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Article 
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Abstract: Once trusted, automated vehicles (AVs) will gradually appear in urban areas. Such a 

transition is an opportunity in transport planning to control undesired impacts and possibly 

mitigate congestion at a time when both conventional vehicles (CVs) and AVs coexist. This paper 

deals with the complex transport decision problem of designing part of the network that is exclusive 

for AVs through a nonlinear programming model. The objective function minimises the costs of 

travel times where vehicles circulate under user equilibrium. The model evaluates the benefits of 

having an AVs-dedicated infrastructure and the associated costs from the detouring of CVs. Three 

planning strategies are explored: incremental, long-term and hybrid planning. The first creates a 

subnetwork evolving incrementally over time. The second reversely designs a subnetwork from the 

optimal solution obtained at a ratio of 90% AVs. The third limits the incremental planning towards 

that optimal long-term solution. The model is applied to the city of Delft, in the Netherlands. Two 

scenarios are analysed, with and without AV-dedicated roads, at several AV penetration rates. We 

find that implementing dedicated roads for AVs reduces the overall costs and congestion up to 16%. 

However, CV detouring is inevitable at later network stages, increasing the total distance travelled 

(up to 8%) and congestion in the surroundings of AV subnetworks. Concerning the planning 

strategies, incremental planning is appropriate for starting in the initial stages and is the strategy 

that most tackles CV detouring. The hybrid or the long-term strategies are more suitable to be 

applied after a ratio of 50% AVs, and the hybrid planning is the strategy that most reduces delay. 

Keywords: automated vehicles; mathematical programming; optimisation; road network design 

problem 

 

1. Introduction 

Transportation systems are fundamental for modern societies because their 

performance has a significant impact on social and economic development. Technology 

has been evolving significantly since the industrial revolution. In the nineteenth century, 

a clear shift happened from vehicles pulled by animals to public rail transport pulled by 

electricity. At the turn of the century, gas-powered vehicles rapidly emerged as fossil fuels 

became the primary source of energy. Nowadays, new forms of energy sources have been 

implemented like electric and hydrogen vehicles. During this technological advancement, 

people have always been responsible for the driving task and deciding the path. 

Driverless vehicles, departing from this human-centric perspective, will be the next shift 

in vehicular transportation. 
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There are projections that “fully automated vehicles (AVs) that operate on public 

roads among other traffic are unlikely to be on the market before the 2030s” [1] and some 

forecast the 2040s [2]. AVs level 4 will have an “urban and sub-urban pilot,” as well a 

“highway autopilot including a highway convoy”, while only AVs level 5 will be 

considered “fully automated passenger cars”. 

Nieuwenhuijsen et al. [3] studied the diffusion of AVs using systems dynamics under 

a functional approach, by looking into the six levels of automation with different fleet 

sizes, technology maturity and average purchase price and utility. The model was applied 

to the Netherlands both for a base and an optimistic scenario (strong political support and 

technology development). They found that a market penetration of 10% of AVs level 4 will 

likely happen by 2027. AVs level 5 will achieve 90% market penetration somewhere 

between 2060 and 2080. Full deployment (100% of AVs level 5) will only occur after 2100. 

As automated vehicles (AVs) enter the scene, understanding their role in the future 

of mobility is a critical challenge to be faced all over the world [4]. A functional 

deployment of AVs is first envisioned, gradually emerging over time with 

incompatibilities solved throughout this process. Shladover [5] presented a functional 

deployment roadmap, with some regions having Vehicle-to-Infrastructure (V2I) 

communication and other regions having separate dedicated lanes [5]. 

However, dedicated lanes encompass numerous practical challenges, and their 

implementation might not be easy. Nowadays, for example, bus and taxi dedicated lanes 

experience the unauthorised circulation and illicit parking of human-driven vehicles—the 

so-called conventional vehicles (CVs). In this paper, we are testing a scenario where, at 

some point, the deployment of AVs will happen in a dedicated road infrastructure, with 

AV subnetworks to deploy the first driverless vehicles, i.e., AVs level 4—a specific level of 

automation in which a vehicle drives automatically under certain conditions [6,7]. 

Restricted driving areas are not a novel practice; for instance, currently many urban 

centres ban the circulation of old vehicles to reduce air pollution. Legal aspects are 

involved, and traffic control in city centres might still be needed for pedestrians and bikes. 

In fact, from city authorities’ and other stakeholders’ perspectives, AV subnetworks will 

allow better traffic control, managing safety aspects and improving the efficiency of 

network elements such as traffic intersections. From an AV private owner’s perspective, 

AV subnetworks could be appreciated for their convenience and comfort, which could 

potentially motivate buying such vehicles. However, from the CV owner’s perspective, 

AV subnetworks could be unwelcome if they represent fewer route options, destinations 

hindrance and extra travel times. 

The challenges tackled in this paper can be translated through the following research 

questions: Is the creation of AV subnetworks a viable strategy to deploy in urbanised 

regions? What is the best planning strategy throughout this transition process? How 

should the design of AV-only networks be created without excessively affecting CVs? In 

this paper, in order to address such questions, we define the road network design problem 

for AVs deployment (RNDP-AVs) through a nonlinear programming (NLP) mathematical 

model. The model assigns roads to fully automated vehicles as a function of the number 

of AVs in the city and their origins and destinations. The objective function comprises the 

minimisation of total travel time cost. A user equilibrium traffic assignment is considered 

which naturally becomes asymmetric as more road infrastructure is dedicated to AVs, thus 

reducing their travel times. 

Furthermore, as more AVs enter the vehicle fleet, AV subnetworks will be required to 

be progressively expanded. The RNDP-AVs model is implemented and tested in three 

planning strategies: incremental, long-term and hybrid planning. In incremental 

planning, dedicated roads are added as the penetration rate grows. The long-term 

planning strategy backward-designs the AV subnetworks. Hybrid planning combines the 

previous strategies by reproducing the incremental planning limited to the optimal long-

term solution. 
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For demonstration purposes, and to extract some first tentative conclusions about the 

possible results of the model, we apply it to a quasi-real case study of the city of Delft, in 

the Netherlands [8]. Three scenarios are created: a base scenario without AV subnetworks, 

a daily scenario that designs AV subnetworks considering the daily shifting demand and 

a peak-hour scenario that designs optimal AV subnetworks for the rush hour (9–10 a.m.). 

The experiment envisions the long-term for 100% of AVs, which, according to the current 

literature, may happen in 2100 [3]. 

The article is organised as follows. Section 2 presents the literature review. Section 3 

introduces the RNDP-AVs and its analytical model formulated as an NLP problem. In 

Section 4, the application to the Delft case study is presented. Finally, Section 5 reports the 

main conclusions and presents some suggestions for future work. 

2. Background 

The literature regarding AVs is dispersed, and it has been increasing substantially in 

the last five years. Most of the research covers the upcoming impact of AVs, which can be 

divided into at least three levels of effect that somehow can be associated with time 

horizons: short-term, which involves traffic, travel choices and travel cost implications; 

medium-term, concerning infrastructure, vehicles, location choices and land-use 

implications; and long-term, focusing on societal implications [9]. 

Research is essentially focused on the first level, mostly on interurban traffic 

environments [10–13]. Hitherto, the literature has shown that AVs will generate comfort, 

traffic efficiency and safety on interurban roadways. We assume it will extend to urban 

environments, and the planning of the traffic operation of AVs stands as an opportunity 

to tackle urban problems. Yet, increasing comfort is usually depicted as a reduction in the 

value of travel time, which might influence AV travellers to take longer trips and therefore 

accept increased travel times. The traffic efficiency claimed by AVs’ cooperative adaptive 

cruise control system positively impacts road capacity, with reduced travel times [11]. 

How these two paradoxical factors work together in traffic equilibrium is still unknown, 

especially considering CVs’ adaptation to this future reality. 

