be more accurate and robust than a unimodal one, as shown by Canton-Ferrer et al. [174].
Microphone data indicate who the speaker is at a given moment, and it is well known that
the speaker tends to be the center of visual focus of a conversation group [176]. Consider-
ing these two aspects and given the ground positions of the interactants in free-standing
scenarios, head orientations can be more reliably predicted in a complementary manner,
especially when video data is partial or missing.

Despite the benefits that multimodal data from wearable sensors may offer, it is chal-
lenging to work with them. This is illustrated most evidently by the lack of in-the-wild
datasets capturing natural interactions and emphasizing ecological validity in this domain,
as it requires monumental effort to collect and annotate. Malfunctions of wearable sensors
during data collection are more difficult to notice compared to those of video cameras.
The types of different sensor noise are also hard to characterize. The resulting data could
be of low quality, partial and/or missing due to periodic dropouts in sensor data streams,
etc. [177, 178]. However, we argue that these difficulties are not reasons to deter from
exploiting multimodal data from wearable sensors because the available data could still be
of great value, as shown by literature [28, 173].

In this work, we highlight the possibility and advantage of working with a small number
of human annotated orientation labels, along with sparse, noisy but automatically acquired
labels from wearable sensors. As mentioned previously, wearable sensors are hard to work
with. While it is possible to estimate labels from wearable sensors, the label quality varies
depending on raw wearable sensor data quantity and quality. Hence we refer them as weak
labels in this paper. Our results show that having information provided by other modalities
like wearable sensors can indeed improve the performance of head and body orientation
estimations in this free-standing conversation setting.

This study simultaneously addresses the following context where: 1) there is a relatively
small number of head and body orientation samples (∼ 102 −103) for each subject, 2) we
jointly predict head and body orientation classification labels for unobserved samples only
using a very small number (∼ 5%) of sparsely distributed ground truth labels, 3) we take
advantage of the temporal structure within the orientation label data and improve upon
a previously suggested model based on Gaussian process regression (GPR) [88], and 4)
most importantly, we fully exploit the utility of head and body orientation weak labels in
addition to very few ground truths to improve performance.

4.2 Related Work
4.2.1 Human Pose Estimation
Recent developments of deep learning methods [179–182] had greatly advanced 2D human
pose estimation. Even though results are promising, addressing existing challenges such as
low resolution and heavily occluded targets [172], and cluttered and crowded backgrounds,
is an active research topic. Popular off-the-shelf pose estimation methods such as Openpose
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[179] use a bottom-up approach to first detect body joints and later form associations to
estimate a full skeleton model for each person in the frame. However, having only body
part locations does not provide enough information to directly estimate the orientations of
those body parts.

Using 3D pose estimation methods or converting 3D pose datasets [183] allows for
extraction of orientations. Recent methods focusing on 3D pose estimations (full body,
hand+body, etc.) [184–186] could be promising to directly infer orientations from 3D
skeletal poses. However, orientation estimation could be decoupled and simplifed from 3D
pose estimation problem as there is evidence showing orientation estimations for objects
can perform better when using 2D image features than 3D landmarks [187]. 3D poses
may be difficult to infer due to occlusion or low resolution body parts, which are relevant
scenarios in crowded social interactions in-the-wild. To address occlusion for 3D poses
is an ongoing topic with [188] showing initial success on the MuPoTS dataset through
localization and pose estimation with temporal smoothing.

4.2.2 Head and Body Orientation Estimation: RGB Data
Previous works (e.g., [19, 189]) in head and body orientation estimation saw successes in
using methods based on probabilistic frameworks (e.g. dynamic Bayesian networks, hidden
Markov models, etc.). Taking advantage of the physical constraint of relative head and
body pose and walking direction. Chen and Odobez [117] focus on the joint estimation
of head and body orientation to achieve improved results. This body of work targets
orientation estimations in a specific context by exploiting facial landmarks or motion
priors; while this paper differentiates itself by focusing on the task in the surveillance
setting with relatively static subjects. Without large movement towards one direction
as a cue, orientation estimation becomes more difficult. Overall, there is more previous
work on head orientation estimation compared to that of the body in the surveillance and
crowded setting. In this particular context, human heads can be more easily seen and
therefore head orientations are easier to predict. Human bodies can be occluded, making
body orientations predictions more difficult. Lee et al. [190] proposed CRPNet that works
well with low resolution images. However, their design goal favors speed over accuracy.

We acknowledge that there is a number of deep learning based methods [112, 114] for
head and/or body orientation estimation problems. Most available methods are trained on
datasets [191] that contain facial views. Applying Beyer et al.’s method [114] to SALSA is
not straightforward because of the multi-camera setting and the extent of facial and body
part occlusions. A body orientation estimation method proposed by Choi et al. [192] also
faces similar challenges as head orientation estimation methods. Raza et al. [193] reported a
joint head and body orientation estimation model using a hierarchical convolutional neural
network. This pre-trained model trained with relatively small datasets (e.g., Human3.6M
[183]) would most likely only be suitable for estimating orientations for pedestrians, and not
for crowded and static social scenes like SALSA. Overall, the development of generalizable
deep learning solutions for head and body orientation estimations are held back because of
the lack of large scale datasets and the lack of environment/context variety in the training
images. This constraint was only recently pointed out and addressed by the release of the
COCO-MEBOW dataset [194], which would enable future new data-intensive head and
body orientation estimation methods.
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Previous works [111, 114] showed that regression of head orientations can be achieved.
Tasks such as predicting social attention [20] and personality traits [29] may benefit from
more fine-grained orientation estimations. While regression is more descriptive, it is also
challenging compared to orientation classification. As indicated by [173], the annotation
noise for head orientation labels from video annotations is around 17

◦, which is more than
the bin-width of class in our setting. Further experiments show that regression could be
more advantageous, but the increase in performance on average is small compared to the
variance. For the scope of this work, we reduce the orientation estimation problem to an
8-class classification problem (i.e., dividing 360◦ into eight sectors).

4.2.3 Head and Body Orientation Estimation: Depth andWear-
able Sensors

Depth images can be used in estimated orientations. However, many works in this area
(e.g.,[195–197]) rely on the detection of the face and/or localization of facial and body
landmarks. Works such as [198] combines RGB and depth data to estimate human body
orientations. It is still challenging for subjects in crowded social scenes because of heavy
occlusions with little motion cues.

In the sensor signal processing community, it is common practice to use wearable
systems that house IMU sensors. To estimate orientations, IMU data serve as inputs
to algorithms such as quaternion-based Extended Kalman Filtering and more recently
reinforcement learning based methods [89, 175, 199, 200]. Ahmed and Tahir [201] showed
that errors in estimating body part orientations while doing multi-axial actions such as
waving and walking are generally as low as 2◦. More recently, Webber and Rojas [202]
showed the efficacy of using IMUs for human activity recognition without explicitly
recovering the orientations (i.e., through gyroscopes). While IMU data could be valuable
information for multimodal head and body orientation approaches, existing resources
[28, 41] that focus on social scenes only contain accelerometer data, which is not enough
for orientation recovery.

One approach to obtain estimations of head and body orientations is to use the proximity
and audio information. Proximity sensors and microphones are already incorporated in
the implementation of wearable badges that are common in the social signal processing
and affective computing community (i.e., sociometric badges [61], OpenBadge [157], etc.).
In turn, head and body orientations can be indirectly extracted. Previous work [45] used
subject ground positions along with speaker/non-speaker correlations and proximity pings
to estimate labels of head and body orientations, respectively. Compared to orientation
labels from video or IMU, these estimated labels are less reliable since they are derived
information from noisy sources. Nonetheless, they can still be explored and it is the focus
of this paper.

4.3 Overview of the Approach
Our approach combines 4 kinds of inputs: 1) head and body visual features extracted from
head and body image patches, 2) estimated head orientation labels from audio recordings,
3) estimated body orientation labels from infrared proximity sensors, and 4) manually
annotated labels of some, but not all, frames. Note that the subject ground positions are
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Figure 4.2: Overall work flow of automatic orientation estimation. The focus of this paper is outlined in red.

assumed to be given for acquiring inputs 2 and 3. The goal of this study is to jointly predict
head and body orientations as an 8-class classification problem (dividing 360

◦ into eight
sectors) using matrix completion in a transductive learning setting. Matrix completion
attempts to fill in missing entries in a matrix, which correspond to unobserved orientation
labels. It is often solved by iterative optimization. Due to the sparsity and noise in the
labels, the underlying challenge is to predict the head and body orientations which are
temporally smooth. They also have to be consistent with the manual labels, weak labels
(from wearable sensors), and the physical constraints that tend to couple the head and
body behavior. For the purpose of this study, we consider multi-person tracking in videos,
head and body detection, and appearance-based visual feature extraction as upstream tasks
(Figure 4.2). The core of the proposed model (joint head and body orientation estimator in
Figure 4.2) based on matrix completion is discussed in Section 4.4, followed by details on
experimental conditions in Section 4.5.

4.4 Proposed Model

Figure 4.3: Graphical representation of the feature-label matrix. Head and body orientations are detemined by 2D
projections of yaw orientations.
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In the supervised learning setting for a linear classifier, the objective is to learn the weight
matrix 𝐖 ∈ ℝ

𝑐×(𝑑+1) by minimizing the loss on a training set 𝑁train as

argmin

𝐖

∑

𝑖∈𝑁train

Loss
(
𝐘𝑖 ,𝐖

[

𝐗𝑖

1 ])
. (4.1)

𝐖maps the 𝑑-dimensional features space𝐗 ∈ℝ
𝑑×𝑇 to the 𝑐-dimensional (number of classes)

output space 𝐘 ∈ ℝ
𝑐×𝑇 where 𝑇 denotes the number of samples in time.

When dealing with noisy features and fuzzy labels, previous research [203–205] have
empirically shown the practicality of casting a classification problem into a transductive
learning setting such as matrix completion. For our specific task, borrowing from the linear
classifier setting, a heterogeneous matrix is built by concatenating the orientation labels
𝐘 ∈ ℝ

𝑐×𝑇 , visual features 𝐗 ∈ ℝ
𝑑×𝑇 , and a row of 1’s (to model for bias) as

𝐉 =

⎡

⎢

⎢

⎣

𝐘

𝐗

𝟏

⎤

⎥

⎥

⎦

, (4.2)

where 𝐉 ∈ ℝ(𝑐+𝑑+1)×𝑇 .
Note that in (4.2), 𝐘 is a vectorized one hot representation of orientation labels. Dividing

360
◦ into eight sectors means that there are eight possible classes and each orientation

belongs to one of the eight classes. For example, an angle 𝜃 that is 45◦ ≤ 𝜃 < 90
◦would be

indicated by the vector [0,1,0,0,0,0,0,0]⊤ ∈ ℝ𝑐×1. Head and body label matrices are denoted
by 𝐘ℎ ∈ ℝ

𝑐×𝑇 and 𝐘𝑏 ∈ ℝ
𝑐×𝑇 respectively. The feature matrices 𝐗ℎ ∈ ℝ

𝑑
ℎ
×𝑇 and 𝐗𝑏 ∈ ℝ

𝑑
𝑏
×𝑇

contain the visual features from head and body crops of each person, where 𝑑ℎ and 𝑑𝑏

denote the respective feature dimensionality. Following the definition in (4.2), the visual
features and corresponding labels are concatenated into two heterogeneous matrices 𝐉ℎ =
[𝐘

⊤

ℎ
,𝐗

⊤

ℎ
,𝟏

⊤

]

⊤ and 𝐉𝑏 = [𝐘
⊤

𝑏
,𝐗

⊤

𝑏
,𝟏

⊤

]

⊤ for head and body orientation estimation respectively
(Figure 4.3). In addition, a projection matrix 𝐏ℎ = [𝐈𝑐𝑇×𝑐𝑇 ,𝟎𝑐𝑇×(𝑑ℎ+1)𝑇 ] is introduced to extract
only the head orientation labels from the heterogeneous matrix 𝐉ℎ. In a similar manner, a
projection matrix 𝐏𝑏 = [𝐈

𝑐𝑇×𝑐𝑇
,𝟎

𝑐𝑇×(𝑑
𝑏
+1)𝑇

] is defined to extract body orientation labels.
The unobserved orientation labels can either be initialized by information provided by

external sources or simply set to zero. In this study, we take the first option. The initial
matrices for head and body orientations are denoted by 𝐉0,ℎ and 𝐉0,𝑏 respectively. The label
matrix in 𝐉0,ℎ, denoted by 𝐘ℎ, is further divided into a training set 𝐘train,ℎ and a test set
𝐘test,ℎ. Similarly, the label matrix in 𝐉0,𝑏 , denoted by 𝐘𝑏 , is divided into 𝐘train,𝑏 and 𝐘test,𝑏 .
Each training set consists of observed labels, while the test set consists of labels to be
predicted. We assume that the training and test set samples are interleaved, as shown in
Figure 4.3. We chose this assumption because this could be reflective of real-life scenarios
of having observed and unobserved samples intermittently. For the sake of brevity, the
subsequent discussion focuses on the head orientation matrix. The body orientation matrix
and its corresponding optimization formulation are analogous.

The following discussion outlines the proposed matrix completion method based on
the aforementioned setting. We formulate it as an optimization problem, consisting of four
components: 1) enforcement of feature-label linear dependency, 2) temporal smoothing,
3) regularization by weak labels, and 4) head-body coupling. Each component applies
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to completing matrices for estimating head and body orientation respectively. The joint
completion of the head and body matrices are further explained in Section 4.4.5.

4.4.1 Rank Minimization
Following the linear classifier assumption from (4.2), previous work [205] has shown that
the matrix 𝐉ℎ should be low rank. The linear classifier in (4.1) requires that there is row
dependency in (4.2), hence low rank. The objective is to recover the missing orientation
labels such that the rank of the heterogeneous matrix 𝐉ℎ is minimized. Rank minimization
is a non-convex problem [205]. However, Candes and Tao [206] showed that rank(𝐉ℎ) can
be relaxed to its tightest convex envelope which is the nuclear norm, ‖𝐉ℎ‖∗, i.e.

rank(𝐉ℎ) ≈ ‖𝐉ℎ‖∗. (4.3)

In practice, the optimization problem then becomes a minimization of the nuclear norm of
𝐉ℎ.

4.4.2 Temporal Smoothing
If samples in the heterogeneous matrix are temporally sorted, one can take advantage of the
temporal structure between the columns. Orientation labels are, to an extent, temporally
smooth, as head and body poses are not expected to change drastically within a short time
period. This can be seen as a column-wise regularization. An interpolated time series
of orientation labels �̃�ℎ can be generated using an appropriate interpolation scheme to
estimate the unobserved orientation labels. In the proposed method, Gaussian process
regression (GPR) is chosen as the interpolation scheme. Also known as Kriging, GPR has
the same objective as other regression methods, which is to predict the value of a function at
some point using a combination of observed values at other points. Rather than curve fitting
using a polynomial function for instance, GPR assumes an underlying random process,
more specifically a Gaussian process [207], from which the observed values are sampled.
A new posterior distribution is computed based on the assumed (Gaussian process) prior
and Gaussian likelihood functions [208]. The Gaussian process prior is characterized by
a covariance function which measures the similarity between data points; and thus the
choice of a suitable covariance function is an essential component in GPR. More details of
Gaussian processes and Kriging can be found in [209].

Following this procedure, we denote 𝐘GP,ℎ ∈ ℝ
𝑐×𝑇 as the label matrix where the missing

values are imputed by the prediction of GPR. After acquiring the interpolated labels, a new
matrix 𝐉GP,ℎ is defined as

𝐉GP,ℎ =
⎡

⎢

⎢

⎣

𝐘GP,ℎ
𝐗ℎ

𝟏

⎤

⎥

⎥

⎦

. (4.4)

We introduce an additional squared loss term ‖𝐏ℎ(𝐉ℎ − 𝐉GP,ℎ)‖
2

𝐹
to the optimization problem,

where ‖ ⋅ ‖2
𝐹
is the Frobenius norm. It is a regularization to ensure that the predicted labels

do not deviate drastically from those obtained using temporal interpolation. The projection
matrix 𝐏ℎ ensures that the loss is only considered over the orientation labels.

Note that GPR is an example of a regression method that works well in this setting.
Alternative regression methods such as Laplacian smoothing [45], piece-wise linear inter-
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polation and polynomial regression can also be applied. Our justification for this choice is
presented in Section 4.6.

Gaussian Process Regression Kernels
The basis of GPR is Gaussian Process (GP). A GP is defined to be a random process 𝑓 (𝑡) for 𝑡 ∈
𝑇 , such that for every finite subset of selected time steps {𝑡1, 𝑡2, ...𝑡𝑁 }, {𝑓 (𝑡𝑖); 𝑖 = 1,2,… ,𝑁} is
jointly normally distributed. A GP is necessarily defined by its mean function𝑚(𝑡) = 𝔼[𝑓 (𝑡)]

and its covariance function, also called kernels, 𝑘[𝑡𝑖 , 𝑡𝑗] =𝔼[(𝑓 (𝑡𝑖)−𝑚(𝑡𝑖))(𝑓 (𝑡𝑗 −𝑚(𝑡𝑗 ))]. While
the mean function is often chosen to be zero, the choice of kernels in GP Regression is
critical, and is known to affect performance to a great extent. It controls the degree to
which data are smoothed when estimating the unknown function [210]. In GP, the kernel
represents distance or similarity between two latent variables 𝑓 (𝑡𝑖) and 𝑓 (𝑡𝑗 ) given inputs 𝑡𝑖
and 𝑡𝑗 , 𝑖 ≠ 𝑗. Intuitively, It describes how output 𝑓 (𝑡𝑗 ) can be affected by output 𝑓 (𝑡𝑖). There
are many options for these kernel functions. The radial basis function (RBF) kernel is most
commonly used and is represented as follows

𝑘(𝑡𝑖 , 𝑡𝑗 ) = 𝜎
2

𝑓
𝑒

−
1

2

(𝑡
𝑖
−𝑡
𝑗
)
2

𝜎
2

𝑙 , (4.5)

where 𝜎𝑙 denotes the characteristic length scale that controls the smoothness of the function
and 𝜎𝑓 determines the vertical variation .

Matérn kernels are a class of kernels that provide extra flexibility compared to the
RBF kernels in controlling the differentiability of the sample functions drawn from the GP
distribution. Matérn kernels are of the form

𝑘(𝑡𝑖 , 𝑡𝑗 ) = 𝜎
2

𝑓

2
1−𝜈

Γ(𝜈) (

√

2𝜈 ∣ 𝑡𝑖 − 𝑡𝑗 ∣

𝜎𝑙
)

𝜈

𝐾𝜈
(

√

2𝜈 ∣ 𝑡𝑖 − 𝑡𝑗 ∣

𝜎𝑙
)

(4.6)

where 𝜈 is the differentiability parameter and 𝐾𝜈 is the modified Bessel function of the
second kind. Sample functions drawn from GP with Matérn kernels are (∗ 𝜈 − 1) times
differentiable, whereas a GP with RBF kernels lead to sample functions that are infinitely
differentiable. The parameter 𝜈 is usually chosen to be 3

2
or 5

2
, and (4.6) can be simplified,

respectively, as

𝐾 3

2

(𝑡𝑖 , 𝑡𝑗 ) = 𝜎
2

𝑓
(
1+

√

3(𝑡𝑖 − 𝑡𝑗 )

𝜎𝑙
)
𝑒
−

√

3(𝑡
𝑖
−𝑡
𝑗
)

𝜎
𝑙 , (4.7)

and
𝐾 5

2

(𝑡𝑖 , 𝑡𝑗 ) = 𝜎
2

𝑓
(
1+

√

5(𝑡𝑖 − 𝑡𝑗 )

𝜎𝑙

+

5(𝑡𝑖 − 𝑡𝑗 )
2

3𝜎
2

𝑙
)
𝑒
−

√

5(𝑡
𝑖
−𝑡
𝑗
)

𝜎
𝑙 . (4.8)

The kernels in (4.7) and (4.8) lead to once and twice differentiable sample functions in GP.
In the subsequent discussion, we refer to (4.7) and (4.8) as Matérn 3/2 kernel and Matérn
5/2 kernel, respectively.

