

"Even in resource-rich nations, meeting infrastructural needs continues to be a daunting task. The problems are almost unimaginably more severe in developing nations, which face a host of additional difficulties related to rapid urbanization; lack of financial, organizational, and human capital; and diminishing natural resources" (Brown & Stigge, 2017)

"Even in resource-rich nations, meeting infrastructural needs continues to be a daunting task. The problems are almost unimaginably more severe in developing nations, which face a host of additional difficulties related to rapid urbanization; lack of financial, organizational, and human capital; and diminishing natural resources" (Brown & Stigge, 2017)

Flood Risk & spatial segregation

Sedimentation

CURRENT SEDIMENT BALANCE

YEARLY AVERAGE

Image based on: Barrera Crespo, P. D., Mosselman, E., Giardino, A., Becker, A., Ottevanger, W., Nabi, M., & Arias Hidalgo, M. (2018).

Sedimentation

SEDIMENT BALANCE PRIOR SHRIMP FARMING AND MANGROVE DEFORESTARION

YEARLY AVERAGE

Image based on: Barrera Crespo, P. D., Mosselman, E., Giardino, A., Becker, A., Ottevanger, W., Nabi, M., & Arias Hidalgo, M. (2018).

"90% of the rainfall falls between December and April.... high discharges and high precipitation rates are likely to coincide, possibly leading to an increased flood risk."

-880mm/ year in NL 280 in March"in Guayaquil

(Molenaar, Pak, de Pous, & van de Werff, 2018)

Table 1 | City ranking by risk (AAL) and relative risk (AAL in percentage of GDP) for 2005.

	Ranking by AAL (US\$ million)					Ranking by relative AAL (percentage of city GDP)				
	Urban agglomeration	100 year exposure	AAL, with protection (US\$ million)	AAL, with protection (percentage of GDP)		Urban agglomeration	100 year exposure	AAL, with protection (US\$ million)	AAL, with protection (percentage of GDP)	
1	Guangzhou	38,508	687	1.32%	1	Guangzhou	38,508	687	1.32%	
2	Miami	366,421	672	0.30%	2	New Orleans	143,963	507	1.21%	
3	New York—Newark	236,530	628	0.08%	3	Guayaquil	3,687	98	0.95%	
4	New Orleans	143,963	507	1.21%	4	Ho Chi Minh City	18,708	104	0.74%	
5	Mumbai	23,188	284	0.47%	5	Abidjan	1,786	38	0.72%	
6	Nagoya	77,988	260	0.26%	6	Zhanjiang	2,780	46	0.50%	
7	Tampa—St. Petersburg	49,593	244	0.26%	7	Mumbai	23,188	284	0.47%	
8	Boston	55,445	237	0.13%	8	Khulna	2,073	13	0.43%	
9	Shenzen	11,338	169	0.38%	9	Palembang	1,161	27	0.39%	
10	Osaka—Kobe	149,935	120	0.03%	10	Shenzen	11,338	169	0.38%	
11	Vancouver	33,456	107	0.14%	11	Hai Phòng	6,348	19	0.37%	
12	Tianjin	11,408	104	0.24%	12	N'ampo	507	6	0.31%	
13	Ho Chi Minh City	18,708	104	0.74%	13	Miami	366,421	672	0.30%	
14	Kolkata	14,769	99	0.21%	14	Kochi	855	14	0.29%	
15	Guayaquil	3,687	98	0.95%	15	Tampa—St. Petersburg	49,593	244	0.26%	
16	Philadelphia	22,132	89	0.04%	16	Nagoya	77,988	260	0.26%	
17	Virginia Beach	61,507	89	0.15%	17	Surat	3,288	30	0.25%	
18	Fukuoka—Kitakyushu	39,096	82	0.09%	18	Tianjin	11,408	104	0.24%	
19	Baltimore	14,042	76	0.08%	19	Grande_Vitória	6,738	32	0.23%	
20	Jakarta	4,256	73	0.14%	20	Xiamen	4,486	33	0.22%	

13

Flood prone areas Img 1: El Tiempo Img 2: Teleamazonas Img 3: Expreso

How to save resources and execute the best strategy for the context?

How to mitigate the risk?

Are there enough resources even to deal with this problem?

Is there anything positive from Guayaquil's current condition?

Income share held by the richest 10%

Different Realities

Spatial Segregation

29

Research question

-How can a coordinated strategy mitigate flood risk and diminish spatial segregation following the Infrastructural Ecologies paradigm?

This is tested in case study of Guayaquil (Ecuador) by conducting a case study with explanatory and exploratory research methods.

