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Abstract: This research investigated the contribution of wastewater-based nutrient supply, viz.,
nitrogen (N), phosphorous (P), and potassium (K), for lettuce production in the Infulene Valley,
Mozambique, from July to September 2019. The research was conducted in groundwater- and
wastewater-irrigated agricultural plots. Water samples were collected weekly, soil samples were
collected before planting and after harvest, and lettuce samples were collected at harvest time. The nu-
trient content (N, P, and K) was measured, and a mass balance method was applied. Wastewater
had distinctly higher nutrient contents than groundwater, which guaranteed crop nutrition during
the growing stage. Wastewater contributed 88%, 96%, and 97% to the N, P, and K requirements,
respectively. The crop yield in the wastewater-irrigated areas was 43,8 ± 16 tons/ha, which was
higher than 35 ± 8 tons/ha observed for the groundwater-irrigated areas, but results showed no
statistically significant differences. Conclusively, wastewater led to reduced soil-nutrient gap and
can be a source of nutrients. Therefore, wastewater is regarded as an alternative nutrient source
of interest, and if properly applied, it might reduce environmental health hazards, resulting from
run-off or leaching of excess nutrients.

Keywords: wastewater; wastewater nutrients; lettuce production; nutrient balance

1. Introduction

Wastewater is an alternative source for agricultural irrigation to compensate for water
shortages [1–3] or the lack of proper irrigation sources. In most low-income countries and
arid regions, wastewater is widely used in (peri)urban agriculture, either (partially) treated
or non-treated [4–8]. The use of wastewater results in the availability of reliable water
sources and increased nutrient availability for agricultural fields, improving the farmers’
livelihood and crop development [8–11].

Nitrogen (N), phosphorous (P), and potassium (K) belong to macronutrients that are
commonly present in (treated) wastewater at agriculturally relevant concentrations [12].
N is commonly present in ionized forms, such as NO−

3 , NO−
2 , and NH+

4 , while it might
also be present in gaseous forms, such as NOx, NH3, N2O, and N2. N in its different forms
can become available in the soil through processes such as biological fixation, ammonia
deposition, nitrification, and denitrification [13]. Under aerobic conditions, NO−

3 is con-
sidered a relatively stable and mobile ion and can be transported with soil water, while
NH+

4 is more easily absorbed to the negatively charged soil clay particles. Soil also receives
N in organic form through plant residues, which can be mineralized by saprotrophic or-
ganisms [14]. Plants uptake N mainly as NO−

3 and NH+
4 [15]. P does not have gaseous

forms [13] and exists as mineral in the ortho-phosphate form (PO3−
4 ) with H+, Fe3+, Ca2+,

or Al3+ as counter ions or as organic P bound in plant matter [15]. P has lower mobility
and is mostly found in phosphate rocks, soil, and marine sediments [13]. Plants uptake P
as PO4

3- [15]. K is readily absorbed by plants in the form of K+ and is highly soluble in soil
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and water. However, the concentration in soil is low, requiring frequent supplementation
by manure, artificial fertilizers, and/or wastewater [12].

The organic matter in (treated) wastewater that is used for irrigation contributes to
improved soil structure, water infiltration, prevention of surface sealing, and increased
biological activity, resulting in better crop yields [16]. Organic fertilizers are used in
agriculture for the same reason, in addition to meeting crop nutrient demands [15,17–19].

Nutrient supply through inorganic fertilizers contributes around 30 to 50% of the crop
yield [18]. However, in many countries in sub-Saharan Africa (SSA), the use of fertilizers
remains low [20–23]. The lack of fertilizer use is seen as the major cause of low agricultural
production in countries like Mozambique [24]. The main reasons for this low fertilizer use
include limited awareness regarding the benefits of using fertilizers and high purchase
costs [24]. Only 5% of smallholder farmers use fertilizers, and they do so at very low
application rates, such as 5.7 kg/ha from the regional target of 65 kg/ha [22]. The remaining
farmers in the country produce crops without applying any type of fertilizers, while others
apply organic fertilizers based on manure. In most SSA countries including Mozambique,
manure application depends on smallholder’s economic resources, manure availability, and
type of crops produced, i.e., fodder crops or cash crops, like high-value crops (e.g., Maize)
and vegetables [25]. However, relatively little data are available on manure application
coverage. For example, data from the Mozambican Integrated Agricultural Survey in the
2014/2015 season indicated that manure application in cereals rated 1.8% of a total of
4,000,000 smallholder farmers [25]. The variability in manure application may result in
high differences in nutrient concentrations in soils among farmers [26,27].

The state of nutrient supply for crops in developing countries in irrigated agriculture
is not well known, and there is a lack of detailed on-farm nutrient balances to quantify
pathways of both nutrient input and loss over time, under the prevailing management
practices [28,29]. Therefore, monitoring nutrients at the farm level is essential to estimating
nutrient supply, which is rarely conducted for untreated or partially treated wastewater [10].
Boom et al. [12] described the fate of nutrients using a simplified nutrient balance in
wastewater-irrigated plots in Jordan, finding a mismatch between the applied amount via
the nutrients present in wastewater and the required amount of macronutrients for crop
growth, resulting in nutrient over-dosages, which potentially have negative impacts on the
environment and crops. Similar studies were conducted for the Chivero catchment area,
in Zimbabwe, where Nhapi et al. [30] assessed the major water and nutrient flows using
nutrient balances. The nutrient flows for Maputo at the Infulene valley are still unknown,
due to the limited information in the area concerning the amount of nutrients that may be
present in irrigation water in the area.