The GP kernel function is often chosen based on a qualitative understanding of the
underlying data [211]. Though RBF kernels are most commonly used, it has been shown
that Matérn kernels are more suitable to model physical processes [212, 213]. Sample
functions tend to be less smooth when using Matérn kernels due to finite differentiability,
allowing for more realistic capturing of the process. In the context of head and body
orientations, it is unlikely that the unknown function would be very highly differentiable.
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4.4.3 Regularization by Weak Labels
Weak labels estimated from sources such as wearable sensors could be informative though
they might be less precise than ground truth (GT) labels. They could still provide additional
information that assists in the classification task. We propose a regularization term that
incorporates weak labels of head and body orientation. The regularization term can be
written as

‖𝐏𝑤,ℎ(𝐉ℎ − 𝐉𝑤,ℎ)‖
2

𝐹
, (4.9)

where 𝐏𝑤,ℎ is a projection map that extracts the portions where weak label readings are
available. The formulation of 𝐉𝑤,ℎ is analogous to (4.4), where weak labels are treated as
approximations of the actual labels. Note that multiple regularization terms of the same
form as (4.9) can be added to the formulation depending on the number of weak labels
sources. This highlights the flexibility and modularity of the proposed model in the context
of multimodal head and body orientation estimation.

4.4.4 Head and Body Coupling
Previous research [45, 117, 214] has shown that coupling head and body orientation esti-
mation is advantageous for improving accuracy. The proposed formulation also captures
the physical constraints between head and body orientations. Since head and body ori-
entations are jointly estimated, this relation fits in nicely as an additional regularization
to the optimization problem. It is reasonable to model that head and body orientations
cannot be too different at any given time step. Though hinge loss would probably be more
appropriate, the relation can also be captured by squared loss, for the ease of analytical
derivation and numerical optimization. The regularization term can therefore be written
as ‖𝐏ℎ𝐉ℎ −𝐏𝑏𝐉𝑏‖2𝐹 .

4.4.5 Optimization problem
To summarize, the entire optimization problem, considering all the regularizations and
indicating terms associated with both head and body (described in Sections 4.1-4.3), is
given by

𝐉
∗

ℎ
,𝐉
∗

𝑏

= argmin
𝐉
ℎ
,𝐉
𝑏

𝜈ℎ‖𝐉ℎ‖∗ + 𝜈𝑏‖𝐉𝑏‖∗
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temporal smoothing
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head-body coupling

,

(4.10)
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where 𝜈ℎ, 𝜈𝑏 , 𝜆ℎ, 𝜆𝑏 , 𝛾ℎ, 𝛾𝑏 and 𝜇 are weights that control the trade-off between the different
terms. The equation in (4.10) can be solved iteratively by an adapted Alternating Direction
Method of Multipliers (ADMM) [45, 215] to jointly solve the minimization problem for the
head and body orientation matrices.

Derivation and implementation details are included in Appendix 7.5. Note that an
advantage of the weak labels regularization is that we don’t need to study in great detail
the quality of the weak labels beforehand. Hyper-parameter optimization will determine
the coefficients such that high quality weak labels boost the performance and low quality
weak labels get disregarded automatically in squared loss term in (4.9).

4.5 Experiments

This section provides a brief introduction of the SALSA dataset [45] that was used to obtain
the experimental results, and an overview of the experimental protocol. Note that since
the premise of our learning problem is transductive and we target a setting with very small
number of training samples and labels as well as using multimodal data, we do not compare
our method to existing deep learning methods (for head and body orientation estimation)
which rely on (re)training on much larger number of labeled data that contain images only
and are not multimodal.

4.5.1 SALSA Dataset Analysis

Summary

The SALSA dataset is a multimodel dataset that was captured at a social event that consists
of a poster presentation session and a mingling event afterwards, involving 18 participants.
For this study, we focus on the video recordings, proximity sensor pings, and audio data
of the poster presentation session (∼17 minutes). Ground truth labels of head and body
orientation of each participant were manually annotated every 3 seconds. Additional details
on annotations can be found in [45]. Head and body orientations were extracted from
audio and proximity data respectively, independent of the video [45]. These are treated as
weak labels in our context.

The SALSA dataset is a challenging dataset for head and body orientation estimation due
to the low resolution of targets, cluttered background, and occlusions. The class distribution
of the GT labels is shown in Figure 4.4. We discretized the GT labels, which are labeled
with respect to the ground plane, into 8 angular bins [0,45), [45,90), [90,135), [135,180),
[180,225), [225,270), [270,315), and [315,360) in degrees in the room coordinate system; and
labeled serially from class 1 to class 8. The majority of GT labels correspond to non-frontal
views of the subjects, hence making it difficult to estimate head and body orientations [86].
Overall, the dataset is relatively balanced except for class 5 and 6. However, person-wise
data among the 18 subjects could be heavily imbalanced.
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Figure 4.4: Overall class distribution of head (left) and body (right) GT labels in the SALSA dataset.

SALSAWeak Labels Analysis

The weak labels estimated for each subject during the poster session of the SALSA dataset
are sparse and/or noisy. Head orientation weak labels are extracted by correlating the
speaking status between subjects. Body orientation weak labels are extracted based on
proximity pings. Both procedures rely on the ground position and relative proximity of
the subjects. Weak labels are 28% and 87% sparse for head and body, respectively. Hence,
body orientation weak labels are unavailable for most of the poster session. The reason for
weak label absence is unclear.

To quantify the quality of the available weak labels, we calculate the difference between
the weak labels and GT labels. Since angles are periodic (i.e. repeat every 360

◦), we take
the circular difference 𝛿 between the two discretized sets of labels

𝛿 =min (|𝐺𝑖 −𝑊𝑖 |,𝑁 − |𝐺𝑖 −𝑊𝑖 |) , (4.11)

where 𝐺𝑖 denotes the 𝑖th GT label ,𝑊𝑖 the 𝑖th weak label, and 𝑁 the total number of possible
classes, which is 8 in the context of this paper. Therefore, the maximal difference does not
exceed 4. If the difference is 0, then weak labels match with the GT labels. The distribution
of differences in orientation labels are shown via historgrams in Figure 4.5. As illustrated in
the class difference distribution plots, there is generally a considerable discrepancy of class
difference of 2 or 3 classes between weak head labels and ground truth. This is expected
because microphone data are generally noisy, which can cause errors in estimating speaker
and listener status. On the other hand, the class difference in body labels concentrated at 0
is obtained after adding 180◦ to all weak body labels. This is an artifact that has not been
explicitly stated in the original SALSA dataset paper [45].
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Figure 4.5: Distribution of class difference between ground truth and weak labels for head (left) and body (right)
orientations.

Poster sessions include moments of high crowd density which compromises the quality
of these weak labels, as auditory signals are cross-contaminated and infrared sensors may
pick up pings from multiple directions in the vicinity. Previous work [45] considered
weak labels to be the same quality as GT labels whenever they are available. Also another
previous work [88] considered head and body orientation estimation as an isolated problem
based on only video data. Unlike the aforementioned previous works, this paper exploits
the potentially useful information provided by available weak labels. The regularization
term in the formulation allows us to circumvent the associated intrinsic noisiness and
sparsity (Section 4.4.3). We also report some investigatory results by simulating labels of
different qualities and show how incorporating them via regularization can enhance the
model performance. The purpose of this exercise is to provide further insight into future
multimodal orientation estimation approaches.

4.5.2 Experimental Setup
We used the Histogram of Gradients (HOG) visual features for head and body crops of each
participant from the SALSA dataset poster session, which aligns with the choice in [45].
Similar to the approach proposed by Alameda-Pineda et al. [45], visual features from the
four cameras are concatenated and Principle Component Analysis (PCA) was performed
to keep 90% of the variance as dimensionality reduction preprocessing. This results in a
100-dimensional feature vector. Training data are the observed labels and test data are the
unobserved labels to be predicted. In a transductive learning setting, since the objective is
to predict labels for the unobserved entries only and not generalize to further unseen data,
weights are not explicitly learned. Training data and test data partitions are determined by
random sampling of columns (over time). Because of this randomness, training and test
data are interleaved and we take advantage of this inherent structure in our formulation.

Previously, a person specific training and test scheme, in which a model is trained for
every subject, was presented in [88]. A caveat of performance from this type of scheme
is that there can be large inter-subject variation. The model trained on one subject may
not generalize to other subjects. To investigate the generalizability of the proposed model
in this paper, we introduce a person independent training/test protocol. Due to the small
subject-wise sample size (18 subjects) of the SALSA dataset, we use a nested leave-one-
person-out cross validation (LOPOCV) protocol to conduct the experiments. One subject
is left out for each test fold, resulting in 18 folds overall. Within each training fold of
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17 subjects, we use a 3-fold cross validation to select the hyperparameters (via Bayesian
optimization) in the optimization problem (4.10). For each subject, the head and body
orientation samples are arranged temporally and a random fraction of them are chosen to
be training samples. Due to the randomness in this step, we repeat the process of randomly
selecting the training samples five times within each of the three folds. We use Bayesian
optimization to identify the hyperparameters with the negative of the sum of body and
head orientation estimation classification accuracy averaged across the 17 subjects as the
objective function.

The model performance on the test subject from each LOPOCV fold is evaluated using
the best set of hyperparameters and averaged results from 18 folds are reported. For
experimental conditions investigating the influence of the model parameters (Section 4.6),
the model is retrained using the same protocol.

4.6 Model Analysis
A comprehensive model analysis is conducted considering various possibilities in training
schemes, kernel options, and a combination of regularization terms.

4.6.1 Results
Table 4.1 reports two sets of baseline results along with results obtained from the pro-
posed model trained using LOPOCV. To obtain the first naive baseline, we simply set
the unobserved samples to the value of the mode of the selected samples. The second
baseline is the set of person specific results which is reported in [88]. Table 4.1 shows the
averaged-across-subject head and body orientation estimation results for different fractions
of manual annotations. There is a notable increase in performance for the proposed model
with respect to the two baselines. We also report performance of the proposed model
without using the regularization based on the weak labels and observe that including the
weak labels has a positive contribution to the performance.

The hyperparameters in the proposed model (4.10) are {𝜈ℎ, 𝜈𝑏 , 𝜆ℎ, 𝜆𝑏 , 𝛾ℎ, 𝛾𝑏 , 𝜇}. We
arbitrarily set 𝜈𝑏 = 1 as the contribution of the other terms can be considered relative to
𝜈𝑏 . At 5% manual labels, hyperparameter optimization yields 𝜈ℎ = 7.4, 𝜆ℎ = 6.4, 𝜆𝑏 = 5.6,
𝛾ℎ = 1.7, 𝛾𝑏 = 1.3, and 𝜇 = 5.2 averaged across 18 folds of LOPOCV. Comparing 𝜈ℎ and 𝜈𝑏 ,
the low rankness of 𝐽ℎ carries more weight than that of 𝐽𝑏 in (4.10). This corroborates
the intuition that there is considerable occlusion of subjects’ body and less occlusion of
subjects’ head. We also note that temporal smoothing in both head and body orientations
(𝜆ℎ and 𝜆𝑏), and head-body coupling (𝜇) are important to model performance.

Figure 4.6 shows a detailed subject-wise comparison at 5% manual labels (i.e., observed
samples) fraction. For the majority of the subjects, we notice a consistent improvement
with respect to the two baselines. Improvement with respect to the results from [88]
is attributed to the optimization of the GP kernel and weak label regularization which
were not considered previously. For some subjects such as subject 2 and 8, the mode
baseline already performs well, especially for body orientation estimation. This is because
orientation variation and diversity are relatively low for these subjects. Larger orientation
diversity can lead to lower performance and higher variation across subjects [88]. On
a higher level, this can be related to the personality and role functions of subjects, the
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Table 4.1: Averaged classification accuracy (%) for different fractions (%) of manual annotations. Standard
deviation (%) in accuracy performance across all people (in the LOPOCV framework) is shown in the parenthesis.
State-of-the-art performance [45] at 5% manual annotation is 56.7% and 59.7% for head and body, respectively.

Fraction Mode Baseline Tan et al. [88] Ours
no weak labels weak labels

Head

5 40 (13) 63 (13) 64 (13) 65 (13)
30 41 (13) 68 (13) 72 (13) 74 (13)
50 41 (13) 70 (13) 77 (9) 76 (12)
70 41 (13) 71 (13) 77 (11) 77 (12)

Body

5 45 (18) 70 (13) 72 (13) 76 (12)
30 47 (17) 79 (11) 81 (11) 83 (9)
50 47 (17) 81 (10) 85 (11) 86 (9)
70 47 (17) 83 (10) 86 (9) 86 (9)

dynamics between subjects, and the context of the social scene. For the other manual label
fractions, the observations are similar.

Figure 4.6: Comparisons of head (left) and body (right) orientation estimation at 5% manual annotation across
four setups: mode baseline, Tan et al. [88], and our formulation without and with regularization by weak labels.
The plots are best viewed in color.

4.6.2 Kernel Choice
The choice of the kernel is a critical decision during the modeling process of GPR. Kernel
functions encode the underlying behavior of the data such as its periodicity and smoothness.
Since we are working with head and body orientation angles, the important feature to take
into account is the smoothness. Even though head and body turns could be seen as smooth
in general, we hope to capture sudden head and body turns which are more interesting for
social scene analysis.

We focus on choosing among the RBF, Matérn 3/2 and Matérn 5/2 kernels. During the
hyperparameter optimization, the Matérn 3/2 kernel was found to be the optimal option
for all the different fractions of manual annotations listed in Table 4.1. It further supports
with the assumption that head and body orientations are only mildly smooth over time.
The RBF kernel assumes that the learned smoothing function is infinitely differentiable
which doesn’t appear to be as fitting in this particular modeling process. Similarly, the
Matérn 5/2 kernel is twice differentiable while the Matérn 3/2 kernel is once differentiable.
Further optimization of kernel parameters pertaining to the Matérn 3/2 kernel option was
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also performed. Signal variance 𝜎𝑓 is a scaling factor that describes the variation of the
regressed values to their mean. Characteristic length scale 𝜎𝑙 describes the smoothness of
the function. The averaged hyperparameters 𝜎𝑓 and 𝜎𝑙 are 4.6 and 45 respectively.

4.6.3 Regularization by Weak Labels

In this section, we discuss model performance with two different kinds of weak label inputs
for the regularization term in (4.9). These inputs are used to populate the label portion of
𝐉𝑤,ℎ and 𝐉𝑤,𝑏 . First, we use the weak labels provided in the SALSA dataset. Despite the
issues with the quality of weak labels as explained in Section 4.5.1, we include the results
for instructive purposes. If a weak label is not available at a given timestep, we use the
nearest available weak label in time.

The second kind of weak label inputs is artificially generated. We want to investigate
how the performance changes with the quality of weak labels. To simulate a set of noisy
weak labels, we generate a set of artificial labels by perturbing the GT labels. In practice,
we add Gaussian noise with zero mean and standard deviation equal to 15, 30, 60, 90 and
120 degrees. This set of artificial weak labels acts in place of the actual weak labels from
SALSA.

In Figure 4.7, we report the results obtained with these two types of weak labels.
Artificial weak labels have been created with Gaussian noise of standard deviation equal to
30 degrees. The baseline model represents the case when no weak labels are included. We
observe that using true weak labels decreases the performance compared to the baseline.
This is expected given the poor quality of the actual weak labels. However, with artificial
weak labels, there is a notable increase compared to the baseline. This shows that weak
labels of decent quality can be exploited, especially when the manual annotation fraction is
low. With an increasing number of observed samples, the number of unobserved samples
becomes fewer, reducing the dependence on weak labels. As a result, the value of using
weak labels diminishes with an increasing number of observed samples. But as we are
especially interested in the regime of few observed samples, we highlight the fact that
weak labels can indeed boost model performance.

Figure 4.8 shows the improvement in performance due to noisy weak labels with respect
to the baseline model. We set 5% of the data as manual annotations or observed samples.
When weak labels become increasingly noisy, the model performance falls below that of the
baseline. This demonstrates that weak labels need to be of a reasonable quality to contribute
positively to performance and justifies the poor performance when the true SALSA weak
labels are included. Furthermore, the improvements in body orientation estimations are
more consistent compared to those of the head. Hence, we emphasize that head orientation
estimation is a more difficult task, possibly because head orientations vary more than body
orientations over short time scales. A different approach such as classification with finer
granularities could be promising for better head orientation estimations.
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Figure 4.9: Performance comparison for head (left) and body (right) orientation estimation without and with
head-body coupling regularization.

Figure 4.7: Performance comparison for head (left) and body (right) orientation estimation without (baseline)
and with weak label regularizations. Artificial weak labels have been created using Gaussian noise of standard
deviation equal to 30 degrees.

Figure 4.8: Improvement in performance of head (left) and body (right) orientation estimation for different
magnitudes of noise in artifically generated weak labels. The improvement is reported with respect to the baseline
(i.e., no weak labels) in the 5% observed samples setting. The error bars indicate subject wise standard deviation
in improvement.

4.6.4 Contribution of Head-Body Coupling
To study the contribution from head-body coupling regularization term, we remove this
from the best model (i.e. with artificial weak labels) and compare the performance differ-
ence. Figure 4.9 shows the extent to which the performance decreases without head-body
coupling, which is more prominent when the manual annotation fraction is low. Similar
to the observation made for the weak label regularization, when there is more observed
samples, GP smoothing becomes advantageous and dominant, making the head-body cou-
pling term less important. However, when the observed sample size is small, the head-body
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coupling contributes positively to the performance. In particular, the effect is prominent in
body orientation estimation where an increase of 4.7% in accuracy is obtained when 5% of
the data is manually labeled.

4.7 Discussion and Conclusion
In this paper, we present a model that utilizes few labeled samples to classify unlabeled
samples for head and body orientation estimation in a transductive setting using matrix
completion. The formulation of the model combines rank minimization of the joint feature-
label matrix, temporal smoothing over labels (based on GPR), weak labels regularization
that takes advantage of weak labels from wearable sensors, and head-body coupling to
ensure physical restraints of head and body orientation estimates. Since we are especially
interested in investigating multimodal orientation estimation, we primarily test our method
on the challenging SALSA dataset. SALSA is the largest annotated dataset that contains
multiple overlapping video recordings and wearable sensor readings along with ground
positions, and head and body orientations of each subject. In Section 4.5.1, we describe
some issues and challenges with working with weak labels acquired from wearable sensors.
We do not compare to existing deep learning methods for head and/or body orientation
estimation (e.g., [112, 114, 192, 193]) because of the fundamental difference in learning
setting and the lack of multimodal comparisons. Future extension of studies based on deep
learning approaches could be developed to accommodate multimodal data for this task,
upon further ablation studies to verify the efficiency of wearable sensing data.

Notable conclusions from our experimental results are – (i) the person independent
model achieved by the proposed formulation outperforms the person specific model, which
shows promising generalization ability; (ii) a more suitable kernel for GPR when modeling
head and body orientation series is the Matérn 3/2 kernel, as opposed to the more popular
RBF kernel; (iii) weak labels of low quality may impair performance but in the case where
better quality weak labels are used, model performance is boosted; and (iv) head and body
coupling indeed improves head and body orientation. The increase in performance due
to (iii) and (iv) is especially notable in the few manual annotations or observed samples
regime.

There are some limitations to this model. The performance would depend on the
spacing (availability) of observed samples in order for temporal smoothing to be effective.
The method does not apply to independent and isolated unseen samples. It would not
perform well if the period of interest is far away in time compared to the observed samples.
On the other hand, this provides initial guidelines on selecting which samples to annotate if
there are financial constraints. Performance would also depend on the methods applied to
the sensor signals as acquiring head and body orientation estimates from wearable sensors
is challenging in itself.

Future work entails addressing the aforementioned limitations. On the other hand,
given the flexibility of the model, possible topics to explore include but are not limited to
matrix completion with missing features, feature representation across different modalities,
and joint head and body matrix completion of several subjects, given prior information
such as group membership assignments. In the case of a large number of unlabeled samples
in a dataset, results from the proposed model would give competitive rough estimates of
the actual labels as a data augmentation technique. This is a viable option if obtaining
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manual labels becomes expensive or impossible. Acquiring results from the model is
relatively computationally inexpensive, and we can use them as a springboard for deep
neural networks or other models that require a larger number of labeled samples to achieve
better head and body orientation estimations.
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Figure 5.1: A typical in-the-wild social interaction setting; adapted from the MatchNMingle Dataset [68]

5.1 Introduction
Human social behavior is a dynamic multimodal phenomenon; we express ourselves visu-
ally, vocally, and verbally. A significant focus of research here is the complex interpersonal
dynamics between interaction partners, such as turn-taking in conversations [216, 217], or
synchrony between participants [218]. An essential characteristic of these phenomena is
their highly dynamic and multimodal nature; they evolve on short time-scales, requiring
precise synchronization of multimodal and sometimes also multisensor data streams.

