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Abstract. New high order implicit-explicit Runge-Kutta methods have been developed and
implemented into a finite volume code to solve the Navier-Stokes equations for reacting gas
mixtures. The resulting nonlinear systems in each stage are solved by Newton’s method.
If only the chemistry is treated implicitly, the linear systems in each Newton iteration
are simple and solved directly. If in addition certain convection or diffusion terms are
treated implicitly as well, the sparse linear systems in each Newton iteration are solved
by preconditioned GMRES. Numerical simulations of deflagration-to-detonation transition
(DDT) show the potential of the new time integration for computaional combustion.

1 INTRODUCTION

The distinctive feature of premixed combustion is its ability to propagate as a self-
sustained wave of the exothermic chemical reaction spreading through a homogeneous
combustible mixture either as a subsonic deflagration (premixed flame) or supersonic
detonation. Thus, both deflagration and detonation appear to be stable attractors each
being linked to its own base of initial data.

In unconfined obstacle-free systems the concrete realization of the specific propagation
mode is controlled by the ignition conditions. Normally, deflagrations are initiated by a
mild energy discharge, i.e. by a spark, while detonations are provoked by shock waves
via localized explosions. It is known, however, that in the presence of obstacles or con-
finement (tube walls, wire screens, porous matrix, etc.) the initially formed deflagration
undergoes gradual acceleration abruptly converting into detonation [1, 2, 3, 4, 5]. In spite
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of numerous efforts, the basic mechanisms controlling the spontaneous transition from de-
flagrative to detonative combustion (DDT) is still remaining a major unsolved challenge
of the combustion theory [6, 7, 8, 9].

The classical explanation of DDT [1, 2, 3] was due to flame acceleration in a tube
caused by the flame interaction with the nonuniform flow ahead of the flame front, which
is formed by the flame pushing the unburned gas in a tube with adhesive walls. The
nonuniform flow stretches the flame, so that the shape of the flame mimics the veloc-
ity profile in the flow ahead. This increases the flame surface area, thus accelerating
the reaction wave propagation and the flow. This flame-acceleration phenomenon is pre-
sumably enhanced by the flame interaction with turbulence generated in the boundary
layer formed in the flow ahead of the flame [1, 2, 10]. Indeed, it has recently been real-
ized [11] that the hydraulic resistance alone is capable of triggering the transition even
if the multi-dimensional effects, such as the flame acceleration due to folding, are com-
pletely suppressed and the system is regarded as effectively one-dimensional. The basic
predictions of the one-dimensional model were recently corroborated by direct numerical
simulations of premixed gas combustion in thin channels, where the hydraulic resistance is
incorporated through the no-slip boundary condition rather than through the volumetric
drag-force [12]. It was also recently shown [13, 14] that a similar effect is observed in
wide channels and in the channels with rough walls. For both no-slip and rough walls
the transition is triggered predominantly by hydraulic resistance inducing formation of
an extended preheat zone ahead of the advancing flame, and thereby creating conditions
pertinent to Zeldovich’s mechanism of soft initiation. The detonation first develops in the
near-wall mixture adjacent to the flame, corroborating many experimental observations
(e.g. [7]).

Deflagration-to-detonation transition in unconfined systems is more problematic. There
are reports claiming that in highly sensitive oxygen-based mixtures the transition may be
triggered by outwardly propagating ’free-space’ flames [15]. In this description, the tran-
sition is commonly attributed to the flame acceleration induced by the Darrieus-Landau
(DL) instability (spontaneous flame wrinkling). Yet, the acceleration resulting from the
wrinkling seems to be a rather weak effect whose ability to cause the transition is not at
all obvious. In the foreword to Nettleton’s monograph on gaseous detonation [3], when
discussing the problem of transition, Zel’dovich wrote, ”The role of the internal instability
of the plane slow flame (Landau, Darrieus) is still not clear.”

