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Summary 

Streamflow forecasting is of great importance to water resources management and flood 
defence. On the other hand, a better understanding of the streamflow process is fundamental 
for improving the skill of streamflow forecasting. The methods for forecasting streamflows 
may fall into two general classes: process-driven methods and data-driven methods. 
Equivalently, methods for understanding streamflow processes may also be broken into two 
categories: physically-based methods and mathematically-based methods.  
 
This thesis focuses on using mathematically-based methods to analyze stochasticity and 
nonlinearity of streamflow processes based on univariate historic streamflow records, and 
presents data-driven models that are also mainly based on univariate streamflow time series. 
Six streamflow processes of five rivers in different geological regions are investigated for 
stochasticity and nonlinearity at several characteristic timescales (i.e., one day, one month, 
1/3 month, and one year). But only the streamflows of the upper Yellow River in northern 
China are considered for forecasting. 
 
Firstly, several important aspects of the stochasticity, including trend, seasonality, stationarity, 
and long-memory, are examined in this study. 
 
In the context of global warming, how hydrological processes are impacted is an issue of wide 
concern. The analyses of two streamflow processes of the Yellow River show that there is no 
obvious trend in the average annual flow process of the upper reach at Tangnaihai (TNH) 
from 1956 to 2000, whereas the streamflow process recorded at Tongguan in the middle 
reaches exhibits significant declining trend. No significant decline is found in the 
precipitation processes, on the other hand, it is found that the lower the reaches of the Yellow 
River, the more significant the downward trend. This indicates that the impact of climate 
warming on the river flow processes of the Yellow River are far less significant than 
anthropogenic influences.  
 
Stationarity is required for the construction of many types of models and for the application of 
many data analysis techniques. In the present study, ADF unit root test (Dickey and Fuller, 
1979; Said and Dickey, 1984) and KPSS test (Kwiatkowski et al., 1992), which originate 
from the econometrics, are introduced to test for the nonstationarity in hydrological time 
series. It is found that the smaller the timescale of the streamflow process is, the more likely it 
tends to be nonstationary.  
 
Seasonality is a common feature in hydrological time series. Before fitting a time series 
model, it is popular to deseasonalize the hydrological time series by subtracting the seasonal 
means and dividing by seasonal standard deviations. But it is shown that, the 
deseasonalization procedure can remove the seasonality in the mean and variance, but not the 
seasonality in the autocorrelation structure. 
 
Many studies have shown that, many hydrological processes, especially streamflow processes, 
have long-memory property. This is also confirmed by the present study. Furthermore, the 
investigation of the long-memory phenomenon in streamflow processes at different timescales 
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shows that, with the increase of timescale, the intensity of long-memory decreases. Generally 
speaking, according to the test results, all daily flow series exhibit strong long-memory; 1/3-
monthly flow series may be considered as weak long-memory processes; monthly series may 
be considered as short memory processes or at most processes of very weak long-memory.  
 
Secondly, the nonlinearity of streamflow processes is investigated. It is well accepted that 
watershed systems are nonlinear. Correspondingly, the output of watershed systems, 
streamflow processes, may also exhibit nonlinearity. But there is no well-accepted methods to 
quantify the degree of nonlinearity. What is less-accepted or even controversial is the sources 
or the nature of the nonlineairty, such as whether hydrological processes are deterministic 
chaotic processes or not. In the present study, besides the general nonlinearity, two special 
types of nonlinearity are examined in more details, i.e., conditional heteroskedasticity and 
chaos. 
 
The BDS test method (Brock et al., 1996) is introduced to test for the existence of 
nonlinearity in streamflow processes. It is found that the shorter the timescale, the stronger the 
nonlinearity. All annual series are linear, whereas all daily streamflow processes are strongly 
nonlinear.  
 
Besides those well-recognized physical sources, such as the mechanisms involved in the 
rainfall–runoff transformation, some other sources can be identified as viewed from the 
streamflow time series itself. Asymmetric seasonality in the mean and variance of raw (or 
log-transformed) streamflow processes and the seasonality in the variance of the pre-whitened 
streamflow processes (i.e., residual series) play a role in the exhibition of nonlinearity. The 
degree of nonstationarity has a significant impact on the test for nonlinearity. Nonstationarity 
or the stationarity of low significance level may give rise to positive results (i.e., the existence 
of nonlinearity) in nonlinearity test. The conditional heteroskedasticity is an important source 
of the nonlinearity of streamflow processes, so is long-memory if it is also viewed as a type of 
nonlinearity.  
 
The existence of conditional heteroskedasticity is detected in the residual series from linear 
models fitted to the daily and monthly streamflow processes of the upper Yellow River. It is 
shown that the ARCH effect is fully caused by seasonal variation in the variance for monthly 
flows, but seasonal variation in variance only partly explains the ARCH effect for daily 
streamflow. To capture the ARCH effect in the daily streamflow processes so as to improve 
the estimate of forecast uncertainty, the ARMA-GARCH error model with seasonal standard 
deviations is proposed, in which an ARMA model is used to model the mean behaviour and a 
GARCH model to model the ARCH effect in the residuals from the ARMA model.  
 
Whether or not hydrological processes are deterministic chaotic processes is a widely 
concerned and quite controversial issue in the last decade. No finite correlation dimension is 
found for all the streamflow series in the present study with correlation exponent method. 
Because the existence of finite correlation dimension is critical for verifying the existence of 
chaos, therefore, while nonlinear behaviour seemed to be present with different intensity at 
various time scales, the dynamics would not seem to be associable to the presence of low 
dimensional chaos. On the other hand, even if we found the evidence of the existence of chaos 
in a time series, it does not necessarily mean determinism. Experiments with three well-
known chaotic systems (i.e., Henon map, Ikeda map, discretized Mackey-Glass flow) show 
that chaos could be stochastic.  
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Thirdly, the issue of streamflow forecasting is addressed with data-driven methods in the 
present study.  
 
When forecasting streamflow processes, both the forecasting model (or method) and the 
model performance measure are needed. A seasonally-adjusted CE (SACE) is proposed to 
measure how good forecasts from a model are better than seasonal mean values, instead of the 
overall mean value as with popular model performance measure Coefficient of efficiency 
(CE). The measure SACE is more suitable than CE for evaluating seasonal processes.  
 
Two groups of data-driven models are used for forecasting daily streamflows in the study: (i) 
ARMA-type models, including the ARMA(20,1) model, the ARFIMA(7,d,0) model, and the 
periodic AR (PAR) model; and (ii) ANN-type models, including the normal multi-layer 
perceptron (MLP) ANN model, the cluster-based ANN model, the threshold-based ANN 
model, the period-based ANN model (or, periodic ANN model, PANN) and its variations (i.e., 
soft PANN and hard PANN). Among these models, PAR and PANN are proposed for 
modelling daily streamflow processes in this study. They are fundamentally a group of AR 
models or ANN models. Each AR model or ANN model are fitted to a specific season 
partition, so that the seasonality in daily streamflow processes is better captured. Furthermore, 
to combine the strength of these dynamically different models, four forecast combination 
methods are adopted in this study: simple average method (SAM), rollingly-updated weighted 
average method, semi-fixed weighted average method, and modular semi-fixed weighted 
average method. The comparison of the forecast performances of these models and methods 
shown that, despite of the limitation of univariate streamflow time series, in terms of the 
SACE measure, satisfactory forecasts can be made for lead times of up to 5 days (SACE > 0.8). 
The overall performance of PANN is the best for one-day ahead forecasts. SAM generally 
performs best among the four competitive combination methods, and it outperforms all the 
five individual models for forecasts of up to 4 days ahead (except for the PANN model for 
one-day ahead forecasts). The ARFIMA model performs the best for long lead times (longer 
than four days). 
 
Generalization is a critical issue in constructing an ANN model when the size of training data 
is not big enough. The comparison of two techniques to achieve generalization, i.e., the 
Bayesian regularization (BR) method and the cross-validated early stopping (CVES) method, 
shows that the BR method outperforms the CVES method in general for making one step 
ahead forecasts for univariate time series. In the case of building ANN models where multiple 
explanatory variables are included, the advantage of the BR method is also confirmed. 
Therefore, when the speed of training is not a major concern, the BR method is recommended 
for making streamflow forecasts. 
 
Predictability is an important aspect of the dynamics of hydrological processes. However, 
very few studies are conducted about the issue of predictability in the literature, and they are 
conducted based on the multiple explanatory variables. A univariate time series based 
approach is proposed in the present study, in which the predictability of a process is defined 
as the predictable horizon for which the prediction is no better than the mean value for a 
stationary process or the seasonal mean value for a seasonal process. With such a definition, 
the predictability is easily comparable among different streamflow processes. Investigation of 
the predictabilities of a number of streamflow series at different basin scales shows that, in 
general, the larger the basin scale, the better the predictability. 
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Samenvatting 

Het voorspellen van rivierafvoeren is van groot belang voor watermanagement en 
hoogwaterbestrijding. Omgekeerd is een betere doorgronding van het afvoerhydrologisch 
proces fundamenteel om voorspellingen te verbeteren. Methoden voor het voorspellen van 
rivierafvoeren kunnen in twee klassen worden ingedeeld: procesgeoriënteerde en 
datageoriënteerde methoden. Analoog hieraan kunnen in het hydrologische proces ook twee 
categorieën onderscheiden worden, namelijk fysische methoden en statistische methoden. 
 
Dit proefschrift maakt voornamelijk gebruik van statistische methoden voor analyse van 
stochastische en niet-lineaire effecten van hydrologische processen gebaseerd op univariate 
afvoergegevens, en presenteert datageoriënteerde modellen die tevens voornamelijk gebruik 
maken van univariate afvoergegevens. Zes hydrologische processen van vijf rivieren in 
verschillende geologische gebieden zijn stochastisch en niet-lineair onderzocht bij 
verschillende tijdschalen (per dag, maand, ⅓ maand en een jaar). Betreffende het voorspellen 
is alleen de afvoer van de Gele rivier in Noord China beschouwd. 
 
Als eerste zijn in deze studie de verscheidene belangrijke aspecten van de stochasticiteit, 
inclusief trends, seizoensinvloeden, stationairiteit, en lange termijn aspecten onderzocht. 
 
In de context van globale opwarming van de aarde, is op dit moment de impact ervan op het 
hydrologische proces een belangrijk onderwerp. De analyse van twee afvoerprocessen van de 
Gele rivier laten zien dat er geen verandering is in het gemiddelde jaarlijkse afvoerproces van 
de bovenloop bij Tangnaihai van 1956 tot 2000, terwijl het afvoerproces waargenomen bij 
Tongguan in het midden van het stroomgebied een significante afnemende trend laat zien. Er 
is geen significante daling gevonden in de neerslag, aan de andere kant wordt er gevonden dat, 
hoe meer benedenstroom van de Gele rivier, hoe duidelijker de neerwaartse trend wordt. Dit 
duidt erop dat de impact van de klimaatverandering op het rivierafvoerproces van de Gele 
rivier veel minder significant is dan antropogene invloeden. 
 
Stationairiteit is vereist voor het maken van vele typen modellen en voor de applicatie van 
vele data analyse technieken. In deze studie de ADF eenheidswortel test (Dickey en Fuller, 
1979; Said en Dickey, 1984) en de KPSS test (Kwiatkowski et al., 1992), die afstammen uit 
de econometrie, zijn geïntroduceerd als test voor niet stationairiteit van hydrologische 
tijdreeksen. Gevonden is dat hoe kleiner de tijdsschaal van het afvoerproces is des te meer 
instationairiteit er optreedt. 
 
Seizoensinvloeden zijn een algemeen kenmerk van hydrologische tijdswaarnemingen. 
Voorafgaand aan modellering van een tijdswaarneming, is het gebruikelijk om de 
hydrologische gegevens te ontdoen van seizoensinvloeden door de seizoensgemiddelden af te 
trekken en te delen door de standaarddeviatie van de seizoenen. Aangetoond is dat deze 
procedure de seizoensafhankelijkheid van het gemiddelde en variantie kan verwijderen, maar 
niet de seizoensinvloed van de autocorrelatie. 
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Vele studies hebben aangetoond dat vele hydrologische processen, in het bijzonder 
rivierafvoer processen, langere termijn eigenschappen hebben. Dit is eveneens in deze studie 
bevestigd. Voorts laat onderzoek naar de langere termijnverschijnselen in rivierafvoer 
processen bij verschillende tijdschalen zien dat bij toename van de tijdsschaal de intensiteit 
van de langere termijn afneemt. Volgens onderhavige testresultaten kan in het algemeen 
gesteld worden dat alle dagafvoeren sterke langere termijnverschijnselen vertonen; ⅓ 
maandelijkse afvoerwaardes mogen als zwakke langere termijn processen worden beschouwd; 
maandelijkse waardes mogen als korte termijn processen of hoogstens als zeer zwakke 
langere termijn processen beschouwd worden. 
 
Als tweede is de niet-lineairiteit van het afvoerproces onderzocht. Het is algemeen 
geaccepteerd dat stroomgebieden niet-lineair zijn. Als gevolg hiervan is de uitvoer van 
rivierafvoer processen eveneens niet-lineair. Maar er zijn geen algemeen acceptabele 
methoden om de graad van niet-lineairiteit vast te stellen. Nog minder geaccepteerd en zelfs 
controversieel is de oorzaak of de bron van de niet-lineairiteit, zoals of het hydrologische 
proces een deterministisch chaotisch proces is of niet. In deze studie zijn naast algemene niet-
lineairiteit twee speciale types in dieper detail bestudeerd, namelijk conditionele 
heteroskedasticiteit en chaos. 
 
De BDS onderzoeksmethode (Brock et al., 1996) is geïntroduceerd als test voor de existentie 
van niet-lineairiteit in afvoer processen. Gevonden is dat hoe korter de tijdschaal, des te 
sterker de niet-lineairiteit is. Alle jaarwaarnemingen zijn lineair, echter alle dagelijkse 
afvoerprocessen zijn sterk niet-lineair. 
 
Naast goedherkenbare fysische bronnen zoals de mechanismen die bepalend zijn voor de 
regenwaterafvoer modellering, kunnen sommige andere bronnen geïdentificeerd worden 
gezien vanuit afvoertijdswaarnemeningen zelf. A-symmetrische seizoensinvloeden in het 
gemiddelde en variantie van ruwe (of log-getransformeerde) afvoerprocessen en de 
seizoensinvloed in de variantie van pre-whitened rivierafvoer processen (zoals residuele 
waarden) spelen een belangrijke rol in het vaststellen van niet-lineairiteit. De graad van 
instationairiteit heeft een significante invloed op het niet-linieairiteitsonderzoek. Niet-
stationairiteit of stationairiteit van laag significantieniveau kunnen aanleiding geven tot 
positieve resultaten (namelijk het bestaan van niet-lineairiteit) in niet-linieaire onderzoeken. 
De conditionele heteroskedasticiteit is een belangrijke bron voor het niet-lineaire afvoerproces, 
zoals het langere termijnproces is als het eveneens beschouwd wordt als een niet-lineair type. 
 
Het bestaan van de conditionele heteroskedasticiteit is gevonden in de residuele 
waarnemingen van lineaire modellen, vertaald naar dagelijkse en maandelijkse 
afvoerprocessen van de bovenloop van de Gele rivier. Gebleken is dat het ARCH-effect 
volledig veroorzaakt wordt door seizoensvariatie in de variantie van maandsafvoeren, maar 
dat dit slechts deels het ARCH-effect van dagelijkse afvoer verklaard. Ter bepaling van het 
ARCH-effect in de dagelijkse afvoerprocessen om zo een verbetering van onzekerheden te 
schatten, is het ARMA-GARCH foutenmodel met seizoensstandaarddeviaties voorgesteld, 
waarin het ARMA model is gebruikt ter modellering van het gemiddelde gedrag en het 
GARCH model ter bepaling van het ARCH effect in het residu van het ARMA model. 
 
Of hydrologische processen nu wel of niet deterministisch chaotische processen zijn, is een 
breed beschouwd en vrij controversieel onderwerp het laatste decennium. In deze studie is 
met de exponent correlatie methode geen eindige correlatie dimensie gevonden voor alle 
afvoerwaarnemingen. Daar de existentie van eindige correlatie dimensie kritisch is voor het 
verifiëren van existentie van chaos, terwijl niet-lineair gedrag lijkt op te treden met 
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verschillende intensiteit bij verschillende tijdsschalen, lijkt de dynamica niet gecombineerd te 
kunnen worden met de aanwezige lage dimensionale chaos. Zelfs als er bewijs gevonden kon 
worden voor de existentie van chaos in de tijdreeksen, betekent het niet direct determinisme. 
Experimenten met drie goed bekende chaotische systemen (bijv. Henon map, Ikeda map, 
Discretized Mackey-Glass stroming) laten zien dat chaos stochastisch zou kunnen zijn. 
 
Als derde is in deze studie het onderwerp van afvoervoorspelling gekoppeld aan de 
datageoriënteerde methoden. 
 
Voor het voorspellen van afvoerprocessen zijn zowel het voorspelmodel (of methode) als 
uitgevoerde metingen nodig. Een aangepaste seizoensvoorspeller SACE is voorgesteld voor 
het meten in hoeverre de voorspellingen van een model beter zijn dan de seizoensgemiddelde 
waarden, ten opzichte van de overall gemiddelde waarde die gemeten is met het populaire 
schattingsmodel Coëfficiënt van Efficiëntie (CE). De SACE maat is beter geschikt dan de CE 
voor evaluatie van seizoensprocessen. 
 
Twee groepen van datageoriënteerde modellen zijn gebruikt voor voorspelling van dagelijkse 
afvoeren in de studie: 1) ARMA-type modellen, inclusief het ARMA(20,1) model, het 
ARFIMA(7,d,0) model, en het periodiek AR (PAR) model; en 2) de ANN-type modellen, 
inclusief de normaal multi-lagen perceptron (MLP) ANN model, het clustergebaseerde ANN 
model, het drempelgebaseerde ANN model, het periodiekengebaseerde ANN model (of 
periodiek ANN model, PANN) en hun variaties (zoals soft PANN en hard PANN). Naast 
deze modellen zijn in deze studie PAR en PANN voorgesteld voor modellering van dagelijkse 
afvoerprocessen. Die maken fundamenteel deel uit van AR modellen of ANN modellen. Elk 
AR model of ANN model is gekoppeld aan een seizoensdeel, zodat seizoensinvloed van 
dagelijkse afvoerprocessen tot uiting komt. Om de sterke eigenschappen van deze dynamisch 
verschillende modellen te combineren zijn daarnaast in deze studie de volgende vier 
voorspelmethodes gehanteerd: Simple average method (SAM), rollingly-updated weighted 
average method, semi-fixed weighted average method, en de modular semi-fixed weighted 
average methode. De vergelijkbaarheid van de voorspelbaarheid van deze modellen en 
methodes laten zien dat, ondanks de beperking van univariate afvoertijdreeksen, binnen de 
SACE maat, toereikende voorspellingen gemaakt kunnen worden voor voorspelperioden tot 
aan 5 dagen (SACE > 0.8). De over het geheel genomen prestatie van PANN is het beste voor 
voorspellingen 1 dag vooruit. SAM presteert over het algemeen het best van de 4 
competitieve combinatie methoden en het schakelt alle vijf individuele modellen voor 
voorspellingen tot 4 dagen vooruit uit (behalve het PANN model voor voorspellingen 1 dag 
vooruit). Het ARFIMA model presteert het beste voor lange lead times (langer dan 4 dagen). 
 
Veralgemenisering is een kritisch punt bij het maken van een ANN model wanneer de grootte 
van de training dataset niet groot genoeg is. De vergelijking van twee technieken om 
veralgemenisering te bereiken, bijv. de Bayesiaanse regularisatie (BR) methode en de cross-
validated early stopping (CVES) methode, laat zien dat de  BR methode de CVES methode 
overtreft in het algemeen door het maken van voorspellingen 1 stap vooruit, voor univariate 
tijdreeksen. Als ANN modellen gebouwd worden waar meervoudig verklaarbare variabelen 
worden meegenomen, wordt het voordeel van de BR methode ook bevestigd. Als de snelheid 
van training geen hoofdzaak is wordt daarom de BR methode aanbevolen voor het maken van 
rivierafvoer voorspellingen. 
 
Voorspelbaarheid is een belangrijk aspect van de dynamica van hydrologische processen. Er 
zijn echter weinig studies bekend over dit onderwerp en zij zijn voornamelijk gebaseerd op 
meervoudige verklarende variabelen. In dit proefschrift een aanpak voor univariate 
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hydrologische tijdreeksen is voorgesteld, waarin de voorspelbaarheid van een proces 
gedefinieerd wordt door de voorspelbare tijdsduur, die op zijn beurt weer gedefinieerd wordt 
door het moment waarop de voorspelling niet beter is dan de gemiddelde waarde van het 
stationaire proces of de seizoens gemiddelde waarde van het seizoensproces. Met een 
dergelijke definitie is de voorspelbaarheid eenvoudig vergelijkbaar tussen verschillende 
afvoerprocessen. Onderzoek van de voorspelbaarheid in een aantal stroomgebieden van 
verschillende grootte toont aan dat in het algemeen hoe groter het stroomgebied is, hoe beter 
de voorspelbaarheid is. 





 

1 

Chapter 1 Introduction 

Streamflow forecasting is of great importance to water resources management and flood 
defence. Short-term streamflow forecasting is crucial for flood defence; medium-range 
forecasting is highly beneficial for reservoir operation; long-range forecasting for more than 
one month is helpful for water resources management and planning. On the other hand, a 
better understanding of the streamflow process is fundamental for improving the skill of 
streamflow forecasting. One way of obtaining better knowledge of streamflow processes is to 
analyze historic streamflow records. 
 
This thesis focuses on the analysis of stochasticity and nonlinearity of streamflow processes, 
and presents data-driven models mainly based on univariate streamflow time series for 
forecasting the streamflows of the upper Yellow River in northern China, especially medium-
range streamflows on the daily timescale. 

1.1 Streamflow Forecasting: Review  

There are a variety of available methods for forecasting streamflows, which may fall into two 
general classes: process-driven methods and data-driven methods. The process-driven 
methods conceive a streamflow process as the output of a watershed system in the view of 
system theory, and mathematically approximate the internal physical processes of the 
watershed system that govern the streamflow process based on some understanding of those 
physical processes. By contrast, data-driven methods are fundamentally black-box methods, 
which mathematically identify the connection between the inputs and the outputs, without 
considering the internal physical mechanism of watershed system of interest. 

1.1.1 Process-Driven Models 
There are generally two types of process-driven models for streamflow forecasting: the 
rainfall-runoff models (lumped, semi-distributed, or distributed); and the low flow recession 
model. Rainfall-runoff models are applicable to modeling streamflow processes that driven by 
different runoff sources, especially the cases where the streamflow processes are dominated 
by rainfall processes, whereas low flow recession models describes the streamflow processes 
resulting from the drainage from the groundwater storage or other delayed sources, and 
consequently are usually only applicable to the recession period following the flood season. 

1.1.1.1 Low flow recession model 
Low flow recession analysis is a useful forecasting technique describing the river flow 
recession process during the low-flow period. The recession flow in a natural river system can 
be defined as the flow resulting from the drainage from the groundwater storage or other 
delayed sources (Hall, 1968). The recession of streamflow discharge can be reflected by a 
recession curve. The quantitative expression for the recession curve can be derived in several 
ways. Mishra et al. (2003) developed a recession flow forecasting model for the Blue Nile 
River using a non-linear catchment storage–outflow algorithm. However, there is a lack of 
consistency in obtaining recession characteristics due to the high time variability found in 
recessions, which has limited a wider use (Tallaksen, 1995). 
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1.1.1.2 Rainfall-runoff model 
Rainfall-runoff models depict rainfall-runoff processes based on the combination of some 
physically-based equations and empirical equations. To physically modeling the streamflow 
processes, two essential sub-processes should be taken into account: rainfall-runoff 
transformation and channel routing. Correspondingly, a typical conceptual rainfall-runoff 
model is composed of a module simulating the process of rainfall to runoff transformation and 
another module simulating the process of channel routing.  
 
While conceptual rainfall-runoff models are widely used for real-time and short-term flood 
forecasting, there are also many instances of applying conceptual models to modeling 
medium- to long-range rainfall-runoff processes. For example, the Pitman model, first 
developed in 1973 (Pitman, 1973), has become one of the most widely used monthly time-
step rainfall–runoff models within southern Africa (Hughes, 2004). When being applied to 
real-time and short-term flood forecasting, the basic time units of input and output data of 
conceptual models usually range from 1 hour to 1 day. When they are applied to streamflow 
forecasting at large timescales (e.g., weekly or monthly), we should either aggregate the 
short-timescale forecasts to make large-timescale forecasts, or more commonly, change the 
timescale of input variables. For example, when being applied to 10-day or monthly 
streamflow forecasting, the time units of the inputs usually are 10 days or a month. Besides 
the change of input timescales, sometimes the model structure should be modified also. For 
instance, in conventional Xinanjiang model (Zhao and Liu, 1995), the runoff is separated into 
three components: the immediate runoff, the surface runoff and the groundwater runoff. When 
we use Xinanjiang model to forecast monthly streamflows, only two components should be 
considered, namely, the fast-responding runoff (surface flow and inter-soil flow) and the 
slow-responding runoff (groundwater runoff) (Liu, 1997). Correspondingly, the parameters 
for free reservoir to inter-soil and to groundwater as well as the adjustment parameter about 
inter-soil are not necessary.  
 
When applying conceptual rainfall-runoff models to forecast medium and long-range 
streamflows, weather information is of crucial importance. In some applications, historical 
precipitation data are utilized as the input to conceptual rainfall-runoff models. In the 
traditional Ensemble Streamflow Prediction (ESP) procedure (Day 1985), a hydrological 
model is driven with observed precipitation and temperature data up to the beginning of the 
forecast to estimate basin initial conditions. Then precipitation and temperature data for the 
same date from every other year in the historical record are used to produce ensemble 
forecasts of streamflow. The British Columbia Hydro and Power Authority in Canada uses a 
partly distributed conceptual hydrological model to forecast the seasonal inflow from January 
to August to the Mica project on the Columbia River (Druce, 2001). The hydrological model 
is run up to the time of forecast with observed meteorological inputs to obtain the current 
status of the basin, then historical precipitation data are used as inputs to forecast future 
seasonal inflows. With the improvement of the accuracy of weather forecasting, the 
forecasted medium- and long-range weather data are more and more commonly used in 
streamflow forecasting. For instance, the European Flood Forecasting System (EFFS) which 
is developed collaboratively by several European countries uses the downscaled medium-
range ensemble precipitation predictions from the European Centre for Medium Range 
Weather Forecasting (ECMWF) as inputs to water balance and rainfall-runoff models so as to 
make 1- to 10-day ahead streamflow forecasts (De Roo et al., 2003); Wood et al. (2002) 
downscaled monthly ensemble climate forecasts produced by the global spectral model (GSM) 
to daily time step forecasts, then used the downscaled forecasts as input to a semi-distributed 
Variable Infiltration Capacity (VIC) hydrological model to produce long-range streamflow 
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forecasts; Similarly, Tucci et al. (2003) used a general circulation model (GCM) to obtain 
seasonal rainfall forecasts, and then input the forecasted rainfall into a distributed 
hydrological model to forecast streamflows up to 5 months ahead; Yang et al. (2005) 
combined the HBV rainfall-runoff model with long-term weather outlook to make 10-day 
streamflow forecasts during the dry season.  
 
One important issue in using the medium- and long-range weather forecasts is how to 
downscale the forecasted atmospheric variables (especially the precipitation) so as to meet the 
requirement of rainfall-runoff models. Werner et al. (2005) compared two sets of forecasts 
with the Ensemble Streamflow Prediction (ESP) component of the National Weather Service 
River Forecast System (NWSRFS): a control run based on historically observed temperature 
and precipitation and an experimental run based on medium-range (1-14 day) forecasts (MRF) 
of temperature and precipitation. Their study showed that using forecasted weather data was 
generally superior to using historical weather data, but there were situations when the 
downscaled MRF outputs actually degraded the forecast. 

1.1.2 Data-Driven Methods 
The use of data-driven models has the advantage of representing arbitrarily complex 
processes based on mathematical criteria. They are easy to apply for different conditions 
because the modeling and forecasting procedure is usually analogous. Furthermore, the 
analysis of the structure and parameters of data-driven models can sometimes provide useful 
information on the dynamics of the phenomenon of interest. Since on the one hand, more and 
more data are available nowadays with the development of modern measuring techniques, and 
the computational capability is more and more powerful with the development of computer 
techniques; on the other hand, accurate knowledge about the physical mechanisms underlying 
streamflow at a particular location is still not possible so far, therefore, data-driven modeling 
techniques gain more and more popularity in the field of hydrology in the last decade (e.g., 
Solomatine, 2002).  

1.1.2.1 Regression model 
Regression analysis, including simple regression and multiple regressions, is one of the oldest 
and most frequently used methods in streamflow forecasting. It has the advantage that it is 
comparatively simple and can be easily implemented. Many early regression methods used 
graphical techniques (Linsley et al., 1958). Later on, statistical techniques such as principle 
components (e.g., Marsden and Davis, 1968), multiple regression (e.g., Zuzel et al., 1975; 
Nash and Foley, 1982; Stedinger et al., 1989; Garen, 1992), nonparametric regression (Smith, 
1991) were introduced. Some variations of the regression model are available in the field of 
streamflow forecasting, such as the linear perturbation model (LPM) (Nash and Barsi, 1983). 
The index-variable method and storage-accounting method (Lattenmaier and Wood, 1993) are 
also essentially regression models. Lots of applications of regression methods can be found in 
the literature. Tangborn and Rasmussen (1976) suggested that basin storage St could be 
estimated as a linear function of basin precipitation from the beginning of an account period 
(generally about the beginning of the water year) up to the forecast data, less runoff. The 
forecast runoff for the period T is then a linear function of St. In 1980s’, the Water Master 
Plan Project in cooperation with Cairo University and the MIT developed the multivariate 
stepwise linear regression model for making monthly flow forecasts for the Aswan reservoir 
(Curry and Bras, 1980; Water Master Plan Project, 1983). British Columbia Hydro uses a 
multiple linear regression program that includes snowpack, precipitation and temperature to 
make seasonal inflow volume forecast (Fast, 1990). The regression method is still used 
operationally nowadays in many cases. The forecast of the potential snowmelt runoff of the 
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two basins located in south-eastern Alberta, Canada are based on regression methods 
currently (Mahabir et al., 2003). Huo et al. (2001) forecasted Inflow into the Sanmen Gorge 
reservoir of the Yellow River during non-flooding period with regression models using 
antecedent precipitation and streamflows. 
 
Explanatory variables used in regression analysis usually include local factors (such as 
discharges at the upstream gauging stations, the precipitation and temperature, snow cover in 
the watershed area), and some geophysical quantities (such as ground temperature, sea surface 
temperature and atmospheric circulation index). The most important issues should be 
determined for applying regression methods include: (1) which factors have significant 
correlation with the streamflow processes under study; (2) at which timescale the selected 
factors have the most significant correlation with the streamflow process; (3) how long is the 
lag time that the streamflow response to the predictors? While real-time and short- to 
medium-range discharges are associated with local factors and initial conditions of the 
watershed, the long-range streamflows are commonly related to some remote geophysical 
quantities. The linkage between streamflow processes and sea surface temperatures (SSTs) as 
well as ENSO events have been intensively studied in the last decade (e.g., Hastenrath, 1990; 
Mechoso and Perez-Iribarren, 1992; Kahya and Dracup, 1993, 1994; Simpson and Cane, 1993; 
Marengo, 1995; Amarasekera et al., 1997; Piechota et al., 1998; Gutierrez and Dracup, 2001; 
Shrestha and Kostaschuk, 2005). Eltahia (1996) discovered that 25% variability of annual 
runoff of the Nile River is related to the SST in some region of the Pacific. Piechota et al. 
(1999) found that there is a significant lag relationship between El Nino and streamflow in the 
Northwest Pacific, and using this lag relationship, they proposed to extend the prediction of 
spring-summer runoff in the Columbia River basin from 1- to 3-month lead time to 3- to 7-
month lead time. Hamlet and Lettenmaier (1999) incorporated the ENSO and Pacific Decadal 
Oscillation (PDO) climate signals into the extended streamflow prediction forecasting 
approach to make long-range streamflow forecast. Dettinger et al. (1999, 2000, 2002) made 
long-range streamflow forecasting in the United States according to El Nino and La Nino 
events. Whitaker et al. (2001) showed a significant relationship between the natural variability 
of the Ganges annual flow and the ENSO index, and proposed a statistical model that 
combined all these indicators to forecast the annual flow of the Ganges with a forecasting 
lead-time of 1 year. Eldaw et al. (2003) found that long-range forecasting of the Blue Nile 
River flows with lead times over 1 year was possible with a high degree of explained variance 
by using SSTs in a few regions in the Pacific Ocean. They used multiple linear regression 
model and principal component analysis to forecast the Blue Nile flows based on SSTs and 
the Guinea precipitation in previous year. Some researchers in China have investigated the 
relationship between SSTs/ENSO events and long-term streamflows of the upper Yellow 
River. For instance, Peng et al. (2000) found that there is good relationship between SST of 
northern Pacific, and the annual runoff of the upper Yellow River is closely related to ENSO 
events. Based on this, they fitted a regression model using SST in some oceanic regions as 
predictors to make annual runoff prediction. Besides the influences of SSTs and ENSO events, 
some other geophysical factors have also been related log-term streamflows. Tang (1992) 
proposed that the annual runoff of the Yellow River was closely related to the seismic field. 
Cai and Wang (1996) found a good relationship between the annual runoff of the headwaters 
of the Yellow River and the spatial pattern of ground temperature. Tomasino et al. (2004) 
coupled information from solar activity and from atmospheric circulation indices to make 
seasonal discharge predictions. 
 
In most applications in streamflow forecasting, linear regression models are used. To make 
regressions more flexible, nonlinear regression models may be applied. One widely used 
nonlinear regression model is the threshold regression (TR) model, in which a separate 
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regression is fitted to a specific group of data according to some threshold values. A 
derivative of the TR model is the so-called model-tree model, with which a number of 
regression models are fitted in a hierarchical way. It has recently been used for rainfall-runoff 
forecasting problems (e.g., Solomatine and Dulal, 2003; Solomatine and Xue, 2004). 

1.1.2.2 Time series model 
Time series analysis plays an important role in hydrological research. It is used for building 
mathematical models to generate synthetic hydrological records, to forecast hydrological 
events, to detect trends and shifts in hydrological records, and to fill in missing data and 
extend record (Salas, 1993). Time series models available for streamflow forecasting can be 
roughly divided into two categories according to the number of time series involved in 
modelling: univariate models and models incorporating exogenous variables. 
 
The most popular univariate models are the ARMA (autoregressive moving average) model 
and its derivatives, including ARMA, AR, ARIMA (autoregressive integrated moving 
average), SARIMA (seasonal ARIMA), PARMA (periodic ARMA), TAR (threshold AR), 
and ARFIMA (fractionally integrated ARMA) model, etc. The AR model is very commonly 
used for forecasting annual flows (e.g., McLeod et al., 1977). Lu et al. (1996) used an AR (3) 
model to forecast the annual runoff of Danjiangkou Reservoir in China. Because the ARMA 
model is built under the assumption that the series is stationary, whereas the hydrological time 
series with a timescale less than a year (e.g., monthly flow) usually exhibit strong seasonality, 
it is not applicable directly to such type of hydrological time series. In stead, three types of 
model can be employed for such series (Hipel and McLeod, 1994): seasonal ARIMA 
(SARIMA) model; deseasonalized ARMA model; and periodic ARMA (PARMA) model 
(including PAR model). These three types of model have been widely used in monthly or 
quarter-monthly streamflow forecasting (e.g., McKerchar and Delleur, 1974; Thmoposon et 
al., 1985; Noakes et al., 1985; Yurekli et al., 2005), and sometimes in daily (or even at shorter 
timescales) streamflow forecasting (normally as a benchmark model) (e.g., Kang et al., 1993; 
Abrahart and See, 2000). Time series forecasts have the property that they approach the long-
term mean as the forecast lead-time increases. Bender and Simonovic (1994) suggested that, 
in general, SARIMA models appear to be more flexible for natural inflows with low upstream 
storage and high variability, while deseasonalized ARMA models may be better suited to 
natural inflow systems that have a large storage capacity, lower variability, and greater 
response lags to precipitation events. In recent years, the long-memory property of streamflow 
processes drew a lot of attention. Stochastic processes with long-memory can be described by 
the ARFIMA (autoregressive fractionally integrated moving average) model. Montanari et al. 
(2000) used an ARFIMA model to simulate monthly flow of the Nile River at Aswan. 
Following the idea of PARMA model, Ooms & Franses (2001) developed a periodic 
ARFIMA model to simulate monthly streamflow. 
 
When exogenous inputs are included, we can develop ARMAX models or transfer function 
noise (TFN) models. Thompstone et al. (1985) compared deseasonalized ARMA model, PAR 
model, TFN model and a concept model, and found that TFN model performs better than 
competitive models. Awadallah1 & Rousselle (2000) use sea-surface temperature as 
exogenous input variables to develop a TFN model to forecast summer runoff of the Nile 
River. Because more information is used for making forecast when considering exogenous 
inputs, usually TFN models can make better forecast than univariate ARIMA models. A 
special type of TFN model is intervention model, which is capable of modeling the 
disturbance of some exogenous factors. Kuo and Sun (1993) develop an intervention model, 
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which takes the influence of the typhoon into consideration, based on AR (1) model to 
simulate and forecast 10-day average discharge of the Danshui River in Taiwan.  
 
The models mentioned above are mostly linear models. Because streamflow processes, 
especially daily streamflow processes are commonly accepted as nonlinear, some nonlinear 
models are also applied to streamflow forecasting. One type of commonly used nonlinear time 
series model is threshold autoregressive (TAR) model (Tong and Lim, 1980). Astatkie et al. 
(1997) proposed a nested threshold autoregressive (NeTAR) model to describe daily 
streamflow processes. In fact, PARMA and PAR models can be considered as special type of 
TAR model, which use the season as the threshold value instead of using any observed value. 

1.1.2.3 Artificial neural network model 
The artificial neural network (ANN) model is a data-driven method with a flexible 
mathematical structure which is capable of identifying complex non-linear relationships 
between input and output data sets without the necessity of understanding the nature of the 
phenomena. ANNs have gained more and more popularity for hydrological forecasting in the 
last decade (e.g., Maier and Dandy, 2000; Dawson and Wilby, 2001). In one of the early 
applications involving streamflows, Kang et al. (1993) used ANNs and autoregressive moving 
average models to predict daily and hourly streamflows. This preliminary study concluded 
that ANNs are useful for forecasting streamflows. Many following studies have confirmed the 
superiority of ANN models over or comparableness to the traditional statistical and/or 
conceptual techniques in modeling the hydrological process (e.g., Raman and Sunilkumar 
1995; Dibike and Solomatine, 2001; Tokar and Markus 2000; Birikundavyi et al., 2002). 
 
The most popular type of ANN is the multi-layer perception (MLP) model optimised with 
backpropagation  algorithm. It is also the most widely type of ANN in streamflow forecasting. 
Hsu et al. (1995) applied ANN models to make daily streamflow forecasts. Markus (1997) 
made monthly streamflow forecasts with MLP ANN models for several rivers, and compared 
the performance of ANN models with other models. Jain (1999) used MLP ANN model to 
make monthly flow forecasting. Zealand et al. (1999) used MLP ANN models to make one to 
four weeks ahead streamflow forecasting. Sajikumar and Thandaveswara (1999) 
demonstrated the use of a special type of MLP ANN model, namely a temporal back 
propagation neural network, to make monthly rainfall-runoff modelling. Birikundavyi et al. 
(2002) investigated the performance of ANN models for 7-day-ahead daily streamflow 
forecasting and showed that the ANNs outperformed a conceptual rainfall-runoff model for 
up to 5-day-ahead forecasts. Tawfik (2003) applied ANN model to predict the Nile River 
inflows into the Aswan reservoir for the months of July, August, and September. Kisi (2004) 
used MLP ANN models to make monthly flow forecasts.  
 
Some other types of ANNs have also been applied to streamflow forecasting problem, but less 
frequently. Radial basis function (RBF) model has been used by many researchers for 
streamflow forecasting (Fernando and Jayawardena, 1998; Dibike and Solomatine, 2001; 
Dawson et al., 2002). Chang and Chen (2001) applied a counter-propagation fuzzy-neural 
network, which is a fusion of a neural network and fuzzy arithmetic, to forecast one-hour-
ahead streamflow. Ballini et al. (2001) applied a neuro-fuzzy network to the problem of 
seasonal streamflow forecasting. Moradkhani et al. (2004) explored the applicability of a Self 
Organizing Radial Basis (SORB) function to one-step ahead forecasting of daily streamflow. 
To capture more efficiently the nonlinearity in streamflow processes, modular neural network 
(MNN), hybrid neural networks, and threshold (or so called range-depend) neural network 
can be applied (e.g., Zhang and Govindaraju, 2000; Hu et al., 2001). Zhang and Govindaraju 
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(2000) examined the performance of MNNs in predicting monthly discharges over three 
medium-sized watersheds. Hu et al. (2001) applied range-depend ANN, which could be 
considered as a special case of MNN, to forecast annual and daily discharges.  
 
A frequently encountered problem during the application of ANNs to various water resource 
problems is the limitation of the data sets required for the training stage of ANNs, which 
prevents ANNs from learning input and output data sets within different ranges, thus 
decreasing the prediction capability during the testing stage. To overcome this problem, 
Cigizoglu (2003) proposed to use ARMA models to generate synthetic flows, and then 
incorporate these series into the training data sets of ANNs. Imrie et al. (2000) proposed the 
use of a guidance system to develop networks towards more general solutions. 

1.1.2.4 Other data-driven methods 

(1) Fuzzy logic 
Since Zadeh (1965) published the fuzzy set theory as an extension of classic set theory, fuzzy 
logic has been applied successfully in many fields of application where the relationship 
between cause and effect (variable and results) is vague. With fuzzy logic techniques, fuzzy 
variables are used to organize knowledge that is expressed ‘linguistically’ into a formal 
analysis. For example, ‘high flow, ‘average flow and ‘low flow became variables. Fuzzy logic 
techniques have been applied to both real-time flood forecasting (e.g., Han et al., 2002; Nayak 
et al., 2005) and medium- to long-range streamflow forecasting (e.g., Zhu et al., 1994; 
Mahabir et al., 2003). By applying fuzzy logic, Mahabir et al. (2003) developed fuzzy expert 
models to make spring runoff forecasts. The results show that spring runoff forecasts from the 
fuzzy expert systems are considerably more reliable than the regression models in forecasting 
the appropriate runoff zone, especially in terms of identifying low or average runoff years. 
 
Fuzzy logic technique can be combined with conceptual models or other data-driven models 
(e.g., ANN). Mizumura (1995) showed that the combined approach using the conceptual Tank 
model and a fuzzy logic model yields satisfactory snowmelt-runoff prediction results. When 
fuzzy logic technique is combined with the ANN model, one can construct a fuzzy-rule based 
hybrid ANN model (e.g., See and Abrahart, 2001), or a more closely integrated neuro fuzzy 
system (ANFIS) model (e.g., Chang and Chen, 2001; Nayak et al., 2004). 

(2) Nearest neighbor method 
The nearest neighbor method (NNM) is a local approximation approach, which deals with a 
complex problem by dividing it into many subsets, each of which are composed of multi-
dimensional points that have similar state patterns, and then locally approximates these points 
(i.e., nearest neighbors) with nonparametric or parametric models. The NNM stems from 
pattern recognition work (e.g., Cover and Hart, 1967). Because of its good approximation 
ability for nonlinear dynamics, with the development of the theory on nonlinear dynamics, 
NNM is adopted by many researchers in the field of nonlinear dynamics as a standard method 
for predicting chaotic time series (e.g., Farmer and Sidorowich, 1987; Sugihara and May, 
1990). It is first applied to rainfall-runoff forecasting by Karlsson (1985), and then Yakowitz 
and Karlsson (1987). Following their research, many researchers apply NNM to streamflow 
forecasting in univariate cases (e.g., Kember et al., 1993; Liu et al., 1998; Bordignon and Lisi, 
2000; Sivakumar et al., 2001) as well as multivariate cases (e.g., Porporato and Ridolfi, 2001). 
Yakowitz and Karlsson (1987) compared the performance of NNM with that of ARMAX 
model and Sacramento model for making one-day ahead streamflow forecast. They found that 
while both the NNM and ARMAX performances are considerably better than the performance 
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of the Sacramento model, the performances of NNM and ARMAX model are comparable. 
However, some recent studies showed that NNM outperform ARMA-type models (e.g., 
Bordignon and Lisi, 2000; Porporato and Ridolfi, 2001) or linear regression and linear 
perturbation models for river flow forecasting (Shamseldin and O’Connor, 1996). 
 
A new method similar to NNM, nonlinear set membership (NSM) prediction method, 
proposed by Novara and Milanese (2001), is applied to univariate daily streamflow 
forecasting by Milanese and Novara (2004). Their results showed that NSM appeared to 
perform better than neural network model. 

(3) Canonical correlation analysis 
Canonical correlation analysis (CCA) is a way of measuring the linear relationship between 
two multidimensional variables. It can be defined as the problem of finding two sets of basis 
vectors, one for x and the other for y, such that the correlations between the projections of the 
variables onto these basis vectors are mutually maximized. CCA is a favored technique in the 
field of climatology and meteorology for making statistical forecasts of rainfall and 
temperature, etc. (e.g., Barnett and Preisendorfer, 1987; Barnston and Smith, 1996). Uvo and 
Graham (1998) developed canonical correlation analysis models to forecast seasonal 
discharge, one season in advance, at 12 sites in north-eastern South America from Pacific and 
Atlantic Ocean SST. 

1.2 Some Important Issues in Streamflow Forecasting 

In this section, several issues need further investigation in streamflow forecasting will be 
addresses, especially for the problem of medium- and long-range streamflow forecasting. 

1.2.1 Predictability of Streamflow Processes 
Predictability is an important aspect of the dynamics of hydrological processes. But the 
predictability of hydrological processes has not attracted much attention by the hydrology 
community until recent several years. Some examples of the studies on predictability include 
those based on the multiple explanatory variables (e.g., Maurer et al., 2003; Maurer et al., 
2004) and those based on univariate hydrological time series (e.g., Wang et al., 2004). Maurer 
et al. (2003) assessed seasonal runoff in the Mississippi River Basin, and found that: at a lead 
time of 1.5 month, soil moisture is dominant for predictive capability of runoff, but snow 
dominates in the summer in the western part of the basin; modest winter runoff predictability 
exists at a lead time of 3 seasons due to both climate and soil moisture; local summer runoff 
predictability is limited to the western mountainous areas (generating high runoff) through a 
lead of 2 seasons. Maurer et al. (2004) analyzed the utility of the climate signals, soil moisture, 
and snow as predictors of runoff variability in North America for lead times up to a year, and 
concluded that for predicting runoff variability, knowledge of the land surface state, 
especially in its dry state, can provide valuable predictability as a complement to climate 
information for lead times of one to two seasons (i.e., up to 4.5 months lead time). Wang et al. 
(2004) estimated the predictability of two daily streamflow series of the upper and lower 
Yellow River in China based on the performances of the univariate ARMA models. 

