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Improving ASCAT Soil Moisture Retrievals With an
Enhanced Spatially Variable Vegetation

Parameterization
Sebastian Hahn , Wolfgang Wagner , Senior Member, IEEE, Susan C. Steele-Dunne , Member, IEEE,

Mariette Vreugdenhil , Member, IEEE, and Thomas Melzer

Abstract— This study investigates the performance of the
TU Wien soil moisture retrieval (TUW-SMR) algorithm by adapt-
ing the strength of the vegetation correction. The semiempirical
change detection method TUW-SMR exploits the multiangle
backscatter observations from spaceborne fan-beam scatterome-
ter systems in order to derive surface soil moisture information
expressed in the degree of saturation. The vegetation parameter-
ization of TUW-SMR is controlled by the dry and wet crossover
angles that are used to determine the dry and wet backscatter
reference. Backscatter observations from the Advanced Scat-
terometer (ASCAT) are used to produce four soil moisture data
sets based on different dry and wet crossover angles describing:
1) a static, respectively, no vegetation correction; 2) the currently
used seasonal vegetation correction; 3) a stronger seasonal vege-
tation correction; and 4) a spatially variable seasonal vegetation
correction with the stronger vegetation correction over vegetated
areas and no vegetation correction over bare land. All four
ASCAT soil moisture data sets are evaluated against soil moisture
estimates from GLDAS-2.1 Noah land surface model and the
European Space Agency (ESA) climate change initiative (CCI)
Passive v04.5 soil moisture product using the triple collocation
method and traditional correlation analysis. The results show
that the spatially variable vegetation correction overall improves
soil moisture estimates in both more densely vegetated areas, e.g.,
in large parts of North America and Europe, and more sparsely
vegetated, e.g., Western Africa. Nonetheless, the experiment also
provides insight into challenging retrieval conditions where the
TUW-SMR fails to take all relevant backscatter processes into
account, e.g., wetlands and bare soils with subsurface scattering.

Index Terms— Performance evaluation, radar cross sections,
radar remote sensing, soil moisture.

I. INTRODUCTION

THE topic of microwave remote sensing of soil moisture
has been studied extensively [1]–[4]. Microwaves exhibit
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a strong dependence on the soil dielectric properties, which are
largely controlled by the water content in the soil. In addition,
microwaves benefit from the fact that they are hardly affected
by clouds and independent of solar illumination. Therefore,
microwaves have proven to be a useful tool to measure soil
moisture changes over land.

Numerous satellite soil moisture products have been devel-
oped and published based on active and passive microwave
instruments [5]–[11]. Furthermore, an effort has been directed
toward merging active and passive microwave satellite soil
moisture products in the framework of European Space
Agency (ESA’s) climate change initiative (CCI) [12], [13].
By harnessing the assets of active and passive microwave
instruments, it is possible to overcome the limitations of one
technique by another.

However, vegetation cover effects are still a challenge when
deriving surface soil moisture information from active and pas-
sive microwave instruments. When the soil surface is covered
by vegetation, part of the microwave radiation is absorbed
and scattered. A mix of surface, volume, and multiple scat-
tering is reducing the signal sensitivity to soil moisture [14],
[15]. Various approaches have been investigated to account
for vegetation effects e.g., using optical vegetation indices
[e.g., Normalized Difference Vegetation Index (NDVI), Leaf
Area Index (LAI)] [16], [17], directly estimating vegetation
parameters from microwave measurements (e.g., Vegetation
Optical Depth (VOD), Radar Vegetation Index (RVI), polar-
ization ratio) [4], [9], [18], or exploiting multiangle backscatter
observations [10], [19]. The TU Wien soil moisture retrieval
(TUW-SMR) algorithm belongs to the last category, since it
utilizes the multiangle measurement capabilities of spaceborne
fan-beam scatterometer to account for vegetation during the
retrieval of surface soil moisture [20].

TUW-SMR was originally developed for the C-band scat-
terometer instruments onboard European Remote-Sensing
Satellite (ERS)-1 and ERS-2 [10] and later applied to the
Advanced Scatterometer (ASCAT) on-board the series of
Metop satellites [11], [21]. The vegetation parameterization
of TUW-SMR exploits the incidence angle dependence of
backscatter, relating it to vegetation and soil–vegetation inter-
action effects [22], [23]. It is based on the assumption that
a change in soil moisture equally affects the backscatter
intensity (expressed in dB) across the incidence angle range
between 20◦–60◦, whereas vegetation phenology results in
more complex variations in the incidence angle dependence
of backscatter. Applying this abstraction to specific soil and
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Fig. 1. TUW-SMR is a physically based semiempirical change detection method. Backscatter observations σ 0 are normalized to a common reference incidence
angle (θr = 40◦) and scaled between a dry and wet backscatter reference (σ d , σw). Soil moisture is expressed in degree of saturation ranging between 0 (dry
soil conditions) and 100% (saturated soil condition).

vegetation states eventually leads to intersections at certain
incidence angles. The so-called crossover angle concept uti-
lizes this behavior by defining two distinct incidence angle
at which the backscatter signal is independent of vegetation
changes in the case of dry and wet (saturated) soil. Based
on empirical observations from previous studies using ERS-
1 and ERS-2 scatterometer data, the dry and wet crossover
angles are set to θd = 25◦ and θw = 40◦ globally [10], [22],
[24]. The choice of the crossover angles is important because
they directly influence the amplitude of the dynamic vegetation
correction and ultimately determine the signal sensitivity to
soil moisture (i.e., the distance between the dry and wet
backscatter reference).