As is now well known, (e.g. [16, 17, 18, 19, 20, 21]) in wide channels the DL instability
results in the formation of wrinkled flames and the flame speed enhancement due to the
increase of the flame area. The wrinkled flame generates a shock with a Mach number of
about 1.2 - 1.5, which is too low to trigger detonation. Yet, as has recently been shown [13,
14, 22, 23], there is another previously overlooked aspect of the DL instability. The folded
reaction zone creates a low-gradient preheating (preconditioning) of the fresh mixture
trapped within the fold interior. This, under favorable conditions, may invoke autoignition
triggering the transition. The mechanism of the transition is the temperature increase

2



E. Lindblad, D.M. Valiev, B. Müller, J. Rantakokko, P. Lötstedt and M.A. Liberman

due to the influx of heat from the folded reaction zone, followed by autoignition. The
transition occurs when the pressure elevation at the accelerating reaction front becomes
high enough to produce a shock capable of supporting detonation. This requires the fold
to be sufficiently narrow and deep. The effect was found to be sensitive to the flame’s
normal speed and the reaction rate pressure-dependency, favoring fast flames and high-
order reactions. In the context of colliding elliptic flames the folding induced transition
was reported also in [24] and for flame initiated by corrugated walls in [25].

A central issue in simulations of combustion is to ensure that the computations resolve
all the most important flow and chemical time and space scales. To simulate combustion
processes from first principles, it is necessary to resolve the relevant scales from the size
of the system to the flame thickness, a range that can cover up to twelve orders of
magnitude. This computational challenge in the development of numerical algorithms for
solving coupled partial and ordinary differential equations resulted in the development of
several numerical methods, including adaptive mesh refinement to deal with multiscale
phenomena, domain decomposition, and multiresolution methods using wavelets.

The present work is aimed at gaining further improvement of the numerical code per-
formance for modeling complex combustion processes. The present simulations were per-
formed using a parallel version of the code developed by L.-E. Eriksson [26]. This code
solves the Navier-Stokes equations for reacting gas mixtures using a third-order upwind-
biased finite volume method for the inviscid fluxes and a second-order central discretiza-
tion of the viscous fluxes with an explicit second order Runge-Kutta time integration
method. The code has been successfully used for solving physics problems of flame insta-
bility in wide tubes [16, 18, 20] and gaining deeper understanding of DDT in wide tubes
with thermoisolated (adiabatic boundary conditions) and rough walls [13, 14, 22, 23].
Further steps in the DDT studies will include investigation of heat losses to the walls,
influence of complex chemistry and flame-turbulence interaction, and simulations in 3D.
These additions increase the stiffness of the governing equations and therefore the time
stepping method must be improved.

In the present study, new time integration methods have been implemented into the
combustion code, namely second and fourth order implicit-explicit Runge-Kutta methods
[28] [29], as well as a third order implicit-explicit Runge-Kutta method [36]. Whereas the
inviscid and viscous fluxes are treated explictly, the chemistry is treated implicitly. Since
only the species continuity equations have nonzero chemistry terms, the resulting nonlin-
ear systems only involve the species densities and are quickly solved by Newton’s method.
Other classifications of non-stiff and stiff parts of the equations have been investigated
as well. Then, the resulting nonlinear systems are solved using efficient Jacobian matrix
calculations and GMRES. The systems are preconditioned using incomplete LU factor-
izations. Preliminary results show that the increased stability of the implicit method
combined with the efficiency of the explicit method will be an efficient solver for the
intended combustion problems.
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2 NAVIER-STOKES EQUATIONS FOR REACTING GAS

2.1 Thermodynamic, Transport and Chemical Models

We consider a thermally perfect gas mixture of n species Mi with the molecular weights
Wi and the densities ρi. The mass fraction of species i (meaning Mi) is the ratio of the
mass of species i and the mass of the mixture, i.e.

Yi =
ρi

ρ
, (1)

where ρ is the density of the mixture. Details of the thermodynamic model we used are
given by Kuo [30].