Historically, human social behavior for automated analysis has been captured in con-
trolled lab settings. As multimodal data analysis has become more prevalent, recorded
sensors would be physically connected to relay timing information to ensure packet syn-
chronization [66, 219, 220]. Concurrently, the ubiquitous computing community were
developing approaches using wearable sensors that allowed for more pervasive sensing of
social behaviors [221–223] while loosening strong requirements for data synchronization.
As the trend moved towards more in-the-wild behavior analysis, multimedia researchers
turned to collecting data in more uncontrolled settings that better matched real-world
scenarios. Here, multiple visual and wearable sensing sources from both modalities have
been combined [45, 68]. Figure 5.1 depicts a typical in-the-wild social interaction. In such
prior works however, frame level synchronization requirements were circumvented by
designing automated analysis approaches that smoothed behavioral data over broader time
intervals on the order of a few seconds. On the other hand, the ubiquitous computing
approach has somewhat waived the need for more robust synchronization by adapting to
problems that are able to take the wearable sensor data at face value and aggregate over
sufficiently long time periods. This makes fine grained timing errors on the shorter scale
of minutes or seconds less relevant [223].

In this paper, we argue that developing any approach to analyze the fine temporal
dynamics of multi-modal multi-sensor behavioral data requires us to ensure a maximum
temporal latency at the data collection stage of 40 ms (see Sec. 5.3.3 for further discussion).
This requires us to bridge two traditions related to synchronization from the multimedia
and ubiquitous computing domain which utilize different timing protocols and formats.
Modalities such as audio and video, which have been used to analyze human behaviour
analagous to human perception have used protocols such as PTP or GPS based reference
time which enables sub-frame level synchronization using specialized hardware. Data here
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Figure 5.2: Basic types of desynchronization

is often timestamped in the frame-based SMPTE timecode format such as linear time code
(LTC)- HH:MM:SS:FF [224]. Meanwhile, in the ubiquitous computing domain, sensing
devices have been born out of a tradition of wireless and distributed computing where
each sensing device is itself also a microcomputer and as such has used NTP [225], relying
on local UNIX system time to timestamp data. While it is widely understood that PTP or
GPS based timing affords superior accuracy compared to NTP, setting up a multimodal
multisensor system using the specialized hardware is prohibitively expensive.

In summary, we seek to answer the following question: how can we design a modular,
cost-effective, distributed multi-sensor data acquisition setup for synchronized capture of
social human behaviour in-the-wild? Concretely, our contributions are as follows:

• We propose and deploy a novel distributed data acquisition architecture built upon
commercially available off-the-shelf components to wirelessly synchronize cameras
(video) and wearable sensors (audio, inertial motion data, proximity) in-the-wild.
Our core idea involves utilizing the Network Time Protocol (NTP) [226] as a common
reference for all modalities, a choice contrary to conventional use in broadcasting
setups.

• We show that the reduced accuracy of NTP in favor of significant cost and modularity
benefits is a desirable trade-off for achieving crossmodal synchronization in data
recording for human behavior research applications.

We support our argument in the rest of this work as follows. In Section 5.2 we review
data recording or post-processing techniques used in other human behavior research and
discuss the trade-offs involved. In Section 5.3 we establish acceptable latency tolerances
for our application domain and propose our architecture, also describing a real-world
instantiation of our system. We provide experiments to quantify the latency involved in
our setup in Section 5.4 before discussing cost versus latency considerations in Section 5.5.
Finally, we summarize our findings in Section 5.6.

5.2 Related Work
Synchronization Issues. We begin by first concretely describing the synchronization
issues we propose to solve. We break these down into two basic types—constant and
variable offset between data packets. Figure 5.2 depicts these issues for two data streams
𝑆1 and 𝑆2 over a world clock time axis 𝑡 .

In the first case, all packets in 𝑆2 are offset from the corresponding packets in 𝑆1 by a
uniform constant offset. This could arise because the triggers for recording the two streams



5

78
5 A Modular Approach for Synchronized Wireless Multimodal Multisensor Data Acqisition in

Highly Dynamic Social Settings

are delayed, or because the internal clocks of the devices don’t match. In the second case,
while some packets are aligned in both streams, other packets are out of sync by a variable
offset, and are said to have drifted. One such common scenario involves devices recording
with variable framerate or dropped packets; for instance, while recording a long session
with a standard webcam with autofocus or variable framerate, the video often drifts with
respect to the audio over time. In practice, both these issues occur simultaneously, and
information about the world clock is required to correct for these issues directly.

NTP

NTP 
Server

Wearables Network*

UNIX 
time

PLURA 
ELC

Camera Network*

LTC

REMOTE
CONTROL

:pulse

Δ = ~414 𝜇𝑠
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* : number of sensors is
for illustration. See
Section 3.2
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: radio frequency network
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hub
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Figure 5.3: Overview of our proposed architecture. The reference time signal originates from the chosen NTP
server and propagates to the subnetworks of wearable sensors and cameras.

Event-based Approaches and Post Processing. Many widely used human behavior
datasets attempt to fix the constant offset issues in post-processing bymaximizing similarity
scores around a manually identified common event in data streams. Traditionally, such
an event included a balloon pop, a clap or the turning off of lights to get a common dark
frame across cameras. More recently, Alameda-Pineda et al. use infra-red detections in
cameras and wearable sensors to compute the optimal shift according to a similarity score
[45]. Ringeval et al. use a common speech event such as the rise of a plosive to manually
align high-quality audio from an external microphone to the low-quality audio from a
webcam before computing the inter-correlation score around the located event [227]. While
this approach helps with fixing mismatches around a single manually identified event,
they are insufficient for fixing streams that have drifted over time or have variable offset
(Alameda-Pineda et al. work with a no-drift assumption). More sophisticated approaches
attempt to automatically identify events for synchronizing larger parts of the streams
[228]. In contrast, we propose a modular approach that synchronizes the devices at data
acquisition, requiring minimal—if any—post processing for synchronization.

Downstream Tasks. In addition to fixing synchronization issues in post-processing,
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a common approach is to mitigate their effect on downstream tasks. The core idea is to
compute features over a window [24, 81, 229, 230]. The size of this window is chosen to be
larger than the duration by which the modalities are assumed to be out of synchronization.
The features are computed using summary statistics, or by passing the individual features
through a recurrent neural network and using the last hidden state as a representation of
the window. This choice of window size, and whether this has a detrimental effect on the
study of the phenomenon of interest can be contextualized by the discussion in Section
5.3.3.

Ubiquitous ComputingApproaches. The analysis of social interactions has also been
of interest to the ubiquitous computing community. Early work involved the development
of custom wearable sensors like the UbER-Badge [231] to analyze interest and affiliation
in conference attendees [232]. Period timestamps in these setups were relayed across a
Radio Frequency (RF) network every 15 minutes. Cattuto et al. analyzed interactions in
crowded social settings using custom RFID (Radio Frequency Identification) tags [233].
Packets from the tags were relayed to radio receivers that passed it to a central server for
timestamping and storage. Their approach does not record timestamp at tag acquisition,
and does not account for potential delays in transmission. For modeling longitudinal social
interaction networks in-the-wild, [222] used personal digital assistant (PDA) devices, and
found the PDAs’ clocks to be "shockingly unreliable", drifting up to 5 minutes across three
weeks. Matic et al. infer interpersonal distance and relative orientation averaged over 10 s
windows from up to five mobile phones in interactions lasting up to 15 minutes [230].
They state the mobile phones had synchronized clocks without specifying how they were
synchronized.

Synchronization at Acquisition. A significantly more accurate, albeit expensive,
approach compared to those discussed involves performing synchronization at data acqui-
sition. This is achieved at the hardware level using either software or hardware triggers.
Early approaches involved connecting low-cost cameras to standard computers over an
Ethernet network and using software triggers to drive the recording [219, 220]. While the
cost of sensors in these setups is low, the cost of computers remains. Timing control can be
improved by using a common clock and physical hardware trigger lines into the cameras
in an array [234], although this only works for the video modality.

Lichtenauer et al. [66] significantly improved over previous works by proposing a
system for multimodal data capture that centralizes the synchronization task by physically
connecting the sensors to a multi-channel audio interface [66]. This approach was used in
the recording of the MAHNOB-HCI datasets [235]. Other approaches have been proposed
for setups involving motion-capture systems, where synchronization is achieved by plug-
ging the output of the motion capture system to a robot in a human-robot interaction study
[236], or in post-processing by performing an optimization over or manually annotated
markers in a subset of frames [237]. These solutions are hard to deploy within in-the-wild
settings over large physical areas since they are mainly wired solutions. They entail phys-
ically running trigger lines to the sensors of connecting the sensors or multiple PCs to
a central audio interface. Comparatively, our solution affords for seamless decentralized
addition of sensors to the system as long as those sensors are synchronizing clocks to the
common NTP reference.

The closest work matching the scale and design requirements of our interaction setup is
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the MatchNMingle dataset [68], involving speed-dates followed by a mingling event. Their
setup for the mingling event involves nine overhead GoPro cameras and wearable sensors
on about 30 participants for each of three days. GoPro cameras in their setup are triggered
using an infrared remote which might induce trigger delays, and no explicit timecode
synchronization is done between the cameras which each record local time. The wearable
sensors are synchronized intramodally to a global timestamp accurate to 1 second [62]. The
video data is synchronized manually to the wearable sensors by using a GoPro to visually
record the global timestamp propagating through the wearable network displayed on a
screen. In contrast, our solution achieves timecode sync at acquisition at the microsecond
level for the camera network and at the millisecond level across modalities.

To the best of our knowledge, the system we propose here is the first complete dis-
tributed and scalable multi-sensor data capture solution providing timecode synchroniza-
tion between modalities at data acquisition for human behavior research.

5.3 Our Approach
Our core idea is to propagate a common time reference NTP signal to end devices (i.e.,
wearable sensors and cameras) at the time of data acquisition. Our approach is illustrated
in Figure 5.3. The key challenge is that different subnetworks employ different timing
information. The cameras use LTC for correct color framing and clock synchronization;
the wearable sensors use the UNIX time received from the hub. With simply one additional
hardware component (Plura ELC) combinedwith our choice of a commonNTP reference, we
achieve seamless crossmodal synchronization while preserving the existing local scheme
of timekeeping. Starting from the origin of our system which is the NTP server, we
explain the trade-offs of using NTP in Section 5.3.1. We describe a particular real-world
instantiation of our system in Section 5.3.2, where we provide implementation details
on how to relay time information to the sensor subnetworks. We contextualize latency
measures within the human behavior research domain in Section 5.3.3, which frames our
subsequent experimental design.

5.3.1 NTP as A Reference Signal
The main consideration of our approach is whether using NTP as a reference for cameras
recording audiovisual data compromises the latency tolerance margins of the application
when compared to more commonly used higher accuracy references such as PTP and
GPS. Concretely, NTP is a software based protocol. While it uses a standardized, 64-bit
UDP packet that can theoretically achieve picosecond timing, the latency error for NTP is
heavily dependent on the network and ambient characteristics, and is typically measured
on the order of milliseconds. On the other hand, PTP (specified in the IEEE 1588 standard)
utilizes hardware based timestamping [238] to improve over NTP latency accuracy. With
customized hardware, the latency error of PTP can be guaranteed to be on the order of
microseconds. Though not as accurate as PTP or GPS-based solutions, using NTP has
three advantages: firstly, ease of setup; synchronizing the system clock of a device to a
local or public NTP server is straightforward, secondly, modularity; an entire subsystem of
devices can be seamlessly added to the setup and guaranteed to be synchronized with all
other devices if they synchronize to a common NTP reference, and thirdly, reduced cost;
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Figure 5.5: Full working setup of our data acquisition system, here shown with four cameras and five wearable
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Figure 5.6: Real-world implementation of our proposed approach. Our working setup in Figure 5.5 is shown here
recording audio-visual events for evaluating crossmodal synchronization, as discussed in Section 5.4.2.



5

82
5 A Modular Approach for Synchronized Wireless Multimodal Multisensor Data Acqisition in

Highly Dynamic Social Settings

we discuss details in Section 5.5. For human behavior research applications, the lowered
precision trade-off in favor of increased modularity of our setup is preferable, as we further
contextualize in Section 5.3.3.

Specifically, the clock disciplining algorithm at the heart of the NTP specification states
that if left running continuously, an NTP client on a fast local area network in a home
or office environment can maintain synchronization nominally within one millisecond
[239]. As an implementation detail, practitioners can choose between a public server such
as 𝑡𝑖𝑚𝑒.𝑔𝑜𝑜𝑔𝑙𝑒.𝑐𝑜𝑚, or an isolated local NTP server at the source. Using a local server
avoids upstream latency introduced by network congestion. However, using a public server
provides easier setup.

5.3.2 Real-world Implementation
We now describe one implementation of our approach. This setup was deployed to record
data from a real-world social event. It involved 48 participants each wearing a sensor
around their neck, in an interaction area of size 12m x 6m, captured by elevated and
overhead cameras. Our setup included the following sensors:

• 13 GoPro Hero 7 Black video cameras (60fps, 1080p, Linear, NTSC) with audio
(48 kHz); commercially available [240].

• 48 custom wearable sensors adapted from the open source Rhythm Badges [63]; each
sensor includes an inertial measurement unit (IMU), mono microphone (1.2 kHz),
and a Bluetooth proximity sensor.

The core components, custom hardware, and a working setup of our solution is depicted
in Figure 5.6. Note that in keeping with privacy regulations, the wearable sensors record
audio at frequencies only sufficient for detecting voice activity rather than verbal content.
This makes the already subjective task of identifying semantic event boundaries in-the-wild
even harder. Consequently, for the post-hoc evaluation of our system and comparison
against widely used approaches in the domain that rely on such events for synchronization,
we take a more principled approach to defining and sampling stimulus events, as we discuss
in Section 5.4. While the number of devices we report here were used in our real-world
deployment, it is not the system limit, as we discuss below. Our system is modular and
scalable to larger number of devices with additional hubs and base stations (indicated in
Figure 5.3).

Relaying time to cameras. We explain the bottom branch in Figure 5.3 regarding the
camera network and its upstream components in this section. A laptop that receives the
time reference from a local NTP server (same as the one used by the Bluetooth hub) shares
the network time through a Power-Over-Ethernet injector (Plura 30W Single Port) with
an Ethernet-to-LTC Converter (Plura ELC) [241]. The LTC signal that is converted from
NTP is sent to a base station unit by Timecode Systems called :pulse [242], which allows
for control, synchronization and metadata exchange for all devices within the camera
network. It serves as the master in the localized master-slave radio frequency (RF) network,
which shares its timecode with slave devices called Syncbac PRO [243], also manufactured
by Timecode Systems. Each Syncbac PRO is physically tethered to a GoPro camera so
that the accurate shared timecode is embedded within the MP4 files in each camera. In
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practice, once the timecode information of each video is available, any common video
editing software can be used to align the video streams automatically for playback. An
important consideration of our system design is to start the data acquisition remotely and
wirelessly, since cameras are often mounted on the ceiling or other inaccessible places. The
BLINK Hub app is used to remotely control (e.g. start, stop, etc), monitor and set features
of all units within the localized RF network, which includes :pulse and Syncbac PRO. The
BLINK Hub app can control up to 64 devices over a range of 500 m line of sight. Each :pulse
unit can theoretically connect to an unlimited number of Syncbac PRO slaves within the
same RF network over a range of 200 m line of sight. Both the RF network and the BLINK
hub app control could have more network latency with increasing number of connections
on the specific RF channel. The accuracy of the RF network synchronization is zero parts
per million when the slaves (Syncbac PROs) are locked to the master (:pulse) [242, 243].

Note that our use of the ELC is different from its typical application of providing a signal
for displaying the reference from a dedicated master reference generator. The novelty of
our system stems from not requiring a typical GPS master reference generator at the source
to phase lock to. Since our approach uses the local NTP server as the main reference itself,
our use of the ELC allows for a simple method for video reference generation. Through
experiments in Section 5.4 we show that our setup is appropriate for the domain. With
the addition of a single component (any hardware or software NTP-LTC converter, the
ELC in our setup), we wirelessly achieve crossmodal synchronization between the camera
and wearables network compared to previous works as well as the more expensive GPS-
based setup described in Section 5.4. Specifically, we are able to wirelessly embed the
timecode generated from the same reference used for other subnetworks into the video
files, while relying on commercial products (with only custom connecting cables) for easier
reproduction.

Relaying time towearable sensors. We explain the top branch in Figure 5.3 regarding
the wearable sensors network in this section. Note that our system design is agnostic
to the choice of the type of wearable sensors. Our choice of wearable sensors for this
specific instantiation is motivated by the open source platform [63] for its accessibility and
reproducibility, but could be replaced by any other subnetwork of sensors—wearable or
otherwise—that supports NTP time synchronization. In our system, a hub node (in form of
a laptop) receives the NTP time reference and shares it with the wearable sensors. The
hub connects to the sensors sequentially in order of their MAC addresses for a Bluetooth
handshake that transmits the UNIX time from the hub to the sensor. Each sensor then
updates its system time to this timestamp. The frequency of establishing connection (i.e.,
synchronization messages) is a user defined parameter, and it has been shown that any
interval between 0 and 600 seconds would be appropriate [244]. Since the hub is not
maintaining a connection with all sensors at all times, there is no limit on the number of
sensors that the hub can connect to. In practice, the maximum number of sensors associated
to the hub is dictated by the saturation of wireless channel (i.e., when collisions occur).
The mean average error in synchronization within the sensor network has been shown to
be 5 ms over 9.5 hours of recording [244]. While intramodal synchronization within this
subnetwork can be improved through various methods such as tracking the timestamps at
each timestamp reception and parallelization of communication between the hub and the
sensors, such improvements are outside the scope of our contribution.
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We thereby achieve multisensor intramodal synchronization, multicamera intramodal
synchronization, as well as multisensor-multicamera crossmodal synchronization. To
summarize, each wearable is timestamped with the UNIX system time of the wearable
network hub. The hub is set to the time of the local NTP server also providing time reference
to the cameras, which are then recorded in terms of LTC. In post-processing, we convert
the UNIX time to UTC time (HH:MM:SS:mS) to match samples to video frames denoted
by LTC timecode (HH:MM:SS:FF). Note that these post-processing steps are insignificant
compared to ones taken in manual alignment.

5.3.3 Latency Measures in Social Literature
To contextualize our assessment of tolerable latency margins, we review representative lit-
erature from social psychology that alludes to latency measures across different behavioral
phenomena.

Measuring human response time (between stimulus and reaction) is an intuitive way
to quantify behavior latencies. Early works have found that the response time spans
between 120 ms and 300 ms [245], with a specific example finding a 157 ms latency in
speech perception [246]. Related to speech behavior is the more complicated turn-taking
mechanism in conversations that involves pauses, gaps and overlaps. The time frame of
consideration in identifying gaps between speakers. (speaker change) is approximately
200 ms, which is shown to be suitable for the task [216]. Studies in synchrony, mimicry,
entrainment, and other higher-level social phenomena usually consider a larger window
size. Levitan et al. [217] have shown that a window size of 200-1000 ms works well in
practice for studying speech backchannels. An episode of facial and body motor mimicry
could be between 40 ms and 4 s [67, 247].

Apart from surveying the size of time frame used in various studies, an important
measure of time offset is the latency in human perception of audiovisual data , since
many human behavior datasets are manually annotated. Humans are shown to tolerate an
audio lag of 200 ms or a video lag of 45 ms [248]. A successful automated method of data
synchronization should perform on par with, if not better than human perception. It is
worth noting that humans cannot annotate sensor data such as acceleration, in which case
an automated synchronization solution is needed if aligning such data is required.

We deduce that offsets within a window size and/or range of human perception error,
are generally tolerable. Based on the studies listed above, we consider a time offset to
be acceptable if it is between 40 ms (e.g., facial analysis) and 1000 ms (e.g., entrainment).
Though smaller offsets between different data streams can be achieved, the incremental
gain becomes less relevant, especially for common phenomena of interest as discussed
above. Nevertheless, our setup—in which we achieve a median video latency of 414 𝜇s and
wearable data latency of 5 ms over 9.5 hours [244]—is also applicable to data collection
situations where fine details like faces are important such as egocentric vision setups, or
those involving physiological sensors.
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Figure 5.7: Biphase Mark Encoding of Linear Time Code

5.4 Experiments
The primary metric for synchronization accuracy is timing latency. A principled evaluation
of our system would require characterizing latency at the local connection links in our
proposed architecture, as well as final latency in the recorded data streams.

A common method for crossmodal synchronization used by human behavior datasets is
the aligning of semantic events [45, 227]. As discussed in Section 5.3.2, given the subjective
nature of start and end boundaries of semantic social events and low frequency audio
recordings from wearables for privacy, we employ a more principled approach of defining
and sampling stimulus ground-truth audio-visual events for our experiment presented
in Section 5.4.2. Note that while the ground truth events are manually generated for
control, the synchronization setup exactly matches the one we deployed in our in-the-wild
experiment.

Our core crossmodal approach introduces one point of latency through the use of an
NTP-LTC converter to share the common NTP reference with the camera subnetwork.
Since limited hardware connections prevent recording the output LTC streams during
real-world deployment, we first present a pre-experiment to measure latency at the isolated
connection in Section 5.4.1. Latency measures in our individual sensor subnetworks are
depicted in Figure 5.3 and already discussed in Section 5.3.2.