Co-presence

Non Locals – residing 1000m away

Co-presence

Access improving diversity

Co-presence

Evidence what streets are more likely to fall into the shortest paths.

Meaning they are likely to be taken in-between origin and destination

Fragmentation on 2 sides of sea branch

Fragmentation on 2 sides of sea branch

Fragmentation on 2 sides of sea branch

Similarly develop for entire city

Further Steps

At core of interaction, participants develop single focus of attention

Flood Risk Spatial segregation Water Network Copresence Network

Co-presence is necessary but no sufficient toward interaction outcomes. (Collins)

Interaction – Single focus of attention

Implemented in Europe and Australia

"Playing Sports and participating in physical recreation offers important opportunities to enhance health and wellbeing...participation can offer a social and political space in which to cultivate cultural diversity and promote social inclusion" (Cortis, Pooja, & Muir, 2007)

Interaction – Single focus of attention

Public space – off education hours For locals and non- locals passing by

Interaction – Single focus of attention

Public space – off education hours

Central nodes

Interaction – Activator

Area of intervention

Schools to become central storage

Concavely depressed areas

in&out

Immersed in Green & Blue taking water

Area of intervention

Bio swale

Area of intervention

Intensity (mm/hours)	Duration (hours)								
Return period	1	2	4	8	12	24			
2 years	49,9	35,4	21,9	12,5	9	5,1			
5 years	58,9	42,8	26,5	15,1	10,9	5,3			
10 years	66,2	48,3	29,9	17,1	12,3	7,1			
25 years	76,2	55,5	34,4	19,6	14,2	8,2			
50 years	84,1	60,9	37,7	21,5	15,7	9,1			
100 years	92,3	66,3	41,1	24,1	17,1	9,9			

	Total of Surplus in m3	Total	Area Schools	m of Depression Storage
Rp=2_2Hours	3.758,27	7.516,53	2500	3,01
Rp=2_4Hours	1.628,94	6.515,77		2,61
Rp=10_2Hours	5.787,73	11.575,47		4,63
Rp=10_4Hours	2.252,46	9.009,84		3,60
Rp=100_2Hours	8.681,67	17.363,33		6,95
Rp=100_4Hours	3.314,65	13.258,60		5,30

Source: Molenaar, F., Pak, T., de Pous, H., & van der Werff, B.-J. (2018). Flood Prevention Guayaquil. Delft: TU Delft Repository.

Surplus water= Rain - Absorption - storage capacity

Source: Van de Ven, F., Hooijmeijer, F., & Aalbers, K. (2018). BK3TE4 ST water flow calculation sheet.

3,29m of storage

	Areas in Case A	Adjustement	Porcentaje of unpaved	Adjusted surfce	Improved areas. Case B	Incoming water	Surplus water
Garden open soil (private) public Surface water Rain garden, infiltration field	2.930,90	1	42%	2.930,90	24.935,02	82,29	82,29
Lawn, green belt, shrub (public) Playground, footpath	1.706,26	1	24%	1.706,26	14.516,23	47,90	47,90
Vegetated swales	2.373,09	1	34%	2.373,09	20.189,38	369,47	369,47
PAVED private			Porcentaje of total		Rested area		
Roofs – sloping Roofs – flat, tar Green roofs – extensive Green roofs – intensive	77.939,83	0,7	48%	54.557,88	54.557,88	2580,59	2580,59
Garden tiled public	8.394,45	0		-	-	0,00	0,00
Roads, car parks – asphalt Roads, car parks – porous asphalt Roads, car parks – brick Roads, car parks – porous pavement	46.881,15	0,7		32.816,81	32.816,81	567,73	567,73
Sidewalk, terraces –tiles	22.632,10	0,7	14%	15.842,47	15.842,47	464,18	464,18
,	162.857,78			110.227,41	162.857,78	m3 water Storage Hight	4112,16 3,29

Method Source: Van de Ven, F., Hooijmeijer, F., & Aalbers, K. (2018). BK3TE4 ST water flow calculation sheet.

Scarcity won't have an even impact in society

Rights to water need to be sought after and defended

Source: Henriquez, L., & Van Timmeren, A. (2017). Under Pressure: Waver and thr city. Delft: TU Delft & AMS Institute.

Scarcity won't have an even impact in society

Rights to water need to be sought after and defended

Source: Henriquez, L., & Van Timmeren, A. (2017). Under Pressure: Waver and thr city. Delft: TU Delft & AMS Institute.

Spatial Manifestation in the city to maintain the rights for water

Spatial Manifestation in the city to maintain the rights for water

Collaboration