Viscosity, molecular diffusion and heat conduction are described by simplified transport
models. For the viscosity μ, we use the Sutherland law. The Schmidt numbers

Sci =
μ

ρDi
(2)

of all species are assumed to be equal and constant. Di denotes the diffusion coefficient
of species Mi and is determined from equation (2) by the specified Schmidt number and
the computed density and viscosity. The Prandtl number

Pr =
cpμ

κ
(3)

is assumed to be constant. cp and κ are the specific heat at constant pressure and the
heat conduction coefficient of the mixture, respectively.

We consider a chemical reaction mechanism with m reactions [30]. A reaction h (here
h is an index for reactions and not the enthalpy) is of the form

n∑
k=1

ν ′
k,hMk −→

n∑
k=1

ν ′′
k,hMk, (4)

where ν ′
k,h and ν ′′

k,h are the stoichiometric coefficients of reaction h for species k appearing
as a reactant and as a product, respectively. The reaction rate of reaction h is

kh

n∏
k=1

(
ρk

Wk

)ν′
k,h

(5)

with Wk the molecular weight of species k and the Arrhenius term

kh = AhT
αhexp

(−Ea
h

RuT

)
, (6)
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where Ah and αh are constants and Ea
h is the activation energy of reaction h. Ru is the

universal gas constant, and T is the temperature. The backward reaction of reaction (5)
is

(
kh

KC
h

)
n∏

k=1

(
ρk

Wk

)ν′′
k,h

. (7)

The equilibrium constants

KC
h =

n∏
k=1

(
ρk

Wk

)(ν′′
k,h

−ν′
k,h

)

equilibrium

(8)

are functions of temperature, and tables exist for most of them [31]. With the definitions
above, the production rate ωi of species i is given by

ωi = Wi

m∑
h=1

(ν ′′
i,h − ν ′

i,h)kh

(
n∏

k=1

(
ρk

Wk

)ν′
k,h − 1

KC
h

n∏
k=1

(
ρk

Wk

)ν′′
k,h

)
. (9)

2.2 Navier-Stokes equations

In Cartesian coordinates, the 2D compressible Navier-Stokes equations for reacting gas
flow read in conservative form [30, 17]

∂U

∂t
+

∂(F − Fv)

∂x
+

∂(G − Gv)

∂y
= S, (10)

where U is the vector of the conservative variables, F = F1 and G = F2 are the inviscid
flux vectors for the x- and y-directions, and Fv = Fv1 and Gv = Fv2 are the viscous flux
vectors for the x- and y-directions. Let the Cartesian coordinates and velocity components
be denoted by (x1, x2)

T = (x, y)T and (u1, u2)
T = (u, v)T . The pressure, the total energy

per unit mass, the total enthalpy, and the enthalpy of species k are denoted by p, E, H ,
and hk, respectively. Then the conservative variables, the inviscid and viscous flux vectors
are

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρu1

ρu2

ρE
ρY1
...
ρYn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Fj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρHuj

ρ1uj
...
ρn−1uj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,Fvj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
τ1j

τ2j∑2
l=1 ulτlj + κ ∂T

∂xj
+ ρ

∑n
k=1

(
Dkhk

∂Yk

∂xj

)
D1ρ

∂Y1

∂xj

...

Dn−1ρ
∂Yn−1

∂xj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)
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and S is the source term

ST = (0, 0, 0, 0, ω1, . . . , ωn−1) .

For a Newtonian fluid, the components of the shear stress tensor are

τij = μ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
μ

(
2∑

k=1

∂uk

∂xk

)
δij

where δij = 1 if i = j and δij = 0 if i �= j.
Integrating equation (10) over a control volume Ω (actually a surface in 2D) with

the boundary ∂Ω and the outer normal unit vector n = (nx, ny)
T and using the Gauss

theorem, we obtain the integral form of the 2D Navier-Stokes equations for a reacting gas
flow

∫
Ω

∂U

∂t
dV +

∫
∂Ω

(F− Fv)nxdA +
∫

∂Ω
(G −Gv)nydA =

∫
Ω
SdV. (12)