Recent research has shown that in some areas seasonal veg-
etation biases are evident [25], [26]. The selection of θd and θw

has not been changed since the initial development of TUW-
SMR and no dedicated experiments have so far been conducted
changing them on a global scale. A first study adapting the
vegetation parameterization to regional conditions indicated a
clear benefit of using a stronger vegetation correction in an
agricultural area in Lower Austria [27].

In the present study, we evaluate the performance of TUW-
SMR globally using different pairs of dry and wet crossover
angles:

1) θd = 40◦ and θw = 40◦ which switches off the vegeta-
tion correction over bare land surface areas, respectively,
assumes that the scattering behavior of vegetation is
stable over the year.

2) θd = 25◦ and θw = 40◦ representing the current seasonal
vegetation correction.

3) θd = 10◦ and θw = 30◦ representing the stronger
vegetation parameterization successfully tested by [27]
over temperate climates.

4) a spatially variable choice of crossover angles derived
from a Vegetation Continuous Fields (VCF) data set to
tune the vegetation correction from no vegetation cor-
rection over bare land surfaces to the stronger vegetation
parameterization over vegetated areas.

Hence, four different ASCAT surface soil moisture data
records are computed and evaluated using soil mois-
ture information from the Global Land Data Assimilation

System (GLDAS) Noah v2.1 [28] and the ESA CCI Pas-
sive soil moisture data set v4.5 [29] for the time period
January 2007 until December 2018. The main performance
metrics computed in this study are the Pearson correlation
coefficient and the estimated error variance expressed as
signal-to-noise ratio (SNR) derived using triple collocation
(TC) [30], [31].

II. BACKGROUND

A. TUW-SMR Algorithm

The TUW-SMR represents a change detection method
developed for scatterometer instruments in 1999 [10], [22],
[24]. Stepwise improvements have been developed in the past
years, such as correcting azimuthal anisotropy [32], supporting
Metop ASCAT [21] and error characterization [33]. Fig. 1
illustrates the final step in the change detection method and
(1) its mathematical expression. Backscatter observations (σ 0)
normalized to a common reference incidence angle (θr = 40◦)
are scaled between a dry and wet backscatter reference (σ d ,
σw), resulting in relative surface soil moisture information
(ms) expressed in degree of saturation. The surface soil mois-
ture values range between 0 (dry soil conditions) and 100%
(saturated soil conditions) and any σ 0 observation outside the
dry/wet backscatter reference are either corrected to 0/100%
or rejected as an extreme outlier

ms(t) = σ 0(t) − σ d(t)

σw(t) − σ d(t)
· 100 [%]. (1)

The physical basis of TUW-SMR can be attributed to
the strong linear relationship between C-band backscatter
and soil water content in the top soil layer (1–2 cm) [11].
Despite the lack of a direct parameterization of common
soil surface properties (e.g., surface roughness, vegetation,
and land cover) which are usually part of semiempirical or
theoretical backscatter models, TUW-SMR is grounded on
physical principles and the following basic assumptions [10]:

1) The relationship between the backscatter coefficient σ 0

expressed in decibels (dB) and the surface soil moisture
content is linear.

2) Surface roughness and land cover are temporally stable
at a spatial resolution of 25/50 km.
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Fig. 2. Illustration of the crossover angle concept after [24]. Two distinct
intersections can be registered for dry and wet soil conditions, which are
called dry and wet crossover angles (θd , θw).

3) The incidence angle dependence of σ 0 characterizes soil
roughness conditions and land cover dynamics, but is not
affected by changes in the surface soil moisture content.

4) The effect of vegetation on σ 0 changes on a seasonal
scale without interannual variations.

One advantage of this method is that model parameterization
is possible without an iterative adjustment, which is normally
necessary for more complex backscatter models. Furthermore,
the simple mathematical description allows for a straightfor-
ward application of error propagation analysis to estimate a
retrieval error of the final surface soil moisture estimate [23].

TUW-SMR model parameters can either be predefined
globally or estimated for each individual location on the
land surface. Thus, model parameters can be spatially and
temporally constant (i.e., θr = 40◦, θd = 25◦, θw = 40◦) or
change temporally and geographically (i.e., σ �, σ ��, σ d , σw).
The estimation of the unknown model parameters is typically
done in the time domain and computationally expensive. Long-
term backscatter time series (>2–4 years) are needed for each
location in order to compute robust results.

B. Crossover Angle Concept

TUW-SMR assumes that distinct crossover angles exist at
which the backscatter signal is independent of vegetation
phenology. Fig. 2 depicts this concept showing backscatter
curves for four special cases. Two distinct intersections can
be registered, the so-called dry and wet crossover angles (θd ,
θw), where backscatter intensity is no longer dependent on the
vegetation state. The selection of θd = 25◦ and θw = 40◦ is
based on empirical observations and analysis from previous
studies [10], [22], [24].

