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"It’s cold especially near the glass.
Surprisingly, the areas far from the
glass are also cold, even inside the
classroom is cold.”

Aprisia, Indonesian.

“Pulse gets cold during the winter,

especially seating on the last floor

)

near the glass.’

Mohammed, Ethiopian.

“It's always cold, I have to wear a
sweater always. But it's good in
summers that it’s cold.”

Gargi, Indian.

"l usually stay at the study area, it is
cold during winter. Inside the
classroom also cold”

Liu, Chinese.
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Energy demand Final Energy Primary Energy

(also called energy needs) (= what you buy at the meter) (Energy that has not been subjected
to any conversion or transformation

process [carried out by humans/
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Retrofitting Smart Control

Modifying/adding something on the Optimizing energy saving and
glass to reduce the heat transfer thermal comfort
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A Critical Review of Facade Retrofit Measures for Minimizing Heating and /%%
Cooling Demand in Existing Buildings

Soad Sarihi, Fatemeh Mehdizadeh Saradj *, Mohsen Faizi

Department of architecture, Iran university of science and technology, Narmak Street, Tehran, 1684613114, Tehran, Iran
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ABSTRACT
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Fagade Retrofit
Energy Conservation Measures

Energy Modulation Measures
Existing Buildings

Cooling

Heating

The building industry is currently experiencing a myriad of chall low energy p in
existing buildings. Since the facade considerably contributes to heating and cooling in buildings, fagade retrofit is
presumed as an effective solution to minimize cooling and heating demand in existing buildings.

In-depth scrutiny in fagade retrofit actions reveals different Facade Retrofit Measures (FRMs) that aim to
minimize cooling and heating demand in existing buildings. They include Energy Conservation Measures (ECMs),
which prevent excessive heat transmittance, and Energy Modulation Measures (EMMs), which modulate energy
consumption through passive heating and cooling ies. A C ination of (CoMs) is also the state-
of-the-art in the face of retrofit actions.

In this paper, a further analysis elaborates on the effectiveness of each measure in Cooling-Dominated (CD)
and Heating-Dominated (HD) climates. This analysis showed that fagade retrofit could reduce energy con-
sumption for heating and cooling by up to 50% through architectural interventions.

‘The study findings also revealed that ECMs effectively minimize energy in a heating-d
climate by lowering conductive and convective heat transfer. However, EMMs are more crucial in reducing
energy ion in a cooling-d d climate by controlling radiative heat transfer.
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Challenges and opportunities of machine learning control in building

operations
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Abstract

Machine learning control (MLC) is a highly flexible and adaptable method that enables the design,
modeling, tuning, and maintenance of building controllers to be more accurate, automated,
flexible, and adaptable. The research topic of MLC in building energy systems is developing rapidly,
but to our knowledge, no review has been published that specifically and systematically focuses
on MLC for building energy systems. This paper provides a systematic review of MLC in building
energy systems. We review technical papers in two major categories of applications of machine
learning in building control: (1) building system and component modeling for control, and (2)
control process learning. We identify MLC topics that have been well-studied and those that need
further research in the field of building operation control. We also identify the gaps between the
present and future application of MLC and predict future trends and opportunities.
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What is the optimal strategy for reducing energy demand and maintaining thermal comfort in glass
facade buildings: modifying the existing building system, implementing retrofitting strategies, or

employing a combination of both approaches?



r

What is the optimal strategy for reducing energy demand and maintaining thermal comfort in glass facade
buildings: modifying the existing building system, implementing retrofitting strategies, or employing a

-

combination of both approaches?

Smart Control (MPC) Retrofitting
How can a model be developed for model prediction, and What are the retrofitting options that doesn't influence the
what is the problem formulation for the control? glass facade look?
How does the integration of MPC affect energy efficiency How do they impact energy consumption and thermal

and occupant comfort?

comfort?

MPC + Retrofitting

What are the comparative advantages and disadvantages (in relation to energy
demand and thermal comfort) of modifying building systems vs implementing
retrofitting strategies?

What is the effectiveness of combining building system modifications with
retrofitting strategies in achieving optimal energy savings and comfort levels?