3 FINITE VOLUME METHOD

With the finite volume method, equation (12) is discretized for each grid cell by ap-
proximating

dUi,j

dt
V oli,j +

N∑
s=1

[(F − Fv)nxA + (G − Gv)nyA]s = Si,jV oli,j. (13)

where Ui,j is the volume averaged vector of the conservative variables in the cell Ωi,j

and Si,j the volume averaged source vector. V oli,j is the area of the cell. Since we
consider structured grids with quadrilaterals as control volumes, the cells have N = 4
sides. As is the length of the cell interface s. The cell averages Ui,j are the unknowns
in the cell-centered finite volume method. Therefore, we have to approximate the flux
vectors at the cell interfaces. The inviscid flux vectors are discretized by a third-order
upwind-biased approximation of the characteristic variables and using a total variation
diminishing (TVD) limiter [26] [27]. Central discretizations are employed for the viscous
fluxes at the cell interfaces. The volume averaged nonlinear source term is approximated
by

Si,j ≈ S(Ui,j). (14)

After the finite volume discretization of equation (13), we have a system of ordinary
differential equations (ODEs) for the time dependent cell averages Ui,j

y′ = f(y) + g(y) , (15)

where y denotes the vector of all Ui,j, f(y) the vector of all inviscid and viscous flux
contributions, i.e. all − 1

V oli,j

∑N
s=1[(F

n −Fn
v )nxA + (Gn −Gn

v )nyA]s, and g(y) the vector
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of all source terms Si,j. Thereby, we classify the right hand side of the ODE (15) into
a non-stiff part f and a stiff part g. Other classifications are possible and discussed in
section 6.2.

4 IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS

We have developed high order implicit-explicit Runge-Kutta (IERK) methods to effi-
ciently solve separable stiff problems (15) [28, 29]. While first-order IERK methods have
frequently been used to treat the stiff source terms from chemistry implicitly in hypersonic
flow and combustion simulations [32, 33], two of our new IERK methods are second order
accurate and one is fourth order accurate. Similar high order IERK methods have only
recently been available [34, 35, 36, 37, 38].

An explicit Runge-Kutta (ERK) method is used to solve the non-stiff part f and a
diagonally implicit Runge-Kutta (DIRK) method is employed to solve the stiff part g. A
general s-stage implicit-explicit Runge-Kutta (IERK) method consists of an s-stage ERK
and an s-stage DIRK method with common weighting coefficients bi, i = 1, ..., s. The
following tableaus define the ERK and DIRK methods of an IERK method [28, 29]:

0
ε21 0
| 0

εs1 − εs,s−1 0
b1 − − bs

a11

a21 a22

|
as1 − − ass

b1 − − bs

(16)

The approximate solution yn+1 at t = (n + 1)Δt is defined by

yn+1 = yn + Δt
s∑

i=1
biki , where

ki = f

(
yn + Δt

i−1∑
j=1

εijkj

)
+ g

(
yn + Δt

i∑
j=1

aijkj

)
,

i = 1, . . . , s.

(17)

The coefficients of our 4th order accurate 5-stage IERK method denoted as IERK45
method are given in Table 1.

5 PARALLELIZATION

The original code is parallelized using the Message Passing Interface (MPI). Since
the solver is designed to handle multi-block grids the processors are first divided into
clusters, one cluster for each sub-block. The number of processors in each cluster are
chosen to optimize the load balance using the clustering algorithm in [39]. The blocks are
then partitioned in two dimensions within the corresponding processor cluster. Almost all
calculations can be performed locally within the processors except for the flux calculations
which require data from its nearest neighbors. The exchange of data is handled with out-
of-order non-blocking communication using MPI’s persistent communication objects.
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Table 1: Coefficients for fourth order implicit-explicit Runge-Kutta method IERK45