With these time drifts quantified, we demonstrate that our approach is more robust and
suitable for video, audio, and wearable sensor data alignment for the purpose of studying
human behavior compared to previous approaches. Code and data for the decoding and
analysis in these experiments are publicly available.

5.4.1 Timecode Latency between NTP-LTC Converter and Cam-
era Network Master

We use the Plura Ethernet to LTC converter (ELC) for passing an LTC signal generated
from the common NTP reference into the :pulse base station, as a timing reference for the

Code & data are available at https://github.com/TUDelft-SPC-Lab/sync-experiments
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Figure 5.8: Raw audio LTC signals generated by the Plura ELC and :pulse modules. The window includes the
encoding of an LTC sync word (0011111111111101) followed by the bits 0001000 from the next frame. The lower
signal here leads the upper signal by 62 audio samples, or less than 1 bit of data.

camera network. In this experiment we evaluate the latency between two LTC signals: the
LTC output of Plura ELC and the LTC output of :pulse.

Encoding. LTC is an encoding of timecode data within an audio signal. The timecode
data is in the hour:minute:second:frame format. The data bits in an LTC signal are encoded
using the biphase mark code (BMC) as depicted in Figure 5.7: a 0 bit has a single zero-one
transition at the start of the bit period; a 1 bit has two transitions, at the beginning and
middle of the bit period. Each LTC frame is made up of 80 bits of data, including a 16
bits long ’sync word’ 0011111111111101 denoting the end of a frame. Consequently, at a
framerate of 30 frames/sec, the LTC timecode has a maximum frequency of 2400 Hz (binary
ones). In our experiments we measure the latency between the two LTC signals at the
smallest possible time resolution; we consequently record the audio signals at the highest
possible sampling frequency of 192 kHz, allowing for the smallest latency resolution of
about 5 microseconds. Note that here theoretically, 80 audio samples correspond to 1 bit of
data, and 80 bits correspond to 1 LTC frame.

Test setup and data. We passed the outputs of the Plura ELC (RJ45 jack) and the
:pulse (BNC socket) to a Focusrite Scarlett 2i2 audio interface [249] through custom cables.
Figure 5.9 depicts a part of our setup for recording the signals from the two devices. The
Plura ELC was configured to use the public NTP server 𝑡𝑖𝑚𝑒.𝑔𝑜𝑜𝑔𝑙𝑒.𝑐𝑜𝑚 as reference and
generate an LTC signal at 30 frames/second. An isolated private NTP server can also be
used upstream as mentioned, but that does not affect the outcome of the latency between
the ELC and the :pulse we are studying here. The LTC signals were recorded using the
application Audacity. We recorded for a total duration of 30 minutes over six sessions of
five minutes each, for a total of 54000 LTC frames. Figure 5.8 depicts a window from our
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Figure 5.9: Hardware setup with custom cables for recording LTC signals from the Plura ELC and the :pulse base
station.

recorded audio signals at the end of a frame. The signals here represent the real-world
noisy LTC signals encoded using the biphase mark code depicted in Figure 5.7.

Experiments. We measure synchronization at two levels: LTC frame level, and audio
sample level. We use demodulation to refer to the conversion of the audio signal to binary
data, and decoding to the conversion of the binarized data into the hour:minute:second:frame
format. The recorded audio signals have imperfect leading and falling edges along with
noise, with optima corresponding to a single data bit period being between 77-83 samples
apart instead of the theoretical 80 audio samples. During demodulation, we begin by
finding the local optima within a window size of six samples around the 80th sample
following an optima. This new optima becomes the reference for the subsequent clock
period. The demodulation was verified to match the original timecode presented in the
recordings on the devices. We conducted a synchronization test using the 30 minutes of
recording from six sessions where the binarized stream following the first sync word was
decoded into timecode for checking correspondence at the frame level. We found that
the data was indeed synchronized at the frame level for all the frames. With frame-level
synchronization verified, we measured the world clock latency between the signals at the
sub-frame level. We do this by finding the shift in number of audio samples to achieve
maximum cross-correlation between the two audio signals. This lag was found to be
[79, 80, 80, 80, -43, 78] samples for our six recordings, yielding a mean latency of 307.29
microseconds (59 samples) and a median latency of 414 microseconds (79.5 samples). A
positive lag implies that the :pulse signal leads the Plura ELC while a negative one implies
the opposite. One way to interpret this is that the median latency is approximately 1 bit
of data, which corresponds to 1/80th of an LTC frame. We conclude that this measure of
latency is an order of magnitude lower than our overall acceptable latency tolerance of
about 40 ms for the application domain as established in Section 5.3.3.
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5.4.2 Evaluating Crossmodal Synchronization
Assuming that the GoPro audio and video are synchronized, we compare the audio recorded
by the wearable sensors with the audio recorded by the GoPros in order to evaluate
crossmodal synchronization of the wearable sensors and cameras of our system. We
defined 10 stimulus audio-visual events that occurred randomly based on interval length
(from 1-5 seconds) sampled from a Poisson distribution. An event is comprised of a visual
color change accompanied by an audio beep. These events can be seen as the ground truth
events in which the duration between each event is known. Figure 5.5 depicts our full
working setup for recording these events.

The experiment considers 4 wearable sensor sensors and 4 GoPro cameras simultane-
ously capturing the generated audiovisual events played over approximately one minute.
Figure 5.10 is a representative example showing that the audio events from one of the
wearable sensors and one of the GoPro cameras appear to be in alignment. To further
quantify the time offsets between different audio streams, we determine the number of
samples between the end of an audio event and the onset of the subsequent event by thresh-
olding the amplitude. Since the sampling frequencies of the wearable sensors (20 kHz) and
the GoPros (48 kHz) are known, the number of samples is converted to time duration in
seconds. We compare these empirically found durations from the recordings to ground
truth durations between events .

We found that the average time offset for all wearable sensors and all GoPro recordings
is 10.8±5.6 ms and 1.9±2.0 ms, respectively, when compared to the ground truth durations.
Therefore, the maximum offset on average between wearable sensor and GoPro audio
signals is the sum of these offsets, resulting in approximately 13 ms, for a conservative
estimation. In light of the latency in upstream links which are orders of magnitude smaller
than what we observe here in the end devices, we offer some hypotheses on the possible
sources of errors. Firstly, there is uncertainty in the generation and transmission of
synchronization messages between the hub and the wearable sensors, ranging from a
few milliseconds to several seconds, depending on connection interval settings [244, 250].
The time offset between the hub and the wearable sensors is inversely proportional to
the frequency of connection. While it is possible to address this random time offset in
Bluetooth connections via the Media Access Control (MAC) layer of the communication
interface, the current approach is optimized towards energy efficiency [244]. Other possible
reasons include varied quality of the wearable sensors and GoPro cameras resulting in
discrepancy in sensor behavior and sensitivity, and offsets between the playback of the
audiovisual events on the laptop (in Figure 5.5) and the actual recording by the sensors.
Despite the 13 ms offset across the camera and wearable sensor modalities, we highlight
that it is still lower than both, the lower bound of 40 ms described in Section 5.3.3 and the
human perception tolerance limit of audiovisual skew which is ± 80 ms [251]. In these
purely perceptual tests, we could not hear any audible differences when the GoPro audio
and the wearable sensor audio are played simultaneously. This shows that our approach
is at least as good as, if not better than manual alignment of multimodal signals in the
context of this experiment.
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Figure 5.10: Representative example showing the aligned audio events in one of the wearable sensors and one of
the GoPros.

5.5 Cost versus Latency Considerations
Apart from providing a seamless interface for synchronizing different subnetworks of
sensors, our choice of leveraging NTP as the common reference is also motivated by
cost—the only component we have introduced to achieve crossmodal synchronization is
the NTP to LTC converter. We have also shown that the reduced accuracy of our choice is
well within tolerable latencies between sensors for our application domain. But what if
cost is not a constraint?

For setups enjoying higher budgets, we recommend using synchronization references
from highly-accurate GPS satellites. These satellites are all synchronized to the same
time using stabilized atomic clock hardware and known locations due to their medium
earth orbits. As a result, GPS receivers can listen to multiple broadcast sources and use
trilateration (somewhat similar to triangulation) to determine their own position and time
deviation. GPS modules can consequently perform time-synchronization with a resolution
of 100 nanoseconds or smaller [252].

Through the use of satellites, a GPS based solution largely mitigates issues like unquan-
tifiable delays in network communications or a lack of local operating system resources
commonly plaguing the use of the protocols described in Section 5.3.1. Additionally, GPS
modules can be used to generate NTP and PTP signals [253] for downstream subnetworks.
One potential downside of using GPS references is that the GPS antenna needs to be in-
stalled outdoors under visible sky to obtain the GPS reference, which might pose logistical
challenges depending on the physical setting of the interactions being studied.

Since we use the Plura ELC in our setup, for comparison we provide an example GPS
controlled setup using components from Plura. This involves modules from their Rubidium
Series [254]. A GPS receiver such as the RUB G16X would obtain the GPS signal and pass
it as reference to the RUB GT master timecode generator module to produce an LTC signal.
This LTC signal would act as an external reference for the :pulse base station like in our
current setup. A RUB PM-N module connected to the the GT would serve the dual purpose
of powering the setup and acting as an NTP server to generate the NTP signal for the hub
of the wearable sensor network similar to our current setup. The entire setup would be
housed in a RUB H1 rack. The GPS setup for crossmodal synchronization is approximately
eight times more expensive than our setup using an ELC and a POE injector.

The GPS setup described currently costs approximately US $5700, while the combined cost of the ELC and the
POE injector is about US $730.
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5.6 Conclusion
In this paper we introduce a novel approach for synchronized and wireless acquisition of
human behavior data across video, audio, and wearable sensor data modalities, captured
in highly dynamic in-the-wild settings. The key challenge of synchronization in these
settings is to propagate a common time reference signal to end devices such as cameras
and wearable sensors in a wireless and scalable manner without compounding network
delays. Another challenge is that different types of sensors rely on different types of timing
information. Existing solutions in this space are either wired solutions, or achieve limited
synchronization in post-processing, making them less suitable for our scenario involving
a large number of people free to move in a large physical area. Our novel solution uses
a common NTP reference signal for both the camera and wearable sensors modalities;
conventionally NTP is superceded by more accurate reference signals for video. Through
empirical experiments, we show that the median time latency introduced by our choice
of using NTP is 414 𝜇s for the video modality. The intramodal latency of our wearable
sensor network built by extending an open platform is 5 ms over 9.5 hours [244]. The
overall crossmodal latency of our setup is approximately 13 ms at worst based on an
events-based experiment. We contextualized our findings using latency measures from
representative social behaviour literature, and find that our setup performs well within
a tolerable latency margin of 40 ms for our application domain and human perception.
To the best of our knowledge, this is the first work that quantifies latency tolerances for
a data collection system designed for collecting human behavior data, and proposes a
distributed architecture built on commercially available products. Through valid trade-offs,
our approach provides a practical, accurate, cost-effective, time-efficient, and modular
solution that is more advantageous than the current state-of-the art methods/heuristics for
highly dynamic social settings.
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Figure 6.1: Snapshot of the interaction area from our cameras. We annotated only cameras highlighted with
red borders (high scene overlap). For a clearer visual impression of the scene, we omit cameras 1 (few people
recorded) and 5 (failed early in the event). Faces blurred to preserve privacy.

6.1 Introduction
A crucial challenge towards developing artificial socially intelligent systems is understand-
ing how real-life situational contexts affect social human behavior [255]. Social-science
findings indeed show that the dynamics of how we conduct daily interactions vary sig-
nificantly depending on the social situation [256–258]. Unfortunately, such dynamics are
not adequately captured by many data collection setups where role-played or scripted
scenarios are typical [259].

In this paper we address the problem of collecting a privacy-sensitive dataset of un-
scripted social dynamics of real-life relationships where encounters can influence someone’s
daily life. We argue that doing so requires recording these exchanges in the natural ecol-
ogy, requiring an approach different from the typical setup of locally-organized studies.
Specifically, we focus on free-standing interactions within the setting of an international
conference (see Figure 6.1).

Recording an international community in its natural habitat is characterized by several
intersecting challenges: an intrinsic trade-off exists between data fidelity, ecological validity,
and privacy preservation. For ecological validity, a non-invasive capture setup is essential
for mitigating any influence on behavior naturalness [13, 260, 261]. The most common
solution involves mounting cameras from aerial perspectives such as top-down [262] and
elevated-side views [45, 46, 263]. Now elevated-side views make it easy to capture sensitive
personal information such as faces, which leads to several ethical concerns. For instance,
capturing faces has been related to harmful downstream surveillance applications [264].
Besides, state-of-the-art (SOTA) body-keypoint estimation techniques perform poorly
on aerial perspectives [172, 262], making the extraction of automatic pose annotations
challenging (Figure 6.3). To avoid such issues, some researchers have turned tomore privacy-
preserving wearable sensors shown to benefit many behavior analysis tasks [13, 24, 121].

In all, the closest related datasets (see Figure 6.4) suffer from several technical lim-
itations precluding the analysis and modeling of fine-grained social behavior: (i) lack
of articulated pose annotations; (ii) a limited number of people in the scene, preventing
complex interactions such as group splitting/merging behaviors, and (iii) an inadequate
data sampling-rate and synchronization-latency to study time-sensitive social phenomena
[265, Sec. 3.3]. To address all these limitations, we propose the Conference Living Lab
(ConfLab): a new concept for multimodal multisensor data collection of ecologically-valid
social settings. From the first instantiation of ConfLab, we provide a high-fidelity dataset
of 48 participants at a professional networking event.
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Figure 6.2: Frequency of newcomer/veteran participants (left) and
reported research interests (right).

Figure 6.3: Keypoint detection using pre-
trained RSN [266]. Additional SOTA results
are in Appendix 7.5

Methodological Contributions: We describe a data collection design that captures a
diverse mix of real levels of seniority, acquaintance, affiliation, and motivation to network
(see Figure 6.2). This was achieved by organizing ConfLab as part of a major interna-
tional scientific conference. ConfLab had these goals: (i) a data collection effort follwing
a by the community for the community ethos: the more volunteers, the more data, (ii)
volunteers who potentially use the data can experience first-hand potential privacy and
ethical considerations related to sharing their own data, (iii) in light of recent data sourcing
issues [264, 267], we incorporated privacy and invasiveness considerations directly into
the decision-making process regarding sensor type, positioning, and sample-rates.

Technical Contributions: (i) aerial-view articulated pose: our annotations of 17 full-
body keypoints enable improvements in (a) pose estimation and tracking, (b) pose-based
recognition of social actions (under-explored in the top-down perspective), (c) pose-based
F-formation estimation (has not been possible from prior work [6, 17, 60, 268]), and (d) the
direct study of interaction dynamics using full body poses (previously limited to lab settings
[269]). (ii) subtle body dynamics: we are the first to use a full 9-axis Inertial Measurement
Unit (IMU) enabling a richer representation of behaviour at higher sample rates; previous
rates were found to be insufficient for downstream tasks [121]. (iii) enabling finer
temporal-scale research questions: a sub-second crossmodal latency of ∼ 13 ms along
with higher sampling rate of features (60 fps video, 56 Hz IMU) opens the gateway for the
in-the-wild study of nuanced time-sensitive social behaviors like mimicry and synchrony.
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Figure 6.4: Comparison of ConfLab with prior datasets of free-standing conversation groups in in-the-wild social
interaction settings. Conflab is the first and only social interaction dataset that offers skeletal keypoints and
speaking status at high annotation resolution, as well as hardware synchronized camera and multimodal wearable
signals at high resolution.

6.2 Related Work
Early datasets of in-the-wild social events either spanned only a few minutes (e.g. Coffee
Break [263]), or were recorded at such a large distance from the participants that performing
robust, automated person detection or tracking with SOTA approaches was non-trivial (e.g.
Idiap Poster Data [17]). More recently, two different strategies have emerged to circumvent
such issues.

One approach involves fully instrumented labs with a high resolution multi-camera
setup for video and audio data. Here automatic detectors [214, 269, 270] could be applied to
obtain poses. This circumvents the cost- and labor-intensive process of manually labeling
head poses, at the cost of less portable sensing setups. Notable examples of such in-the-lab
studies include seated scenarios, such as the AMI meeting corpus [43], and more recently
standing scenarios like the Panoptic Dataset [269]. Both enable the learning of multimodal
behavioral dynamics. However, the dynamics of seated, scripted, or role-playing scenarios
are different from that of an unconstrained social setting such as ours. In contrast, ConfLab
moves out of the lab with a more modular and portable multimodal, multisensor solution
that scales easily in the wild.

Another approach exploited wearable sensor data to allow for multimodal process-
ing—sensors included 3 or 6 DOF inertial measurement units (IMU); infrared, bluetooth, or
radio sensors to measure proximity; or microphones for speech behavior [45, 262]. While
proximity has been used as a proxy of face-to-face interaction [45, 223, 271–273], recent
findings highlight significant problems with such an assumption [274]. Such errors can
have a significant impact on the machine-perceived experience of an individual, precluding
the development of personalized technology. Chalcedony badges used by Cabrera-Quiros
et al. [262] show more promising results with a radio-based proximity sensor and ac-
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celerometer [275], but such data remains insufficient for more downstream tasks due to
the relatively low sample (20Hz) and annotation (1Hz) frequency [121]. In light of these
challenges in wearable sensing, ConfLab features custom-developed Midge sensors that
enable more flexible and fine-grained on-device recording. At the same time, ConfLab
enables researchers in the wearable and ubiquitous computing communities to investigate
the benefit of exploiting wearable and multimodal data.

Furthermore, while both SALSA [45] and MatchNMingle [262] capture a multimodal
dataset of a large group of individuals involved in mingling behavior, the inter-modal
synchronization is only guaranteed at 1/3 Hz and 1 Hz, respectively. Prior works coped
with lower tolerances by computing summary statistics over input windows [121, 276, 277].
While 1 Hz is able to capture some conversation dynamics [160], it is insufficient to
study fine-grained social phenomena such as back-channeling or mimicry that involve far
lower latencies [265, Sec. 3.3]. ConfLab provides data streams with higher sampling rates,
synchronized at acquisition with our method shown to yield a 13 ms latency at worst [265]
(see Sec. 6.3). Figure 6.4 summarizes the differences between ConfLab and other related
datasets.

6.3 Data Acqisition
In this section we describe the considerations, design, and supporting community engage-
ment activities for the first instantiation of ConfLab at ACM Multimedia 2019 (MM’19), to
serve as a template and case study for other similar efforts.

Ecological Validity and Recruitment An often-overlooked but crucial aspect of in-the-
wild data collection is the design and ecological validity of the interaction setting [13, 260,
261]. To capture natural interactions in a professional setting and encourage mixed levels of
status, acquaintance, and motivations to network, we co-designed a networking event with
the MM’19 organizers called Meet the Chairs! Our event website (https://conflab.
ewi.tudelft.nl/) served to inform participants about the goals of a community
created dataset, and transparently describe the data collection process (Figure 6.5). During
the conference, participants were recruited via word-of-mouth marketing, social media,
conference announcements, and the event website. As an additional incentive beyond
interacting with the Chairs and participating in a community-driven data endeavor, we
provided attendees with post-hoc insights into their networking behavior from the collected
wearable-sensors data. See Supplementary material for a sample participant report.

Privacy and Ethics The collection and sharing of ConfLab is GDPR compliant. The
dataset design and process was approved by both, the Human Research Ethics Committee
(HREC) at our institution (TUDelft) and the conference location’s national authorities
(France). All participants gave consent for the recording and sharing of their data at regis-
tration.(See the Datasheet in the Appendix for the consent form.) Given the involvement
of private human data, ConfLab is only available for academic research purposes under an
End User License Agreement. Such an as open as possible and as closed as necessary ethos
for open science acknowledges the limitation that personal data places on open sharing
[278, 279].

https://conflab.ewi.tudelft.nl/
https://conflab.ewi.tudelft.nl/
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Figure 6.5: Screenshots from the ConfLab: Meet the Chairs! event website

Figure 6.6: The Midge

Figure 6.7: Comparing the top-down (top-left, camera 4) and elevated-side camera views (rest). Note how the
top-down view is better at mitigating the capture of faces and suffers from fewer occlusions. This allows for a
clearer capture of gestures and lower extremities for the most number of people while also preserving privacy.