LITERATURE STUDY

Glass Retrofitting

Energy demand
Comfort theory &y MPC theory
theory theory
& ! Retrofittin
i RC-model  ----- | . 8
i ! alternatives
I'\I Validation ,’L ¢
[\ Measured Validated _ > Assessment
. data model
i 7 Filtered
> Control part < alternatives
.: MP GLASS
L Existing System MPC System COMPARE
T Base scenario Base scenario
Energy demand

Filtered alternatives Filtered alternatives and comfort



LITERATURE STUDY
Comfort theory Enertgzecli;nand MPC theory Glasstl:lzg;);ittmg

Retrofitting
alternatives

Assessment

\ Measured
. data

Validated
model

Control part

MPC System
Base scenario
Filtered alternatives

Existing System
Base scenario
Filtered alternatives

miro



MPC

Optimization problem

Y

A

~

dy oy
[Distubances];{Buﬂdmg model |«

Constraints Cost function
T X ) N-—1
k€ min k=0 g(xkv Yk 'U,k)
uk E u UQyeeesUN =1
A
Lk+1

Future predictions

A

Inputs sequence

Uk

Estimator

A



______________________________________________________

Optimization

Constraints .
ATG and heati Cost Function
and maxheating Minimize Qheat/cool
power
RC-model
Weather Tindoor and Q
forecast prediction along the
horizon

Input to building
optimum setpoint

Building

Current
weather

Building Sensor
Indoor temperature
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formula on each node
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Start
Initialise building's heat transfer
formula on each node

Rearrange equations
Inputs: for matrix
Material l
properties,
building schedule,
weather, indoor RC-model:
temperature white-box
Update thermal
mass state
'[ Matrix calculation
Updated Tpast Jl
Output
Qcalculated




Symbols Description Equations

(-
( "~ Absorbed solar radiation A XA, XQ
\( )W 1 X Agt X Q,
~ P )

Q’\ A~ Heating Qneat
-—D-—— Advection Pair X Vair X Cp_ X AT
-—W— Convection Kony X Ag X AT
——-g—-— Radiation g X F X Ay X AT

N
A, (Z X; x TJ“)
i=0

N =50 x d,

kxpxC
. . X, = 2/ Ps
Conduction and accumulation o="/1 [T 3600

using response factor method X = —Xo(2Vi—VAFI—vA—T);n>0
. n — 0 ’
Simple room example Error

Xncor =%n =y =70

N
Error = Z Xn
hot

=0

> 2




occonvo-Agl- (To - Tl) + occonvi-Agl- (TZ - Tl)

Node 1

+°crad-Agl-F13(T3 - Tl) + Al-Agl- QZ — 0
Node 2 occonui-Agl- (Tl - TZ) + Occonvi-Aw- (TS - TZ)

+ pair-Vair- Cpair' (To - TZ) + Qheat =0

occom;i-Aw- (TZ - T3) + XCrqq. Ay F31(T1 - T3) + Dl-Agl- Q.
Node 3 = A, (Xo.Ts + X. T + X, T;72
+ X3. T30+ +X,. T, )

Equation T= M"!B

T

T Qheat]
T3

Simple room example
_Agl- (Occonvo- _‘xconvi- —Xrad- F13) 0 Ocrad-Agl- F13
M Occonvi' Agl 1 occonvi' Aw
Ocrad'AW' F31 0 _AW' (occonvi+°crad' F31 + XO)

_Al'Agl' Qz - Occonvo'Agl'To - occonvi'Agl' T2

) Ty = Pair- Vair- C T,

Pair’

) _occonvi- Ay.T,

(occonvi- Agl +°<convi- Aw + Pair- Vair- C

Pair
X T, + X, 7,72 +

—D,.A,.Q, + A
v W<X3.T3(t'3)+..+Xn.T3(t_”)



Version 1

Version 2

Version 3



version 1
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EiE

Envelope only

20 nodes

20 x 20 matrix

version 2

@ Envelope and inner mass

22 nodes

ala 22 x 22 matrix

version 3

[ P

M Lumped envelope
and inner mass

5 nodes

glm 5 x5 matrix



version 1

CV(RMSE)
0.28 0.66

MBE
0.23 0.33

&

Execution Time

3660s 3789s

Winter Summer

version 2

CV(RMSE)
0.18 0.57

MBE
0.02 0.03

Execution Time

4403s 4263s

Winter Summer

CV(RMSE) should be <30% and MBE should be <10% for hourly calibration.

version 3

CV(RMSE)
0.17 0.56

MBE
0.01 0.0

Execution Time

50s 5is

Winter Summer



CV(RMSE) should be <30% and MBE should be <10% for hourly calibration.

version 3

CV(RMSE).....
017 i 0.56 :

MBE
0.01 0.0

Execution Time

50s 5is

Winter Summer
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Start

Fixed input: A, To, Ti, vent, people

|
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|
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Matrix calculation

|
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Derivative based algorithm

f(x)
~ f(x)
Concave Up Concave Down
(tangent lines are the curve) (tangent lines are the curve)

L-BFGS-B and SLSQP

Non-derivative based algorithm
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attempt 1 attempt 2 attempt 3
Parameters Parameters
@ Parameters ® i absorption of glass and opaque @  Sunabsorption of glass and opaque
Sun absorption of glass and opaque (different starting values) + thermal mass of inner surface
Results Results
Q Parameter values and CV(RMSE) Q Parameter values changed but Q ?Z?/s(ll'\":\t/lsSE) still not changed

did not change CV(RMSE) did not change

The algorithms were sensitive with decimal starting point,
but why did the CV(RMSE) stay the same?