In our research, we investigated the potential contribution of wastewater-based nu-
trients for the supply of N, P, and K in lettuce production in the Infulene Valley, Maputo,
Mozambique, which is located in a peri-urban area of Maputo [7]. In the area, agriculture
is heavily practiced with diversified irrigation water sources such as groundwater, river
water, and partially treated and untreated wastewater. In this area, a wastewater treatment
plant (WWTP) is constructed, consisting of a pond system, comprising two anaerobic
and two facultative ponds, which receive 5–10% of Maputo’s city wastewater for treat-
ment [31]. However, the WWTP is not functioning well due to severe overloading and poor
management, with the anaerobic ponds full of sludge and facultative ponds covered by
hyacinths jeopardizing proper treatment [32], even though the final effluent is informally
used to irrigate the crops including lettuce [31]. Despite its poor quality [31,32], the use of
wastewater for irrigation might have the potential benefit of being a source of indispensable
nutrients for crop cultivation with a positive impact on soil structure, biological activity,
and crop yields.
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2. Materials and Methods
2.1. Sampling and Experimental Design

The experiment was carried out in the Infulene Valley in Maputo (Figure 1), in a peri-
urban agricultural site for lettuce production. The experimental area is in the farmer’s fields
and simulated their own natural environment where they grow lettuce using their plant
management practices. Two areas were selected with different irrigation water sources: one
applied groundwater from shallow wells as an irrigation source and the other one applied
secondary stage-treated wastewater effluent, collected from the facultative pond at Infulene
WWTP. The WWTP is a lagoon system comprising two anaerobic and two facultative ponds
that treat 5–10% of the effluent of Maputo’s city and discharge its effluent in the Infulene
River [31,32]. The total experimental area was 22 m2 and 19.6 m2 for groundwater and
wastewater areas, respectively. Each of them had four replicates, and the samples were
collected from soil, water, and fresh lettuce heads. Each plot in the groundwater area had an
average area of 5.5 ± 0.6 m2, while the plots in the wastewater area had an average area of
4.9 ± 0.2 m2, with average dimensions of 3.6 × 1.5 m and 3.1 × 1.6 m for groundwater and
wastewater, respectively. Regular field visits were conducted in each irrigated area to ensure
that the practices were consistent. The applied crop management practices were similar for
the groundwater and wastewater irrigation areas, from initial crop growth to crop harvest.
These practices included the type of crops produced (lettuce), the use of manure from a
mixture of animal excreta such as cow or chicken, mixed with plant residues, the applied
irrigation method, sample collection, and the harvest procedure. The use of watering
cans is the commonly practiced irrigation method in the area. During the experiments,
farmers initially irrigated the crops with four watering cans once after planting. As the
crops grew, the irrigation frequency increased to twice per day, using six cans per plot, and
continued in this manner until harvest. The volume of irrigating cans used was 10 L, at
the pick of the irrigation period each plot received up to 12 cans equivalent to 120 L per
plot (24 L/m2/day). Some advantages of using this irrigation method include portability,
low cost, and no need for electricity or fuel to function. However, some disadvantages
of this method are that it is labor-intensive, time-consuming, and inefficient for larger
areas. Therefore, the amount of water applied was quantified by observing the number of
watering cans applied in the producing area. Manure is the most common organic fertilizer,
which is applied manually. The source of manure was the same as commonly used by
the farmers. The estimated manure amounts applied in the experimental area were 40 kg
for wastewater-irrigated soil and 30 kg for groundwater-irrigated soil. Soil preparation,
weeding, and harvest are also carried out manually—a common practice among most
small-scale farmers in Mozambique, due to the lack of capacity to invest in machinery and
sometimes due to the geographical characteristics of the area.

Soil samples were collected before planting and after harvest per site. A total of 48 soil
samples were collected using a hand-driven auger. The samples were collected in two
irrigation sources (one groundwater, and one wastewater). For each location, four (4)
replicate soil samples were collected at three (3) depths at two periods (corresponding
before planting and after harvesting). The three different depths are further referred to as
the top, medium, and bottom layers, i.e., 0–20 cm, 20–40 cm, and 40–60 cm, respectively.
These depths were selected according to lettuce root depth, which is around 0 to 60 cm [33].
The applied sampling schedule helped to describe temporal variations in the concentrations
of nutrients in different soil layers. Samples were air-dried for one week until they reached a
constant weight. Hereafter, they were passed through a 2 mm sieve and mixed thoroughly.

Water samples were collected weekly during the entire experimental period, i.e.,
from the plantation until the harvest. The water sampling procedure was used to capture
possible temporal variations in the water quality throughout the experiment. In each
week, two duplicate irrigation water samples were collected per site using glass bottles of
250 mL volume, giving a total of 28 during the 7 weeks of sampling. The samples were
placed in a container with ice packs, to maintain their integrity while being transported to
the laboratory.
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Manure was applied in solid form around the plant, two weeks after planting, and the
amount of manure was registered in both irrigated areas. Manure samples were collected
when it was applied to the soil, and the manure was analyzed to give approximate estimates
of the amount of nutrients (N, P, and K) supplied by the manure during the experiment.
Lettuce samples were selected randomly in the plot when ready to harvest. Each lettuce
sample consisted of three lettuce heads. This standardized sampling method was used
throughout the experiment. Therefore, a total of 8 lettuce samples were collected for
analysis, corresponding to 24 lettuce heads resulting from the collection of 3 lettuce heads
per plot, in 4 replicates at 2 sides with different irrigation water sources. The samples were
stored in sterile plastic bags, then inserted in a container (one container for each source
to avoid contamination), and transported directly to the laboratory. Lettuce samples after
the harvest were dried at 60 ◦C for 7 days until they reached a constant weight. Hereafter,
they were homogenized by grinding to reach small sizes for further analysis. To prevent
contamination during transportation, each sample was appropriately labeled and separated
from the other samples in a closed container.

2.2. Laboratory Analysis

Soil, water, manure, and lettuce samples were analyzed for nutrient content of N, P,
and K, following the methods as described in Table 1.

Table 1. Nutrient estimation methods used in soil, water, manure, and lettuce analysis.