Data Capture Setup Our goal while designing the capture setup was to find the best
trade-off between maximizing data fidelity and interfering with the naturalness of the
interaction (ecological validity) or violating participant privacy (ethical considerations).
Through discussions with the HREC and General Chairs of MM’19 we decided to mitigate
the capture of faces, which constitute one of the most sensitive personally-identifiable
features. Avoiding the inclusion of faces serves two purposes. First, it safeguards against
misuse in downstream tasks with potential negative societal impacts such as harmful
surveillance. Such issues have led to the retraction of some person re-identification datasets
[264]. Second, it protects the participants who are part of a real research community; since
the dataset does not involve role-playing or scripted conversations, the dataset contains
their actual behavior. Consequently, we chose an aerial perspective for the video modality
(see Figure 6.7). The 10 m × 5 m interaction area was recorded by 14 GoPro Hero 7 Black
cameras (60fps, 1080p, Linear, NTSC) [240]. 10 of these were placed directly overhead at a
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height of ∼ 3.5m at 1m intervals, with 4 cameras at the corners providing an elevated-side-
view perspective. (The HREC has suggested not sharing the elevated-side-view videos due
to the presence of faces.) For capturing multimodal data streams, we designed a custom
wearable multi-sensor pack called the Midge (see Figure 6.6 for a design render), based on
the open-source Rhythm Badge designed for office environments [69]. We improved upon
the Rhythm Badge to achieve more fine-grained and flexible data capture (see Appendix 7.5).
We designed the Midge in a conference badge form-factor for seamless integration. Unlike
smartphones, wearable badges allow for a simple grab-and-go setup and do not suffer
from sensor/firmware differences across models. Popular human behavior datasets are
synchronized by maximizing similarity scores around manually identified common events,
such as infrared camera detections [45], or speech plosives [227]. While recordings in
lab settings can allow for fully wired recording setups, recording in-the-wild requires
a distributed wireless solution. We developed a solution to synchronize the cameras
and wearable sensors directly at acquisition while significantly lowering the cost of the
recording setup [265], making it easier for others to replicate our capture setup. See
Appendix 7.5 for synchronization and calibration details, and Appendix 7.5 for images of
the setup.

Data Association and Participant Protocol One consideration for multimodal data
recording is the data association problem—how can pixels corresponding to an individual
be linked to their other data streams? To this end, we designed a participant registration
protocol. Arriving participants were greeted and fitted with a Midge. The ID of the Midge
acted as the participant’s identifier. One team member took a picture of the participant
while ensuring both the face of the participant and the ID on the Midge were visible.
In practice, it is preferable to avoid this step by using a fully automated multimodal
association approach. However this remains an open research challenge [280, 281]. During
the event, participants mingled freely—they were allowed to carry bags or use mobile
phones. Conference volunteers helped to fetch drinks for participants. Participants could
leave before the end of the one hour session.

Replicating Data Collection Setup and Community Engagement After the event,
we gave a tutorial at MM’19 [282] to demonstrate how our collection setup could be
replicated, and to invite conference attendees and event participants to reflect on the
broader considerations surrounding privacy-preserving data capture, sharing, and future
directions such initiatives could take.

6.4 Data Annotation
Continuous Keypoints Annotation Existing datasets of in-the-wild social interactions
have mainly focused on localizing subjects via bounding boxes [45, 262]. However, richer
information about the social dynamics such as gestures and changes in orientation cannot
be retrieved from bounding boxes alone, and necessitates the labeling ofa multiple skeletal
keypoints. The typical approach to keypoint annotation involves using tools such as Vatic

Documentation and schematics: https://github.com/TUDelft-SPC-Lab/spcl_midge_
hardware

https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
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Figure 6.8: Illustration of the body keypoints annotation procedure: (a): our custom time continuous annotation
interface; (b): the gallery of person identities used by annotators to identify people in the scene (faces blurred);
and (c): the skeleton template with the fraction of occluded frames.

[283] or CVAT [284] to manually label every 𝑁 frames followed by interpolating over
the rest of the frames. This one-frame-at-a-time annotation procedure makes obtaining
keypoint annotations a labor- and cost-intensive process. Moreover, interpolation fails to
capture the finer temporal dynamics of the underlying behavior, and reduces the benefits of
higher-framerate video capture. Limited by existing tools, no related dataset of in-the-wild
human behavior has included time-continuous pose or speaking status annotations.

In contrast, to overcome these issues we collected fine-grained time-continuous annota-
tions of keypoints via a web-based interface implemented as part of the Covfee framework
[285]. Here, annotators follow individual joints using their mouse or trackpad while playing
the video in their web browser. The playback speed of the video is automatically adjusted
using an optical-flow-based technique to enable annotators to follow keypoints contin-
uously without pausing the video. This design enables easy keypoint labeling in every
frame of the video (60 Hz). We also incorporated a binary occlusion flag for every body
keypoint. Annotators simultaneously controlled this flag to indicate when a body joint was
not directly visible. Note that the flag is only an additional confidence indicator; we asked
the annotators to label the occluded keypoint using their best estimate if it was deemed to
be within the frame. Our pilot study on the efficacy of Covfee compared to non-continuous
annotation via CVAT [284] is presented in [285]. For the pilot annotators, the continuous
annotation methodology resulted in a 3× speedup with statistically indifferent error rates.

We chose the top-down camera views for annotation since they suffer from fewer
occlusions than the elevated-side views, enabling improved capture of gestures and lower
extremities for more number of people (see Figure 6.7). Given the overlap in the camera
views, we annotated keypoints in five of the ten overhead cameras (see Figure 6.1). Note
that the same subject could be annotated in multiple cameras due to the overlap in even the
five annotated cameras. Videos were split into two-minute segments to ease the annotation
procedure. Each segment was annotated by one annotator by tracking the joints of all the
people in the scene.

Continuous Speaking Status Annotations Speaking status is a key non-verbal cue for
many social interaction analysis tasks [286]. We annotated the binary speaking status of
every subject due to its importance as a key feature of social interaction [24, 35, 81, 287, 288]
and to contribute the existing community who are working on this task [121, 289, 290].
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Action annotations have traditionally been carried out using frame-wise techniques [262],
where annotators find the start and end frame of the action of interest using a graphical
interface. Given the speed enhancement of continuous annotation, we also annotated
speaking status via a continuous technique. We implemented a binary annotation interface
as part of Covfee [285]. We asked annotators to press a key when they perceived speaking
starting or ending. In a pilot study with two annotators, we measured a frame-level
agreement (Fleiss’ 𝜅) of 0.552, comparable to previous work [276]. Similar to [262], the
annotations were made by watching the video. We provided the annotators with all
overhead views to best capture visual behavior.

F-formation Annotations Identifying who is likely to have social influence on whom
is another important feature for analyzing social behavior. This is operationalised via the
theory of F-formations, which are groups of people arranging themselves to converse or
socially interact. Similar to prior datasets [45, 46, 262], F-formations group membership
were annotated using an approximation of Kendon’s definition [23]. F-formation stands for
Facing formation, which is a socio-spatial arrangement where people have direct, easy and
equal access while excluding the space from others in the surroundings. The arrangement
commonly maintains a convex space in the middle of all the participants (determined by
the location and orientation of their lower body), although other spatial arrangements
(e.g., side-by-side, L-shaped) are possible, especially for smaller-sized groups of people.
Annotations were labeled by one annotator at 1 Hz, following this definition. Since this is a
largely objective and common framework for defining F-formations, we deemed it sufficient
to obtain one set of annotations. Further, since F-formations may span camera views, we
always used the camera that captured each F-formation in its entirety for annotation.

6.5 Dataset Statistics
Individual-Level Statistics Figure 6.8(c) ( shows the average occlusion values we ob-
tained from annotators for each of the 17 keypoints. In Figure 6.9(a) we show the distribution
of turn lengths in our speaking status annotations, for both newcomers and veterans, as
per their self-reported newcomer status to the conference. We defined a turn to be a
contiguous segment of positively-labeled speaking status, which resulted in a total of 4096
turns annotated.

Group-Level Statistics We found 119 distinct F-formations of size greater than or equal
to two, and 38 instances of singletons. Of these, there are 14 F-formations and 2 singletons
that include member(s) using the mobile phone. The distributions for group size and dura-
tion per group size are shown in Figure fig:annostats(b) and Figure fig:annostats(c), respec-
tively. Mean group duration doesn’t seem to be influenced by group size although higher
variations are seen at smaller group sizes. The fraction of community newcomers (first-time
attending the conference) in groups is summarized in histogram in fig:annostats(d). The
figure demonstrates two peaks on both sides of the spectrum (i.e., no newcomers vs. all
newcomers in the same group). This spread over mixed and non-mixed seniority presents
opportunities to study how acquaintance and seniority influence conversation dynamics.
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Figure 6.9: Data distributions for speaking status and conversation groups

6.6 Research Tasks
We report experimental results on three baseline benchmark tasks: person and key-
points detection, speaking status detection, and F-formation detection. The first task
is a fundamental building block for automatically analyzing human social behaviors. The
other two demonstrate how learned body keypoints can be used in the behavior analysis
pipeline. We chose these benchmarking tasks since they have been commonly studied
on other in-the-wild behavior datasets. Code for all benchmark tasks is available at:
https://github.com/TUDelft-SPC-Lab/conflab. See the Uses section
of the Datasheet in the Appendix for a discussion of the broader range of tasks ConfLab
enables.

6.6.1 Person and Keypoints Detection
This benchmark involves the tasks of person detection (identifying bounding boxes) and
pose estimation (localizing skeletal keypoints). Since pre-trained SOTA methods struggle
with a privacy-sensitive top-down perspective [172] (also see Figure 6.3 and Appendix 7.5
for ConfLab results), we finetune COCO-pretrained models on our dataset. We used Mask-
RCNN [291] (Detectron2 framework [292] implementation) with a ResNet-50 backbone for
both tasks for benchmarking. Since keypoint annotations were made per camera, we used
four of the overhead cameras for training (Cameras 2, 4, 8, 10) and one for testing (Camera
6). Implementation details are available in Appendix 7.5.

Evaluation Metrics We evaluated person-detection performance using the standard
metrics in the MS-COCO dataset paper [293]. We report average precision (AP) for intersec-
tion over union (IoU) thresholds of 0.50 and 0.75, and the mean AP from an IoU range from
0.50 to 0.95 in 0.05 increments. For keypoint detection, we use object keypoint similarity
(OKS) [? ]. APOKS is a mean average precision for different OKS thresholds from 0.5 to 0.95.

Results and Analyses Table 6.1 summarizes our person detection and joint estimation
results. Our baseline achieves 73.9 AP50 in detection and 45.3 APOKS50 in keypoint estimation.
Figure 6.10 shows qualitative results from our fine-tuned network. For further insight we
performed several analyses and ablations. In Appendix Table 2, we depict the effect of
varying the number of training samples on performance. For training, we use the same
four cameras and only vary the number of frames for each camera. We evaluate on the
same testing images from camera 6. We find that performance saturates at 16% training
samples. We next investigated the effect of increasing training data size by adding specific

https://github.com/TUDelft-SPC-Lab/conflab
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Table 6.1: Mask-RCNN results for person bound-
ing box detection and keypoint estimation.

Model Person Detection Keypoint Estimation
AP50 AP AP75 APOKS50 APOKS APOKS75

R50-FPN 73.9 38.9 38.4 45.3 13.5 3.3

Figure 6.10: Predictions from the Mask-RCNN model; COCO
pretrained (left), and ConfLab finetuned (right).

cameras one at a time. We report results in Appendix Table 3. There is a 260% performance
gain when first doubling the training samples to 69 k with the addition of camera 4, and a
46% gain when adding another 43 k samples from camera 8. Finally, since the lower body
regions suffer from higher occlusion, we experiment with different sections of body for
further insight and report results in Appendix Table 4.

6.6.2 Speaking Status Detection
In data collected from real-life social settings, individual audio recordings can be hard to
obtain due to privacy concerns [294]. This has led to the exploration of other modalities
to capture some of the motion characteristics of speaking-related gestures [276, 277]. In
this task we explore the use of body pose and wearable acceleration data for detecting the
speaking status of a person in the scene.

Setup We use the SOTA MS-G3D graph neural network for skeleton action recognition
[295], pre-trained on Kinetics Skeleton 400. For the acceleration modality, we evaluated
three time series classifiers, each of which we trained from scratch: 1D Resnet [296],
InceptionTime [297], and Minirocket [298]. We performed late fusion by averaging the
scores from both modalities. Like prior work [121, 277], the task was set up as a binary
classification problem. We divided our pose (skeleton) tracks into 3-second windows with
1.5 s overlap. A window was labeled positive if more than 50% of the continuous speaking
status labels within it are positive. This resulted in an imbalanced dataset of 42882windows
with 29.2% positive labels. Poses were pre-processed for training following [295]. Three of
the keypoints (head, and feet tips) were discarded due to not being present in Kinetics. We
adapted the network by freezing all layers except for the last fully connected layer and
training for five extra epochs. Acceleration readings were not pre-processed, other than by
interpolating the original variable-sampling-rate signals to a fixed 50 Hz.

Evaluation Evaluation was carried out via 10-fold cross-validation at the subject level,
ensuring that no examples from the test subjects were used in training. We used the area
under the ROC curve (AUC) as main evaluation metric to account for the imbalance in the
labels.

Results The results in Table 6.2 indicate a better performance from the acceleration-based
methods. One possible reason for the lower performance of the pose-based methods is
the significant domain shift between Kinetics and Conflab, especially in camera viewpoint
(frontal vs top-down). The acceleration performance is in line with previous work [121].
Multimodal results were slightly higher than acceleration-only results, despite our naive
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Table 6.2: ROC AUC and accuracy of skeleton-based,
acceleration-based and multimodal speaking status de-
tection (10-fold cross-validation).

Modality Model AUC Acc.
Pose MS-G3D [300] 0.676 0.677

Acceleration
InceptionTime [297] 0.798 0.768
Resnet 1D [296] 0.801 0.767
Minirocket [298] 0.813 0.768

Multimodal MS-G3D + Minirocket 0.823 0.775

Table 6.3: Average F1 scores for F-formation detection
comparing GTCG [268] and GCFF [129] with the ef-
fect of different threshold and orientations (standard
deviation in parenthesis).

GTCG GCFF
T=2/3 T=1 T=2/3 T=1

Head 0.51 (0.09) 0.40 (0.12) 0.47 (0.07) 0.31 (0.23)
Shoulder 0.46 (0.11) 0.38 (0.11) 0.56 (0.25) 0.36 (0.16)
Hip 0.45 (0.10) 0.37 (0.12) 0.39 (0.06) 0.25 (0.11)

fusion approach, a possible point to improve in future work [299]. Experiments with the
rest of the IMU modalities are presented in Appendix 7.5.

6.6.3 F-formation Detection
Setup Like prior work [6, 17, 60, 268], we operationalize interaction groups using the
framework of F-formations [23]. We provide performance results for F-formation detection
using GTCG [268] and GCFF [129] as a baseline. Recent deep learning methods such as
DANTE [60] are not directly applicable since they depend on knowing the number of
people in the scene, which is variable for ConfLab. We use pre-trained model parameters
(reported in the original GTCG and GCFF papers on the Cocktail Party dataset [46]) and
tuned a subset of parameters more relevant to ConfLab attributes on camera 6. More details
can be found in Appendix 7.5. We derive three different sets of orientation features from (i)
head, (ii) shoulder and (iii) hip keypoints.

Evaluation Metrics We use the standard F1 score as evaluation metric for group de-
tection [129, 268]. A group is correctly estimated (true positive) if at least ⌈T ∗ |G|⌉ of the
members of group G are correctly identified, and no more than 1− ⌈T ∗ |G|⌉ is incorrectly
identified, where T is the tolerance threshold. We report results for 𝑇 =

2

3
and 𝑇 = 1 (more

strict threshold) in Table 6.3.

Results We show that different results are obtained using different sources of orienta-
tions. Different occlusion levels in keypoints due to camera viewpoint may have affected
performance. Another factor influencing model performance is that F-formations (which
are driven by lower-body orientations [23]) may have multiple conversations floors [81].
Floors are indicated by coordinated speaker turn taking patterns and influence coordinated
head orientations of the group.

6.7 Conclusion and Discussion
ConfLab contributes a new concept for real-life data collection in the wild and captures a
high-fidelity dataset of mixed levels of acquaintance, seniority, and personal motivations.

ConfLab: the Dataset We improved upon prior work by providing higher-resolution,
fidelity, and synchronization across sensor networks. We also carefully designed our social
interaction setup to enable a diverse mix of seniority, acquaintanceship, and motivations
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for mingling. The result is a rich set of 17 body-keypoint annotations of 48 people at 60 Hz
from overhead cameras for developing more robust estimation of keypoints, speaking
status and F-formations for further analyses of more complex socio-relational phenomena.
Our benchmark results for these tasks highlight how the improved fidelity of ConfLab can
assist in the development of more robust methods for these key tasks. We hope that models
trained on ConfLab for localizing keypoints would fill the gap in the cue extraction pipeline,
enabling past datasets [17, 262] without articulated pose data to be reinvigorated; this
would open the floodgates for more robust analysis of the social phenomena labeled in these
other datasets. Finally, our baseline social tasks form the basis for further explorations into
downstream prediction tasks of socially-related constructs such as conversation quality
[14] , dominance [288], rapport [35], influence [301] etc.

ConfLab: the Data-Collection Concept To relate an individual’s behaviors to trends
within their social network, further iterations of ConfLab are needed. These iterations
would enable the study of behavioral patterns at different timescales, including multiple
interactions in one day, multiple days at a conference, or across distinct conferences. This
paper serves as a template for such future ventures. We hope that if the idea of a conference
as a living lab gains traction, the effort and cost of data collection can be amortized across
different research groups, even involving support from the conference organizers. This
data by the community for the community ethos can enable the generation of a corpus of
related datasets enabling new research questions.

Societal Impact ConfLab’s long-term vision is towards developing technology to assist
individuals in navigating social interactions. In this work we have identified choices
that maximize data fidelity while upholding ethical best practices: an overhead camera
perspective that mitigates identifying faces, recording audio at a low-frequency, and using
non-intrusive wearable sensors matching a conference badge form-factor. We argue this is
an essential step towards a long-term goal of developing personalized and socially aware
technologies that enhance social experiences. At the same time, such interventions could
also affect a community in unintended ways: worsened social satisfaction, lack of agency,
stereotyping; or benefit only those members of the community who make use of resulting
applications at the expense of the rest. More nefarious uses involve exploiting the data for
developing methods that harmfully surveil or profile people. Researchers must consider
such inadvertent effects while developing downstream applications. Finally, since we
recorded the dataset at a scientific conference and required voluntary participation, there is
an implicit selection bias in the population represented in the data. Researchers should be
aware that insights resulting from the data may not generalize to the general population.

Empowering Users Through an Agentist Rather Than Structurist Approach The
analysis of human behavior in social settings has classically taken a more top-down
perspective. For instance, the analysis of situated interactions (via only proximity networks)
has provided insight into the process of making science in the field of Meta Science
[302]. However, while social network science is a well-populated domain, it lacks a more
individualized measurement of social behavior: see more discussion of the structure vs.
agency debate [303]. Relying on the network science approach jeopardizes an individual’s
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right to technologies that enable free will. We consider the agency in choosing such
technologies to be a form of individual harm avoidance. ConfLab provides access to
more than just proximity data about social interactions, enabling the study of context-
specific social dynamics. These dynamics are a uniquely dependent not only on the
individual, but also the group they are interacting with [304]. We hope our highlighting of
participatory design practices and these value-sensitive design principles promote social
safety in developing socially assistive technologies.
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7
Discussions and Conclusion

The common theme in this thesis is to use multimodal data including vision, audio, and
wearable sensing to estimate human head and body orientations which are important
cues in social interactions, aiming to capture both temporal and social dynamics. The
approaches were validated by data captured in-the-wild real life scenarios, presented by
modeling-oriented works in Chapter 2, 3, and 4, and sensor-related and data-related works
in Chapter 5 and 6. Below I first summarize learnings from each chapter and follow with a
general discussion of open topics related to this thesis.

Chapter 2 presents an approach to address the limitation in head orientations in in-
the-wild setting. The proposed solution uses a combination of proxemics (positions and
orientations) and dynamics (speaking status, body motion through accelerometer) features
as temporal inputs to further capture the intrinsic temporal dynamics of the signals. The
deep learning architecture also incorporates a context pooling layer that models the cou-
pled head behaviors between members of the same conversation group. We showed the
advantage of using this feature set and the proposed model to achieve better performance
compared to baselines that do not model the temporal or group dynamics. A thorough
comparison between the different feature sets was also included, though unsurprisingly,
body orientations are still the most important feature towards estimating head orientations.
More importantly, there is significant performance improvement over time segments where
turn-taking occurs. However, the performance of the trained model for head orientation
estimation is largely dependent on the quality of the annotated ground truth, which is
shown to be challenging using the top-down privacy preserving camera view. We showed
that there is a slight improvement in using a regression versus a classification setup, as
we aim to capture head turns which could be indicative of high-level social cognitive
phenomena and frames possible research direction.