Our research focuses on the second-level implications, and the nature of this study 

fits into a road network design problem (RNDP) as it relates to a strategic decision support 

system for policy making and network improvement [14]. An RNDP is typically 

formulated as a bi-level problem to embrace both the stakeholders’ investment decisions 

and travellers’ behaviour, whilst at the same time decreasing the complex combinatorial 

nature of the problem. The problem is NP-hard and convexity is not guaranteed, making 

it difficult to solve by exact solution methods. Heuristics and metaheuristics are the 

alternative, yet a local optimum may be found instead of a global optimum solution [15]. 

Currently, most of the literature on network design is focused on dedicated lanes to 

first deploy AVs in urban environments [16,17]. On the topic of dedicated roads and AV 

subnetworks, ref. [18] proposed a bi-level framework for the optimal design of AV 

subnetworks, solved through a simulated annealing algorithm. However, their 

equilibrium analysis ignores CV trips that start and end inside AV subnetworks for 

simplification purposes, in a deterministic mixed routing problem that considers a 

system-optimal traffic assignment inside AV subnetworks and user equilibrium outside. 

The authors presented a numerical example where AVs compose 55% of all traffic and 

found that the social cost can be reduced by up to 21.4%, assuming that the road capacity 

triples in AV links. Similarly, ref. [19] proposed a bi-level network design model 

comprising the optimal design of the network involving AV links and congestion pricing 

to improve congestion. The authors use a relaxation-based method for solving the bi-level 

model. Ref. [20] introduced a bi-level problem for optimizing road networks for 

automated vehicles with dedicated links, dedicated lanes and mixed-traffic subnetworks 

that has been solved through heuristics. 

A previous approach to solving this problem [21] involved a multiclass traffic 

assignment in mixed-integer programming through a system-optimal perspective, with 
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simplifications like the minimisation of the average travel time in each road link rather 

than all passengers’ travel times—which is mandatory to achieve traffic equilibrium. Also, 

the authors used a constant traffic efficiency coefficient (25%), regardless of the 

penetration rate, in both regular and dedicated roads in a grid network experiment. 

This RNDP, considering AVs and CVs in the same model, originates a multiclass 

traffic assignment—found in the literature [22–24]. Nevertheless, a multiclass traffic 

assignment can easily turn into an asymmetric assignment that naturally arises from each 

class’s differences [25–27]. Problems concerning the multiclass traffic assignment are 

resumed in two types of incoherence: behavioural and mathematical [28]. The behavioural 

incoherence happens if each class holds an individual travel time function or if links 

amongst the network have travel time functions differently depending on each class. To 

reduce the complexity while assuring convexity, a new variable is defined in this paper 

that aggregates the classes, so that AVs and CVs share a common link-travel-time function. 

This variable (total flow) embeds an added automated traffic efficiency. However, in some 

situations, a mathematical incoherence might appear because of the dependencies in the 

singular Jacobian matrix that imply a linear relationship between each class cost function 

and the weights used in the single flow variable grouping the classes [28]. In other words, 

mathematical incoherence happens when each class is distinguished by different costs 

(e.g., toll pricing or value of travsel time). In this study, we calculated the effects of such 

linearity, and we have concluded that such a rselationship resembles recent findings on 

AVs’ reduced value of travel time [29–31]—therefore, we accept the incoherence. This will 

be explained in the model section. 

Nevertheless, there is an implicit asymmetric user equilibrium amongst classes that 

happens because part of the network is restricted to one class (network segregation), i.e., 

when dedicated roads are added. This means that, in origin–destination (O-D) pairs 

whose AVs encountered dedicated roads, their efficiency will allow them a reduction of 

travel time costs which will naturally be dissimilar to the travel time costs experienced by 

the CVs. In such cases, each class is under a user equilibrium traffic assignment. 

Contrariwise, in O-D pairs in which AVs only circulate in regular roads, both AVs and CVs 

share the same travel time function, and therefore, the user equilibrium prevails. 

Our study considers a multiclass user equilibrium traffic assignment without explicit 

path enumeration (all possible paths are considered in the network between each O-D 

pair), which simultaneously analyses the increasing comfort and efficiency yield of the 

AVs. All travellers reach their destination using a CV or an AV, while the decision model 

evaluates travel costs based on the link performance (travel time) functions. Upgrading 

costs to transform a regular road (mixed traffic) into a dedicated road for AVs, e.g., for V2I 

connectivity, are also introduced in the paper. Another novelty of this paper is to propose 

and discuss the multi-stage planning of AV subnetworks over time. 

3. The Road Network Design Problem for AVs Deployment (RNDP-AVs) 

The problem that we address is how to design, on top of an existing road network, 

AV subnetworks to start the deployment of the first driverless vehicles (level 4 of 

automation). During this transition process, the network will be composed of regular 

roads (mixed traffic) and dedicated roads (automated traffic). Dedicated roads will have 

V2I connectivity installed, while regular roads will not. This single-level optimisation 

problem tackles both the dedicated roads decision problem and the traffic flow 

assignment problem in a nonlinear programming model. 

All travellers reach their destination according to a user-optimum equilibrium, 

meaning that every passenger of each class (CV or AV) minimises their own travel time. 

We believe that, during this transition process, user equilibrium will still be the most 

realistic because system-optimum routing would be difficult to implement. The objective 

function minimises the total travel time cost, where each class of vehicles circulates under 

user equilibrium. The decision making occurs at every AV design stage, based on the AVs’ 

market penetration rate. Such a planning process is solved by mathematical optimisation. 
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The global evaluation is not trivial, because dedicated roads implying a travel time 

reduction for AV passengers might also imply an increase in CVs’ travel times (detour). 

The model can evaluate the CVs’ detour, as the formulation includes a penalty variable to 

restrict CVs driving inside dedicated roads. The model respects all road links 

characteristics, ensuring link performance (travel time) functions. 

3.1. Formulation of the RNDP-AVs Model 

The assumptions of the problem are: 

• AVs are assumed to be level 4 [6], meaning they can be driven manually outside 

dedicated roads but will assume autopilot mode inside AV subnetworks; 

• AVs circulate everywhere, whereas CVs’ circulation is prohibited on AV 

subnetworks; 

• Constant travel demand, i.e., an O-D matrix for AV drivers and another one for CV 

drivers; 

• Each trip is assigned to an AV or a CV; 

• Public authorities invest in each dedicated road to make it fit for AVs; 

• A dedicated road comprises both directions dedicated to automated traffic. 

To formulate the problem, we introduce the following notation: 

Sets: 

𝑵 = (1, . . . , 𝑖, . . . , 𝐼): set of nodes in the network, where 𝐼 is the number 

of nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀{𝑖, 𝑗} ∈ 𝑵, 𝑖  𝑗: set of links of the road network where vehicles 

move. 

𝑷 = {. . . , (𝑜, 𝑑), . . . } ∀{𝑜, 𝑑} ∈ 𝑵, 𝑜  𝑑: set of O-D pairs that represent the trips demand in 

the network. 

𝑽 = {𝐴𝑉, 𝐶𝑉}: set of type of vehicles (mode) in the network: AV 

and CV 

𝑯 = {1, … , ℎ, … , 24}: set of hours of the day 

Parameters: 

𝜌: penetration rate of AVs in the vehicle fleet, between 0 and 1. 

𝛼𝑀𝑇: coefficient that reflects the efficiency of automated traffic on the road capacity 

in mixed traffic (MT) conditions, i.e., in regular roads. This coefficient can be 

compared to a passenger car unit, as it reflects the number of CVs to which an 

AV corresponds. Defined between 0 (an AV has no effect on traffic) and 1 (an 

AV is as efficient as a CV). 

𝛼𝐴𝑇: coefficient that reflects the maximum efficiency of automated traffic (AT), i.e., 

in dedicated roads, also between 0 and 1. 

𝑉𝑂𝑇𝑐𝑎𝑟: value of travel time inside cars, in monetary units per hour. 