1.2.1.1 Methods of estimating predictability 

Because the research on predictability is still on its early stage, there is a lack of well-
established methods on how to estimate the predictability of hydrological processes. 
According to existent results on this issue in literature, two approaches may be distinguished: 
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univariate approach and multivariate approach. The former one measures the predictability 
based on univariate time series analysis techniques (e.g., Wang et al., 2004), whereas the 
latter one estimates the predictability based on the knowledge of the rainfall-runoff generation 
mechanism and/or the tele-connections between global environment and streamflow 
processes of interest (e.g., Maurer et al., 2003, 2004). A multivariate approach may give us an 
insightful understanding of the watershed system. However, to estimate predictability with a 
multivariate approach need good knowledge of physical mechanisms underlying the 
streamflow process of interest and we need a suitable model which is assumed to be able to 
capture the mechanism well; on the other hand, the knowledge of different streamflow 
processes varies, and the skills of modeling are highly user-depend. Therefore, the 
predictabilities estimated with such an approach for different streamflow processes are 
normally not comparable. Furthermore, dominant factors of a hydrological system may 
change with the change of temporal and spatial scales, and the explanatory variables used in 
estimating the predictability of streamflow processes may have a problem of predictability 
themselves, which would make the problem of estimating the predictability of streamflow 
processes more complicated. For example, weather processes, which are fundamentally the 
driven forces of streamflow processes, are only predictable for at most a few weeks because 
of its inherently nonlinear and chaotic nature. In contrast, the univariate approach can be 
easily applied to different hydrological time series and the results are comparable among 
different processes. 

1.2.1.2 Roles of weather forecasts, and the impacts of multi-collinearity 

One issue closely related to the estimation of model predictability is the effectiveness of using 
forecasted meteorological data as inputs to improve the accuracy of medium-range as well as 
long-range streamflow forecasts. In practice, for medium-range forecasting, there are two 
ways of using meteorological data, namely, using historical records (e.g., Day, 1985; Druce, 
2001) or using forecasted data (e.g., Wood et al., 2002; De Roo et al., 2003; Tucci et al., 
2003). Coulibaly (2003) investigated the effect of meteorological predictions (up to 7 days) 
on the accuracy of spring flow forecasts using one conceptual model (PREVIS) and one ANN 
model for a catchment in north-eastern Canada. The result showed that using 4-day-ahead 
weather forecasts does not provide significant improvement of daily spring flow prediction, 
which indicated a maximum limit (up to 3 days ahead) for an adequate practical use of 
meteorological forecasts. Hu (2003) experimented to use forecasted large scale precipitation 
data from ECMWF to improve one to three days ahead streamflow forecasts with ANN 
models, but the result indicated that the improvement was marginal. Clark and Hay (2004) 
examined an archive containing over 40 years of 8-day atmospheric forecasts from the NCEP 
reanalysis project to assess the possibilities of using medium-range numerical weather 
prediction model outputs for predictions of streamflow. This analysis showed that the biases 
in the NCEP forecasts were quite extreme. Consequently, they suggested a need for additional 
processing of the NCEP medium-range forecast model output before it is used for 
hydrological predictions. Gouweleeuw et al. (2005) combined numerical weather prediction 
models with rainfall-runoff models to make medium-range forecasts for two historic flood 
events of the Muse River and the Odra River. Their results showed that, while the forecasts 
for the Meuse River were encouraging, the forecasts for the Odra River were poor. 
Bartholmes and Todini (2005) coupled numerical weather prediction systems and a rainfall-
runoff model for a case study on the Po River in northern Italy, and their results demonstrated 
the poor reliability of the quantitative precipitation forecasts produced by meteorological 
models presently available. Because of limited accuracy of weather forecasts, the current 
operational practice at the Colorado Basin River Forecast Center is a blending approach, 
namely, using "deterministic" meteorological forecasts of temperature for 1-10 days and 
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precipitation for 1-3 days following the initialization time of the forecast period (Werner et al., 
2005). After the meteorological forecast period, ensembles of historical temperature and 
precipitation data sequences are added to the end of the deterministic meteorological forecasts 
by blending to form ensemble model inputs extending out to several months. 
 
Another issue that should be considered when searching for potential predictors is the 
problem of multi-collinearity, which is the condition where at least one predictor closely 
related to one or more other predictors. Multi-collinearity may lead to the ineffectiveness in 
the utilization of predictors. For example, Uvo et al. (2000) showed that for ANNs with SST 
inputs, the inclusion of precipitation as input to train the ANN did not always increase the 
skill of the ANN in forecasting seasonal discharge for some regions, because the dominant 
climate there responds strongly to SST variability.  
 
1.2.1.3 Future directions in the research on predictability 
 
In 2001 the U.S. Global Change Research Program (USGCRP) Water Cycle Study Group 
(WCSG) posed several specific goals for predictability research in hydrological systems 
(WCSG, 2001). More recently, the Committee on Hydrological Science of NRC (NRC, 2002) 
defined five research challenges in predictability science and limits-to-prediction for 
hydrological systems. Summarizing these specific goals and challenges, the following 
directions for the research on the predictability of streamflow processes may be identified: 
 
 Definition of robust measures of limits-to-prediction that account for spatial and temporal 

scales; 
 Systematic investigation and quantification of the spatial and temporal features of how the 

ocean, the atmosphere, and the watershed system are coupled together; 
 Identify the hydrological data requirements for improving the predictability, and improve 

monitoring systems and enhance the observations according to these requirements. 

1.2.2 Quantitative Description of Forecast Uncertainty 
Whatever accurate a model may be, there is more or less uncertainty of the forecast from it. 
The forecast uncertainty is intrinsically related to the model predictability of a streamflow 
process. When the forecast uncertainty increases to a certain extent with increase of 
forecasting lead times, the model predictability disappears. To make the forecast user clear 
about uncertainty of the forecast, and take the risk explicitly into account when making 
decisions, forecasts should be stated in probabilistic rather than deterministic way. A 
probabilistic forecast may be described by giving prediction interval (PI) around the mean 
value, or, equivalently but more informatively, giving predictive distribution. Probabilistic 
forecasts are scientifically more honest (Krzysztofowicz, 2001). In the risk-based water 
resources management, which has been attracting more and more attention from water 
resources authorities, the probabilistic forecast will be an essential ingredient.  
 
1.2.2.1 Major approaches available for evaluating forecast uncertainty 
 
In the hydrological community, many efforts have been made on evaluating the uncertainty 
for hydrological forecasts in the last two decades or so. In the early work of Hirsh (1981), 
three ways for probabilistic long-range streamflow forecast were suggested: (i) using 
historical streamflow data; (ii) using stochastic model and (iii) using deterministic 
hydrological model with simulated antecedent hydrological conditions. Presently, the 
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following five major types of approaches have been proposed and used in hydrological 
forecasting. 

(1) Develop a stochastic model (e.g., the AR model) of streamflow based on the historic 
records. Then, initialize the model’s state variables to present conditions and use a random 
number generator to produce multiple (equally likely) traces from this initial condition so 
as to estimate the predictive distribution. Hirsh (1981) developed this method, where a 
periodic ARMA model is used to describe monthly streamflow processes. This method 
relies on assumptions of normality and independence of the error terms of the PARMA 
model. Unfortunately, the normality assumption is often violated in the cases of 
streamflow processes. 

(2) Produce multiple estimates of the future streamflow with a deterministic hydrological 
model based on current basin conditions and past (or forecasted) meteorological 
observations (rain, snow, temperature, humidity, wind). This method is called Extended 
Streamflow Prediction (Day, 1985), latter on renamed as Ensemble Streamflow Prediction 
(ESP). The ESP procedure assumes that meteorological events that occurred in the past 
are representative of events that may occur in the future. Each year of historical 
meterological data is assumed to be a possible representation of the future and is used to 
simulate a streamflow trace, so that ESP produces a probabilistic for each streamflow 
variable and period of interest. Smith et al. (1992) developed a nonparametric framework, 
which can account for climate information through weighting the historical years and the 
effects of hydrological model error. The ESP forecast system has been applied for many 
years as part of the National Weather Service (NWS) River Forecast System (NWSRFS) 
in the United States. Recently, NWS has extended the original idea to facilitate 
incorporation of climate outlooks into the ESP by inputting historical meteorological 
events adjusted with meteorological and climatological forecasts (Perica, 1998; Wood et 
al, 2002; Werner et al., 2005). The skill of the ESP approach depends on: (1) the accuracy 
of hydrological models; (2) methods for updating basin initial conditions at the start of the 
forecast period; and (3) the local-scale weather and climate forecasts. Ensemble forecast 
techniques are beginning to be used for hydrological prediction by operational 
hydrological services throughout the world. The ESP approach is also adopted by 
European Flood Forecasting System (EFFS) for making up to 10 days ahead probabilistic 
flood forecast (De Roo et al., 2003), but only medium-range ensemble weather forecasts, 
instead of historical weather data, are used to generate ensemble traces.  

(3) Estimate the predictive uncertainty associated with hydrological models based on Monte 
Carlo simulation. This method is called GLUE (Generalised Likelihood Uncertainty 
Estimation) proposed by Beven and Binley (1992). By specifying the sampling ranges for 
each parameter to be considered, as well as a formal definition of the likelihood measure 
to be used and the criteria for acceptance or rejection of the models, a sample of parameter 
sets are selected by Monte Carlo simulation, using uniform random sampling across the 
specified parameter range. The predictions of the Monte Carlo realisations are then 
weighted by the likelihood measures to formulate a cumulative distribution of predictions 
from which prediction quantiles can be estimated. Therefore, prediction with the GLUE 
method is essentially a process of ensemble forecasting, similar to ESP. But instead of 
using different meteorological inputs (either historical or forecasted) to generate the 
ensemble of streamflow forecasts as with ESP, GLUE uses a sample of acceptable 
parameter sets. GLUE method can be used to investigate the effect of parametric and input 
error using several realizations from single models (Beven and Freer, 2001). A major 
limitation of the GLUE methodology is the dependence on Monte Carlo simulation, which 
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requires considerable computing resources. For complex models requiring a great deal of 
computer time for a single run, it will not be possible to fully explore high order 
parameter response surfaces. Khu and Werner (2003) proposed a hybrid method, with 
which genetic algorithm and ANN are used jointly to reduce the runs of Monte Carlo 
simulation required to establish a reliable of model uncertainty.  

(4) Bayesian-theory-based probabilistic forecast method is recently proposed by 
Krzysztofowicz (1999). The basic idea of Bayesian prediction is to blend together prior 
and posterior information using Bayes theorem. In the Bayesian forecasting system (BFS), 
the total uncertainty is decomposed into two sources: (1) input uncertainty associated with 
random inputs (mainly, precipitation) and (2) hydrological uncertainty arising from all 
sources beyond those classified as random inputs, including model, parameter, estimation, 
and measurement errors. BFS offers a theoretically derived structure to quantify the input 
uncertainty and hydrological uncertainty and then integrate all those uncertainties into a 
predictive (Bayes) distribution. The main advantage of BFS is that it moves from 
evaluating the predictive probability based on lumped additive error terms to a framework 
that considers error source terms individually. 

(5) Estimate forecast uncertainty by analyzing the statistical properties of the model error 
series (i.e., residuals) that occur in reproducing observed historical streamflow data. This 
approach has been followed by many researchers in statistics (see Chatfield, 2001). 
Whatever sources of forecasting uncertainty may be, they will be reflected in residuals 
and therefore we can construct the prediction interval for a specific forecasting model (or 
method) according to the empirical distribution function of the residuals, supposing that 
the model (or method) is un-biased, and the hydrological process is stationary and long 
enough. Montanari and Brath (2004) proposed a meta-Gaussian approach in order to 
estimate the probability distribution of the model error conditioned by the simulated 
streamflow. However, the meta-Gaussian approach rests on the assumption that the model 
error is ergodic which is rarely the case. Wang et al. (2005a) applied the residual based 
empirical approach and bootstrap approach (proposed by Pascual et al., 2004), and 
considered the seasonal variations in the model error into account, to construct prediction 
interval for monthly streamflow forecasts from AR models. The results show that both the 
empirical approach and the bootstrap method work reasonably well according to their 
robustness and unbiasedness, and the empirical approach gives results comparable to or 
even better than bootstrap method.  

1.2.2.2 Some needs in the study on forecast uncertainty 
Albeit a large availability of many methods for evaluating forecast uncertainty, there is a lack 
of comparisons of these methods. The National Weather Service (NWS) presently carried out 
a hydrometeorological forecast project (Schaake et al., 2001), within which the Bayesian 
forecasting system (BFS) described by Krzysztofowicz (1999) and an enhancement of the 
NWS ensemble streamflow prediction (ESP) system were tested. Krzysztofowicz (1999) 
stated that, unless hydrological uncertainty is insignificant and can be ignored, neither Monte 
Carlo simulation nor ensemble forecasting are synonymous with probabilistic forecasting. 
This statement seems to be substantiated by a visual inspection of the results shown by Freer 
et al. (1996), in which the 90% uncertainty bound with the GLUE method actually cannot 
cover 90% of observed values. The sources of uncertainty in hydrological modeling include 
(e.g. Refsgaard and Storm, 1996): (a) uncertainties in input data (e.g. precipitation and 
temperature); (b) uncertainties in data used for calibration (e.g. streamflow); (c) uncertainties 
in model parameters; and (d) imperfect model structure. As a matter of fact, the uncertainties 
in the model parameters which are considered in the GLUE method, and the uncertainties in 
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the model inputs which are dealt with in the ESP method, cannot account for all the 
uncertainties in the simulations. The advantage of the Bayesian forecasting system (BFS) 
which seems to have included different sources of uncertainty is yet to be confirmed. On the 
other hand, because no theoretical formula is available for estimating prediction interval for 
not only some data-driven models (e.g., ANN models) but also all the conceptual rainfall-
runoff models, the residual-based empirical approach is likely to be very useful. 
 
While it is believed that climate predictions several seasons in advance can help narrow the 
uncertainty in hydrological predictions, it is still not clear how the uncertainty from climate 
prediction will propagate to hydrological predictions and how to minimize the propagation. 
Furthermore, how the uncertainty propagates in making multi-step forecasts is an issue 
requiring more investigation. There are some efforts on this respect ongoing. For instance, 
Kyriakidis et al. (2001) adopted a Monte Carlo framework for propagating uncertainty in 
dynamically downscaled seasonal forecasts of area-averaged daily precipitation to associated 
streamflow response calculations.  
 
One issue related to the forecast uncertainty is the education and training of forecast users for 
the interpretation and use of probabilistic forecasts. Because rainfall-runoff models are almost 
always believed to provide deterministic forecasts, albeit never exactly, it is not an easy task 
to make the concept of forecast uncertainty accepted by forecast users. 

1.2.3 Model Comparison and Selection 
With more and more streamflow forecasting models available, a lot of model 
intercomparisons have been made, comparing the structure, data requirements, computational 
requirements and accuracy of forecasts of the models of interest, among which the accuracy is 
the major concern. 

1.2.3.1 Comparing hydrological models for real-time or short-term streamflow forecast 

The amount of model comparisons for real-time flood forecasting or short-term streamflow 
forecasting is huge in the literature. World Meteorological Organization (WMO) (1975, 1986, 
1992) organized several times of intercomparison of conceptual hydrological models mainly 
for real-time streamflow forecasting. Many other comparative experiments have been carried 
out since the work of WMO, comparing not only process-driven models but also data-driven 
models. For example: Refsgaard and Knudsen (1996) compared three models, i.e., a lumped 
conceptual modeling system (NAM), a distributed physically based system (MIKE SHE), and 
an intermediate approach (WATBAL), and concluded that all models performed equally well 
when at least 1 year’s data were available for calibration, while the distributed models 
performed marginally better for cases where no calibration was allowed; Ribeiro et al. (1998) 
compared the performances of ARMAX models and the deterministic model for real-time 
forecasting of daily inflows and found that the ARMAX models with Kalman filters are 
superior to the deterministic model in real time within a horizon of 2 days; for a 3-day horizon, 
the models are equivalent; for a horizon of 4 days or more, the deterministic model is superior 
to the ARMAX models with Kalman filters; Tingsanchali and Gautam (2000) showed that the 
ANN model was robust and performed better than two conceptual rainfall-runoff model (Tank 
and NAM models) in 1 and 2 days ahead discharge forecasting. More recently, the Hydrology 
Laboratory of the National Weather Service (NWS) of United States proposed the Distributed 
Model Intercomparison Project (DMIP) for comparing the performance of distributed rainfall-
runoff models (Reed et al., 2004; Smith et al., 2004), of which the focus is the sensitivity of 
runoff hydrographs to spatial and temporal variations in precipitation. The results of DMIP 
show that the lumped model outperformed distributed models in more cases than distributed 
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models outperformed the lumped model (Reed et al., 2004). So far DMIP project concentrated 
on simulation intercomparisons, future DMIP phases may contain a test of distributed models 
in a pseudo-forecast environment. 
 
1.2.3.2 Comparing hydrological models for medium- to long-range streamflow forecast 
 
Considerable amount of studies have also been conducted on medium- to long-range 
streamflow forecasting. For making forecasts at timescales larger than a day, there are more 
data-driven models than process-driven models. Thompstone et al. (1985) compared ARMA 
models, PAR models, TFN models and a conceptual model for quarter-monthly streamflow 
forecasting, finding that the TFN models with one or two exogenous variables (i.e., 
precipitation and temperature) outperforms competitive models. Noakes et al. (1985) made an 
extensive forecasting study comparing deseasonalized ARMA models, SARIMA models and 
PAR models for forecasting monthly streamflows, finding that the PAR model generally 
outperformed the others. Markus (1997) compared MLP ANN models with linear regression 
models, PAR(1) models, TFN models, conical correlation analysis models and a conceptual 
model for forecasting monthly flows, finding that the performance of each model differs for 
different rivers, and in general, the ANN model performs better than or comparable to other 
models. Li (1998) compared month-scale Xinanjiang model and multiple regression model for 
forecasting monthly runoff for several catchments in northern China, and found that the 
multiple regression model with antecedent precipitation, temperature and discharge as 
predictors has better forecast accuracy than the conceptual model. Jain et al. (1999) compared 
an ARMA model and an ANN model fitted to the monthly inflow data series, found that the 
ANN modelled the high flows better, whereas low flows were better predicted through the 
ARMA model. Zealand et al. (1999) showed that ANNs consistently outperformed a 
stochastic-deterministic watershed model for making one to four weeks ahead streamflow 
forecasting. Some studies compared the process-driven models and data-driven models for 
making medium-range forecasting at daily timescales. Birikundavyi et al. (2002) showed that 
ANN models outperform a deterministic conceptual model for up to 5-day-ahead forecasts, 
and are also superior to the ARMAX model coupled with a Kalman filter for forecasting 7-
day-ahead daily streamflows. 
 
1.2.3.3 Shortcomings of the studies on model intercomparison in literature  
 
Despite of so many efforts in comparing hydrological forecasting models, no conclusive 
comparison result is available yet, due to the following shortcomings: 
 
(1) In some comparative studies, such as the comparison between a TFN model with an 

ARMA model (Thompstone et a., 1985), different input data were used for different 
models, which makes the comparison unfair. In some other comparisons, it seems that 
some competitive models are not elaborately built. For example, Hsu et al. (1995) 
compared ANN model and ARMAX model for daily streamflow forecasting, and Kisi 
(2004) made a comparison between ANN model and AR model for monthly flow 
forecasting. In both comparisons, there is no indication that data are appropriately pre-
processed before bulding the ARMAX model and the AR model, whereas pre-processing 
procedures, such as log-transformation and deseasonalization, are necessary for fitting 
ARMA-type time series model to streamflow processes (Hipel and Mcleaod, 1994). Such 
kind of comparison is obviously biased. 

 
(2) There is a lack of linkage of model performances and the characteristics of the watershed 

systems of interest in most comparison studies. A clear linkage of the model performance 
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and the characteristics of the watershed systems would make the results of model 
comparison more informative to hydrology practitioners. Such kind of knowledge may 
lead to the solution to the question “Why does one particular model perform relatively 
well in one basin but not as well in another basin?” (Reed et al., 2004). Unfortunately, 
even in some studies where detailed descriptions of the watershed of interest are given 
(e.g., Reed et al., 2004; Smith et al., 2004), no clear linkage of model performances and 
the basin characteristics is established.  

 
Although many models have specified their application range (e.g., catchment size and 
climate zone), such kind of specifications are usually too general to serve as an operational 
guidance for selecting a model for a given watershed. Due to the lack of conclusive 
comparisons, model selection is still very subjective in practice, usually user-dependent, and 
hydrological practitioners are not confident enough to apply new techniques in practical 
applications, although lots of new methods have been proposed in the last two decades.  

1.2.4 Forecast Combination 
Forecast combination may avoid unexpected high variability in the final prediction resulted 
from model uncertainty (Chatfield, 1996), and takes advantage of the availability of both 
multiple information and computing resources for data-intensive forecasting (Bunn, 1989). 
While combining forecasts has become a well-established procedure for improving 
forecasting accuracy and the combined forecasting has a long history in the econometrics 
community, it has not received much attention in the field of hydrological forecasting until 
recently. 
 
Forecast combination methods may be roughly broken into two categories. The first one is the 
ensemble approach, by which a set of forecasts are produced on the same task with different 
models (or one model with different inputs), and then the forecasts are combined. The second 
one is the modular approach, under which a task or problem is divided into a number of 
subtasks (regimes), and the complete task solution requires the contribution of all of the 
individual regimes.  
 
1.2.4.1 Ensemble approach to forecast combination 
 
While the ensemble prediction technique is normally used to provide probabilistic predictions 
as in ESP, it may also be extended to be used as a forecast combination technique. There are 
two main issues about the ensemble combination: First, how to select a set of models and 
generate an ensemble of forecasts to be combined; and second, how to estimate the combining 
weights so as to minimize the out-of-sample forecast errors. Ideally, the selection of the 
ensemble models should provide the information of a specific process from different 
perspectives. As for the methods of estimating the combining weights, the methods now are 
available range from the robust equal weighting (i.e., simple average method SAM) to the far 
more theoretically complex, such as neural network method (Donaldson and Kamstra, 1996). 
In the early work of McLeod et al. (1987), they showed that significant improvements in 
forecast performance can be achieved by using weighted average method to combine 
forecasts produced by different types of models applied to quarter-monthly river flows. 
Shamseldin et al. (1997) examined three different combination methods in the context of 
flood forecasting, namely, the simple average method, the weighted-average method and the 
neural network method, and confirmed that better discharge estimates can be obtained by 
combining the outputs of different models. Coulibaly et al. (2005) showed that, using 
weighted average method to combine three dynamically different models can significantly 
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improve the accuracy of the daily reservoir inflow forecast for up to 4 days ahead. Meanwhile, 
the robustness of the SAM is confirmed in some other studies. For example, Butts et al. (2004) 
generated multi-model ensembles using ten distinct model structures, and showed that a 
simple average of the 10 model structures performed better than any single model, and 
weighted ensemble was similar to the simple ensemble average but uses a smaller ensemble.  

1.2.4.2 Modular approach to forecast combination 

The modular approach is based on the principle of divide-and-conquer (DAC), which deals 
with a complex problem by breaking it into simple sub-problems whose solutions can be 
combined to yield a solution to the complex problem (Jordan and Jacobs, 1994). Because 
streamflow generation processes, especially daily streamflow processes, usually have 
pronounced seasonal means, variances, and at the same time, dependence structures and the 
under-lying mechanisms of streamflow generation are likely to be quite different during low, 
medium, and high flow periods, hence, several approaches have taken to divide a streamflow 
process: use threshold values to divide the streamflow regimes; cluster the streamflow process 
into several domains (e.g., low flow, medium flow and flood); or, partition the streamflow 
process according to the seasonal difference. Hu et al. (2001) developed a threshold-based 
ANN model to make streamflow forecasts for the Yangtze River. In the studies of Zhang and 
Govindaraju (2000), See and Openshaw (2000) and Xiong et al. (2001), the model 
combinations are fundamentally based on dividing the hydrological process into several 
domains according to the conditions of the hydrological process. Zhang and Govindaraju 
(2000) used a modular ANN model to forecast monthly discharges, in which different expert 
neural networks were trained to low-, medium- and high-flow events, and a gating network is 
trained to combine the expert networks. See and Openshaw (2000) used four different 
approaches (i.e., an average, a Bayesian approach, and two fuzzy logic models) to combine 
the river level forecasts of three models (i.e., a hybrid neural network, an autoregressive 
moving average model, and a simple fuzzy rule-based model), and found that the addition of 
fuzzy logic to the crisp Bayesian approach yielded overall results that were superior to the 
other individual and integrated approaches. Xiong et al. (2001) showed that the first-order 
Takagi-Sugeno fuzzy system (Fiordaliso, 1998), in which the discharge series are divided into 
two or three regimes, works almost the same as the weighted average method and neural 
network method in combining five rainfall-runoff models.  
 
1.2.4.3 Two special issues in the study of forecast combination 
 
After nearly four decades’ study, many results are available about how to combine forecasts 
in the literature. The scientific outcome of further study on this issue generally seems to be 
limited. However, there are two issues worth some attention. 
 
First, the roles of judgemental forecasts and judgemental combination in combined 
forecasting. Despite of a large literature on combining forecasts, the choice of which method 
to use is not obvious (de Menezes et al., 2000). In the practice of hydrological forecasting, the 
final forecasts are rarely made solely depend on models. Normally, the meeting discussion is 
always an imperative procedure before publishing any forecasts, especially in China. The 
essence of the meeting discussion is the judgemental forecasts and the judgemental 
combination of model forecasts. However, some evidences from the management science and 
econometrics show that, the judgemental combination is less accurate than the simple average 
combination (e.g., Lawrence et al., 1986) or the econometric model alone (Weinberg, 1986). 
Therefore, on the one hand, how to combine judgemental forecasts, namely, expert experience, 
with model forecasts is an issue need investigation; on the other hand, it would be interesting 
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to investigate how many gains are achieved with the meeting discussion procedure compared 
with the mechanical combination of a number of forecasting models (e.g., more than five 
models, as suggested by Armstrong (2001)).  
 
Second, how to construction prediction intervals for combined forecasts. Despite of a 
considerable literature on the combination of forecasts, there is little guidance regarding the 
assessment of their uncertainty. Some studies have been conducted on this issue in the field of 
statistics and machine learning (e.g., Taylor and Bunn, 1999; Carney and Cunningham, 1999), 
but there is no application to the combination of hydrological forecasts so far. 

1.2.5 Evaluation of the Value of Streamflow Forecasts 
The value of forecasting is the economic, social or other benefit that results from a forecast, 
that is, the net benefits that accrue if a forecast is available (Lettenmaier and Wood, 1993). 
Many studies confirm the economic value of streamflow forecasting for flood defence and 
water management through improved reservoir operation. For example, Yeh et al. (1982) 
estimated the potential benefits of long-range (one month to one year) streamflow forecasts 
for the operation of the Oroville-Thermalito reservoir system of the California State Water 
Project. Benefits included hydropower generation, water conservation for irrigation and other 
beneficial uses, and decreased seepage damage to crops. The simulation results of Kim and 
Palmer (1997) demonstrated that including the seasonal forecasts is beneficial to hydropower 
operation. In the 1998 water year, the Salt River Project (SRP), which is the largest provider 
of water and electricity in Arizona in the United State, for the first time successfully used the 
seasonal forecast of a wet winter to influence its reservoir operations, saving about $1.4 
million from the reduction in the costs of groundwater pumping. Owing to the success in 1998, 
SRP plans to continue to use seasonal forecasts in decision-making (NRC, 1999, pp.9). 
Hamlet et al. (2002) showed that long-lead forecasts derived from improved forecasting of the 
El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) could result 
in considerable improvements in reservoir operating system performance for hydropower 
generation. In Europe, there are many flood management actions, such as emptying reservoirs, 
lowering water levels in rivers, stockpiling emergency supplies and placing key personal on 
alert, where forecast lead times of greater than the 3–5 days achievable in the largest 
European basins would be extremely useful (De Roo et al., 2003). Besides the improvement 
of reservoir operation, many potential values of streamflow forecasting deserve further 
investigation, including improving water quality and navigation conditions, reducing the 
expenses on flood defence and the loss of human lives and properties, and so on. Such kind of 
assessment could help to determine whether it is worthwhile to put additional investment on 
improving existing forecasting systems. Unfortunately, the measurement and monetary 
quantification of the diverse range benefits is non-existent or rudimentary, and even in those 
areas of benefit where research has been focused there remain some obvious research needs 
(Parker et al., 2005). 
 
Be aware that, the value of forecast may be not always positive. For example, Chiew et al. 
(2003) investigated the use of seasonal streamflow forecasts to help manage three water 
resources systems in southeast Australia. The results suggested that although the ENSO–
streamflow relationship and the serial correlation in streamflow are statistically significant, 
the correlations are not sufficiently high to considerably benefit the management of 
conservative low-risk water resources systems. Furthermore, due to the forecast uncertainty, 
bad forecasts may even cause economic losses. Therefore, a objective evaluation index 
system is needed to assess the value of streamflow forecasting in the future work. This would 
be valuable for risk-based water resources management. 
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1.3 Overview of the Thesis 

1.3.1 Objectives of the Research 
Hydrological time series are not simply a collection of numbers, but to analyze the 
hydrological time series with some mathematical tools from the point of view of the numbers 
is a beneficial complement to the physically-based research approaches which deal with 
hydrological processes from the point of view of physical mechanisms. The objectives of this 
research are: 
 
(1) Study the characteristics of several streamflow processes with mathematically-based 

methods, so as to understand the streamflow processes from the perspective of the 
univariate streamflow time series. 

(2) Model the streamflow process of the upper Yellow River with different data-driven 
models, focusing on giving 1- to 10-day ahead forecasts. 

1.3.2 Outline of the Thesis 
Apart from the introduction in Chapter 1, the thesis is composed of the following two parts. 
 
Chapter 2 and Chapter 3 focus on the stochasticity of streamflow processes and the 
forecasting of the streamflow of the upper Yellow River with ARMA-type models. In Chapter 
2, three important aspects of stochasticity of streamflow processes are discussed, namely, 
stationarity, seasonality, and long-memory. In Chapter 3, ARMA models and ARFIMA 
models will be fitted to the daily streamflow, and an AR model will be fitted to monthly flows 
of the Yellow River at Tangnaihai (TNH). To capture the seasonal variation in autocorrelation 
structures of streamflow processes, a strategy of building periodic autoregressive (PAR) 
model based on cluster analysis is proposed for modeling daily flows. 
 
Chapter 4 to Chapter 7 focus on the nonlinearity of streamflow processes and the forecasting 
of the daily streamflow of the upper Yellow River with nonlinear models. In Chapter 4, the 
nonlinearity of the streamflow process of four rivers at different timescales will be analyzed 
with the BDS test. Thereafter, a special type of nonlinearity, chaos, will be further 
investigated. In Chapter 5, the existence of a special type of stochastic nonlinearity, i.e., 
autoregressive conditional heteroskedasticity, will be tested for daily and monthly streamflow 
series of the upper Yellow River at TNH. Following the test, an ARMA-GARCH error model 
is proposed for the daily flow process at TNH. In Chapter 6 the ANN model will be applied to 
make 1- to 10-day ahead forecasts for the daily flow process of the Yellow River at TNH. To 
make the ANN model more flexible in capturing the seasonality as well as nonlinearity, the 
periodic ANN model is proposed. Forecasts based on linear and nonlinear models will be 
compared, and the issue of combining the forecasts from different models is discussed. In 
Chapter 7, some issues about the generalization of ANN models will be discussed, and two 
widely used techniques (the cross-validated early stopping and the Bayesian regularization) to 
achieve the generalization will be compared for making predictions for univariate time series 
(including several streamflow time series). Then, the Bayesian regularization technique will 
be applied to the streamflow forecasting for the case where exogenous variables (upstream 
discharges, precipitation and temperature) are included in the ANN model. 
 
Finally, in Chapter 8, conclusions and some suggestions for future research will be presented.
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Chapter 2 Stochasticity of Streamflow Processes 

Streamflow processes of five rivers, i.e., the Yellow River in China, the Rhine River and the 
Danube River in Europe, the Umpqua River and the Ocmulgee River in United States, will be 
studied in this thesis. In this chapter, three important aspects of stochasticity of the streamflow 
processes of the five rivers at 6 sites are discussed, namely, stationarity, autocorrelation, and 
long-memory. 

2.1 Study Areas and Data Used 

2.1.1 Study areas 

The Yellow River is the second longest river in China. The headwaters of the Yellow River 
originate at an elevation of 4,500 m in the Yueguzonglie Basin located on the northern slope 
of the Bayankara Mountains in the north-eastern part of the Tibet Plateau. In this area, the 
discharge gauging station Tangnaihai (TNH) has a 133,650 km2 contributing watershed, 
including a permanently snow-covered area of 192 km2. The main channel of this watershed 
is over 1500 km of length. Most parts of the watershed are 3000 ~ 4000 meters above sea 
level. Snowmelt water composes about 5% of total runoff. Most rain falls in summer. Because 
the watershed is partly permanently snow-covered, sparsely populated, and lacks of any major 
hydraulic works, it is fairly pristine. The average annual runoff volume (1956-2000) at TNH 
is 20.4 billion cubic meters, about 35% of the whole Yellow River Basin. Therefore, this 
watershed is the main runoff generation area of the Yellow River basin. 
 
The middle reaches of the Yellow River differ from the headwaters significantly. In this 
region, the precipitation is concentrated in summer, and occurs usually in the form of storm-
rain. Because of the special loess geomorphology and the poor vegetation-cover, the runoff 
responds usually fast to rainfall. Because the middle reach area is densely populated, water 
withdrawal for industry and agriculture has substantial influence on the river flow process. 
Furthermore, there are many hydraulic works in the main channel and main tributaries. 
Therefore, the streamflow process is severely influenced by human activities. Although the 
drainage area at Tongguan (TG) (Figure 1), about 682,141 km2, is more than 5 times as large 
as that at TNH, the average annual runoff is less than 2 times as much as that at TNH. 
 
The Rhine is the largest hydrological system in Western Europe. Rising in eastern 
Switzerland, the Rhine flows 1,320 km via Germany and the Netherlands in a generally north-
western direction to its mouth on the North Sea. The Rhine basin (185,000 km2) consists of 4 
main sub-basins: the alpine region in Switzerland, and downstream the lower mountain 
regions of the tributaries the Neckar, the Main (Germany), and the Moselle (Germany and 
France). It incorporates high Alphine snow and glacier regions, low mountain ranges and the 
lowland areas. The runoff regime of the Rhine in Germany is characterised mainly by two 
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effects (Grabs, 1997): during the low water season in summer a major amount of the runoff is 
generated in the Alps due to melting of snow and ice. The tributaries of the French and 
German parts of the Rhine do not contribute much to this base flow. Most of the precipitation 
within non-Alphine area is taken up by evaporation. The situation changes in winter times: 
much of the precipitation in the Alphine region is stored as snow and ice whereas in the 
remaining catchments it becomes runoff. Floods are likely to occur from December to March. 
The Rhine basin is very densely populated (in total around 50 million). Dikes protect the 
lower parts of the basin from flooding. The gauging station Lobith is located at the lower 
reaches of the Rhine in the Netherlands, near German-Dutch border. It has a drainage area of 
160,800 km2. 
 
The Danube is the second longest river in Europe, and the most important river of central and 
south-eastern Europe. It rises in the Black Forest Mountains of western Germany and flows in 
a generally easterly direction for a distance of about 2,850 km reaching the Black Sea. Due to 
its geologic and geographic conditions the Danube River Basin can be divided into three main 
parts: the Upper Danube Basin, the Middle Danube Basin, and the Lower Danube Basin. The 
gauging station Achleiten is located at the upper reaches of the Danube in the Austria, with a 
drainage area of 76,653 km2. The upper regions of the Danube River Basin show strong 
influence from the Atlantic climate with high precipitation. In the upper part of the Danube 
the Inn contributes the main water volume, adding more water to the Danube than it has itself 
at the point of confluence of the two. 
 
The Umpqua River is one of the longest coastal basins in Oregon in north-western United 
States, approximately 340 km in length, with a drainage area of over 12,200 km2, rising in 
two branches and flowing north and west to the Pacific Ocean. The Umpqua River Basin is 
characterized by a temperate, maritime climate with wet, mild winters and moderately dry, 
warm summers. Because the river begins at high elevations in the Cascade Mountains, it 
receives more precipitation and a heavier snowpack than lower headwater elevation coastal 
rivers (Johnson et al., 1994). Most precipitation falls in the winter. There is little rain June to 
October in southern-central Oregon, and most regional streams barely flow during those 
months; but because of the snowmelt stored in deep pumice and other volcanic soils, water 
flow in the upper North Umpqua River remains relatively constant, with deep, swift, and cold 
water. Downstream in the North Umpqua River, and even more so in the South Umpqua 
River, the flow is erratic, with shallower, slower moving, and warmer water. The gauging 
station near Elkton, Oregon, has a drainage area of 9,535 km2. Regulation by powerplants on 
North Umpqua River ordinarily does not affect discharge at this station. There are diversions 
for irrigation upstream from the station.  
 
The Ocmulgee River basin is located in the middle of the state of Georgia in south-eastern 
United States. A humid subtropical climate with mild winters and hot moist summers is 
characteristic of most of Georgia. The average annual precipitation varies from about 1000 
mm in central Georgia to more than 1900 mm in northeast Georgia. One of two annual 
precipitation maxima occurs in February or March, when between 100 and 150 mm of rain 
may be expected because of the high seasonal incidence of cyclonic activity over the south-
eastern United States. The second maximum occurs in June and July, when precipitation from 
thunderstorm activity may bring 100 to 180 mm of rain monthly. The Ocmulgee River is one 
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of 14 major river basins defined in the state of Georgia. It begins southeast of the highly 
urbanized Atlanta metropolitan area in central Georgia, and downstream its watershed is 
dominated by agriculture and forested areas. The main stem extends approximately 410 km 
and flows southeast past the city of Macon to join the Oconee River. Together, the Oconee 
River and the Ocmulgee River form the Altamaha River near Lumber City. The confluence of 
these two rivers into the Altamaha comprises the largest river system entirely contained 
within the state of Georgia. The station Macon, Georgia, has a drainage area of 5,799 km2.  
 
The data of the Rhine and the Danube are provided by the Global Runoff Data Centre (GRDC) 
in Germany (http://grdc.bafg.de/). The daily discharge data of the Umpqua and the Ocmulgee 
are available from the website of the United States Geological Survey (USGS) 
http://water.usgs.gov/waterwatch/.  
 
The locations of the gauging stations are shown in Figure 2.1, and the description of the 
gauging stations used in this study is listed in Table 2.1.  

ðð
ððð

ð

 
Figure 2.1 Locations of gauging stations used in the study  

 

Table 2.1 Description of gauging stations used in the study 

River Station Country Drainage area 
(km2) Latitude Longitude Elevation 

(m) 
Yellow Tangnaihai China 133,650 35.5 100.15 E - 
Yellow Tonguan China 682,141 34.617 110.3 E - 
Danube Achleiten Austria 76,653 48.582 13.504 E 288 
Rhine Lobith Netherlands 160,800 51.84 6.11 E 10 
Ocmulgee Macon USA 5,799 32.839 83.621 W 82 
Umpqua Elkton USA 9,535 43.586 123.554W 27 

Tangnaihai 
Tongguan 

Achleiten 
Lobith 

Macon Elkton 
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2.1.2 Statistics of the Data Used 
 
In this study, streamflow processes at four characteristic timescales will be analyzed, namely, 
one day, 1/3-month, one month and one year. Original data are daily average discharges. 
Daily data are aggregated to monthly series and annual series by taking the average of every 
month or every year. For the 1/3-monthly series, the 1st and 2nd 1/3-month streamflows are 
the averages of the first and the second 10-days’ daily streamflows, and the 3rd 1/3-month 
could be the average of the last 8~11 days’ daily streamflow of a month depending on the 
length of the month. The statistical characteristics, including the means, coefficient of 
variations, skewness, kurtosis and autocorrelation function at lag 1 (i.e., ACF(1)), of the 
streamflow series at different timescales are summarized in Table 2.2. Daily streamflow series 
are plotted in Figure 2.2 to 2.7. 
 

Table 2.2 Statistical characteristics of streamflow series 

River 
 (Station) 

Period of 
records Timescale Mean (m3/s) Coefficient 

of variation Skewness Kurtosis  ACF(1)

Daily 646 0.8653  1.864 5.034 0.994 
1/3-monthly 643 0.8538  1.770 4.472 0.884 

Monthly 643 0.8103  1.516 2.789 0.703 
Yellow 
(TNH) 1956-2000 

Annual 646 0.2570  0.882 -0.076 0.301 
Daily 1106 0.8535  2.401 7.512 0.945 

1/3-monthly 1103 0.7951  2.195 5.711 0.856 
Monthly 1103 0.7416  2.141 5.231 0.682 

Yellow 
(TG) 1962-2000 

Annual 1106 0.3472  0.902 0.783 0.440 
Daily 1421 0.4631  1.464 4.500 0.962 

1/3-monthly 1422 0.4276  1.090 1.969 0.772 
Monthly 1420 0.3873  0.867 1.129 0.639 

Danube 
(Achleiten) 1901-1990 

Annual 1424 0.1594  0.0774 -0.830 0.094 
Daily 2217 0.5174  2.121 7.162 0.985 

1/3-monthly 2219 0.4831  1.755 4.602 0.713 
Monthly 2219 0.4182  1.230 2.143 0.544 

Rhine 
(Lobith) 1901-1996 

Annual 2217 0.2124  -0.135 -0.567 0.140 
Daily 76.1 1.3955  6.711 76.506 0.857 

1/3-monthly 76.4 1.0589  3.508 19.331 0.500 
Monthly 76.3 0.8362  1.903 4.653 0.537 

Ocmulgee 
(Macon) 1929-2001 

Annual 76.1 0.3403  0.556 0.441 0.254 
Daily 210 1.4571  5.193 49.344 0.864 

1/3-monthly 211 1.1706  2.614 11.126 0.627 
Monthly 211 0.9905  1.625 3.325 0.621 

Umpqua 
(Elkton) 1906-2001 

Annual 210 0.2752  0.401 -0.193 0.233 
Note: The skewness and kurtosis are calculated with the moment method. 
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Figure 2.2 Average daily discharges of the upper Yellow River at TNH (1956-2000) 
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Figure 2.3 Average daily discharges of the middle Yellow River at TG (1962-2000) 
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Figure 2.4 Average daily discharges of the Danube River at Achleiten (1901-1990) 
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Figure 2.5 Average daily discharges of the Rhine River at Lobith (1901-1996) 
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Figure 2.6 Average daily discharges of Ocmulgee River at Macon (1929-2001) 
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Figure 2.7 Average daily discharges of Umpqua River near Elkton (1906-2001) 
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2.2 Trend Analysis 

Many hydrological time series exhibit trending behavior or nonstationarity. In fact, the 
trending behavior is a type of nonstationarity. But in this present study, they are treated 
separately. The purpose of a trend test is to determine if the values of a series have a general 
increase or decrease with the time increase, whereas the purpose of stationarity test is to 
determine if the distribution of a series is dependent on the time. 
 
An important task in hydrological modeling is to determine if there is the existence of any 
trend in the data and how to achieve stationarity when the data is nonstationary. On the other 
hand, the possible effects of global warming on water resources have been the topic of many 
recent studies (e.g., Lettenmaier et al., 1999; Jain and Lall, 2001; Kundzewicz et al., 2004). 
Thus, detecting the trend and stationarity in a hydrological time series may help us to 
understand the possible links between hydrological processes and changes in the global 
environment. The focus of the trend analysis and stationarity test in this study is not to detect 
the changes of regional or world-wide streamflow processes. As a matter of fact, the presence 
of trends and nonstationarity is undesirable in further analysis. Therefore, we should make 
sure whether there is the presence of trend and nonstationarity or not, and if the presence of 
trend and nonstationarity is detected, the appropriate pre-processing procedure should be 
applied. In this section the issue of trend analysis is studied, and the nonstationarity problem 
will be addressed in the following section. 
 
Non-parametric trend detection methods are less sensitive to outliers (extremes) than are 
parametric statistics such as Pearson’s correlation coefficient. In addition, nonparametric test 
can test for a trend in a time series without specifying whether the trend is linear or nonlinear. 
Therefore, A rank-based nonparametric method, the Mann-Kendall’s test (Kendall, 1938; 
Mann, 1945), is applied in this study to annual and monthly series.  

2.2.1 Trend Test for Annual Streamflow Series 
First of all, we test for the trend in annual series so as to get an overall view of the possible 
changes in streamflow processes. 

2.2.1.1 Mann-Kendall test 
Kendall (1938) proposed a measure tau to measure the strength of the monotonic relationship 
between x and y. Mann (1945) suggested using the test for the significance of Kendall’s tau 
where one of the variables is time as a test for trend. The test is well known as the Mann-
Kendall’s test (referred to as MK test hereafter), which is powerful for uncovering 
deterministic trends. Under the null hypothesis H0, that a series {x1, …, xN} come from a 
population where the random variables are independent and identically distributed, the MK 
test statistic is 
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1 1
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And tau is estimated as:  
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Kendall (1975) showed that the variance of S, Var(S), for the situation where there may be 
ties (i.e., equal values) in the x values, is given by 
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where, m is the number of tied groups in the data set and ti is the number of data points in the 
ith tied group. 

Under the null hypothesis, the quantity z defined in the following equation is approximately 
standard normally distributed even for the sample size N = 10: 
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           (2.4) 

It has been found that the positive serial correlation inflates the variance of the MK statistic S 
and hence increases the possibility of rejecting the null hypothesis of no trend (von Storch, 
1995). In order to reduce the impact of serial correlations, it is common to prewhiten the time 
series by removing the serial correlation from the series through yt = xt - φ xt-1, where yt is the 
prewhitened series value, xt is the original time series value, and φ is the estimated lag 1 serial 
correlation coefficient. The pre-whitening approach has been adopted in many trend-detection 
studies (e.g., Douglas et al., 2000; Zhang et al., 2001; Burn and Hag Elnur, 2002). 

2.2.1.2 MK test results 
The first step in time series analysis is visually inspecting the data. Significant changes in 
level or slope usually are obvious. The annual average streamflow series of the Yellow River 
at TNH and TG, the Rhine River at Lobith, the Umpqua River near Elkton and the Ocmulgee 
River at Macon are shown in Figure 2.8.  
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(a) Yellow River at TNH     (b) Yellow River at TG   (c) Danube 
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(d) Rhine        (e) Ocmulgee     (f) Umpqua 

Figure 2.8 Annual average discharge series of the five rivers at six sites 
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From the visual inspection, it seems that except for the annual flow series of the Yellow River 
at TG which exhibits obvious downward trend, other annual series have no obvious trend. The 
MK test results are displayed in Table 2.3. The results are in agreement with the heuristic 
result by the visual examination. 
 

Table 2.3 Mann-Kendall tests on Annual average discharge series 

Streamflow tau z statistic p-value 
TNH -0.1015 -0.9609 0.3366 
TG -0.3144 -2.7658 0.0057 

Danube 0 0 1 
Rhine 0.0467 0.6710 0.5022 

Ocmulgee 0.1025 1.2688 0.2045 
Umpqua -0.0258 -0.3665 0.7140 

 Null hypothesis: tau = 0   
 

2.2.2 Trend Test for Monthly Streamflow Series 
The trend test for annual series gives us an overall view of the change in streamflow processes. 
To examine the possible changes occur in smaller timescale, we need to investigate the 
monthly flow series. Monthly streamflows usually exhibit strong seasonality. Trend test 
techniques for dealing with seasonality of univariate time series fall into three major 
categories (Helsel and Hirsh, 1992, pp 337-343): (1) fully nonparametric method, i.e., 
seasonal Kendall test; (2) mixed procedure, i.e., regression of deseasonalized series on time; 
(3) parametric method, i.e., regression of original series on time and seasonal terms. The first 
approach, namely, seasonal Kendall test will be used here. 

2.2.2.1 Seasonal Kendall test 
Hirsch et al. (1982) introduced a modification of the MK test, referred to as the seasonal 
Kendall test that allows for seasonality in observations collected over time by computing the 
Mann-kendall test on each of p seasons separately, and then combining the results. Compute 
the following overall statistic S’: 
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where Sj is simply the S-statistic in the MK test for season j (j = 1, 2, ..., p) (see Equation 
(2.1) ). When no serial dependence exhibit in the time series, the variance of S’ is defined as 
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=∑ . When serial correlation is present, as in the case of monthly streamflow 

processes, the variance of S’ is defined as (Hirsch and Slack, 1984) 
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where σgh denotes the covariance between the MK statistic for season g and the MK statistic 
for season h. The covariance is estimated with the following procedures. 