Chapter 3 presents an approach to F-formations detection with spatio-temporal context.
The approach uses temporal sequences of behavioral cues such as positions, head, and/or
body orientations, and includes a spatial context pooling module that accounts from the
surroundings when predicting pairwise affinities. Our deep learning architecture design
allows for estimation of affinity jointly between the current person and everyone else
in the scene. This was an important design choice to allow for different group sizes
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whilst accounting for group context. We showed that with temporal context, our method
outperforms baseline methods [6, 53, 60] on the Conflab dataset which has higher temporal
resolution compared to other datasets [46, 68]. Instead of focusing only on F-formation
detection evaluation after acquiring pairwise affinity scores like in prior works, we show
an analysis of how the accuracy of affinity scores relate to group detection. We also
demonstrate how the affinity scores change over time, which could be indicative of future
group memberships. A comparison between different preprocessing of affinity scores
before applying Dominant Set clustering for group extraction was shown. We found that
averaging the pairwise affinity scores leads to a better performance compared to taking the
raw predicted values or taking themaximum orminimum of the two pairwise affinity scores.
An explanation could be the binary ground truth for affinity values is symmetric, which is
implicitly captured by the model. A comparison for performance on scenes according to
dynamic scene change events also shows that the proposedmethod outperforms the baseline
method on scenes that have more group (re)formations and disbanding. Additionally,
to showcase the usability of the predicted affinity scores, a forecasting framework was
proposed to predict future conversation groups with uncertainty quantification. Future
works related to this chapter could include utilizing more high frequency inputs to capture
sub-second social dynamics, such as turn-taking and body movement synchrony and
mimicry.

In Chapter 4, we present a solution for estimating head and body orientation using
wearable sensors when there is a limited amount of annotations. Because of the multi-
camera view with heavy occlusion, annotations of head and body orientations can be
expensive to obtain from video cameras. This approach takes advantage of all available
modalities in the dataset (audio and proximity, in addition to video) to obtain weak labels
of head and body orientations. It also accounts for the temporal smoothness that exists in
head and body orientations with an improved module using Gaussian Process Regression,
as well as the anatomical constraints in head and body coupling. Similar to [28, 29] in
using the matrix-completion approach under the transductive setting, we formulated the
task into an optimization problem that flexibly models constraints, while accommodating
varying amount of missing data (in head and body weak labels). Using only 5% of the
manually annotated labels, this approach enables 68% and 76% classification accuracy in
head and body orientation estimation, respectively. The paper contains an extended analysis
with experimental results of the contribution of each of the module in the optimization
problem, and showcases the value of using head and body weak labels in this task. This
approach combines considerations of data scarcity and the availability of multimodal data
in estimating head and body orientations, and could serve as a solution to propagate labels
in datasets.

In Chapter 5, we address the limitation in multi-modal data synchronization which are
traditional manual or event-based. One of the major challenges in developing methods to
model human social behavior is the lack of datasets in-the-wild. Existing data collection
methods have mostly been situated in lab-based settings which are difficult to scale up
to capturing social interactions that span a large physical space such as a conference
venue. The post-processing of different streams of data collected in unscripted scenarios
in-the-wild has relied on event-based and manual synchronization such as balloon pops,
clapboards, etc. Instead, our solution offers hardware-based temporal alignment of the
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signals which is more precise and could be important to down-stream modeling of these
signals. Our proposed solution enables a common timestamp based on Network Time
Protocol (NTP) in both wearable sensors and camera network. It is a cost-effective, modular,
reproducible, and scalable open-source approach that unifies NTP timestamps which offers
cross-modality synchronization between video, audio, and wearable sensing signals within
13 ms. We validated this approach by quantifying the latency introduced by the components
that convert NTP to Linear Time Code (LTC) signals used by the video recordings. We
also quantified the audiovisual latency in the events captured by wearable sensors and
video cameras. The maximum delay was found to be within 13 ms which suffices studies
in modeling human social behaviors such as synchrony in body movement on the scale of
40 ms. A limitation that we discussed is related to further improvement in synchronization
accuracy which could be offered using GPS time signals, as well as the scalability of
Bluetooth hubs and video camera RF base stations, as there could be additional delays
introduced by those networks.

To address the lack of in-the-wild social interaction dataset, Chapter 6 presents a new
dataset, Conflab. It contains high-fidelity and fine-granularity measurements and annota-
tions of social interactions at a professional networking event at ACM MM 2019. Using
the data synchronization and acquisition method presented in Chapter 5, the multimodal
data are temporally aligned which allows for downstream social behavior modeling. The
Conflab dataset contains skeletal keypoint annotations of 48 individuals and their speaking
status at 60 Hz annotation frequency, conversation group membership at 1 Hz, and meta-
data related to interests and seniority of group members. With illustrated benchmarks
of automated person and keypoint detection, multimodal speaking status detection, and
conversation group membership estimation using a variety of orientation cues, Conflab
provides new opportunities for research in automated methods that explore full-body syn-
chrony estimation, full-body F-formation, in relations to speech dynamics and turn-taking
patterns.

While each of these chapters addresses their open questions respectively, some related
but unexplored topics which require further investigation are discussed in the following
sections.

7.1 Accurate Perception of Human Interactions In-
the-Wild

This thesis has focused on the estimation of head and body orientations in crowded social
scenarios (Chapter 2 and 3) but has not addressed their connection to visual focus of
attention (VFOA) (i.e., where or who people are looking at). VFOA is an important social
cue for social attention that could be indicative of the quality of interaction [176]. A better
understanding of the dynamics of VFOA enables better implementations of machines with
natural human-like interaction abilities. However, in the elevated side-view or overhead
views (mostly used in this thesis for privacy concerns and to preserve ecological validity), it
is unclear how to obtain an accurate measure of VFOA, as the limitations in head orientation
estimations are partially due to annotation noise. Eye gaze information, which is normally
more representative of the VFOA, is still absent and would otherwise be hard to capture
without disturbing the ecological validity of the social interactions.
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A potential answer to this challenge lies in adopting an egocentric viewpoint as an
additional perspective to the surveillance point of view. Recent technology such as the
Tobii and Pupil Invisible eyeglasses [305, 306] are minimally invasive eyeglasses that track
eye and head movement with a design focus of allowing studies of human behaviors.
Combining the first-person (egocentric) and third-person (allocentric) view allows us to
better understand the connection between individual behaviors and group behaviors and
other emergent social processes. It also addresses the challenges in measuring human
behaviors and obtaining reliable annotations introduced in the Chapter 1. Because these
egocentric are designed to be minimally invasive, it preserves the ecological validity to
a large extent, which is important in modeling human behaviors. This combination of
different perspectives has already been proven to be effective in person re-identification
[307], as well as joint attention learning [308].

However, there is very limited resource to relate third person videos and first person
videos which are applicable to studying natural human social interactions in-the-wild.
Leveraging the existing experience in using third-person visual and wearable modalities
(e.g., this thesis), a hybrid approach of first-person video, third-person video and wearable
sensing data, enables capturing higher fidelity human interaction data without disrupting
the ecological validity of interactions. This in turn will allow more accurate ground truth
information such as VFOA. Subsequently, a connection may be drawn between VFOA
and cognitive attention, and thereby enabling probing into conversational quality and
roles. This is to partially address the annotation noise in head orientation estimation (18
degrees) as provided in Chapter 2. Other interesting annotations include facial action units
and expressions of interactants, turn-taking, events such as (joint) laughter, conversation
floors, experience sampling measures of interaction quality, and various phenomena which
are difficult to measure without egocentric perception. Ultimately, these annotations
could provide better measurements of interaction quality (i.e., conversation quality [14])
compared to head and body orientations

Apart from the benefits that a hybrid approach brings, standing technical challenges
include mapping egocentric gaze to 3D human targets or objects in the scene from the
wearable eye tracker. This could be achieved by 3D reconstruction with methods that
estimate the wearer’s gaze depth (e.g., [309]). Secondly, synchronizing eyeglasses data
with other modalities requires significant integration with our existing framework. We
can synchronize these audio-visual-wearable data via network time protocol or event-
based methods. Although commercial glasses are wireless, integrating them with this
synchronizing framework on a hardware level still requires considerable amount of work.
These design choices during data collection are important and intertwinedwith the outlooks
of answering research questions.

7.2 The Scale of Modeling Human Behaviors
In this thesis (Chapter 2-6), the scale at which human behaviors and interactions are
modeled is at the level of complex conversation scenes, which increases the difficulty of
head/body orientation estimation, compared to meeting-like scenarios (i.e., seated and more
structured scenarios). The choice of automated methods for human behavior modeling is
dependent on the scale and context at which these behaviors are observed. In this section, I
discuss the choice of using visual, wearable sensing, and combination thereof for measuring
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and modeling human behaviors.

In the decade prior to this thesis, computer vision-centric works using visual features
have already investigated tasks including person detection (e.g., [310–312]), tracking [313,
314], head/body pose estimation [117, 315]. These methods achieve accurate predictions of
orientations in all three degrees of movement (roll, pitch, and yaw) in constrained settings
such as meeting or for pedestrians, but are usually not good enough for downstream more
socially-relevant tasks, such as visual attention estimation or conversation group detection,
for free-standing conversation groups. Challenges include occlusion and performance
reliability when the scene involves between 30 and 50 subjects. The estimation for all the
subjects need to reach a level of accuracy where the downstream tasks such as conversation
group membership can be applied (if the method rely on orientation features).

While this thesis investigates the multimodal aspect of improving the performance
in these tasks, the visual modality is still the mainstream modality of sensing, and es-
pecially suitable for orientation estimation. To improve over deep-learning based visual
features, recent methods in the computer vision community could be exploited to improve
orientation estimation at this scale. For example, 3D skeletal reconstruction of humans
using monocular cameras is a promising direction. This class of approaches relies on
the abundance of visual information, techniques, and modeling expertise from the vision
community, and more importantly, is a super set of the orientation estimation task at
hand. If 3D skeletal reconstruction can be reliably achieved, orientation information will
be automatically available. The reconstructed 3D skeletal information allows new research
questions that explore body motion from a visual perspective, which could better detect
phenomena such as synchrony and mimicry. With sufficient surveillance cameras (visual
information), orientation estimation for a large scene used in an application use-case
(e.g., social surveillance) could be a tangible goal. Since the visual modality is relatively
accessible (through surveillance), the vision based methods are also scalable.

The combination of vision andwearable sensingmodalities (or their derived features) for
estimating human behaviors (Chapter 2, 3, and 4) finds a potential use case in professional
networking events. The datasets used in this thesis fit in this setting, where multimodal
measurement and perception is possible. However, there is a trade-off to be considered:
the value of wearable sensing adds to automatic orientation estimation vs. the overhead
of developing and deploying wearable sensors to different events which can be different
for every instance. If multimodal methods indeed prove to be exceptionally advantageous,
resources put into multimodal sensors and approaches are better justified. Consequently,
the sensing capability needs to be further assessed, and the methods to join these sensor
streams need to be further developed, for scalability.

On the other extreme of the size scale (where the setting spans a large physical space
and when it does not make sense to install many surveillance cameras), wearable sensing
is an alternative way to estimate human interactions because of its ubiquitous nature. The
details of using wearable sensors for studying human interactions are discussed in Sec. 7.3.

In summary, the choice of using cameras, wearable sensors, or combination depends
on the size of the scene, accessibility of sensors, the granularity of human behaviors one
wishes to capture, and ultimately the application in question.
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7.3 Concerns for Wearable Sensors
In the Social Signal Processing community, many wearable sensors have been developed
to study social interactions, including the popular Sociometric Badges (Sociometers) [221].
Recent sensors improve upon previous ones in terms of capability and inclusion of more
sensing modalities. For intended use, Sociometers lay out clear goals: to measure the
amount of face-to-face interaction, conversational dynamics (e.g. turn taking patterns,
tone of voice, etc.), proximity to other people, and motion activity level using social
signals derived from vocal features, body motion, and relative location. However, in
both Sociometers and the more recent Rhythm Badges, the design choice was made to
downsample the audio recordings. It has also been found that the timestamps of the signal
recorded by the Sociometers could deviate from true time by more than 1 minute [316].
Issues related to the inflexibility in working with Sociometers, as well as the reported time
synchronization misalignment motivates future research and sensor development.

Even though the Sociometers have been commercialized, many problems were only
discovered after extensive testing and usage (such as the need for raw data for researchers).
These problems are often unaddressed because the people who are the most knowledgeable
about the sensors are temporary contracted (most likely PhD and Postdoc researchers) [274].
New requirements also arise over time and because of the lack of systematic standards
and approaches, they remain as ad-hoc modifications implemented by only the ones in
need. With the discontinuation of the company, support with respect to the sensors
has also reduced. The follow-up development of Sociometers, the Rhythm Badges, was
open-sourced, and also already alleviated some of the problems related to inflexibility
and need for customization. While the lead developers have established communities for
exchange, users (most often researchers from other groups) largely remain on their own
for clarifications and/or extensions of the sensors. There is no existing documentation of
the performance (similar to a specification sheet for hardware), as well as the known and
potential limitations of these custom built sensors. Compared to open source software code,
hardware projects typically need more specification and assessment for reproducibility.

As another example for custom wearable sensors, the Midges (developed for Chapter 6)
are built to address specific research questions in social signal processing. While the Midges
are open-sourced and scalable for manufacturing and production by design, deployment,
peripheral infrastructure, and firmware need to be tested and developed more extensively
in order to guarantee performance and future improvement over the sensors. Iteration of
design (if any) and active user support are also part of the process. For example, suppose
the use case is to expand for the ubiquitous computing community where scalability is a
requirement, the corresponding documentation needs to be availability and perhaps as
well as a responsible point-of-contact. When there is a need for widespread adoption of
the wearable sensors in more real-life in-the-wild settings, practices in productizing the
sensors more formally may be considered.

7.4 Reproducible Data Collection
This thesis, specifically Chapter 5 and 6, revolves around easing the data collection process
from human social interaction studies and specifically for complex conversational scenes
in-the-wild. Reproducibility, in terms of results replication can be achieved through open
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source code sharing, and is getting appropriate attention from the community. However,
not enough focus is placed on the reproducibility of data collection experiments. For social
signal processing studies of in-the-wild human social behaviors, data collection is one of the
most challenging aspects of the research. There is considerable ground work that could be
easily dismissed but actually consists of important design choices and considerations: what
events to capture, how many subjects, composition of the subjects, the venue of the event,
etc. After the data is collected, annotators need to be recruited and trained for labelling the
data. In some cases, experts (e.g. psychologists) need to be involved to decide the correct
labelling of the interaction phenomena in question. These pieces are intricately connected
and difficult to modularize. With these considerations, there is an increasing need to
systematize data collection in this field, by making a template, checklist for documentation,
etc., with each aspect appropriately catered for different modalities. Even though each
instance of data collection is generally ad-hoc, research groups that collect dataset often
should share their information as it could be beneficial to other practitioners. Additionally,
by attempting to establish a more standard operating procedure for dataset collection, users
of the data can be better educated and also become aware of how the data is collected to a
certain extent, as the methods they develop based on the data may ultimately impact the
applications.

7.5 ModelingHuman Interactions: ADifferentView-
point

In the methods-oriented work in this thesis (Chapter 2, 3, and 4), I focused on developing
automated methods to model human head and body behaviors in complex conversational
scenes, where the interpersonal dynamics are specific to the setting. While this data-
driven approach is justified, the underlying task, which is to understand and model human
interaction and coordination patterns, is also studied by psychologists, physicists, etc., using
their respective approaches. A particularly interesting angle to view human interaction
behaviors as a complex dynamical system. The key question is to ask whether the social
processes occur on multiple scales adhere to general principles, a form of universal laws.

Existing frameworks of modeling coordination typically focus on either very large
number of elements or systems with few elements. In the first case, most models are based
on statistical mechanics. In the latter case, the synergetics and nonlinear dynamics are
modeled by the Haken-Kelso-Bunz (HKB) model (involving 2 or 3 entities) [317]. HKB has
been adapted and extended to model increasingly complex scenarios, such as for many
diachronic social behaviors like turn-taking in conversations [318]. While the laws of
statistical mechanics may be appropriate in studying a large crowd of people and not
applicable to analyzing complex conversational scenes, HKB could be adapted to model
human coordination in scenes such as cocktail parties and networking events. However,
modifications to the HKB model, including scaling up for extrapolation, are challenging
and still unresolved. An interesting direction to explore is the fusion of this model-based
approach and the data-driven approach (such as this thesis) to discover a more general
framework of how humans interact socially.

Another approach is agent-based modeling, which involves simulations of artificial
agents interacting over time within specific context or environment [319]. In this case,
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agents represent humans who have pre-specified attributes and behave in specifically
defined ways. Even though the agent behaviors are simplified, the outcome is typically not
trivial, as local interactions between agents give rise to large-scale dynamics on the group-
and system- level. This is particularly apt for discovering emergent behaviors, where
the combination of small-scale individual behavior creates different collective behavior.
This approach may allow more focus on understanding the dynamic system as a whole.
Once more understanding is achieved, the outcome of a model is not limited to a set of
predictions but also a set of steps or strategies to mitigate unwanted effects in a dynamic
system, which ultimately may be more useful from an application point of view.
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Appendix

Appendix for Chapter 6:
The Appendix is organized as follows:

• Hosting, licensing, and organization information for ConfLab

• Documentation for ConfLab, following Datasheets for Datasets [320]

• Sample post-hoc behavioral analysis report sent to each ConfLab participant

• Details about out data-capture setup

• Implementation details for models used in our benchmark research tasks

• Additional experimental results and ablations

• Details for reproducibility following the ML Reproducibility Checklist [321]

A: Hosting, Licensing, and Organization
The dataset is hosted by 4TU.ResearchData, available at https://doi.org/10.
4121/c.6034313.

The dataset itself is available under restricted access defined by an End-User License
Agreement (EULA). The EULA itself is available under a CC0 license. The code (https://
github.com/TUDelft-SPC-Lab/conflab) for the benchmark baseline tasks,
and the schematics and data associated with the design of our customwearable sensor called
theMidge (https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware)
are available under the MIT License.

Figure 1 on the next page illustrates the organization of the ConfLab dataset on
4TU.ResearchData. The components are as follows:

• Annotations (restricted, https://doi.org/10.4121/20017664):
annotations of pose, speaking status, and F-formations

• Datasheet for ConfLab (public, https://doi.org/10.4121/20017559):
documentation of the dataset following Datasheets for Datasets [320] (see Ap-
pendix 7.5)

• EULA (public, https://doi.org/10.4121/20016194):
End User License Agreement to be signed for requesting access to the restricted
components

• Processed-Data (restricted, https://doi.org/10.4121/20017805):
processed video and wearable sensor used for annotations

https://doi.org/10.4121/c.6034313
https://doi.org/10.4121/c.6034313
https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
https://doi.org/10.4121/20017664
https://doi.org/10.4121/20017559
https://doi.org/10.4121/20016194
https://doi.org/10.4121/20017805
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Figure 1: File structure of the ConfLab dataset

• Raw-Data (restricted, https://doi.org/10.4121/20017748):
raw video and wearable sensor data

• Data Samples (restricted, https://doi.org/10.4121/20017682):
samples of the sensor, audio, and video data

https://doi.org/10.4121/20017748
https://doi.org/10.4121/20017682


Appendix 143

B: Datasheet For ConfLab
This document is based on Datasheets for Datasets by Gebru et al. [320].