100 set of parameters
(randomly picked from 3@ attempt)

attempt 4

Frequency
S S —— |

o o o o
q":‘\é) o q& o 9‘\6 o 0;"']? o
* * o o u * * *
o o 4 4 o o o o
o o o o o N o o
CVRMSE

Monte-Carlo simulation



Frequency

attempt 4

Distribution of the CVRMSE is narrow

Monte-Carlo simulation



MPC

Optimization

Constraints
ATG and max heating
power

Cost Function
Minimize Qheat/cool

T




Local Optimum Algorithm

Global Optima

Infeasible Region

Y variable
Local Optima

Feasible Region

X variable

COBYLA and SLSQP
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System 1 System 2 System 3 System 4 System 5

Low-E Insulating Solar control Solar control Curtain Curtain Curtain Air pocket
film film film (inside) film (outside) 0% openness 28% openness 54% openness curtain

BRI

System 1-3 System 4 System 5-7 System 8
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System 1 System 2 System 3 System 4

v Wy Wy iy

Low-E Insulating Solar control Solar control
film film film (inside) film (outside)
R strategy R total U-value total
System [m?K/W] [m?K/W] [W/m?K] SHGC total
Base - 0.606 1.65 0.4
1 - 0.82 1.22 0.29
2 0.23 0.84 1.19 0.28
3 0.007 0.613 1.63 0.328
4 0.0004 0.6064 1.65 0.236




System 6

I

System 5

Curtain Curtain Curtain
54% openness

0% openness 28% openness

System 7

Air pocket
curtain

Retrofitting Strategies

Window Glass

Thickness U-value R U-value
System [m] [W/m3K] Absorption [m?K/W] [W/m?3K] SHGC
5 0.003 0.01 0.44 0.606 1.65 0.4
6 0.003 0.3 0.36 0.606 1.65 0.4
7 0.001 0.54 0.3 0.606 1.65 0.4
8 0.127 0.35 0.1 0.606 1.65 0.4
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Heat gain [kW]

B Qtrans B Qtrans
300 Qsol 300 A Qsol
200 250 1
2001
300 - -
w
wn
o
+ 150 1
m©
5]
T
200 A
100 +
100 A
I i
0 - 0-
> o o A > 2 % ™ % © A >
&& '16\‘» 0@‘» 06:5 0@ Qs 06\ 0& Qe &"' Qe‘» flé\ 0@ ze 016\ 06‘ be 'l@
e & & e & o & & & o & & & & & e
& & & 2 & G & G G 4 & G & & G 2
Summer Winter
System 1 System 2 System 3 System 4 System 5 System 6

Insulating Solar control Solar control Curtain Curtain Curtain Air pocket
film film film (inside) film (outside) 0% openness 28% openness 54% openness curtain




Heat gain [kWh]

450 ~ g g g 8
200 A —
400 A
150 - 350 A
£
= 300 4
0
3
100 - %
U 250 A1
I
200 A
50 =
150 A
01 100
> Vv » L “ © ¢ 2 & 5 v %
& & & & & & & & L & & &
S (5\" (5\" S S (5\" &Y oY (5\" S c;\"
Summer
System 1 System 2 System 3 System 4 System 5 System 6 System 7
| | | | I ‘ \
Low-E Insulating Solar control Solar control Curtain Curtain CurLtain
film film film (inside) film (outside) 0% openness 28% openness 54% openness

Air pocket
curtain




Heat gain [kWh]

200 -

150 A

100 A

@\. @’\z @”) @h 6‘(‘, @'a @'\ @Q’
& & & & & & & &
2 S &Y A 2 2 &Y oY
summer
System 1 System 2 System 3 System 4

P e

Low-E Insulating

Solar control
film film

film (inside)

Solar control
film (outside)

Heat loss [kWh]

450 A

350 A

300 -

250 A

200 A

150 -

100 -

System 5

6‘» &
& &
S S
System 6

< ™ 9 © A \d
&@ @@ \"@ x?'@ @6\ &6‘
S S gi" (5\" (5\" oY
Winter
System 7




Heat gain [kWh]