𝐷𝑜𝑑
𝑣 ℎ: travel demand of mode 𝑣 ∈ 𝑽 from an origin, node 𝑜, towards a destination, 

node 𝑑 ∀ (𝑜, 𝑑) ∈ 𝑷, from period ℎ to period ℎ + 1, ℎ ∈ 𝑯. 

𝑡𝑖𝑗
𝑚𝑖𝑛: minimum driving travel time in free-flow speed at each link  (𝑖, 𝑗) ∈ 𝑹, 

expressed in hours. 

𝐿𝑖𝑗: length of each link (𝑖, 𝑗) ∈ 𝑹, expressed in kilometres. 

𝐶𝑖𝑗: capacity of each link (𝑖, 𝑗) ∈ 𝑹, in vehicles for the period of analysis. 

𝑀: big number. 
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Decision variables: 

𝑥𝑖𝑗: binary variable equal to 1 if link (𝑖, 𝑗) ∈ 𝑹 is assigned for AV-only driving. 

𝑓𝑖𝑗𝑜𝑑
𝑣 ℎ : continuous variable that corresponds to the flow of vehicles 𝑣 ∈ 𝑽 in each 

link (𝑖, 𝑗) ∈ 𝑹 and each pair (𝑜, 𝑑) ∈ 𝑷 ∩ 𝐷𝑜𝑑
𝑣 > 0, from period ℎ to period 

ℎ + 1, ℎ ∈ 𝑯. 

𝑝𝑖𝑗𝑜𝑑
ℎ : continuous variable that acts as penalty factor to avoid CV flow in dedicated 

roads, defined per link (𝑖, 𝑗) ∈ 𝑹 and pair (𝑜, 𝑑) ∈ 𝑷, from period ℎ to period 

ℎ + 1, ℎ ∈ 𝑯. 

𝑧𝑖𝑗𝑜𝑑
ℎ : continuous variable that represents the flow of AVs when a link (𝑖, 𝑗) ∈ 𝑹 is 

dedicated for AVs only (𝑥𝑖𝑗 = 1), regarding each O-D pair (𝑜, 𝑑) ∈ 𝑷, from 

period ℎ to period ℎ + 1, ℎ ∈ 𝑯. This variable distinguishes AV benefits in 

mixed or automated traffic. 

The main decision variables are 𝑥𝑖𝑗 and 𝑓𝑖𝑗𝑜𝑑
𝑚 .The remaining variables depend on the 

first ones through constraints. 

Objective Function: 

Min(Cost) = 𝑉𝑂𝑇𝑐𝑎𝑟 ∑ ∫ 𝑡𝑖𝑗
ℎ  𝑑𝑓

𝑓𝑖𝑗
ℎ

0(𝑖,𝑗)∈𝑹

 (1) 

The objective function (1) minimises the total cost of all driving travel time costs 

under a user equilibrium traffic assignment formula [27] that works for each class of 

vehicles and according to the BPR function (2) that computes each link-travel-time 

function. The objective function is subject to the following Constraints (4)–(17). 

𝑡𝑖𝑗
ℎ  = 𝑡𝑖𝑗

𝑚𝑖𝑛 [1 + α (
𝑓𝑖𝑗

ℎ

𝐶𝑖𝑗
)

𝛽

] (2) 

Therefore, the objective function implemented in this paper is the following 

Expression (3). 

Min(𝑓𝑖𝑗) = 𝑉𝑂𝑇𝑐𝑎𝑟 ∑ 𝑡𝑖𝑗
𝑚𝑖𝑛 [𝑓𝑖𝑗 +

α

𝛽 + 1
∗

𝑓𝑖𝑗
𝛽+1

𝐶𝑖𝑗
𝛽

]

(𝑖,𝑗)∈𝑹

 (3) 

Constraints: 

Constraints (4)–(6) assure that, for each O-D pair, both AV and CV flows (𝑣 ∈ 𝑽) are 

generated in the origin node 𝑜 ∈ 𝑶 (4) and absorbed in the destination node 𝑑 ∈ 𝑫 (5), 

with a flow equilibrium in the intermediate nodes (6). 

∑ 𝑓𝑜𝑗𝑜𝑑
𝑣 ℎ

𝑗∈𝑰

= 𝐷𝑜𝑑
𝑣 ℎ, ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, ℎ ∈ 𝑯, 𝐷𝑜𝑑

𝑣 ℎ > 0 (4) 

∑  

𝑗∈𝑰

𝑓𝑗𝑑𝑜𝑑
𝑣 ℎ = 𝐷𝑜𝑑

𝑣 ℎ, ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, ℎ ∈ 𝑯, 𝐷𝑜𝑑
𝑣 ℎ > 0 (5) 

∑  

𝑗∈𝑰

𝑓𝑖𝑗𝑜𝑑
𝑣 ℎ = ∑  

𝑗∈𝑰

𝑓𝑗𝑖𝑜𝑑
𝑣 ℎ , ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑖 ∈ 𝑵, 𝑣 ∈ 𝑽, ℎ ∈ 𝑯, 𝐷𝑜𝑑

𝑣 ℎ > 0, 𝑖 ≠ 𝑜, 𝑑 (6) 

Constraints (7) compute the total flow in each link (𝑖, 𝑗) ∈ 𝑹. The AVs’ flow holds an 

efficiency benefit that is computed through the auxiliary variable 𝑧𝑖𝑗𝑜𝑑. This benefit varies 

in mixed or automated-only traffic. The flow of CVs is kept, and a penalty flow happens 

if CVs circulate in AV-dedicated roads, which is annulled in the minimisation of the 

problem, forcing the detouring of CVs around AV subnetworks. 

𝑓𝑖𝑗
ℎ = ∑  

(𝑜,𝑑)∈𝑷

[(𝛼𝐴𝑇 ∗ 𝑧𝑖𝑗𝑜𝑑
ℎ + 𝛼𝑀𝑇 ∗ (𝑓𝑖𝑗𝑜𝑑

𝐴𝑉 ℎ  − 𝑧𝑖𝑗𝑜𝑑
ℎ ))  + (𝑓𝑖𝑗𝑜𝑑

𝐶𝑉 + 𝑀 ∗ 𝑝𝑖𝑗𝑜𝑑
ℎ ) ] ∀(𝑖, 𝑗) ∈ 𝑹, ℎ ∈ 𝑯 (7) 
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Constraints (8)–(10) define the penalty flow variables if CVs circulate in AV-dedicated 

roads. Constraints (8) and (9) assure that, for a dedicated road (𝑥𝑖𝑗 = 1), the penalty flow 

is identical to the CV flow. In regular roads, i.e., 𝑥𝑖𝑗 = 0, the range is bounded to be in the 

interval [0; 𝑓𝑖𝑗𝑜𝑑
𝐶𝑉 ]  for all (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷 . Yet the lower limit of that interval is 

naturally chosen since this is a minimisation problem. Constraints (10) assure that the 

penalty flow of link (𝑖, 𝑗) ∈ 𝑹 is null in regular roads; otherwise, it is limited to the road 

capacity (𝑗, 𝑖) ∈ 𝑹. 

𝑝𝑖𝑗𝑜𝑑
ℎ ≥ 𝑓𝑖𝑗𝑜𝑑

𝐶𝑉 − 𝑀 ∗ (1 − 𝑥𝑖𝑗), ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, ℎ ∈ 𝑯, 𝐷𝑜𝑑
𝐶𝑉 ℎ > 0 (8) 

𝑝𝑖𝑗𝑜𝑑
ℎ ≤ 𝑓𝑖𝑗𝑜𝑑

𝐶𝑉 , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, ℎ ∈ 𝑯, 𝐷𝑜𝑑
𝐶𝑉 ℎ > 0 (9) 

𝑝𝑖𝑗𝑜𝑑
ℎ ≤ 𝐶𝑖𝑗 ∗ 𝑥𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝑖 ≠ 𝑜, 𝑑, ℎ ∈ 𝑯, 𝐷𝑜𝑑

𝐶𝑉 ℎ > 0 (10) 

Constraints (11)–(13) compute the variables 𝑧𝑖𝑗𝑜𝑑  that differentiate efficiency on 

dedicated and regular roads, i.e., automated and mixed traffic, respectively. In AV-

dedicated roads, the variable assumes AV flow through Constraints (11) and (12), whereas 

in regular roads, this variable is null through Constraints (13). 