Let the matrix 
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denote a sequence of observations taken over p seasons for n years. Let the matrix  
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denote the ranks corresponding to the observations in X, where the n observations for each 

season are ranked among themselves, that is, 
1

1 1 sgn( )
2

n

ij ij kj
k

R n x x
=

⎡ ⎤= + + −⎢ ⎥⎣ ⎦
∑ . Hirsch and 

Slack (1984) suggest using the following formula, given by Dietz and Killeen (1981), to 
estimate σgh in the case where there are no missing values: 
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If there are missing values, 
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of observations without missing values for season j. And the covariance between the MK 
statistic for season g and season h is estimated as 
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Then the quantity z’ defined in the following equation is approximately standard normally 
distributed: 
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The overall tau is the weighted average of the p seasonal τ’s, defined as 
1 1

p p

j j j
j j

n nτ τ
= =

= ∑ ∑ , 

where τj is the tau for season j, estimated with Equation (2.2). 

Seasonal Kendall test is appropriate for testing for trend in each season when the trend is 
always in the same direction across all seasons. However, the trend may have different 
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directions in different seasons. Van Belle and Hughes (1984) suggested using the following 
statistic to test for heterogeneity in trend 

2 2 2

1

p

het j
j

z pzχ
=

= −∑              (2.7) 

where zj denotes the z-statistic for the jth season computed as 1/ 2( ( ))
j
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= ∑ . Under the null hypothesis of no trend in any season, the statistic defined in 

Equation (2.7) is approximately distributed as a chi-square random variable with p -1 degrees 
of freedom. 

2.2.2.2 Seasonal Kendall test results 

The six monthly streamflow processes are tested for the trend with the seasonal Kendall test 
which allows fort the serial dependence. And the heterogeneity in trend is also tested. The 
results are shown in Table 2.4. The results give the same conclusion as the test for annual 
series, that is, among 5 series, only the streamflow of the Yellow River at TG exhibits 
significant downward trend. Meanwhile, it is found that while the streamflow processes at TG 
present downward trend in general, the trend directions of every month are heterogeneous.  
 
Therefore, the trend of streamflows at TG in each month is further investigated with the MK 
test. The results are shown in Table 2.5. It is seen that, for the streamflows of the Yellow 
River at TG, the trends in December to April, and in June, are not significant, whereas in 
other months, there are obvious downward trends. This indicates that the discharges at TG in 
the summer and autumn are significantly decreased, but in winter, the change is not 
significant. One reason for such kind of behaviour is the similar change pattern in the monthly 
rainfall in the area along middles reaches of the Yellow River (Fu et al., 2004). Another 
reason may be the runoff regulation of about 10 dams over the main channel and thousands of 
reservoirs along the tributaries in this basin, which were mainly built over the last 50 years. 
 

Table 2.4 Seasonal Kendall Tests on Monthly Series 

Streamflow tau z statistic trend p-value Het p-value 
TNH -0.0178 -0.2732 0.7847 0.3705 
TG -0.2431 -3.5561 0.0057 0.0039 

Danube -0.0084 -0.2010 0.8407 0.2558 
Rhine 0.0089 0.2047 0.8378 0.5125 

Ocmulgee -0.0101 -0.2078 0.8354 0.5105 
Umpqua -0.0129 -0.3120 0.7550 0.8185 

Null hypothesis of trend test: tau = 0 
Null hypothesis of trend homogeneity test: tau of all seasons are equal to 0. 
“Het” denotes the van Belle and Hughes heterogeneity test. 

Table 2.5 Mann-Kendall Tests for streamflows at TG in each month 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
tau -0.150 0.031 0.018 -0.144 -0.511 -0.179 -0.350 -0.296 -0.333 -0.457 -0.479 -0.066
p-value 0.183 0.790 0.885 0.200 0.000 0.110 0.002 0.008 0.003 0.000 0.000 0.561
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2.3 Stationarity Test 

In most applications of hydrological modelling, we have an assumption of stationarity. It is 
thus necessary to test for stationarity for the justification of using those models. On the other 
hand, sometimes the investigation of nonstationarity may give us some insights into the 
underlying physical mechanism, especially in the context of global changes. Therefore, 
testing for stationarity is an important topic in the field of hydrology. 

2.3.1 Test Methods  
There are roughly two groups of methods for testing stationarity. The first group is based on 
the idea of analyzing the statistical differences of different segments of a time series (e.g., 
Chen and Rao, 2002). If the observed variations in a certain parameter of different segments 
are found to be significant, that is, outside the expected statistical fluctuations, the time series 
is regarded as nonstationary. Another group of stationarity tests is based on statistics for the 
full sequence. We adopt the second approach here. 

The stationarity test is carried out with two methods in this present study. The first one is the 
augmented Dickey-Fuller (ADF) unit root test that is first proposed by Dickey and Fuller 
(1979) and then modified by Said and Dickey (1984). It tests for the presence of unit roots in 
the series (difference stationarity). The other one is the KPSS test proposed by Kwiatkowski 
et al. (1992), which tests for the stationarity around a deterministic trend (trend stationarity) 
and the stationarity around a fixed level (level stationarity). KPSS test can also be modified to 
be used as a unit root test, but it was shown by Shin and Schmidt (1992) that the KPSS 
statistic, designed for use as a test for stationarity, was not as good a unit root test as other 
standard test. In particular, its power is noticeably less than the power of the Dickey-Fuller 
test (or other similar tests) against stationary alternatives. 

2.3.1.1 ADF test 
Dickey–Fuller unit-root tests are conducted through the ordinary least squares (OLS) 
estimation of regression models incorporating either an intercept or a linear trend. Consider 
the autoregressive AR (1) model 
 

xt = ρxt-1 + εt,  t = 1, 2, ..., N           (2.8) 

where x0 = 0; |ρ| ≤ 1 and εt is a real valued sequence of independent random variables with 
mean zero and variance σ2. If ρ = 1, the process {xt} is nonstationary and it is known as a 
random walk process. In contrast, if |ρ| < 1, the process {xt} is stationary. The maximum 
likelihood estimator of ρ is the OLS estimator 
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Under the null hypothesis that ρ = 1, Dickey and Fuller (1979) showed that ρ̂  is characterized 
by 
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where 2 2 1/ 2
1 1

( , ) ( , 2 )i i i ii i
Z Zγ γ∞ ∞

= =
Γ Λ = ∑ ∑ , with γi = 2(-1)i+1/[(2i – 1)π], and the Zi are i.i.d 

N(0,1) distributed random variables.  

The result with Equation (2.10) allows the point estimate ρ̂  to be used by itself to test the 
null hypothesis of a unit root. Another popular statistic for testing the null hypothesis that ρ = 
1 is based on the usual OLS t-test of this hypothesis, 
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ρ
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=                (2.11) 

where ˆˆρσ  is the usual OLS standard error for the estimated coefficient, 
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and se denotes the standard deviation of the OLS estimate of the residuals in the regression 
model with Equation (2.8), estimated as  
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Dickey and Fuller (1979) derived the limiting distribution of the statistic t under the null 
hypothesis that ρ = 1 as 

1/ 2 22 ( 1)Dt −⎯⎯→ Γ Λ − .            (2.12) 

A set of tables of the percentiles of the limiting distribution of the statistic t under ρ = 1 is 
available in Fuller (1976, pp 371, 373). The test rejects ρ = 1 when t is “too negative”. 

The unit root test described above is valid if the time series {xt} is well characterized by an 
AR(1) with white noise errors. Many hydrological time series, however, have a more 
complicated dynamic structure than is captured by a simple AR(1) model. The basic 
autoregressive unit root test can be augmented (referred to as ADF test) to accommodate 
general ARMA(p, q) models with unknown orders (Said and Dickey, 1984; Hamilton, 1994, 
pp 516-530). The ADF test is based on estimating the test regression 

1
1

, 1, 2,...,
p

t t t j t j t
j

x D x x t Nβ φ ψ ε− −
=

= + + ∇ + =∑        (2.13) 

where Dt is a vector of deterministic terms (constant, trend, etc.). The p lagged difference 
terms, ∇xt-j, are used to approximate the ARMA structure of the errors, and the value of p is 
set so that the error εt is serially uncorrelated. Said and Dickey (1984) show that the Dickey-
Fuller procedure, which was originally developed for autoregressive representations of known 
order, remains valid asymptotically for a general ARIMA(p, 1, q) process in which p and q 
are unknown orders. 

2.3.1.2 KPSS test 

Let {xt}, t = 1, 2, …, N, be the observed series for which we wish to test stationarity. Assume 
that we can decomposes the series into the sum of a deterministic trend, a random walk, and a 
stationary error with the following linear regression model  
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t t tx r tβ ε= + + ,             (2.14) 

where rt is a random walk, i.e., rt = rt-1 + ut, and ut is iid N(0, σu
2); βt is a deterministic trend; 

εt is a stationary error. 

To test in this model if xt is a trend stationary process, namely, the series is stationary around 
a deterministic trend, the null hypothesis will be σu

2 = 0, which means that the intercept is a 
fixed element, against the alternative of a positive σu

2. In another stationarity case, the level 
stationarity, namely, the series is stationary around a fixed level, the null hypothesis will be β 
= 0. So that, under the null hypothesis, in the case of trend stationary, the residuals et (t = 1, 
2, …, N) are from the regression of x on an intercept and time trend, et = εt; whereas in the 
case of level stationarity, the residuals et are from a regression of x on intercept only, that is et 
= xt – x . 

Let the partial sum process of the et as
1

t
t jj

S e
=

= ∑ , and σ 2 be the long-run variance of et, 

which is defined as 2 1 2lim NN E Sσ − ⎡ ⎤= ⎣ ⎦ . The consistent estimator of σ 2 can be constructed 
from the residuals et by (Newey and West, 1987) 
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where p is the truncation lag, wj( p) is an optional weighting function that corresponds to the 
choice of a special window, e.g., Bartlett window (Bartlett, 1950) wj( p) = 1 – j/(p+1).  

Then the KPSS test statistic is given by 

2 2 2
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ˆ ( )
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t
t

KPSS N S pσ−

=

= ∑ .           (2.16) 

Under the null hypothesis of level stationary, 
1 2

10
( )KPSS V r dr→ ∫ , where V1(r) is a standard 

Brownian bridge: V1(r) = B(r) – rB(1) and B(r) is a Brownian motion process on r ∈ [0, 1]. 
Under the null hypothesis of trend stationary, 

1 2
20
( )KPSS V r dr→ ∫ , where V2(r) is the second 

level Brownian bridge, given by V2(r) = 
12 2

0
( ) (2 3 ) (1) ( 6 6 ) ( )B r r r B r r B s ds+ − + − + ∫ . The 

upper tail critical values of the asymptotic distribution of the KPSS statistic are listed in Table 
2.6, given by Kwiatkowski et al. (1992). 

Table 2.6 Upper tail critical values for the KPSS test statistic asymptotic distribution 

Upper tail percentiles Distribution 
0.1 0.05 0.025 0.01 

1 2
10
( )V r dr∫  0.347 0.463 0.574 0.739 

1 2
20
( )V r dr∫  0.119 0.146 0.176 0.216 
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2.3.2 Results of Stationarity Tests  
Because on the one hand both the ADF test and the KPSS test are based on the linear 
regression, which assumes a normal distribution; on the other hand, the log-transformation 
can convert an exponential trend possibly present in the data into a linear trend, therefore, it is 
common to take logs of the data before applying the ADF test and the KPSS test (e.g., 
Gimeno et al., 1999). In this study, the streamflow data are also log-transformed before being 
applied to stationarity tests.  
 
An important practical issue for the implementation of the ADF test as well as the KPSS test 
is the specification of the truncation lag values of p in Equation (2.13) and (2.15). The KPSS 
test statistics are fairly sensitive to the choice of p, and in fact for every series the value of the 
test statistic decreases as p increases (Kwiatkowski et al., 1992). If p is too small then the 
remaining serial correlation in the errors will bias the test toward rejecting the null hypothesis. 
If p is too large then the power of the test will suffer. The larger the p, the less likely was the 
null hypothesis to be rejected. Following Schwert (1989), Kwiatkowski et al. (1992) and some 
others, the number of lag length is subjectively chosen as p = int[x(N/100)1/4], with x = 4, 12 
in the present study for streamflow processes at from monthly to daily timescales. For annual 
series, because the autocorrelation at lag one is very low, so it is generally enough to exclude 
the serial correlation by choosing p = 1. The function unitroot and stationaryTest 
implemented in S+FinMetrics version 1.0 (Zivot and Wang, 2002) are used to do the ADF 
test and KPSS test. The stationarity test results are reported in Table 2.7.  
 
The test results show that, except for the streamflow process of the Yellow River at TG which 
has significant downward trend at different timescales, all the other streamflow series appear 
to be stationary, since we cannot accept the unit root hypothesis with ADF test at 1% 
significance level and cannot reject the level stationarity hypothesis with KPSS test mostly at 
the 10% level or at least at the 2.5% level. In fact, the level stationarity is a major criterion in 
selecting streamflow series in the present study, while the use of the streamflow series at TG 
is for the purpose of comparison. For some series (such as the daily series of Rhine at Lobith, 
etc.) the hypothesis of trend stationarity is rejected by the KPSS test or just accepted at a low 
significance level, especially when the lag p is small. But this seems to be unreasonable, 
because the level stationarity can also be interpreted as the stationarity around a deterministic 
trend with a slope of zero. Therefore, we still consider these series stationary.  
 
Two issues should be noticed. Firstly, although no significant cycle with a period longer than 
one year is detected with spectral analysis for any streamflow series in the study (results are 
not shown here for saving space), as we will see later in Section 2.4, streamflow processes 
normally exhibit strong seasonality, therefore, have periodic stationarity, rather than the 
stationarity we talk about normally. According to the results shown in Table 2.7, KPSS test is 
not powerful enough to distinguish the periodic stationarity from the stationarity in normal 
sense. Secondly, it is not clear how the presence of seasonality impacts the test of stationarity. 
Besides testing for nonstationarity in log-transfomed series, we have also tested the 
stationarity for the deseasonalized streamflow series. The deseasonalization is conducted by 
firstly taking log-transformation, then subtracting the seasonal (daily, 1/3-monthly or monthly) 
mean values and dividing by seasonal standard deviations. The results are presented in Table 
2.8, which show that all the test results are generally larger for KPSS test and “less negative” 
for ADF test. In consequence, the p-values decrease for KPSS test, indicating the increase of 
the probability of rejecting the hypothesis of stationariy, and increase for ADF test, indicating 
the increase of the probability (though still very small) of accepting the hypothesis of unit root. 
That is, the removal of seasonality in the mean and variance tends to make the streamflow 
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series less stationary, or at least from the point of view of the KPSS test. This is an issue open 
for future investigation. 
 

Table 2.7 Stationarity test results for log-transformed streamflow series 

KPSS level stationary KPSS trend stationary ADF unit root 
Station Series Lag 

results p-value results p-value results p-value 
Yellow 14 0.366 >0.05 0.366 <0.01 -7.6 4.03E-11
(TNH) 

Daily 
42 0.138 >0.1 0.138 >0.05 -10.89 2.18E-23

 8 0.078 >0.1 0.078 >0.1 -15.16 1.88E-40
 

1/3-montly 
24 0.113 >0.1 0.113 >0.1 -8.369 2.49E-13

 6 0.084 >0.1 0.084 >0.1 -14.2 1.26E-31
 

Monthly 
18 0.115 >0.1 0.115 >0.1 -5.982 2.11E-06

 Annual 1 0.186 >0.1 0.1797 >0.01 -4.689 2.53E-03
Yellow Daily 13 8.6673 <0.01 0.6473 <0.01 -13.38 1.12E-34
(TG)  41 3.5895 <0.01 0.2744 <0.01 -12.4 4.83E-30
 1/3-montly 7 2.3768 <0.01 0.1861 >0.01 -12.55 5.86E-29
  23 1.7241 <0.01 0.166 >0.025 -7.774 2.11E-11
 Monthly 5 1.8194 <0.01 0.1567 >0.025 -8.661 2.08E-13
  17 1.0985 <0.01 0.1239 >0.05 -4.7 7.69E-04
 Annual 1 1.0367 <0.01 0.1277 >0.05 -4.665 3.17E-03
Danube Daily 17 0.173 >0.1 0.1699 >0.025 -16.96 6.18E-53
(Achleiten)  51 0.0737 >0.1 0.0724 >0.1 -14.32 1.93E-39
 1/3-montly 9 0.0486 >0.1 0.048 >0.1 -15.71 9.98E-45
  28 0.0539 >0.1 0.0533 >0.1 -9.263 1.20E-16
 Monthly 7 0.0478 >0.1 0.0472 >0.1 -14.44 5.57E-36
  21 0.0445 >0.1 0.0441 >0.1 -7.056 3.01E-09
 Annual 1 0.0347 >0.1 0.0335 >0.1 -8.465 7.02E-10
Rhine Daily 17 0.413 >0.05 0.394 <0.01 -19.23 6.58E-65
(Lobith)  51 0.186 >0.1 0.178 >0.01 -14.54 1.64E-40
 1/3-montly 9 0.119 >0.1 0.114 >0.1 -13.45 3.49E-34
  29 0.076 >0.1 0.073 >0.1 -8.13 1.01E-12
 Monthly 7 0.088 >0.1 0.081 >0.1 -10.18 1.97E-19
  22 0.064 >0.1 0.059 >0.1 -6.573 5.71E-08
 Annual 1 0.0702 >0.1 0.0496 >0.1 -8.57 3.23E-10
Ocmulgee 16 0.543 >0.025 0.408 <0.01 -16.21 5.26E-49
(Macon) 

Daily 
48 0.228 >0.1 0.171 >0.025 -11.61 1.39E-26

 9 0.128 >0.1 0.1 >0.1 -13.5 4.11E-34
 

1/3-montly 
27 0.121 >0.1 0.095 >0.1 -8.515 5.91E-14

 6 0.097 >0.1 0.086 >0.1 -13.73 2.19E-32
 

Monthly 
20 0.081 >0.1 0.072 >0.1 -5.473 2.33E-05

 Annual 1 0.0773 >0.1 0.0749 >0.1 -6.311 6.27E-06
Umpqua 17 0.254 >0.1 0.242 <0.01 -13.47 2.85E-35
(Elkton) 

Daily 
51 0.101 >0.1 0.096 >0.1 -15.23 5.27E-44

 9 0.061 >0.1 0.059 >0.1 -21.25 3.99E-71
 

1/3-montly 
29 0.136 >0.1 0.133 >0.1 -9.894 4.94E-19

 7 0.079 >0.1 0.08 >0.1 -20.1 2.66E-58
 

Monthly 
22 0.133 >0.1 0.132 >0.05 -5.856 3.19E-06

 Annual 1 0.1334 >0.1 0.1328 >0.05 -7.124 1.11E-07
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Table 2.8 Stationarity test results for log-transformed and deseasonalized streamflow series 

KPSS level stationary KPSS trend stationary ADF unit root 
Station Series Lag 

results p-value results p-value results p-value 
Yellow 14 2.4024 <0.01 2.3961 <0.01 -11.940  5.40E-28
(TNH) 

Daily 
42 0.9972 <0.01 0.9946 <00.01 -8.869  2.05E-15

 8 0.5581 >0.025 0.5579 <00.01 -6.842  9.75E-09
 

1/3-montly 
24 0.266 >0.1 0.2659 <00.01 -5.133  1.06E-04

 6 0.298 >0.1 0.297 <00.01 -5.005  2.14E-04
 

Monthly 
18 0.1742 >0.1 0.1737 >0.025 -5.123  1.29E-04

Yellow Daily 13 12.5127 <0.01 1.2348 <00.01 -16.66 4.60E-51
(TG)  41 5.5909 <0.01 0.5794 <00.01 -11.220  8.30E-25
 1/3-montly 7 3.3145 <0.01 0.3638 <00.01 -8.294  4.89E-13
  23 1.5704 <0.01 0.1904 >0.01 -5.043  1.61E-04
 Monthly 5 1.7948 <0.01 0.2086 >0.01 -6.385  2.66E-07
  17 0.8977 <0.01 0.1203 >0.05 -4.833  4.53E-04
Danube Daily 17 0.2835 >0.1 0.2892 <0.01 -21.79 3.07E-78
(Achleiten)  51 0.1366 >0.1 0.1394 >0.05 -15.71 1.82E-46
 1/3-montly 9 0.0934 >0.1 0.0951 >0.1 -12.59 2.94E-30
  28 0.054 >0.1 0.0549 >0.1 -8.038 2.05E-12
 Monthly 7 0.0577 >0.1 0.0589 >0.1 -8.712 2.81E-14
  21 0.0407 >0.1 0.0415 >0.1 -6.307 2.73E-07
Rhine Daily 17 0.5229 >0.025 0.5085 <0.01 -19.25 4.93E-65
(Lobith)  51 0.2347 >0.1 0.2282 <0.01 -14.01 6.76E-38
 1/3-montly 9 0.15 >0.1 0.1452 >0.05 -11.93 2.21E-27
  29 0.0797 >0.1 0.0772 >0.1 -8.065 1.65E-12
 Monthly 7 0.0966 >0.1 0.0897 >0.1 -8.369 3.38E-13
  22 0.0657 >0.1 0.0611 >0.1 -6.463 1.09E-07
Ocmulgee 16 0.9316 <0.01 0.7318 <0.01 -21.160  7.05E-75
(Macon) 

Daily 
48 0.4387 >0.05 0.3449 <0.01 -12.460  1.92E-30

 9 0.2471 >0.1 0.2002 >0.01 -9.924  4.76E-19
 

1/3-montly 
27 0.1347 >0.1 0.1092 >0.1 -7.563  6.93E-11

 6 0.1366 >0.1 0.1253 >0.05 -8.025  5.45E-12
 

Monthly 
20 0.0836 >0.1 0.0766 >0.1 -4.864  3.65E-04

Umpqua 17 1.2445 <0.01 1.2436 <0.01 -21.170  4.38E-75
(Elkton) 

Daily 
51 0.5697 >0.025 0.5694 <0.01 -14.500  2.38E-40

 9 0.3536 >0.05 0.355 <0.01 -12.830  2.24E-31
 

1/3-montly 
29 0.2 >0.1 0.2009 >0.01 -7.936  4.31E-12

 7 0.2109 >0.1 0.2151 >0.01 -9.110  1.19E-15
 

Monthly 
22 0.1365 >0.1 0.1392 >0.05 -5.166  9.44E-05
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2.4 Seasonality Analysis 

2.4.1 Seasonality in Mean and Variance 
The dynamics of streamflow are often dominated by annual variations. How well the 
seasonality is captured is a very important criterion for assessing a stochastic model for 
streamflow. The seasonality of hydrological processes is often described in terms of the mean 
values, the variances, the extrema, and the probability distribution of the variable in each 
season (in general, a season may denote a day, a month, etc.). We will use the daily 
streamflow series to present the approaches we adopt here for analysis the seasonality. The 
same approaches can be easily adapted to the cases of 1/3-monthly series and monthly series. 
 
To make it convenient to analyze the seasonality of a daily flow series of N years, we rewrite 
it as the following matrix form: 

1,1 1,2 1,365

2,1 2,2 2,365

,1 ,2 ,365

,

...

...

...N N N

j i

x x x
x x x

X
x

x x x

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
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# # #
,            (2.17) 

where the rows denote year 1 ~ N, the columns denote day 1 ~ 365. For simplicity, the 366th 
days of leap years are omitted. This would not introduce major errors when analyzing 
seasonality of daily flows. 
 
Consequently, the mean value, standard deviation and coefficient of variation of each column 
of the matrix are the daily mean discharge, standard deviation and coefficient of variation (CV) 
of daily discharges for each day over the year. They are easily calculated as follows: 

Mean value: ,
1 N

i j i
j i

x x
N =

= ∑            (2.18) 

Standard deviation: 
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Coefficient of variation: i
i

i

sCV
x

=  

Daily mean values and standard deviations of the six streamflow processes are shown in 
Figure 2.9(a ~ f), and the daily variations in CVs are shown in Figure 2.10 (a ~c). It is shown 
that, days with high mean values have also high standard deviations, this is a property which 
has been well recognized (e.g., Mitosek, 2000). But two exceptional cases here are the 
streamflow processes of Danube and Ocmulgee. Danube has a clear seasonality in mean 
values, but no clear seasonality in variances. In consequence, it has a similar seasonal pattern 
in CVs to the Rhine River, as shown in Figure 2.10(b). Ocmulgee has no clear seasonal 
variations in CVs although it has clear seasonality in means and variances. In June, 
thunderstorm activity results in high CV values in the daily streamflow process of Ocmulgee, 
as shown in Figure 2.10(c).  
 
Two special points should be noted about the variations in streamflow processes of the 
Yellow River: 
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(1) Streamflow processes of the Yellow River at both TNH and TG are characterized by a 
bimodal distribution. Extrema occur in July and September at TNH and in late March to 
early April and August at TG. However, the causes of bimodality of the two streamflow 
processes are different. The bimodality of the streamflow process at TNH exits mainly in 
response to the bimodal distribution of rainfall, whereas the first peaks of the streamflow 
process at TG is caused by snowmelt water and the break-up of the river-ice jam in spring 
and the second peak is due to concentrated rainfall. 

 
(2) Although the contributing area of TG is about as 5 times larger as that of TNH, the 

streamflow process at TNH changes much smoother than that at TG, as indicated by CVs 
shown in Figure 2.10. This is mainly because of less rainfall variability and much less 
anthropogenic disturbances in the watershed above TNH. 
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  (a) Yellow River at TNH     (b) Yellow River at TG 
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   (c) Danube River at Achleiten    (d) Rhine River at Lobith 
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   (e) Ocmulgee River at Macon   (f) Umpqua River near Elkton 
 

Figure 2.9 Variation in daily mean and standard deviation of streamflow processes 
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(a) Yellow River at TNH and TG 
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(b) Danube River at Achleiten and Rhine River at Lobith 
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(c) Ocmulgee River at Macon and Umpqua River near Elkton 

Figure 2.10 Seasonal variation in CVs of streamflow processes 
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2.4.2 Detrend, Normalization and Deseasonalization 
After trend analysis and seasonality analysis, we can remove trend component and seasonal 
component out of the original river flow series, and get an approximately stationary process, 
then further analyse autocorrelation properties and long-memory properties.  
 
Because streamflow series are skewed and heavily tailed, whereas many models, such as 
regression models or autoregressive moving average (ARMA) models, require the time series 
data to be normally distributed, it is thus necessary to normalize the data to make them at least 
approximately normally distributed. The most popular approach is the Box-Cox 
transformation (Box and Cox, 1964): 

1 0[( ) 1]
0ln( )

x c
x

x c

λ λλ
λ

− ≠⎧ + −
= ⎨ =+⎩

 

Usually we simply take logarithm to normalize the data. After log-transformation, we can 
estimate the trend by fitting a regression models if the trend is present, and then subtract it out 
of the original series. 
 
The deseasonalization can be viewed as the standardization for each season (in the case of 
daily streamflow series, each season means each day). To do this, we use the daily mean ix , 
standard deviation si given by Equation (2.18) and (2.19), then apply to each element xj,i in 
matrix (2.17) the following standardization transformation: 

i

iij
ij s

xx
y

−
= ,

,               (2.20) 

With the above pre-processing procedure, the seasonality in mean values and standard 
deviations in the streamflow series is removed. With such deseasonalized series, we go further 
to make autocorrelation analysis. 

2.4.3 Seasonality in Autocorrelation Structures 
Given a time series {xi}, i = 1, 2, …, n, the autocorrelation function (ACF) at lag k for the 
time series is given by (Box and Jenkins, 1976) 0ˆ ( ) kk c cρ = , where k = 0, 1, 2, …, and 
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− ∑ . The ACF obtained in this way takes the whole time series into 

consideration, which reflects the overall autocorrelation property for the time series, but to 
examine the seasonal variation in the autocorrelation structure of a daily streamflow series, 
we need to calculate values of the autocorrelation coefficient between column vector Xi and 
Xi+k of matrix (2.17), where i = 1, 2, …, 365 and k = 0, 1, 2, …, kmax, ( kmax ≤ 365) (Mitosek, 
2000), namely, 
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where， ix  and si are the same as in Equation (2.18) and (2.19), N is the number of years, and  
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The result obtained by Equation (2.21) is the autocorrelation function on a day-by-day basis, 
referred to as daily autocorrelation function here. It is calculated after detrending (only for the 
case of the streamflow of the Yellow River at TG), log-transforming and deseasonalizing the 
raw series. The daily autocorrelations at different lags for the six daily streamflow processes 
are displayed in Figure 2.11 to 2.16. 
 
Similarly, we can deseasonalize the 1/3-monthly and monthly streamflow series, and then 
calculate their autocorrelations at different lags for the six 1/3-monthly and six monthly 
streamflow processes, as shown in Figure 2.17 and 2.18. 
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Figure 2.11 Daily autocorrelations at different lag days for daily flow series of Yellow River at TNH 
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Figure 2.12 Daily autocorrelations at different lag days for daily flow series of Yellow River at TG 
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Figure 2.13 Daily autocorrelations at different lag days for daily flow series of the Danube 
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Figure 2.14 Daily autocorrelations at different lag days for daily flow series of the Rhine 
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Figure 2.15 Daily autocorrelations at different lag days for daily flow series of the Ocmulgee 
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Figure 2.16 Daily autocorrelations at different lag days for daily flow series of the Umpqua 
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(a) Yellow River at TNH     (b) Yellow River at TG 
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(c) Danube River at Achleiten   (d) Rhine River at Lobith 
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(e) Ocmulgee River at Macon   (f) Umpqua River near Elkton 

 
 

Figure 2.17 1/3-monthly autocorrelations at different lags for 1/3-monthly flow series 
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(a) Yellow River at TNH    (b) Yellow River at TG 
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(c) Danube River at Achleiten    (d) Rhine River at Lobith 
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(e) Ocmulgee River at Macon   (f) Umpqua River near Elkton 

Figure 2.18 Monthly autocorrelations at different lags for monthly flow series 
 
By a visual inspection of Figure 2.11 to 2.18, we see that: 
 
(1) There are more or less seasonal variations in the autocorrelation structures of all the daily, 

1/3-monthly and monthly streamflow processes. In general, the autocorrelation is high for 
low-flow seasons and low for high flow seasons. However, there are some exceptions. For 
example, the daily flows of the Yellow River at TG have lower autocorrelations in late 
November and December when discharges are lower than those in August to October. For 
the Danube, the autocorrelations in January and February are lower than those in June and 
July, although the flows are lower rather than those in June and July. In fact, the seasonal 
variation in the autocorrelation functions of streamflows processes has been observed by 
many researchers (e.g., Vecchia and Ballerini, 1991; Mcleod, 1994). With such kind of 
season dependence of the autocorrelation structure, the streamflow processes are not 
second-order stationary. Instead, they are periodic stationary (see the definition of the 
periodic stationarity in Appendix 2.2). 
 

(2) Daily autocorrelations of the Yellow River at TNH are generally much higher than those 
at TG. In the period from the end of January to February and in November, the daily 

Lag = 1 month Lag = 2 months Lag = 3 months 
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autocorrelations at TNH are especially high, which can still be as high as 0.9 at a lag of 20 
days. In March, June and July, daily autocorrelations at TNH are low because of large 
volume of snowmelt water and heavy rainfall respectively. Daily autocorrelations at TG 
are generally much lower because the streamflow process changes much more irregularly 
than that at TNH. The daily autocorrelations at TG are especially low in March because 
river ice-jam breakup and in July and August because of over-concentrated rainfall. In 
these two periods, the autocorrelations between contiguous days are very low, for instance, 
lower than 0.5 in the end of March and the beginning of April, and lower than 0.6 in the 
end of August.  

2.5 Long-Memory Analysis 

2.5.1 Introduction to Long-Memory 
Long-memory, or long-range dependence, refers to a not negligible dependence between 
distant observations in a time series. Since the early work of Hurst (1951), it has been well 
recognized that many time series, in diverse fields of application, such as financial time series 
(e.g., Lo, 1991; Meade and Maier, 2003), meteorological time series (e.g., Haslett and Raftery, 
1989; Bloomfield, 1992; Hussain and Elbergali, 1999) and internet traffic time series (see 
Karagiannis et al., 2004), etc., may exhibit the phenomenon of long-memory or long-range 
dependence. In the hydrology community, many studies have been carried out on the test for 
long-memory in streamflow processes. Montanari et al. (1997) applied fractionally integrated 
autoregressive moving average (ARFIMA) model to the monthly and daily inflows of Lake 
Maggiore, Italy. Rao and Bhattacharya (1999) explored some monthly and annual hydrologic 
time series, including average monthly streamflow, maximum monthly streamflow, average 
monthly temperature and monthly precipitation, at various stations in the mid-western United 
States. They stated that there is little evidence of long-term memory in monthly hydrologic 
series, and for annual series the evidence for lack of long-term memory is inconclusive. 
Montanari et al. (2000) introduced seasonal ARFIMA model and applied it to the Nile River 
monthly flows at Aswan to detect whether long-memory is present. The resulting model also 
indicates that nonseasonal long-memory is not present in the data. At approximately the same 
time, Ooms and Franses (2001) documented that monthly river flow data displays long-
memory, in addition to pronounced seasonality based on simple time series plots and periodic 
sample autocorrelations. 
 
Long-memory processes can be expressed either in the time domain or in the frequency 
domain. In the time domain, long-memory is characterized by a hyperbolically decaying 
autocorrelation function. In fact, it decays so slowly that the autocorrelations are not 
summable. For a stationary discrete long-memory time series process, its autocorrelation 
function ρ(k) at lag k satisfies (Hosking, 1981). 

2 1(1 )( )
( )

ddk k
d

ρ −Γ −
Γ

∼ , as k→∞， 

where, d is the long-memory parameter (or fractional differencing parameter), and 0 < |d| < 
0.5. 
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In frequency domain, long-memory manifests itself as an unbounded spectral density at zero 
frequency. For a stationary discrete long-memory time series process, its spectral density at 
zero frequency satisfies 

f(λ) ∼ Cλ1-2H, as λ→ 0+, 

for a positive, finite C. H is called the Hurst coefficient (or self-similarity parameter), as 
originally defined by Hurst (1951), and it represents the classical parameter characterizing 
long-memory. H is related to the fractional differencing parameter d with a relationship: d = H 
– 0.5. 
 
A number of models have been proposed to describe the long-memory feature of time series. 
The Fractional Gaussian Noise model is the first model with long-range dependence 
introduced by Mandelbrot and Wallis (1969). Then Hosking (1981) and Granger and Joyeux 
(1980) proposed the fractional integrated autoregressive and moving average model, denoted 
by ARFIMA(p, d, q). When –0.5 < d < 0.5, the ARFIMA (p, d, q) process is stationary, and if 
0 < d < 0.5 the process presents long-memory behaviour.  
 
Many methods are available for testing for the existence of long-memory and estimating the 
Hurst coefficient H or the fractional differencing parameter d. Many of them are well 
described in the monograph of Beran (1994). These techniques include graphical methods 
(e.g., classical R/S analysis; aggregated variance method etc.), parametric methods (e.g., 
Whittle maximum likelihood estimation method) and semiparametric method (e.g., GPH 
method and local whittle method). Heuristic methods are useful to test if a long-range 
dependence exists in the data and to find a first estimate of d or H, but they are generally not 
accurate and not robust. The parametric methods obtain consistent estimators of d or H via 
maximum likelihood estimation (MLE) of parametric long-memory models. They give more 
accurate estimate of d or H, but generally require knowledge of the true model which is in fact 
always unknown. Semiparametric methods, such as the GPH method (Geweke and Porter-
Hudak, 1983), seek to estimate d under few prior assumptions concerning the spectral density 
of a time series and, in particular, without specifying a finite parameter model for the dth 
difference of the time series. In the present study, two statistic tests: Lo’s modified R/S test 
which is a modified version of classical R/S analysis, and GPH test which is a semiparametric 
method will be used to test for the null hypothesis of no presence of long-memory. Besides, 
an approximate maximum likelihood estimation method is used to estimate the fractional 
differencing parameter d, but without testing for the significance level of the estimate.  
 
In Section 2.5.2, we will use three heuristic methods, i.e., autocorrelation function analysis, 
classical R/S analysis, and the aggregated variance method to detect the existence of long-
memory in the streamflow processes of the upper and middle Yellow River at TNH and TG 
(To save space, other streamflow processes are not analysed with heuristic methods). Then in 
the Section 2.5.3, two statistical test methods, i.e., Lo’s modified R/S test (Lo, 1991) and the 
GPH test (Geweke and Porter-Hudak, 1983), to test for the existence of long-memory in the 
streamflow processes of all the five rivers, and the maximum likelihood estimates of the 
fractional differencing parameter d will be made as well. To verify the validity of these 
statistical test and estimation methods, some Monte Carlo simulation results will also be 
presented in Section 2.5.3. 
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2.5.2 Detecting Long-memory with Heuristic Methods 

2.5.2.1 Autocorrelation function analysis 
In the presence of long-memory, the autocorrelation function (ACF) of a time series decreases 
to 0 at a much slower rate than the exponential rate implied by an short-memory ARMA 
model. So we can compare the sample ACF of the observed time series under investigation 
with the theoretical ACF (McLeod, 1975) of the ARMA model fitted to the time series. If the 
sample ACF of the observed series decays much slower than the ACF of the fitted ARMA 
model, then it probably indicates the existence of long-memory. 
 
First, we select the best fitting AR models for the streamflow series using the Akaike 
Information Criterion (AIC) (Akaike, 1973), which turns out to be an AR(38), AR(9) and 
AR(4) model for the daily, 1/3-monthly, and monthly streamflow series at TNH, and an 
AR(9), AR(5) and AR(15) model for the daily, 1/3-monthly, and monthly streamflow series at 
TG. The high autoregressive order for monthly series at TG arises from the remaining 
seasonality that has not been fully removed with the deseasonalization procedure. The sample 
ACF of the streamflow series and the theoretical ACF of the fitted models from lag 1 to lag 
100 are plotted in Figure 2.19 and 2.20. 
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Figure 2.19 Sample ACF (vertical lines) and the theoretical ACF (curve line) of fitted AR models for  

(a) daily, (b) 1/3-monthly and (c) monthly streamflow at TNH  
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Figure 2.20 Sample ACF (vertical lines) and the theoretical ACF (curve line) of fitted AR models for 

(a) daily, (b) 1/3-monthly and (c) monthly streamflow at TG 

 
Comparing the theoretical ACF of the fitted AR models with the sample ACF of the observed 
streamflow series, we can find that: 
 
(1) The daily streamflow process is highly persistent and the autocorrelation remains 

significant from zero at lag 100. The theoretical autocorrelation closely matches the 
sample autocorrelation at short lags. However, for large lags, the sample ACF decays 
much slower than the theoretical ACF.  

(a) (b) (c) 

(a) (b) (c) 

(Day) (1/3-month) (month) 

(Day) (1/3-month) (month) 
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(2) The 1/3-monthly and monthly streamflow processes are much less persistent. For both 

1/3-monthly flow series at TNH and TG, the sample autocorrelations are slightly larger 
than the theoretical autocorrelations for large lags. But for the monthly flow series, the 
sample ACF is basically at the same level as the theoretical ACF. 

2.5.2.2 Classical R/S analysis 
The R/S statistic, or the "rescaled adjusted range" statistic, is the adjusted range of partial 
sums of deviations of a times series from its mean, rescaled by its standard deviation. It was 
developed by Hurst (1951) in his studies of river discharges, and suggested by Mandelbrot 
and Wallis (1969c) using the R/S statistic to detect long-range dependence. Consider a time 
series {xt}, t = 1, 2, …, N, and define the jth partial sum as 

1

j
j ii

Y x
=

=∑ , j = 1, 2, …, N. 
Suppose to calculate the storage range of a reservoir between time t and t+k, and assume that: 
(1) the storage at time t and t+k is the same; (2) the outflow during time t and t+k is the same; 
and (3) there is no any loss of storage. Then the rescaled adjusted range, i.e., R/S statistic, is 
defined as (Beran, 1994): 
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The R/S statistic varies with the time span k. Hurst (1951) found that the R/S statistic for many 
geophysical records is well described by the following empirical relation: E[R/S] ∼ c1kH, as k 
→ ∞, with typical values of H (the Hurst coefficient) in the interval (0.5, 1.0), and c1 a finite 
positive constant that does not depend on k.  
 
The classical R/S analysis is based on a heuristic graphical approach. Compute the R/S-
statistic in Equation (2.22) at many different lags k and for a number of different points, and 
plots the resulting estimates versus the lags on log-log scale. The logarithm of k should scatter 
along a straight line having a slope equal to H. The value of H can be estimated by a simple 
least-squares fit. An H value equal to 0.5 means absence of long-memory. The higher the H is, 
the higher the intensity of long-memory.  
 
The log-log plots of R/S versus different lags k for streamflow processes at both TNH and T 
are displayed in Figure 2.21 and 2.22. The slopes of the fitted lines are the estimates of values 
of H. 
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          (a) daily       (b) 1/3-monthly    (c) monthly 

Figure 2.21 R/S plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at TNH 
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(a) daily       (b) 1/3-monthly    (c) monthly 

Figure 2.22 R/S plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at TG 

 
According to the R/S statistics obtained with the graphical approach, all the streamflow series 
have values of H larger than 0.5, indicating the presence of long-memory in all these 
streamflow series. The H values, which indicate the intensity of long-memory, decrease with 
the increase of timescales. Furthermore, at each timescale, the intensity of long-memory of 
the streamflow process at TNH is stronger than that at TG. 
 
To check the effectiveness of the R/S analysis for detecting long-memory, we generate ten 
simulations of an AR(1) model, ten simulations of an ARFIMA(0,d,0) model, and ten 
simulations of an ARFIMA(1,d,0) model. The AR(1) model is of the form (1-φB)xt = εt with φ 
=0.9, the ARFIMA(0,d,0) of form (1-B) d xt = εt with d = 0.3, and the ARFIMA(1,d,0) of form 
(1-φB) (1-B) d xt = εt with φ =0.9 and d = 0.3, where {εt} are i.i.d standard normal, B is the 
backshift operator, i.e., Bxt = xt-1. Each of them has a size of 3000 points. The AR series and 
the ARFIMA series are produced by the arima.sim and arima.fracdiff.sim function built in S-
Plus version 6 (Insightful Corporation, 2001). The estimated values of H are listed in Table 
2.9. 
 
The simulation results show that, for a pure fractionally integrated process ARFIMA (0, d, 0), 
the estimate of H is very close to its true value 0.8 (i.e., d + 0.5). But when a process is a 
mixture of short memory and long-memory, as the ARFIMA(1, d, 0) process, then the 
estimates of H are biased upwardly. Furthermore, classical R/S analysis gives estimated H 
values (= d + 0.5) higher than 0.5 even for short memory AR (1) processes, which indicates 
its sensitivity to the presence of explicit short-range dependence.  
 

Table 2.9 Estimated H values with classical R/S analysis for simulated series 

Simulation AR(1) ARFIMA(0,d,0) ARFIMA(1,d,0) 
1 0.83789 0.75434 0.91157 
2 0.79296 0.76044 0.89271 
3 0.78578 0.73048 0.90742 
4 0.78821 0.77499 0.87063 
5 0.82238 0.75269 0.88660 
6 0.82636 0.73367 0.87649 
7 0.77678 0.81083 0.89122 
8 0.83730 0.77748 0.91854 
9 0.77904 0.76316 0.89593 

10 0.83119 0.77612 0.90586 
Average 0.80779 0.76342 0.89570 

Slope: 0.80740 

Slope: 0.5 Slope: 0.5 

Slope: 0.85823 Slope: 0.78586 

Slope: 0.5 
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2.5.2.3 Aggregated Variance Method 
For independent random variables x1, …, xN, the variance of sample mean is equal to 

2 1var( )x Nσ −= . But in the presence of long-memory, Beran (1994) proved that the variance 
of the sample mean could be expressed by 2 2var( ) Hx cN −≈ , where c>0 and H is the Hurst 
coefficient. Correspondingly, Beran (1994) suggested the following method for estimating the 
Hurst coefficient H. 
 
(1) Take a sufficient number (say m) of subseries of length k (2 ≤ k ≤ N/2), calculate the 

sample means 1 2( ), ( ),..., ( )mx k x k x k  and the overall mean 1

1

( ) ( )
m

j
j

x k m x k−

=

= ∑ ; 

(2) For each k, calculate the sample variance 2 ( )s k  of the m sample means: 
2 1 2

1
( ) ( 1) ( ( ) ( ))

m

j
j

s k m x k x k−

=

= − −∑           (2.23) 

(3) Plot log s2(k) against logk. For large values of k, the points in this plot are expected to be 
scattered around a straight line with negative slope 2H – 2. The slope is steeper (more 
negative) for short-memory processes. In the case of independence, the ultimate slope is -1. 
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Figure 2.23 Variance plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at TNH 
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Figure 2.24 Variance plot of (a) daily, (b) 1/3-monthly and (c) monthly flow series at TG 

 
Comparing the variance plot for the streamflow processes at TNH and TG, displayed in 
Figure 2.23 and 2.24, we can find that the slopes of the fitted lines get more negative as the 
timescale increases (from day to month) for the streamflow processes at both TNH and TG, 
which indicates that, from the view of time series themselves, the H values, namely the 
intensity of long-memory, decreases with the increase of timescales. Furthermore, at each 
timescale, the intensity of long-memory in streamflow process at TNH is stronger than that at 
TG. 
 

Slope: -0.31567 
Estimate H: 0.84216 

Slope: -0.47628 
Estimate H: 0.76186 

Slope: -0.59886 
Estimate H: 0.70057 

Slope: -0.40156 
Estimate H: 0.79922 

Slope: -0.58385 
Estimate H: 0.70807 

Slope: -0.61968 
Estimate H: 0.69016 

(a) (b) (c) 

(a) (b) (c) 



2.5 Long-Memory Analysis 51
   

 

Similarly to the assessment of the effectiveness of classical R/S analysis, we assess the 
effectiveness of variance analysis for detecting the long-memory by estimating the H values 
for the generated simulations of the AR(1) model, ARFIMA(0,d,0) model and  
ARFIMA(1,d,0) model. The estimated H values are listed in Table 2.10. The results show that, 
variance analysis is also sensitive to the presence of explicit short-range dependence, and 
generally it gives smaller estimate than the classical R/S analysis. 
 

Table 2.10 Estimated H values with variance analysis for simulated series 

Simulation AR(1) ARFIMA(0,d,0) ARFIMA(1,d,0) 
1 0.69158 0.78782 0.83284 
2 0.64412 0.71964 0.77195 
3 0.66903 0.67128 0.84894 
4 0.64130 0.80683 0.79878 
5 0.65846 0.78597 0.87033 
6 0.71512 0.71407 0.87689 
7 0.68218 0.80170 0.80999 
8 0.69148 0.72700 0.80335 
9 0.59842 0.64447 0.82691 

10 0.71557 0.72315 0.78931 
Average 0.67073 0.73819 0.82293 

 
Because both the R/S analysis method and variance plot method are sensitive to the presence 
of explicit short-range dependence, whereas the ACF analysis only gives us a heuristic 
suggestion without quantitative estimations, we need some formal statistical techniques for 
detecting long-memory in the streamflow series. 
 

2.5.3 Detecting Long-memory with Statistical Test Method and MLE Method 
In this section, we will detect the presence of long-memory in the streamflow processes of 
streamflow processes with two statistical test techniques, i.e., the Lo’s modified R/S test (Lo, 
1991), and the GPH test (Geweke and Porter-Hudak, 1983). In addition we will try to detect 
the presence of long-memory by estimating the fractional differencing parameter d. 