The dry and wet crossover angles are important parameters
because the dry and wet backscatter references are computed
at these incidence angles. A second-order Taylor polynomial is
used to describe the incidence angle dependence of backscatter
(see (2)). The so-called slope σ � and curvature σ �� are used to

normalize backscatter observed at arbitrary incidence angles
(σ 0

θ ) to a common reference incidence angle (θr = 40◦). σ �
and σ �� represent the first and second derivatives of backscatter
with respect to the incidence angle, which are estimated for
each location independently and change temporally [34]

σ 0(t) = σ 0
θ (t) − σ �(t) · (θ − θr ) − 1

2
· σ ��(t) · (θ − θr )

2. (2)

Rearranging (2) allows us to convert σ 0 from the reference
incidence angle θr to θd and θw, respectively

σ 0
d (t) = σ 0(t) + σ �(t) · (θd − θr ) + 1

2
· σ ��(t) · (θd − θr )

2

(3)

σ 0
w(t) = σ 0(t) + σ �(t) · (θw − θr ) + 1

2
· σ ��(t) · (θw − θr )

2

. (4)

The backscatter time series at the crossover angle (σ 0
d , σ 0

w)
are used to determine the dry and wet backscatter reference
from the extreme lowest and highest backscatter values. The
selection of the extreme backscatter observations is based on a
confidence interval determined by the noise distribution of the
backscatter at the respective crossover angle [23]. The average
of the two selected backscatter subsamples represents the dry
and wet backscatter reference at the dry and wet crossover
angles (C0

d , C0
w). A final transformation of C0

d and C0
w is

needed in order to convert the backscatter values from the
crossover angles back to θr = 40◦

σ d(t) = C0
d − σ �(t) · (θd − θr ) − 1

2
· σ ��(t) · (θd − θr )

2 (5)

σw(t) = C0
w − σ �(t) · (θw − θr ) − 1

2
· σ ��(t) · (θw − θr )

2. (6)

It is worth noting that C0
d and C0

w are both constant values
(at the respective crossover angle), but as a result of the final
transformation to θr , σ � and σ �� impose their temporal signature
on σ d and σw. Technically, this is only the case for σ d for
the current settings, because θr = θw.

Fig. 3 shows an example of σ d and σw determined at
different crossover angles and transformed back to θr . It can
be seen that the selection of the crossover angle controls the
strength of the temporal characteristics. A lower crossover
angle enhances the temporal signature coming from σ � and
σ ��. In the extreme case that the crossover angle is equal to
the reference incidence angle, no transformation is necessary
and the reference is constant. The distance between σ d and
σw determines the backscatter signal sensitivity to changes in
soil moisture. Naturally, with increasing vegetation coverage,
backscatter sensitivity to changes in soil moisture is decreasing
due to attenuation effects. A typical variable in microwave
remote sensing describing vegetation attenuation properties
is the VOD. In fact, [20] developed a method deriving
VOD by ingesting σ d and σw into a water cloud model
(WCM) [14], [35], which compared well in temperate and
continental climates to VOD derived from passive microwave
observations. Hence, the selection of θd and θw determines the
temporal development of σ d and σw, which, ultimately, can
be interpreted as changes in VOD.
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Fig. 3. Examples of different dry (σ d ) and wet (σw) backscatter references at θr = 40◦ derived using different dry and wet crossover angles
(θd = {10◦, 25◦, 40◦}, θw = {30◦, 40◦}).

III. DATA SETS

A. Metop ASCAT Backscatter

The ASCAT on-board the series of Metop satellites is
an active C-band (5.255 GHz) radar using six vertically
polarized fan-beam antennas. From around 800 km altitude
ASCAT transmits well-characterized pulses of microwave
energy toward the Earth’s surface and measures the reflected
energy expressed in terms of the normalized radar cross
section (NRCS), also known as backscatter coefficient σ 0 [36].
ASCAT represents a follow-on scatterometer for the Active
Microwave Instruments (AMI) on-board ERS-1 and ERS-2
[37] and has proven to be a stable and well-calibrated instru-
ment [38], [39]. Two main Level 1b backscatter products are
generated by spatially averaging the geolocated full resolution
backscatter measurements in order to obtain σ 0 triplets from
the fore, mid, and aft beam resampled on a regular orbit
grid: Sigma Zero Operational (SZO) with a spatial resolution
of about 50 km, sampled on 21 nodes across each swath,
with a spacing of approximately 25 km between nodes and
successive rows of nodes and Sigma Zero Research (SZR)
with a spatial resolution of 25–34 km, sampled on 41 nodes
across each swath, with a spacing of approximately 12.5 km
[39]. The latter uses a dynamic filter size in order to maintain a
similar radiometric resolution at the cost of altering the spatial
resolution in the cross-track direction.

At the moment, all three Metop satellites share the same
sun-synchronous orbit and each carries an ASCAT instrument.
The series of Metop satellites was launched 6 years apart,
starting with Metop-A in October 2006, Metop-B in September
2012, and Metop-C in November 2018. In order to extend
the lifetime of Metop-A, the spacecraft will be directed into a
drifting orbit shifting the satellites Local Time of the Descend-
ing Node (LTDN) from 9:30 a.m. (nominal) to 7:30 a.m.
by April 2022. Afterward, Metop-A will be deorbited into
a 25 years reentry orbit [40].

In this study, we used Metop-A and Metop-B Level 1b SZR
products, which have been downloaded from the EUMETSAT
data center.1 In case of the Metop-A, a Fundamental Cli-
mate Data Record (FCDR) exists covering January 2007 to

1https://eoportal.eumetsat.int/

March 2014, which has been extended with the Metop-A
Level 1b SZR product from the operational ground segment
until December 2018. Currently, no FCDR is available for
Metop-B, therefore the Metop-B Level 1b SZR product from
the operational ground segment has been downloaded for the
period January 2013 until December 2018.