450 ~ g g g g
200 —_
400 A
150 A 350
5
X, 300 A
[92]
3
100 - %
© 250 A
I
200 +
50 =
150 A
0 100 -
5 Vv 2 ™ \ © A J & 5 v %
& & & & & & & & L & & &
(5\" (5\" &Y q\" (5\" c;\" r,;\" (,i" (5\" (5\" c;\"
Summer
System 1 System 2 System 3 System 4 System 5 System 6 System 7
e 1 )

s

Curtain (
0% openness 28%

™ “ © %) D
‘z@ ‘_},@@ ‘}z@ ‘}0@ ‘},’6‘
oY A S S 2
Winter

s

Air pocket
curtain




50 - —— Base_COBYLA —— s5_COBYLA 01 — s8_COBYLA
—— Base_SLSQP 501 5 sLsop —— s8_SLSQP
—-- TiBase_COBYLA —-- Tis5_COBYLA —-- Tis8_COBYLA
—-~- Ti Base_SLSQP —-= Tis5_SLSQP —-=- Tis8_SLSQP
40 4
40 40
30 A
301 30
20 - 201 20
10 4 10 4 10
0+ 0 04
0 2 4 6 8 10 12 14 0 2 6 8 10 12 14 0 2 4 6 8 10 12 14
Summer hourly data - Jan/22 Summer hourly data - Jan/22 Summer hourly data - Jan/22
350 4 —— s8_COBYLA
—— s8_SLSQP
—-- Tis8_COBYLA
400 4 400 —-- Tis8_SLSQP
300 A
250 A
300 A 300 +
—— Base_COBYLA —— s5_COBYLA
2001 —— Base_SLSQP —— 55 SLSQP
—-- TiBase_COBYLA —-= Tis5_COBYLA
—-- TiBase_SLSQP 200 4 —-= Tis5_SLSQP 200 4
150
100
100 4 100 4
50
T T T T T T T T T 0 T T T T T T T T 0 T T T T T T T T T
0 2 4 6 8 10 12 14 16 0 2 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Winter hourly data - Jan/22

Winter hourly data - Jan/22

Winter hourly data - Jan/22

SLSOP tends prioritize
comfort

COBYLA tends to save
more energy



LITERATURE STUDY

Energy demand Glass Retrofittin
Comfort theory &y MPC theory &
theory theory
[ 3 Retrofittin
i RC-model  ----- | : 8
i ; alternatives
! II‘I Validation \,'L‘ ¢
,/1 Measured Validated _ /1 > Assessment
| data model
IR - - ] Filtered
> Control part alternatives
': MP GLASS
Existing System MPC System COMPARE
""""" " Base scenario Base scenario
Energy demand

Filtered alternatives Filtered alternatives el @i



Energy Demand Reduction (%)

80 A

70 A

[=)]
o
1

w
o
!

o+
o
1

W
o
Il

N
o
1

10 4

Base with
COBYLA-MPC

Curtain O openness

with COBYLA-MPC Air pocket curtain

with COBYLA-MPC

Systems with COBYLA-MPC are overpowering
in terms of energy saving

[ Summer
e Winter



Curtain 0% openness Air pocket curtain
without MPC without MPC

80 A

70 A

Energy Demand Reduction (%)
3 8 3 2

N
o
1

10 4

Curtains alone only reduce a low amount of
energy demand

e summer
e Winter



26

N
w

Indoor Operative Temperature [C]
N
E=y

23 A

22 A

Curtain 0% openness

Curtain 0% openness

Air pocket curtain

Summer Design Day

Curtains alone are overpowering in
terms of thermal comfort

Winter Design Day

Air pocket curtain
---------------------- e 24 e e
_ 234
O
g g I |3
o 0 o |2
o (] 0 g
L ° L ] ° L ] £ 224
¢ L o o e
[
! s 0 2
o 0 ° 8 o o
! ! o o g
o ' 0 ° ' o e | O
° o o §21-
; PY o L ] Y [} (s} Y (s} E Y o o
4 o i ! o o !_ o ’ ' ‘
———————— e e g g - o ° o] L
o o o]
., 5 ¢ N B L S Sy SRR o
[ ] o) Y
® [ ]
o o o ™
& ) Bl @ 9 > @) ) & & < ) & @ ]
Qs >/ K7 &7 >/ >/ >/ D7 o X4 o4 >/ >/
R &\ & & oY 5 & R & & & &\ & &




26

N
w

Indoor Operative Temperature [C]
N
E=y

23 A

22 A

Air pocket curtain
with MPC

MPC systems are pushing towards the
comfort limits
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Recap.

[ 'ri:kap ] verb.

state again as a summary; recapitulate.



Lumped model works, but it has limitations
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Algorithms behave differently, choose wisely
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A trade-off consequences



Lumped model works, but it has limitations
Algorithms behave differently, choose wisely
A trade-off consequences

Simple retrofitting strategies can work



At the end of the day, it's all about priority.

Smart system is to save energy; retrofitting strategies are to improve comfort.

Use both to help complement each other.



Thank you!