2.5.3.1 Lo’s modified R/S analysis 
As having been shown in Section 2.5.2, the classical R/S analysis is sensitive to the presence 
of explicit short-range dependence structures, and it lacks of a distribution theory for the 
underlying statistic. To overcome these shortcomings, Lo (1991) proposed a modified R/S 
statistic that is obtained by replacing the denominator S(t, k) in Equation (2.22), i.e., the sample 
standard deviation, by a modified standard deviation Sq which takes into account the 
autocovariances of the first q lags, so as to discount the influence of the short-range 
dependence structure that might be present in the data. Instead of considering multiple lags as 
in Equation (2.22), only focus on lag k = N. The Sq is defined as 

1/ 2

2

1 1 1

1 2( ) ( ) ( )( )
qN N

q j N j i N i j N
j j i j

S x x q x x x x
N N

ω −
= = = +

⎛ ⎞⎡ ⎤
= − + − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑ ∑ ,    (2.24) 

where, Nx  denotes the sample mean of the time series, and the weights ωj(q) are given by 
wj( q) = 1 – j/(q+1), q < N. Then the Lo’s modified R/S statistic is defined by 
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If a series has no long-range dependence, Lo (1991) showed that given the right choice of q, 
the distribution of N −1/2QN,q is asymptotic to that of 

0 10 1
max ( ) min ( )

tr
W V r V r

≤ ≤≤ ≤
= − , 

where, V is a standard Brownian bridge, that is, V(r) = B(r) − rB(1), where B denotes standard 
Brownian motion. Since the distribution of the random variable W is known as 

2 22 2 2

1

( ) 1 2 (1 4 ) x j

j

P W x x j e
∞

−

=

≤ = + −∑ ,         (2.26) 

Lo gave the critical values of x for hypothesis testing at sixteen significance levels using 
Equation (2.26), which can be used for testing the null hypothesis H0 that there is only short-
term memory in a time series at a significance level α. 

2.5.3.2 GPH test 
Geweke and Porter-Hudak (1983) proposed a semi-nonparametric approach to testing for 
long-memory. Given a fractionally integrated process {xt}, its spectral density is given by: 

[ ] 2( ) 2sin( / 2) ( )d
uf fω ω ω−= , 

where ω is the Fourier frequency, fu(ω) is the spectral density corresponding to ut, and ut is a 
stationary short memory disturbance with zero mean. Consider the set of harmonic 
frequencies ω j = (2πj/n), j = 0, 1, …, n/2, where n is the sample size. By taking the logarithm 
of the spectral density f(ω) we have 

( )2ln ( ) ln ( ) ln 4sin 2j u j jf f dω ω ω⎡ ⎤= − ⎣ ⎦ , 

which may be written in the alternative form  
2ln ( ) ln (0) ln 4sin ( / 2) ln ( ) (0)j u j u j uf f d f fω ω ω⎡ ⎤ ⎡ ⎤= − + ⎣ ⎦⎣ ⎦ .    

 (2.27) 

The fractional difference parameter d can be estimated by the regression equations 
constructed from Equation (2.27). Geweke and Porter-Hudak (1983) showed that using a 
periodogram estimate of f (ωj), if the number of frequencies used in the regression Equation 
(2.27) is a function g(n) (a positive integer) of the sample size n where g(n) = nα with 0 < α < 
1, the least squares estimate d̂ using the above regression is asymptotically normally 
distributed in large samples: 

2

( ) 2
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6 ( )g n

jj

d N d
U U
π

=
−∑

, 

where, 2ln[4sin ( 2)]j jU ω=  and U  is the sample mean of Uj , j = 1, · · · , g(n) . Under the 
null hypothesis of no long-memory (d = 0), the t-statistic 
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has a limiting standard normal distribution. 

2.5.3.3 Maximum likelihood estimation of fractional differencing parameter d 
Let the observation X = (x1, …, xn)t be the ARFIMA(p,d,q) process defined by 

( )(1 ) ( ) ( )d
t tB B x Bφ µ θ ε− − = ,          (2.28) 

where B is the backshift operator; φ (B) = 1 - φ1B - … - φpBP and θ (B) = 1- θ 
1B - ... - θ 

qBq 
represent the ordinary autoregressive and moving average components; εt is a white noise 
process with zero mean and variance σ2. 
 
The Gaussian log-likelihood of X for the process (2.28) is given by 

2 11 1log ( , , ) log(2 ) log | |
2 2 2

tnL X Xµ η σ π −= − − Σ − Σ   

where η = (φ1, …, φp; d; θ 
1, …, θ 

q) is the parameter vector; Σ denotes the n × n covariance 
matrix of X depending on η and σ2, |Σ| denote the determinant of Σ. The maximum likelihood 
estimators η̂  and 2σ̂  can be found by maximizing logL(η, σ2) with respect to η and σ2. 
 
In this study, the maximum likelihood estimation method implemented in S-Plus version 6 
(referred to as S-MLE) is used to estimate the fractional differencing parameter d. S-MLE is 
implemented based on the approximate Gaussian maximum likelihood algorithm of Haslett 
and Raftery (1989). If the estimated d is significantly greater than zero, we consider it an 
evidence of the presence of long-memory. 

2.5.3.4 Monte Carlo simulation results for long-memory detection 

Before applying the Lo’s test, GPH test and S-MLE method to the streamflow processes, we 
perform an extensive Monte Carlo investigation in order to find out how reliable the Lo’s test, 
the GPH test and the S-MLE are with AR and ARFIMA processes. We consider five AR(1) 
and six ARFIMA(1,d,0) processes. All AR(1) models are of the form (1-φB)xt = εt, and all 
ARFIMA(1,d,0) of form (1-φB) (1-B) d xt = εt, where {εt} are i.i.d standard normal, B is the 
backshift operator. For the AR models, large autoregressive coefficients, i.e., φ = 0.5, 0.8, 0.9, 
0.95, 0.99, because these are the cases commonly seen in streamflow processes. For the 
ARFIMA models, φ = 0, 0.5, 0.9 and d = 0.3, 0.45. We generate 500 simulated realizations of 
with size 500, 1000, 3000, 10000 and 20000, respectively, for each model. The AR series and 
the ARFIMA series are produced by the arima.sim and arima.fracdiff.sim function built in S-
Plus version 6 (Insightful Corporation, 2001). 
 
For Lo's modified R/S test, the right choice of q in Lo's method is essential. It must be chosen 
with some consideration of the data at hand. Some simulation studies have shown  (Lo, 1991; 
Teverovsky et al., 1999) that, for any of these series, the probability of accepting the null 
hypothesis varied significantly with q. In general, for the larger sample lengths, the larger the 
q, the less likely was the null hypothesis to be rejected. One appealing data-driven formula 
(Andrew, 1991) for choosing q based on the assumption that the true model is an AR(1) 
model is given by  
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where [•] denotes the greatest integer function, n is the length of the data, ρ̂  is the estimated 
first-order autocorrelation coefficient. However, our simulation for AR processes and 
ARFIMA processes with different intensity of dependence indicate that this data-driven 
formula is too conservative in rejecting the null hypothesis of no long-memory, especially for 
cases where autocorrelations at lag 1 are high. After a trial-and-error procedure, we use the 
following modified formula to choose the lag q: 
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.           (2.30) 

where ρ̂  is the autoregressive function at lag 1, i.e., ACF(1). This modified formula is a 
trade-off between lowering the probability of wrongly rejecting the null hypothesis of no 
long-memory for AR processes, and reserving the power of correctly rejecting the null 
hypothesis for ARFIMA processes. The null hypothesis of no long-memory is rejected at a 
5% significance level if QN,q is not contained in the interval [0.809, 1.862] (Lo, 1991). 
 
Similarly to the case with Lo’s test, for the GPH test, there is a choice of the number of 
frequencies g(n) used in the regression Equation (2.27). This choice entails a bias-variance 
trade-off. For a given sample size, as g(n) is increased from 1, the variance of the d estimate 
decreases, but this decrease is typically offset by the increase in bias due to non-constancy of 
fu(ω). Geweke and Porter-Hudak (1983) found that choosing g(n) = n0.5 gave good results in 
simulation. We adopt such a criterion in the Monte Carlo simulation study. The periodogram 
used for calculating GPH test statistic is smoothed with a modified Daniell smoother of length 
5.The null hypothesis of no long-memory (d = 0) is rejected at a 5% significance level if t-
statistic is not contained in the interval [-1,960, 1.960].  
 
When estimating the parameter d with the S-MLE method, we assume that the order p of the 
AR component for each simulated ARFIMA process is unknown before hand. Instead, we 
estimate the order p of the AR component by using the AIC criterion (Akaike, 1973).  
 
The results of detecting long-memory in simulated AR and ARFIMA processes of sizes 
ranging from 500 to 20000 with Lo’s test, GPH test and the S-MLE estimates of d are reported 
in Table 2.11. For Lo’s test, we list the average values of the lags chosen with the data-driven 
formula (2.30), their standard deviations (denoted as SD of lag), and the number of 
acceptance of the null hypothesis for 500 simulations. For GPH test, we list the average of the 
estimates of d, their standard deviations (denoted as SD of lag), and the number of acceptance 
of the null hypothesis for 500 simulations. For the S-MLE method, we give the averages and 
standard deviations (SD) of the estimates of d. According to the results with simulated AR 
and ARFIMA processes, shown in Table 2.11, we have the following findings: 
 
(1) For AR processes, when the autocorrelation is less than 0.9, both the Lo’s R/S test and the 

GPH test work well, and the GPH test has a better performance. But when the 
autoregressive coefficient is higher than 0.9, the probability of committing Type I error 
with the GPH test increase very fast, and the GPH test gets useless for the cases when φ is 
as high as 0.95 or above, even for the size of 20000 points. In contrast, the probability of 
committing Type I error with the Lo’s R/S test still considerably lower even for AR 
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processes with a φ of as high as 0.99. But it seems that the lag chosen with formula (8) 
tends to be too small for series of big size, whereas a little bit too large for series of small 
size for AR processes with large values of φ. 

 
Table 2.11 Long-memory detection results for simulated AR and ARFIMA series 

Lo's R/S test GPH test S-MLE 
Model Data size average 

lag SD of lag accepted average d SD of d accepted average d SD of d

500 2.8  0.5 464 -0.0167 0.1302 495 0.0149  0.0350 
1000 3.2  0.4 454 -0.0123 0.1141 490 0.0189  0.0325 
3000 4.6  0.5 468 -0.0124 0.0772 490 0.0136  0.0220 

10000 6.1  0.2 455 -0.0119 0.0607 490 0.0093  0.0132 

AR(1) 
ar = .5 

20000 7.8  0.4 469 -0.0078 0.0479 488 0.0057  0.0100 
500 6.7  0.8 428 0.1220 0.1388 470 0.0269  0.0669 

1000 8.0  0.7 442 0.0637 0.1110 489 0.0209  0.0419 
3000 10.8  0.5 441 0.0163 0.0827 490 0.0199  0.0322 

10000 14.7  0.5 441 -0.0016 0.0605 490 0.0114  0.0207 

AR(1) 
ar = .8 

20000 17.6  0.5 454 -0.0036 0.0511 483 0.0079  0.0149 
500 11.3  1.6 431 0.3252 0.1342 268 0.0290  0.0566 

1000 13.5  1.4 408 0.2189 0.1135 326 0.0296  0.0632 
3000 18.1  1.1 414 0.0957 0.0851 436 0.0240  0.0488 

10000 24.6  0.8 441 0.0273 0.0600 483 0.0132  0.0236 

AR(1) 
ar = .9 

20000 29.4  0.7 457 0.0107 0.0500 489 0.0081  0.0150 
500 18.7  3.6 451 0.5739 0.1395 24 0.0302  0.0497 

1000 22.4  3.1 429 0.4488 0.1154 34 0.0390  0.0801 
3000 29.6  2.4 426 0.2594 0.0800 91 0.0270  0.0535 

10000 40.3  1.8 416 0.1201 0.0601 300 0.0117  0.0284 

AR(1) 
ar = .95 

20000 47.9  1.6 416 0.0665 0.0475 409 0.0065  0.0160 
500 52.9  20.3 494 0.9122 0.1617 0 0.0482  0.0674 

1000 65.3  19.3 484 0.8530 0.1226 0 0.0431  0.0780 
3000 86.8  14.7 399 0.7297 0.0826 0 0.0231  0.0442 

10000 119.7  11.9 389 0.5555 0.0583 0 0.0093  0.0211 

AR(1) 
ar = .99 

20000 142.4  9.5 380 0.4478 0.0477 0 0.0068  0.0148 
500 2.2  0.5 129 0.2587 0.1360 353 0.2144  0.1100 

1000 2.8  0.5 61 0.2749 0.1157 228 0.2571  0.0829 
3000 3.8  0.5 15 0.2821 0.0826 68 0.2786  0.0646 

10000 5.2  0.4 0 0.2884 0.0572 2 0.3043  0.0201 

ARFIMA 
d=0.3 

20000 6.3  0.5 0 0.2900 0.0470 0 0.3072  0.0162 
500 7.1  1.4 255 0.2729 0.1402 333 0.1728  0.1346 

1000 8.6  1.3 139 0.2783 0.1130 233 0.2126  0.1165 
3000 11.4  1.2 63 0.2878 0.0919 83 0.2849  0.0675 

10000 15.6  1.0 8 0.2934 0.0604 4 0.3049  0.0363 

ARFIMA 
ar=0.5 
d=0.3 

20000 18.6  0.9 5 0.2955 0.0493 0 0.3102  0.0202 
500 41.1  12.2 493 0.6375 0.1513 16 0.1683  0.1451 

1000 49.4  11.6 478 0.5213 0.1123 6 0.2035  0.1333 
3000 65.4  11.2 345 0.3964 0.0881 5 0.2397  0.1243 

10000 89.4  9.2 155 0.3316 0.0627 2 0.3103  0.0678 

ARFIMA 
ar=0.9 
d=0.3 

20000 106.6  8.3 78 0.3145 0.0512 0 0.3281  0.0501 
500 7.0  4.0 130 0.4077 0.1506 157 0.3092  0.1572 

1000 8.5  4.4 56 0.4274 0.1237 53 0.3616  0.1309 
3000 11.2  5.2 11 0.4371 0.0873 0 0.4238  0.0620 

10000 15.4  6.0 0 0.4373 0.0613 0 0.4589  0.0173 

ARFIMA 
d=0.45 

20000 18.6  7.0 0 0.4371 0.0489 0 0.4676  0.0164 
500 19.1  10.1 346 0.4331 0.1515 133 0.2355  0.1628 

1000 22.9  10.6 204 0.4385 0.1164 33 0.3328  0.1311 
3000 31.0  12.2 66 0.4404 0.0893 3 0.4226  0.0668 

10000 42.4  14.6 11 0.4429 0.0635 0 0.4608  0.0228 

ARFIMA 
ar=0.5 
d=0.45 

20000 50.2  16.2 4 0.4459 0.0507 0 0.4718  0.0170 
500 135.0  78.5 493 0.7956 0.1394 2 0.1306  0.1757 ARFIMA 

ar=0.9 1000 163.4  90.2 495 0.6733 0.1172 1 0.1712  0.1828 
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3000 222.9  116.2 472 0.5539 0.0878 0 0.3128  0.1665 
10000 299.5  138.7 273 0.4856 0.0599 0 0.4464  0.0577 

d=0.45 

20000 361.8  158.0 140 0.4666 0.0491 0 0.4748  0.0226 
Note: The Lo's R/S test and the GPH test are based on 500 replications. The S-MLE estimate of d are 

based on 100 replications. 
(2) For ARFIMA processes, the GPH technique yields downwardly biased estimates of d 

when an AR term of low autoregressive coefficient value (e.g., ≤ 0.5) is present, whereas 
yields upwardly biased estimates of d when an AR term of high autoregressive coefficient 
value (e.g., = 0.9) is present. This seems to be in contradiction with the results of Sowell 
(1992), who showed that, when the sample length is small, the GPH technique yields 
upwardly biased estimates of d when AR and MA terms are present. On the other hand, 
the power of GPH test increases with the increase of data size, the intensity of long-
memory, and autocorrelations of their AR component. For cases where the data size is 
over 10000, the percentage of committing Type II error, i.e., false acceptance of the null 
hypothesis of no long-memory, by GPH test is close to zero. In contrast, the Lo’s test only 
performs slightly better than the GPH test when the intensity of long-memory is not strong 
and the value of φ in the AR component is low, but for the cases of strong intensity of 
long-memory and with a autoregressive component of strong autocorrelation, the Lo’s 
performs far less powerful than the GPH test. 

 
(3) Although S-MLE method does not provide a statistic test for the existence of long-

memory, the estimates of d seems to give a good indication of whether or not the long-
memory is present. It is shown by our simulation study that: 

 
a) For AR(1) processes, S-MLE gives basically correct estimates of d, i.e., d = 0, even 
when the autoregressive coefficients are very high, although the estimates are slightly 
positively biased when the data size is small (e.g., 500 points). The estimates get more 
accurate (according to the averages) and more stable (according to the standard deviations) 
with the increase of sample size.  
b) For ARFIMA processes, S-MLE provides significantly downwardly biased estimates 
when the data size is small (e.g., less than 103). The estimates of d given by S-MLE 
increase with increasing sample size and are basically correct when the data size is close 
to 104. But the estimates of d get upwardly biased when the data size is too big (say, > 
104). This is in contradiction with the result of Kendziorski (1999), who showed that S-
MLE provided unbiased estimates of d for ARFIMA(0,d,0) processes of length 211 (2048) 
or greater. 

 
(4) Data size has a significant impact on the power of all the three method. The power of  

Lo’s test and GPH test increases with the increase of data size, and the estimates of d with 
GPH test and S-MLE converge with  the increase of data size. Agiakloglou et al. (1993) 
found that GPH estimators performed poorly for AR(1) processes with  φ = 0.9 for sample 
size of 100 to 900. The simulation results of Hurvich and Beltrao (1993) also showed the 
poor performance of the GPH estimator when φ = 0.9 for not only AR(1) processes but 
also ARFIMA(1,d,0) processes. In our simulation study, it is shown that, on one hand, the 
power of GPH test does decrease with the increase of the autoregressive coefficient; on 
the other hand, the power of GPH test increases with the increase of sample size. If we use 
a sample size of larger than 104 points, GPH test still has very good performance for AR(1) 
processes with φ = 0.9. But the use of GPH test is helpless when φ is larger than 0.95, 
even with a data size of larger than 104. One possible solution could be to choose the 
number of frequencies used in the regression Equation (5) more carefully (Giraitis et al., 
1997; Hurvich and Deo, 1999). But the effectiveness of these methods is yet to be 
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confirmed. For example, as φ increases, the estimates of d using the number of 
frequencies g(n) selected by the plug-in method proposed by Hurvich and Deo (1999) are 
much more positively biased than simply using g(n) = n1/2. 

 
(5) Teverovsky et al. (1999) pointed out that, picking a single value of q with Lo’s test to 

determine whether or not to reject the null hypothesis of no long-range dependence in a 
given data set is highly problematic. In consequence, they recommend that one always 
relies on a wide range of different q-values, and does not use Lo's method in isolation, 
instead, uses it always in conjunction with other graphical and statistical techniques for 
checking for long-memory, especially when Lo's method results in accepting the null 
hypothesis of no long-range dependence. While we agree that we should not use Lo's 
method in isolation, it is doubtful that using a wide range of different q-values may 
improve the test reliability. With a wide range of q-values, you are still not sure which one 
gives the right answer. 

 
On the basis of the above findings, to obtain reliable test results on detecting the presence of 
long-memory, we have two suggestions: First, increase the size of test data, as we see that the 
power of Lo’s test and GPH test increases with the increase of data size, and the estimates of 
d with the GPH-test and S-MLE converge as the sample size increases, but notice that the 
estimate with S-MLE would be biased upwardly when the data size is above 104; Second, use 
the detection results in combination with each other, as have been suggested by Teverovsky et 
al. (1999). Here we consider the combined use of Lo’s test, GPH-test and S-MLE. As shown 
in Table 2.11, the combined use of these three methods produces the following alternatives: 
 
a) Failure to reject by both the Lo’s test and the GPH-test, and low values of estimated d 

(e.g., <0.1) with S-MLE, provide evidence in favour of no existence of long-memory 
b) Rejection by both Lo’s test and GPH test suggests, and high values of estimated d (e.g., 

>0.2) with S-MLE, support that the series is a long-memory process 
c) In other cases, the data are not sufficiently informative with respect to the long-memory 

properties of the series. 
 
We especially recommend the combined use of GPH test and S-MLE to detect the existence 
of long-memory, and the most appropriate date size for estimating d with S-MLE is slightly 
less than 104. 

2.5.3.5 Long-memory test for streamflow processes 

According to what we found with the Monte Carlo simulations, we use the Lo’s R/S test, GPH 
test and S-MLE method jointly to detect the existence of long-memory in streamflow 
processes in this study. For Lo’s modified R/S test, we adopt the data-driven formula (2.30) to 
choose the lag q. For GPH test, we choose the number of frequencies g(n) = n−0.5 as suggested 
by Geweke and Porter-Hudak (1983). The null hypothesis of no long-term dependence is 
rejected if QN,q in Lo’s test is not contained in the interval [0.809, 1.862] (Lo, 1991), or if t-
statistic in GPH test is not contained in the interval [-1,960, 1.960].  With the S-MLE method, 
we assume that the processes are ARFIMA(p,d,0) processes, and the order p of AR 
component is determined by using the AIC criterion (Akaike, 1973). 
 
All the streamflow series are log-transformed and deseasonalized. In addition, the streamflow 
series of the Yellow River at TG are detrended first. The test results for all streamflow series 
are listed in Table 2.12. The results show that, the intensity of long-memory decreases with 
the increase of timescale according to the results of all the three methods. All daily flow series 
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exhibit strong long-memory, because the presence of long-memory is confirmed by all the 
three methods for 4 cases, and in another two cases (Danube and Rhine), it is confirmed by 
the GPH test and S-MLE method. The presence of long-memory in 1/3-monthly series is 
confirmed in three cases (Yellow at TNH, Yellow at TG, and Umpqua), rejected in two cases 
(Danube and Rhine), and not conclusive in one case (Ocmulgee). For monthly series, the 
existence long-memory is rejected by both the GPH test and S-MLE method for four cases 
because the hypothesis of no long-memory is accepted by the GPH test, and S-MLE give a 
estimate of d less than 0.2. But the monthly series of Yellow River at TG and Umpqua may 
exhibit long-memory. 
 

Table 2.12 Detecting the existence in streamflow series with Lo’s modified R/S test, GPH test and 
 S-MLE method 

Lo’s test GPH test S-MLE River 
(station) Timescale 

Lag statistic statistic d d 
Daily 94 2.5111* 7.7853 * 0.4720 0.4922 
1/3-monthly 11 2.2910 * 3.277 0* 0.3854 0.4518 Yellow 

(TNH) 
Monthly 5 1.9644 * 1.4233 0.2357 0.0000 
Daily 39 3.06975 * 5.4234 * 0.3422 0.3561 
1/3-monthly 7 2.4679 * 2.9501 * 0.3636 0.3194 Yellow 

(TG) 
Monthly 3 2.1437 * 1.3756 0.2415 0.3400 
Daily 63 1.7273 5.4564 * 0.2742 0.3865 
1/3-monthly 8 1.5512 0.8792 0.0848 0.0001 Danube 

(Achleiten) 
Monthly 4 1.3044 -0.1307 -0.0176 0.0000 
Daily 170 1.5288 6.5402 * 0.3229 0.4167 
1/3-monthly 11 1.6853 1.1944 0.1129 0.0000 Rhine 

(Lobith) 
Monthly 5 1.4853 0.1528 0.0202 0.0000 
Daily 31 2.7826 * 7.1878 * 0.3821 0.4663 
1/3-monthly 6 2.0852 * 1.8812 0.1916 0.1956 Ocmulgee 

(Macon) 
Monthly 4 1.6260 1.4253 0.2039 0.1368 
Daily 58 3.1110 * 5.6400 * 0.2785 0.4445 
1/3-monthly 8 2.6341 * 2.3899 * 0.2259 0.2189 Umpqua 

(Elkton) 
Monthly 4 2.2376 * 2.5076 * 0.3313 0.1799 

Note: An asterisk indicates the rejection of the null hypothesis of no long-memory at the 0.05 significance 
level. 

 
A special concern here is the value of d for the daily streamflow process of the Yellow River 
at TNH, because we will model and forecast this streamflow process later. The estimates of d 
given by the GPH test and S-MLE are 0.472 and 0.4922, respectively. In addition, with S-
MLE, we know that the process also has an AR component of high autoregressive coefficients. 
The size of the series is 16437 points. As we know from the results for simulation ARFIMA 
series, for a series of this size and strong autocorrelations, both GPH method and S-MLE 
method give positively biased estimates of d. Therefore, taking the results from the heuristic 
methods into account, we will consider a d of less than 0.4 when modeling the daily process 
at TNH. 
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2.6 Conclusions 

There is no obvious trend in the average annual flow process of the upper Yellow River at 
TNH over the period 1956 to 2000, whereas the discharges recorded at a downstream station 
TG exhibit significantly declining trend. Fu et al. (2004) investigated the trend of annual 
runoffs at another three stations along the mainstream of the Yellow River. Put together the 
results, we find that the lower the reaches of the Yellow River, the more significant the 
declining trend. However, generally, there is no significant decline in the precipitation 
processes in the Yellow River basin (Fu et al., 2004). The phenomenon that the lower the 
reaches of the Yellow River, the more significant the downward trend is a clear indication of 
anthropogenic influence, because the lower the reaches, the more human intervention the river 
would suffer, including the expansion of irrigation areas, the regulation of thousands of 
reservoirs in both the main channel and tributaries, and the increase of water consumption 
with the fast growing industry and population. Although the impacts of global warming on 
water supply are widely concerned, in the case of the Yellow River basin, the impacts of 
warming on the river flow processes of the Yellow River seem far less significant than 
anthropogenic influences.  
 
The Augmented Dickey-Fuller (ADF) unit root test (Dickey and Fuller, 1979; Said and 
Dickey, 1984) and KPSS test (Kwiatkowski et al., 1992) are introduced to test for the 
nonstationarity in streamflow time series. It is shown that the smaller the timescale of the 
streamflow process, the more likely it tends to be nonstationary. 
  
Seasonal variations in the autocorrelation structures are present in all the deseasonalized daily, 
1/3-monthly and monthly streamflow processes, albeit that such seasonal variation is less 
obvious for the streamflow of the Danube and the Ocmulgee. This indicates that, even after 
the deseasonalization procedure, the seasonality still shows itself, not in the mean and 
variance, but in the autocorrelation structure. 
 
The investigation of the long-memory phenomenon in streamflow processes at different 
timescales shows that, with the increase of timescale, the intensity of long-memory decreases. 
According to the Lo’s R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and 
the maximum likelihood estimation method implemented in S-Plus version 6 (S-MLE), all 
daily flow series exhibit strong long-memory. Out of six 1/3-monthly series, three series 
(Yellow River at TNH and TG, and Umpqua) exhibit long-memory, whereas two 1/3-monthly 
series (Danube and Rhine) seem to be short-memory series. Only one monthly flow series 
(Umpqua) may exhibit long-memory.  
 
Comparing the stationarity test results and the long-memory test results, we find that these 
two types of test are more or less linked, not only in that the test results have similar timescale 
pattern, but also in that there is a general tendency that the stronger the nonstationarity, the 
more intense the long-memory. In fact, there are some attempts to use KPSS stationarity test 
to test for the existence of long-memory (e.g., Lee and Schmidt, 1996). It is worthwhile to 
further the investigation on the issue of the relationship between nonstationsrity and the long-
memory in the future. 
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Appendix 2.1 Hypothesis Testing 

Setting up and testing hypotheses is an essential part of statistical inference. In order to carry 
out a statistical test, it is necessary to define the null and alternative hypotheses; which 
describe what the test is investigating. In each problem considered, the question of interest is 
simplified into two competing claims / hypotheses between which we have a choice; the null 
hypothesis, denoted H0 (e.g., there is no significant change in the annual maximum flow 
series), against the alternative hypothesis, denoted H1 (e.g., the annual maximum flow is 
changing over time). In carrying out a statistical test one starts by assuming that the null 
hypothesis is true, and then checks whether the observed data are consistent with this 
hypothesis. The null hypothesis is rejected if the data are not consistent with H0.  

To compare between the null and the alternative hypotheses a test statistic is selected and then 
its significance is evaluated, based on the available evidence. A test statistic is a quantity 
calculated from our sample of data subject to testing. Its value is used to decide whether or 
not the null hypothesis should be rejected in our hypothesis test. The choice of a test statistic 
will depend on the assumed probability model and the hypotheses under question. 

The significance level of a statistical hypothesis test is a fixed probability of wrongly rejecting 
the null hypothesis H0, if it is in fact true. It is the probability of a type I error. Usually, the 
significance level is chosen to be 0.05. 

The probability value (p-value) of a statistical hypothesis test is the probability of getting a 
value of the test statistic as extreme as or more extreme than that observed by chance alone, if 
the null hypothesis H0 is true. It is equal to the significance level of the test for which we 
would only just reject the null hypothesis. Small p-values suggest that the null hypothesis is 
unlikely to be true. The smaller it is, the more convincing is the rejection of the null 
hypothesis. 

The diagram below represents four outcomes of the decisions we make, in terms of whether 
or not the null is true, and whether we reject the null or not. 
 

Truth of Null 
Decision 

True Not True

Reject Null TYPE I POWER 

FTR Null CORRECT TYPE II 
 
As you see, FTR (failed to reject) the null when the null is true is a correct decision. However, 
we're usually interested in trying to find true differences, and therefore look to reject null 
hypotheses. Rejecting the null when it is really not true is a correct decision as well. More 
specifically, the probability a test has to do this is referred to as power. Power may be defined 
as the probability of correctly rejecting the null hypothesis. In other words, it is the 
probability of rejecting the null hypothesis given that the null is incorrect. Some people also 
refer to power as precision or sensitivity. 



Appendix 2.2 61
   

 

Appendix 2.2 Stationarity and Periodic Stationarity 

Let {xt}, t = 1, …, N, be N consecutive observations of a seasonal time series with seasonal 
period s. For simplicity, assume that N/s = n is an integer. In other words, there are n full 
years of data available. The time index parameter t may be written t = t(r-m) = (r-1)s + m, 
where r = 1, …, n and m = 1, …, s. In the case of monthly data s = 12 and r and m denote the 
year and month. 
 
If  

( , )( )m t r mE zµ =  
and  

, ( , ) ( , )cov( , )l m t r m t r m lz zγ −=  
exist and depend only on l and m, zt is said to be periodically correlated or periodic stationary 
(Gladysev, 1961). Note that the case where µm and γt,m do not depend on m reduces to an 
ordinary covariance stationary time series. 
 
A series {xt} is called stationary if, loosely speaking, its statistical properties do not change 
with time. More precisely, {xt} is said to be completely stationary if, for any integer k, the 
joint probability distribution of xt, xt+1, …,  xt+k-1 is independent on the time index t (see e.g., 
Priestley, 1988, pp. 4-5). 
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Chapter 3 ARMA-Type Models for Streamflow Processes 

In this chapter, the autoregressive moving average (ARMA) model and its two derivatives, 
i.e., the autoregressive fractionally integrated moving average (ARFIMA) model and the 
periodic autoregressive (PAR) model will be applied to the daily streamflows, and the AR 
model will be applied to the monthly streamflows of the upper Yellow River at TNH. In 
addition, the construction of prediction intervals will be discussed using four monthly series, 
and the issue of predictability will be discussed with 31 daily streamflow series at different 
watershed scale. 

3.1 Building ARMA Models for Daily and Monthly Flows 

3.1.1 Introduction to ARMA Model 

One of the most important and highly popularized time series models is the ARMA-type 
model (including AR, ARMA, ARIMA and seasonal ARIMA model) introduced by Box and 
Jenkins (1976). It has a long history of being applied to streamflow forecasting problems. For 
instance, McKerchar and Delleur (1974) used an ARMA process to achieve stochastic 
modeling of monthly flows. McLeod et al. (1977) applied the ARMA approach to average 
annual streamflows. Three types of seasonal time series models are commonly used to model 
hydrological processes which usually have strong seasonality (Hipel and McLeod, 1994): (1) 
seasonal autoregressive integrated moving average (SARIMA) models; (2) deseasonalized 
ARMA models; and (3) periodic ARMA models. Deseasonalized modeling approach is 
adopted in this study.  

The general form of ARIMA(p,d,q) model is given by 

( ) ( )d
t tB x Bφ θ ε∇ = ,            (3.1) 

where B is the backshift operator, that is, Bxt = xt-1; φ (B) = 1 - φ1B - … - φpBP, and θ (B) = 1 - 
θ 

1B - ... - θ 
qBq represent the ordinary autoregressive and moving average components; εt is a 

white noise process with zero mean and variance σ2. ∇  = 1 - B is the first-order difference 
operator and ∇ d = (1 - B)d is the d-fold differencing. When d = 0, ARIMA(p,d,q) model 
reduces to ARMA(p,q) model 

( ) ( )t tB x Bφ θ ε=              (3.2) 

When q = 0, then ARMA(p,q) model further reduces to AR(p) model. 

Box and Jenkins (1976) give the following paradigm for fitting ARIMA models. 

(1) Model identification: Determination of the ARIMA model orders. 
(2) Estimation of model parameters: The unknown parameters in Equation (3.1) are estimated. 
(3) Diagnostics and model criticism: The residuals are used to validate the model and suggest 

potential alternative models, which may be better. 
These steps are repeated until a satisfactory model is found. We give some brief descriptions 
to these steps in this section. 



64  Chapter3 ARMA-Type Models for Streamflow Processes 

 

3.1.1.1 ARMA model identification 

Initial model identification is done using the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Chapter 6 of Box and Jenkins (1976) gives a complete 
discussion on the identification of ARIMA models. 

An alternative procedure for selecting the model order is using a penalized log-likelihood 
measure. One popular measure is the Akaike's Information Criterion (AIC) (Akaike, 1973), 
which is defined as 

( ) 2 log 2AIC k ML k= − +            (3.3) 

where ML is maximum likelihood and k is the number of independently adjusted parameters 
within the model. The best model is given by the model with the lowest AIC value. For 
ARMA(p,q) models, k = p + q, and the AIC can be calculated as (Akaike, 1974) 

2ˆ( , ) log( ) 2( )AIC p q N p qεσ= + +  

where 2ˆεσ  is the variance of the innovation process.  

3.1.1.2 Estimation of ARMA model parameters 

The most popular method for estimating the parameters of ARMA models is the maximum 
likelihood (ML) method. The values of the parameters that maximize the likelihood function, 
or equivalently the log-likelihood function, are called maximum likelihood estimates. Finding 
maximum likelihood estimates conceptually involves two steps. First, the likelihood function 
must be calculated. Second, values of the parameters must be found that maximise this 
function with some numerical optimisation method. 

The log-likelihood for an ARMA model can be computed using the prediction error 
decomposition (see Harvey, 1993). Let εt be the one-step ahead prediction error, the variance 
of the prediction error can be written as 

2( ) , 1,...,t tVar f t Nε σ= =  

where σ2 is the variance of the residual process {εt}; ft is a scale parameter. Then, the log-
likelihood is given by 

2
2

1 2
1 1

1 1log ( ,..., ) log(2 ) log
2 2 2

N N
t

p N t
t t t

NL x x f
f
επσ

σ+
= =

= − − −∑ ∑  

The conditional log-likelihood approximation can be obtained by conditioning on the first p 
values of the series, where p is the order of the autoregressive operator. This conditional log-
likelihood function is given by 

2
2

1 1 2
1 1

( ) 1 1log ( ,..., | ,..., ) log(2 ) log
2 2 2

N N
t

p N p t
t p t p t

N pL x x x x f
f
επσ

σ+
= + = +

−
= − − −∑ ∑  (3.4) 

The main advantage of using the conditional log-likelihood approximation is that the AR 
parameters can be concentrated out of the likelihood, reducing the computational complexity 
of the nonlinear optimization. In statistics package S-Plus, the function arima.mle fits 
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ARIMA models to univariate time series data through Gaussian maximum likelihood, and the 
conditional form of the likelihood is used (Insightful Corporation, 2001). 

3.1.1.3 Diagnostic checking 

The third stage in building ARIMA models consists of validating the model through 
examination of the one-step prediction residuals {εt}. A basic diagnostic technique is to 
examine the autocorrelation function of the residuals. It is well-known that for random and 
independent series of length n, the lag k autocorrelation coefficient is normally distributed 
with a mean of zero and a variance of 1/n, and the 95 percent confidence limits are given by 
±1.96/√n. The presence of large autocorrelations indicates that a model may be inadequate. 

In addition to examining the autocorrelation individually, it is useful to base a diagnostic on 
the autocorrelations as a whole. Define the portmanteau test statistic Q by (Box and Pierce, 
1970) 

2

1

ˆ ( )
L

k
k

Q N r ε
=

= ∑ .             (3.5) 

It is approximately chi-squared with L-(p+q) degrees of freedom. The adequacy of the model 
is therefore rejected at level α if 2

1 ( )Q L p qαχ −> − − . 

A modified version of portmanteau test is the Ljung-Box test (Ljung and Box, 1978), which 
tests whether the first L autocorrelations 2ˆ ( )kr ε  (k = 1, ..., L) from a process are collectively 
small in magnitude. Suppose we have the first L autocorrelations ˆ ( )kr ε  (k = 1, ..., L) from any 
ARMA(p, d, q) process. For fixed sufficiently large L, the Ljung-Box Q-statistic is given by 

2

1

ˆ ( )( 2)
L

k

k

rQ N N
N k

ε
=

= +
−∑             (3.6) 

where N is the sample size, L is the number of autocorrelations included in the statistic 
(typically between 10 and 20), and 2ˆ ( )kr ε  is the squared sample autocorrelation of residual 
series {εt} at lag k. Under the null hypothesis of model adequacy, the test statistic is 
asymptotically χ2(L-p-q) distributed. Thus, we would reject the null hypothesis at level α if 
the value of Q exceeds the (1-α)-quantile of the χ2(L-p-q) distribution. 

3.1.2 Fit ARMA Models to Daily and Monthly Streamflows of the Yellow River 

The procedure of fitting deseasonalized ARMA models to daily and monthly streamflow at 
TNH includes two steps: deseasonalization and ARMA model construction. We first log-
transform both flow series, and deseasonalize them by subtracting the seasonal (e.g., daily or 
monthly) mean values and dividing by the seasonal standard deviations of the log-transformed 
series. To alleviate the stochastic fluctuations of the daily means and standard deviations, we 
smooth them with the first 8 Fourier harmonics before using them for standardization. Figure 
3.1 and 3.2 show the ACF and PACF of the deseasonalized daily and monthly series.  
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Figure 3.1 ACF and PACF of deseasonalized daily flow series at TNH 
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Figure 3.2 ACF and PACF of deseasonalized monthly flow series at TNH 

 

Then, according to the ACF and PACF structures of the two series as well as the model 
selection criterion AIC, an ARMA (20,1) is fitted to the daily flow series and an AR (4)) 
fitted to the monthly flow series. The parameters are estimated with the arima.mle function in 
S-Plus version 6, where the Gaussian maximum likelihood estimation method is used. 

To examine the goodness of fit of the ARMA(20,1) model for daily flow series and AR(4) for 
monthly flow series, firstly, we inspect the ACF of the residuals from the models. The ACF 
plots in Figure 3.3 show that there is no significant autocorrelation left in the residuals from 
both ARMA-type models for daily and monthly flow.  
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Figure 3.3 ACFs of residuals from (a) ARMA(20,1) model for daily flow and (b) AR(4) model for 

monthly flow at TNH 

(a) (b) 
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Then, more formally, we apply Ljung-Box test to the residual series. The Ljung-Box test 
results for ARMA(20,1) and AR(4) are shown in Figure 3.4. The p-values’ exceedance of 
0.05 indicates the acceptance of the null hypothesis of model adequacy at significance level 
0.05. 
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Figure 3.4 Ljung-Box lack-of-fit tests for (a) ARMA(20,1) model for daily flow and (b) AR(4) model for 

monthly flow at TNH. 

3.2 Building ARFIMA Model for Daily Flows 

3.2.1 Introduction to ARFIMA Model 

The general form of ARFIMA(p,d,q) model is given by 

( ) ( )d
t tB x Bφ θ ε∇ = , |d| < 0.5, 

where φ (B), θ (B) and ∇d are the same as in Equation (3.1). The difference operator ∇d =(1 - 
B)d by means of the binomial expansion 

0
(1 )d d j

j
j

B Bπ
∞

=

∇ = − =∑
, 

where, 
0

( ) 1 , 0,1, 2, ...
( 1) ( )j

k j

j d k d j
j d k

π
≤ ≤

Γ − − −
= = =
Γ + Γ − ∏  

The parameters φ, θ and d of ARFIMA model may be estimated by maximum likelihood 
method or log-periodogram based regression method (see e.g., Brockwell and Davis, 1991, pp 
527 – 532). The S-Plus function arima.fracdiff fits ARFIMA models to univariate time series 
data through approximate Gaussian maximum likelihood algorithm of Haslett and Raftery 
(1989). 

3.2.2 Fit ARFIMA Model to Daily Streamflow of the Yellow River 
Similar to constructing the ARMA (20,1) model to the daily streamflow series, the procedure 
of fitting deseasonalized ARFIMA models also includes two steps: deseasonalization and 
ARFIMA model construction. We only consider using the ARFIMA(p,d,0) model for 
forecasting the daily streamflows of the upper Yelloe River at TNH. Deseasonalization is 
done in the same way as that for building the ARMA model. The order p of the AR 
component in the ARFIMA model is determined according to AIC. The chosen model is 
ARFIMA(7,d,0). The parameters of the AR component and d are estimated using the function 
arfima.fracdiff in the S-Plus. If without any limitation, the function arfima.fracdiff gives an 

(a) (b) 
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estimate of 0.4922 for d. But as having been analyzed in Section 2.5.3.5, we limit the value of 
d to less than 0.4 when making the maximum likelihood estimation, thus get an 
ARFIMA(7,d,0) model with d ≈ 0.4. 

To check the goodness-of-fit of the ARFIMA(7,d,0) model, we inspect the ACF of the 
residuals from the ARFIMA models. The ACF is plotted in Figure 3.5. It is shown that, no 
significant autocorrelations is observed for lags less than 6, but there is still significant 
autocorrelations left at lag 7 to lag 10 in the residuals from the ARFIMA model whereas no 
significant autocorrelation is observed in the residuals from the ARMA model. For the long 
lags, the autocorrelations left in the residuals are not significant. Therefore, generally, the 
ARFIMA model fit the daily flow series well. Comparing the autocorrelation structure of the 
residuals from the ARFIMA model (Figure 3.5) and that from ARMA model (Figure 3.3a), it 
is interesting to notice that the number of negative autocorrelations and the number of positive 
ones are basically equal in the residuals from the ARFIMA model, whereas there are far more 
positive autocorrelations than negative ones in the residuals from the ARMA model. This may 
be an indication that the ARFIMA model has a better fit for long lead times. 
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Figure 3.5 ACF of residuals from ARFIMA(7,d,0) for daily flows at TNH 

3.3 Building PAR Model for Daily Flows 

3.3.1 Introduction to the PAR Model 
Streamflow processes usually have seasonal means, variances and serial dependence 
structures, as having been annalyzed in Chapter 2. A usual procedure in modeling seasonal 
streamflow series is to deseasonalize the series by first subtracting the seasonal mean and then 
dividing by the seasonal standard deviation. However such a procedure can only remove the 
seasonality in the mean and variance, but the seasonality in serial dependence structure 
remains. To model appropriately such seasonality, periodic models can be employed. Two 
popular periodic models are the PAR (periodic autoregressive) and PARMA (periodic 
autoregressive and moving average) models, which are extensions of ARMA models that 
allow periodic (seasonal) parameters.  

The PAR family of models was originally introduced by Thomas and Fiering (1962) for 
monthly streamflow modeling and simulation. Literature on PAR or PARMA models has 
abounded since late 1960s’ (e.g., Jones and Brelsford, 1967; Salas et al., 1982; Noakes et al., 
1986; Salas and Abdelmohsen, 1993; McLeod, 1994). However, PAR or PARMA usually 
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applied to time series at the time scale of a month or at least a week. Even when applying to 
such large-time scale time series, there is also a problem of making the model parsimonious, 
namely, decreasing the number of model parameters required, and fitting a parsimonious PAR 
model. Salas et al. (1980) proposed a Fourier series approach for reducing the number of 
parameters in PAR or PARMA models. The same approach is adopted for fitting so-called 
seasonally varying runoff coefficient (SVRC) model in which more independent exogenous 
inputs are included in the model (Kachroo and Liang, 1992). Thompstone et al. (1985) 
proposed alternative approach for developing PPAR model by evaluating the compatibility of 
the AR equations for neighboring seasons based on residual variance analysis, then 
combining compatible individual AR models for adjacent seasons. However, when applying 
to daily flow series, with respect to the former approach, although the number of parameters 
could be reduced, the order of PAR model would be the same for all seasons, which loses 
generality and may not be appropriate for catching seasonal dynamics of streamflow. With 
respect to the latter approach, separate AR models should be fitted to each day of the year, 
and the computation for calculating the compatibility between neighboring days are 
overwhelming which makes it infeasible.  

Here a method for fitting PAR model to daily flow series is presented based on the cluster 
analysis. A PAR model is fitted the daily streamflow series of the upper Yellow River at TNH 
and forecasting experiments are made.  

3.3.2 Partition the Days over the Year with the Fuzzy Clustering Technique 

When partitioning the days over the year with the clustering analysis method, the raw average 
daily discharge data and the autocorrelation values at different lag times (1 ~ 10 days) are 
used. The daily discharge data and the autocorrelation coefficients are organized as a matrix X 
of the size (N+10)×365, where N is the number of years and “10” represents the 
autocorrelation values at 10 lags. To eliminate the influence of big differences among data 
values on cluster analysis result, the log-transformation is first applied to the daily discharges 
before making the cluster analysis. Then the 365 days over the year are partitioned with the 
fuzzy c-means (FCM) clustering method. 
 
FCM clustering is proposed by Bezdek (1981) as an improvement over the hard k-means 
clustering algorithm. The FCM method partitions a set of n vector xj, j = 1, …, n, into c fuzzy 
clusters, and each data point belongs to a cluster to a degree specified by a membership grade 
uij between 0 and 1. We define a matrix U consisting of the elements uij, and assume that the 

summation of degrees of belonging for a data point is equal to 1, i.e., 
1

1, 1,...,
c

ij
i

u j n
=

= ∀ =∑ . 

The goal of the FCM algorithm is to find c cluster centers such that the cost function of 
dissimilarity (or distance) measure is minimized. The cost function is defined by 
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m
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where vi is the cluster center of the fuzzy group i; dij = ||vi – xj|| is the Euclidean distance 
between the ith cluster center and the jth data point; and m ≥ 1 is a weighting exponent, taken 
as 2 here. The necessary conditions for Equation (3.7) to reach its minimum are: 
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The fuzzy C-means algorithm is an iterative procedure that satisfies the preceding two 
necessary conditions as follows. 
 

(1) Initialize the membership matrix U with random values between 0 and 1. 
(2) Calculate c fuzzy cluster centers vi, i = 1, …, c, using Equation (3.8). 
(3) Compute the cost function according to Equation (3.7). Stop if either it is below a 

tolerance value or its improvement over the previous iteration is below a certain 
threshold.  

(4) Compute a new U using Equation (3.9). Return to step (2). 
 