MOTIVATION
Q. For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.
There are two broad motivations for creating this dataset: first, to enable the privacy-
preserving, multimodal study of real-life social conversation dynamics; second, to bring
the higher fidelity of wired in-the-lab recording setups to in-the-wild scenarios, enabling
the study of fine time-scale social dynamics in-the-wild.
We propose the Conference Living Lab (ConfLab) with the following goals: (i) a data
collection effort that follows a by the community for the community ethos: the more
volunteers, the more data, (ii) volunteers who potentially use the data can experience
first-hand potential privacy and ethical considerations related to sharing their own data,
(iii) in light of recent data sourcing issues [267], we incorporated privacy and invasiveness
considerations directly into the decision-making process regarding sensor type, positioning,
and sample-rates.
From a technical perspective, closest related datasets (see Table 6.4 in the main paper) suffer
from several technical limitations precluding the analysis and modeling of fine-grained
social behavior: (i) lack of articulated pose annotations; (ii) a limited number of people in
the scene, preventing complex interactions such as group splitting/merging behaviors, and
(iii) an inadequate data sampling-rate and synchronization-latency to study time-sensitive
social phenomena [265, Sec. 3.3]. This often requires modeling simplifications such as
the summarizing of features over rolling windows [121, 276, 277]. On the other hand,
past high-fidelity datasets have largely involved role-played or scripted interactions in lab
settings, with often a single-group in the scene.
This dataset wasn’t created with a specific task in mind, but intends to support a wide
variety of multimodal modeling and analysis tasks across research domains (see the Uses
section).
Q. Who created this dataset (e.g., which team, research group) and on behalf of
which entity (e.g., company, institution, organization)?
ConfLab was initiated by the Socially Perceptive Computing Lab, Delft University of
Technology in cooperation and support from the general chairs of ACM Multimedia 2019
(Martha Larson, Benoit Huet, and Laurent Amsaleg), Nice, France. Since this dataset was
by the community, for the community, members of the Multimedia community contributed
as subjects in the dataset.
Q. What support was needed to make this dataset? (e.g.who funded the creation of
the dataset? If there is an associated grant, provide the name of the grantor and the grant
name and number, or if it was supported by a company or government agency, give those
details.)
ConfLab was partially funded by Netherlands Organization for Scientific Research (NWO)
under project number 639.022.606 with associated Aspasia Grant, and also by the ACM
Multimedia 2019 conference via student helpers, and crane hiring for camera mounting.
Q. Any other comments?
None.
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COMPOSITION
Q. What do the instances that comprise the dataset represent (e.g., documents,
photos, people, countries)? Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes and edges)? Please provide a
description.
The dataset contains multimodal recordings of people interacting during a networking
event embedded in an international multimodal machine learning conference.
Overall, the interaction scene contained conversation groups (operationalized as f-formations),
composed of individual subjects, each of which had individual data associated to their
wearable sensors. The complete interaction scene was additionally captured by overhead
cameras. Figure 2 shows the structure of these instances and their relationships.

Figure 2: Structure of some of the instances in the dataset and their relationships. The interaction space was
captured via overhead videos, in which f-formations (conversation groups) were annotated. An F-formation
consists of set of people interacting for a variable period of time, and identified via a subject ID. Each person in
the F-formation can be associated to their pose (annotated in the videos), their wearable sensor (IMU) data, and
their action (speaking status) labels.

Note however that the precise notion of what constitutes an instance in the dataset is very
much task-specific. In our baseline tasks we considered the following instances:

Person and Keypoints Detection Frames, containing pose annotations (17 body key-
points per person per frame @60 Hz) from 5 overhead videos (1920×1080,60 fps) for
16 minutes of interaction.

Speaking Status Detection Windows (3 seconds) of wearable sensor data and speaking
status annotations (60 Hz) extracted from each subject’s data.
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F-formations Operationalized conversation groups, annotated at 1 Hz from the 16 min-
utes of annotated data, and the pose data associated to the people in the F-formation.

Q. How many instances are there in total (of each type, if appropriate)?
The notion of instance is very much dependent on how a user intends to use the data.
Regarding the instances in Figure 2, our full dataset consist of 45 minutes of:

Video recordings from 10 overhead cameras placed over the interaction area. Five of
these videos, enough to cover the complete interaction area, were used in annotation.

Individual wearable sensor data For the 48 subjects in the interaction area, a chest-
worn conference-type badge recorded: audio (1250 Hz), and Inertial Measurement
Unit (IMU) readings (accelerometer @ 56 Hz, gyroscope @56 Hz, magnetometer
@56 Hz and Bluetooth RSSI-based proximity @5 Hz)

Conference experience label For each of the 48 subjects, an associated self-report label
indicating whether it was their first time in the conference.

The instances in the annotated 16 minutes segment out of the 45 minutes of interaction
contain:

2D body poses For each of the 48 subjects, full body pose tracks annotated at 60Hz (17
keypoints per person). These were annotated using 5 of the 10 overhead cameras
due to the significant overlap in views (cameras 2, 4, 6, 8, and 10). Annotations were
done separately for each camera by annotating all of the people visible in each video,
for each of the 5 cameras, and tagged with a participant ID. We made use of a novel
continuous technique for annotation of keypoints. We chose this approach via a
pilot study with 3 annotators, comparing our technique to annotations done using
the non-continuous CVAT tool. We found no statistically significant differences in
errors per-frame (as measured using Mean Squared Error across annotators), despite
a 3x speed-up in annotation time in the continuous condition. The details of the
technique and this pilot study can be found in [285].

Speaking status annotations For each of the 48 subjects, these include a) a binary signal
(60 Hz) indicating whether the person is perceived to be speaking or not; b) continu-
ous confidence value (60 Hz) indicating the degree of confidence of the annotator in
their speaking status assessment. These annotations were done without access to
audio due to issues with the synchronization of the audio recordings at the time of
annotation. The confidence assessment is therefore largely based on the visibility of
the target person and their speaking-associated gestures (eg. occlusion, orientation
w.r.t. camera, visibility of the face)? We measured inter-annotator agreement for
speaking status in a pilot where two annotators labeled three data subjects for 2
minutes each. We measured a frame-level agreement (Fleiss’ 𝜅) of 0.552, comparable
to previous work [276].

F-formation annotations These annotations label the conversing groups in the scene
following previous work. Each individual belongs to one F-formation at a time or is a
singleton in the interaction scene. The membership is binary. The annotations were
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done by one of the authors at 1 Hz by watching the video. The time-stamped usage
of mobile phones are available as auxiliary annotations, which are useful for the
study of the role of mobile phone users as associates of F-formations. Since Kendon’s
theories date back to before the widespread use of mobile phones, their influence on
F-formation membership remains an open question.

In our baseline tasks, which made use of the complete annotated section of the dataset, the
instance numbers were the following:

Person and Keypoints Detection 119k frames (60fps) containing 1967k person instances
(poses) in total, from 48 subjects recorded in 5 cameras (16 minutes of annotated
segment).

Speaking Status Detection 42884 3-second windows, extracted from the 48 participants’
wearable data and speaking status annotations.

F-formations 119 conversation groups. Details are in Section 6.5.

Q. Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the larger
set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please
describe how this representativeness was validated/verified. If it is not representative of
the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).
The participants in our data collection are a sample of the conference attendees. Participants
were recruited via the conference website, social media posting, and approaching them in
person during the conference. Because participation in such a data collection can only be
voluntary, the sample was not pre-designed and may not be representative of the larger set.
Additionally, 16 minutes of sensor data has been annotated for keypoints, speaking status
and F-formations out of the total of 45 minutes recorded. The remaining part (across all
modalities) is provided with no labels. For privacy reasons, the elevated cameras (distinct
from the previously mentioned 8 overhead cameras) and also individual frontal headshots
that were used for manually associating the video data to the wearable sensor data is not
being shared.
Q. Is any information missing from individual instances? If so, please provide a
description, explaining why this information is missing (e.g., because it was unavailable).
This does not include intentionally removed information, but might include, e.g., redacted
text.
Camera 5 failed early during the recording, but the space underneath it was captured by
the adjacent cameras due to the high overlap in the camera field-of-views. Nevertheless
we share what was recorded before the failure from camera 5, bringing the total number of
cameras to 9.
Q. Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.
The F-formations, subjects, and their associated data relate as shown in Figure 2. These
associations are made explicit in the dataset via anonymous subject IDs, associated to pose
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tracks, speaking status annotations, and wearable sensor data. These same IDs were used
to annotate the F-formations.
Pre-existing personal relationships between the subjects were not requested for privacy
reasons.
Q. Are there recommended data splits (e.g., training, development/validation,
testing)?
Since the dataset can be used to study a variety of tasks, the answer to this question is
task dependent. Please refer to our reproducibility details (Appendix 7.5 of our associated
paper) for information about the splits that we used in out baselines.
Q. Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description.

Individual audio Because audio was recorded by a front-facing wearable device worn
on the chest, it contains a significant amount of cocktail party noise and cross-
contamination from other people in the scene. In our experience this means that
automatic speaking status detection is challenging with existing algorithms but
manual annotation is possible.

Videos and 2D body poses It is important to consider that the same person may appear
in multiple videos at the same time if the person was in view of multiple cameras.
Because 2D poses were annotated per video, the same is true of pose annotations.
Each skeleton was tagged with a person ID, which should serve to identify such
cases when necessary.

Q. Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)?
The dataset is self-contained.
Q. Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals’ non-public communications)?
The data contains personal data under GDPR in the form of video and audio recordings of
subjects. The dataset is shared under an End User License Agreement for research purposes,
to ensure that the data is not made public, and to protect the privacy of data subjects.
Q. Does the dataset contain data that, if viewed directly, might be offensive, insult-
ing, threatening, or might otherwise cause anxiety?
No.
Q. Does the dataset relate to people?
Yes, the dataset contains recordings of human subjects.
Q. Does the dataset identify any subpopulations (e.g., by age, gender)? If so,
please describe how these subpopulations are identified and provide a description of their
respective distributions within the dataset.
Data subjects answered the following questions before the start of the data collection event,
after filling in their consent form:

• Is this your first time attending ACM MM?
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Figure 3: Distribution of participant seniority (left) and research interests (right) in percentage.

• Select the area(s) that describes best your research interest(s) in recent years. Descrip-
tions of each theme are listed here: https://acmmm.org/call-for-papers/

Figure 3 shows the distribution of the responses / populations.
Q. Is it possible to identify individuals (i.e., one or more natural persons), either
directly or indirectly (i.e., in combination with other data) from the dataset?
We do not share any directly identifiable information as part of the dataset. However,
individuals may be identified in the video recordings if the observer knows the participants
in the recordings personally. Otherwise, individuals in the dataset may potentially be
identified in combination with publicly available pictures or videos (from conference
attendees or conference official photographer) from other media from the conference the
dataset was recorded at. In any case, re-identifying the subjects is strictly against the End
User License Agreement under which we share the dataset.
Q. Does the dataset contain data that might be considered sensitive in any way
(e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs,
political opinions or union memberships, or locations; financial or health data;
biometric or genetic data; forms of government identification, such as social
security numbers; criminal history)?
We did not request any such information from data participants. Here, the ACMMultimedia
’19 General Chair Martha Larson also helped advocate on behalf of the attendees during
the survey-design stage. As a result of these discussions, information such as participant
gender, ethnicity, or country of origin was not asked.
Q. Any other comments?
None.

COLLECTION
Q. How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.
The collected data is directly observable, containing video recordings, low-frequency
audio recordings and wearable sensing signals (inertial motion unit (IMU) and Bluetooth
proximity sensors) of individuals in the interaction scenes. Accompanying data includes
self-reported binary categorization of experience level which is available upon request

https://acmmm.org/call-for-papers/


Appendix 149

Table 1: Itemized costs associated with recording ConfLab

Item Cost (USD)

Travel (total for 6 people)
Flights 1800
Accommodation 1500

Equipment (one time)
Mounting scaffold 2000
14 × GoPro Hero 7 Black 4900
Designing the Midge (custom wearable, now made open source) 26000
110 × Midges (boards, batteries, 4 GB sd cards, cases) 3660
Multimodal synchronization setup 730

Annotations 8000
Computational cost for experiments 500

from the authors. The self-reported interests categories are not shared because of privacy
concerns.
Video recordings capture the whole interaction floor where the association from multi-
modal data to individual is done manually by annotators by referring to frontal (not-shared)
and overhead views. The rest of the data was acquired from the wearable sensing badges,
which is person-specific (i.e., no participant shared the device). Video and audio data were
verified in playback. Wearable sensing data was verified through plots after parsing.
Q. Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the s was
created. Finally, list when the dataset was first published.
All data was collected on October 24, 2019, except the self-reported experience level and
research interest topics which are either obtained on the same day or not more than one
week before the data collection day. This time frame matches the creation time frame of
the data association for wearable sensing data. Video data was associated with individual
during annotation stage (2020-2021), but all information used for association was obtained
on the data collection day.
Q. What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?
To record videos, we used 14 GoPro Hero 7 Black cameras. The wearable sensor hardware
has been documented and open-sourced athttps://github.com/TUDelft-SPC-Lab/
spcl_midge_hardware. The validation of the sensors was completed through an
external contractor engineer. The data collection software was documented and published
in [285], which includes validation of the system. These hardwares and mechanisms have
been open-sourced along with their respective publication.
The synchronization setup for data collection (intramodal and intermodal) was documented
and published in [265], which includes validation of the system.
To lend the reader further insight into the process of setting up the recording of such
datasets in-the-wild, we share images of our process in Figure 4.
Q. What was the resource cost of collecting the data?

https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
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Figure 4: Illustrating the process of setting up the data recording.

The resources required to run this first edition of ConfLab include equipment, logistics, and
travel costs. Table 1 shows the full breakdown of the costs. The equipment expenses are
fixed one-time costs since the same equipment can be used for future iterations of ConfLab.
The on-site costs at the conference venue were toward renting a crane for a day to mount
the cameras on a scaffold on the ceiling. We have open-sourced the Midge (our custom
wearable) schematics so that others don’t need to spend on the design and development.
No additional energy consumption was incurred for collecting the data. However, the
ancillary activities (e.g., flights, accommodation) resulted in energy consumption. Flights
from the Netherlands to France round-trip for six passengers results in 1020 kg carbon
emissions. Accommodation for six members resulted in 22 kWh energy consumption.
Q. If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
ConfLab contains both annotated and unannotated segments of multi-modal data. The
segment where the articulated pose and speaking status were annotated is selected to
maximize crowd density in the scenes. The annotated segment is 16 minutes; the whole
set is roughly 1 hour of recordings.
Q. Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?
The Conflab dataset was captured during a special social event called Meet the Chairs!
at an international conference on signal processing and machine learning. Newcomers
and old-timers to the conference freely donated their social behaviour data as part of a by
the community, for the community data collection effort. Aside from the chance to meet
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Figure 5: Screenshots of the ConfLab web-page used for participant recruitment and registration.

the chairs and create a community dataset, the attendees also received a personalised
report of their social behaviour from the wearable sensors (see Appendix 7.5) Conference
student volunteers were involved in assisting the set-up of the event. Conference organizers
(mentioned in the Motivation section) assisted in connecting us with conference venue
contacts to mount our technical set-ups in the room. Volunteers and conference organizers
were not paid by us. Conference venue contacts were paid by the conference organizers.
Data annotations were completed by crowdsourced workers. The crowdsourced workers
were paid $0.20 for qualification assignment (note that typically requesters do not pay for
qualification tasks). Depending on the submitted results, workers earn qualification to
access of the actual tasks. The annotation tasks were categorized into low-effort ($150),
medium-effort ($300), and high-effort ($450), corresponding to the amount of estimated
time each would take. The duration of the tasks was determined by the crowd density and
through timing of the pilot studies. The average hourly payment to workers is around $8.
Q. Were any ethical review processes conducted (e.g., by an institutional review
board)? If so, please provide a description of these review processes, including the
outcomes, as well as a link or other access point to any supporting documentation.
The data collection was approved by the Human Research Ethics Committee (HREC) of our
university (Delft University of Technology), which reviews all research involving human
subjects. The data collection protocol is also compliant to the conference location’s national
authorities (France). The review process included addressing privacy concerns to ensure
compliance with GDPR and university guidelines, review of our informed consent form,
data management plan, and end user license agreement for the dataset and a safety check
of our custom wearable devices.
Q. Does the dataset relate to people?
Yes.
Q. Did you collect the data from the individuals in question directly, or obtain it
via third parties or other sources (e.g., websites)?
We collected the data from individuals directly.
Q. Were the individuals in question notified about the data collection? If so, please
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describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.
The individuals were notified about the data collection and their participation is volun-
tary. The data collection was staged at an event called Meet the Chairs at ACM MM
2019. The ConfLab web page (https://conflab.ewi.tudelft.nl/) served
to communicate the aim of the event, what was being recorded, and how participants
could sign up. This allowed us to embed the informed consent into this framework so
we could keep track of sign ups. See Figure 5 for screenshots. This event website was
also shared by the conference organizers and chairs (https://2019.acmmm.org/
conflab-meet-the-chairs/index.html).
Q. Did the individuals in question consent to the collection and use of their data?
If so, please describe (or show with screenshots or other information) how consent was
requested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented.
All the individuals who participated in the data collection gave their consent by signing a
consent form. A copy of the form is attached below in Figure 6.
Q. If consent was obtained, were the consenting individuals provided with a mech-
anism to revoke their consent in the future or for certain uses? If so, please provide
a description, as well as a link or other access point to the mechanism (if appropriate)
Yes, the consenting individuals were informed about the possibility of revoking access to
their data within a period of 3 months after the data collection experiment, and not after
that. The description is included in the consent form.
Q. Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted?
No.
Q. Any other comments?
None.

https://conflab.ewi.tudelft.nl/
https://2019.acmmm.org/conflab-meet-the-chairs/index.html
https://2019.acmmm.org/conflab-meet-the-chairs/index.html
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Figure 6: Consent form signed by each participant in the data collection.

PREPROCESSING / CLEANING / LABELING
Q. Was any preprocessing/cleaning/labeling of the data done(e.g.,discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal
of instances, processing of missing values)? If so, please provide a description. If not,
you may skip the remainder of the questions in this section.
We did not pre-process the signals obtained from the wearable devices or cameras. The
only exception is the audio data. Due to a hardware malfunction (this is resolved for the
Midges by using different SD cards), the audio needed to be post-processed in order to
synchronize it with the other modalities. The synchronization against other modalities
was manually checked.
Labeling of the dataset was done as explained in the Composition section.
Q. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)?
The dataset is separated into raw data and the post processed data. For the audio, the
original raw data is not suitable for most use cases due to the mentioned synchronization
issue. So we share the synchronized version in the raw part of the repository.
Q. Is the software used to preprocess/clean/label the instances available? If so,
please provide a link or other access point.
The processing / fixing of the audio files did not require special software.
The annotation of keypoints and speaking status was done by making use of the Covfee
framework: https://josedvq.github.io/covfee/
Q. Any other comments?

https://josedvq.github.io/covfee/
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None.

USES
Q. Has the dataset been used for any tasks already? If so, please provide a description.

In the main paper, we have benchmarked three baseline tasks: person and keypoints
detection, speaking status detection, and F-formation detection. The first task is a funda-
mental building block for automatically analyzing human social behaviors. The other two
demonstrate how learned body keypoints can be used in the behavior analysis pipeline for
inferring more socially related phenomena. We chose these benchmarking tasks since they
have been studied on other in-the-wild behavior datasets.
Q. Is there a repository that links to any or all papers or systems that use the
dataset?
None at the time of writing of the paper.
Q. What (other) tasks could the dataset be used for?
Given the richness and the unscripted open-ended nature of the social interactions, ConfLab
can be used for many other tasks.

Forecasting, causal relationship discovery Recently, tasks pertaining to the forecast-
ing low-level social cues in conversations have been receiving increased attention from the
community [304, 322]. The real-life nature of ConfLab along with the increased data and
annotation fidelity can prove a valuable resource for such tasks. Similarly, ConfLab can
also be used for efforts towards discovering causal relationships between social behaviors
[323].

Data Association. A crucial assumption made in many former multimodal datasets[45,
262, 269] is that the association of video data to the wearable modality can be manually
performed. Few works [280, 281] have tried to address this issue but using movement
cues alone to associate the modalities is challenging as conversing individuals are mostly
stationary. This remains a significant and open question for future large scale deployable
multimodal systems. One solution may be to annotate more social actions as a form of top-
down supervision. However, detecting pose and actions robustly from overhead cameras
remains to be solved.

Conversation floor and F-formation estimation Prior analysis on the MatchNMingle
dataset has demonstrated that F-formations can contain multiple simultaneous conversa-
tions when the F-formations contain a least 4 people [81]. If this is the case for the ConfLab
dataset, this may drastically change how F-formations should be labelled (e.g. returning
to being a more subjective task [17]) as more time-precise labelling could enable a more
nuanced take on F-formation and conversation floor membership over time.

Multi-class social action estimation More annotations resources were focused on
speaker status, F-formation, and keypoint estimation. However, there are a wealth of
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other social actions in the data that could be interesting to combine into a more complex
multi-class social action estimation task. Example social actions include drinking, mobile
phone use, hand and head gesture types [262, 324].

Estimation and analysis of socially-related phenomena Beyond the modeling of
human behavior which is of interest to the Computer Vision and Machine Learning com-
munities, our benchmarked tasks form the basis for further explorations into downstream
prediction of socially-related constructs which is of interest to the Social Science and
Social Psychology communities. Such constructs include conversation quality [14, 134],
dominance [288], rapport [35], and influence [301].

Investigation of novel crossmodal fusion strategies The baseline tasks in our paper
rely only on a late fusion strategy. However, ConfLab’s sub-second expected cross modal
latency of ∼ 13 ms along with higher sampling rate of features (60 fps video, 56 Hz IMU)
opens the gateway for the in-the-wild study of nuanced time-sensitive social behaviors
like mimicry and synchrony (for predicting e.g. attraction [162]) which need tolerances
as low as 40 ms [265, Sec.3.2]. Prior works coped with lower tolerances by computing
summary statistics over input windows [121, 276, 277]. ConfLab enables for the first time,
the exploration of Multimodal machine learning approaches for social behaviour analysis
in these highly dynamic in-the-wild settings [299]. Through the provided annotations
Conflab also enables research in the topic of usage of mobile phones in small-group social
interactions in-the-wild.