ε21 = 0.39098372452428 a11 = 1/4
ε31 = 1.09436646160460 a21 = 0.34114705729739
ε32 = 0.33181504274704 a22 = 1/4
ε41 = 0.14631668003312 a31 = 0.80458720789763
ε42 = 0.69488738277516 a32 = −0.07095262154540
ε43 = 0.46893381306619 a33 = 1/4
ε51 = −1.33389883143642 a41 = −0.52932607329103
ε52 = 2.90509214801204 a42 = 1.15137638494253
ε53 = −1.06511748457024 a43 = −0.80248263237803
ε54 = 0.27210900509137 a44 = 1/4
b1 = a51 a51 = 0.11933093090075
b2 = a52 a52 = 0.55125531344927
b3 = a53 a53 = −0.1216872844994
b4 = a54 a54 = 0.20110104014943
b5 = a55 a55 = 1/4

The solver has been tested on a Sun Fire 15k server with UltraSparcIIIcu processors
running at 900MHz. The largest partition of the machine has 36 processors and 36GB
RAM. Each processor has 64KB L1-cache and 8MB L2-cache. We have run several test
cases with different problem sizes (600x200 to 1000x200 grid points) and different numbers
of blocks (1 to 5 blocks in the multi-block case). All cases show excellent scaling with
superlinear speedup up to full machine size, i.e., speedup close to 40 on 36 processors,
cf. Figure 1 [40]. The superlinear speedup is due to better cache utilization as data is
divided into smaller pieces when running on multiple processors.

6 RESULTS

6.1 Deflagration to Detonation Transition (DDT)

One of the typical pictures of the transition due to formation of the appropriate flame
fold is shown in Fig. 2, where the sequence of zonal images depicting the square of
pressure gradient gives a cinematic impression of the dynamics of the flame front during
the incipient stage of the transition from deflagration to detonation [14]. These images
resemble the schlieren photographs of laboratory experiments, though the latter visualize
gradients of the density rather than of the pressure.

The numerical resolution is 10 cells per flame width. The time instants of Fig. 2 are
not evenly spaced but rather clustered around the transition point. The earlier images
depicting the incipient phase of the flame evolution in the vicinity of the tube’s closed
end, are not shown.
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Figure 1: Speedup versus number of processors for 3 blocks running on a SunFire 15k, − ideal speedup,
.−. 1D decomposition of each block separately, ... 2D decomposition of each block separately, −− dividing
the processors among the blocks [40]

A zoomed view of the flame fold dynamics near the transition point is shown in Fig.
3 [14]. The associated profiles of temperature, density, flow velocity, and pressure along
the fold axis are plotted on Fig. 4 [14]. Here one readily observes (i) formation of the
large-scale preheat zone (preconditioning) in the unreacted gas trapped within the fold
interior, (ii) acceleration of the fold-tip, and (iii) the pressure elevation and formation
of a high pressure peak. The transition occurs when the pressure peak becomes high
enough to produce a shock capable of supporting detonation. This requires the fold to be
narrow and deep enough; otherwise one ends up with a moderately strong pressure wave
insufficient for triggering the transition. This mechanism of transition by an appropriate
non-uniformity in the temperature field (preconditioning) may naturally be associated
with Zel’dovich’s theory of soft initiation [41, 42].

6.2 Test of IERK Methods

To show the advantages of using IERK methods for combustion a series of DDT sim-
ulations have been performed. The flux is calculated using the combustion code of [26].
The original code uses a second order explicit Runge-Kutta method known as Gary’s
method [43] for the time stepping. For our tests it has been replaced by implicit-explicit
Runge-Kutta methods of order 2, 3 and 4. The third order method is derived in [36],
and the second and fourth order methods are derived in [28, 29]. Simulations showing
order of accuracy and applications of IERK methods to various model problems are also
presented in the cited source papers.
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6.2.1 Static implicit treatment of chemistry

As stated above the code by [26] has been successfully used for combustion calculations.
The need for implicit treatment of the chemistry becomes evident when studying the
transition from deflagration to detonation for a propagating flame. Fig. 5 shows the
temperature contours of the DDT simulation obtained using the original explicit code.
Soon after the transition the solution becomes unstable.

Since the chemical source term (14) only depends on cell data, the implicit iteration
can be performed by solving a (3 + n) × (3 + n) system per cell where n is the number
of species. In the present simulations a mixture of two species representing burned and
unburned fuel is used. The production rate of the fuel is given by an Arrhenius expression,
cf. (9) and (6).