Nutrient Forms Soil Plants and Manure Water

Total N Kjeldahl method [34–36] Kjeldahl method [34–36]
Hach test kits (TNT 828) detection limit
detection 20–100 mg/L( HACH LANGE

GMBH, Düsseldorf, Germany)

NO−
3

Extraction KCl (Minema Chemicals,
Johanesburg, South Africa)and

distillation and titration [36]

Hach LCK 339 (0.23–13.5 mg/L
NO3-N/1–60 mg/L NO3) ( HACH

LANGE GMBH, Düsseldorf, Germany)

NH+
4

Extraction KCl (Minema Chemicals,
Johanesburg, South Africa )and

distillation and titration [36]

Hach LCK 303 (2–47 mg/L NH4-N or
2.5–60 mg/L NH4) ( HACH LANGE

GMBH, Düsseldorf, Germany)

Total P

Spectrophotometer (digested with
H2SO4 and salicylic acid, selenium, and

hydrogen peroxide) supplied by
Minema Chemicals, Johannesburg,

South Africa) [34–36]

Spectrophotometer (digested with
H2SO4 and salicylic acid,

selenium, and hydrogen peroxide)
supplied by Minema Chemicals,

Johannesburg,
South Africa [34–36]

Available PO3−
4 Olsen [37] -

Hach TNT 845 (2–20 mg/L PO4-P or
6–60 mg/L PO4) (HACH LANGE

GMBH, Düsseldorf, Germany)

Total K

Flame photometric method (digested
with H2SO4 and salicylic acid, selenium,

and hydrogen peroxide) supplied by
Minema Chemicals, Johanesburg, South

Africa [34–36]

Flame photometric method
(digested with H2SO4 and

salicylic acid, selenium, and
hydrogen peroxide supplied by

Minema Chemicals,
Johannesburg, South

Africa) [34–36]

Available K+

Flame photometric method (Extraction
method using ammonium acetate

(Minema Chemicals, Johanesburg, South
Africa) [36,38]

Hach LCK 328 (8–50 mg/L K+) ( HACH
LANGE GMBH, Düsseldorf, Germany)

2.2.1. Soil Chemical and Physical Analysis

Soil samples were analyzed for N, P, and K nutrient content as well as for texture,
organic matter (OM), cation exchange capacity (CEC), pH, and electrical conductivity (EC).
The nutrient content was analyzed by measuring the concentrations NO−

3 , NH+
4 , total N,

total P, PO3−
4 , total K, and available K.
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Figure 1. The experimental location for groundwater- and wastewater-irrigated areas in the
Infulene Valley.

The soil texture was determined using the pipette method by Robinson [34].
The organic matter (OM) content in soil is related to the nutrient storage capacity and

was measured using the Walkley & Black method [34,39].
The cation exchange capacity (CEC) shows the soil fertility and nutrient retention

capacity [40] and correlates positively with organic matter content [41]. The CEC was
measured using the ammonium acetate method [34,42].

Soil pH influences soil physical properties, e.g., a low pH facilitates OM decompo-
sition and increases the availability of soil nutrients [16]. The soil pH was determined
potentiometrically in (1:2.5 p/v) soil: water suspension and KCl. The electrical conductivity
was determined using an electrical conductivity meter [34].

The determination of the N content of soil was conducted by measuring the mineral
concentrations of NO−

3 and NH+
4 . The NH+

4 and NO−
3 were extracted using potassium

chloride and analyzed using steam distillation and titration. The total N, P, and K were
extracted using sulfuric acid, selenium, salicylic acid, and hydrogen peroxide following
the procedure described by Walinga et al. [43] and Okalebo [36]. The total N was analyzed
using the Kjeldahl method [37].

P types analyzed in these experiments were available PO3−
4 and total P. Total P was

determined using spectrophotometry by measuring P in the solution of a simple colori-
metric method based on ascorbic acid reduction of the ammonium phosphomolybdate
complex [35]. For the determination of PO3−

4 , the Olsen’s method was used [37].
K types analyzed in the experiment were available K+, and the total K was determined

using a flame photometer [36]. The available K was determined using the ammonium
acetate (NH4Ac) extraction method [36,38].

2.2.2. Water Analysis

The water samples were analyzed for N (total N, NO−
2 , and NO−

3 ), PO3−
4 , and K+

using test kits (Hach Lange GMBH, Düsseldorf, Germany) and analyzed using UV-VIS
spectrophotometer Hach DR 3900 (Hach, Loveland, CO, USA). The concentrations of
macronutrients were multiplied by the respective amount of water used for irrigation to
quantify the nutrient input from irrigation water (wastewater and groundwater). The pH
and electrical conductivity of the water were determined using a pH meter and an electrical
conductivity meter (Orion STAR A215, Thermo Fischer Scientific Inc., Kota Administrasi
Jakarta Selatan, Indonesia), respectively.
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2.2.3. Lettuce and Manure Analysis

To compare the productivity of both areas, the lettuce yield was recorded after the
harvest from the groundwater and wastewater sites. At each site, each lettuce sample was
analyzed for total N, P, and K. The plant material was digested using a mixture of sulfuric
acid, selenium, salicylic acid, and hydrogen peroxide [36]. The Kjeldahl technique was
used for the measurement of total N. The total P was measured through the molybdenum
blue method and determined colorimetrically using a 6705 UV/Vis spectrophotometer
(JENWAY Bibbly Scientific Ltd., Stone, UK) [35,44]. The total K was measured using a flame
photometer (Digimed, São Paulo, Brazil). The same procedure was applied to manure
collected two weeks after planting. The nutrient uptake in lettuce was determined by
multiplying the plant dry weight by the measured concentration.