B. GLDAS-2.1 Noah Soil Moisture

The GLDAS is a global, high-resolution, offline (uncoupled
to the atmosphere) terrestrial modeling system that ingests
satellite- and ground-based observations and has been devel-
oped jointly by the National Aeronautics and Space Adminis-
tration (NASA) Goddard Space Flight Center (GSFC) and the
National Oceanic and Atmospheric Administration (NOAA)
National Centers for Environmental Prediction (NCEP) [28],
[41]. In this article, we used the GLDAS-2.1 Noah 0.25 degree
3-hourly product, which has been simulated with the Noah
Model 3.3 in the Land Information System (LIS) version 7
[42]. It contains 36 land surface fields from January 2000 until
the present. The data were downloaded from the NASA
Goddard Earth Sciences Data and Information Services Center
(GES DISC) for the period January 2007 until December
2018.2

The Noah model incorporates soil-vegetation-atmosphere
transfer schemes (SVATS), with vegetation properties con-
trolling fluxes and storages of energy and water at the land
surface. GLDAS makes use of a vegetation classification
map and also utilizes satellite-derived LAI from both the
Advanced Very High Resolution Radiometer (AVHRR) and
MODerate-resolution Imaging Spectroradiometer (MODIS)
sensors (Rodell et al. 2004). Therefore, unlike active and
passive microwave-based soil moisture products (where vege-
tation is part of the received signal and needs to be accounted
for), the seasonal cycle of GLDAS soil moisture is indirectly
affected by vegetation controlled by SVATS.

GLDAS-2.1 Noah has a total of four different layers rep-
resenting soil moisture: 0–10 cm, 10–40 cm, 40–100 cm, and
100–200 cm expressed in kg m−2. In this study, we used
soil moisture information from the first soil layer 0–10 cm,
as well as snow water equivalent (SWE) and soil temperature

2https://disc.gsfc.nasa.gov/
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0–10 cm to mask potentially invalid remote sensing soil mois-
ture observations.

C. ESA CCI Passive Soil Moisture

In 2009, the ESA started the CCI in response to the
need for climate-monitoring satellite data. Soil moisture has
been recognized as an Essential Climate Variable (ECV) and
became part of the ESA CCI program in 2012. The ESA CCI
soil moisture project3 combines multiple active and passive
microwave soil moisture products generating three harmonized
climate data records: Active, Passive, and Merged. In this
study, we used the ESA CCI Passive soil moisture product
v04.5 expressing surface soil moisture in m3 m−3 covering
the period from 1978-11-01 until 2018-12-31 [29], [43], [44].

The main data sources for the ESA CCI Passive product
v04.5 for the period under investigation (2007–2018) are based
on Advanced Microwave Scanning Radiometer (AMSR)-E,
WindSat, AMSR2, and Soil Moisture and Ocean Salinity
(SMOS). All satellite data are processed with the so-called
Land Parameter Retrieval Model (LPRM) [45]. LPRM is a
zero-order radiative transfer model and makes use of the
microwave polarization difference index (MPDI) to calculate
VOD, which is used to parameterize the attenuation of the
signal by the vegetation [46].

D. VCF-VCF5KYR

The NASA Making Earth System Data Records for
Use in Research Environments (MEaSUREs)4 VCF Ver-
sion 1 data product (VCF5KYR) provides global fractional
vegetation cover at 0.05◦ spatial resolution at yearly intervals
from 1982 to 2016 [47]. The VCF5KYR product is derived
from a bagged linear model algorithm using observations from
the AVHRR Long Term Data Record Version 4 (LTDR V4).
The three bands included in VCF5KYR are: percent of tree
cover (tc), nontree vegetation (v), and bare ground (bg).

In this study, we utilized the VCF5KYR 2016 data to
estimate the dry ((7)) and wet ((8)) crossover angle. The
three bands are used as weights assuming that no vegetation
correction is required in case of bare ground (θd = θw = 40◦),
while tree and nontree vegetated surfaces tend to have lower
crossover angle (θd = 10◦, θw = 30◦)

θd = 10 · v + 10 · tc + 40 · bg (7)

θw = 30 · v + 30 · tc + 40 · bg. (8)

The global maps shown in Fig. 4 illustrate the spatial
distribution of θd and θw derived from the VCF5KYR 2016
data set using (7) and (8).

E. Köppen–Geiger Climate Classification

The Köppen–Geiger climate classification5 realized by [48]
is sampled on a regular 0.5◦ latitude/longitude grid and
defines 30 climate classes (see Table I). In this study, we used
the Köppen–Geiger classification to group validation results
by climate type around the world.

3http://www.esa-soilmoisture-cci.org/
4https://earthdata.nasa.gov/community/community-data-system-

programs/measures-projects
5https://people.eng.unimelb.edu.au/mpeel/koppen.html

Fig. 4. Dry (a) and wet (b) crossover angles derived from the VCF5KYR
2016 data set (c).

Fig. 5. Köppen Geiger climate classification map.