Person attribute estimation Estimating individuals that are newcomers/old timers
from the dataset may be possible based on their networking strategies.
Q. Is there anything about the composition of the dataset or theway it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is
there anything that a future user might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or
other undesirable harms (e.g., financial harms, legal risks) If so, please provide a description.
Is there anything a future user could do to mitigate these undesirable harms?
Although ConfLab’s long-term vision is towards developing technology to assist individuals
in navigating social interactions, the data could also affect a community in unintended ways:
for instance, cause worsened social satisfaction, a lack of agency, stereotype newcomers
and veterans, or benefit only those members of the community who make use of resulting
applications at the expense of the rest. More nefarious uses involve exploiting the data for
developing methods that harmfully surveil or profile people. Researchers must consider
such inadvertent effects must while developing downstream applications. Finally, since
we recorded the dataset at a scientific conference and required voluntary participation,
there is an implicit selection bias in the population represented in the data. Consequently,
researchers using the data should be aware that resulting insights may not generalize to
the general population.
Q. Are there tasks for which the dataset should not be used? If so, please provide a
description.
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Beyond the cautionary discussion in the previous question, tasks involving the re-identifying
the subjects is strictly against the End User License Agreement under which we share the
dataset.
Q. Any other comments?
None.

DISTRIBUTION
Q.Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
The dataset is available for third parties outside of Delft University of Technology to use
for academic research purposes subject signing and approval of our End User License
Agreement. The dataset will be hosted by 4TU.ResearchData (see the Maintenance section
for description of the 4TU entity).
Q. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
Does the dataset have a digital object identifier (DOI)?
The dataset will be distributed via the 4TU.ResearchData user interface where the data can
be downloaded. The dataset has aDOI:https://doi.org/10.4121/c.6034313
Q. When will the dataset be distributed?
The dataset has been available since June 9, 2022.
Q. Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point to, or otherwise reproduce,
any relevant licensing terms or ToU, as well as any fees associated with these restrictions.
The dataset will be distributed under a restricted copyleft license, specified within our End
User License Agreement, accessible through the 4TU.ResearchData dataset website. No
fees are associated with the license.
Q. Have any third parties imposed IP-based or other restrictions on the data
associated with the instances?
No.
Q. Do any export controls or other regulatory restrictions apply to the dataset or
to individual instances? If so, please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any supporting documentation.
The terms of our EULA and the European General Data Protection Regulations (GDPR)
apply.
Any other comments?
None.

MAINTENANCE
Q. Who is supporting/hosting/maintaining the dataset?
The dataset is hosted by 4TU.ResearchData (https://www.4tu.nl/en/about_
4tu/), and supported and maintained by The Socially Perceptive Computing Lab at
TUDelft.
Q. How can the owner/curator/manager of the dataset be contacted (e.g., email
address)?

https://doi.org/10.4121/c.6034313
https://www.4tu.nl/en/about_4tu/
https://www.4tu.nl/en/about_4tu/
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Via email: SPCLabDatasets-insy@tudelft.nl.
Q. Is there an erratum?
No.
Q. Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?
Updates will be done as needed as opposed to periodically. Instances could be deleted,
added, or corrected. The updates will be posted on the 4TU.ResearchData dataset website.
Q. If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time and then deleted)?
No limits were communicated to our data participants.
Q. Will older versions of the dataset continue to be supported/hosted/maintained?
If so, please describe how. If not, please describe how its obsolescence will be communicated
to users.
Only the latest version of the dataset will be maintained. If applicable, we will also host
older versions of the data, accessible through the 4TU.ResearchData website.
Q. If others want to extend/augment/build on/contribute to the dataset, is there
a mechanism for them to do so? If so, please provide a description. Will these
contributions be validated/verified? If so, please describe how. If not, why not? Is there a
process for communicating/distributing these contributions to other users? If so, please
provide a description.
We are open to contributions to the dataset. In accordance with our End User License
Agreement, contributions should be made available, indicating if there are any restrictions
on their contribution. We encourage the potential contributors to contact us to discuss how
they wish to be attributed (e.g. citation of a paper or repository related to code/annotations).
After finalizing the attribution discussion, we can add the attribution as an update following
the same process explained above.
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C: Sample Participant Report

ACMMM 19 - ConfLab Report
Socially Perceptive Computing Lab - Delft University of Technology

Conflab: Meet the Chairs!
While you were at ACM MM in Nice earlier this year, you had participated in our event called ConfLab:
Meet the Chairs!. We want to thank you again for being part of our data collection initiative and contributing
to the effort of understanding more about human behaviors and conference experience.

We thought you might be curious about some basic statistics that we have extracted from the collected
data. You can find below some general information about all the event participants and some personal infor-
mation particular to you. Please keep in mind that 1) these are preliminary analyses that we have performed
and there could be errors in our estimations, and 2) to protect your privacy, these results are only available
to you.

General information about ConfLab participants
When you signed up, we had asked 1) if this was your first time at ACM MM and 2) your research interests
(multi-select multiple choice). We had a total of 48 participants. You can see below the statistics over all 48
people.
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Figure 1: Statistics of Conflab participants

1

Your networking behaviour - Bluetooth
Here we estimate how many people you have interacted with throughout the event. Our sensors record RSSI
values and we set a single threshold for eliminating values corresponding to large physical distance that we
do not consider as possible for face-to-face social interactions. We define the criterion of an interaction to be:
1) pairwise RSSI values below -55, and 2) pairwise proximity pings of at least 35 counted within a 1-minute
window (sampling rate: 1Hz).
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Figure 2: Statistics of people you interacted with

In Figure 2a, the breakdown of the types of people you have interacted with is shown. In Figure 2b, you will
find the interests breakdown of everyone you have interacted with. Figure 3 shows the distribution of the
number of participants you interacted with. You will find yourself in the red bin; the x-axis says how many
people you have interacted with and the y-axis says how many others had the same numbers as you.
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Figure 3: Distribution of the numbers of people participants interacted with

2

Your movement behavior - accelerometer
Here we estimate your motion behavior based on the accelerometer signal. Our sensors record tri-axial
accelerometer values and we quantify the amount of motion by calculating the magnitude of the values of
all 3 axes. We process the accelerometer data to separate movement and gravitational components of the
signals based on a previous approach (Euclidean Norm Minus One [1]). For ease of visualization, we averaged
the magnitude of acceleration over 30-second windows. You can see in Figure 4 your personal acceleration
magnitude over time, as well as the mean and standard deviation values of acceleration magnitude for all
participants over time.
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Figure 4: Acceleration magnitudes

Your speech behaviour - low-frequency audio
Here we estimate the amount of time you spoke. We first calculate the envelope of the low-frequency audio
signal by taking the absolute value. Then, we apply a moving mean operator to the signal. By manually
observing the signals of multiple participants, we selected a threshold to identify the speaking parts of the
signal. We then further process the binary stream by filling the gaps between continuous speaking regions
and eliminating speech regions that are smaller than a predefined threshold. Figure 5a and 5b show your
percentage of speaking during the event and how you compare to the rest of the participants, respectively.
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(b) Distribution of speaking percentages for all participants

Figure 5: Your speaking behaviour

And that’s it from the Socially Perceptive Computing Lab for now!
Note that for us, these analyses are just the starting point for estimating socially relevant behaviours. To do
this more robustly and using more complex approaches is one of the reasons why we plan to share the data
in next year or so. Maybe you are also curious to develop your own estimation techniques.

Finally, we welcome feedback on what other analyses that you are interested in, technical approaches, how
to display your data better, your participatory experience, and any comments or advice that you might have
for us. Please feel free to reply to this email or write to one of us directly.

Thanks again for your interest and we hope to see you again in the future!

[1] Bakrania, Kishan, et al. "Intensity thresholds on raw acceleration data: Euclidean norm minus one
(ENMO) and mean amplitude deviation (MAD) approaches." PloS one 11.10 (2016): e0164045.

4

Figure 7: Sample post-hoc report sent to each participant of ConfLab. The report contains insights into the
participant’s networking behavior from the collected wearable-sensors data. This insight served as an additional
incentive to participate in ConfLab, beyond interacting with the Chairs and contributing to a community-driven
data endeavor (see main paper Section 6.3).
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D: Data Capture Setup Details
The Midge We improved upon the Rhythm Badge in three ways towards enabling more
fine-grained and flexible data capture: (i) enabling full audio recording with a frequency
up to 48 KHz, with an on-board switch to allow physical selection between high and low
frequency capture directly at acquisition; (ii) adding a 9-axis Inertial Measurement Unit
(IMU) with an on-board Digital Motion Processor (DMP) to record orientation; and (iii)
an on-board SD card to directly store raw data, avoiding issues related to packet loss
during wireless data transfer required by the Rhythm Badge. IMUs combine three tri-axial
sensors: an accelerometer, a gyroscope, and a magnetometer. These measure acceleration,
orientation, and angular rates respectively. These sensor measurements are combined on-
chip by a Digital Motion Processor. Rough proximity estimation is performed by measuring
the Received Signal Strength Indicator (RSSI) for Bluetooth packets broadcast every second
(1 Hz) by every Midge. During the event, IMUs were set to record at 50 Hz. We recorded
audio at 1250 Hz to mitigate extraction of verbal content while still ensuring robustness to
cocktail-party noise.

Wireless Synchronization at Acquisition The central idea for our syncrhonization
approach involves using a common Network Time Protocol (NTP) signal as reference for
the camera and wearables sub-networks. The set-up achieved a cross-modal latency of
13 ms at worst, which is well below the 40 ms latency tolerance suitable for behavior
research in our setting [265, Sec. 3.3]. Additionally, our synchronization approach allowed
for dynamic addition of sensors to the network while still obtaining synchronized data
streams. This is crucial in extreme in-the-wild events where some participants might arrive
late.

Sensor Calibration For computing the camera extrinsics, we marked a grid of 1 m ×

1 m squares in tape across the interaction area floor. We ensured line alignment and right
angles using a laser level tool (STANLEY Cross90). For computing the camera intrinsics,
we used the OpenCV asymmetric circles grid pattern [325]. The calibration was performed
using the Idiap multi camera calibration suite [326]. All wearable sensors include one TDK
InvenSense ICM-20948 IMU [327] unit that provides run time calibration. To establish a
correspondence with the camera frame of reference, the sensors were lined up against a
common reference-line visible in the cameras to acquire an alignment so that the camera
data can offer drift and bias correction for the wearable sensors.

E: Implementation Details
Person and Keypoint Detection Models
Data Cleaning A few frames contained some incorrectly labeled keypoints, a product
of annotation errors like mis-assignment of participant IDs. We removed these using a
threshold on the proximity to other keypoints of the same person. Further, in some cases,
a person might be partially outside a camera’s field of view. For the person detection task,
we compute the bounding box from the keypoint ground-truth annotations. If more than
half the body (50% keypoints) is missing in the frame so that e.g. only their legs are visible,
we don’t consider the person for that frame in the person detection experiments. Note that
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due to the significant overlap between the camera views, the person would be considered
for the corresponding frame in the next camera. If they move back into the original view,
we again take them into consideration for the original camera for the corresponding frame.
Moreover, if there are more than 10% missing keypoints across all people in an image, we
also discard that image from the experiment. This preprocessing resulted in a training
set with 112k frames (1809k person instances) and a test set with 7k frames (158k person
instances).

Training We resized the images to 960×540, and augmented the data by randomizing
brightness and horizontal flips. The learning rate was set to 0.02 and batch size to 4. We
trained the models for 50 k iterations, using the COCO-pretrained weights for initialization.
All hyper-parameters were chosen based on the performance on a separate hold-out camera
chosen as validation set. During training, any missing ground-truth keypoints (resulting
from the person being partially outside the camera’s view for instance) are ignored during
back-propagation.

F-formation Detection
Data Cleaning Because keypoint annotations of the subjects are based on camera view
and that the F-formation clustering methods cannot group subjects that do not exist under
one camera view (e.g., when there are more identities than in associated ground truths),
we processed the ground truth also based on camera number. This filtering pre-processing
was decided based on the best camera view of the F-formations.

Feature Extraction The required features of GCFF and GTCG include location and
orientation of the subjects. We used the X and Y position of subjects’ head (as it is the most
visible from the top-down view) for location, and extracted orientations for head, shoulders
and hips. The orientations are calculated based on corresponding vectors determined by
head and nose keypoints, left and right shoulder keypoints, and left and right hip keypoints,
respectively.

Training We used pre-trained parameters for field of view (FoV) and frustum aperture
(GTCG) and minimum description length (GCFF), provided in these models trained on
the Cocktail Party. FOV and aperture are related to human eye gaze and head anatomical
constraints reported by [125], and hence not dataset specific. The minimum description
length is an initialized prior dictated by the same form of the Akaike Information Criterion,
and becomes part of the optimization formulation. We tuned parameters such as frustum
length (GTCG) and stride (GCFF) to account for average interpersonal distance in ConfLab
based on Camera 6, as they vary across different datasets.

F: Additional Results
Person and Keypoints Detection
Predictions from pretrained SOTA models Figure 8 shows predictions from SOTA
human keypoint estimation models, namely, RSN [266], MSPN[328], HigherHRNet [329],
and HourglassAENet [330], for the testing images of the Conflab dataset. Note that RSN
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Figure 8: Results from Pretrained keypoint detection models. From top to bottom - predictions from RSN [266],
MSPN[328], HigherHRNet [329], and HourglassAENet [330]. Results show that SOTA 2D body keypoint detection
models fail to capture the body keypoints in the ConfLab dataset.

Figure 9: Results from (top) COCO pretrained Mask-RCNN model, (bottom) our ConfLab finetuned Mask-RCNN
model.

and MSPN are top-down networks, i.e., they require person bounding boxes to predict
the keypoints in each bounding box. We use COCO pretrained faster-RCNN network
for bounding box estimation. HigherHRNet and HourglassAENet are bottom-up models,
i.e., they directly predict keypoints from the full image. We use publicly available COCO
pretrained checkpoints for prediction. The results show that the state-of-the-arts 2D body
keypoint detection models fail to capture the body keypoints in the Conflab dataset. We infer
that training on the dataset (e.g., COCO) that contains mostly side-view images does not
work well in top-view images, for which Conflab dataset is important to the community.
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Table 2: Effect of varying % frames from each cam-
era at training on keypoint estimation.

% of training samples APOKS50

1.6% 29.0
3.2% 35.9
8% 39.0
16% 44.5
100% 45.3

Table 3: Effect of adding all frames from individual cameras
to the training set on keypoint estimation.

Train Camera #(training samples) APOKS50

cam 2 34k 8.6
cam 2 + cam 4 69k 31.1
cam 2 + cam 4 + cam 8 112k 45.3

Table 4: Keypoint estimation ablation with key-
points from different body sections: head and shoul-
ders (5), + torso (9), + hips (11), + knees and feet
(full 17).

#Keypoints APOKS50 APOKS APOKS75

5 26.6 7.1 1.4
9 26.5 6.9 2.0
11 35.8 9.5 2.2
17 45.3 13.5 3.3

Table 5: ROC AUC and accuracy for different sensor modal-
ities from out 9-dof IMU in speaking status detection using
the Minirocket classifier [298]. The number of channels in
the corresponding modality is indicated in parentheses.

Input Modality AUC Accuracy
Acceleration (3) 0.813 0.768
Gyroscope (3) 0.765 0.716
Magnetometer (3) 0.610 0.656
Rotation vector (4) 0.726 0.696
All (13) 0.774 0.739

Qualitative Results from ResNet-50 Finetuning Figure 9 illustrates more qualitative
results from our finetuning experiments. We find that finetuning on our non-invasive
top-down camera perspective significantly improves the keypoint estimation performance.

Ablations Tables 2 and 3 include the results of our experiments investigating the effect
of varying the training data size on keypoint detection performance (see main paper
Section 6.6.1). In Table 4, we show keypoint detection scores for experiments with different
number of keypoints. We first focus on the five upper body keypoints: {head, nose, neck,
rightShoulder, leftShoulder}. We then additionally considered the torso region keypoints
for a total of nine: {rightElbow, rightWrist, leftElbow, leftWrist}. Finally, we add the hip
keypoints {rightHip, leftHip} to the set. The experiments in the main paper are performed
with all 17 keypoints. The results show that performance drops slightly when adding the
arms keypoints (5→ 9, APOKS50 and APOKS), and that the relative gain when adding the
hip keypoints (9→ 11) is lower than when adding the lower body keypoints (11→ 17,
especially APOKS75 ). We believe this is largely due to the lower body being more static relative
to the arms that move a lot to execute gestures during conversations.

Speaking Status Detection
Experiments with different sensor modalities Table 5 displays the results from ex-
periments using specific modalities from our IMUs for the task of speaking status detection.
We used the best performing classifier (Minirocket [298]) among the ones tested in Table 6.2.
The experiment setup is the same as detailed in Section 6.6.2, and the model is not changed
between runs, except for the fact that different modalities may have a different number of
input channels.
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Reproducibility Checklist
Person and Keypoints Detection

• Source code link: https://github.com/TUDelft-SPC-Lab/conflab

• Data used for training: 112k frames (1809k person instances).

• Pre-processing: See Section 6.4, Appendix 7.5.

• How samples were allocated for train/val/test: cameras 2, 4, and 8 are selected for
training. For hyperparameter tuning, camera 8 are held out for validation.

• Hyperparameter consideration: We considered learning rates (0.001/0.005/0.05/0.01),
number of epochs (10/20/50/100), detection backbone (R50-FPN/R50-C4). Also see
Appendix E

• Number of evaluation runs: 5

• How experiments were ran: See Section 6.6.1.

• Evaluation metrics: Average precision at different thresholds.

• Results: See Section 6.6.1 and Appendix E.

• Computing infrastructure used: All baseline experiments were ran on Nvidia V100
GPU (16GB) with IBM POWER9 Processor.

Speaking Status Detection
• Source code link: https://github.com/TUDelft-SPC-Lab/conflab

• Data used for training: 42884 windows (3 seconds), extracted from 48 participants’
wearable data and speaking status annotations

• Pre-processing: Data was windowed into 3-second segments (see Section 6.6.2). The
source code includes this pre-processing step.

• How samples were allocated for train/val/test: 10-fold cross-validation at the subject
level (48 subjects) to test generalization to unseen data subjects. The splits can be
reproduced exactly using the source code.

• Hyperparameter considerations: For acceleration-based methods, we used default
network hyper-parameters and architectures from their tsai implementation [331].
For the MS-G3D baseline [295], we used default hyperparameters from the authors’
implementation. For both, we determined the early stoppage point using a small
subset (10%) of the training set.

• Number of evaluation runs: 1 run of 10-fold cross-validation

• How experiments were ran: For each fold, the early stoppage point was first deter-
mined using 10% of the training data as validation set and AUC as performancemetric.
The model at this stoppage point was then applied to the test set for evaluation.

https://github.com/TUDelft-SPC-Lab/conflab
https://github.com/TUDelft-SPC-Lab/conflab
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• Evaluation metrics: Area under the ROC curve (AUC)

• Results: See Section 6.6.2

• Computing infrastructure used: Experiments were ran on a personal computer with
GPU acceleration (NVidia RTX3080).

F-formation Detection
• Source code link: https://github.com/TUDelft-SPC-Lab/conflab

• Data used for training: Camera 6

• Pre-processing: See Section 7.5 for data cleaning and feature extraction.

• How samples were allocated for train/val/test: samples from Camera 6 were used
to select the best model parameters. The rest are for test (evaluation). However, we
note that Table 6.3 shows averaged performance on all cameras to provide a holistic
view of the F-formation detection performance on ConfLab.

• (Hyper)parameter considerations: Both baseline methods are not deep-learning based
and model parameters are interpretable. For GTCG, the parameters are frustum
length (275), frustum aperture (160), frustum samples (2000), and sigma for affinity
matrix (0.6). For GCFF, the parameters are minimum description length (30000) and
stride (70).

• Number of evaluation runs: 1

• How experiments were ran: A total of eight experiments were run for choosing the
best parameters, and three for evaluation (for camera 2, 4, and 8). The parameters
were chosen based on grid-search. For optimizing frustum length in GTCG, we
searched over [170,195,220,245,275] with 275 being averaged interpersonal distance
based on Camera 6. For optimizing stride 𝐷 in GCFF, we searched over [30,50,70].

• Evaluation metrics: F1

• Results: See Section 6.6.3

• Computing infrastructure used: The experiments were run on Linux-based cluster
instances on CPU with Matlab 2018a.

https://github.com/TUDelft-SPC-Lab/conflab
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