𝑧𝑖𝑗𝑜𝑑
ℎ  ≥ 𝑓𝑖𝑗𝑜𝑑

𝐴𝑉 ℎ − M ∗ (1 − 𝑥𝑖𝑗), ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, ℎ ∈ 𝑯, 𝐷𝑜𝑑
𝐴𝑉 ℎ > 0 (11) 

𝑧𝑖𝑗𝑜𝑑
ℎ  ≤ 𝑓𝑖𝑗𝑜𝑑

𝐴𝑉 ℎ, ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, ℎ ∈ 𝑯, 𝐷𝑜𝑑
𝐴𝑉 ℎ > 0 (12) 

𝑧𝑖𝑗𝑜𝑑
ℎ  ≤ 𝐶𝑖𝑗 ∗ 𝑥𝑗𝑖 , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, ℎ ∈ 𝑯, 𝐷𝑜𝑑

𝐴𝑉 ℎ > 0 (13) 

Constraints (14) assure that a dedicated road for AVs comprises both directions of the 

road. Constraints (15) give a valid inequality so that the variable is only plausible to be 

considered when there is flow passing by. 
𝑥𝑖𝑗 = 𝑥𝑗𝑖 , ∀ (𝑖, 𝑗) ∈ 𝑹 (14) 

𝑥𝑖𝑗 ≤ 𝑓𝑖𝑗
ℎ + 𝑓𝑗𝑖

ℎ, ∀ (𝑖, 𝑗) ∈ 𝑹, ℎ ∈ 𝑯 (15) 

Constraints (16) and (17) set the domain of the decision variables. 
𝑥𝑖𝑗  ∈  {1,0}, ∀ (𝑖, 𝑗) ∈ 𝑹 (16) 

𝑓𝑖𝑗
ℎ, 𝑓𝑖𝑗𝑜𝑑

𝑣 ℎ , 𝑝𝑖𝑗𝑜𝑑
ℎ , 𝑧𝑖𝑗𝑜𝑑

ℎ ∈  ℝ0
+, ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷𝑜𝑑

𝑣 ℎ > 0 (17) 

3.2. Progressive RNDP-AVs Model: AV Subnetworks Design throughout the Transition Process 

The RNDP-AVs can be designed as the AVs penetration rate evolves by adding more 

dedicated roads, creating progressive AV subnetworks. Three urban transport planning 

strategies are tested: 

• Incremental planning, i.e., dedicated roads are added incrementally as the 

penetration rate evolves. It starts with the computation of the first design stage, and 

henceforth, the solution from the precedent stage is maintained with new constraints; 

• Long-term planning, i.e., the optimal solution at a long-term horizon. It starts by 

solving the RNDP-AVs for the last design stage (maximum penetration rate) and 

reversely reduces that subnetwork by limiting the creation of the decision variables 

at each stage; 

• Hybrid planning, i.e., a mixed planning strategy combining both the incremental 

and long-term planning strategies. The model first computes the optimal long-term 

solution, e.g., 90% AVs. Henceforth, AV subnetworks network evolve incrementally 

towards the optimal final network design. 

The pseudo-code used to run the incremental, the long-term and the hybrid planning 

strategies are detailed in the following Algorithms 1, 2, and 3, respectively. The following 

parameters are required for performing the dynamic programming: 
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𝑺 = (1, . . . , 𝑠, . . . , 𝑆): design stages, where 𝑆 is the latest with the maximum AV 

penetration considered. 

𝜌𝑠: AVs penetration rate of stage 𝑠. Note that 𝜌𝑠 > 𝜌𝑠−1. 

𝑆𝑖𝑗
𝑠 : optimal solution (𝑥𝑖𝑗 vector) of each design stage 𝑠. 

 

Algorithm 1 Incremental planning 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 

𝑠 = 1  
while 𝒔 ≤ 𝑺 do 

get 𝜌𝑠 
create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 

if 𝑆𝑖𝑗
𝑠−1 = 1 then 

𝑥𝑖𝑗 = 1 
end-if 
function Objective Function 

min(𝐶𝑜𝑠𝑡) 
end-function 

𝑆𝑖𝑗
𝑠 ← 𝑥𝑖𝑗 

𝑠 = 𝑠 + 1 
Clear all decision variables 

end 

Starts calculating from the first design 
stage with the minimum penetration 
rate 𝜌1 
 
New constraints from prior design 
stage: dedicated roads from stage 𝑠 −
1 remain in stage 𝑠. 
 
 
 
Save solution from design stage 𝑠. 
 
 

 

Algorithm 2 Long-term planning 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

𝑠 = 𝑆  
while 𝑠 > 0  do 

get 𝜌𝑠 
if 𝑠 = 𝑆 then 

create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
function OBJECTIVE FUNCTION 

min(𝐶𝑜𝑠𝑡) 
end-function 

else 
create 𝑥𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝑅 ∩ 𝑆𝑖𝑗

𝑠+1 = 1  
create remaining decision variables, ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
function OBJECTIVE FUNCTION 

min(𝐶𝑜𝑠𝑡) 
end-function 

end-if 
𝑆𝑖𝑗

𝑠 ← 𝑥𝑖𝑗 
Clear all decision variables 
𝑠 = 𝑠 − 1 

end 

Starts calculating the last design stage 
starts with the maximum penetration 
rate 𝜌𝑆 (e.g., 90% of AVs). 
 
 
 
 
 
Calculation of the solutions in reverse 
Limits the solution space by evaluating 
only the dedicated roads that belong to 
the following design stage. 
 
 

 

Algorithm 3 Hybrid planning 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

𝑠 = 𝑆 
create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
function OBJECTIVE FUNCTION 

min(𝐶𝑜𝑠𝑡) 
end-function 

𝑆𝑖𝑗
𝑆 ← 𝑥𝑖𝑗 

Clear all decision variables 
𝑠 = 1 

while 𝒔 < 𝑺 do 
get 𝜌𝑠 
create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 

if 𝑆𝑖𝑗
𝑠−1 = 1 then 
𝑥𝑖𝑗 = 1 

end-if 
function OBJECTIVE FUNCTION 

min(𝐶𝑜𝑠𝑡) 
end-function 

𝑆𝑖𝑗
𝑠 ← 𝑥𝑖𝑗 

𝑠 = 𝑠 + 1 
Clear all decision variables 

end 

Starts calculating the last design stage 
starts with the maximum penetration 
rate 𝜌𝑆 (e.g., 90% of AVs). 
 
 
 
 
Starts calculating from the first design 
stage with the minimum penetration 
rate 𝜌1. 
 
Limits the solution space by evaluating 
only the dedicated roads that belong to 
the last design stage. 
New constraints from prior design 
stage: dedicated roads from stage 𝑠 −
1 remain in the stage 𝑠. 
 
 
 
Save solution from design stage 𝑠. 
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4. Application to a Quasi-Real Case Study: The City of Delft 

4.1. Setting Up the Case Study 

The application of the RNDP-AVs model is exemplified in a quasi-real case study: the 

city of Delft, in the Netherlands, located in the province of South Holland. Figure 1 shows 

all nodes (46) and road links (122) in the simplified network of Delft in a map of the region. 

The city centre is represented by node 3 and has the highest demand. The TU Delft campus 

is node 31, and major residential areas are in nodes 6 and 45. Two types of roads exist, one 

or two lanes per road direction, with a lane capacity of 1441 vehicles per hour, and the 

free flow speed is 50 and 70 km/h, respectively. These data come from a simplified traffic 

model of the city [8]. The application is for demonstration purposes, and the intention is 

to exemplify what type of results could be obtained from planning such networks. 