F. ESA CCI Land Cover

The ESA CCI Land Cover project provides annual land
cover maps (1992–2015) at 300 m spatial resolution [49].
The land cover map 2015 v2.0.7 was aggregated to 12.5 km
collecting the fractional area of each land cover class and
its majority class. The data set was used to group validation
results by land cover type. Subclasses are merged into their
respective main class (see Table II).
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TABLE I

KÖPPEN-GEIGER CLIMATE SYMBOLS AFTER [48]

TABLE II

ESA CCI LAND COVER CLASS DESCRIPTIONS

IV. METHODS

TUW-SMR was applied to Metop-A and Metop-B ASCAT
backscatter observations, which were resampled from their
original orbit swath geometry to a fixed Earth grid before-
hand. This preprocessing step is necessary because backscatter
observations in time series format are needed by TUW-SMR.

Fig. 6. ESA CCI land cover map 2015 (v2.0.7).

TABLE III

ASCAT SOIL MOISTURE DATA SETS

The so-called WARP5 grid was used as a spatial reference
with a global equidistant sampling of 12.5 km [23]. A search
radius of 34 km was centered around each WARP5 land grid
point selecting original orbit swath backscatter observations
inside, which were subsequently weighted and averaged using
a Hamming window function. In this way, a backscatter time
series was generated incrementally and used as input for
TUW-SMR. TUW-SMR was applied four times, with each run
generating a surface soil moisture data set based on a different
set of crossover angles (see Table III).

The ASCAT surface soil moisture data sets (ASCAT SM-
10/30, ASCAT SM-25/40, ASCAT SM-40/40, and ASCAT
SM-Dyn) were validated against GLDAS-2.1 Noah and CCI
Passive soil moisture computing the Pearson correlation coef-
ficient (R) and by applying TC. TC is a method to study error
characteristics from three spatially and temporally collocated
data sets [30]. The mean squared random error of all three
data sets are estimated individually by cross-multiplying dif-
ferences between them. The computed error variance can be
expressed in absolute terms, but as shown in [31], the obtained
noise variance can also be related to the signal variance leading
to the SNR. SNR expressed in decibel (dB) allows for a phys-
ically meaningful interpretation: if signal and noise variance
are equal, SNR is zero, whereas each doubling/halving of their
ratio corresponds to additional ±3 dB.

The temporal period under investigation was 2007-01-01
until 2018-12-31, which is covered by all soil moisture data
sets. In order to calculate the validation metrics (R, SNR),
spatial and temporal collocation has been performed. In the
spatial domain, the WARP5 grid was used as a reference
selecting nearest neighbors from the GLDAS-2.1 Noah and
CCI Passive grid. In the temporal domain, the ASCAT soil
moisture time stamps were used to find the closest correspond-
ing soil moisture observation within ±8 hours from GLDAS-
2.1 Noah and CCI Passive. Time periods with frozen soil
conditions and snow cover were masked out beforehand using
soil temperature (<4◦) and SWE (>0) information provided
by GLDAS-2.1 Noah. The temporal matching was performed
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Fig. 7. Global maps of Pearson R (p < 0.05 and more than 100 observa-
tions). Difference between Pearson R is shown only if both Pearson R values
are positive.

only between two data sets for the computation of Pearson R,
while in the case of TC the temporal matching was carried
out between all three data sets.

V. RESULTS AND DISCUSSION

A. Pearson R
Figs. 7 and 8 show the result of Pearson R for ASCAT

SM-25/40 and the difference against the other ASCAT SM

Fig. 8. Global maps of Pearson R (p < 0.05 and more than 100 observations).
Difference between Pearson R is shown only if both Pearson R values are
positive.

data sets. Locations with p-values <0.05 are shown in
Figs. 7(a) and 8(a), whereas the difference of Pearson R
[Figs. 7(b)–(d) and 8(b)–(d)] is only shown in the case of pos-
itive correlations. Pearson R obtained from ASCAT SM-25/40
and GLDAS-2.1 Noah SM [Fig. 7(a)] shows large areas
with good temporal correlations similar to Pearson R com-



8248 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 10, OCTOBER 2021

Fig. 9. Difference of Pearson R summarized as boxplot per land cover class
using Noah GLDAS-2.1 SM as reference. Whisker ends represent 5th and
95th percentile.

puted using ASCAT SM-25/40 and ESA CCI Passive SM
[Fig. 8(a)]. However, both cases also indicate strong negative
correlations visible in very dry regions (e.g., the Arabian
peninsula, North Africa, Namibia, Chile, US Arizona), which
has been repeatedly shown by other studies as well [12],
[50]–[52]. On-going research suggests that this could be due
to subsurface scattering effects with an inverse relationship
between backscatter and (low) soil moisture conditions: under
very dry soil conditions deeper soil layers might cause volume
scattering or scattering by subsurface discontinuities (e.g.,
bedrock or rocky layer covered by shallow soil), which is
entirely obscured during wet soil conditions with an overall
lower (surface) scattering intensity [11]. Such an effect has
been observed in a field experiment for sandy soils in north-
central Florida using an L-band radar instrument [53] and also

Fig. 10. Difference of Pearson R summarized as boxplot per land cover
class using ESA CCI Passive SM as reference. Whisker ends represent 5th
and 95th percentile.

reproduced in an indoor laboratory experiment using C-band
radar observations [54].