The cluster result is shown in Figure 3.6. Comparing Figure 2.9(a) and Figure 3.6, we see that 
if we just follow the clustering result to partition the days over a year into 5 groups, the 
dynamics of streamflow is not well captured because cluster 2 and 3 in Figure 3.6 mix the 
streamflow rising limb and falling limb shown in Figure 2.9(a). Therefore, according to the 
FCM clustering result, and considering the dynamics of the streamflow process, we partition 
the 365 days over the year into 7 hard segments, as listed in Table 3.1.  
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Figure 3.6 Membership grades of the days over the year for the daily streamflow series at TNH with 

the FCM of 5 clusters 

 

Table 3.1 Partitioning of the days over the year for the daily streamflow at TNH 

Partition 1 2 3 4 5 6 7 
Day span 1-77, 349-365/366 78-114 115-167 168-237 238-302 303-322 322-348

 

3.3.3 Building the PAR Model 
Based on the partitioning results, one AR model is fitted to one partition. Before fitting the 
models, the daily streamflow series is deseasonalized. The orders of the AR models are 
determined according to AIC criterion (Akaike, 1973), and the parameters of these AR 
models are estimated with the least squares method. The chosen orders for each partition 
according to minimum AIC are shown in Table 3.2.  
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Table 3.2 Selected AR orders for the PAR model according to AIC 

Partition 1 2 3 4 5 6 7 
AIC 22 11 12 12 10 8 14 

According to AIC, we fit an AR(22), an AR(11), an AR(12), an AR(12), an AR(10), an AR(8), 
and an AR(14) to partition 1 to 7 respectively. The parameter estimation is performed by 
ordinary least squares estimation procedure. Together, these AR models for different seasons 
compose a PAR model. When forecasting, a specific AR model is applied depending on what 
season partition the date to be forecasted is in. 

3.4 Forecasting with ARMA, ARFIMA and PAR Models 

3.4.1 Forecast Evaluation Measures 
The following measures are used in the present study to evaluate model performances in 
streamflow forecasting: 

Mean Absolute Error: 
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Root Mean Squared Error: 2
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Mean Squared Relative Error: 
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Coefficient of Efficiency: 
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Coefficient of determination: 
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where, ˆ
iQ  are the n modelled flows, iQ  are the n observed flows, Q  is the mean of the 

observed flows , and Q�  is the mean of the modelled flows. 
 
There is an extensive literature on model forecasting evaluation indices (e.g. Nash and 
Sutcliffe, 1970; Garrick et al., 1978; Wilmott et al., 1985, Legates and McCabe, 1999; and 
Kneale et al., 2001). According to Karunanithi et al. (1994), mean squared errors (MSE), or 
equivalently RMSE, provide a good measure of the goodness-of-fit at high flows, whilst 
relative errors (MSRE) provide a more balanced perspective of the goodness-of-fit at 
moderate flows. CE and r2 provide useful comparisons between studies since they are 
independent of the scale of data used. The r2 measures the variability of observed flow that is 
explained by the model. Despite its crudeness and identified weaknesses (Kachroo and Natale, 
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1992), the CE introduced by Nash and Sutcliffe (1970) is still one of the most widely used 
criteria for the assessment of model performance. The CE reflects the fraction of the total sum 
of the squares of the observations explained by a model. It provides a measure of the ability of 
a model to predict flows that are different from the mean. A CE of 0.9 and above is very 
satisfactory, 0.8 to 0.9 represents a fairly good model, and below 0.8 is considered 
unsatisfactory (e.g., Shamseldin, 1997). 

Albeit its popularity, the utilization of CE has several problems when it is applied to a model 
fitted to a seasonally stationary series, such as streamflow processes. Firstly, we know that a 
value of zero for the coefficient of efficiency indicates that the observed mean is as good a 
predictor as the model, while a negative value indicates that the observed mean is a better 
predictor than the model (Wilcox et al., 1990). But for hydrological time series, which usually 
have strong seasonality, what we concern is whether the model is better than seasonal mean 
values of the series rather than overall observed mean. This is a question that cannot be 
answered by CE value obtained from Equation (3.14). Secondly, there is an interesting 
phenomenon that when we assess model performance in terms of CE, the CE value calculated 
for the whole year will be higher than the average of CE values calculated for separate 
seasons, which illogically indicates that the model performance for the whole year is better 
than for most separate seasons. In fact, this problem will also be encountered when applying 
another commonly used goodness-of-fit criterion - coefficient of determination.  

These problems arise from the inadequacy of the definition of CE for dealing with seasonal 
processes. As aforementioned, CE is defined under the assumption that the process of interest 
is stationary (Bhansali, 1992), whereas hydrological time series are usually strongly seasonal. 
When seasonality exists, especially when the mean value changes with season, for most of the 
seasons (such as days or months) in a year, the value of overall standard deviation is larger 
than the values of seasonal standard deviation. Take the case of the daily streamflows at TNH 
for instance, the overall standard deviation (calculated with the overall mean) is about 559.5 
m3/s, while the average of daily standard deviations (calculated for the average discharges in 
each day over the year) is about 275.7 m3/s (see Figure 3.7). Therefore, when only 
considering overall mean value, the denominator of the right-most item in Equation (3.14), 
which indicates the overall standard deviation of the observed series, is larger than if seasonal 
means are taken into account. In consequence, using overall mean gives rise to a larger CE, 
that is, the performance of the forecasting model is exaggerated. 
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Figure 3.7 The overall standard deviation (SD) compared with the SDs of discharges of each day over 

the year for daily streamflows at TNH 

 

To overcome these problems, seasonal mean values must be considered for calculating CE, by 
replacing Q  in Equation (3.14) with seasonal mean values, which vary depending on what 
season for which the forecast to be made is in. Therefore, we get the seasonally-adjusted CE 
(SACE) for as 



3.4 Forecasting with ARMA, ARFIMA and PAR Model 73
   

 

2

1

2

1

ˆ( )
1

( )

n

i i
i
n

i m
i

Q Q
SACE

Q Q

=

=

−
= −

−

∑

∑
           (3.16) 

where m = i mod S (mod is the operator calculating the remainder) is the “season”, ranging 
from 0 to S-1; and S is the total number of “season” (Note that, a “season” here does not 
necessarily denote a real season. It may be a month or a day depending on the timescale of the 
time series. For daily streamflow series, a season is a day over the year.); mQ  is the mean 
value of season m. For daily series, mQ  is given by  

,
1 N

m j m
j i

Q Q
N =

= ∑  

where m is a day over the year, and N is the total number of years for which the streamflow 
forecasts are made. Three points should be noticed regarding the use of seasonal mean values: 
(i) To know how good the forecasts are compared with long-term seasonal mean values, we 
may use long-term seasonal mean values instead of the seasonal mean values of the forecasted 
period; (ii) To avoid the stochastic functuation in the seasonal mean values, especially for the 
daily means, we may smooth them with first 6 to 8 Fourier harmonics; (iii) when a 
deterministic trend existing, the trend should be considered by adding a trend term to mQ . 
With this modification, a value of zero for the coefficient of efficiency indicates that the mean 
value of each season is as good a predictor as the model. Similar modification can be applied 
to the calculation of coefficient of determination (r2) for evaluating seasonal time series. 

3.4.2 Forecasting Results 

3.4.2.1 Forecsting monthly flows of the Yellow Rvier at TNH 

With a monthly flow series of 45 years, generally, we make forecasts for the last 5 years 
(1996 ~ 2000) to evaluate the performance of the AR(4) model. The model building is on a 
rolling-forward basis. That is, we use the data of 1956 ~ 1996 to fit an AR(4) model, and 
make forecasts for 1997; then use the data of 1956 ~ 1997 to fit another AR(4) model, and 
make forecasts for 1998; and so on. Data are log-transformed and deseasonalized before being 
used. The observed discharges versus one-month forecasted discharges are plotted in Figure 
3.8. The evaluation results for one-month ahead monthly flow forecasts for each month are 
reported in Table 3.3.  
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Figure 3.8 1-month ahead forecasts with AR(4) model for monthly flow  at TNH 
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Table 3.3 One-month ahead forecast performance for monthly streamflow at TNH with AR(4) model 

Month MAE MAPE RMSE MSRE CE r2 
Jan 10.555 0.074 13.34 0.009 0.112 0.680 
Feb 13.585 0.089 16.73 0.011 0.389 0.400 
Mar 14.424 0.074 16.43 0.007 -0.250 0.292 
Apr 57.714 0.168 68.18 0.038 -0.897 0.518 
May 145.334 0.254 193.62 0.091 -0.645 0.133 
Jun 366.968 0.383 462.33 0.184 -0.853 0.490 
Jul 343.083 0.375 399.27 0.231 0.541 0.595 

Aug 122.439 0.153 170.31 0.052 0.654 0.668 
Sep 199.816 0.285 296.26 0.155 -0.633 0.407 
Oct 95.687 0.119 125.56 0.019 0.681 0.756 
Nov 12.038 0.029 14.11 0.001 0.973 0.989 
Dec 6.936 0.038 9.17 0.003 0.898 0.934 
Year 115.715 0.170 213.86 0.067 0.732 0.741 

 
In terms of the values of CE, the performance of the AR(4) model for monthly flows is poor. 
Satisfying forecasts are available only for November and December with the AR(4) model. 
However, as shown by the diagnostic checking results in Section 3.1.3, there is no useful 
information left in the residuals from the AR(4) model. We cannot expect better results with 
the AR model. Therefore, to improve the skill of monthly streamflow forecasting, exogenous 
explanatory variables must be included in forecasting models. 

Notice that for several months (March to June, and September), the values of CE are below 
zero. That just means that for these months, the forecasted values are not as good as the mean 
values of the forecasting period. It does not mean that long-term mean values for these 
months are better than predicted values. Long-term monthly mean values may differ from 
those of the forecasting period, especially when the sample size is short (e.g., the monthly 
flows of 5 years). In fact, if we use the long-term monthly mean values as the forecasted 
values for years 1996 to 2000, CE values are negative for all months but December. 

3.4.2.2 Forecasting daily flows of the Yellow River at TNH 

Forecast experiments are made using the ARMA (20,1), ARFIMA(7,d,0) and PAR model for 
daily flow at TNH during year 1996 to 2000. The model building is also on a rolling-forward 
basis, as that in the case of monthly flow forecasting. The observed discharges versus 
forecasted daily discharges for 1-day and 5-day ahead forecasts are plotted in Figure 3.9, 3.10 
and 3.11.  
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 Figure 3.9 (a) 1-day ahead and (b) 5-day ahead forecasts with the ARMA(20,1) model  

(a) (b) 
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Figure 3.10 (a) 1-day ahead and (b) 5-day ahead forecasts with the ARFIMA(7,d,0) model 
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Figure 3.11 (a) 1-day ahead and (b) 5-day ahead forecasts with the PAR model 

 

It is shown from the scatter plots that while there is no visible performance difference for one-
day ahead forecasts with the three model, ARMA model and the ARFIMA model seems 
outperform the PAR model for the forecasts at the long lead time (5 days). However, the 
forecasts of both the ARMA model and the ARFIMA model slightly biased downwardly for 
high flows whereas no significant bias is seen with the PAR model.  

The forecast results are further evaluated with different measures for the whole year as well as 
for individual seasons, namely, spring (March to May), summer (June to August), autumn 
(September to November) and winter (December to February). The evaluation results for 1- to 
10-day ahead forecasts with the ARMA(20,1) are listed in Table 3.4-3.8, with the 
ARFIMA(7,d,0) in Table 3.9-3.13, and with the PAR model in Table 3.14 – 3.18. We have 
the following remarks with respect to the results of forecast experiments: 

(1) In terms of the values of CE, we see that when taking the forecasts of the whole year into 
account, the measure CE indicates that both the ARMA(20,1) model and the 
ARFIMA(7,d,0) model may give satisfying forecasts for a lead time of up to 9 days. On 
the other hand, the lead times for which satisfying forecasts can be achieved for individual 
seasons are mostly less than 9 days. It means that, the forecast performance is exaggerated 
by using CE. In contrast, SACE gives a good correction. According to SACE, generally, 
we can make reliable 5-day ahead forecasts for the daily flow series at TNH. 

 

(a) (b) 

(a) (b) 
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Table 3.4 Forecast performance of ARMA(20,1) for whole year for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 SACE 
1 24.25 0.038 45.93 0.003 0.989 0.989 0.980 
2 42.69 0.066 80.21 0.009 0.967 0.967 0.938 
3 55.44 0.084 104.47 0.014 0.943 0.943 0.895 
4 65.24 0.097 122.87 0.019 0.922 0.922 0.855 
5 73.76 0.110 138.60 0.024 0.900 0.900 0.815 
6 83.25 0.123 153.36 0.030 0.878 0.878 0.774 
7 92.85 0.135 167.89 0.035 0.854 0.854 0.729 
8 101.31 0.146 181.53 0.041 0.829 0.829 0.683 
9 108.37 0.156 193.34 0.047 0.806 0.807 0.640 

10 114.21 0.164 203.99 0.053 0.784 0.785 0.599 

Table 3.5 Forecast performance of ARMA(20,1) for spring for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 17.69 0.041 30.86 0.003 0.974 0.974 
2 31.56 0.072 54.68 0.01 0.920 0.921 
3 40.03 0.091 70.73 0.015 0.867 0.870 
4 46.87 0.105 81.99 0.020 0.823 0.829 
5 52.53 0.116 91.54 0.024 0.782 0.790 
6 59.34 0.129 102.77 0.029 0.732 0.742 
7 68.66 0.144 119.80 0.035 0.662 0.672 
8 77.76 0.158 135.27 0.042 0.602 0.612 
9 85.67 0.169 149.52 0.048 0.551 0.561 

10 93.29 0.181 161.39 0.054 0.510 0.521 

Table 3.6 Forecast performance of ARMA(20,1) for summer for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 56.57 0.058 81.26 0.006 0.974 0.974 
2 101.02 0.103 141.58 0.018 0.921 0.921 
3 132.55 0.136 184.54 0.030 0.866 0.866 
4 155.78 0.160 216.83 0.042 0.815 0.815 
5 175.63 0.183 243.82 0.054 0.766 0.766 
6 198.59 0.207 268.33 0.066 0.717 0.717 
7 220.65 0.231 290.23 0.079 0.670 0.670 
8 239.73 0.252 311.07 0.093 0.622 0.622 
9 255.07 0.27 328.66 0.107 0.579 0.579 

10 267 0.285 344.95 0.121 0.536 0.536 

Table 3.7 Forecast performance of ARMA(20,1) for autumn for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 16.95 0.024 27.22 0.001 0.991 0.991 
2 29.51 0.042 48.09 0.004 0.971 0.972 
3 38.87 0.055 63.15 0.006 0.950 0.951 
4 46.97 0.066 76.28 0.008 0.927 0.929 
5 54.47 0.077 89.41 0.011 0.899 0.902 
6 61.95 0.089 101.55 0.015 0.869 0.875 
7 68.07 0.098 112.90 0.018 0.838 0.847 
8 73.13 0.105 122.99 0.021 0.808 0.82 
9 77.79 0.111 131.72 0.023 0.779 0.796 

10 81.24 0.117 139.21 0.026 0.752 0.774 
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Table 3.8 Forecast performance of ARMA(20,1) for winter for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 5.05 0.03 7.29 0.002 0.967 0.968 
2 7.23 0.043 10.35 0.004 0.927 0.930 
3 8.44 0.051 12.05 0.005 0.890 0.897 
4 9.01 0.054 13.12 0.006 0.854 0.867 
5 9.76 0.06 13.82 0.007 0.821 0.840 
6 10.19 0.063 14.16 0.007 0.794 0.817 
7 10.65 0.066 14.17 0.007 0.776 0.801 
8 10.93 0.068 14.23 0.007 0.758 0.784 
9 11.01 0.069 14.17 0.007 0.748 0.772 

10 11.03 0.070 14.39 0.008 0.731 0.753 

Table 3.9 Forecast performance of ARFIMA(7,d,0) for whole year for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 SACE 
1 24 0.038 45.57 0.003 0.989 0.989 0.980
2 42.31 0.065 79.59 0.009 0.967 0.967 0.939
3 54.91 0.082 103.78 0.014 0.944 0.944 0.896
4 64.23 0.095 122.19 0.019 0.922 0.922 0.856
5 72.66 0.107 137.86 0.023 0.901 0.901 0.817
6 81.77 0.119 152.52 0.028 0.879 0.879 0.776
7 90.94 0.132 166.95 0.034 0.855 0.855 0.732
8 98.96 0.142 180.17 0.039 0.831 0.831 0.687
9 105.79 0.151 191.62 0.044 0.809 0.809 0.646

10 111.36 0.158 202.18 0.049 0.788 0.788 0.606

Table 3.10 Forecast performance of ARFIMA(7,d,0) for spring for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 17.7 0.041 30.64 0.003 0.975 0.975 
2 31.51 0.072 53.94 0.01 0.922 0.922 
3 39.46 0.089 69.5 0.015 0.871 0.873 
4 45.89 0.103 80.35 0.019 0.83 0.832 
5 51.37 0.113 89.57 0.023 0.791 0.794 
6 57.8 0.125 100.68 0.027 0.743 0.747 
7 66.99 0.139 118 0.033 0.673 0.677 
8 75.72 0.152 133.67 0.039 0.612 0.617 
9 83.15 0.162 147.95 0.045 0.561 0.568 

10 90.41 0.173 159.7 0.05 0.52 0.529 

Table 3.11 Forecast performance of ARFIMA(7,d,0) for summer for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 55.91 0.057 80.76 0.006 0.974 0.975  
2 100.46 0.103 141.04 0.018 0.922 0.922  
3 132.5 0.135 184.36 0.03 0.866 0.866  
4 154.85 0.159 217.16 0.041 0.814 0.815  
5 175.22 0.181 244.46 0.053 0.765 0.766  
6 197.41 0.205 269.22 0.065 0.716 0.717  
7 218.23 0.226 291.26 0.077 0.668 0.670  
8 236.06 0.246 311.55 0.09 0.621 0.623  
9 251.25 0.263 328.74 0.102 0.578 0.580  

10 262.92 0.277 345.2 0.115 0.535 0.537  
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Table 3.12 Forecast performance of ARFIMA(7,d,0) for autumn for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 16.66 0.024 26.58 0.001 0.991 0.991  
2 28.72 0.042 46.45 0.004 0.973 0.973  
3 37.54 0.054 60.5 0.006 0.954 0.955  
4 45.15 0.064 72.74 0.008 0.934 0.935  
5 52.02 0.075 85.06 0.011 0.909 0.911  
6 59.15 0.085 96.15 0.014 0.883 0.887  
7 64.93 0.094 106.46 0.017 0.856 0.862  
8 69.81 0.101 115.41 0.019 0.831 0.839  
9 74.22 0.107 123.13 0.022 0.807 0.819  

10 77.26 0.112 129.94 0.024 0.784 0.800  

Table 3.13 Forecast performance of ARFIMA(7,d,0) for winter for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 5.02 0.03 7.22 0.002 0.968 0.969 
2 7.13 0.043 10.15 0.003 0.930 0.933 
3 8.27 0.05 11.72 0.005 0.896 0.902 
4 8.73 0.053 12.68 0.005 0.864 0.875 
5 9.42 0.057 13.35 0.006 0.833 0.849 
6 9.83 0.06 13.7 0.007 0.807 0.827 
7 10.29 0.064 13.72 0.007 0.790 0.812 
8 10.67 0.066 13.88 0.007 0.770 0.792 
9 10.77 0.067 13.9 0.007 0.758 0.778 

10 10.8 0.067 14.17 0.007 0.740 0.758 

Table 3.14 Forecast performance of PAR for whole year for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 SACE 
1 23.35 0.037 45.38 0.003 0.989 0.989 0.980 
2 41.99 0.065 80.68 0.010 0.966 0.966 0.937 
3 54.97 0.082 104.40 0.014 0.943 0.944 0.895 
4 65.02 0.095 125.05 0.019 0.919 0.921 0.849 
5 75.10 0.108 143.60 0.025 0.893 0.896 0.801 
6 84.97 0.120 161.28 0.031 0.865 0.870 0.750 
7 94.25 0.133 178.93 0.038 0.834 0.843 0.692 
8 102.95 0.144 195.47 0.045 0.802 0.815 0.632 
9 110.37 0.154 209.81 0.052 0.771 0.789 0.576 

10 116.69 0.163 223.80 0.059 0.740 0.764 0.518 

Table 3.15 Forecast performance of PAR for spring for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 17.40 0.041 30.00 0.003 0.976 0.976 
2 31.55 0.073 54.13 0.010 0.921 0.922 
3 41.03 0.093 71.15 0.016 0.865 0.873 
4 48.18 0.108 83.94 0.022 0.814 0.829 
5 54.06 0.119 94.99 0.027 0.765 0.787 
6 61.35 0.132 108.59 0.033 0.701 0.733 
7 72.21 0.15 128.38 0.041 0.612 0.652 
8 83.37 0.167 146.92 0.050 0.531 0.579 
9 91.96 0.18 164.15 0.059 0.459 0.517 

10 99.44 0.192 178.56 0.067 0.400 0.467 
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Table 3.16 Forecast performance of PAR for summer for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 55.26 0.056 80.78 0.006 0.974 0.974 
2 100.84 0.103 143.31 0.018 0.919 0.919 
3 131.47 0.134 184.69 0.030 0.865 0.869 
4 155.56 0.158 221.06 0.043 0.807 0.814 
5 180.91 0.182 253.17 0.056 0.748 0.761 
6 205.91 0.208 283.02 0.071 0.686 0.707 
7 225.56 0.228 310.59 0.086 0.622 0.656 
8 243.65 0.247 336.61 0.102 0.557 0.607 
9 259.84 0.266 358.22 0.118 0.499 0.566 

10 273.37 0.283 380.41 0.136 0.436 0.524 

Table 3.17 Forecast performance of PAR for autumn for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 15.15 0.023 26.01 0.001 0.992 0.992 
2 27.10 0.04 46.14 0.004 0.974 0.974 
3 37.58 0.052 61.73 0.005 0.952 0.954 
4 45.37 0.061 75.88 0.007 0.928 0.931 
5 53.35 0.072 90.71 0.010 0.896 0.902 
6 59.61 0.081 103.79 0.013 0.864 0.873 
7 65.25 0.088 115.82 0.016 0.830 0.844 
8 70.12 0.094 126.41 0.018 0.797 0.816 
9 74.57 0.100 136.39 0.02 0.763 0.788 

10 78.28 0.105 145.48 0.023 0.729 0.761 

Table 3.18 Forecast performance of PAR for winter for daily flows at TNH 

Lead time (days) MAE MAPE RMSE MSRE CE r2 
1 4.85 0.029 7.01 0.002 0.970 0.970 
2 7.06 0.043 12.77 0.007 0.889 0.896 
3 7.75 0.046 10.83 0.004 0.911 0.916 
4 8.31 0.050 11.89 0.005 0.880 0.891 
5 8.99 0.054 12.69 0.005 0.849 0.867 
6 9.57 0.058 13.33 0.006 0.817 0.842 
7 10.07 0.061 13.64 0.006 0.793 0.823 
8 10.43 0.063 14.05 0.007 0.764 0.800 
9 10.66 0.065 14.27 0.007 0.745 0.783 

10 10.90 0.067 14.64 0.007 0.722 0.761 
 

(2) For both daily and monthly flow forecasting, we can observe significant seasonal variation 
in forecast accuracy. For daily flow forecasting, forecast accuracy for autumn is much 
higher than other seasons, we can give satisfying forecasts for up to 8 days with ARMA 
model, 9 days with the ARFIMA model, according to the values of CE. For summer, the 
forecast accuracy is the lowest, we can give only 4 days good forecast. For monthly flow, 
forecast accuracy in winter half year is generally much higher than that in summer half 
year. Such a variation in forecast accuracy is closely related to the seasonal variation in 
autocorrelation structure, as we have discussed in Chapter 2. 

(3) The long-memory ARFIMA(7,d,0) model performs slightly better than short memory 
ARMA(20,1) model. That gives us another evidence of the presence of long-memory in 
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addition to the evidence given by the statistical tests. The reseason of the improvement in 
forecasting accuracy may be partly seen from the perspective of how the models capture 
the sample ACF structure. The theoretical ACF of ARMA(20,1) model, ARFIMA(7,d,0) 
and the sample ACF of daily flows at TNH are plotted in Figure 3.12. It is shown that, 
while the theoretical ACF of ARMA(20,1) model decays much faster than the sample 
ACF of daily flows at TNH, the theoretical ACF of ARFIMA(7,d,0) fits the sample ACF 
better, although it decays much slower than the sample ACF at long lags. 
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Figure 3.12 Sample ACF of daily flows at TNH and theoretical ACF of fitted ARMA(20,1) and 

ARFIMA(7,d,0) model 

It should be noticed that ARMA models of very high autoregressive orders, e.g., an 
ARMA(150,0) model, could give ACF structures even closer to the sample ACF then the 
ARFIMA model, as shown in Figure 3.13. Thus, it is possible that the long-memory of daily 
streamflow process could be described with a very high order AR process. In fact, there are 
some attempts to describe the long-memory process with ARMA model (e.g., Tiao and Tsay, 
1994; Basak et al., 2001; Man, 2003). Ideally, if the true structure of an ARFIMA(p,d,q) 
process can be correctly identified, then using the ARFIMA model will produce the best 
forecasts. However, in practice, as pointed out in Crato and Ray (1996), the low success rate 
in the selection of the right ARFIMA model, along with the large variance in the estimation of 
the parameters, make the use of simple ARMA model appealing for forecasting purposes.  
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Figure 3.13 Sample ACF of daily flows at TNH and theoretical ACF of fitted AR(150) model
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3.5 Constructing Prediction Intervals for Streamflow Forecasts 

3.5.1 Introduction of Constructing Prediction Intervals 
Forecasts are often expressed as single numbers, called point forecasts. The vast majority of 
research in hydrological forecasting, as well as most operational hydrological forecasting 
systems, centers around producing and evaluating point forecasts. Point forecasts are of 
course of first-order importance. However, point forecasts give no information about 
predictive uncertainty, which is of vital importance in planning and decision-making. Interval 
forecasts are important to supplement point forecasts, especially for medium- and long-range 
forecasting. Interval forecasts usually consists of an upper and a lower limit (prediction 
interval, PI) between which the future value is expected to lie with a prescribed probability, or 
a probability distribution function of the predictand (the variable to be forecasted). Hirsch 
(1981) stated that the presentation of a single “most likely” hydrograph is of no value in long-
range hydrological forecasting.  

A variety of approaches to computing PIs are available (e.g., Chatfield, 1993). However, no 
generally accepted method exists for calculating PIs except for forecasts calculated 
conditional on a fitted probability model, for which the variance of forecast errors can be 
readily evaluated (Chatfield, 2001). In the hydrological community, many efforts have been 
made on evaluating the forecast uncertainty, which is essentially equivalent to constructing 
PIs, in hydrological modeling in the last two decades or so (e.g., Kitanidis and Bras, 1980; 
Beven and Binley, 1992; Freer et al., 1996; Kuczera and Parent, 1998; Krzysztofowicz, 1999). 
As mentioned in Section 1.2.2, five major types of approaches have been proposed and used 
for hydrological forecasting so far. In this study, the approaches, which are based the 
residuals and independent of any assumption, will be applied to build PIs for forecasts from 
the univariate ARMA models for monthly streamflow forecasts. 

3.5.2 Methodology 

Although theoretical formulae are available for computing PIs for ARMA-type time-series 
model (Box and Jenkins, 1976), it is well-known that streamflow processes often have heavy 
tails (e.g., Anderson and Meerschaert, 1998), therefore, theoretical formulae which assume 
normality are not applicable. In contrast with theoretical method, residual based PI estimation 
methods do not require any distributional assumptions. Two methods will be used in this 
study to estimate PIs based on residuals from ARMA models, i.e., empirical method and 
bootstrap-based method. Empirical method constructs PIs relying on the properties of the 
observed distribution of residuals (rather than on an assumption that the model is true). 
Bootstrap-based method samples from the empirical distribution of the residuals from fitted 
models to construct a sequence of possible future values, and evaluates PIs at different 
horizons by simply finding the interval within which the required percentage of resampled 
future values lies. 

3.5.2.1 Empirical PI construction 
Let {xt} be a sequence of n observed streamflow series. The empirical PI estimation for k-step 
ahead prediction proceeds as follows: 

Step 1. Log-transform the streamflow series, and then deseasonalize the log-transformed 
series by subtracting the monthly mean values and dividing by the monthly standard 
deviations of the log-transformed series. 
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Step 2. Fit AR(p) model to the transformed series, in the form of ( ) t tB xφ ε= , where φ(B) 
represents the ordinary autoregressive components. Compute the k-step ahead fitted 
error (residuals): 

1
, 1,...,

p

t k t k j t k j
j

x x t p n kε φ+ + + −
=

= − = + −∑ .        (3.17) 

Notice that, when k-j ≥ 1, calculated value (with 
1

p

t j t j
j

x xφ −
=

=∑ ), instead of the 

observed value, will be used for xt+k-j in the Equation (3.17). 

Step 3. Define the empirical distribution function Fε,k of the residuals εt+k: 
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Step 4. Obtain the upper bound of k-step ahead future value by expression 
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and the lower bound by 
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where, U
n kε +  and L

n kε +  are the upper and lower p/2-th empirical quantile drawn from 
Fε,k according to the nominal coverage level (1 - p). Notice that, as in step 2, when k-j 
≥ 1, calculated value will be used for xt+k-j in the Equation (3.19) as well as in the 
Equation (3.20). 

Step 5. Inversely transform the upper and lower bounds to their original scale. 

3.5.2.2 Bootstrap PI construction 

Bootstrap method is a distribution-free, but computationally intensive approach. There are 
several bootstrap alternatives in the literature to construct prediction intervals for AR 
processes (e.g., Stine, 1987; Thombs and Schucany, 1990). In this study, we use the method 
recently proposed by Pascual et al. (2004), which has the advantage over other bootstrap 
methods previously proposed for autoregressive integrated processes that variability due to 
parameter estimation can be incorporated into prediction intervals without requiring the 
backward representation of the process. Consequently, the procedure is very flexible and can 
be extended to processes even if their backward representation is not available. Furthermore, 
its implementation is very simple. 

The steps for obtaining bootstrap prediction intervals for monthly streamflow processes are as 
follows: 

Step 1. Transform the series in the same way as Step 1 in Section 3.5.2.1. 

Step 2. Fit AR(p) model to the transformed series, in the form of ( ) t tB xφ ε= . Compute the 
one-step fitted error (residuals) εt as in Equation (3.17), where k=1.  
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Step 3. Let Fε be the empirical distribution function of the centered and rescaled residuals by 
the factor [(n-p)/(n-2p)] 0.5. 

Step 4. From a set of p initial values, generate a bootstrap series from 

* * *

1

p

t j t j t
j

x xφ ε−
=

= +∑             (3.21) 

where εt
* are sampled randomly from Fε. 

Step 5. Use the generated bootstrap series to re-estimate the original model, and obtain one 
bootstrap draw of the autoregressive coefficients φ *= (φ1

*, φ2
*,…, φp

*). 

Step 6. Generate a bootstrap future value through the recursion of the AR model with the 
bootstrap parameters 

* * * *
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= +∑            (3.22) 

with εt
* a random draw from Fε; xn+h*= xn+h for h ≤ 0. 

Step 7. Repeat the last three steps B times and then go to step 8. 
Step 8. The endpoints of the prediction interval are given by quantiles of GB

*, the bootstrap 
distribution function of xn+k

*. 
Step 9. Inversely transform the upper and lower bounds to their original scale. 

3.5.3 Application of the Two PI Construction Methods 

3.5.3.1 Split the data set and fit AR models 

The monthly streamflow series of four rivers at four sites (the Yellow River at TNH, the 
Rhine River at Lobith, the Ocmulgee River at Macon and the Umpqua River near Elkton) will 
be used in this study. It has been analysed in Chapter 2 (Section 2.2 and 2.3), that the four 
monthly streamflow series are basically stationary without significant trending behaviour. 
Hence, no pre-processing (e.g., detrending or differencing) is considered. All the streamflow 
series are transformed with log-transformation and deseasonalization. Then we split each 
series into two parts, with the first part for fitting ARMA models and getting the residuals and 
the second part for constructing prediction intervals with the ARMA models fitted to the first 
part. Chernick (1999, pp 150-151) suggested that the sample size for bootstrap sampling 
should be larger than 30. To meet the requirement, we keep the size of first part larger than 
360 (i.e., 30 years for monthly series), so that when generating bootstrap samples for each 
individual month, we have a sample size larger than 30. The orders of the AR models fitted to 
the first parts of each transformed flow series are chosen according to AIC. The details of the 
data size, the partition of the data set and the order of AR models for each series are listed in 
Table 3.19. 

 Table 3.19 Data size, the partition of the data set and the order of AR models 

River Data period Part 1 Part 2 AR(p) 
Yellow 1956-2000 420 10 4 
Rhine 1901-1996 600 552 4 

Ocmulgee 1929-2001 444 432 3 
Umpqua 1906-2001 600 552 5 
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In this study, only one-step ahead forecast is considered, and the empirical distribution 
function of residuals is defined according to fitted error from the AR models fitted to the first 
part. But in the practice, all the fitted residuals up to the forecast point could be used. 
 
3.5.3.2 Construct PIs according to the overall empirical distribution function of residuals 
 
The 95% probability is commonly applied to build prediction interval. However, for a 95% 
probability, PIs may become so embarrassingly wide that they are of little practical use other 
than to indicate the high degree of future uncertainty. Granger (1996) suggests using 50%, 
rather than 95%, PIs because this gives intervals that are better calibrated in regard to their 
robustness to outliers and to departures from model assumptions. Such intervals will be 
narrower but imply that a future value has only a 50% chance of lying inside the interval. 
Therefore, Chatfield (2001) suggests using 90% or 80% prediction interval. In this study, we 
build the 95%, 90%, 80% and 50% PIs for one-step ahead monthly average discharge 
prediction with the methods described in Section 3.5.2. For the bootstrap procedure, B = 1000.  

To evaluate the performance of PI construction methods, the following measures are used: the 
actual PI coverage, the average PI length, the proportions of observations lying out to the left 
and to the right of the interval. A good PI construction method should have coverage close to 
the nominal coverage, a small interval length, and balanced proportions of observations below 
and above the interval. Table 3.20 reports the results for the four monthly streamflow 
processes, comparing empirical PIs with bootstrap-based PIs. It is shown that both methods 
give reasonable performance in terms of interval coverage, and there is no significant bias of 
the interval, namely, the numbers of observed values falling to the left and to the right are 
mostly similar. In terms of the interval length, the empirical method outperforms the bootstrap 
method because the empirical method has generally shorter interval length. 
 
Since the streamflow processes exhibit strong seasonality as shown in Figure 2.9 in Chapter 2, 
to inspect possible impacts of the presence of seasonality on the performance of empirical 
method and bootstrap method, we check the PIs month by month. Table 3.21 lists PI 
construction results for these flow series with nominal coverage of 80% month by month (to 
save space, results for other three nominal coverage levels are not listed here). 
 
From Table 3.21, we find that there is a systematic bias that for low-flow months the coverage of 
PIs is larger than the nominal coverage, whereas for high-flow months the coverage of PIs is smaller 
than the nominal coverage, especially for the Yellow River and the Umpqua River. That indicates that 
for low-flow months the PIs are over-estimated, and for high-flow months the PIs are under-estimated. 
We examine the standard deviation of the residuals of the months over the year, plotted in 
Figure 3.14. It is shown that for the Yellow River and Umpqua River, there is obvious 
seasonal variation in standard deviation of the residuals. Comparing Figure 2.9 and Figure 
3.14, we observe that there is a general tendency that the months with high flow also have 
high residual standard deviation. Therefore, when we use the overall empirical distribution 
function to construct the PIs, the coverage between the upper and lower p/2-th empirical 
quantile for the nominal coverage (1-p) is too large for low-flow months, and too small for 
high flow months, which causes the systematic bias of PI coverage shown in Table 3.21. 
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Table 3.20 Prediction intervals for monthly flow series 

Yellow Rhine Ocmulgee Umpqua Nominal 
Cov. Measure 

Emp. Boot. Emp. Boot. Emp. Boot. Emp. Boot. 
Cov. 0.925 0.925 0.964 0.940 0.938 0.910 0.964 0.944 
Above Cov. 0.033 0.033 0.016 0.034 0.016 0.021 0.016 0.027 
Below Cov. 0.042 0.042 0.020 0.025 0.046 0.069 0.020 0.029 95% 

Average Len. 623 704 2828 2798 171 190 437 430 
Cov. 0.875 0.892 0.879 0.888 0.882 0.856 0.908 0.902 
Above Cov. 0.050 0.042 0.067 0.054 0.046 0.042 0.027 0.049 
Below Cov. 0.075 0.067 0.054 0.058 0.072 0.102 0.065 0.049 

90% 

Average Len. 473 551 1996 2266 118 134 350 355 
Cov. 0.742 0.742 0.784 0.772 0.762 0.736 0.806 0.821 
Above Cov. 0.117 0.092 0.120 0.123 0.095 0.118 0.087 0.092 
Below Cov. 0.142 0.167 0.096 0.105 0.144 0.146 0.107 0.087 80% 

Average Len. 346 438 1500 1582 89 91 247 276 
Cov. 0.500 0.500 0.527 0.518 0.491 0.451 0.504 0.489 
Above Cov. 0.200 0.192 0.252 0.248 0.255 0.269 0.268 0.281 
Below Cov. 0.300 0.308 0.221 0.234 0.255 0.280 0.228 0.230 

50% 

Average Len. 171 225 851 867 43 47 110 124 
Note: Cov. - coverage; Len. - length; Emp. - empirical method; Boot. - bootstrap method.

 
Table 3.21 Month by month PI coverages for monthly flow with nominal coverage of 80% 

(Without considering the seasonal variations in variance of the residuals) 

Yellow Rhine Ocmulgee Umpqua Month 
Emp. Boot. Emp. Boot. Emp. Boot. Emp. Boot. 

1 0.900 0.700 0.717 0.783 0.833 0.944 0.717 0.739 
2 0.900 0.700 0.696 0.804 0.722 0.722 0.652 0.739 
3 1.000 0.500 0.696 0.739 0.722 0.722 0.739 0.761 
4 0.200 0.400 0.739 0.761 0.667 0.639 0.761 0.891 
5 0.800 0.800 0.848 0.804 0.722 0.694 0.783 0.870 
6 0.500 0.500 0.826 0.717 0.861 0.889 0.891 0.848 
7 0.500 0.500 0.761 0.739 0.722 0.528 0.957 0.783 
8 0.500 0.900 0.913 0.848 0.750 0.500 0.957 0.870 
9 0.600 1.000 0.891 0.848 0.722 0.750 0.913 0.870 
10 1.000 1.000 0.804 0.739 0.806 0.778 0.848 0.891 
11 1.000 0.900 0.761 0.717 0.861 0.833 0.696 0.826 
12 1.000 1.000 0.761 0.761 0.750 0.833 0.761 0.761 
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Figure 3.14 Seasonal variations in standard deviation (SD) of the residuals from AR models 



86  Chapter3 ARMA-Type Models for Streamflow Processes 

 

 
3.5.3.3 Construct PIs according to the seasonal empirical distribution function of residuals 
 
To take the season-dependant variance of residuals into account, we define the seasonal 
empirical distribution function Fε(m) for the residuals of each month m. Then choose the upper 
and lower p/2-th empirical quantile for the nominal coverage (1-p) from Fε(m) for empirical PI 
construction method, and generate bootstrapping samples from Fε(m) for the bootstrap method, 
so that we construct the PIs considering the seasonal variation in variance of the residuals. 
Table 3.22 lists the results for the streamflow processes with the seasonal variation in 
variance considered. 
 

Table 3.22 PIs considering the seasonal variation in variance of the residuals 

Yellow Rhine Ocmulgee Umpqua Nominal 
Cov. Measure 

Emp. Boot. Emp. Boot. Emp. Boot. Emp. Boot. 
Cov. 0.917 0.933 0.953 0.937 0.905 0.905 0.957 0.944
Above Cov. 0.042 0.025 0.036 0.033 0.039 0.023 0.027 0.025
Below Cov. 0.042 0.042 0.011 0.031 0.056 0.072 0.016 0.03195% 

Average Len. 597 710 2768 2807 147 189 424 432
Cov. 0.875 0.892 0.899 0.886 0.824 0.859 0.911 0.911
Above Cov. 0.067 0.042 0.058 0.058 0.079 0.042 0.049 0.043
Below Cov. 0.058 0.067 0.043 0.056 0.097 0.100 0.040 0.045

90% 

Average Len. 513 553 2316 2276 110 132 357 355
Cov. 0.775 0.750 0.768 0.779 0.704 0.745 0.804 0.810
Above Cov. 0.092 0.092 0.136 0.120 0.139 0.109 0.107 0.096
Below Cov. 0.133 0.158 0.096 0.101 0.157 0.146 0.089 0.09480% 

Average Len. 439 439 1507 1584 82 92 269 276
Cov. 0.483 0.483 0.529 0.520 0.458 0.447 0.502 0.507
Above Cov. 0.217 0.200 0.255 0.246 0.278 0.271 0.272 0.264
Below Cov. 0.300 0.317 0.216 0.234 0.264 0.282 0.226 0.228

50% 

Average Len. 225 228 883 868 47 47 123 124
Note: Cov. - coverage; Len. - length; Emp. - empirical method; Boot. - bootstrap method.

 
Comparing Table 3.22 with Table 3.20, we observe that no significant improvement is 
achieved in terms of PI coverages after considering the seasonal variation in variance. The 
values of coverage length are even bigger than those without considering seasonal variation in 
variance. However, when we examine the PIs month by month, as shown in Table 3.23 for 
nominal coverage 80%, it is clear that the systematic bias shown in Table 3.21 disappears, and 
maximum errors between the nominal coverage and actual coverage are reduced, especially 
for the empirical method. For example, for the Umpqua River, the range of the difference 
between the nominal coverage and actual coverage with the empirical method is –0.148 (= 
0.652 – 0.8) to 0.157 (=0.957 – 0.8) before considering seasonal standard deviation in 
residuals, and shrinks to –0.039 (= 0.761- 0.8) to 0.07 (=0.870 – 0.8) after considering 
seasonal standard deviation. Therefore, by considering the seasonal variation in variance of 
the residuals, more accurate PI construction is obtained. Figure 3.15 plots the observed 
discharges during 1991 to 2000 of the Yellow River and their upper and lower prediction 
bounds for 80% nominal coverage constructed using the empirical method considering the 
seasonal empirical distribution function of residuals. At the same time, we should notice that 
for streamflow series, like the monthly streamflow of the Ocmulgee, which exhibits no 
significant seasonal variation in variance in the residuals, to construct PI according to the 
seasonal empirical distribution function of residuals may deteriorate the PI construction 
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results, because the seasonal empirical distribution function of residuals are defined with a 
much smaller sample size (for monthly streamflow series, the size is reduced to 1/12), which 
may cause error for PI construction. 
 

Table 3.23 Month by month PI coverages for monthly flow with nominal coverage of 80% 

(Considering the seasonal variations in variance of the residuals) 

Yellow Rhine Ocmulgee Umpqua 
Month Emp. Boot. Emp. Boot. Emp. Boot. Emp. Boot. 
1 0.700 0.700 0.783 0.783 0.944 0.944 0.739 0.739 
2 0.700 0.700 0.739 0.826 0.722 0.750 0.739 0.739 
3 0.800 0.600 0.783 0.804 0.694 0.722 0.783 0.783 
4 0.500 0.400 0.783 0.761 0.611 0.667 0.848 0.870 
5 0.800 0.800 0.804 0.804 0.694 0.694 0.870 0.870 
6 0.400 0.500 0.717 0.717 0.833 0.917 0.848 0.848 
7 0.600 0.500 0.739 0.761 0.528 0.528 0.783 0.783 
8 0.900 0.900 0.848 0.848 0.500 0.500 0.761 0.783 
9 1.000 1.000 0.826 0.826 0.694 0.722 0.848 0.848 
10 1.000 1.000 0.717 0.717 0.778 0.833 0.870 0.891 
11 0.900 0.900 0.717 0.717 0.667 0.833 0.804 0.826 
12 1.000 1.000 0.761 0.783 0.778 0.833 0.761 0.739 
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Figure 3.15 Observed monthly discharges (1991-2000) of the Yellow River and their 80% upper and 

lower prediction bounds. 

 

3.6 Predictability of Streamflow Processes 

3.6.1 Predictability and Its Definition 

Predictability is an important aspect of the dynamics of hydrological processes. Some 
processes are inherently easy to forecast, and others are more difficult. Basic understanding of 
predictability is the basis for building a meaningful and robust prediction system. The 
predictability of hydrological processes has not attracted much attention by the hydrology 
community until recent several years. Some examples of the studies on predictability include 
those based on the multiple explanatory variables (e.g., Maurer et al., 2003; Maurer et al., 
2004) and those based on univariate hydrological time series (e.g., Wang et al., 2004). 
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3.6.1.1 Sources of predictability 
 
Common sources of the predictability of a streamflow process include (Wang et al., 2004): (1) 
the temporal dependence (either short-rang or long-range) on the initial conditions of the 
watershed system; (2) the relations between the watershed system and its boundary conditions, 
including local factors (e.g., rainfall, temperature) as well as remote factors (e.g., sea surface 
temperature); and (3) the accuracy of the forecasting model (or method).  
 
Whatever type of predictability to be estimated, we should use a forecasting model which 
relates the sources of predictability to the future values of a hydrological time series. The 
predictability estimated on the basis of a forecasting model could be defined as model 
predictability. The essence of estimating the model predictability is to measure the accuracy 
of the forecasting model. Depending on what information is involved in the model, we may 
have a univariate model, which only take the temporal dependence of the observed time series, 
or a more complex multivariate model, either process-driven (i.e., physically-based) or data-
driven. In consequence, two approaches may be distinguished in estimating the predictability 
of streamflow processes: univariate approach and multivariate approach. The former one 
measures the predictability based on univariate time series analysis techniques (e.g., Wang et 
al., 2004), whereas the latter one estimates the predictability based on the knowledge of the 
rainfall-runoff generation mechanism and/or the tele-connections between global environment 
and streamflow processes of interest (e.g., Maurer et al., 2003, 2004). A multivariate approach 
may give us an insightful understanding of the watershed system. However, to estimate 
predictability with a multivariate approach need good knowledge of physical mechanisms 
underlying the streamflow process of interest and we need a suitable model which is assumed 
to be able to capture the mechanism well; on the other hand, the knowledge of different 
streamflow processes varies, and the skills of modeling are highly user-depend. Therefore, the 
predictabilities estimated with such an approach for different streamflow processes are 
normally not comparable. Furthermore, dominant factors of a hydrological system may 
change with the change of temporal and spatial scales, and the explanatory variables used in 
estimating the predictability of streamflow processes may have a problem of predictability 
themselves, which would make the problem of estimating the predictability of streamflow 
processes more complicated. For example, weather processes, which are fundamentally the 
driven forces of streamflow processes, are only predictable for at most a few weeks because 
of its inherently nonlinear and chaotic nature. In contrast, the univariate approach can be 
easily applied to different hydrological time series and the results are comparable among 
different processes. 
 
Because of the lack of accurate understanding of the streamflow process, there is always some 
unknown information that has not been used in any forecasting model. In consequence, we 
have another type of predictability, the potential predictability, which refers to the part of 
predictability that exists but is beyond of our knowledge so far, and have not been captured by 
any existing model. With the deepening of our understanding of a process, the potential 
predictability of the process would turn to be part of model predictability. In the following 
part of the study, we only consider the model predictability. 
 
3.6.1.2  Definition of predictability 
 
To quantify the predictability of a time series, we need some measures. Granger and Newbold 
(1978) proposed a definition of predictability for covariance stationary series, patterned after 
the familiar R2 of linear regression, as the ratio of the variance of the optimal prediction to the 
variance of the original time series. For calculating the predictability measure, Bhansali (1992) 
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proposed a procedure for estimating the variance of the mean squared error of prediction. In 
fact, the predictability measure used by the above-mentioned authors is essentially the same 
as the coefficient of efficiency (CE) which is proposed by Nash and Sutcliffe (1970) and 
widely used as model performance measure in the hydrology community. 
 