2.2.4. Statistical Analysis

Changes in soil nutrient levels resulting from irrigation were assessed using a paired T-
test with a significance level of 5%, using IBM SPSS statistical software version 26. Nutrient
concentrations were compared between different irrigation types, applying an independent
T-test at a significance level of 5%, using SPSS statistical software. For the analysis of yield
data, a T-test was used, and means were compared using the least significant difference
method at the 5% significance level, using SPSS statistical software.

2.3. Nutrient Balances

A nutrient balance was conducted to quantify the N, P, and K fluxes during a single
cropping season in the peri-urban area of the Infulene Valley, Maputo. The focus of this
balance in the agricultural system was on assessing the input and output of N, P, and K
in the farmers’ plots irrigated with groundwater and wastewater. Inputs into the system
included the addition of manure and the supply of irrigation water. The system’s outputs
considered nutrient removal through crops. Other factors, such as leaching losses, runoff,
wind erosion, and the volatilization of nitrogen (resulting from denitrification and NH3
volatilization), were not considered because the numerical value is small [12,45]. A nutrient
balance was conducted using input (irrigation water and manure) and output (plant uptake)
of nutrients for both groundwater (GW)-irrigated site and wastewater (WW)-irrigated site.
The soil condition, both before planting and after harvest, was analyzed to investigate
the influence of the irrigation source on nutrient supply. The used conceptual framework
considers the soil as a nutrient storage that can accumulate or reduce nutrients because
of the irrigation source. Accordingly, the soil irrigated with wastewater is referred to as
SIW (Soil irrigated with wastewater), and the soil irrigated with groundwater as SIG (Soil
irrigated with groundwater). This categorization allows us to distinguish and evaluate the
impact of these two distinct irrigation sources on soil nutrient dynamics.

2.3.1. Soil Balances

To evaluate the nutrient supply to the crops, a nutrient balance was performed from
sowing to harvest. A mass balance model (2) was used, adapted from Zhang and Shen (1).

Soil nutrient balance = Sfert + Smin + Sirri+ Sdep − Splant (1)

where Sfert is the amount of chemical fertilizer applied in the site (kg/ha). This value was
assumed to be zero since no fertilizers were used in the study sites. Smin is the nutrient
input from the mineralization of manure (kg/ha). Sirri is calculated by multiplying the
nutrient content of the irrigation water by the total amount of water supplied. Sdep is the
nutrient input from atmospheric deposition (only N). Sdep for the analyzed period was
calculated based on estimations for atmospheric N deposition of 4.8 kg/ha/year for South
Africa [46]. In addition, for sparsely populated areas and non-industrial countries, the
estimated N deposition is about 5 kg/ha/year [47]. The range of 20–50 kgN/ha/year is
used for countries in western Europe and China and can reach 60 kg N/ha/year due to the
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proximity of cities, intensive cattle breeding, and the amount of precipitation [47]. Based
on the estimation of 4.8 kg/ha/year, the N deposition of 0.7 kg/ha was calculated for the
period (49 days) in Mozambique. Splant is the nutrient uptake by the aboveground biomass.
The nutrient balance assumes that the nutrients in roots will accumulate as agricultural
remains in the field. Therefore, the simplified equation used for the soil nutrient balance is
as follows:

For N: Soil nutrient balance = Smin + Sirri + Sdep − Splant (2)

For P and K: Soil nutrient balance = Smin + Sirri − Splant (3)

2.3.2. Ratio Calculations

The ratio of nutrient input/output is a quantitative relation between the amount of
nutrient input and nutrient output. The nutrient ratio was calculated using the amount of
nutrients supplied by manure and irrigation divided by the nutrient uptake by the crop.

For N: Ratio (Input/Output) = (Smin + Sirri + Sdep/Splant) (4)

For P and K: Ratio (Input/Output) = (Smin + Sirri/Splant) (5)

3. Results
3.1. Nutrient Content in Water

The nutrient concentrations in groundwater and wastewater, which were used to
irrigate lettuce during the production cycle, are shown in Table 2. The nutrient content in
wastewater was distinctly higher compared to groundwater, except for the NO−

3 concentra-
tion. Crops were irrigated with the wastewater from the facultative pond. However, the
results clearly indicate that the wastewater was only subjected to anaerobic conditions in
the treatment plant. Almost all N was present in the form of NH+

4 with negligible amounts
oxidized to NO−

2 or NO−
3 . This suggests that the WWTP was lacking nitrification capacity,

very likely because of overloading with septic tank content discharged to the anaerobic
ponds by tanker trucks.

Table 2. Concentration (mg/L) of nutrients present in groundwater and wastewater (partially treated
wastewater at secondary stage) used for irrigation in Infulene.

Parameter
Water Source

Groundwater Wastewater

NO−
3 (mg/L) 3.5 ± 5.3 * 0.9 ± 0.2

NO−
2 (mg/L) 0.1 ± 0.1 0.4 ± 0.4

NH+
4 (mg/L) 0.1 ± 0.2 231.8 ± 150

Total N (mg/L) 16.4 ± 19.1 461.6 ± 279.5

K+ (mg/L) 31.8 ± 5 405.9 ± 130

PO3−
4 (mg/L) 6.0 ± 2.9 81.1 ± 46.5

pH 7.92 ± 0.25 7.40 ± 0.29

EC (dS/m) 1.95 ± 0.69 1.84 ± 0.42
* NO−

3 highly variable along the sampling weeks in groundwater.

Wastewater showed slightly lower EC and pH values compared to groundwater
(Figure 2). The pH at the wastewater site ranged from 7 to 8 indicating circumneutral con-
ditions, while that of groundwater was slightly alkaline. The EC values of the wastewater
were approximately 0.75 dS/m in week 1 and around 2 dS/m for the remaining irrigation
period, while for groundwater, it reached 2.5 dS/m. The EC values in irrigation water
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indicated a moderate risk of salinity hazard, which could have potentially affected crop
productivity. The relatively low EC levels found in week 1 could be attributed to the
final days of precipitation of the wet season as most of the study was conducted in the
dry season.
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3.2. Physical Proprieties and Nutrient Dynamics in the Soil

For both groundwater- and wastewater-irrigated areas, the results showed that sand
is the main soil constituent in all soil layers (Table 3).