The original travel database (MON 2007/2008) was provided by the Dutch 

government and is available for transport research. The application is called a quasi-real 

case-study because the data is not completely real. Only the trips of families who travel 

inside the city during a whole working day in the year 2008 were obtained, ignoring 

external trips. The filtered dataset contains a collection of 152 trips from 29 households 

sampled. Sampling expansion factors for each family were given for a typical working 

day, usually varying from 200 to 1300. With this correction factor, the original dataset with 

152 trips corresponds to 68,640 trips by 14,640 households, yielding an average sample 

rate of 0.2%. Therefore, 60,300 trips were considered through 58 OD pairs distributed 

between 12 centroids (see the grey circles in Figure 1, proportional to their demand) [8]. 

According to the dataset, the most congested hour (peak hour) is between 9 and 10 a.m., 

holding 15% of the daily trips. 

 

Figure 1. Map of the case study with network (46 nodes and 122 road links) and centroids 

representation (grey circles), adapted from OpenLayers maps. 

The link performance function is the aforementioned BPR function (2) with the 

reference coefficients (α = 0.15, β = 4). For increased realism, the coefficients would have 

to be estimated according to the reality of Delft. However, it is not our intention to 
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reproduce current traffic in the city. The minimum travel time (𝑡𝑖𝑗
𝑚𝑖𝑛) is computed from 

the free-flow speed and rounded up to the nearest whole number in each link (𝑖, 𝑗) ∈ 𝑹. 

In this experiment, the design stages considered several AV penetration rates (𝜌): 0%, 

10%, 25%, 50%, 75%, 90% and 100%. The study is envisioned up to an AV penetration rate 

of 100% of AVs—a rate that, according to Nieuwenhuijsen et al. (2018), will happen 

somewhere in 2100. 

Traffic simulations that tested AVs with cooperative adaptive cruise control systems 

found a road capacity benefit in mixed traffic conditions [11]. A second-degree parabolic 

curve (𝐴𝑑𝑢𝑗𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 + 0.1636 𝜌 + 0.5087 𝜌2;  𝑅2 = 0.9981 ) was adapted from their 

results: for a 10% penetration rate of AVs, there is a benefit of 3%; when 50% of the vehicle 

fleet is automated, road capacity increases 22%; for 75% of AVs, a 39% increase is 

considered; and with 100%, a maximum benefit of 68% is reached. The AVs’ flow is 

discounted through a coefficient that has an inverse relationship with the adjusted 

capacity: in mixed traffic (regular roads), 𝛼𝑀𝑇 =
1

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 ; whereas in dedicated 

roads, each AV corresponds to 0.60 CV, 𝛼𝐴𝑇 = 1
1.68⁄ ≈ 0.60. 

The reference value of travel time spent inside CVs (𝑉𝑂𝑇𝑐𝑎𝑟) in commuter trips in the 

Netherlands is considered to be EUR 10 per hour [29]. Since the total flow is a single 

variable and the cost function depends on the weights given to the variables, the AVs’ 

value of travel time is proportionally reduced in mixed and dedicated roads. Bearing in 

mind the inevitable mathematical incoherence mentioned in Section 2, we make use of 

this incoherence as the AV value of travel time decreases in an inversely proportional way 

to the road capacity gain that is given by the AVs. The AVs’ estimated values of travel time 

in the existing literature could drop as far as EUR 5.50 in the Netherlands for commuter 

trips [29]. In our experiment, CV passengers always have a higher value of travel time (10 

EUR/h), whereas AV passengers have a reduced travel time cost. In dedicated roads, all 

traffic is automated, so the value of AVs’ travel time is EUR 5.95 per hour (𝑉𝑂𝑇𝑐𝑎𝑟 ∗ 𝛼𝐴𝑇). 

In regular roads with mixed traffic, the value of AVs’ travel time (𝑉𝑂𝑇𝑐𝑎𝑟 ∗ 𝛼𝑀𝑇) varies 

accordingly to Figure 2. 

 

Figure 2. Value of travel time as the AVs’ penetration rate evolves. 

The RNDP-AVs model is applied for the Delft case study in three scenarios: 

• Base Scenario without AV-dedicated road links, meaning that all vehicles circulate 

in mixed traffic conditions—see the results in Table 1. The base scenario is created to 

further compare its results with the Daily Scenario. Vehicles circulate everywhere in 

mixed traffic conditions, reflecting the impact of AVs’ deployment without any road 

traffic segregation. Constraints (18) are added to the prior RNDP-AVs formulation to 

replicate the Base Scenario. 

𝑥𝑖𝑗 = 0 ∀ (𝑖, 𝑗) ∈ 𝑹 (18) 

• Peak-Hour Scenario designs AV subnetworks only for the peak-hour demand, that 

in the Delft case study is between 9 and 10 a.m. (15% of the daily trips)—see the 

results in Table 2. This scenario is created to further compare and discuss the 

importance of considering the daily demand in this kind of road network design 
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problem. Therefore, the experiments on this scenario will consider only the 

optimality analysis that represents the optimal solution and the minimisation of 

travel costs and network congestion. 

• Daily Scenario designs AV subnetworks for the whole daily demand. It comprises 

only the travellers’ perspective by minimizing the overall total travel cost, balancing 

AVs’ travel savings and CVs’ extra travel time costs—see the results in Table 3. The 

Delft experiments are calculated throughout this transition process of AV 

deployment in four analyses; the optimality analysis shows the optimal solutions at 

each design stage (penetration rate), alongside the previously proposed planning 

strategies: the incremental, the long-term and the hybrid. 

The RNDP-AVs model was implemented in the Mosel language and solved using 

Xpress 8.1 [32] in a computer with a processor of 4.2 GHz Intel Core i7-7700K and 16 GB 

RAM. Our NLP problem was solved with the FICO Xpress-NLP SLP solver designed for 

large-scale nonconvex problems that uses a mixed-integer successive linear programming 

approach, combining branch and bound (BB) and successive linear programming (SLP). 

The reader may consult more information about the Xpress Solver [33] and other existing 

solvers [34]. Since the RNDP-AVs problem is convex, global optimality is guaranteed. 

In optimality, the solutions were obtained within a tolerable computation time, less 

than 24 h for the whole process, involving seven design stages (penetration rates). In 

incremental planning (IP), the calculation took about 8 h. In long-term planning (LTP), it 

took less than 4 h, since the problem becomes less and less combinatorial as the algorithm 

reversely computes the RNDP-AVs. In hybrid planning (HP), the computation took over 

12 h. For a penetration rate of 50% of AVs, the problem is more combinatorial than in the 

IP analysis, balancing the CV detour and the AV travel time savings. 

4.2. User Equilibrium Validation 

In traffic assignment problems, it is crucial to guarantee traffic behaviour. The user 

equilibrium assignment was first introduced by Wardrop [35], following which, it was 

analytically addressed by Beckmann et al. [36] with an optimisation model, founded on the 

Kuhn–Tucker conditions that guarantee the existence and the uniqueness of the solution. 

The user equilibrium assignment was later formulated by [37] through the inverse of the 

cost function. Ref. [38] combined the arc flow vector function, describing the assignment to 

an uncongested network, together with the arc cost vector function, with sufficient 

conditions for solution existence and uniqueness, mainly the continuity and monotonicity 

of the involved functions. Later, ref. [22] proposed a traffic assignment model that includes 

two type of vehicles in congested transportation networks, where arc flows depend on arc 

costs; thus, the equilibrium assignment searches for mutually consistent arc flows and costs. 

The proposed RNDP-AVs objective function (1) uses the Beckmann function, whose 

arc costs (3) only depend on the link flow described in (7). Similarly, all auxiliary variables 

of the model depend on the arc flows, which depend on the arc cost itself—meaning that 

there is an interdependency of the auxiliary variables that depend primarily on the 

assignment of the arc flow that affects the cost function. Existence is guaranteed if both 

the arc flow and cost function are continuous (and the network is connected). Since the 

BRP function (arc cost function) is monotone strictly increasing and the sum of two 

continuous and increasing functions, uniqueness is guaranteed. Our proposed RNDP-AVs 

model uses integer variables (𝑥𝑖𝑗 ) that are responsible for road traffic segregation that 

artificially design AV subnetworks. These integer variables are relaxed with the FICO 

Xpress-NLP SLP problem solver, and therefore convergence of the problem is guaranteed. 
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Table 1. Results of the Base Scenario without AV subnetworks applied to the whole day. 