Despite its crudeness and identified weaknesses (Kachroo and Natale, 1992), CE, given by 
formula (3.14), is still one of the most widely used criteria for the assessment of hydrological 
model performance. While CE is a global measure of comparing the predicted value with the 
overall mean value, it is not efficient enough to evaluate the predictions for those series whose 
mean values change with seasons, which is almost always the case for hydrological processes. 
Therefore, a seasonally-adjusted coefficient of efficiency (SACE), given by formula (3.16), is 
also used here for evaluate the model performance for modeling seasonal time series.  
 
Forecasts are always made with some model or method. To measure the predictability of a 
process, we need a suitable model together with the model performance measure. 
Unfortunately, the real model underlying a real-world process is rarely known. On the other 
hand, if different types of models are used to measure the predictability, then the results 
between different time series will be not comparable. Therefore, we suggest using 
autoregressive (AR) model to measure the predictability.  
 
With the forecasting model and the model performance measures, we define the predictability 
as the predictable horizon, i.e., the lead time of prediction, for which the prediction is no 
better than the mean value for a stationary process or the seasonal mean value for a seasonal 
process. Theoretically, if the prediction is no better than the mean value for a stationary 
process or the seasonal mean value for a seasonal process, then CE ≤ 0 or SACE ≤ 0. However, 
our simulation with Gaussian white noise processes shows that, for 500 replications of a 
Gaussian white noise process of length 4000, the values of CE for one-step-ahead forecasts 
for the last 1000 points using AR models fitted to the first 3000 points may exceed 0.006. 
Therefore, it is more robust to estimate the predictability at CE = 0.01 level instead of at CE = 
0 level. Besides, for practical purposes, we define the predictability at a given CE or SACE 
level as the predictable horizon for which the CE or SACE of predictions is larger than a given 
value. In the present study, we also measure the predictability at CE (or SACE)  = 0.1 and 0.5 
level. 

3.6.2 Predictability of Simulated AR and ARFIMA Processes 
Here, we present the results of our simulation study measuring the predictability of AR(1) 
processes and ARFIMA(1,d,0) processes. We consider seven AR(1) and three ARFIMA(1,d,0) 
processes. For the AR(1) models, φ = 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99. For the 
ARFIMA(1,d,0) models, φ = 0, 0.5, 0.9 and d = 0.15, 0.3, 0.4, 0.45, and 0.49. We generate a 
hundred simulated realizations of size 5,000 for each model. The AR series and the ARFIMA 
series are produced by the arima.sim and arima.fracdiff.sim function built in S-Plus version 6. 
For each realization, we use the first 3000 points to fit an AR model, then make forecasts for 
the next 1000 points. The forecasting horizons vary from 100 (for the AR model with φ = 0.2) 
to 1,000 (for the AR model with φ = 0.99) depending on the model. 
 
The estimates of the predictability (reflected by predictable horizon) of these simulated AR(1) 
processes are presented in Table 3.24. At the same time, the results are plotted in Figure 3.16 
with the axis of predictable horizon log-scaled. It is shown that the predictability of AR 
processes still exhibits an exponential growth with the increase of autoregressive coefficient φ 
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on the log-scaled plot at different CE levels. That means, the predictability of AR processes 
follows a double-exponential growth with the increase of φ. 
 

Table 3.24 Predictability of AR(1) models at CE = 0.01, 0.1 and 0.5 levels 

Level φ = 0.2 φ = 0.4 φ = 0.6 φ = 0.8 φ = 0.9 φ = 0.95 φ = 0.99 
CE =0.01 0.97 

(0.17) 
1.85 

(0.44) 
3.71 

(0.82) 
8.51 

(2.23) 
17.99 
(6.42) 

31.74 
(13.96) 

87.76 
(53.30) 

CE =0.1 0.00 
(0.00) 

0.98 
(0.14) 

1.83 
(0.38) 

4.49 
(0.82) 

9.69 
(2.04) 

19.26 
(5.71) 

65.12 
(31.93) 

CE =0.5 0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

1.01 
(0.10) 

2.73 
(0.51) 

5.91 
(1.39) 

24.52 
(9.63) 

Note: The predictability is reflected by the average predictable horizons of 100 simulations for each AR model. 
The figures in the brackets are the standard deviations of the estimated predictable horizons. 
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Figure 3.16 Predictability (reflected by predictable horizon) versus φ for AR(1) models 
 
When estimating the predictability of ARFIMA(1,d,0) processes, to compare the performance 
of using AR model versus using ARFIMA model in forecasting ARFIMA processes, the 
ARFIMA model is also used. Therefore, for each ARFIMA(1,d,0) process, there are two 
estimates of predictability, one by using the AR model, another by using the ARFIMA model. 
The estimates of the predictability (reflected by predictable horizon) of the simulated 
ARFIMA(1,d,0) series at CE = 0.5 level and CE = 0.01 level given by the AR model are 
plotted against their theoretical autocorrelations at lag 1, ACF(1), in Figure 3.17 and Figure 
3.18, respectively. In the plots, the numbers in the brackets denote the value of autocorrelation 
coefficient of the AR component, the value of d, and the order of the moving average 
component in the ARFIMA(1,d,0) model. Comparing the predictability of ARFIMA 
processes with the predictability of AR(1) processes, we find that: 
 
(1) The growth of the predictability seems to follow an exponential growth at high CE levels 

(e.g., CE = 0.5), similar to that for AR(1) processes, but at low CE levels (e.g., CE = 0.01) 
the growth of the predictability seems to be not that fast. 

 
(2) At CE = 0.5 level, the ARFIMA model is less predictable than their equivalent AR(1) 

process which has a φ equal to the theoretical ACF(1) of the ARFIMA process. That 
indicates that, long-memory processes do not have longer predictability than their 
equivalent AR(1) processes at high CE levels. 

 
(3) At CE = 0.01 level, when the autoregressive coefficient of the AR component in the 

ARFIMA model is low (e.g., ≤ 0.5), the ARFIMA process is more predictable than the 
equivalent AR(1) process which has a φ equal to the theoretical ACF(1) of the ARFIMA 
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process, and the ARFIMA process is further more predictable if the predictability is 
estimated by using an ARFIMA model. That is in agreement with our expectation, 
because long-range dependence may give long-term predictability which only shows itself 
at low CE levels. But the predictability of ARFIMA(0.9,d,0) processes is less than that of 
equivalent AR(1) processes. For example, the average predictable horizon of 
ARFIMA(0.9,0.45,0) at CE = 0.01 level is 41.84 steps if the AR model is used, 46.23 
steps if the ARFIMA model is used. In contrast, the AR(1) with φ = 0.99589, which is 
equivalent to the theoretical ACF(1) of the ARFIMA(0.9,0.45) model, has an average 
predictable horizon of 126.81 steps. Similar results (to save space, not shown here) are 
found at CE = 0.1 level. In summary, at low CE levels, a long-memory ARFIMA process 
has longer predictability than its equivalent AR(1) process when the autocorrelation 
coefficient of the AR component in ARFIMA model is not very high (e.g., ≤ 0.5). But, 
with a high value (e.g., 0.9) of the autocorrelation coefficient of the AR component, the 
predictability of the long-memory ARFIMA process will be less than that of the 
equivalent AR(1) process. 
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Figure 3.17 Predictability (reflected by predictable horizon) at CE = 0.5 level of the simulated 

ARFIMA(1,d,0) series versus the theoretical ACF(1) of the ARFIMA(1,d,0) models. 
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Figure 3.18 Predictability (reflected by predictable horizon) at CE = 0.01 level of the simulated 

ARFIMA(1,d,0) series versus the theoretical ACF(1) of the ARFIMA(1,d,0) models. 
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To investigate the relationship between the predictability and the intensity of long-memory, 
the estimates of the predictability (reflected by predictable horizon) of ARFIMA(1,d,0) 
models at CE = 0.01, 0.1, and 0.5 levels are plotted against the values of d in Figure 3.19 (a), 
(b) and (c). Here, the ARFIMA(0.5,d,0) and ARFIMA(0.9,d,0) stand for the ARFIMA(1,d,0) 
model with the autoregressive coefficient of 0.5 or 0.9 in their AR components. 
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Figure 3.19 Predictability (reflected by predictable horizon) of ARFIMA(1,d,0) models at (a) CE = 0.01; 
(b) CE = 0.1; and (c) CE = 0.5 levels. 
 
By a visual inspection at Figure 3.19, it seems that the relationship between the predictability 
of the ARFIMA(1,d,0) process and the fractional differencing parameter d is far more 
complicated than that between the predictability of AR(1) models and φ. In this experiment, 
for each series of 5,000 points, the first 3,000 points are used to fit the model, and out-of-
sample predictions are made for the next 1,000 points. It is shown that, with data samples of 
such a finite size: 
 
(1) When d is less than 0.45, in most cases (except for the case of ARFIMA(0.9, 0.45, 0) 

process), the predictability increases with the increase of d. And, the increase seems to be 
of a polynomial growth. When d is greater than 0.45, the predictability unexpectedly drops. 

(2) The estimates of the predictability of ARFIMA processes using ARFIMA models are 
better than those using AR models. That indicates that the ARFIMA model gives better 
predictions than the AR model when the process of interest is indeed a long-memory 
ARFIMA process. 

(3) With the increase of CE level, the difference between the estimates of the predictability 
estimated by using AR model and those estimated by using the ARFIMA model decreases. 

3.6.3 Predictability Of Daily Streamflow Processes 

3.6.3.1 Daily streamflow data used 

Daily average discharge series recorded at 31 gauging stations in eight basins all over the 
world are analyzed in the present study. We generally have the following three rules to select 
stations in each basin: 

(a) (b) 

(c) 
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(1) The selection of basins covers different geographical and climatic regions; 
(2) The drainage area of each station is basically within 5 different watershed scales, namely, 

> 106 km2; 106 ~ 105 km2; 105 ~ 104 km2; 104 ~ 103 km2; < 103 km2; 
(3) The stations are located in the main river channel of the river if possible. When stations at 

the main channel are not available, stations at major tributaries are used. 
 
For each station, we select a segment of historical daily streamflow records of mostly 30 years 
long. However, because of data limitation, the shortest series covers a period of only 14 years. 
The segments are chosen with following criteria: 
 
(1) The series should be approximately stationary, as least by visual inspection. We have 

stationarity as our primary data requirement because on one hand, when certain types of 
nonstationarity are present, many long-memory parameter estimators may fail (Klemes, 
1974); on the other hand, the building of AR model used to estimate the predictability has 
a stationarity assumption. 

(2) The data should be recorded as early as possible, so as to limit the influence of human 
intervention to the minimum. 

(3) The temporal spans of different streamflow series at different watershed scales in one 
basin should be as close as possible, so as to avoid possible impacts of regional low-
frequency climatic variations. 

 
The description of selected stations and their corresponding daily streamflow series is listed in 
Table 3.25. 
 

Table 3.25 Description of selected daily streamflow time series 

No. Basin Location of gauging stations Area 
(km2) Latitude Longitude Elevation 

(m) Period 
Average 

discharge 
(m3/s) 

Color-1 Colorado Colorado River At Lees Ferry 289,400 36.865 -111.588 946.8 1922-1951 489.1 
Color-2  Colorado River Near Cisco 62,390 38.811 -109.293 1246.6 1923-1952 222.3 
Color-3  Colorado River Near Kremmling 6,167 40.037 -106.439 2231.1  1904-1918 52.3 
Color-4  Williams Fork Near Parshall 476 40.000 -106.179 2380.2  1904-1924 4.9 
Colum-1 Columbia Columbia River At The Dalles 613,565 45.108 -121.006 0.0 1880-1909 6065.7 
Colum-2  Columbia River at Trail 88,100 49.094 -117.698 - 1914-1936 2029.4 
Colum-3  Columbia River at Nicholson 6,660 51.244 -116.912 - 1933-1962 107.5 

Colum-4  Columbia River Near Fairmont Hot 
Springs 891 50.324 -115.863 - 1946-1975 11.1 

Danu-1 Danube Danube river at Orsova  576232. 44.700 22.420 44 1901-1930 5711.9 
Danu-2  Danube river at Achleiten  76653. 48.582 13.504 288 1901-1930 1427.0 
Danu-3  Inn river at Martinsbruck   1945. 46.890 10.470 - 1904-1933 57.8 
Fras-1 Fraser Fraser River at Hope 217,000 49.381 -121.451 - 1913-1942 2648.8 
Fras-2  Fraser River at Shelley 32,400 54.011 -122.617 - 1950-1979 825.3 
Fras-3  Fraser River at Mcbride 6,890 53.286 -120.113 - 1959-1988 197.3 
Fras-4  Canoe River below Kimmel Creek 298 52.728 -119.408 - 1972-1994 14.5 
Missi-1 Mississippi Mississippi River At Vicksburg 2,962,974 32.315 -90.906 14.1 1932-1961 16003.1 
Missi-2  Mississippi River at Clinton 221,608 41.781 -90.252 171.5 1874-1903 1477.3 
Missi-3  Minnesota River At Mankato 38,574 44.169 -94.000 228.0 1943-1972 94.9 
Missi-4  Minnesota River At Ortonville 3,003 45.296 -96.444 291.5 1943-1972 3.4 
Misso-1 Missouri Missouri River at Hermann 1,353,000 38.710 -91.439 146.8 1929-1958 2162.0 
Misso-2  Missouri River at Bismarck, 482,776 46.814 -100.821 493.0 1929-1953 604.6 
Misso-3  Missouri River at Fort Benton 64,070 47.818 -110.666 796.8 1891-1920 219.7 
Misso-4  Madison River near McAllister 5,659 45.490 -111.633 1429.2 1943-1972 50.5 
Ohio-1 Ohio Ohio River At Metropolis 525,500 37.148 -88.741 84.2 1943-1972 7567.5 
Ohio-2  Ohio River at Sewickley 50,480 40.549 -80.206 207.3 1943-1972 922.4 
Ohio-3  Tygart Valley River At Colfax 3,529 39.435 -80.133 261.0 1940-1969 72.4 
Ohio-4  Tygart Valley River Near Dailey 479 38.809 -79.882 591.3 1940-1969 9.2 
Rhine-1 Rhine Rhine at Lobith 160,800 51.840 6.110 8.5 1911-1940 2217.8 
Rhine-2  Rhine at Rheinfelden 34,550 47.561 7.799 259.6 1931-1960 1017.3 
Rhine-3  Rhine at Domat/Ems 3,229 46.840 9.460 562.0 1911-1940 126.9 
Rhine-4  Emme River at Emmenmatt 443 46.960 7.740 - 1915-1944 12.0 
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3.6.3.1 Estimation results of the predictability for Daily streamflow series 
Before estimating the predictability of the streamflow processes, we estimate the intensity of 
the long-memory with Lo’s modified R/S test and GPH test, and estimate the fractional 
differencing parameter d with GPH method and maximum likelihood estimation method 
implemented in S-Plus (S-MLE). To alleviate the impact of seasonality, all the series are 
deseasonalized by subtracting the daily means and dividing by the daily standard deviations. 
In Lo’s R/S test, both a fixed lag (i.e., 50) and a lag determined by the data-driven formula 
(Equation (2.30)) are used. In GPH test, we choose g(n) = n0.5 as suggested by Geweke and 
Porter-Hudak (1983). When using S-MLE to estimate the fractional differencing parameter d, 
the order p of AR component in ARFIMA(p,d,q) model is determined by the AIC criteria.  
 
The predictability of each streamflow series is estimated based on in-sample forecasts, and 
measured according to different SACE levels. Namely, for each series, we fit an AR model for 
the entire series, then use the fitted AR model to make forecasts for the last 11th to the 2nd 
year (in total, 10 years). The results of long-memory detection and predictability estimation 
are reported in Table 3.26, which reveal the following: 
 
Table 3.26 Results of long-memory detection and predictability estimation for daily streamflow series 

Lo's R/S test GPH test S-MLE Predictable horizon 
(SACE level) No. data size ACF(1)

Lag-1 Stat-1 Lag-2 Stat-2 d Stat d 0.01 0.1  0.5 
Color-1 10957 0.9738 64 2.9566 50 3.2475 0.5125 7.5412 0.4478 227 98 8 
Color-2 10958 0.9627 50 3.4320 50 3.4320 0.4906 7.2192 0.4506 95 18 5 
Color-3 5113 0.9431 31 2.1437 50 1.8067 0.4766 5.6613 0.4863 25 17 5 
Color-4 7305 0.9549 40 1.1811 50 1.0826 0.4043 5.3169 0.0000 38 34 11 
Colum-1 10957 0.9910 132 1.5357 50 2.1519 0.5071 7.4617 0.4615 180 45 15 
Colum-2 8401 0.9966 238 1.1342 50 1.8357 0.4673 6.3838 0.4187 204 26 13 
Colum-3 10957 0.9778 72 3.1202 50 3.5159 0.3466 5.101 0.4392 26 21 9 
Colum-4 10957 0.9676 55 1.8590 50 1.9213 0.3642 5.36 0.4213 24 20 9 
Danu-1 10957 0.9931 158 1.5328 50 2.0899 0.3441 5.0639 0.2634 136 55 17 
Danu-2 10957 0.9577 46 1.9412 50 1.8957 0.3017 4.4398 0.3598 69 26 4 
Danu-3 10958 0.9326 33 3.1827 50 2.7771 0.3782 5.5651 0.4059 15 9 2 
Fras-1 10957 0.9772 70 1.5279 50 1.6994 0.3879 5.7077 0.3878 45 32 8 
Fras-2 10958 0.9734 63 2.9821 50 3.1849 0.2511 3.6952 0.3529 18 12 3 
Fras-3 10958 0.9582 47 2.3767 50 2.3411 0.2272 3.343 0.1886 14 9 3 
Fras-4 8401 0.9294 30 2.2163 50 1.9096 0.2769 3.7833 0.3100 9 5 1 
Missi-1 10958 0.9961 232 1.8789 50 3.0163 0.4133 6.0813 0.3909 193 73 15 
Missi-2 10956 0.9921 144 2.6780 50 3.7589 0.3846 5.6601 0.4001 44 33 13 
Missi-3 10958 0.9917 139 1.8277 50 2.6476 0.5098 7.5018 0.4847 25 17 7 
Missi-4 10958 0.9563 45 2.7527 50 2.6345 0.5358 7.8847 0.0000 69 49 10 
Misso-1 10958 0.9711 60 3.6930 50 3.9396 0.4484 6.5985 0.4238 195 28 4 
Misso-2 9131 0.9805 75 3.6145 50 4.1707 0.4639 6.4915 0.4124 111 15 2 
Misso-3 10958 0.9165 29 5.1261 50 4.1325 0.4179 6.1498 0.0000 55 38 7 
Misso-4 10958 0.9522 42 3.2612 50 3.0869 0.2450 3.605 0.0000 104 45 7 
Ohio-1 10958 0.9723 62 1.7652 50 1.8735 0.2910 4.2822 0.2983 20 15 7 
Ohio-2 10958 0.9547 44 2.1173 50 2.0477 0.2569 3.781 0.2581 12 8 2 
Ohio-3 10958 0.9291 32 1.7894 50 1.6164 0.3289 4.8401 0.2263 22 7 2 
Ohio-4 10958 0.8985 25 1.9601 50 1.5937 0.3659 5.3839 0.3324 7 1 0 
Rhine-1 10957 0.9897 120 1.2813 50 1.6822 0.3787 5.5729 0.4254 153 46 8 
Rhine-2 10958 0.9715 61 2.0457 50 2.1880 0.3513 5.1699 0.0000 87 43 9 
Rhine-3 10958 0.9048 26 2.1554 50 1.7478 0.3792 5.5799 0.4176 16 7 1 
Rhine-4 10958 0.8739 21 2.2409 50 1.7306 0.2489 3.6627 0.3447 35 7 1 
Note: In the Lo’s R/S test, lag-1 is determined by the data-driven formula, lag-2 is the fixed lag, and stat-1 and 
stat-2 are their corresponding test statistics. 
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(1) The Lo’s test indicates that about 1/3 (11 according to the data-driven lag, and 9 according 
to the fixed lag) of all the 31 streamflow series do not exhibit long-memory property, 
whereas the estimates of S-MLE also show that 4 out of all the series have d’s of zero 
value. But the results of Lo’s test and S-MLE are not in agreement, namely, those series 
with zero d indicted by S-MLE seem to exhibit long-memory according to Lo’s test. On 
the other hand, GPH test tells us that all the series exhibit long-memory. Therefore, for 
each series, at least two methods applied here give evidences of the existence of long-
memory in all the daily streamflow processes. 

 
(2) The GPH estimates and the S-MLE estimates are in good agreement, as shown in Figure 

3.20, except for four series whose estimates of d with S-MLE are zero. According to such 
a consistency, we may consider that the estimates of zero given by S-MLE probably are 
resulted from its erroneousness. 
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Figure 3.20 The GPH estimate versus the S-MLE estimate of d 

 
(3) The predictability is closely related to autocorrelations at lag 1, ACF(1). An exponential 

relationship between ACF(1) and the predictability at different CE levels can be seen by 
visual inspection at Figure 3.21, which is basically the same as the relationship we found 
for the simulated AR and ARFIMA processes.  
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Figure 3.21 Predictability versus ACF(1) for streamflow processes (a) at SACE=0.01 level and (b) 
SACE = 0.5 level 
 
(4) The fractional differencing parameter d, estimated with the S-MLE method, is linked to 

the predictability at both low level (SACE = 0.01) and high level, as shown in Figure 3.22 
(Note that the erroneous zero estimates of d are removed in the plot). This is in 
accordance with the relationship between the predictability of the simulated ARFIMA 
processes and their fractional differencing parameters. 

(a) (b) 
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Figure 3.22 Predictability versus ACF(1) for streamflow processes (a) at SACE=0.01 level and (b) 
SACE = 0.5 level 
 
(5) The intensity of long-memory, denoted by the value of S-MLE estimates of d (the zeros 

are removed) has little relationship with the watershed scale, as shown in Figure 3.23. 
 

0.1

0.2

0.3

0.4

0.5

0.6

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Area (km2)

d

 
Figure 3.23 d versus watershed scale for streamflow processes 

 
(6) There is a strong relationship between the predictability and the watershed scale. It is 

shown in Figure 3.24 that, the larger the watershed scale, the better the predictability of 
the streamflow processes. And the relationship is especially clear at low SACE level, as 
shown in Figure 3.24(a). 
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Figure 3.24 Predictability versus watershed scale for streamflow processes (a) at SACE = 0.01 level 
and (b) SACE = 0.5 level 
 

3.6.4 Discussions on Long-memory and  Predictability 

3.6.4.1 Sources of the long-memory in streamflow processes 
 
While the long-memory property has been detected in diverse fields of application, such as 
financial time series, meteorological time series and internet traffic time series, etc., the 

(a) (b) 

(a) (b) 



3.6 Predictability of Streamflow Processes 97
   

 

physical mechanism of such type of phenomenon is considered a puzzle (Klemes, 1974). 
Compared with the long-memory phenomenon in other field (such as financial time series), 
While the mechanisms of long-memory underlying the streamflow process are not well-
known, it may be comparatively easier to give some explanations about the sources of long-
memory in streamflow time series than those in other time series. 
 
The major source of long-memory may come from the storage of groundwater. Therefore the 
streamflow processes in the arid area may exhibit longer memory than the processes in humid 
areas because the streamflow are dominated by groundwater. This is why the streamflow 
processes in the Colorado Basin, located in the arid area, has the highest average value of 
fractional differencing parameters (excluding the estimate of zero d, which is due to the 
erroneousness of S-MLE). Another source of long-memory is the activity of the weather 
system. The less active the weather system, the less active the watershed system. In turn, the 
streamflow process has a longer memory. This is a postulation yet to be investigated. One 
more postulation yet to be examined is that the more complicated the groundwater system, the 
longer the memory. 
 
The sources of long-memory many change over timescale. For example, while the long-
memory in daily streamflow may come from the storage of groundwater system and the 
variation in precipitations process, the long-memory in annual hydrological time series, if it 
does exist, must be due to the low-frequency climatic variation. But since it is the behaviour 
of autocorrelations at long lags that matters, in small samples, such as an annual streamflow 
series of less than 100 points, it is hard to detect long-memory correctly. 
 
3.6.4.2 Limitations of the estimation of predictability 
 
Measurement of predictability is model-dependent, therefore there is always some degree of 
subjectivity and uncertainty. We suggest to use AR model to estimate predictability for the 
purpose of comparison, because of its easiness for using and simplicity for building. 
 
Another source of uncertainty in estimating predictability is the mean values used for 
calculating CE or SACE. Due to the possible long-term variation of climate system, 
watershed system may also exhibit long-term variation. In turn, the mean values of 
streamflow processes may change over time at certain timescale, and the long-term mean 
values may differ from short-term mean values, thus resulting in the exaggeration of 
predictability if long-term mean values are used to measure the predictability. For example, 
when estimating the predictability of the streamflow processes, we use the daily mean values 
of the entire series (mostly, data of 30 years) to calculate values of SACE for the forecasts of 
10 years, this could be one of the reasons why many streamflow series exhibit long 
predictable horizons at low SACE level, longer than those of both the AR(1) and ARFIMA 
process which have equivalent values of ACF(1). 
 
Data quality may affect the estimation of the predictability. For example, for some gauging 
stations, the gauged discharges are often the same for two weeks or even over a month 
continuously, especially when the discharge is very low. For instance, Minnesota River at 
Ortonville, MN, the discharge kept to be 58 cubic feet per second (cfs) for 17 days (1945.1.12 
~ 1945.1.28); 0.7 cfs for (December 28, 1964 ~ February 5, 1965); 3 cfs for 49 days (1968.1.6 
~ 1968.2.24), 11 cfs for 44 days (1971.1.11 ~ 1971.2.16). While in some cases, this may be 
true, but mostly probably, this is due to the limited measurement accuracy or even error. This 
leads to an exaggeration of the predictability. 
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While the predictability of is generally a stable physical feature of a streamflow process, it is 
not a constant. It may change due to the change of the basin characteristics, climate changes 
and human activities. 

3.7 Conclusions 

Coefficient of efficiency (CE) is a good criterion for evaluating model performance or model 
predictability for stationary processes. However, this criterion could be misleading about the 
model performance when being applied to seasonal processes. Therefore, a seasonally-
adjusted CE (SACE) is proposed to make it more suitable for evaluating seasonal processes. 
For non-seasonal stationary processes, SACE is equal to CE. 

According to SACE, generally, we can make reliable 5-day ahead forecasts for the daily flow 
series at TNH. The long-memory ARFIMA(7,d,0) model performs slightly better than short 
memory ARMA(20,1) model. That gives us another evidence of the presence of long-memory 
in addition to the evidence given by the statistical tests. 

Interval forecasts are important to supplement point forecasts so as to define the predictive 
uncertainty. In this study, the residual based empirical approach and bootstrap approach are 
applied to construct prediction interval (PI) for monthly streamflow forecasts. The results 
show that both empirical approach and bootstrap method work reasonably well, and the 
empirical approach gives results comparable to or even better than bootstrap method. Because 
of the simplicity and calculation-effectiveness, empirical method is preferable to the bootstrap 
method. When there is significant seasonal variation in the variance of the residuals, as shown 
in the residuals of the Yellow River and the Umpqua River, to improve the PI construction, it 
is necessary to use seasonal empirical distribution functions which are defined by seasonal 
residuals rather than use overall empirical distribution functions which are defined by entire 
residual. The result of this study may suggest that for certain types of model, especially when 
the non-linearity is involved (such as neural network models and the nearest neighbor 
method), for which theoretical formulae are not available for computing PIs, the empirical 
method could be a good practical choice to construct prediction interval in comparison with 
those more data-demanding and more complicated methods, such as ESP (Day, 1985), GLUE 
(Beven and Binley, 1992) and Bayesian method (Krzysztofowicz, 1999). 

A univariate time series based approach is proposed to measure the predictability is proposed 
in this study. We define the predictability as the predictable horizon for which the prediction 
is no better than the mean value for a stationary process or the seasonal mean value for a 
seasonal process. At the same time, for practical purposes, we define the predictability at a 
given CE or SACE level as the predictable horizon for which the CE or SACE of predictions is 
larger than a given value. With such a definition, the predictability is easily comparable 
among different hydrological processes. Investigation of the predictabilities of a number of 
streamflow series at different basin scales shows that, in general, the larger the basin scale, the 
better the predictability. 
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Chapter 4 Testing and Modelling Autoregressive Conditional 
Heteroskedasticity of Streamflow Processes 

4.1 Introduction to Autoregressive Conditional Heteroskedasticity 

A univariate stochastic process {xt} is said to be homoskedastic if variances of xt are constant 
for all times t. Otherwise, it is said to be heteroskedastic. When modeling hydrological time 
series, we usually focus on modeling and predicting the mean behaviour, and are rarely 
concerned with the time dependency of variances, although season-dependent variances are 
usually considered. The increased importance played by risk and uncertainty considerations in 
water resources management and flood defence practice as well as in modern hydrology 
theory, however, has necessitated the development of new time series techniques that allow 
for the modeling of time varying variances. 
 
ARCH-type (autoregressive conditional heteroskedasticity) models that originate from 
econometrics give us an appropriate framework for studying this problem. Volatility (i.e. 
time-varying variance) clustering, in which large changes tend to follow large changes, and 
small changes tend to follow small changes, has been well recognized in financial time series. 
This phenomenon is called conditional heteroskedasticity, and can be modelled by ARCH-
type models, including the ARCH model proposed by Engle (1982) and the later extension 
GARCH (generalized ARCH) model proposed by Bollerslev (1986), etc. Accordingly, when a 
time series exhibit autoregressive conditional heteroskedasticity, we say it has the ARCH 
effect or GARCH effect. ARCH-type models have been widely used to model the ARCH 
effect for economic and financial time series. 
 
The ARCH-type model is a nonlinear mechanism that includes past variances in the 
explanation of future variances. ARCH-type models can generate accurate forecasts of future 
volatility, especially over short horizons for those series exhibiting ARCH effects; therefore 
provide a better estimate of the forecast uncertainty, which is valuable for water resource 
management and flood defence. And they take into account excess kurtosis (i.e. fat tail 
behaviour), which is common in financial and well as hydrological processes. Therefore 
ARCH-type models could be very useful for hydrological time series modelling. Some 
authors propose new models to reproduce the asymmetric periodic behaviour with large 
fluctuations around large streamflow and small fluctuations around small streamflow (e.g., 
Livina et al., 2003), which basically can be handled with those conventional time series 
models that have taken season-dependent variance into account, such as periodic 
autoregressive moving average (PARMA) models and deseasonalized ARMA models. 
However, little attention has been paid so far by the hydrological community to test and 
model the possible presence of the ARCH effect with which large fluctuations tend to follow 
large fluctuations, and small fluctuations tend to follow small fluctuations in streamflow 
series. 
 
In this chapter, we will take the daily and monthly streamflow series of the upper Yellow 
River at Tangnaihai (TNH) in China as case study hydrological time series to test for the 
existence of the ARCH effect, and propose an ARMA-GARCH error model for daily flow 
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series. This chapter is organized as follows. First, the method of testing conditional 
heteroskedasticity of streamflow process is described; then, the causes of the ARCH effect 
and the inadequacy of commonly used seasonal time series models for modeling streamflow 
are discussed; finally, an ARMA-GARCH error model is proposed for capturing the ARCH 
effect existing in daily streamflow series. 

4.2 Testing for the ARCH Effect in Streamflow Processes 

The detection for the ARCH effect of a streamflow series is actually a test of serial 
independence applied to the serially uncorrelated fitting error of some model, usually a linear 
autoregressive (AR) model. We assume that linear serial dependence inside the original series 
is removed with a well-fitted pre-whitening model; any remaining serial dependence must be 
due to some nonlinear generating mechanism, which is not captured by the model. Here, the 
nonlinear mechanism we concern is the conditional heteroskedasticity. We will show that the 
nonlinear mechanism remaining in the pre-whitened streamflow series, namely the residual 
series, can be well interpreted as autoregressive conditional heteroskedasticity.  

4.2.1 ARMA Models Fitted to Daily and Monthly Streamflows: Revisit 

The construction of deseasonalized ARMA models to daily and monthly streamflow at TNH 
has been described in Chapter 3. Two linear ARMA-type models (one ARMA(20,1) and one 
AR(4)) are fitted to the log-transformed and deseasonalized daily and monthly flow series 
respectively. Figure 4.1 shows parts of the two residual series obtained from the two models. 
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Figure 4.1 Segments of the residual series from (a) ARMA(20,1) for daily flows and (b) AR(4) for 

monthly flows of the Yellow River at TNH 

Before applying ARCH tests to the residual series, to ensure that the null hypothesis of no 
ARCH effect is not rejected due to the failure of the pre-whitening linear models, we must 
check the goodness-of-fit of the linear models. The diagnosis has been done in Chapter 3, 
Section 3.1.2. It was shown that the ARMA models fit the daily and monthly flow series well. 
No serial correlation left in the residuals. However, albeit the residuals seem statistically 
uncorrelated according to their ACF as shown in Figure 3.3 in Chapter 3, they are not 
identically distributed from visual inspection of the Figure 4.1, that is, the residuals are not 
independent identically distributed (i.i.d.) through time. There is a tendency, especially for 
daily flow, that large (small) absolute values of the residual process are followed by other 
large (small) values of unpredictable sign, which is a common behaviour of GARCH 
processes.  
 
Granger and Andersen (1978) found that some of the series modelled by Box and Jenkins 
(1976) exhibit autocorrelated squared residuals even though the residuals themselves do no 

(a) (b)
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seem to be correlated over time, and therefore suggested that the ACF of the squared time 
series could be useful in identifying nonlinear time series. Bollerslev (1986) stated that the 
ACF and PACF of squared process are useful in identifying and checking GARCH behaviour. 
Figure 4.2 shows the ACFs of the squared residual series from ARMA(20,1) model for daily 
flow, AR(9) model for 1/3-monthly flow and AR(4) model for monthly flow at TNH. It is 
shown that although the residuals are almost uncorrelated as shown in Figure 3.3 in Chapter 3, 
the squared residual series are clearly autocorrelated, and the ACF structures of both squared 
residual series exhibit strong seasonality. That indicates that the variance of residual series is 
conditional on its past history, namely, the residual series may exhibit ARCH effect. 
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Figure 4.2 ACFs of the squared residuals from (a) ARMA(20,1) model for daily flows, (b) AR(9) for 1/3-

monthly flows and (c) AR(4) model for monthly flows of the Yellow River at TNH 

We also fitted AR models to streamflow processes of Danube, Rhine, Ocmulgee and Umpqua 
at different timescales, and obtain the residuals from these AR models. ACFs of squared 
residuals are displayed in Figure 4.3 to 4.6. 
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Figure 4.3 ACFs of the squared residuals from (a) AR(44) model for daily flows; (b) AR(12) for 1/3-

monthly flows and (c) AR(6) model for monthly flows of Danube at Achleiten 
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Figure 4.4 ACFs of the squared residuals from (a) AR(40) model for daily flows; (b) AR(16) for 1/3-

monthly flows and (c) AR(4) model for monthly flows of Rhine at Lobith 
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Figure 4.5 ACFs of the squared residuals from (a) AR(44) model for daily flows; (b) AR(8) for 1/3-

monthly flows and (c) AR(3) model for monthly flows of Ocmulgee at Macon 
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Figure 4.6 ACFs of the squared residuals from (a) AR(36) model for daily flows; (b) AR(7) for 1/3-

monthly flows and (c) AR(5) model for monthly flows of Umpqua near Elkton 

 

There are some formal methods to test for the ARCH effect of a process, such as McLeod-Li 
test (McLeod and Li, 1983), Engle’s Lagrange Multiplier test (Engle, 1982), BDS test (Brock 
et. al., 1996), etc. McLeod-Li test and Engle’s Lagrange Multiplier test are used here to check 
the existence of ARCH effect in the streamflow series. 
 

4.2.2 Mcleod-Li Test for the ARCH Effect 

McLeod and Li (1983) proposed a formal test for ARCH effect based on Ljung-Box test. It 
looks at the autocorrelation function of the squares of the pre-whitened data, and tests whether 
the first L autocorrelations for the squared residuals are collectively small in magnitude. 
Similar to Equation (3.6) in Chapter 3, for fixed sufficiently large L, the Ljung-Box Q-statistic 
of Mcleod-Li test is given by 

2 2

1

ˆ ( )( 2)
L

k

k

rQ N N
N k
ε

=

= +
−∑             (4.1) 

where, N is the sample size, and 2 2ˆ ( )kr ε  is the squared sample autocorrelation of squared 
residual series at lag k. Under the null hypothesis of a linear generating mechanism for the 
data, namely, no ARCH effect in the data, the test statistic is asymptotically χ2(L) distributed. 
Figure 4.7 shows the results of McLeod-Li test for daily and monthly flow. It illustrates that 
the null hypothesis of no ARCH effect is rejected for both daily and monthly flow series. 

(a) (b) (c)

(a) (b) (c)
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Figure 4.7 McLeod-Li test for the residuals from (a) ARMA(20,1) model for daily flow and (b) AR(4) 

model for monthly flow of Yellow River at TNH 

4.2.3 Engle’s Lagrange Multiplier Test for the ARCH Effect 
Since the ARCH model has a form of an autoregressive model, Engle (1982) proposed the 
Lagrange Multiplier (LM) test to test for the existence of ARCH behaviour based on the 
regression. The test statistic is given by TR2, where R is the sample multiple correlation 
coefficient computed from the regression of 2

tε  on a constant and 2
1tε − ,…, 2

t qε − , and T is the 
sample size. Under the null hypothesis that there is no ARCH effect, the test statistic is 
asymptotically distributed as chi-square distribution with q degrees of freedom. As Bollerslev 
(1986) suggested, it should also have power against GARCH alternatives. 
 
Figure 4.8 shows Engle’s LM test results for the residuals from ARMA(20,1) model for daily 
flow and from AR(4) model for monthly flow. The results also firmly indicate the existence 
of ARCH effect in both residual series.  
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Figure 4.8 Engle’s LM test for residuals from (a) ARMA(20,1) model for daily flow and (b) AR(4) model 

for monthly flow of Yellow River at TNH 
 

One point should be noticed is that, although the ACF in Figure 4.2(b), McLeod-Li test result 
in Figure 4.7(b) and Engle’s LM test in Figure 4.8(b) show that for monthly flow, 
autocorrelations at lags less than 4 are removed by AR(4) model, when we take 
autocorrelations at longer lags into consideration, significant autocorrelations remain and the 
null hypothesis of no ARCH effect is rejected. Because it is required for McLeod-Li test to 
use sufficiently large L, namely, sufficient number of autocorrelations to calculate the Ljung-
Box statistic (typically around 20), therefore, we still consider that the monthly flow has the 
ARCH effect. 
 
On the whole, evidences are clear with the McLeod-Li test and Engle’s LM test about the 
existence of conditional heteroskedasticity in the residual series from linear models fitted to 
the log-transformed and deseasonalized daily and monthly streamflow processes of the upper 
Yellow River at TNH. 

(a) (b) 

(a) (b) 
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4.3 Discussion on the Causes of ARCH Effects and Inadequacy of 
Commonly Used Seasonal Time Series Models 

4.3.1 Causes of ARCH Effects in Daily and Monthly Flows 
From the above analyses, it is clear that although the residuals are serially uncorrelated, they 
are not independent through time. At the mean time, we notice that seasonality dominates 
autocorrelation structures of squared residual series for both daily and monthly flow process 
(as shown in Figure 4.2). This suggests that there are seasonal variations in the variance of the 
residual series, and we should standardize the residual series from linear models with seasonal 
standard deviations of the residuals first, and then look at the standardized series to check 
whether seasonal variances can explain ARCH effects. 
 
Seasonal standard deviations of the residual series from ARMA (20,1) model for daily flow 
and AR(4) mode for monthly flow are calculated and shown in Figure 4.9 (a) and (b). They 
are used to standardize the residual series from ARMA (20,1) model and AR(4) model. Figure 
4.10 shows the ACFs of the squared standardized residual series of daily and monthly flow. It 
is illustrated that, after seasonal standardization autocorrelation as well as the seasonality in 
the squared standardized residual series for monthly flow is basically removed (Figure 10b), 
whereas the significant autocorrelation still exists in the squared standardized residual series 
for daily flow (Figure 10a) despite the fact that the autocorrelations are significantly reduced 
compared with Figure 8a and the seasonality in the ACF structure is removed. That means 
that the seasonality as well as the autocorrelation in the squared residuals from the AR model 
of monthly flow series is basically caused by seasonal variances. But seasonal variances only 
explain partly the autocorrelation in the squared residuals of daily flow series. 
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Figure 4.9 Seasonal standard deviations (SD) of the residuals form (a) ARMA(20,1) for daily flow and 
(b) AR(4) for monthly flow (Note: The smoothed line in 4.9(a) is given by the first 8 Fourier harmonics) 
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Figure 4.10 ACFs of squared seasonally standardized residuals from (a) ARMA(20,1) model for daily 

flow and (b) AR(4) model for monthly flow at TNH 

(a) (b) 

(a) (b) 
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The residual series of daily flow and monthly flow standardized by seasonal standard 
deviation are also tested for ARCH effects with the McLeod-Li test and Engle’s LM test. 
Figure 4.11 shows that the seasonally standardized residual series of daily flow still cannot 
pass the LM test (Figure 13a), whereas the seasonally standardized residual series of monthly 
flow pass the LM test with high p-values (Figure 4.11b). The McLeod-Li test gives similar 
results. 
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Figure 4.11 Engle’s LM test for seasonally standardized residuals from (a) ARMA(20,1) model for daily 

flow and (b) from AR(4) model for monthly flow 

From the above analyses, it is clear that the ARCH effect is fully caused by seasonal 
variances for monthly flow, but only partly for daily flow. Other causes, besides the seasonal 
variation in variance, of the ARCH effect in daily flow may include the perturbations of the 
temperature fluctuations which is an influential factor for snowmelt as well as 
evapotranspiration, and the precipitation variation which is the dominant factor for 
streamflow processes. As reported by Miller (1979), when modeling a daily average 
streamflow series, the residuals from a fitted AR(3) model signalled white-noise errors, but 
the squared residuals signalled bilinearity. When precipitation covariates were included in the 
model, Miller found that neither the residuals nor the squared residuals signalled any 
problems. While we agree that the autocorrelation existing in the squared residuals is 
basically caused by precipitation process, we want to show that the autocorrelation in the 
squared residuals can be well described by an ARCH model, which is very close to the 
bilinear model (Engle, 1982). 

4.3.2 Inadequacy of Commonly Used Seasonal Time Series Models for Modelling 
Streamflow Processes 

As mentioned in Chapter 3 Section 3.1, SARIMA models, deseasonalized ARMA models and 
periodic models are commonly used to model hydrological processes (Hipel and McLeod, 
1994). The general form of SARIMA model, denoted by SARIMA(p,d,q)×(P,D,Q)S, is 

( ) ( ) ( ) ( )s d D s
s t tB B x B Bφ θ εΦ ∇ ∇ = Θ           (4.2) 

where φ (B) and θ (B) of orders p and q represent the ordinary autoregressive and moving 
average components; Φ(Bs) and Θ(Bs) of orders P and Q represent the seasonal autoregressive 
and moving average components; ∇d = (1-B)d and ∇S

D = (1-B s)D are the ordinary and seasonal 
difference components. 
 
The general form of ARMA(p,q) model fitted to deseasonalized series is 

( ) ( )t tB x Bφ θ ε=              (4.3) 

where φ (B) and θ (B) of orders p and q represent the ordinary autoregressive and moving 
average components. 

(a) (b)
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From the model equations we know that, although the seasonal variation in the variance 
present in the original time series is basically dealt with well by the deseasonalized approach, 
the seasonal variation in variance in the residual series is not considered by none the two 
models, because in both cases the innovation series εt is assumed to be i.i.d. N(0, σ 2). 
Therefore, both SARIMA models and deseasonalized models cannot capture the ARCH effect 
that we observed in the residual series. 
 
In contrast, the periodic model, which is basically a group of ARMA models fitted to separate 
seasons, allows for seasonal variances in not only the original series but also the residual 
series. Taking the special case PAR(p) model (periodic autoregressive model of order p) as an 
example of PARMA model, given a hydrological time series xn,s, in which n defines the year 
and s defines the “season” (could represent a day, week, month or a real season), we have the 
following PAR(p) model ( Salas, 1993): 

, , , ,
1

( )
p

n s s j s v s j s j n s
j

x xµ φ µ ε− −
=

= + − +∑          (4.4) 

where εn,s is an uncorrelated normal variable with mean zero and variance σs
2. For daily 

streamflow series, to make the model parsimonious, we can cluster the days in the year into 
several groups and fit separate AR models to separate groups, as shown in Section 3.3. 
Periodic models would perform better than SARIMA model and deseasonalized ARMA 
model for capturing the ARCH effect, because it takes season-varying variances into account. 
However, as analyzed in Section 4.1, while considering seasonal variances could be sufficient 
for describing the ARCH effect in monthly flow series because the ARCH effect in monthly 
flow series is fully caused by seasonal variances, it is still insufficient to fully capture the 
ARCH effect in daily flow series. 
 
In summary, while PARMA model is adequate for modeling the variance behaviour for 
monthly flow, none of the commonly used seasonal models is efficient enough to describe the 
ARCH effect for daily flow, although PARMA can partly make it by considering seasonal 
variances. It is necessary to apply GARCH model to achieve the purpose. 

4.4 Modelling Daily Streamflow Process with ARMA-GARCH Error 
Model 

4.4.1 Model Building 
Weiss (1984) proposed ARMA models with ARCH errors. This approach is adopted and 
extended by many researchers for modeling economic time series (e.g., Hauser and Kunst; 
1998; Karanasos, 2001). In the field of geo-sciences, Tol (1996) fitted a GARCH model for 
the conditional variance and the conditional standard deviation, in conjunction with an AR(2) 
model for the mean, to model daily mean temperature. In this study, we propose to use 
ARMA-GARCH error (or for notation convenience, call ARMA-GARCH) model for 
modeling daily streamflow processes.  

 
The ARMA-GARCH model may be interpreted as a combination of an ARMA model which 
is used to model the mean behaviour and an ARCH model to model the ARCH effect in the 
residual series form the ARMA model. The ARMA model has the form as in Equation (4.3). 
The GARCH(p, q) model has the form (Bollerslev, 1986)   
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where, εt denotes a real-valued discrete-time stochastic process, and ψt the available 
information set, p≥0, q>0, α0>0, αi≥0, βi≥0. When p=0, the GARCH(p,q) model reduces to the 
ARCH(q) model. Under the GARCH(p, q) model, the conditional variance of εt, ht, depends 
on the squared residuals in the previous q time steps, and the conditional variance in the 
previous p time steps. Since GARCH models can be treated as ARMA models for squared 
residuals, the order of GARCH can be determined with the method for selecting the order of 
ARMA models, and traditional model selection criteria such as Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) can also be used for selecting models. The 
unknown model parameters αi (i = 0, …, q) and βj (j = 1, …, p) can be estimated using 
(conditional) maximum likelihood estimation (MLE). Estimates of the conditional standard 
deviation ht

1/2 are also obtained as a side product with the MLE method.  
 
When there is obvious seasonality present in the residuals (as in the case of daily streamflow 
at TNH), to preserve the seasonal variances in the residuals, instead of fitting the ARCH 
model to the residual series directly, we fit the ARCH model to the seasonally standardized 
residual series, which is obtained by dividing the residual series by seasonal standard 
deviations (i.e. daily standard deviations for daily flow). Threrefore, the general ARMA-
GARCH model with seasonal standard deviations we propose here has the following form 
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=
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          (4.6) 

where, σs is the seasonal standard deviation of εt, s is the season number depending on which 
season the time t belongs to. For daily series, s ranges from 1 to 366. Other notations are the 
same as in Equation (4.3) and (4.5).  
 