Table 3. Texture in soils irrigated with wastewater (SIW) and groundwater (SIG).

Depth (cm)
Soil Irrigated Wastewater (SIW) Soil Irrigated Groundwater (SIG)

Clay (%) Silt (%) Sand (%) Clay (%) Silt (%) Sand (%)

0–20 16.3 ± 4.3 4.8 ± 3.0 78.9 ± 3.8 13.9 ± 4.3 6.3 ± 2.6 79.7 ± 4.7
20–40 21.8 ± 10.2 6.7 ± 3.1 71.5 ± 9.4 15.1 ± 2.1 6.5 ± 2.8 78.4 ± 2.8
40–60 17.5 ± 3.2 11.7 ± 3.2 70.9 ± 9.7 29.8 ± 17.9 12.2 ± 8.9 57.9 ± 23.3

The soil irrigated with wastewater (SIW) exhibited lower EC values in the top layer
before planting compared to the soils irrigated with groundwater (SIG). In the medium
and bottom layers, the EC values were similar between the two irrigation sources. After
the harvest, the EC values in the top-to-bottom layers of the SIG were distinctly higher
than those in the SIW (Figure 3). Before planting, the EC values of SIG ranged from 0.46
to 0.50 dS/m, and after harvest, it ranged from 0.65 to 0.81 dS/m. While for SIW, the EC
values ranged from 0.32 to 0.45 dS/m before planting and increased to the range of 0.52 to
0.62 dS/m after harvest. The results indicate an increase in soil EC during the experimental
period, which is likely attributable to the evaporation of irrigation water. The increase in
EC in the SIG reached up to 76% and was more pronounced in the bottom layer compared
to the top layer possibly influenced by factors such as the clay fraction in the bottom layer.
In the case of SIW, the EC increased by up to 62% in the top layer. There was a change in
EC pattern for SIG before planting and after harvest (Figure 3).

The average pH values in the soils ranged from eight to nine, indicating alkaline-
classified soils (Figure 4). After harvest, the pH significantly increased in the SIG, while
for SIW, an increase was only observed in the top layer (Figure 4). Before planting, the
pH values in the top layer were similar for SIW and SIG, but after harvest, the pH values in
the SIG were significantly higher than in the SIW.
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In general, the organic matter content and the CEC in SIG were higher than in SIW
(Table 4) both before planting and after harvest. The CEC values in SIG varied from
10.7 meq/100 g in the top layers to 20.7 meq/100 g in the bottom layer. In contrast, no clear
pattern was found for SIW. After the harvest, the CEC values slightly decreased in SIW
(Table 4).

3.2.1. NO−
3 , NH+

4 , and Total N Content in Soil

The N concentration was measured in the forms of NO−
3 , NH+

4 , and total N (Figures 5–7).
In general, the NO−

3 concentration in soil was higher in SIG than in SIW before planting,
while after harvest, this difference was observed only in the bottom layer (Figure 6). In
both irrigation areas, the NO−

3 concentration was generally higher in the topsoil layers
compared to the bottom soil layers. The concentration of NO−

3 increased after harvest in
SIW, ranging from 14 to 33 mg/kg in the top layers.
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Table 4. Organic matter (OM) content and cation exchange capacity (CEC) in soil irrigated with
wastewater (SIW) and groundwater (SIG) before planting (BP) and after harvest (AH).

Irrigation Source Depth (cm)

% of OM Content CEC (meq/100 g)

Before Planting After Harvest p Values
(BP × AH) Before Planting After Harvest p Values

(BP × AH)

WW
0–20 0.8 ± 0.4 0.7 ± 0.2 0.82 7.5 ± 1.6 6.2 ± 1.3 0.01

20–40 0.6 ± 0.3 0.8 ± 0.8 0.45 9.7 ± 3 7.6 ± 2.6 0.01
40–60 0.8 ± 0.3 0.9 ± 0.9 0.68 8.6 ± 3.3 7.4 ± 1.7 0.22

GW 0–20 1.9 ± 0.3 2.3 ± 0.3 0.08 10.9 ± 1.2 10.7 ± 3.5 0.88
20–40 1.5 ± 0.4 2.1 ± 0.4 0.02 12.1 ± 1.7 12.4 ± 1.5 0.47
40–60 2.1 ± 0.9 2.0 ± 0.5 0.66 19.0 ± 11.4 20.7 ± 11.7 0.28

p values (SIW × SIG)

0–20 <0.00 <0.00 <0.00 0.00

20–40 <0.00 <0.00 0.07 <0.00

40–60 <0.00 0.01 0.37 0.02
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Figure 5. The NO−
3 concentration (mg/kg) in soils irrigated with wastewater (SIW) and groundwater

(SIG) before planting (1) and after harvest (2).
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Figure 6. The NH+
4 concentration (mg/kg) in soils irrigated with wastewater (SIW)- and groundwater

(SIG)-irrigated soil before planting (1) and after harvest (2).
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Figure 7. The total N concentration (g/kg) in soil irrigated with wastewater (SIW) and groundwater
(SIG) before planting (1) and after harvest (2).

The NH+
4 concentration increased after harvest for both irrigation waters, with SIW

ranging from 16 to 32 mg/kg and SIG ranging from 23 to 42 mg/kg. Similar NH+
4 con-

centrations were found in both SIG and SIW (Figure 6). Considering the amounts of NH+
4

present in wastewater, it was likely that the concentration in SIW would rise higher than
the SIG. This observation indicates the likelihood of ammonium (NH+

4 ) losses occurring
within the system, primarily in the wastewater (WW) site. Given the high concentrations
of NH+

4 in wastewater, it raises concerns about the fate of this nutrient in the context of
irrigation and its potential environmental implications.