Base Scenario 

RNDP-AVs without AV 

Subnetworks 

Objective Function Network Congestion 1 Travel Times Delay 2 Travel Distances Computational Time 
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0% 85,277.35 - - 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468,258 00:00:44 

00
:0

6:
43

 

10% 85,090.08 - - 11% 43% 86.67 13.95 25% 58% 891 8021 8912 48 433 481 10.0% 90.0% 468,248 00:01:13 

25% 83,769.55 - - 11% 42% 86.67 13.32 25% 57% 2221 6663 8884 113 340 453 25.0% 75.0% 468,192 00:01:25 

50% 77,637.04 - - 10% 39% 80.63 10.03 23% 53% 4386 4386 8772 171 171 342 50.0% 50.0% 468,112 00:00:48 

75% 66,235.24 - - 9% 33% 15.77 4.33 20% 45% 6462 2154 8616 141 47 188 75.0% 25.0% 467,848 00:01:03 

90% 57,220.23 - - 7% 29% 10.03 3.07 17% 39% 7681 853 8534 95 11 106 90.0% 10.0% 467,735 00:00:53 

100% 50,568.89 - - 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465,944 00:00:37 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation. 2 Delay is calculated as the difference between the driven and the 

minimum travel time in free-flow speed conditions on each roadway, where it is assumed that each vehicle only carries one passenger. 

Table 2. Results of the Peak-Hour Scenario design with AV subnetworks. 
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10% 10,580.61 11 30.51 23% 41% 13.98 4.82 121 1042 1164 10 106 116 10.9% 89.1% 69,027 00:22:06 

25% 10,329.44 13 32.31 24% 40% 13.94 6.58 299 868 1167 24 88 112 25.5% 74.5% 71,462 00:17:11 

50% 9440.45 12 25.80 22% 39% 11.19 6.06 582 576 1157 49 55 104 48.9% 51.1% 69,446 00:47:50 

75% 7979.94 22 46.07 18% 32% 11.89 4.82 829 298 1127 49 23 72 70.8% 29.2% 71,445 00:25:13 

90% 7162.51 23 59.33 17% 31% 4.00 2.75 963 131 1094 26 4 30 86.9% 13.1% 70,554 00:08:44 

100% 6241.97 42 114.41 14% 29% 2.75 0.00 1057 0 1057 16 0 16 100.0% 0.0% 68,559 00:00:02 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation. 2 Delay is calculated as the difference between the driven 

and the minimum travel time in free-flow speed conditions on each roadway, where it is assumed that each vehicle only carries one passenger. 
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Table 3. Results of Daily Scenario with AV subnetworks. 
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RNDP-AVs with AV 
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Network Congestion 1 Travel Times Delay 2 Travel Distances 
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0% 85,277.28 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468,271 00:00:59 

23
:3

1:
52

 

10% 84,974.76 9 30.54 11% 38% 87.80 13.95 25% 55% 903 8017 8920 47 430 477 10.0% 90.0% 468,166 00:25:45 

25% 83,484.38 10 34.68 11% 38% 83.82 21.46 25% 56% 2281 6748 9029 116 423 539 24.7% 75.3% 470,325 04:06:50 

50% 77,056.81 17 56.09 10% 33% 74.95 11.80 23% 50% 4427 4580 9007 170 230 400 48.7% 51.3% 475,806 16:07:06 

75% 65,484.03 15 51.89 9% 28% 19.35 4.33 19% 42% 6479 2223 8702 130 48 178 74.0% 26.0% 470,098 09:17:31 

90% 56,860.36 9 31.71 7% 26% 8.28 3.07 17% 38% 7679 880 8559 94 10 104 89.6% 10.4% 468,554 17:32:50 

100% 50,568.89 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465,944 00:00:51 

In
cr

em
en

ta
l 

P
la

n
n

in
g

 

0% 85,277.25 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 485 485 0.0% 100.0% 468,227 00:00:59 

07
:5

6:
45

 

10% 84,974.78 9 30.54 11% 38% 86.05 13.95 25% 55% 903 8016 8919 47 429 475 10.0% 90.0% 468,136 03:27:06 

25% 83,484.38 10 34.68 11% 38% 83.82 21.46 25% 56% 2281 6748 9029 116 423 539 24.7% 75.3% 470,325 02:23:13 

50% 77,088.29 11 42.52 10% 36% 84.81 12.26 23% 51% 4409 4431 8840 172 191 363 49.4% 50.6% 469,374 01:40:39 

75% 65,765.61 14 54.08 9% 29% 19.35 4.33 20% 44% 6492 2232 8724 132 48 180 74.4% 25.6% 468,746 00:17:51 

90% 57,023.08 17 61.15 7% 25% 8.28 3.07 17% 39% 7680 895 8576 95 10 105 89.6% 10.4% 468,411 00:06:05 

100% 50,569.17 57 160.40 7% 24% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465,945 00:00:52 

L
o

n
g

-T
er

m
 R

ev
er

sa
l 

P
la

n
n

in
g

 

0% 85,277.52 0 0.00 11% 43% 86.67 14.44 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468,283 00:00:47 

03
:2

6:
30

 

10% 85,090.08 0 0.00 11% 43% 86.67 13.95 25% 58% 891 8021 8912 48 433 481 10.0% 90.0% 468,248 00:00:59 

25% 83,769.48 0 0.00 11% 42% 86.67 13.32 25% 57% 2221 6663 8885 114 341 454 25.0% 75.0% 468,178 00:07:42 

50% 77,303.68 9 31.71 10% 36% 76.03 11.80 23% 53% 4418 4578 8996 169 228 397 48.9% 51.1% 477,399 00:04:00 

75% 65,561.16 9 31.71 9% 30% 20.52 4.33 19% 45% 6452 2223 8676 132 48 180 74.1% 25.9% 471,808 00:01:36 

90% 56,860.36 9 31.71 7% 26% 8.28 3.07 17% 38% 7679 880 8559 94 10 104 89.6% 10.4% 468,554 03:10:35 

100% 50,568.89 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465,944 00:00:51 

H
y

b
ri

d
 P

la
n

n
in

g
 0% 85,277.28 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468,271 00:00:59 

12
:2

9:
02

 

10% 85,069.34 2 5.25 11% 41% 88.42 13.95 25% 58% 892 8020 8912 48 432 480 10.0% 90.0% 468,115 02:12:51 

25% 83,726.86 2 5.25 11% 41% 86.33 13.80 25% 57% 2223 6661 8884 112 338 450 25.0% 75.0% 467,993 02:11:05 

50% 77,498.24 7 25.93 10% 36% 82.11 10.03 23% 52% 4396 4442 8838 171 177 349 49.5% 50.5% 471,494 06:11:52 

75% 65,780.86 10 32.82 9% 29% 19.35 4.33 19% 45% 6459 2223 8682 132 48 180 74.1% 25.9% 471,241 01:32:54 

90% 56,900.20 17 48.34 7% 23% 8.28 3.07 17% 35% 7679 909 8588 94 10 104 89.1% 10.9% 470,949 00:18:29 

100% 50,568.89 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465,944 00:00:52 
1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation. 2 Delay is calculated as the difference between the driven 

and the minimum travel time in free-flow speed conditions on each roadway, where it is assumed that each vehicle only carries one passenger. 
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4.3. Mixed Traffic Conditions without AV Subnetworks 

In the Base Scenario (Table 1), throughout this transition process (from 0% to 100% of 

AVs), costs reduce proportionally as the value of travel time spent inside AVs decreases 

(Figure 2). Total travel time sees a reduction of 4.7%, from 8915 to 8494 h. Network 

congestion decreases from 11% to 7%. The average degree of saturation reduces from 43% 

to 26%, leading to a total delay reduction from 484 to 66 h. Roadways above practical 

capacity (degree of saturation above 75%) drop from 86.67 to 5.47 kilometres, yet 

congested roadways (saturation above 100%) only start to be mitigated when AVs are 50%. 