ω1 = −Aρm−1ρY exp
(−Ea

RuT

)
, (18)

where Y is the mass fraction of the fuel, A the reaction rate constant, and Ea the
activation energy. Here m denotes the reaction order. The temperature T is dependent
on ρY and given by

T =
E − H0 − 1

2
(u2 + v2)

Cv

(19)

where E is the total energy per unit mass, ρ is the density and u and v are velocities
in x and y directions, respectively. The enthalpy of formation H0 and the specific heat at
constant volume Cv for a mixture of n species are given by

H0 =
n∑

i=1

YiH0i
(20)

Cv =
n∑

i=1

YiCvi
(21)

H0i
and Cvi

are corresponding values for species i. For the present case n = 2, Cv1 = Cv2

and H02 = 0 and (19) thus reduces to

T =
E − Y H01 − 1

2
(u2 + v2)

Cv1

(22)

This reduces the implicit treatment of the source term (18) to a scalar equation which
can be solved using scalar Newton iteration without having to solve any linear systems or
compute Jacobians. The overhead for solving the chemistry implicitly is therefore very
small. Fig. 6 shows the temperature contours obtained for the same setup as the explicit
case above but using the first order implicit Euler method for the chemistry treatment.
Here the solution remains stable during the transition.
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The DDT for the implicit-explicit code occurs after roughly twice the time as for the
explicit code. This is because of the chaotic behaviour of the perturbations on the flame
front that cause the cusps and thereby trigger the DDT. Therefore direct comparisons
cannot be made between the two cases, but the main observation is that the explicit
code becomes unstable shortly after the DDT when choosing the time step based on the
stability conditions for the inviscid and viscous parts.

6.2.2 Flexible treatment of flux terms using ”switch” technique

Although the implicit treatment of the chemistry term proves efficient to retain stability
during DDT, apart from being more efficient than fully implicit methods, the real bene-
fits come from being able to configure the explicit and implicit treatment more flexibly.
Consider an ODE or a semi-discretized PDE consisting of several separable terms:

U ′(t) =
l∑

i=1

Fi (t, U) . (23)

For a given problem some of the Fi terms will be non-stiff and some will be stiff. Every
Fi will yield an upper limit on the time step for an explicit method to remain stable, the
stiffer the term the smaller the limiting time step. When using an explicit method the
most restrictive time step will be used for all Fi terms, resulting in unnecessary evaluations
of the other terms. When the stiffness varies significantly among the Fi terms the use
of IERK methods can be more efficient than fully explicit or implicit methods, as shown
above.

The stiffness can vary in the course of a simulation, both in time and space. For combus-
tion simulations the flux gradients are steepest near the flame, which moves continuously.
Depending on the specific problem cell shapes, grid configurations and boundary layer
effects greatly affect which Fi term will yield the most restrictvie time step.

For these situations it is beneficial to be able to freely choose which Fi terms are
treated implicitly. In the Navier-Stokes example the Fi consists of three terms, inviscid
flux, viscous flux and chemical source term. In the next example, a flame propagating in a
tube similar to the case described above, the limiting time step for the inviscid and viscous
fluxes are calculated in each step, the chemical source term is always treated implicitly.
For this problem the viscous terms yield a more than 100 times smaller limiting time
step than the inviscid terms. This small step size is not needed to maintain accuracy and
therefore we choose to treat also the viscous terms implicitly. This enables us to use a
time step limited only by the inviscid terms.

To investigate the impact of a larger time step a reference solution is computed ex-
plicitly using a time step Δtref = 4 · 10−11 s, calculated from the stability condition of
the viscous terms. This is compared with the solutions obtained when using a time step
ΔtIERK = 4 · 10−9 and treating the viscous terms and chemistry implicitly.
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The nonlinear equations in each stage of the IERK methods are solved by Newton’s
method. The Jacobian matrices are calculated by a variant of TOMS 618 [44]. The
linear systems in each Newton iteration are solved by the generalized minimum residual
method (GMRES) with a restart vector length of 20. Krylov methods like GMRES are
well suited for solving large, sparse linear systems [45, 46, 47]. The implementation used
is from [48]. To increase the convergence rate of the GMRES iterations preconditioning
is used. Several types of incomplete LU-factorizations (ILU) have been tested and the
simulations discussed here use ILU0 preconditioning from SPARSKIT [49, 50]. The ILU0
preconditioning is a very simple technique where no new non-zero elements are introduced
during the ILU factorization, thereby allowing for efficient storage of the sparse matrices.