The total N increased in all soil layers for both SIW and SIG plots (Figure 7). In general,
similar total N concentrations were found in both SIG and SIW.

3.2.2. Available P and Total P Content in Soil

The P concentration (mg/kg) was measured as PO3−
4 and total P (Figures 8 and 9).

In the soil profile, all forms of P showed the highest concentrations in the top layers and
decreased with depth. In general, PO3−

4 in SIG was higher than in SIW before planting, and
after harvest, the concentration of PO3−

4 decreased. After harvest, the PO3−
4 concentration

in SIG showed a sharper drop (about 52%) in the first two layers, while in the bottom
layer, the reduction was about 42%. In contrast, only a small PO3−

4 reduction after harvest
was observed in the SIW soil layers where the drop was only up to 7% (Figure 8). The
measured concentrations showed that wastewater contributed to conserve soil available P
concentrations in SIW.

The total P concentration in SIG was higher than that in SIW. The levels did not change
during the experimental period (Figure 9).

3.2.3. Available K+ and Total K Content

K concentrations (mg/kg) were measured as K+ and total K (Figures 10 and 11). In
general, SIG samples showed higher concentrations of available K than SIW (Figure 11).
The amount of K+ available in SIW increased, i.e., from 50 mg/kg in the top layer before
planting to 116 mg/kg after harvest. The highest concentration of K+ was found in the
bottom layers (260 mg/kg). Similarly, for SIG, the K+ available concentration increased
after harvest to 627 mg/kg in the bottom layer.

The concentrations of total K for SIG and SIW were at the same levels for the bottom
layer before planting and after harvest, where the concentrations in SIG were higher than
those in SIW. For both SIG and SIW, the total K concentrations in the bottom soil layer
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remained unchanged during the experimental period. A drop was observed in the top
layer of both SIW and SIG (Figure 11).
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Figure 8. Available PO3−
4 concentration (mg/kg) in soil irrigated with wastewater (SIW) and ground-

water (SIG), soil before planting (1) and after harvest (2).
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Figure 9. The total P (mg/kg) in soil irrigated with wastewater (SIW) and groundwater (SIG), before
planting (1) and after harvest (2).

3.3. Manure Composition, Lettuce Yield, and Nutrient Balances

The manure applied to the soils had a composition (g/kg) of N, P, and K in a ratio of
35.0:4.2:0.2 for wastewater-irrigated soils and 36.4:3.0:0.2 for groundwater-irrigated soils.

The lettuce yield (in tons/ha) in wastewater-irrigated areas was higher, i.e.,
43.8 ± 16 tons/ha, compared to the groundwater-irrigated area, i.e., 35 ± 8 tons/ha.
However, the variability in results was quite large, and an independent T-test showed that
there were no significant differences in produce yield found between the areas irrigated
with groundwater and wastewater (t(6) = 0.992, p > 0.05).
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Figure 10. Available K concentration (mg/kg) in soil irrigated with wastewater (SIW) and groundwa-
ter (SIG) before planting (1) and after harvest (2).
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Figure 11. The total K concentration (mg/kg) in soil irrigated with wastewater (SIW) and groundwa-
ter (SIG) before planting (1) and after harvest (2).

The nutrient balances assessed in wastewater- and groundwater-irrigated areas re-
vealed that the nutrient contents in wastewater were distinctly higher than those in ground-
water (Table 5). Wastewater served as an essential nutrient source due to its nutrient content
contribution during the cropping season and contributed 88%, 96%, and 97% of N, P, and K
to the total nutrient supply, respectively, while groundwater contributed 23%, 76%, and
75% of N, P and K supply, respectively. The remaining fraction of the nutrient supply was
compensated by the farmers using manure as additional fertilizer (Table 5). Possibly, the
supplied nutrients via irrigation water and manure might only be partly taken up by the
plants, while the remainder leached to the underground. Nonetheless, the nutrient balances
demonstrated that the soil nutrient content in the wastewater-irrigated areas, in most cases,
was not depleted, in contrast to the groundwater-irrigated areas. The ratio of nutrient input
in relation to the ‘required nutrient supply’ was 0.3 and 2.3 for N, 1.3 and 11.4 for P, and 0.5
and 4.9 for K, for groundwater and wastewater, respectively. Results presented in Table 5
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showed that wastewater-irrigated areas had positive nutrient balances, which may have
influenced reduced nutrient depletion in the soil. In contrast, the groundwater-irrigated
areas exhibited an accentuated decline in nutrient contents, particularly for NO−

3 , available
P, total P, and available K (Figures 5 and 8–10). Overall, negative balances were found for N,
P, and K in groundwater-irrigated areas. These findings suggest that wastewater irrigation
contributed to nutrient supply, while groundwater irrigation without the application of
manure could lead to reduced nutrient content in the soil over time as this will lead to less
pollution and flushing of nutrients underground. The amount of N uptake was higher than
other nutrients, which was consistent with previous reports [48,49] on N, P, and K uptake,
showing nutrient contents of 1.5%, 0.2%, and 1.0% in plant mass, respectively.

Table 5. Nutrient balances in wastewater (WW)- and groundwater (GW)-irrigated areas for
lettuce production.