In addition, negative correlations can also be seen in high
latitudes (>65◦N) in the case of GLDAS-2.1 Noah SM
[Fig. 7(a)], although not as strong compared to dry envi-
ronments. In general, northern latitudes present challenging
retrieval conditions, especially for coarse resolution instru-
ments such as ASCAT. For example, when frozen soil or
snow dominates the instrument footprint, the retrieval of soil
moisture is difficult or not possible at all. This is also true
for transition periods with snowmelt and (temporary) standing
water [55], [56]. However, also the performance of land
surface models is restricted in such environments, which,
for example, depends on a correct parameterization of snow
and frozen soil conditions [57]. Due to these two physical
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Fig. 11. Difference of Pearson R summarized as boxplot per Köppen
Geiger climate class using Noah GLDAS-2.1 SM as reference. Whisker ends
represent 5th and 95th percentile.

processes leading to negative correlations the differences in R
are not shown [Figs. 7(b)–(d) and 8(b)–(d)].

Fig. 7(b) and (c) illustrates the difference of Pearson R
between ASCAT SM-25/40 and ASCAT SM-10/30, as well as
ASCAT SM-25/40 and ASCAT SM-40/40 using GLDAS-2.1
Noah SM as reference. Positive values indicate improvements
with respect to the standard vegetation characterization (θd =
25◦, θw = 40◦). North America, Europe, and southern parts
of South America show throughout a positive impact of
using a stronger vegetation correction [ASCAT SM-10/30,
Fig. 7(b)], while a static-only vegetation correction [ASCAT
SM-40/40, Fig. 7(c)] leads to an overall lower performance
compared to ASCAT SM-25/40. A similar pattern can be
seen compared to ESA CCI Passive SM [Fig. 8(b) and
(c)] except for some areas in high latitudes, which tend
to be better for ASCAT SM-40/40. However, as mentioned
before, high latitudes are quite complex environments with
an extended cold season leaving not many observations for
validation. Poor results using a stronger vegetation correc-
tion are clearly visible in parts of Africa and East Asia,
as well as India, Bolivia, and Brazil [Figs. 7(b) and 8(b)].
Interestingly, Pearson R tends to be similar between ASCAT
SM-25/40 and ASCAT SM-40/40 for exactly these areas
[Figs. 7(c) and 8(c)]. A closer examination of these regions

Fig. 12. Difference of Pearson R summarized as boxplot per Köppen Geiger
climate class using ESA CCI Passive SM as reference. Whisker ends represent
5th and 95th percentile.

shows that different reasons are causing these unexpected
results.

First, semiarid regions, such as the Sahel zone and South
Africa, exhibit a high level of variation in their seasonal
soil moisture and vegetation dynamics. For example, these
areas can suffer from large-scale disruptions, such as fires and
subsequent multiannual recoveries. Therefore, the assumption
that climatology is able to represent the interannual cycle
of vegetation phenology might be insufficient. This was also
shown by Vreugdenhil et al. [20] who demonstrated that the
TUW-SMR soil moisture retrievals improved when using an
interannually varying vegetation correction based on VOD
from passive microwave observations. More in-depth analysis
in South Africa has indicated (not shown) that incorrect (not
dry) backscatter observations are selected to determine the
dry reference. Hence, a misrepresentation of the interannual
vegetation cycle using a climatology of σ � and σ �� is one of
the reasons why the lowest backscatter extrapolated to the
dry crossover angle no longer corresponds to the driest soil
moisture conditions.

Second, the poor performance in India, Bolivia, Brazil,
and part of East Asia are related to wetlands. Some of
the world’s largest wetlands are clearly visible, such as the
Amazon River Floodplain, the Pantanal in South America, and
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Fig. 13. SNR estimated by TC between ASCAT SM, GLDAS-2.1 Noah SM
and CCI Passive SM. Locations only with more than 100 temporally colocated
observations and a positive Pearson R between the data sets are shown.

the Sundarbans in the Ganges-Brahmaputra Delta. In Africa,
the outline of numerous Zambezian flooded grasslands (e.g.,
Okavango Delta, Bangweulu Wetlands, and Lukanga Swamp)
can be detected. Wetland backscatter signatures are quite
unique because the dominant scattering mechanism ranges
from surface and volume scattering to specular reflection and

Fig. 14. EStd estimated by TC between ASCAT SM, GLDAS-2.1 Noah SM
and CCI Passive SM. Locations only with more than 100 temporally colocated
observations and a positive Pearson R between the data sets are shown.

double-bounce effects [58]. Therefore, temporal changes in the
incidence angle dependence of backscatter are mainly driven
by changes in the scattering mechanism. Further enhancing
the vegetation correction may increase already existing errors
due to an incorrect representation of the scattering behavior,
ultimately misinterpreting vegetation phenology. Similar to
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Fig. 15. Difference of SNR summarized as boxplot per land cover class.
Whisker ends represent 5th and 95th percentile.

the situation in high latitudes, accurate retrieval of surface
soil moisture information is quite complex or impossible in
wetlands. Flooding dynamics and vegetation coverage are the
main problems. However, Synthetic Aperture Radar (SAR)
systems have shown good results mapping and monitoring
wetland changes (e.g., [59]), but coarse-scale instruments, such
as ASCAT, have a clear handicap.