The model building procedure proceeds in the following steps: 
(1) Log-transform and deseasonalize the original flow series; 
(2) Fit an ARMA model to the log-transformed and deseasonalized flow series; 
(3) Calculate seasonal standard deviations of the residuals obtained from ARMA model, and 

seasonally standardize the residuals with the first 8 Fourier harmonics of the seasonal 
standard deviations; 

(4) Fit a GARCH model to the seasonally standardized residual series. 
 
For forecasting and simulation, inverse transformation (including log-transformation and 
deseasonalization) is needed. When forecasting, the ARMA part of the ARMA-GARCH 
model forecasts future mean values of the underlying time series following the traditional 
approach for ARMA prediction, whereas the GARCH part gives forecasts of future volatility, 
especially over short horizons. 
 
Following the above-mentioned steps, a preliminary ARMA-GARCH model is fitted to the 
daily streamflow series at TNH. The ACF and PACF structure of the squared seasonally 
standardized residuals are shown in Figure 4.10a and Figure 4.12, respectively. According to 
the AIC as well as the ACF and PACF structure, a GARCH(0,21) model, i.e., ARCH(21) 
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model, which has the smallest AIC value is selected. Therefore, the preliminary ARMA-
GARCH model fitted to the daily streamflow series at TNH is composed of an ARMA(20,1) 
model and an ARCH(21) model. The model is constructed with statistics software 
S+Finmetrics (Zivot and Wang, 2003). 
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Figure 4.12 PACF of the squared seasonally standardized residual series from ARMA(20,1) for daily 

flow series of the Yellow River at TNH 

4.4.2 Model Diagnostic and Modification 
If the ARMA-GARCH model is successful in modeling the serial correlation structure in the 
conditional mean and conditional variance, then there should be no autocorrelation left in both 
the residuals and the squared residuals standardized by the estimated conditional standard 
deviation. 
 
A segment of the seasonally standardized residual series from ARMA(20,1) model and its 
corresponding conditional standard deviation sequence estimated with ARCH(21) model are 
shown in Figure 4.13 (a) and (b). We standardize the seasonally standardized residual series 
from ARMA(20,1) model by dividing it by the estimated conditional standard deviation 
sequence. The autocorrelations of the standardized residuals and squared standardized 
residuals are plotted in Figure 4.14. It is shown that although there is no autocorrelation left in 
the squared standardized residuals, which means that the ARCH effect has been removed 
(Figure 4.14b), however, in the non-squared standardized residuals of daily flow significant 
autocorrelation remains (Figure 4.14a). 
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Figure 4.13 A segment of (a) the seasonally standardized residuals from ARMA(20,1) and (b) its 

corresponding conditional standard deviation sequence estimated with ARCH(21) model 

(a) (b) 
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Figure 4.14 ACFs of (a) the standardized residuals and (b) squared standardized residuals from 
ARMA(20,1)-ARCH(21) model. The standardization is accomplished by dividing the seasonally 
standardized residuals from ARMA(20,1) by the conditional standard deviation estimated with 

ARCH(21). 

 
Because the GARCH model is designed to deal with the conditional variance behavior, rather 
than mean behavior, the autocorrelation in the non-squared residual series must arise from the 
seasonally standardized residuals obtained in step (3) of ARMA-GARCH model building 
procedure. Therefore we revisit the seasonally standardized residuals. It is found that, 
although the residuals from the ARMA(20,1) model present no obvious autocorrelation as 
shown in Figure 3.3 in Chapter 3, weak but significant autocorrelations in the residuals are 
revealed after the residuals are seasonally standardized, as shown by the ACF and PACF in 
Figure 4.15. We refer to this weak autocorrelation as the hidden weak autocorrelation.  
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Figure 4.15 ACF and PACF of seasonally standardized residuals from ARMA(20,1) model 

 

The mechanism underlying such weak autocorrelation is not clear yet. Similar phenomena are 
also found for some other daily streamflow processes (such as the daily streamflow of the 
Umpqua River near Elkton and Wisconsin River near Wisconsin Dells in the United States, 
available on the USGS website http://water.usgs.gov/waterwatch), which have strong 
seasonality in the ACF structures of their original series as well as their residual series. To 
handle the problem of the weak correlations, an additional ARMA model is needed to model 
the mean behaviour in the seasonally standardized residuals, and a GARCH is then fitted to 
the residuals from this additional ARMA model. Therefore, we get an extended version of the 
model in Equation (4.6) as 

(a) (b) 

(a) (b) 
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where, yt is the seasonally standardized residuals from the first ARMA model, zt is the 
residuals (for notation convenience, we call it second-residuals) from the second ARMA 
model fitted to yt. 
 
An AR (16) model, whose autoregressive order is chosen according to AIC, is fitted to the 
seasonally standardized residuals from the ARMA(20,1) model of the daily flow series at 
TNH, and we get a second-residual series from this AR(16) model. The autocorrelations of 
the second-residual series and the squared second-residual series from the ARMA(20,1)-
AR(16) combined model are shown in Figure 4.16. From visual inspection, we know that no 
autocorrelation is left in the second-residual series, but there is strong autocorrelation in the 
squared second-residual series which indicates the existence of ARCH effect. 
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Figure 4.16 ACFs of (a) the second-residuals and (b) the squared second-residuals from the 

ARMA(20,1)-AR(16) model 

 
Because the squared second-residual series has similar ACF and PACF structure to the 
seasonally standardized residuals from ARMA(21,0) model, the same structure of GARCH 
model, i.e., an ARCH(21) model, is fitted to the second-residual series. Therefore, the 
ultimate ARMA-GARCH model fitted to the daily streamflow at TNH is ARMA(20,1)-
AR(16)-ARCH(21), composed of an ARMA(20,1) model fitted to log-transformed and 
deseasonalized series, an AR(16) model fitted to the seasonally standardized residuals from 
the ARMA(20,1) model, and an ARCH(21) model fitted to the second-residuals from the 
AR(16) model. 
 
We standardize the second-residual series with the conditional standard deviation sequence 
obtained with the ARCH(21) model. The autocorrelations of the standardized second-
residuals and the squared standardized second-residuals are shown in Figure 4.17. Compared 
with Figure 4.14, the autocorrelations are basically removed for both the squared and non-
squared series although the autocorrelation at lag 1 of the standardized second-residuals 
slightly exceeds the 5% significance level. The McLeod-Li test and the LM-test (shown in 
Figure 4.18) for standardized second-residuals also confirm that the ARCH(21) model fits the 

(a) (b) 



4.5 Conclusions  111  

 

second-residual series well. The small lag-1 autocorrelation in the standardized second-
residual series (shown in Figure 4.17) is hidden autocorrelation covered by conditional 
heteroskedasticity. This autocorrelation can be further modelled with another AR model, but 
because the autocorrelation is very small, it could be neglected. 
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Figure 4.17 ACFs of the (a) standardized second-residuals and (b) squared standardized second-

residuals from ARMA(20,1)-AR(16)-ARCH(21) model. The second-residuals are obtained from AR(16) 
fitted to the seasonally standardized residuals form ARMA(20,1). 
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Figure 4.18 Engle’s LM test for the standardized second-residuals from the ARMA(20,1)-AR(16)-

ARCH(21) model 

4.5 Conclusions 

The nonlinear mechanism conditional heteroskedasticity in hydrological processes has not 
received much attention in literature so far. Modelling data with time varying conditional 
variance could be attempted various ways, including nonparametric and semi-parametric 
approaches (see Lall, 1995 and Sankarasubramanian and Lall, 2003). A parametric approach 
with ARCH model is proposed in this study to describe the conditional variance behavior in 
the streamflow process.  
 
The existence of ARCH effect is verified in the residual series from linear models fitted to the 
daily and monthly streamflow processes of the upper Yellow River with McLeod-Li test and 
Engle’s Lagrange Multiplier test. It is shown that the ARCH effect is fully caused by seasonal 
variation in the variance for monthly flows, but seasonal variation in variance only partly 
explains the ARCH effect for daily streamflow. Among three types of conventional seasonal 
time series model (i.e., SARIMA, deseasonalized ARMA and PARMA), no one is efficient 
enough to describe the ARCH effect for daily flow, although PARMA model is enough for 
monthly flow by considering season-dependent variances. Therefore, to fully capture the 
ARCH effect as well as the seasonal variances inspected in the residuals from linear ARMA 

(a) (b) 
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models fitted to the daily flow series; the ARMA-GARCH error model with seasonal standard 
deviations is proposed.  
 
The ARMA-GARCH model is basically a combination of an ARMA model, which is used to 
model the mean behaviour, and a GARCH model to model the ARCH effect in the residuals 
from the ARMA model. To preserve the seasonal variation in variance in the residuals, the 
ARCH model is not fitted to the residual series directly, but to the seasonally standardized 
residuals. Therefore, an important feature of the ARMA-GARCH model is that the 
unconditional seasonal variance of the process is seasonally constant but the conditional 
variance is not. To resolve the problem of the weak hidden autocorrelation revealed after the 
residuals are seasonally standardized, the ARMA-GARCH model is extended by applying an 
additional ARMA model to model the mean behaviour in the seasonally standardized residual 
series. With such a modified ARMA-GARCH model, the daily streamflow series is well-
fitted.  
 
Because the ARCH effect in daily streamflow mainly arises from daily variations in 
temperature and precipitation, therefore, given that we have reasonably good skill in 
predicting weather in two to three days (for example, see http://weather.gov/rivers_tab.php), 
the use in developing an ARMA-GARCH model would be limited. However, because on the 
one hand, the relationship between runoff and rainfall and temperature is hard to captured 
precisely by any model so far; on the other hand, usually there are not enough rainfall data 
available to fully capture the rainfall spatial pattern, especially for remote areas, such as Tibet 
Plateau, and the accuracy of the weather forecasts for these areas are very limited, the ARCH 
effect cannot be fully removed even after limited rainfall data and temperature data are 
included in the model. Therefore, the ARMA-GARCH model would be a very useful addition 
in terms of statistical modeling of daily streamflow processes for the hydrological community. 
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Chapter 5 Testing for Nonlinearity of Streamflow Processes  

5.1 Introduction 

A major concern in many scientific disciplines is whether a given process should be modelled 
as linear or as nonlinear. In algebra, we define linearity in terms of functions that have the 
property f(x+y) = f(x)+ f(y) and f(a×x) = a × f(x). Nonlinear is defined as the negation of linear. 
This means that the result f may be out of proportion to the input x or y. It is currently well 
accepted that many natural systems are nonlinear with feedbacks over many space and 
timescales. However, certain aspects of these systems may be less nonlinear than others and 
the nature of nonlinearity may not be always clear (Tsonis, 2001). As an example of natural 
systems, streamflow processes are also commonly perceived as nonlinear. They could be 
governed by various nonlinear mechanisms acting on different temporal and spatial scales. 
Investigations on nonlinearity and applications of nonlinear models to hydrological processes 
have received much attention since several decades ago (e.g., Amorocho, 1963; Amorocho 
and Brandstetter, 1971). Rogers (1980, 1982) and Rogers and Zia (1982) developed a 
heuristic method to quantify the degree of nonlinearity of drainage basins by using rainfall-
runoff data. Rao and Yu (1990) used Hinich bispectrum test (1982) to investigate the linearity 
and nongaussian characteristics of annual streamflow and daily rainfall and temperature series. 
They detected nonlinearity in daily meteorological series, but not in annual streamflow series. 
Chen and Rao (2003) investigated nonlinearity in monthly hydrological time series with the 
Hinich test. The results indicate that all of the stationary segments of standardized monthly 
temperature and precipitation series are either Gaussian or linear, and some of the 
standardized monthly streamflow are nonlinear. 

As a special case of nonlinearity, chaos is widely concerned and has gained much attention in 
the hydrology community in the last two decades (e.g., Wilcox et al., 1991; Jayawardena and 
Lai, 1994; Porporato and Ridolfi, 1996; Sivakumar, 1999; Elshorbagy et al., 2002). Most of 
the research in literature confirms the presence of chaos in the hydrological time series. 
Consequently, some researchers (e.g., Sivakumar, 2000) believed that the dynamic structures 
of the seemingly complex hydrological processes, such as rainfall and runoff, might be better 
understood using nonlinear deterministic chaotic models than the stochastic ones. Meanwhile, 
some studies denied the existence of chaos in hydrological processes (e.g., Wilcox et al., 1991; 
Koutsoyiannis and Pachakis, 1996; Pasternack, 1999; Khan et al., 2005), and there are many 
disputes about the existence of low-dimensional chaos in hydrological processes (e.g., 
Ghilardi and Rosso, 1990; Schertzer et al., 2002). 

Albeit the advances in the research on the nonlinear features of streamflow processes, further 
investigation is still desirable, because on the one hand, there is no common knowledge about 
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what type of nonlinearity exists in the streamflow process, and on the other hand, it is not 
clear how the character and intensity of nonlinearity of streamflow processes may change as 
the timescale changes. More insights into the nature of nonlinearity would allow one to decide 
whether a given process should be modelled with a linear or a nonlinear model. 

In this chapter, several issues are addressed. Firstly, streamflow series of different timescales, 
namely, one year, one month, 1/3-month and one day, of four streamflow processes in 
different climate regions are studied to investigate the existence and intensity of general 
nonlinearity with the BDS test. Secondly, the correlation exponent method will be applied to 
test for the presence of chaos in the streamflow series. Thirdly, we will discuss whether it is 
possible that the streamflow process is a deterministic chaotic process. Fourthly, we will 
discuss the sources of nonlinearity in streamflow processes. 

5.2 Testing for Nonlinearity with BDS Test 

It is hard to explore different types of nonlinearity one by one which may possibly act 
underlying streamflow processes. We here want to investigate the existence of general 
nonlinearity in the streamflow process from a univariate time series data based quantitative 
point of view. There are a wide variety of methods available presently to test for linearity or 
nonlinearity, which may be divided into two categories: portmanteau tests, which test for 
departure from linear models without specifying alternative models, and the tests designed for 
some specific alternatives. Patterson and Ashely (2000) applied 6 portmanteau test methods to 
8 artificially generated nonlinear series of different types, and found that the BDS test is the 
best and clearly stands out in terms of overall power against a variety of alternatives. The 
power of BDS test and some nonparametric tests have also recently been compared and 
applied to residual analysis of fitted models for monthly rainfalls by Kim et al. (2003), and the 
results also indicate the effectiveness of BDS test.  

5.2.1 BDS Test 

The BDS test (Brock et al., 1996) is a nonparametric method for testing for serial 
independence and nonlinear structure in a time series based on the correlation integral of the 
series. As stated by the authors, the BDS statistic has its origins in the work on deterministic 
nonlinear dynamics and chaos theory, it is not only useful in detecting deterministic chaos, 
but also serves as a residual diagnostic tool that can be used to test the goodness-of-fit of an 
estimated model. The null hypothesis is that the time series sample comes from an 
independent identically distributed (i.i.d.) process. The alternative hypothesis is not specified. 
In this section, the theoretical aspects of BDS test are presented. 

Embed a scalar time series {xt} of length N into a m-dimensional space, and generate a new 
series {Xt}, Xt = (xt, xt-τ , ..., xt-(m-1)τ), Xt∈Rm. Then, calculate the correlation integral Cm, M (r) 
given by (Grassberger and Procacccia, 1983a): 

( )
1

,
1

( )
2m M i j

i j M

M
C r H r X X

−

≤ < ≤

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

∑         (5.1) 



5.2 Test for Nonlinearity with BDS Test  115  

 

where, M = N - (m - 1) τ is the number of embedded points in m-dimensional space; r the 
radius of a sphere centered on Xi; H(u) is the Heaviside function, with H(u) = 1 for u > 0, and 
H(u) = 0 for u≤0; ||•|| denotes the sup-norm.  

Cm,M (r) counts up the number of points in the m-dimensional space that lie within a 
hypercube of radius r. Brock et al. (1996) exploit the asymptotic normality of Cm,M (r) under 
the null hypothesis that {xt} is an i.i.d. process to obtain a test statistic which asymptotically 
converges to a unit normal. 

If the series is generated by a strictly stationary stochastic process that is absolutely regular, 

then the limit ,( ) lim ( )m m MN
C r C r

→∞
= exists. In this case the limit is 

( ) ( || ||) ( ) ( )m m mC r H r X Y dF X dF Y= − −∫∫         (5.2) 

where X and Y are two arbitrary points in the embedded m-dimensional space; Fm denotes the 
distribution function of the embedded time series {Xt}. 

When the process is independent, and since , ,1
( || ||) ( | |)m
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The constants C and K in Equation (5.3) can be estimated by 
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Under the null hypothesis that {xt} is an i.i.d. process, the BDS statistic for m > 1 is defined as 
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It asymptotically converges to a unit normal as M→∞. This convergence requires large 
samples for values of embedding dimension m much larger than 2, so m is usually restricted 
to the range from 2 to 5. Brock et al. (1991) recommended that r is set to between half and 
three halves the standard deviation σ of the data. We find that if r is set as half σ, there would 
be too few or even no nearest neighbors for many points in the embedded m-dimensional 
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space when m is large (e.g., m = 5), especially for series of short size (e.g., less than 100); on 
the other hand, when r is set as three halves σ, there would be too many nearest neighbors for 
many points in the embedded m-dimensional space when m is small (e.g., m = 2). Such kind 
of “shortage” of neighbors or “excess” of neighbors will probably bias the calculation of Cm,M 

(r). Therefore, we only consider r equal to the standard deviation of the data in this study. 

5.2.2 BDS Test Results for Streamflow Processes 

Because usually linearity/nonlinearity tests (e.g., BDS test) assume the series of interest is 
stationary, it is necessary to test the stationarity before taking nonlinearity test. The 
stationarity test is carried out with two methods; one is augmented Dickey-Fuller (ADF) unit 
root test (Dickey and Fuller, 1979; Said and Dickey, 1984) and KPSS test (Kwiatkowski et al., 
1992) in Chapter 2. The results show that among six groups of streamflow processes, except 
for the streamflow processes of the Yellow River at TG, all other series are basically 
stationary, albeit the daily series of the Yellow River at TNH is slightly nonstationary. 
Therefore, we will use five data sets (excluding the data set at TG) to make nonlinearity test. 

BDS test needs the extraction of linear structure from the original series by the use of an 
estimated linear filter. Therefore, the first step for the test is fitting linear models to the 
streamflow series.  

Because streamflow processes (except annual series) usually exhibit strong seasonality, to 
analysis the role of the seasonality played in nonlinearity test, the streamflow series are pre-
processed in two ways, log-transformation and deseasonalization. Correspondingly, the pre-
processed series are referred to as Log series and Log-DS series respectively. The Log-DS 
series is obtained with two steps. Firstly, log-transform the flow series. Then deseasonalize 
them by subtracting the seasonal (e.g., daily or monthly) mean values and dividing by the 
seasonal standard deviations of the log-transformed series. To alleviate the stochastic 
fluctuations of the daily and 1/3-monthly means and standard deviations, we smooth them 
with first 8 Fourier harmonics before using them for standardization. Annual series is 
analyzed with only log transformation. All series are pre-whitened with AR models. The 
parameters of AR models are estimated with Burg's algorithm (see e.g., Brockwell and Davis, 
1991). The orders of the AR models are selected according to AIC as well as the PACF 
structure, shown in Table 5.1. Residuals are obtained from these models, and then the BDS 
test is applied to the residual series. 

Table 5.1 Order of AR models used to pre-whiten streamflow series 

Yellow Danube Rhine Umpqua Ocmulgee 
Timescale 

Log Log-DS Log Log-DS Log Log-DS Log Log-DS Log Log-DS
daily 41 38 44 44 44 40 45 36 43 44 
1/3-monthly 32 9 34 12 34 16 35 7 33 8 
monthly 23 4 29 6 26 4 27 5 29 3 
annual 3 - 6 - 6 -  8 -  9 - 

 
Test results are shown in Table 5.2. It is noted that, according to the values of test statistics, 
with the increase of the timescale, the nonlinearity decreases. Among the flow series at four 
characteristic time scales, the strongest nonlinearity exhibits in daily series and no 
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nonlinearity exists in annual series. The result that all annual flow series are linear is in 
agreement with that of Rao and Yue (1990). Among the monthly series, Log series of Danube 
and Ocmulgee, and Log-DS series of Danube and Rhine pass the BDS test, while Log-DS 
series of Ocmulgee narrowly pass the test at significance level 0.05. But all the other series 
cannot pass BDS test at 0.01 significance level. Except for the daily and monthly streamflow 
series of Ocmulgee, and daily flow of Umpqua, there is a general feature that the test statistics 
of Log-DS series are smaller than those of the Log series, which implies that 
deseasonalization may more or less alleviate the nonlinearity. 
 

Table 5.2 BDS test results for pre-whitened streamflow series 

m = 2 m = 3 m = 4 m = 5 River 
(station) Transform Timescale 

statistic p-value statistic p-value statistic p-value statistic p-value
Daily 47.0533 0 61.9571 0 74.1301 0 85.8811 0 

1/3-montly 10.5202 0 14.7704 0 19.0192 0 22.725 0 
Monthly 7.1791 0 7.9968 0 8.19 0 7.1412 0 

Log 

Annual -0.1481 0.6752 -0.5146 0.4806 -0.7211 0.3109 -1.1057 0.2688
Daily 43.4626 0 56.7527 0 68.4717 0 81.7653 0 

1/3-montly 6.044 0 8.1641 0 9.837 0 10.8218 0 

Yellow 
(TNH) 

Log-DS 
Monthly 2.8223 0.0048 3.0398 0.0024 3.143 0.0017 2.6285 0.0086

Daily 64.5929 0 71.4827 0 74.7811 0 78.3698 0 
1/3-montly 6.3608 0 7.1313 0 7.0309 0 6.7469 0 
Monthly 0.4876 0.6258 0.524 0.6003 0.1309 0.8959 -0.3344 0.7381

Log 

Annual 1.8646 0.0622 1.4325 0.152 0.7672 0.443 0.6296 0.5289
Daily 66.0556 0 74.0606 0 78.6511 0 83.3938 0 

1/3-montly 4.8753 0 5.403 0 4.7642 0 4.0397 0 

Danube 
(Achleiten) 

Log-DS 
Monthly -0.433 0.665 -0.4672 0.6404 -0.6501 0.5156 -1.0611 0.2887

Daily 81.3407 0 92.8541 0 99.0233 0 104.134 0 
1/3-montly 13.0673 0 15.9534 0 18.2171 0 20.4593 0 
Monthly 3.2478 0.0012 3.427 0.0006 3.2987 0.001 2.9891 0.0028

Log 

Annual 0.9354 0.3496 -0.3757 0.7072 -1.258 0.2084 -1.7697 0.0768
Daily 76.337 0 87.674 0 93.9964 0 99.3641 0 

1/3-montly 9.1439 0 9.7837 0 9.8396 0 9.9765 0 

Rhine 
(Lobith) 

Log-DS 
Monthly 1.0252 0.3053 0.6442 0.5195 0.3424 0.7321 0.0815 0.935

Daily 39.7005 0 46.4219 0 50.3533 0 54.1384 0 
1/3-montly 8.6812 0 10.3209 0 11.6106 0 13.4153 0 
Monthly 1.2264 0.22 0.6615 0.5083 0.7075 0.4793 0.8972 0.3696

Log 

Annual 1.9058 0.0567 0.2874 0.7738 -0.0001 0.9999 -0.0924 0.9264
Daily 39.7893 0 46.5039 0 50.418 0 54.2164 0 

1/3-montly 6.0087 0 6.7851 0 7.0996 0 7.7285 0 

Ocmulgee 
(Macon) 

Log-DS 
Monthly 2.1146 0.0345 1.8856 0.0594 1.9118 0.0559 1.9514 0.051

Daily 82.7014 0 90.6942 0 94.1177 0 97.4194 0 
1/3-montly 20.3057 0 26.6761 0 32.5019 0 38.4548 0 
Monthly 6.4086 0 7.027 0 6.211 0 4.961 0 

Log 

Annual 1.3294 0.1837 1.2578 0.2085 0.6557 0.512 -0.104 0.9172
Daily 82.7829 0 90.8138 0 94.2531 0 97.5695 0 

1/3-montly 13.9061 0 17.8505 0 20.5563 0 23.3343 0 

Umpqua 
(Elkton) 

Log-DS 
Monthly 3.0916 2.00E-03 3.6568 3.00E-04 3.8706 1.00E-04 3.6901 2.00E-04

 
With a close inspection of the pre-whitened streamflow series, i.e., the residual series, we find 
that although the residuals are serially uncorrelated, there is seasonality in the variance of the 
residual series (see Figure 4.9 in Chapter 4). Therefore, it's worthwhile to have a look at the 
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residuals after removing such kind of season-dependent variance. Table 5.3 shows the BDS 
test results for the residual series after being standardized by dividing by the seasonal standard 
deviations of the residuals. 
 

Table 5.3 BDS test results for standardized pre-whitened streamflow series 

m = 2 m = 3 m = 4 m = 5 River 
(station) Transform Time scale 

statistic p-value statistic p-value statistic p-value statistic p-value
Daily 36.5463 0 46.8049 0 55.9885 0 63.2352 0 

1/3-montly 3.2901 1.00E-03 3.9963 1.00E-04 4.8369 0 5.0091 0 Log-std 
Monthly 3.3106 9.00E-04 3.6546 3.00E-04 3.8527 1.00E-04 3.6088 3.00E-04

Daily 39.4409 0 46.3156 0 50.7325 0 54.8716 0 
1/3-montly 1.572 0.116 1.9548 0.0506 1.8772 0.0605 1.3839 0.1664

Yellow 
(TNH) 

Log-DS-std 
Monthly 0.2841 0.7763 0.0009 0.9993 0.2121 0.8321 0.33 0.7414

Daily 64.1614 0 70.781 0 73.5179 0 76.5167 0 
1/3-montly 5.013 0 5.5489 0 5.1878 0 4.6661 0 Log-std 
Monthly -0.4842 0.6283 -0.5164 0.6056 -0.8201 0.4122 -1.134 0.2568

Daily 64.314 0 70.8533 0 73.5682 0 76.3846 0 
1/3-montly 4.0241 0 4.5249 0 3.9327 0 3.2051 0 

 
Danube 
(Achleiten) 

Log-DS-std 
Monthly -0.5095 0.6104 -0.5129 0.608 -0.6604 0.509 -0.9927 0.3209

Daily 76.0294 0 88.0105 0 94.9959 0 101.1317 0 
1/3-montly 6.0181 0 5.5306 0 4.8313 0 4.2881 0 Log-std 
Monthly -0.1027 0.9182 -0.4843 0.6282 -0.4602 0.6454 -0.3668 0.7138

Daily 76.0294 0 88.0105 0 94.9959 0 101.1317 0 
1/3-montly 6.9796 0 6.5555 0 5.7393 0 5.0276 0 

 
Rhine 
(Lobith) 

Log-DS-std 
Monthly 0.3267 0.7439 -0.2032 0.839 -0.4073 0.6838 -0.6029 0.5466

Daily 39.2541 0 45.9753 0 49.8505 0 53.5797 0 
1/3-montly 8.1499 0 9.351 0 10.4597 0 12.1685 0 Log-std 
Monthly 1.1009 0.271 0.4957 0.6201 0.5591 0.5761 0.8345 0.404

Daily 39.339 0 46.0532 0 49.9094 0 53.6486 0 
1/3-montly 5.495 0 5.8351 0 5.99 0 6.6117 0 

 
Ocmulgee 
(Macon) 

Log-DS-std 
Monthly 1.839 0.0659 1.6546 0.098 1.6696 0.095 1.6642 0.0961

Daily 79.2755 0 87.0849 0 90.5519 0 93.9577 0 
1/3-montly 11.4493 0 12.9663 0 13.1782 0 13.3861 0 Log-std 
Monthly 3.3133 9.00E-04 3.8847 1.00E-04 4.0829 0.00E+00 3.9246 1.00E-04

Daily 79.4946 0 87.334 0 90.8304 0 94.294 0 
1/3-montly 10.8964 0 12.6817 0 13.1041 0 13.604 0 

Umpqua 
(Elkton) 

Log-DS-std 
Monthly 2.2041 0.0275 2.7437 0.0061 3.0048 0.0027 3.0525 0.0023

Note: “-std” in clolumn “transform” refers to the standardization of pre-whitened streamflow series. 
 
Comparing Table 5.2 and Table 5.3, we can find that, the BDS test statistics of all the series 
are generally smaller than those of the series before standardization. Especially, 1/3-montly 
and monthly Log-DS series of the Yellow River, and the monthly Log series of the Rhine 
River, which are nonlinear before standardization, pass the BDS test at 0.05 significance level 
after standardization. Therefore, the seasonal variation in variance in the residuals is probably 
a dominant source of nonlinearity in the 1/3-montly and monthly Log-DS series of the Yellow 
River, and the monthly Log series of the Rhine River. But all the daily series, most 1/3-
monthly series and some monthly series still exhibit nonlinearity even after standardization. 
That indicates that the seasonal variance composes only a small, even negligible, fraction of 
the nonlinearity underlying these processes, especially daily streamflow processes.  
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The BDS test results are summarized in Table 5.4. The summary gives us a clear indication of 
how the degree of nonlinearity changes with the change of timescale and the change of how 
we process the flow processes. In general, the following two points can be revealed. In 
general two points are revealed by the BDS test results: 
 
(1) There are stronger and more complicated nonlinearity mechanisms acting at small 

timescales than at large timescales. As the timescale increases, the nonlinearity weakens.  

(2) Asymmetric seasonality in the mean and variance of raw (or log-transformed) streamflow 
processes and the seasonality in the variance of the pre-whitened streamflow processes 
(i.e., residual series) play a role in the exhibition of nonlinearity. The effects of seasonal 
variation in variances dominate the nonlinearity of some 1/3-monthly and monthly 
streamflow series. 

Table 5.4 Summary of BDS test results 

Timescale Transform Linear Non-linear Average test statistic 
Log 0 5 74.557 
Log-DS 0 5 73.317 
Log-std 0 5 69.362 

Daily 

Log-DS-std 0 5 68.878 
Log 0 5 16.198 
Log-DS 0 5 9.798 
Log-std 0 5 7.466 

1/3-monthly 

Log-DS-std 1 4 6.050 
Log 2 3 3.652 
Log-DS 3 2 1.926 
Log-std 3 2 1.850 

Monthly 

Log-DS-std 4 1 1.144 
Annual Log 5 0 0.858 

 

5.2.3 Analysis of the Power of BDS Test 

Although most monthly flow series and some 1/3-monthly series are diagnosed as linear with 
BDS test after, or even before, being standardized by seasonal variance, this does not exclude 
the possibility that there exists some weak nonlinearity in these series. For example, some 
studies indicate that monthly streamflow could be modelled by TAR model or PAR model 
(e.g., Thompstone et al., 1985). TAR model is a well-acknowledged nonlinear model. PAR 
model is also a nonlinear model, which differs from TAR model in that TAR model uses 
observed values as threshold whereas PAR model uses season as threshold. Passing BDS test 
does not mean that there is no nonlinearity such as TAR or PAR mechanism present in the 
time series. It is possible that BDS test is not powerful enough to detect weak nonlinearity. 
We will make an analysis on the power of BDS test in this section with some simulated series.  

Consider one AR model, two TAR models, two bilinear models and Henon map series of the 
following form: 

(1) AR: xt = 0.7xt-1+ εt; 



120  Chapter5 Testing for Nonlinearity of Streamflow Processes 

 

(2) TAR-1: 1 1
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; 

(4) Bilinear-1: xt = 0.9 xt-1+0.1 xt-1* εt -1+ εt; 

(5) Bilinear-2: xt = 0.4xt-1+ 0.8 xt-1* εt -1+ εt; 

(6) Henon map series: 
2

1

1

1t t t

t t

x ax by
y x
+

+

⎧ = − +
⎨

=⎩
, a=1.4, b=0.3. 

In all the above models, {xt} (or {yt}) is time series, and {εt} is independent standard normal 
error. Obviously, among the above models, model TAR-1 and Bilinear-1 have weak 
nonlinearity while model TAR-2 and Bilinear-2 have stronger nonlinearity, because TAR-2 
has a larger parameter difference and Bilinear-2 has a more significant bilinear item. Henon 
map series is a typical chaotic series (Henon, 1976). For model (1) to (5), 1000 simulations 
are generated, and each simulation has 500 points. For Henon series, one simulation with 
500000 points is generated (referred to as clean-Henon in Table 5.5). Then the Henon series is 
divided into 1000 segments, and each segment has 500 points. To evaluate the influence of 
noise on BDS test, noise is added to the simulated Henon series (referred to as noise-Henon in 
Table 5.5). The noise is normally distributed with zero mean, and its standard deviation is 5% 
of the standard deviation of the Henon series. 

Table 5.5 Rates of accepting linearity with BDS test based on 1000 replications at 0.05 level  

m = 2 m = 3 m = 4 m = 5 Series 
p-value accepted p-value accepted p-value accepted p-value accepted

AR(1) 0.483 926 0.484 925 0.484 928 0.462 933 
TAR-1 0.361 831 0.371 838 0.380 840 0.403 843 
TAR-2 0.002 212 0.004 272 0.009 326 0.014 373 
Bilinear-1 0.178 703 0.196 714 0.238 735 0.264 763 
Bilinear-2 6.73E-40 0 5.98E-46 0 3.62E-47 0 3.62E-47 0 
clean-Henon 7.24E-50 0 3.27E-84 0 3.50E-115 0 2.25E-142 0 
noise-Henon 3.61E-49 0 5.32E-82 0 5.83E-112 0 5.92E-138 0 

Note: p-value in the table is the median value for each group of 1000 replications. 
 
Then we use BDS test to detect the presence of nonlinearity in the simulated series. All the 
series are pre-whitened with AR models. The test results are shown in Table 6. It is shown 
that the hypothesis of linearity for Henon series (pure or with noise) are firmly rejected, which 
indicates that BDS test is very powerful for detecting such kind of strong nonlinearity. In 
most cases, BDS test correctly rejects the hypothesis that TAR-2 and Bilinear-2 processes are 
linear, but wrongly accepts TAR-1 and Blinear-1 processes as linear. That means that 
although BDS test is considered very powerful for testing nonlinearity, but not powerful 
enough for detecting weak nonlinearity in TAR-1 and Bilinear-1, whereas such kinds of weak 
nonlinearity probably present in the streamflow series, because it is impossible that 
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streamflow processes are driven by the mechanism like TAR-2, which switches between 
dramatically different regimes.  

Therefore, BDS test results tell us that there is strong nonlinearity present in daily streamflow 
series as well as most 1/3-monthly series, even after taking away the effects of seasonal 
variance, but there is no strong nonlinearity presents in most monthly streamflow series and 
some 1/3-monthly series after removing the effects of seasonal variance. However, we cannot 
say there is no nonlinearity present in those 1/3-monthly and monthly streamflow series even 
if they pass BDS test, because BDS test is not powerful enough for detecting weak 
nonlinearity. In addition, comparing the BDS test results for chaotic Henon series with those 
for streamflow series, while it is not clear whether most 1/3-monthly series and all the daily 
series have chaotic properties, it seems that all monthly series may not be chaotic because the 
BDS test p-values for monthly flow series are far much higher than those for chaotic Henon 
series. We would further detect the existence of chaos with the correlation exponent method in 
the next section. 

5.3 Testing for Chaos in Streamflow Processes 

Many methods are available for detecting the existence of chaos, among which the correlation 
exponent method (e.g. Grassberger and Procaccia, 1983a), the Lyapunov exponent method 
(e.g. Wolf et al., 1985; Kantz,, 1994), the Kolmogorov entropy method (e.g. Grassberger and 
Procaccia, 1983b), the nonlinear prediction method (e.g. Sugihara and May, 1990), and the 
surrogate data method (e.g., Theiler et al., 1992; Schreiber and Schmitz, 1996) are commonly 
used. However, many researchers (e.g, Sivakumar, 2000) have noticed that there is no reliable 
method to clearly distinct a chaotic system and a stochastic system. A finite correlation 
dimension may be observed not only for chaotic processes but also for a stochastic process 
(e.g. Osborne and Provenzale, 1989), and when examined by the Grassberger-Procaccia 
algorithm alone, filtered noise can mimic low-dimensional chaotic attractors (Rapp et al, 1993. 
The occurrence of a positive time-average Lyapunov exponent in a nonlinear system subject 
to noise, be additive or multiplicative, does not necessarily imply deterministic chaos (Van 
den Broeck and Nicolis, 1993), and a positive Lyapunov exponent may be observed also for 
stochastic processes, such as ARMA processes (e.g. Jayawardena and Lai, 1994). Random 
noises with power law spectra may provide convergence of the Kolmogorov entropy, which 
implies that the observation of a finite or null value of the K2 entropy in the analysis of data is 
not enough to infer that the system is dominated by a deterministic process such as low-
dimensional chaos. (e.g. Provenzale et al., 1991). A stochastic process, be it linear or 
nonlinear, can also produce accurate short-term prediction but not long-term predictability, 
which is a typical characteristic of a chaotic process. Surrogate data method, which has a 
typical null hypothesis of Gaussian linear stochastic process, is not specifically designed for 
detecting chaos. In addition, phase-randomized surrogates can produce spurious 
identifications of non-random structure (e.g. Rapp et al., 1994). Consequently, none of the 
above methods can provide a conclusive resolution of whether a given data set is chaotic. 
What makes it worse for testing for chaos is the inevitable presence of noise in the observed 
data sets (e.g., Schertzer, 1997), such as hydrological time series. 
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While we cannot prove the existence of chaos with the above methods, we can conclude the 
absence of chaos if there is no finite correlation dimension for the data set of interest, because 
it is well recognized that chaotic processes should have finite correlation dimension, provided 
that the data set is of sufficient size. Therefore, it is crucial to estimate correlation dimension 
for detecting the presence or absence of chaos. For this reason, correlation exponent method is 
used by almost all the researchers for detecting chaos in hydrological processes (e.g., 
Jayawardena and Lai, 1994; Porporato and Ridolfi, 1997; Pasternack, 1999; Bordignon and 
Lisi, 2000; Elshorbagy et al., 2002, Khan et al., 2005). In this study, the analysis based on the 
correlation exponent method is done with TISEAN package (Hegger et al., 1999). 

When testing for general nonlinearity, it is common to filter the data to remove linear 
correlations (prewhitening) (e.g., Brock et al., 1996), because linear autocorrelation can give 
rise to spurious results in algorithms for estimating nonlinear invariants, such as correlation 
dimension and Lyapunov exponents. But it has been observed that in numerical practice 
prewhitening may severely impairs the underlying deterministic nonlinear structure of low-
dimensional chaotic time series (e.g., Theiler and Eubank, 1993; Sauer and Yorke, 1993). 
Therefore, mostly chaos analyses are based on original series, and the same in our analysis. 

Correlation exponent method is most frequently employed to investigate the existence of 
chaos. The basis of this method is multi-dimension state space reconstruction. The most 
commonly used method for reconstructing the state space is the time-delay coordinate method 
proposed by Packard et al. (1980) and Takens (1981). In the time delay coordinate method, a 
scalar time series {x1, x2, …, xN} is converted to state vectors Xt = [xt, xt - τ , ..., xt - (m-1)τ] after 
determining two state space parameters: the embedding dimension m and delay time τ . To 
check whether chaos exists, the correlation exponent values are calculated against the 
corresponding embedding dimension values. If the correlation exponent leads to a finite value 
as embedding dimension increasing, then the process under investigation is thought of as 
being dominated by chaotic dynamics. Otherwise, the process is considered as non-chaotic. 

To calculate the correlation exponent, the delay time τ should be determined first. Therefore, 
the selection of delay time is discussed first in the following section, followed by the 
estimation of correlation dimension. 

5.3.1  Selection of Delay Time 

The delay time τ is commonly selected by using the autocorrelation function (ACF) method 
where ACF first attains zeros or below a small value (e.g., 0.2 or 0.1), or the mutual 
information (MI) method (Fraser and Swinney, 1986) where the MI first attains a minimum. 
We first take the streamflow of the Yellow River at TNH as an example to analyze the choice 
of τ. 

We calculate ACF and MI of daily, 1/3-monthly and monthly flow series of the Yellow River, 
shown in Figure 5.1. Because of strong seasonality, ACF first attains zeros at the lag time of 
about 1/4 period, namely, 91, 9 and 3 for daily, 1/3-monthly and monthly series respectively. 
The MI method gives similar estimates for τ to the ACF method, about approximately 1/4 
annual period.  
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Figure 5.1 ACF and MI of (a) daily, (b) 1/3-monthly and (c) monthly river flow of the Yellow River 
 

In practice, the estimate ofτ is usually application and author dependent nonetheless in 
practice. For instance, for daily flow series, some authors take the delay time as 1 day 
(Porporato and Ridolfi 1997), 2 days (Jayawardena and Lai, 1994), 7 days (Islam and 
Sivakumar, 2002), 10 days (Elshorbagy et al., 2002), 20 days (Wilcox et al., 1991) and 146 
days (Pasternack, 1999). These differences may arise from different ACF structure. To 
compare the influence of differentτ on the reconstruction of state space, we can plot xt ~ xt+τ 
state-space maps for the streamflow series with different τ. The best τ value should make the 
state space best unfolded. For the streamflow series of the Yellow River, the xt ~ xt+τ state-
space maps with small τ values (i.e., 1, 7, 10, and 20) are displayed in Figure 5.2, and the 2- 
and 3-dimensional xt ~ xt+τ state-space maps with τ taken as 1/4 of the annual period are 
displayed in Figure 5.3. Obviously, especially clearly in the 3-D maps, state spaces for daily, 
1/3-monthly and monthly streamflow series are best unfolded when delay time τ= 91, 9, 3 
respectively.  
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Figure 5.2 xt ~ xt+τ state-space maps of daily streamflow series of the Yellow River at TNH with  

(a)τ=1; (b) τ =7; (c) τ =10; (d) τ =20 
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Figure 5.3 2-D and 3-D state space maps of (a), (b) daily; (c), (d) 1/3-monthly; and (e), (f) monthly 
streamflow of the Yellow River at TNH with delay time τ = 91, 9 and 3. 

 
We therefore selectτ= 91, 9, 3 for estimating correlation dimension for the streamflow series 
of the Yellow River. Similar results are obtained for the streamflow processes of the Umpqua 
River and the Ocmulgee River (to save space, the plots are not displayed here). But for the 
Rhine River, the seasonality is not that obvious. The ACF and MI of daily, 1/3-monthly and 
monthly flow series of the Rhine River are shown in Figure 5.4. If we determine the delay 
time according to the lags where ACF attains 0 or MI attains its minimum for the Rhine River, 
the lags would be about 200 days which seems to be too large, which would possibly make 
the successive elements of the state vectors in the embedded multi-dimensional state space 
almost independent. Therefore we select the delay time equal to the lags before ACF attains 
0.1, namely, τ = 92, 9, 3 for daily, 1/3-monthly and monthly streamflow series, respectively. 
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Figure 5.4 ACF and MI of (a) daily, (b) 1/3-monthly and (c) monthly river flow of the Rhine River 
 
5.3.2  Estimation of the Correlation Dimension 

The most commonly used algorithm for computing the correlation dimension is the 
Grassberger - Procaccia algorithm (Grassberger and Procaccia, 1983a), modified by Theiler 
(1986). For a m-dimension phase-space, the modified correlation integral C(r) is defined by 
(Theiler, 1986) 

1 1

2( ) ( )
( 1 )( )

M M i

i j
i j i w

C r H r X X
M w M w

−

= = + +

= − −
+ − − ∑ ∑       (5.5) 

where M, r, H have the same meaning as in Equation (5.1), w (≥ 1) is the Theiler window to 
exclude those points which are temporally correlated. In this study, w is set as about half a 
year, namely 182, 18, and 6 for daily, 1/3-monthly and monthly series respectively. 

For a finite dataset, there is a radius r below which there are no pairs of points, whereas at the 
other extreme, when the radius approaches the diameter of the cloud of points, the number of 
pairs will increase no further as the radius increases (saturation). The scaling region would be 
found somewhere between depopulation and saturation. When lnC(r) versus lnr is plotted for 
a given embedding dimension m, the range of lnr where the slope of the curve is 
approximately constant is the scaling region where fractal geometry is indicated. In this 
region C(r) increase as a power of r, with the scaling exponent being the correlation 
dimension D. If the scaling region vanishes as m increases, then finite value of correlation 
dimension cannot be obtained, and the system under investigation is considered as non-
chaotic. Local slopes of lnC(r) versus lnr plot can show scaling region clearly when it exists. 
Because the local slopes of lnC(r) versus lnr plot often fluctuate dramatically, to identify the 
scaling region more clearly, we can use the Takens-Theiler estimator or smooth Gaussian 
kernel estimator to estimate correlation dimension (Hegger et al., 1999). 

The lnC(r) versus lnr plots of daily, 1/3-monthly and monthly streamflow series of the four 
rivers are displayed in Figure 5.5 – 5.7 respectively, and the Takens-Theiler estimates (DTT) 
of correlation dimension are displayed in Figure 5.8 – 5.10. 

We cannot find any obvious scaling region from the Figure 5.8 – 5.10. Take the Yellow River 
for instance, an ambiguous lnr region could be identified as scaling region is around lnr = 
7~7.5 for the three flow series of different timescales. But in this region, as shown in Figure 
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5.11, the DTT increases with the increment of the embedding dimension, which indicates that 
the system under investigation is non-chaotic.  
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(c) Umpqua River       (d) Ocmulgee River 

Figure 5.5 lnC(r) versus lnr plot for daily streamflow processes 
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(c) Umpqua River       (d) Ocmulgee River 

Figure 5.6 lnC(r) versus lnr plots for 1/3-monthly streamflow processes 
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(c) Umpqua River      (d) Ocmulgee River 

Figure 5.7 lnC(r) versus lnr plots for monthly streamflow processes 
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Figure 5.8 Takens-Theiler estimates of correlation dimension for daily streamflow processes 
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Figure 5.9 Takens-Theiler estimates of correlation dimension for 1/3-monthly streamflow processes 
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Figure 5.10 Takens-Theiler estimates of correlation dimension for monthly streamflow processes 
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Figure 5.11 Relationship between DTT and the embedding dimension for the streamflow of the Yellow 
River at TNH 

 
5.3.3  Discussion on the Estimation of Correlation Dimension 

Three issues regarding the estimation of correlation dimension should be noticed.  

First, about the minimum data size for estimating correlation dimension. Some authors claim 
that the size of 10A (Procaccia, 1988) or 10(2+0.4m) (Nerenberg and Essex, 1990; Tsonis et al., 
1993), where A is the greatest integer smaller than correlation dimension and m is the 
embedding dimension, is needed for estimating correlation dimension with an error less than 
5%. On the other hand, some researchers found that smaller data size is required. For instance, 
the minimum data points for reliable correlation dimension D is 10D/2 (Eckmann and Ruelle, 

1992), or 2 27.5
D

i  (Hong and Hong, 1994), or 10(D+2)/2  (Kantz and Schreiber, 2003, pp 

167-168), or 5m to keep the edge effect error in the correlation dimension estimation below 
5% (Theiler, 1990), and empirical results of dimension calculations are not substantially 
altered by going from 3 000 or 6 000 points to subsets of 500 points (Abraham et al., 1986). 
In our study, data length is long enough for estimating correlation dimension for daily flow, 
but the data size used for monthly streamflow analysis seems short, especially the size of 540 
points of monthly flow series of the Yellow River. However, as shown in Figure 5.5 – 5.10, 
there is no significant difference among the behavior of correlation integrals of the flow series 
with different sampling frequency. The agreement among the behavior of correlation integrals 
for daily, 1/3-monthly and monthly flow series indicates that it is possible to make basically 
reliable correlation dimension calculation with a series of size as short as 540. This is 
consistent with the empirical result of Abraham et al. (1986) and approximately satisfying the 
theoretical minimum size of Hong and Hong (1994) or Kantz and Schreiber (2003) if there is 
indeed a finite correlation dimension less than 3.5. 