Irrigation Source
N_Inflow (kg/ha)

N_Uptake (kg/ha) Ratio Balance (kg/ha)
Water Manure

GW 151.5 497 1973.6 0.3 −1324.4

WW 5086.0 714.1 2571.2 2.3 3229.6

P_Inflow (kg/ha)
P_Uptake (kg/ha) Ratio Balance (kg/ha)

Water Manure

GW 64.9 20.7 66.2 1.3 19.4

WW 981.6 43 90.0 11.4 934.6

K_Inflow (kg/ha)
K_Uptake (kg/ha) Ratio Balance (kg/ha)

Water Manure

GW 342.6 113.2 970.9 0.5 −515.1

WW 4910.6 163.2 1038.7 4.9 4035.1

4. Discussion

These results from our research showed that the crop yield in WW-irrigated plots was
somewhat higher than that with GW-irrigated plots. The observed differences between GW
and WW were statistically insignificant. The average weight of lettuce in the wastewater
site was consistently higher than that in the groundwater site, providing evidence that
better yields may be attainable when wastewater is used for irrigation. Nevertheless, it
is important to consider that various other factors could have influenced the outcomes
observed. The observed crop yield may be related to the pH and CEC, which was verified in
both WW- and GW-irrigated plots. It was found that both GW and WW irrigation increased
the soil pH profile, particularly in the top layer, a result consistent with previous work [50].
This relatively high pH could have affected the negatively nutrient availability in both areas.
Groundwater had a slightly higher pH than wastewater, with values ranging between
7.5–8.5 and 7–8, respectively. These values fall within the acceptable pH ranges of 6.5–8.5
for irrigation water [50]. In addition, the EC values in irrigation water indicated slight to
moderate salinity levels of 0.7–3 dS/m, as classified by Sainju et al. [45]. These soil salinity
levels imply the possibility of salt accumulation in the soil in the long term, which may
limit crop productivity [51]. The relatively high pH may have affected the micronutrient
availability, which was, however, not monitored in this study. It was also found that
wastewater showed a higher nutrient content than groundwater, making wastewater a
fertilizing agent of interest for these areas. The implication of higher nutrient content
in WW than in GW is that soil stability in WW-irrigated crops will increase, making it
more reliable for long-term crop cultivation, while positively influencing crop growth
compared to GW-irrigated areas. With the agricultural use of wastewater being part of
appropriate nutrient management in the Infulene Valley, fewer nutrients would be lost to
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the environment, reducing environmental pollution such as eutrophication in the rivers
and coastal marine areas. The observed values for pH, average nitrate, and phosphate
concentrations in wastewater were consistent with those found in previous studies in the
same area [52]. However, for ammonia, the values differed, with higher averages in our
study compared to previously reported [52].

In this study, the soils irrigated with wastewater had a lower nutrient content than
those irrigated with groundwater. The reason for this is that farmers in the Infulene
Valley use manure as a part of the nutrient supply, which also impacts crop nutrient
availability (Table 5). Therefore, the nutrient supply in this study was not solely from
the irrigation water but also from manure. The amount of nutrients, i.e., nitrogen and
phosphorous, applied from manure and irrigation water during the period of study, in SIG
was half the amount applied in SIW (Table 5), indicating variations in the nutrient supply
in groundwater- and wastewater-irrigated plots. The manure composition used in these
areas in the study was animal manure, which is often blended with other materials [19,53].
It can be argued that the long-term use of manure may increase the soil organic matter
content and improve the soil quality, as observed in groundwater-irrigated soils.

Positive nutrient balances were found for wastewater-irrigated areas regarding all
evaluated nutrients and negative balances were found in groundwater-irrigated areas for
N, P, and K. These negative balances resulted from the difference between plant demand
and the combined nutrient supply by irrigation water and manure. The balance revealed
that the nutrient supply by water and manure might not satisfy the plant demand in
groundwater-irrigated areas in the long term as demonstrated in Table 5. For SIW, there
was a surplus of nutrients, which might have leached to the subsoil. The existing in-soil
storage plays a role in explaining the changes after harvest for both areas. Before planting,
the SIG samples had higher nutrient content than SIW. However, a nutrient reduction
occurred after harvest in the soil layers irrigated with groundwater (SIG), i.e., N, available
P and available K. After harvest, nutrient concentrations in SIW were lower than those in
SIG in some layers, i.e., available P and total K for the bottom layer, available K for the top
layer, and total P for all layers. Nonetheless, results showed an increase in nutrient content
for NO−

3 , NH+
4 , total N, available K, and total P in SIW. However, the nutrient content of

available P remained unchanged, while the content of total K declined. The overall increase
in nutrient content in the soil showed that the nutrient crop demand was not limited by
nutrient supply in SIW. The positive nutrient balance in WW-irrigated sites is likely to have
a significant impact on both the agricultural system productivity and the environment. In
the long term, it may lead to a reduced need for supplementary nutrients through manure
or fertilizers. For instance, the OM in WW is expected to improve soil structure and stability,
thereby enhancing crop production, promoting better crop growth, and increasing yields
over time. WW-irrigated areas require proper nutrient monitoring to reduce potential
environmental pollution. The negative nutrient balance in GW-irrigated areas will likely be
detrimental to the soil, leading to soil nutrient depletion, and negatively impacting crop
production. Farmers will likely need the use of more supplementary nutrients, such as
manure or fertilizers, resulting in increased expenses, and potentially higher market prices.
In the long run, this could affect the sustainability of the production in GW areas of the
Infulene Valley.

To the extent of this study, the soil condition in terms of N, P, and K concentration
after harvest for SIW and SIG indicated the vital contribution of nutrients present in the
wastewater in guaranteeing nutrient crop demand and soil nutrition in the area. In addition,
it can be argued that the amount of nutrients present in manure contributed to the crop
yield and soil condition after harvest for both groundwater- and wastewater-irrigated areas.
However, the amounts of nutrients present in the wastewater, compared to crop demand,
indicated that the use of manure in wastewater-irrigated areas might not be necessary.
It was found that the N, P, and K content in the wastewater was 34, 15, and 14 times
higher than in groundwater, respectively. These results clearly show that wastewater
may be considered an additional source of crop nutrient supply, as previously suggested
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by other studies [50,53–55]. Therefore, using wastewater for irrigation purposes offers
interesting perspectives for replenishing nutrients removed during crop production. Hence,
wastewater might be considered of interest for ferti-irrigation to benefit crop growth and
reduce fertilizer dependency [56]. Our findings corroborate with previous research [53,57],
highlighting the potential role of wastewater in nutrient supply in peri-urban areas, where
wastewater is frequently used for irrigation, which is the case for areas in the Infulene Valley.
Moreover, in many parts of sub-Saharan Africa, lack of nutrient supply and fertilizers has
been pointed as the cause for a low crop yield [28]. Therefore, wastewater can be considered
a reliable source of nutrients for crop production. However, concerns about the use of
wastewater for irrigation due to the presence of heavy metals and microbial contaminations
must be considered. Precautions should be taken to ensure the safe use of this irrigation
water in agriculture, such as adequate treatment, implementation of safe practices in the
field and during the irrigation and selling. Consumers should also take advanced measures
in the cleaning of products irrigated with wastewater.