Fig. 7 shows the density contours at t = 1000Δtref , t = 5000Δtref and t = 10000Δtref .
The results obtained with IERK45 are in good agreement with thoseobtained with the
explicit second order Runge-Kutta method (ERK2). Although the computational work
per time level is larger, IERK45 is more efficient than ERK2, because the time step for
IERK45 can be chosen 100 times larger than for ERK2.

The original code is set to recalculate the grid as the wave propagates. The grid update
is dependent on the current solution and therefore direct comparisons of the solutions
would be misleading. The differences in the final solutions would originate both from the
solution interpolation and from the longer time step and a direct comparison would not
be possible. Therefore a fixed grid was used to obtain the results shown in figure 7.

6.2.3 Dynamical configuration of explicit and implicit treatment

A general approach to deal with the varying stiffness in time and space is to use adaptive
mesh refinement, AMR, to concentrate the grid resolution on areas where it is needed.
To give even more efficiency the configuration of which Fi terms are treated explicitly
and which are treated implicitly can be changed dynamically during a simulation. The
same mechanisms for deciding when to refine or coarsen the grid resolution can be used to
switch implicit treatment of different terms on and off. In this way the expensive implicit
solvers are only used where absolutely needed.

7 CONCLUSIONS

A new time discretization has been developed for integration of the equations of com-
bustion. By treating parts of the unknown variables implicitly and the remaining parts
explicitly in a Runge-Kutta method, significant savings in computing time are possible.
The chemistry equations in each cell are advanced by an implicit time-stepping in one
example. The time step restrictions in an explicit method due to the stiffness in the
chemistry model are then avoided. In another model example, the viscous and chemistry
terms are integrated implicitly and compared to explicit integration for all components.
The resulting CFL number with the implicit-explicit method is up to 100 times larger
than with the explicit scheme without hampering the accuracy in the solution.
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Figure 2: Time sequence of images for the flame/shock dynamics near the transition point. Stronger
shading corresponds to higher pressure gradient. The time and distance are referred to Lf/Uf0 and Lf

respectively. Lf = μu/(PrρuUf0) is the flame width, where Uf0 is the incipient velocity of the planar
flame, ρu and μu the density and dynamic viscosity, respectively, of the unburnt fuel. The incipient
velocity of the planar flame Uf0 corresponds to the Mach number Mf0 = Uf0/cu = 0.05, where cu is
the speed of sound in the unburnt fuel. Reaction order m = 2, tube width D = 70Lf , dimensionless
activation energy ε = Ea/(RuTb) = 8, expansion ratio Θ = Tb/Tu = 10. Tu and Tb are the temperatures
of the unburnt and burnt gases, respectively.
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Figure 3: Time sequence of zoomed temperature contours for the flame dynamics near the transition
point for the conditions of Fig. 2. Lighter shading corresponds to higher temperature.
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Figure 4: Temperature, density, flow velocity and pressure profiles for the fold dynamics of Fig. 3.
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Figure 5: Temperature contours with explicit chemistry treatment which yields an earlier DDT, but
cannot handle the detonation correctly and becomes unstable shortly after the last state in the series
above.

Figure 6: Temperature contours with implicit chemistry treatment. When using the implicit Euler
method for chemistry, the DDT evolves with retained stability.

Figure 7: Density contours at t = 1000Δtref , t = 5000Δtref and t = 10000Δtref . The reference explicit
calculation is shown on the left and an implicit-explicit solution on the right. Inviscid terms are treated
explicitly while viscous terms and chemistry are treated implicitly.
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