Finally, a large part of negative Pearson R results using
a stronger vegetation correction can be linked to flooded
cropland, e.g., visible in Thailand, India, and China. Similar
to wetlands, emergent vegetation from continuously or peri-
odically inundated cropland can lead to multiple scattering
mechanisms affecting the temporal behavior of σ � and σ ��.
In addition, the climatological representation of σ � and σ ��
can have a negative impact on both, wetlands and flooded

Fig. 16. Difference of EStd summarized as boxplot per land cover class.
Whisker ends represent 5th and 95th percentile.

cropland. As previously mentioned, strong interannual vari-
ations can lead to extrapolation errors selecting the wrong
backscatter observations for the determination of the dry and
wet backscatter reference. In fact, the TUW-SMR has not been
developed to model backscatter behavior of flooded vegetation.
Therefore, an optimization of the vegetation parameterization
will not help in such situations.

Combining the results of Pearson R between ASCAT SM
and GLDAS-2.1 Noah SM in CCI Land Cover classes [49]
(Fig. 9) and Köppen Geiger climate classes [48] (Fig. 11)
shows that tree cover land cover classes (70, 80, 90), as well
as cold (Cs, Cf) and temperate (Ds, Df) climates benefit
the most from a stronger vegetation correction. Moreover,
the performance clearly deteriorates in the case of flooded
vegetation (20, 160, 180). The latter is in line with previous
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Fig. 17. Difference of SNR summarized as boxplot per Köppen Geiger
climate class. Whisker ends represent 5th and 95th percentile.

observations and discussions on mixed scattering behavior
in such regions. Interestingly, in some cases the standard
vegetation correction seems to be superior, most notably in
cropland (20) and shrubland (120).

The performance of ASCAT SM-Dyn is very similar to
ASCAT SM-10/30, which is expected because the spatially
variable crossover angles are close to θd = 10◦ and θw =
30◦ over large parts of the world. The exception is sparsely
vegetated and bare areas, where the crossover angles are
shifting toward θd = 40◦ and θw = 40◦ leading to no seasonal
vegetation correction. Therefore, ASCAT SM-Dyn has the
advantage of showing good performance in similar areas as
ASCAT SM-10/30 compared to ASCAT SM-25/40, while at
the same time avoiding an inaccurate and erroneous (sea-
sonal) vegetation correction in areas previously discussed
[Fig. 7(d)].

In the case of ASCAT SM and CCI Passive SM
(Figs. 10 and 12) the Pearson R results show smaller improve-
ments of ASCAT SM-10/30, illustrating that θd = 25◦ and
θw = 40◦ have been a good choice on a global basis. However,
the performance consistently improves for the cropland classes
(10, 20, 30) and cold (Cs, Cf) climates. Similar to GLDAS-
2.1 Noah SM, the comparison against ESA CCI Passive SM
also shows comparable results between ASCAT SM-Dyn and

Fig. 18. Difference of EStd summarized as boxplot per Köppen Geiger
climate class. Whisker ends represent 5th and 95th percentile.

ASCAT SM-10/30, but again with the same advantage of
ASCAT SM-Dyn containing less areas with poor performance.

It has also been tested whether performance differences can
be detected computing soil moisture anomalies using a sliding
window of five weeks similar to [60]. However, the remaining
soil moisture anomaly contains only short term variations
and the performance metrics indicate no significant difference
for the ASCAT SM data sets (not shown) as the vegetation
parameterization affects the seasonality of soil moisture more
than short-term changes.

B. Triple Collocation

The error variance computed using TC are presented as SNR
in Fig. 13 and scaled error standard deviation (EStd) in Fig. 14.
While EStd indicates errors only, SNR presents errors with
respect to the signal variance on a logarithmic scale [31].

TC has been applied four times, each time using Noah
GLDAS-2.1 SM and CCI Passive SM in combination with
a different ASCAT SM data set (see Table III). The results
of SNR and EStd are shown in Figs. 13 and 14 only for
locations having a positive Pearson R and at least more
than 100 temporally collocated soil moisture triplets. The SNR
and EStd of ASCAT SM-25/40 [Figs. 13(a) and 14(a)] have
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Fig. 19. Difference of Pearson R in case of GLDAS-2.1 Noah SM (a) and
CCI Passive SM (b), as well as difference of SNR (c) and EStd (d) summarized
as boxplots. Whisker ends represent 5th and 95th percentile.

been used as a baseline and the difference to all other ASCAT
SM data sets has been computed.

As can be seen in Fig. 13(b), a stronger vegetation cor-
rection (ASCAT SM-10/30) tends to improve SNR especially
in the Northern Hemisphere. Many parts of North Amer-
ica and Europe increase from around 0 dB to more than
3–6 dB indicating a substantial improvement in terms of
SNR. However, an exceptional decrease of SNR can also be
detected, e.g., in India and South Africa dropping more than
3 dB in some parts. As previously discussed in the case of
Pearson R, the climatological representation of the vegetation
phenology in combination with mixed scattering mechanism is
compromising the soil moisture retrieval, which becomes more
evident using a stronger vegetation correction (ASCAT SM-
10/30). The spatially variable characterization of the crossover
angles (ASCAT SM-Dyn) produces more balanced results with
less strong negative SNR results [Fig. 13(d)] compared to
ASCAT SM-10/30 indicating that a static vegetation correction
(like in ASCAT SM-40/40) seems to be the best case scenario
at the moment in areas such as Africa and India [Fig. 13(c)]
before better characterizing the interannual vegetation cycle.
Otherwise, a seasonal vegetation correction has a clear benefit
as can be seen in Fig. 13(c) because many areas indicate a
negative SNR.