This study highlights the advantages associated with the use of wastewater for irriga-
tion, particularly in the context of lettuce cultivation. One notable advantage is the nutrient
supply provided by wastewater, which significantly benefits plant growth. However, it is
crucial to acknowledge the impact of initial soil conditions on crop yield. Since, in this study,
the initial soil conditions in the wastewater site differed from those in the groundwater
site, and this disparity likely played a role in achieving similar yields in both locations.
Nevertheless, the wastewater site showed promising signs for better yields, as evidenced by
the higher average weight of lettuce heads found there. To strengthen the validity of future
studies and draw more conclusive results, we recommend standardizing soil conditions
when comparing various irrigation methods. This practice will help researchers to better
understand the true impact of nutrient-rich wastewater on crop production and ensure that
their conclusions are based on more controlled and consistent variables.

In addition to the irrigation water, the application of manure as organic fertilizer may
have also positively influenced the nutrient content in soil for both SIG and SIW. The
balance calculations showed a potential disparity of nutrient supply and crop requirements
when using wastewater for irrigation in the Infulene Valley, which was also found by
Boom et al. [12] in Jordan. Nevertheless, the results clearly demonstrated that the nutrient
content in wastewater is sufficient to supply the crop nutrients demand, likely leading to
the observed better yields in WW-irrigated crops, as found, with the weight of lettuce heads
varied 0.33–0.5 kg/head and 0.2–0.36 kg/ha in wastewater and groundwater irrigated
areas, respectively.

It should be noted that manure also played a role in nutrient accumulation in both SIG
and SIW while there is a surplus of nutrients supplied by wastewater, suggesting a possi-
bility of nutrient accumulation in the soil. Results showed that initially (before planting),
the analyzed soils (SIW) showed lower nutrient concentrations compared with the final
soil condition (after harvest). Therefore, there is a need to properly manage the nutrient
input from wastewater in the Infulene peri-urban area to prevent nutrient losses, affecting
the environment and groundwater resources. Previous studies indicated the potential risk
of nutrient losses, resulting from wastewater irrigation [29], albeit wastewater irrigation
may be considered a viable option for nutrient supplementation in lettuce production in
the Infulene Valley. Therefore, the implementation requires careful nutrient management
to prevent environmental hazards resulting from excess nutrients dosing. A range of
management options to prevent environmental problems and protect public health should
be adopted. An example of such management option is combining source control with
frequent water monitoring to aid decision making by managing the amount of nutrients
supplied by irrigation water and manure [10,18]. Additionally, measures can be taken at
wastewater treatment works, which are appropriate for the region, such as wetlands or
decentralized treatment.
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5. Conclusions

The findings of our study suggest that wastewater can be considered a viable al-
ternative for nutrient supply in the Infulene Valley, Maputo. The analysis showed that
wastewater contains higher amounts of essential nutrients (N, P, and K) compared to
groundwater. Although soils irrigated with wastewater initially had lower nutrient con-
tent than those irrigated with groundwater, the wastewater-based nutrients compensated
for the nutrient requirements for lettuce production and prevented nutrient depletion in
the soils.

The relative contribution of groundwater and wastewater as nutrient sources varied
significantly, and the research has demonstrated substantial disparities in nutrient con-
tributions between wastewater and groundwater as irrigation sources for meeting crop
requirements. Wastewater emerged as a potent supplier of essential nutrients, with rela-
tive values of nutrient input versus output, 2.3 for Nitrogen (N), 11.4 for Phosphorus (P),
and 4.9 for Potassium (K). In contrast, groundwater exhibited significantly lower nutrient
contributions, with relative values of nutrient input versus output 0.3 for N, 1.3 for P, and
0.5 for K. These findings underscore the critical role of wastewater in enhancing nutrient
supply for agricultural purposes.

These results highlight the potential of wastewater as an effective source for re-
plenishing nutrients in agricultural systems. Utilizing wastewater for irrigation purposes
not only helps to meet crop nutrient demands but also reduces reliance on traditional
fertilizers. However, careful nutrient management is crucial to avoid excessive nutrient
dosing, which can lead to health and environmental hazards such as groundwater pollution,
pollution of water ways, and soil degradation. Implementing strategies such as combined
source control, frequent water monitoring, and appropriate treatment options can help for
ferti-irrigation in peri-urban areas like the Infulene Valley.

Overall, this study provides valuable insights into the nutrient content of wastewater
and impact on soil fertility and crop productivity. These findings have broader applications
in various agricultural settings where wastewater is used for irrigation such as the impor-
tance of monitoring the amount of nutrient present in wastewater. To fully harness the
benefits of wastewater irrigation while mitigating potential risks, further research on the
long-term effects of wastewater irrigation and the implementation of appropriate nutrient
management practices are essential. This research was conducted in real-world farmer
field conditions to offer valuable insights into practical applications of water reclamation
in the Infulene Valley. It is important to acknowledge that these field conditions often
involve less control over variables, which can introduce increased variability into the results.
Nevertheless, this approach allowed us to bridge the gap between controlled experiments
and real-world scenarios, providing a more comprehensive perspective on the subject.
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