4.4. AV Subnetworks Designed for the Daily Traffic Demand 

This section depicts the daily design of progressive AV subnetworks (Table 3 results). 

In the incremental planning (Figure 3), the design follows optimality at each stage if CVs 

are the majority of the vehicle fleet. For 10% of AVs, AV dedicated roads occupy 17.1% of 

the total network (30.54 km). For 90% of AVs, AV subnetworks are 34.3%. For a penetration 

rate of 100%, all the roads with traffic flow cover 89.9% of the network (160.40 km out of 

178.51 km)—note that external demand to the city was not part of the dataset. 

   
(a) 10% (b) 25% (c) 50% 
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(d) 75% (e) 90% (f) 100% 

Figure 3. Daily Scenario: AV subnetworks’ expansion under IP (Incremental Planning) strategy (a–

f). AV dedicated roads (continuous thick lines) expand as the AV penetration rate (%) increases. 

Nodes are represented in Figure 1. All images are oriented north. 

In a long-term planning design, AV subnetworks become relevant once AVs are the 

majority of the vehicle fleet. Figure 4 illustrates the expansion of AV subnetworks under 

LTP. AV subnetworks start at the penetration rate of 50% of AVs in three urban areas 

representing 17.8% of the network (31.71 km out of 178.51 km). At 100% of AVs, the road 

network needed is 74.6% of the original (133.11 km out of 178.51 km). Again, note that this 

experiment did not consider external demand to the city. 

  
(a) 50%, 75%, 90% (b) 100% 

Figure 4. Daily Scenario: AV subnetworks’ expansion under LTP (Long-Term Planning) strategy (a) 

and (b). AV dedicated roads (continuous thick lines) expand as the AV penetration rate (%) 

increases. Nodes are represented in Figure 1. All images are oriented north. 

In hybrid planning, AV subnetworks are added incrementally by the combinatorial 

problem, yet limited to the optimal solution at the end of the process (100%)—74.6% 

(133.11 km out of 178.51 km) of the road network is enough to guarantee all road traffic. 
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Figure 5 shows the AV subnetworks’ expansion. In the first half of the transition period, 

when AVs are still a minority of the vehicle fleet, only two roads are dedicated to AVs—

2.9% of the network (5.25 km out of 178.51 km). AV subnetworks become relevant when 

AVs reach 50%, increasing from 14.5% (25.93 km out of 178.51 km) to 74.6%. 

   
(a) 10%, 25% (b) 50% (c) 75% 

  
(d) 90% (e) 100% 

Figure 5. Daily Scenario: AV subnetworks’ expansion under HP (Hybrid Planning) strategy (a–e). 

AV dedicated roads (continuous thick lines) expand as the AV penetration rate (%) increases. Nodes 

are represented in Figure 1. All images are oriented north. 

4.5. Implications of AV Subnetworks 

The following Figure 6 shows, for the Daily Scenario, the differential of the travel 

costs in every planning strategy—revealing that AV subnetworks might save 1.2% of the 

travel costs in comparison with the Base Scenario. The IP follows optimality until AVs are 

50% of the fleet. Contrariwise, the LTP planning analysis is sided with optimality in the 

latest stages when AVs are 90% onwards. Both the IP and HP bring savings up to 0.8%. 

Figure 7 depicts the total travel time, revealing that AV subnetworks imply higher 

total travel times up to 6.5% for CVs (Figure 8) and 3% for AVs (Figure 9). While the model 

minimises travel costs, it implicitly considers a reduction in AVs’ value of travel time in 
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comparison to CVs’ value of travel time. The experiments showed that such a situation 

might happen to either a CV or an AV. 

 

Figure 6. Daily Scenario: travel costs variation. 

 

Figure 7. Daily Scenario: total travel time. 

 

Figure 8. Daily Scenario: CV total travel time variation. 
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Figure 9. Daily Scenario: AV total travel time variation. 

CV detouring naturally intensifies when AVs are 50%, or even sooner in the IP. 

According to Figures 10–13, the total travel time of CV passengers (Figure 8) might 

increase in the following situations: 

• CVs experience congestion in AV subnetworks’ surroundings that can be depicted by 

an increase in total CVs’ delay (see Figure 12). This occurs, for instance, at a 

penetration rate of 90%. 

• CVs experience detouring away from AV subnetworks to reach their destination, 

which is depicted by an increase in CVs’ distance (see Figure 10). This occurs, for 

instance, at a penetration rate of 75%. 

Conversely, total travel time might increase for AVs (Figure 9) in the following situations: 

• As AVs’ value of travel time decreases, AV passengers might travel longer, which can 

be depicted by an increase in AVs’ delay while in congestion (see Figure 13). This 

occurs, for instance, at a penetration rate of 25%. 

• AV trips might occur on shorter routes (lower distances) and experience higher travel 

times (Figure 11) This happens if AV subnetworks include roads with lower 

capacity/speed, when both AV delays and distance decrease. For example, this 

happens at a penetration rate of 10% in the IP and HP and of 50% in the LTP. 

Figure 10 shows that CV detouring is unavoidable in the latest stages, increasing up 

to 10%. The “best” strategy to avoid CV detouring is the IP, if the design starts at a 

penetration rate of 25%. If the design starts at 50%, the outcome would be the optimality, 

which is not so beneficial. In addition, the IP strategy searches for shorter AV routes 

(Figure 11), which, while causing higher travel times, means that the IP design starts 

selecting lower-capacity roads. The IP design can increase the total delay of CV passengers 

(Figure 12) by about 25%. The LTP increases CV total delay to 35% for an AV penetration 

rate of 50%. The HP mitigates CV total delay and, for this indicator, is considered the 

“best” strategy. Similar conclusions can be drawn for AVs (Figure 13): the hybrid and the 

LTP strategies reduce delay up to 8%. AV subnetworks are important for reducing AV 

delays. 
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Figure 10. Daily Scenario: CV total distance variation. 

 

Figure 11. Daily Scenario: AV total distance variation. 

 

Figure 12. Daily Scenario: CV total delay variation. 
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Figure 13. Daily Scenario: AV total delay variation. 

Figures 14–17 evaluate congestion behaviour during this process. Figure 14 illustrates 

the average degree of saturation, which indicates that speed might increase on some 

roads. The IP design presents on average a lower degree of saturation; in Figure 15, for an 

AV penetration rate of 50%, the length of congested roads (DS ≥ 100%) is higher (8.14 km) 

than the Base Scenario—meaning that AV subnetworks from IP are not suitable at this 

design stage. The LTP (Figure 16) is suitable for an AV penetration rate of 50%, decreasing 

congestion on roads above practical capacity (DS ≥ 75%) on 4.60 km, yet worsening 

congested roads (DS ≥ 100%) on 1.77 km. HP (Figure 17) has a similar performance as the 

LTP, showing low performance in most of the transition process. Overall, AV subnetworks 

do not improve/mitigate congestion significantly, since the efficiency of AVs has an 

equally significant role in congestion in the Base Scenario. 

 

Figure 14. Daily Scenario: average degree of saturation. 
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Figure 15. Daily Scenario: congestion with incremental planning. 

 

Figure 16. Daily Scenario: congestion with long-term planning. 

 

Figure 17. Daily Scenario: congestion with hybrid planning. 