A similar spatial pattern can be found in the case of EStd,
representing the scaled EStd. Smaller errors can be found
in Eastern Europe and Eastern U.S. for ASCAT SM-10/30
[Fig. 14(b)], as well as countries like Argentina and Uruguay
which also benefit from a stronger vegetation correction when
compared to ASCAT SM-25/40. As evident in Fig. 14(c), there
are no large differences in EStd between ASCAT SM-25/40
and ASCAT SM-40/40. This suggests, that the soil moisture
benefits most from applying a seasonal vegetation correction,
which becomes even more evident for ASCAT SM-10/30 and
ASCAT SM-Dyn.

Like Pearson R, aggregating SNR in terms of CCI Land
Cover classes (Fig. 15) and Köpen–Geiger climate classes
(Fig. 17) shows better results for tree cover (60, 70, 80,
90, 100) and crop classes (10, 30), as well as cold (Cs,
Cf) and temperate climates (Ds, Df). A direct comparison
between SNR and EStd suggests that especially tree cover
classes (70, 80, 90) gain in terms of signal variance since
the median of EStd remains overall close to zero. Looking
at areas containing flooded vegetation (20, 160, 180) reveals
a higher EStd with an overall reduction of SNR for ASCAT
SM-10/30 and ASCAT SM-Dyn, which is consistent with the
results based on Pearson R.

VI. CONCLUSION AND OUTLOOK

In this study we investigated the performance of the TUW-
SMR using different pairs of dry and wet crossover angles:
1) θd = 40◦ and θw = 40◦ which is equivalent to no,
respectively, static vegetation correction; 2) θd = 25◦ and
θw = 40◦ representing the current (standard) seasonal veg-
etation correction; 3) θd = 10◦ and θw = 30◦ describing
a stronger seasonal vegetation correction; and 4) a spatially
variable choice of crossover angles derived from a VCF data
set. A comparison against GLDAS-2.1 Noah SM and ESA
CCI Passive SM v04.5 showed that a better performance
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in terms of Pearson R and SNR can be achieved using a
stronger vegetation correction (ASCAT SM-10/30), which was
particularly the case for many parts of North America and
Europe. The ASCAT soil moisture data record based on the
spatially variable selection of crossover angles (ASCAT SM-
Dyn) indicated also a good performance compared to the
current seasonal vegetation correction (ASCAT SM-25/40), but
with the advantage that over bare or sparsely vegetated land
the vegetation correction is switched off. Over vegetated areas,
the results of ASCAT SM-40/40 generally showed a lower
performance compared to the parameterizations modeling a
seasonal vegetation signal (ASCAT SM-25/40, ASCAT SM-
10/30, ASCAT SM-Dyn). Hence, these results confirm the
value of the information contained in the ASCAT observed
slope σ � and curvature σ �� for describing vegetation dynamics
[61] and illustrate that it is not enough to just take normalizing
backscatter time series for estimating soil moisture as this
causes seasonal biases.

The analysis also provided insight into challenging con-
ditions where the TUW-SMR fails to describe all relevant
backscatter phenomena, such as subsurface scattering in dry
areas or regions with (temporary) flooded vegetation (e.g.,
wetlands and flooded cropland). Furthermore, we identified
a shortcoming related to the climatological characterization of
the vegetation cycle. A previous study has tried characterizing
σ � and σ �� as time series based on a kernel smoother showing
promising results [62], however, further work is needed to
combine this method with the new selection of crossover
angles investigated in this study. In addition, the assumptions
behind the TUW-SMR have been tested and evaluated against
a newly developed radiative transfer model (RT1) [63], which
has been recently applied to ASCAT [64]. RT1 has shown a
very similar functional behavior, but also differences e.g., sug-
gesting a certain dependence between slope and soil moisture.
Further research is planned on this subject.

The initial selection of the crossover angles (θd = 25◦
and θw = 40◦) has been a robust and effective choice
[10], [22], [24], but based on the results presented in this
study a stronger vegetation correction helps to improve the
ASCAT soil moisture signal [Fig. 13(b) and (d)]. Quantita-
tively ASCAT SM-10/30 and ASCAT SM-Dyn are showing
a similar performance, with less extreme values in the case
of ASCAT SM-Dyn (Fig. 19). Apart from that, a spatially
variable crossover angle selection is preferable eventually
(ASCAT SM-Dyn), because it allows further adjustment of
the optimal choice of crossover angles. In fact, some areas still
indicate ASCAT SM-25/40 as the best compromise. Therefore,
our recommendation for the operational H SAF ASCAT soil
moisture data services [11] is to adopt the new spatially
variable vegetation parameterization introduced here.

A new generation of C-band scatterometer instrument
(called SCA) is currently being prepared and foreseen to be
launched in 2024. The SCA instrument will be on-board the
Metop Second Generation (Metop-SG) satellite representing
the space segment of the EUMETSAT Polar System - Second
Generation (EPS-SG). The new Metop-SG constellation will
contain three pairs of satellites, i.e., 6 satellites (A1-A3,
B1-B3), instead of 3 in the case of Metop (A, B, C). SCA

will be on-board of the B series of the Metop-SG satellites
ensuring C-band backscatter measurements until 2040. Apart
from an improved radiometric and spatial resolution of SCA
compared to ASCAT, a new feature will be an additional VH
channel on SCA’s Mid beam antennas [65]. This additional
source of information can be vital to further optimize and
improve vegetation characterization in the TUW-SMR.
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