4.6. Daily and Peak-Hour Design Comparison 

The peak hour is usually considered in traffic design studies as it agglomerates most 

congestion problems. Therefore, this study was carried out to compare the feasibility on 

how deep and complex the RNDP-AVs takes place. The optimality of the Daily Scenario 

is now paralleled with the optimality of the Peak-Hour Scenario (9–10 a.m.) through 

Figure 18, and given a constant traffic demand throughout the process. The optimal zone 

(pink shadow) is between both optimality analyses, the Daily and Peak-Hour Designs. 

From 25% to 75%, the AV subnetworks in the Daily Scenario should be larger than in the 
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Peak-Hour Scenario, whilst in the latest stages (from 90% of AVs onwards), the Peak-Hour 

Scenario would require larger AV subnetworks. 

 

Figure 18. Optimality design: daily and peak hour scenarios. 

Nevertheless, the Daily Scenario presents, on average, only 1% heightened network 

congestion in the peak hour—yet it considers the daily traffic demand. For instance, for a 

penetration rate of 75%, the Daily Scenario produces 19% of network congestion in the 

peak hour (Table 3), against the 18% that would be obtained in the optimal Peak-Hour 

Scenario (Table 2), but still inferior to the Base Scenario, which would be 20% (Table 1). 

Similarly, for the average degree of saturation, the Daily Scenario produces, on average, 

an increase of 11% of the average degree of saturation against the peak-hour design, yet 

3% less than the Base Scenario. This means that AV subnetworks found in the Delft 

experiments for the Daily Scenario are suitable and improve congestion in the peak hour. 

4.7. Planning Design Strategies Overview 

The strategy considered for the selection of dedicated roads is debatable and 

dependent on the desired results. Two patterns are noticeable: When most of the vehicles 

are conventional, the model aims to reduce CV detouring costs by selecting dedicated 

roads with a lower capacity and therefore lower speed, moving AV traffic away from 

regular roads. As more AVs are present in the system, the model aims to increase their cost 

savings by increasing the subnetwork’s dimensions. The expansion of the AVs 

subnetwork is condensed in Figure 19. The pink area considers the optimality of the peak-

hour design. 

 

Figure 19. AV subnetworks’ expansion in every planning strategy. 

Amongst the planning strategies, the model balances the CV detouring extra costs 

and AV cost savings, given a penetration rate. This is why the incremental planning 

strategy starts avoiding CV detouring and forces an increase in the distances travelled by 
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AVs in the early stages. On the other hand, the long-term planning starts from the optimal 

long-term network design, where 90% of the vehicles are automated and 10% are 

conventional. In this case, the model creates the network reversely by maximizing the 

travel time cost savings, which is naturally far from optimality at the early stages, because 

detouring is unavoidable—the reverse design gives preference to AVs savings and 

worsens CV detouring. Finally, the hybrid planning revealed surprising results because it 

proved that limiting the incremental planning to the optimal solution obtained in the long 

term strongly diminishes the negative effects of both the incremental and long-term 

planning strategies throughout the transition process. Moreover, in the first half of the 

transition period, the hybrid planning diminishes the extra travel costs that arise from 

implementing the long-term planning strategy; whilst, in the second half of the transition 

process, the hybrid planning diminishes the CV detouring that arises from implementing 

the incremental planning. 

5. Conclusions and Future Work 

In this paper, we proposed a road network design problem for the deployment of 

automated vehicles (RNDP-AVs) to design AV subnetworks in urban areas. The 

mathematical model is formulated as a nonlinear programming (NLP) problem. Our 

contribution is focused on the decision of which roads to dedicate to automated traffic and 

the progressive design of these AV subnetworks. It is focused on the transition process 

when the traffic equilibrium varies according to AVs’ operational efficiency and the 

decrease in the occupants’ value of travel time. Three planning strategies are proposed 

and compared: (1) incremental planning, where dedicated roads are added gradually as 

the AV penetration rate evolves; (2) long-term planning, where the subnetwork is 

reversely created from the long-term optimal solution; and (3) hybrid planning, where the 

subnetwork is limited from the early stages to reach the optimal final network design. 

The RNDP-AVs model was applied to the network of the city of Delft. Three scenarios 

were performed: one without AV subnetworks, and a Peak-Hour Scenario that helps to 

evaluate the real impact of the Daily Scenario. All scenarios were implemented with seven 

AV penetration rates. The RNDP-AVs model proved to be an easy tool to guide the 

creation of AV subnetworks as a function of the penetration rate. The optimal solution can 

be obtained within an acceptable computation time for the combinatorial nonlinear 

decision problem. The incremental planning calculation time took 8 h. The long-term 

planning calculation time was about 4 h. The hybrid planning took 13 h. 

AV subnetworks first appear in areas that are highly in demand (residential areas) 

and in which there is a compromise between the AV benefits, in terms of travel time cost 

savings, and CV detours. Through the Delft experiments conducted at each penetration 

rate, we found that AV subnetworks are a useful strategy to reduce the overall total travel 

cost, while degrading delay, degree of saturation and congestion. However, depending 

on which strategy is chosen for evolving this AV subnetwork and how early the design of 

AV subnetworks takes place, results differ. From a road safety perspective in urban areas, 

AV subnetworks might play an important role in segregating automated from mixed 

traffic as the design first induces AVs to shorter routes (lower distances) and lower speeds 

(higher travel times), which might be beneficial. 

From the planning strategies applied to the Delft case study scenarios, we can draw 

the following conclusions: 

• The incremental planning should start in the initial stages around AV penetration 

rates of 25%. The IP starts selecting lower-capacity roads (lower speeds), which leads 

to expanded AV subnetworks towards the end of the transition period, producing 

less CV detouring. 

• Long-term planning is a fair strategy in the second half of the transition period, i.e., 

when the initial design stages occur once AVs are already a majority. For an equal 
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share between AVs and CVs (50%), CVs will experience high detouring and delays, 

but that effect will be highly mitigated in the second half of the period. 

• Hybrid planning revealed satisfactory results, reducing CV delays throughout the 

entire transition period, and it can be used to help design AV subnetworks from the 

beginning. The main disadvantage of this strategy is the CV detouring (longer trips, 

longer distances) in the latest stages, once AVs reach 90% of the vehicle fleet. 

If CV detouring is considered the tie-breaking criteria regarding the decision as to 

the best planning strategy, incremental planning is the strategy that mitigates this 

problem the most. However, this decision also depends on the diffusion of AVs over time, 

because it will influence the penetration rate evolution during the deployment process. If 

the time lag from 1% to 50% of AVs is much longer than the time lag from 50% to 90% of 

AVs, the CV detouring would be very present, which reinforces that the incremental is the 

best strategy to be considered. Time plays an important role here, yet forecasts of the 

diffusion of AVs are still very uncertain and dependent on policy and technology 

evolution. 

The application of the RNDP-AVs model points towards a need for designing a 

subnetwork for AVs. This model was formulated with the introduction of some 

simplifications and assumptions, as stated in Section 3. These simplifications and 

assumptions result in both limitations and future work opportunities. As limitations of 

the model, proper to any academic exercise, we have, for example, a constant mixed traffic 

efficiency coefficient and a constant road investment per kilometre. Furthermore, the 

application of the model has only been tested in the city of Delft, and does not consider 

external demand, because of data availability and the assumed focus on inner city traffic. 

As for future work, the authors suggest an extended model joining the decision on 

AV subnetworks with the time lag decision. Similarly, an improved model joining 

together the decision about AV subnetworks and the strategic location problem for V2I 

communication sites (5 km of radius), as well traffic efficiency parameters that are more 

accurate, perhaps could be solved through heuristic methods [39,40], though more 

computationally costly to solve and the optimal solution might not be guaranteed. The 

same is true for other applications in bigger cities or larger networks. Another relevant 

improvement could be taking public transport as another alternative mode of transport, 

but it would involve both routes and schedules, transforming this road network design 

problem into a tricky combinatorial transit assignment problem [41]. Moreover, it is also 

possible to evolve to bi-level optimisation and add improvements such as other cost 

components involving pollution, noise reduction or other benefits, for example, freeing 

space in the city centre (e.g., parking and gas stations). 
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