Second, about scaling region. Some authors do not provide scaling plot when investigating 
the existence of chaos (e.g., Jayawardena and Lai, 1994; Sivakumar, 1999; Elshorbagy et al., 
2002), whereas some other authors provide scaling plot, but give no obvious scaling region 
(e.g., Porporato and Ridolfi 1997). However, a clearly discernible scaling region is crucial to 
make a convincing and reliable estimate of correlation dimension (Kantz and Schreiber, 2003, 
pp 82-87). 
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Third, about temporally related points for computing C(r). To exclude temporally related 
points from the computation of C(r), the Theiler window as in Equation (5.5) is indispensable. 
Grassberger (1990) remarked that when estimating the dimension of an attractor from a time 
sequence, one has to make sure that there exist no dynamical correlations between data points, 
so that all correlations are due to the geometry of the attractor rather than due to short-time 
correlations. He urged the reader to be very generous with the Theiler window parameter. 
Because streamflow series is highly temporally related, especially for daily flow, therefore, 
without setting Theiler window w (i.e., w = 1), we would find a spurious scaling region in the 
plot of DTT versus lnr which gives an incorrect estimate of correlation dimension. This 
problem has been pointed out by Wilcox et al. (1991) a decade ago, however, some authors 
ignored this (e.g., Elshorbagy et al., 2002), and some others take a very small Theiler window, 
which is maybe not large enough to exclude temporal correlations between the points (for 
example, Porporato and Ridolfi (1996) take w = 5 for daily flow series). Figure 5.12 shows 
the Takens-Theiler’s estimate for daily streamflow series of the four rivers with w set to be 1. 
It is clear that with w = 1, we would find spurious scaling regions in all these plots. 
Furthermore, comparing the plots for the daily streamflow of the Rhine river with different 
values of w, namely, Figure 5.12(b), Figure 5.13 (a) and (b), we can further find that the 
smaller the value of w, the lower the estimated correlation dimension. According to these 
plots, when w = 1, the correlation dimension D is less than 4; when w = 5, D is less than 8, 
and when w = 15, D is less than 10. Therefore, the dimension estimate could be seriously too 
low if temporal coherence in the time series is mistaken for geometrical structure (Kantz and 
Schreiber, 2003, pp 87-91). 
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Figure 5.12 Takens-Theiler estimates without considering Theiler window for daily streamflow  
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(a) w = 5     (b) w = 15  

Figure 5.13 Takens-Theiler estimates with small Theiler window for daily streamflow of the Rhine 
River 

5.4 Effects of Dynamical Noises on the Identification of Chaotic Systems 

When analyzing the chaos properties in observational time series, we cannot avoid the 
problem of noise. There are two distinct types of noise: (1) measurement noise, which refers 
to the corruption of observations by errors that does not influence the evolution of the 
dynamical system; and (2) dynamical noise, which perturbs the system more or less at each 
time step. In the presence of dynamical noises, the time series is not a simple superposition of 
signal plus noise, but rather a signal modulated by the noise. With regard to an observed 
hydrological series, its dynamics is inevitably contaminated not only by measurement noise, 
but also more significantly by dynamical noise, such as the disturbance of storm rain. What 
are the effects of dynamical noise on the estimation of characteristic quantities of chaotic 
systems? We will discuss this issue through experiments with three well-known chaotic 
systems: (1) Henon map (Henon, 1976), which has one attractor with an attraction basin 
nearly touching the attractor in several places; (2) Ikeda map (Ikeda, 1979), which has one 
chaotic attractor with a small atttaction basin and a non-chaotic attractor with much larger 
attraction basin; (3) Mackey –Glass flow (Mackey and Glass, 1977), which has one attractor 
with unbounded attraction basin. 

To analyze the effects of dynamical noises, we add different levels of dynamical noises to the 
known chaotic systems by adding a noise item to the equations, and then check the phase state 
portraits and correlation dimensional estimates. The noise we add to the chaotic series are 
independently identically distributed Gaussian noise, with zero mean and variance of 2%, 5%, 
10% and 100% of the original pure chaotic series. Besides the Gaussian noise, autoregressive 
(AR) dynamical noises of AR(1) structure have also been tested. Results show that, due to the 
impacts of the serial dependence of AR noises, the impacts of the AR noise on the dynamics 
of chaotic systems are slightly stronger than, but similar to, those of i.i.d. noises. To save 
space, the results about AR noise are not displayed here. 
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5.4.1 Some Experiments with Classical Chaotic Time Series 

5.4.1.1 Impact of dynamical noises on Henon map 

First, we consider the Henon map (Henon, 1976) of the form 
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With a = 1.4 and b= 0.3, for initials such as x = 0, y = 0.9, Henon map has one strange chaotic 
attractor (Figure 5.14a).  

Experiments show that Henon map is sensitive to the disturbance of dynamical noises. Even 
1% dynamical noise can lead the Henon map to infinity. Noises above 2% could easily push 
the orbit outside the basin of attraction, and the series goes to minus infinity exponentially. 
Figure 5.14b shows the portrait of a comparatively short Henon map series (1000 points) with 
2% noise. It resembles the pure Henon map series in the appearance. However, with the 
evolution of the system, namely, the increase of the iterations of Henon map (e.g., >2000), it 
will surely go to infinity. The reason that such a low level as 2% of noise may lead the Henon 
map to infinity is that the boundary of the attraction basin of the Henon map nearly touches 
the attractor in several places, at these places, very small disturbances will push the trajectory 
outside the basin. Therefore, in the presence of dynamical noise, only for short series, the 
series can stay in the attractor. For example, with 2% noise, the Henon map rarely remains in 
the attractor after 1000 iterations. But as the noisy Henon map preserves a chotic attractor, we 
can identify a clear scaling region on the Takens-Theiler estimate DTT versus lnr plot (Figure 
5.15), and give a finite correlation dimension estimate about 1.25 (for noise-free series, about 
1.22). With 10% dynamical noise, the Henon map series usually start to grow exponentially to 
infinity within 20 iterations (as shown in Figure 5.14c). With 100% dynamical noise, the 
exponential growth starts within 10 steps. With such short series, low-dimension chaos cannot 
be identified. 
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Figure 5.14 Henon map with (a) 0%; (b) 2% and (c) 10% Gaussian dynamical noise 
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Figure 5.15 Correlation dimension estimate of Henon map series with 2% dynamical noise 

5.4.1.2 Impact of dynamical noises on Ikeda map 

Secondly, we consider Ikeda map (Ikeda, 1979) of the form  
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where the zn are complex variables. This map can be written as a two-dimensional system in 
the following form 
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where φ = β - α / (1 + xn
2 + yn

2). With α = 6, β = 0.4, γ = 1 and µ = 0.9, for an initial such as x 
= 0 and y = 0, the map gives chaos (Figure 5.16a). It is known that Ikeda map has a chaotic 
attractor with a complex attraction basin and one stable point attractor centered at (2.9721316, 
4.145946).  

With 2% dynamical noise, the system will usually stay in the chaotic attractor first (Figure 
5.16b), then move to point attractor as the system evolves. With the increase of noise level, 
the chance of staying in the chaotic attractors decrease, meanwhile the chance of moving to 
the point attractor increase. When noise level reaches 10%, the system only stays in chaotic 
attractor for short time (usually less than 1000 iterations), then move to the point attractor 
(Figure 5.16c). When the noise level is as high as 100%, the system usually escapes the 
chaotic attractor within 10 steps. Even for small noise level (e.g., 2% noise), with the 
evolution of the system (e.g., iterate the map more than 20000 times), the system will finally 
be trapped into the point attractor.  
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Figure 5.16 Ikeda map with (a) 0%; (b) 2% and (c) 10% Gaussian dynamical noise 
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We also calculate the Takens-Theiler estimate DTT of correlation dimension for Ikeda map 
series with 2% and 10% dynamical noise when the series stays in the chaotic attraction basin, 
and plot DTT versus lnr in Figure 5.17. We can clearly identify the scaling region in Figure 
5.17a, and estimate the correlation dimension about 1.85 (for pure series, about 1.69). But the 
scaling region in Figure 5.17b is not clearly discernable. From the vague region around lnr = -
0.5, the correlation dimension estimate for Ikeda series with 10% noise is about 2.12. 
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Figure 5.17 Correlation dimension estimate of Ikeda map with (a) 2% and (b) 10% dynamical noises 

5.4.1.3 Impact of dynamical noises on discretized Mackey-Glass flow 

Finally, we consider Mackey-Glass delay differential equation (Mackey and Glass, 1977) of 
the form 

1
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where xt-τ is the value of x at time t-τ. It can be written as an approximate m+1 dimensional 
map in delay coordinates: 
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With a = 0.2, b = 0.1 and c = 10, this map can generate time series with chaotic attractors of 
different dimension for τ > 16.8. We choose m = 30, τ = 30. The noise-free series and the 
series with 2% and 10% dynamical noise are plotted in Figure 5.18a, b and c. 
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Figure 5.18 Mackey-Glass flow with (a) 0%; (b) 2% and (c) 10% Gaussian dynamical noise 

From Figure 5.18b, we see that the chaotic attractor is very clear with 2% Gaussian noise. 
Because the attraction basin of Mackey-Glass flow is unbounded, even for high level (e.g., 

(a) (b) (c) 

(a) (b)
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10%) of noises, the attractor still can be vaguely discerned (Figure 5.18c). But the attractor is 
not discernable anymore with the noise of 100% level. 

We calculate the DTT for discretized Mackey-Glass flow contaminated with 2% and 10% 
dynamical noise, plotted in Figure 5.19. With 2% noise, we can get an estimate of correlation 
dimension about 2.5 (correct correlation dimension is about 2.45). Although we can discern 
the attractor vaguely with noises as high as 10% as shown in Figure 5.18c, it is hard to define 
the scaling region in Figure 5.19b and hard to estimate the correlation dimension correctly. 
With the noise level as high as 100%, the scaling region is totally lost. 
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Figure 5.19 Estimate of correlation dimension for Mackey-Glass flow series with (a) 2% and (b) 10% 

dynamical noise 

5.4.2 Analysis of the Results for the Cases of Classic Chaotic Processes 

According to the above analyses, we have some remarks on the following two aspects: 

(1) About the identification of chaotic system: from possible to impossible 

Although the presence of noise limits the performance of many techniques of identification 
and prediction of chaotic systems [e.g., Schreiber and Kantz, 1996], with low level (e.g., 2%) 
Gaussian noise, the chaotic attractor can still be well preserved and basically correct estimate 
of correlation dimension can be made. However, in the presence of dynamical noises, the 
estimate is biased to a higher value, and the higher the noise level, the larger the bias. When 
the level of dynamic noise is very high (e.g., 10%), it is hard to identify the systems analyzed 
above correctly, let alone in the presence of  noises of 100% level. 

(2) About the property of chaotic system: from deterministic to stochastic 

Although chaotic systems are widely considered as deterministic, in the presence of 
dynamical noise, the system may still present chaotic behavior. Because a chaotic system with 
dynamic noise has a stochastic component and the system turns out to be stochastic instead of 
being deterministic, that means, a stochastic may present chaotic behavior. In the presence of 
dynamical noise, whether or not the chaotic system remains in the chaotic attractor depends 
on the intensity of stochastic disturbances. If the disturbance is so strong as to push the orbit 
outside the chaotic attraction basin, then the system may go to infinity, or fall into 
neighboring non-chaotic attractors, or just lost the geometry of the chaotic attractor, and the 
system becomes non-chaotic. 

(a) (b) 
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Two factors affect whether the trajectories would escape the chaotic attractor of a chaotic 
system with stochastic noise. (1) The distance DB between the boundary of attraction basin 
and that of the attractor. The larger the distance is, the harder to push the trajectory away from 
the attractor. If the attraction basin is unbounded, which means infinity DB, then the system 
will never escape. Systems with chaotic attractors nearly touch the boundary of their 
attraction basins in some places (namely, have very small DB in these places, such as the 
Henon map), may easily been pushed outside the chaotic attractors. (2) The distribution of the 
stochastic noise. For uniform distributed noise, if the maximum value of disturbance is less 
than minimum DB, then the stochastic chaotic system will never escape the chaotic attractor. 
For un-uniformly distributed noise, when the attraction basin is bounded, the dynamical 
systems would probably ultimately escape the attractor basin and go to infinity or fall into 
other neighboring attractors as the evolution of the system goes to infinity. 

5.4.3 The Case of Streamflow Processes 

With regard to an observed hydrological series, its dynamics is inevitably contaminated by 
not only measurement noise, but also dynamical noise. For instance, a streamflow process, 
which is the major output of a watershed system, may be influenced by many factors, 
including external inputs (e.g., precipitation, temperature, solar radiation), other outputs (e.g., 
evaporation, transpiration), and various human interventions. These factors are generally 
composed of both deterministic components and stochastic components. Among all the 
factors, the precipitation is the dominant one which may disturb the streamflow process most 
significantly. In a flood event, it is very common that the flow generated by storm rainfall 
makes up over 50% of the total discharge. Assuming that base flow of a streamflow process is 
the noise-free time series, that 50% streamflow is generated by rainfall means that the 
dynamical noise is 100% of the original series. Even if the streamflow process is chaotic, 
according to the experiments we made with the known chaotic systems, it is impossible to 
detect the chaotic characters with such intense disturbances.  

One may argue that dynamical noise may be a higher dimensional part of the system 
dynamics. If viewing it in this way, then we may say, the streamflow process may be chaotic, 
but definitely not a low-dimensional chaotic process, because as a major output of watershed 
system, it is influenced by not only many dynamical inputs and other outputs of the watershed 
system, but also dynamical variations of many internal factors, such as the spatial-temporal 
variability of soil infiltration capacity. That means, if the streamflow process is chaotic, it 
would be a very high dimensional chaotic process, rather than a low-dimensional process as 
claimed by some researchers. Although it is possible that collective behavior of a huge 
number of external and internal degrees of freedom may lead to low-dimensional dynamics, it 
seems not the case for streamflow processes because we cannot observe finite correlation 
dimension in the streamflow processes we studied. 

The objective of detecting chaos should be giving a better understanding of the hydrological 
time series, rather than just trying to give evidences of the presence of chaos. After the tide of 
detecting the existence of chaos in hydrological time series, some researchers have tried to 
make some physical explanation to the chaos they claimed. For example, Porporato and 
Ridolfi (2003) state that the climate dynamics that produces the input of the rainfall–runoff 



5.5 Discussions on the Sources of Nonlinearity 137  

 

transformation is the first source of possible determinism, and the strong low-pass filtering 
action of the basin, while smoothing out some of the space–time complexity of rainfall, could 
make more evident the low-dimensional deterministic components originating from both 
climate and rainfall–runoff transformation. This is a doubtful statement. On the one hand, 
whether climate dynamics is deterministic is questionable, and consequently, whether the 
inputs of watershed system are deterministic is questionable. On the other hand, watershed 
system should be a damping system, which damps down the disturbance of the space–time 
complexity of rainfall as well as other dynamical inputs, rather than smoothes out the high-
frequency space–time complexity with so-called strong low-pass filtering action. While the 
disturbance is being damped down, it will surely cause space–time variations of internal 
variables. In fact, the focus of the enormous efforts made by the hydrology community of 
developing physically-based distributed models (e.g., MIKE-SHE model) is to describe the 
rainfall-runoff via considering the spatial-temporal heterogeneity rather than searching for a 
mechanism which can smooth out the space–time complexity of rainfall or other variables.  

All in all, on the one hand, due to high level of dynamic disturbances, it is not possible to 
accurately identify the chaos in streamflow processes even if it exists; on the other hand, the 
existence of chaotic characteristics does not necessarily mean determinism, consequently, 
even if we chaos exhibits in a streamflow process, we cannot conclude that the streamflow 
process is deterministic. As pointed out by Schertzer et al. (2002), it is a questionable attempt 
to reduce complex systems to their low-dimensional caricatures, and there is no obvious 
reason that processes should be run by deterministic equations rather than by stochastic 
equations, since the former are merely particular cases of the latter. 

5.5 Discussions on the Sources of Nonlinearity 

Streamflow processes are fundamentally driven by meteorological processes. It is currently 
well accepted that climatic and atmospheric dynamics are strongly nonlinear (e.g. Saltzman, 
1983; Lorenz, 1991), and the daily streamflow process is usually perceived as nonlinearly 
dependent on the magnitude of the rainfall (e.g., Minshall, 1960; Wang et al., 1981), therefore, 
the first source of nonlinearity in daily streamflow processes probably stems from the 
nonlinearity in daily atmospheric processes. In fact, the seasonality which plays a role in 
nonlinearity of streamflow processes, as show in Section 5.2.2, also essentially arise from the 
seasonality in meteorological processes. What makes the nonlinearity of streamflow processes 
more complicated is the nonlinear rainfall-runoff response. In the rainfall–runoff 
transformation, many more sources of nonlinearity are involved and they may combine 
differently in different basins. Examples include: the rainfall interception due to vegetation (a 
typical season-dependent, threshold-like mechanism), the unsaturated groundwater flow 
(where the hydraulic conductivity depends in a strongly nonlinear way on the degree of soil 
saturation), and open channel hydraulics. 

As the timescale increases, the nonlinearity in the meteorological series weakens. For 
example, Chen and Rao (2003) found that all of the stationary segments of standardized 
monthly temperature and precipitation series they studied are either Gaussian or linear. One 
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the other hand, nonlinear fluctuations present in the daily streamflow processes, such as the 
ARCH (autoregressive conditional heteroskedasticity) effect in daily streamflow processes, 
are generalized. Therefore, the degree nonlinearity in streamflow processes decreases with the 
increase of timescale. 

However, because of differences in the geographical and climatological environment, the 
character and intensity of nonlinearity of different streamflow systems are consequently 
different. For example, temperature may be a dominant variable for the whole dynamics of 
the streamflow process of the Yellow River at TNH. Its effect on both rainfall and snow cover 
has a very strong influence in determining the inertia of the whole hydrological system. That 
probably makes the streamflow system of the Yellow River at TNH appears to be less 
reactive than other streamflow systems. Even though the system exhibits a nonlinear character 
at short timescale, it may decay faster than other more active streamflow systems as the 
timescale increase. That may be the reason why only the 1/3-monthly flow series at TNH can 
exhibit linearity after being standardized by seasonal variance. 

Another aspect should be noticed is the nonlinearity of streamflow response with respect to 
the catchment characteristics (e.g., area, topography, channel network geometry and 
groundwater system). A number of studies indicate that the nonlinearity decreases and 
catchments become more linear with increasing catchment area (Minshall, 1960; Wang et al., 
1981). However, nonlinearity does not disappear as the catchment scale increase because 
channel network hydrodynamics would be an important source of nonlinearity at large scales 
(Robinson, 1995). Among the streamflow processes of 4 rivers in our study, streamflow 
processes of the Yellow River and the Rhine River that have much larger catchment areas 
seem possess no less nonlinearity in terms of BDS statistics than streamflow processes of the 
other two rivers that have smaller catchment areas, namely, no clear relationship is found 
between the catchment area and the intensity of nonlinearity. 

Comparing the results of stationarity test, long-memory test, conditional heteroskedasticity 
test and nonlinearity test, we find that these results have similar timescale pattern, that is, the 
intensity of nonstationarity, long-memory, conditional heteroskedasticity and nonlinearity 
decays with the increase of timescale. As conditional heteroskedasticity is a stochastic 
nonlinearity mechanism, whereas the mechanism of long-memory is not clear, therefore, as 
viewed from the streamflow time series itself, the conditional heteroskedasticity is also an 
important source of the nonlinearity of streamflow processes, while the intensity of long-
memory may impact the test of nonlinearity. As for the nonstationairty, it is not 
distinguishable from nonlinearity by the test methods we applied here. The intensity of 
nonlinearity may be closely related to the intensity of nonstationarity. Although the 
streamflow series in this study are mostly stationariy at certain significance levels, low level 
stationarity may give rise to positive results (namely, the existence of nonlinearity) in 
nonlinearity test. However, the relationship of the stationary level and the nonlinear intensity 
is a question worth further investigation in the future. 
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5.6 Conclusions 

Streamflow processes are commonly considered to be nonlinear. However, it is not clear what 
kind of nonlinearity is acting underlying the streamflow processes and how strong the 
nonlinearity is within the streamflow processes at different timescales.  

Streamflow processes of five rivers in different geographical and climatic regions are tested 
for nonlinearity with BDS test (Brock et al., 1996). The tests focus on four characteristic time 
scales (i.e., one year, one month, 1/3 month and one day). It is found that the shorter the 
timescale, the stronger the nonlinearity. All annual series are linear, whereas all daily series 
are nonlinear. Deseasonalized series generally have less nonlinearity in terms of BDS test 
statistics, implying that seasonality in the original flow series plays a role in nonlinearity. To 
exclude the impact of seasonal variation in variance of the pre-whitened series, the pre-
whitened series are further deseasonalized by dividing their seasonal standard deviation. It is 
found that the intensity of all series generally weakens after such further deseasonalization, 
which indicates that the seasonal variation in variance of the pre-whitened series also play a 
role in making the streamlfow processes nonlinear. Although some 1/3-monthly series (after 
removing seasonal effects) and monthly streamflow series are linear according to BDS test 
results, we cannot conclude that there is no weak nonlinearity present in those 1/3-monthly 
and monthly streamflow series, because the power analysis of BDS test shows that BDS test 
is not powerful enough for detecting weak nonlinearity. 

There is no evidence found of the existence of low-dimensional chaos in the streamflow series 
of all the fiver rivers with correlation exponent method. When testing for chaos in streamflow 
processes, some authors tend to accept the existence of chaos in streamflow processes even if 
test results do not give really clear evidences. For instance, many published results claim clear 
evidences of the existence of low-dimensional chaos in streamflow series without providing 
scaling plots or without providing convincing scaling plots that have clearly discernible 
scaling regions, whereas clearly discernible scaling region is imperative for identifying the 
finite correlation dimension. Furthermore, cares must be taken when computing correlation 
dimension for serially dependent hydrological series, because temporal coherence could be 
mistaken for geometrical structure if temporally correlated points are not excluded for 
calculating correlation integrals.  

The dynamics of observed hydrological series is inevitably contaminated by not only 
measurement noise, but also dynamical noise. Experiments with three well-known chaotic 
systems (i.e., Henon map, Ikeda map, discretized Mackey-Glass flow) show that, with low-
level (e.g., 2% or less) Gaussian noise, especially low-level uniformly distributed noise, the 
chaotic attractors may still be well preserved and we can give basically correct estimate of 
correlation dimension. That indicates that even if we found clear evidences of the existence of 
chaos in a time series, it does not necessarily mean determinism. A chaotic system with 
stochastic components, which turns out to be a stochastic system, could present chaotic 
behavior. It behaves similar to a noise-free system when the stochastic disturbances are not 
strong. Therefore, even if we find undoubtable evidences that streamflow process is chaotic, it 
does not necessarily mean determinism. On the other hand, when the noise level is high (e.g., 
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10%), it is hard to correctly identify the chaotic system, let alone 100% level noise. 
Consequently, because the streamflow process usually suffers from strong natural and 
anthropogenic disturbances (could be of a level of up to 100% or higher) that are by 
themselves composed of both stochastic and deterministic components, it is not likely to 
correctly identify the chaotic dynamics even if the streamflow process is indeed low-
dimension chaotic process under ideal circumstances (i.e., without any or only with small 
enough stochastic disturbances). On the other hand, because the existence of chaotic 
characteristics does not necessarily mean determinism, consequently, even if we chaos 
exhibits in a streamflow process, we cannot conclude that the streamflow process is 
deterministic. 

The intensities of nonstationarity, long-memory, conditional heteroskedasticity and 
nonlinearity have similar timescale pattern, that is, they decays with the increase of timescale. 
As viewed from the streamflow time series itself, the conditional heteroskedasticity is an 
important source the nonlinearity of streamflow processes, whereas long-memory may impact 
the test of nonlinearity. The intensity of nonlinearity may be closely related to the intensity of 
nonstationarity. Although the streamflow series in this study are mostly stationariy at certain 
significance levels, low level stationarity may give rise to positive results (namely, the 
existence of nonlinearity) in nonlinearity test.  
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Chapter 6 Forecasting Daily Streamflow Using ANN Models 

6.1 Introduction 

Since the daily streamflow processes exhibit a high degree of nonlinearity, as shown in the 
previous chapters, in this chapter we discuss how to make daily streamflow forecasts with the 
artificial neural network (ANN) model, which is generally a nonlinear model that may be 
mathematically treated as a universal approximator. ANNs mimic the functioning of a human 
brain by acquiring knowledge through a learning process that involves finding an optimal set 
of weights for the connections and threshold values for the nodes. ANNs are able to extract 
the underlying relation between the inputs and outputs of a process, without the physics being 
explicitly provided to them. The ability to learn and generalize ‘‘knowledge’’ from sufficient 
data pairs makes it possible for ANNs to solve large-scale complex problems such as pattern 
recognition, nonlinear modeling, classification, association, control, and others—all of which 
find applications in hydrology today.  
 
ANNs have gained more and more popularity for hydrological forecasting in the last decade 
(e.g., Maier and Dandy, 2000; Dawson and Wilby, 2001). In one of the early applications 
involving streamflows, Kang et al. (1993) used ANNs and autoregressive moving average 
models to predict daily and hourly streamflows in the Pyung Chang River basin in Korea. 
This preliminary study concluded that ANNs are useful tools for forecasting streamflows. 
Many studies have confirmed the superiority of ANN models over or equality to the 
traditional statistical and/or conceptual techniques in modeling the hydrological process (e.g., 
Hsu, et al., 995; Raman and Sunilkumar 1995; Dibike and Solomatine, 2001; Tokar and 
Markus 2000; Birikundavyi et al., 2002). 
 
We will use ANN model to make 1 to 10 day ahead daily discharge forecasts for the 
streamflow process of the upper Yellow River at TNH. The organization of this chapter is as 
follows. In Section 6.2 normal ANNs are applied to forecasting 1- to 10-day ahead daily 
streamflow. In Section 6.3, different ANN hybridization approaches are presented, and 
forecasts are made with these hybrid ANNs. Some discussions and conclusions of the study 
are given in Sections 6.4 and 6.5, respectively. 

6.2 Fitting Normal ANN Models to Daily Streamflow Series 

When building an ANN model, a number of decisions must be made, including the neural 
network type, network structure, methods of pre- and post-processing of input/output data, 



142  Chapter 6 Forecasting Daily Streamflow Using ANN Models 

 

training algorithm and training stop criteria. The feed-forward multi-layer perceptron (MLP) 
ANN is the most widely used type of ANN in hydrological modeling, and is also adopted in 
this study. We discuss issues of fitting the normal MLP-ANN network model to daily flows at 
TNH in this section. 

6.2.1 Determine the Architecture of ANN 

Network architecture mainly denotes the number of input/output variables, the number of 
hidden layers and the number of neurons in each hidden layer. It determines the number of 
connection weights and the way information flows through the network. Among these 
structure parameters, usually only one parameter is clear, namely, the number of ANN output 
variables. The other structure parameters should be determined in some way. 

6.2.1.1 Determine the inputs for ANN 

In a large number of applications of ANN, we face an implementation dilemma: a great 
number of input features is often available to solve the problem, but the limited size of the 
training set makes it seemingly impossible to use them all without running the risk of severely 
overfitting the data. There are two approaches to the resolution of this problem: (1) applying 
some variable selection procedures, such as stepwise selection; (2) using generalization 
techniques, such as cross-validated early stopping and Bayesian regularization. The second 
approach is related to the training process, which will be addressed in Section 6.2.3. We take 
the first approach with two techniques, namely, the method of partial autocorrelation function 
and the method of phase-space reconstruction, to determine the inputs for ANN. 
 
(1) With the method of partial autocorrelation function 
 
In determining the number of inputs of networks, the autocorrelation analysis, cross-
correlation analysis and some physical considerations can be helpful (Lachtermacher and 
Fuller, 1995). In Section 3.1.2, we have analysed PACF of the deseasonalized daily 
streamflow series. According to the structure of PACF, it seems that daily discharges about 
40-days apart still have weak correlation. Furthermore, it has been shown in Section 5.2.2 that, 
according to AIC, if we fit AR models to the daily flow series, the AR order should be 41 for 
log-transformed daily flow series and 38 for log-transformed and deseasonalized daily flow 
series. Consequently, we may use 41 or 38 as the number of inputs in the ANN model. 
 
(2) With the method of reconstructing state-space 
 
To describe the time evolution of a dynamical system in some multi-dimensional state space 
with a scalar time series, one needs to employ some technique to unfold the multi-
dimensional structure using the available data. Packard et al. (1980) and Takens (1981) 
proposed the time delay coordinate method to reconstruct the state space from a scalar time 
series. According to the method, the state vector Xi in a new space, the embedding space, is 
formed from time delayed values of the scalar measurements {xi} as Xi = [xi ,xi-τ,..., xi-(m-1)τ], 
where xi is the observed value of the time series at time ti = i(∆t), ∆t is the sampling interval 
which is normally taken as 1, m is the embedding dimension, and τ is the delay time.  
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As shown in Section 5.3.1, due to the strong annual seasonality, the τ value would be about ¼ 
of the annual period of the daily streamflow process, namely about 91. However, for the 
purpose of forecasting, although the reconstructed phase-space is redundant with a value of τ 
= 1, we tolerate having some information redundancy in preference to losing any useful 
information.  
 
A method to determine the minimal sufficient embedding dimension m was proposed by 
Kennel et al. (1992), called the ‘false nearest neighbor’ method. The minimal embedding 
dimension m for a given time series means that m is the minimal value that is sufficient to 
insure that in a m-dimensional embedded space the reconstructed attractor is a one-to-one 
image of the attractor in the original state space. If the series is embedded in an m’-
dimensional space with m’ < m, then some points that are actually far from each other will 
appear as neighbors because the geometric structure of the attractor has been projected down 
to a smaller space. These points are called false neighbors. For false neighbors, their 
trajectories will move far away as the embedding dimension increases. Suppose the point Xi = 
[xi-p+1, …, xi] has a neighbor Xj = [xj-p+1, …, xj] in a p-dimensional space. Calculate the 
distance || Xi – Xj || and compute 
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If Ri exceeds a given threshold RT (say, 10 or 15), the point Xi is marked as having a false 
nearest neighbor. We say the embedding dimension p is high enough if the fraction of points 
that have false nearest neighbors is actually zero, or sufficiently small, say, smaller than a 
criterion Rf.  
 
Setting the false neighbor threshold RT = 10, we calculate the fraction of false nearest 
neighbors as a function of the embedding dimension for daily streamflow series at TNH, 
show in Figure 6.1. If we set the fraction criterion Rf = 0.01, then the embedding dimension is 
5, which means that the state of streamflow process is determined by 5 lagged observed 
values. Correspondingly, when fitting an ANN model to the series, we use 5 lagged values as 
input to forecast the one-step-ahead value. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
Embedding dimension

Fr
ac

tio
n 

of
 fa

ls
e 

ne
ig

hb
or

s

 
Figure 6.1 The fraction of false nearest neighbors as a function of the embedding dimension for daily 

streamflow series at TNH 
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Therefore, according to above two techniques, we will try ANN models with 5 inputs and 41 
inputs for for forecasting daily streamflows of the Yellow River at TNH. 

6.2.1.2 Determine the number of hidden layers and the number of neurons in each layer 

The major concern of the designer of an ANN structure is to determine the appropriate 
number of hidden layers and the number of neurons in each layer. There is no systematic way 
to establish a suitable architecture, and the selection of the appropriate number of neurons is 
basically problem specific.  
 
Hornik et al. (1989) proved that a single hidden layer network containing a sufficiently large 
number of neurons can be used to approximate any measurable functional relationship 
between the input data and the output variable to any desired accuracy. De Villars and 
Barnard (1993) showed that an ANN comprised of two hidden layers tends to be less robust 
and converges with less accuracy than its single hidden layer counterpart. Furthermore, some 
studies indicate that the benefits of using a second hidden layer are marginal to the rainfall-
runoff modeling problem (e.g., Minns and Hall, 1996; Abrahart and See, 2000). Taking 
cognizance of the above studies, a single hidden layer is used in this study. 
 
There are some algorithms, including pruning and constructive algorithms, to determine an 
‘optimum’ number of neurons in the hidden layer(s) during training. However, a trial and 
error procedure using different number of neurons is still the preferred choice of most users 
(e.g., Shamseldin, 1997; Zealand et al., 1999; Abrahart and See, 2000) and is the method used 
also in this research. With the trial and error procedure, Ebberhart and Dobbins (1990) 
suggested starting with hidden nodes equal to half of the input nodes; Tingsanchali and 
Gautam (2000) found that starting with hidden nodes equal to or slightly greater than the 
input nodes is adequate. 

6.2.2 Data Pre-Processing 

Before fitting an ANN model, the data should be pre-processed. There are basically two 
reasons for pre-processing. Firstly, pre-processing can ensure that all variables receive equal 
attention during the training process. Otherwise, input variables measured on different scales 
will dominate training to a greater or lesser extent because initial weights within a network 
are randomized to the same finite range (Dawson and Wilby, 2001). Secondly, pre-processing 
is important for the efficiency of training algorithms. For example, the gradient descent 
algorithm (error backpropagation) used to train the MLP is particularly sensitive to the scale 
of data used. Due to the nature of this algorithm, large values slow training because the 
gradient of the sigmoid function at extreme values approximates zero (Dawson and Wilby, 
2001). In general, there are fundamentally two types of pre-processing methods. The first is to 
rescale the data to a small interval (referred to as rescaling), such as [–1, 1] or [0, 1], 
depending on the transfer (activation) function used in the neurons, because some transfer 
functions are bounded (e.g. logistic and hyperbolic tangent function). Another is to 
standardize the data by subtracting the mean of the series and dividing by the standard 
deviation to make the data have a mean of 0 and variance 1 (referred to as standardization). 
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In this study, to compare the influence of different pre-processing procedures on model 
performance, 6 different pre-processing procedures are applied: 
 

• Standardizing the raw data series; 
• Rescaling the raw data series; 
• Standardizing the log-transformed data series; 
• Rescaling the log-transformed data series; 
• Deseasonalizing the log-transformed data series; 
• Deseasonalizing the log-transformed data series and then rescaling the 
deseasonalized series. 
 

The deseasonalization is a special type of standardization, which is commonly used when 
fitting time series model to streamflow series (e.g., Hipel and Mcleod, 1994). But instead of 
using the overall mean value and the overall deviation to make the standardization, 
deseasonalization is accomplished by subtracting the seasonal (e.g., daily, monthly) means 
and dividing by seasonal standard deviations.  
 
Because the transfer (or activation) function in the hidden neurons used in this study is the 
tan-sigmoid function in the form of f(x) = 2/(1+e-2x) – 1, and the output value of the tan-
sigmoid function is bounded between –1 and 1, so when rescaling the data, we rescale both 
the input and output data to [-1, 1] with 

min max min2( ) ( ) 1x x x x x= − − −  

where xmin and xmax are the minimum and maximum values in the data set, respectively. 

6.2.3 ANN Training 

The ANN training is fundamentally a problem of nonlinear optimization, which minimizes 
the error between the network output and the target output by repeatedly changing the values 
of ANN’s connection weights according to a predetermined algorithm. Error back-
propagation (BP) (e.g., Rumelhart et al., 1986) is by far the most popular algorithm for 
optimizing feedforward ANNs. It is essentially a gradient descent technique that minimizes 
the network error function. Each input pattern of the training data set is passed through the 
network from the input layer to the output layer. For an ANN with one output, the network 
output {yt} is compared with the desired target output {xt}, and an error is computed based on 
error function 
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This error is propagated backward through the network to each node, and correspondingly the 
connection weights are adjusted based on equation 
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where ∆wij (n) and ∆wij (n-1) are weight increments between node i and j during the nth and 
(n-1)th pass, or epoch; η and m are called learning rate and momentum, respectively. The 
momentum factor can speed up training in very flat regions of the error surface and help 
prevent oscillations in the weights. A learning rate is used to decrease the chance of the 
training process being trapped in local minima instead of global minima. The BP algorithm 
involves two steps. The first step is a forward pass, in which the effect of the input is passed 
forward through the network to reach the output layer. After the error is computed, a second 
step starts backward through the network. The errors at the output layer are propagated back 
toward the input layer with the weights being modified according to (6.3). 

An inherent problem of training ANNs with optimizers, such the Levenberg–Marquardt 
optimizer (Marquardt, 1963), is that Networks trained with the backpropagation algorithm are 
sensitive to initial conditions and may get stuck in local minima of error surface. One way to 
alleviate this problem and to increase the likelihood of obtaining near-optimum local minima 
is to train some ANNs with a random set of initial weights, and choose the one with the 
lowest error. For example, Park et al. (1996) select the best neural network for predicting 
yearly sunspots among ten networks of the same architecture, each of which was initiated 
with a random set of weights. This is the way of choosing the “best performing” networks by 
many authors (e.g., Rajurkar et al., 2004). However, in operational application, we actually 
don’t know which network performs best for future streamflow process. There may be many 
parameter sets within a model structure that are equally acceptable as simulators of a 
dynamical process of interest. Consequently, instead of attempting to find a best single ANN 
model, we may make predictions based on an ensemble of neural networks trained for the 
same task (see e.g., Sharkey, 1996). In this present study, the idea of ensemble prediction is 
adopted, and the simple average ensemble method is used. For each ANN model, we train it 
ten times so as to get 10 networks, and choose 5 best ones according to their training 
performances. With the 5 selected networks, we get 5 outputs. Then we take a simple average 
of the 5 outputs to be the final output. 

An important issue in training an ANN model is when to stop the training process so as to 
avoid the problem of overfitting. The simplest way of avoiding overfitting is using enough 
training data. Amari et al. (1997) showed that, when the ratio of the sample size to the number 
of weights is larger than 30, no overfitting is observed. In fact, in the experiments in the next 
chapter with simulated time series we will show that, to avoid overfitting, the ratio may be as 
high as 50. In our study in the case of univariate streamflow time series forecasting, the ratio 
of the number of input data sets and the number of network weights is far larger than 50, 
therefore, the use of cross-validation data is not necessary. The training is stopped after 3000 
epochs. 
 
The training of ANNs In this study was implemented using the traingdm function in Matlab 
(release 13) Neural Network Toolbox which uses error backpropagation algorithm by 
updating the weight and bias values according to gradient descent with momentum. 
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6.2.4 Forecasting with Normal ANN Models 

The normal MLP-ANN models are fitted using the daily discharge data at TNH from 1956 to 
1995, and 1 to 10-day ahead forecasts are made for year 1996 to 2000. To predict daily 
discharges up to 10 days of lead time, a simple recursive algorithm will be used to obtain 
forecasts for successive lead times. An ANN model will first predict Qt+1, and the predicted 
Qt+1 will then be used to update the input variables into the ANN so as to predict Qt+2. This 
procedure is thus repeated until the forecasted values ranging from Qt+1 to Qt+10 are made. 
 
Matlab Neural Network Toolbox is used to construct different one-hidden-layer MLP 
networks with a range of hidden neurons in the hidden layer. The model forecating results 
with different architectures indicate that for ANNs with 5 inputs, 3-node networks generally 
perform best. Therefore, the chosen configuration for MLP ANNs is 5-3-1, namely, 5 inputs, 
one hidden layer with 3 hidden neurons and one output. This MLP structure is adopted 
throughout all the ANN models in this study. For ANNs with 41 inputs, we test ANNs with 
10, 15, 20, 25, 30, 35 and 41 hidden nodes, it is found that there is no significant difference 
among these ANNs, consequently, ANNs with 10 hidden nodes are applied for alleviate 
computational burden. 
 
We first test the performance of networks with a 5-3-1 structure. Because 6 different pre-
processing procedures are applied in this study, as mentioned in Section 6.2.2, hence 6 MLP 
models in total are fitted to the daily streamflow data, each of which has a different pre-
processing procedure. When making forecasts, post-processing is needed to inversely 
transform the outputs to their original scale. The forecasts for log-transformed-and-
deseasonalized (referred to as Log-DS hereafter) series are the average of an ensemble of 5 
networks, which give best training performance. For other series, we simply choose the 
forecasts of the networks that give the best test performance. Table 6.1 lists model 
performance evaluation results of the 1- to 10-day ahead forecasts with the MLP models. 
According to the forecasting evaluation results, we see that: (i) MLP models fitted to 
standardized data perform better than those fitted to rescaled data (note that deseasonalization 
without rescaling is a special type of standardization); (ii) in the case of the longer lead time 
forecasts, it is better to do a log-transformation before standardizing the data; and (iii) Overall, 
the MLP model fitted to the deseasonalized data, without rescaling, performs best. 
 
According to evaluations results for networks with the 5-3-1 structure, we fit networks with 
the 41-10-1 structure only to Log-DS series. The performances of the 5-member ensemble 
forecast with 41-10-1 networks are listed in Table 6.2. The results show that the performances 
of more complicated networks with the 41-10-1 structure perform almost as good as the 
simpler networks with 5-3-1 structure. Therefore, we prefer to use networks with the simpler 
5-3-1 structure in the following analysis. 
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Table 6.1 Forecasting performances with MLP networks with 5-3-1 structure for daily flows at TNH 

Lead time (days) 1 2 3 4 5 6 7 8 9 10 
raw_std 0.989 0.966 0.938 0.910 0.881 0.849 0.814 0.776 0.739 0.699
raw_rescale 0.981 0.955 0.918 0.887 0.851 0.815 0.774 0.735 0.694 0.655
Log-std 0.988 0.965 0.942 0.919 0.895 0.870 0.843 0.815 0.788 0.760
Log-rescale 0.963 0.942 0.919 0.894 0.864 0.834 0.806 0.778 0.750 0.723
Log-DS 0.989 0.967 0.943 0.92 0.897 0.873 0.848 0.823 0.799 0.775

CE 

Log-DS_rescale 0.985 0.964 0.939 0.916 0.891 0.866 0.838 0.811 0.785 0.758
raw_std 0.980 0.936 0.885 0.834 0.779 0.721 0.654 0.585 0.516 0.442
raw_rescale 0.965 0.916 0.848 0.791 0.724 0.657 0.582 0.508 0.434 0.360
Log-std 0.978 0.935 0.892 0.849 0.806 0.759 0.708 0.658 0.607 0.555
Log-rescale 0.932 0.893 0.849 0.803 0.748 0.692 0.641 0.588 0.536 0.487
Log-DS 0.980 0.938 0.894 0.852 0.810 0.765 0.719 0.672 0.628 0.582

SACE 

Log-DS_rescale 0.972 0.933 0.887 0.845 0.799 0.751 0.700 0.650 0.601 0.551
Note: “raw” denotes the raw data; “Log” denotes log-transformation; “std” denotes the standardization by 
subtracting the mean and dividing by the standard deviation; “DS” denotes the deseasonalization by subtracting 
seasonal means and dividing by seasonal standard deviations; “rescale” denotes rescaling to –1 ~ 1. 
 

Table 6.2 Forecasting performances with MLP networks with 41-10-1 structure for daily flows at TNH 

Lead time (days) 1 2 3 4 5 6 7 8 9 10 
CE 0.988 0.965 0.94 0.917 0.895 0.872 0.847 0.822 0.799 0.777

SACE 0.979 0.935 0.89 0.847 0.805 0.762 0.716 0.67 0.627 0.587

6.3 Building Hybrid ANN Models for Daily Flow Forecasting 

6.3.1 Introduction to Hybrid ANN Models 

It is generally accepted that streamflow generation processes, especially daily streamflow 
processes, are seasonal and nonlinear, since the processes usually have pronounced seasonal 
means, variances, and dependence structures, and the under-lying mechanisms of streamflow 
generation are likely to be quite different during low, medium, and high flow periods, 
especially when extreme events occur. For instance, low-flow events are mainly sustained by 
base flow, whereas high-flow events are typically generated by intense storm rainfall.  
 
Many models can be found in the literature for modeling the complex nonlinearity of 
streamflow processes, among which are those based on the principle of divide-and-conquer 
(DAC). DAC algorithms deal with a complex problem by dividing it into simple problems 
whose solutions can be combined to yield a solution to the complex problem (Jordan and 
Jacobs, 1994). Depending on the feature of nonlinearity, usually a process could be divided, 
for example through using thresholds, into a number of regimes and fit a linear or nonlinear 
model for each regime. Correspondingly, the DAC algorithms could be roughly categorized 
into two types, i.e., local-linear models and local-nonlinear models.  
 
Local-linear DAC models approximate a complex problem locally with linear models. They 
are fundamentally derivatives of the threshold regression models, such as the constrained 
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linear system with thresholds (CLS-Ts) of Todini and Wallis (1977) and the multilinear 
approach of Becher and Kundzewicz (1987), or the threshold autoregressive (TAR) model 
(Tong & Lim, 1980), which treats a nonlinear process piecewise with linear regression 
models according to the value of some explanatory variable or the preceding value of the 
process itself. Local-linear DAC models are still used for modeling rainfall-runoff process 
(e.g., Solomatine and Dulal, 2003). The periodic autoregressive moving average (PARMA) 
model, as well as its abbreviated version periodic autoregressive (PAR) model, is widely used 
to model hydrological time series (e.g., Mcleod and Hipel, 1994). It is the extension of the 
ARMA model that allows periodic (seasonal) parameters, which can be perceived as a 
modification of the threshold regression model. Instead of using the value of some 
explanatory variable or the preceding value of the process itself as the threshold, the PARMA 
model treats a seasonal process piecewise with linear ARMA models according to which 
season the process is operating in. When fitting a PARMA model to a seasonal series, a 
separate ARMA model is fitted for each season of the year. Literature on PARMA (including 
PAR) models has abounded since the late 1960s’ (e.g., Jones and Brelsford, 1967; Pagano, 
1978; Salas et al., 1982; Vecchia, 1985; Bartolini et. al., 1988; Salas et al., 1993).  
 
Local-nonlinear DAC models approximate a complex problem locally with nonlinear models, 
such as nonlinear regression models or ANN models. Local-nonlinear DAC models are 
increasingly popular for dealing with complex nonlinear processes, mainly owing to the rapid 
development of ANN techniques. ANNs are known as having the ability of modeling 
nonlinear mechanisms. They have been increasingly applied to various hydrological problems 
in the past decade (Maier & Dandy, 2000; Dawson and Wilby, 2001). Nonetheless, some 
studies have suggested that a single ANN cannot predict the high- and low-runoff events 
satisfactorily (e.g., Minns and Hall, 1996) since, as aforementioned, the under-lying 
mechanisms of streamflow generation can be quite different during low, medium, and high 
flow periods. The mapping ability of a single ANN is limited when faced with complex 
problems like rainfall-runoff processes. To resolve such complex processes, tree-structured 
neural networks, such as the modular neural network (MNN) (Jacobs et al., 1991; Jacobs and 
Jordan, 1993; Jordan and Jacobs, 1994), could be employed to model the nonlinear systems 
by dividing the input space into a set of regions, each of which is approximated with a single 
ANN model. In general, a MNN is constructed from two types of network, namely expert 
networks and a gating network. Expert networks may be of a variety of different types of 
neural networks. Each network is designed for a particular task. A gating network receives the 
input vector and produces as many outputs as there are expert networks. These outputs must 
be nonnegative and sum to unity, representing the weights of the output of each expert 
network. A weighted sum of the outputs of the experts forms the MNN output. During 
training, the weights of the expert and gating networks are adjusted simultaneously using the 
backpropagation algorithm.  
 
There are many local-nonlinear type DAC models similar to MNN but with different names, 
such as hybrid ANNs, integrated ANNs, threshold (or domain-dependent, range-dependent) 
ANNs, committee machine and so on. Some of them could be considered as special cases of 
MNN (e.g., threshold ANN), and some others have different ways of combining the separate 
expert neural networks. For example, instead of using a gating network to mediate the 
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competition of expert networks, some hybrid neural networks use a fuzzy logic model to link 
individual expert networks into an integrated modeling system, or use the cluster analysis 
technique in which the input space is first divided into several clusters, and then a separate 
expert network is fitted to each cluster. There are already some examples of applications of 
modular or hybrid ANN models in the field of hydrological modeling. Zhang and 
Govindaraju (2000) examined the performance of modular networks in predicting monthly 
discharges over three medium-sized watersheds based on the Bayesian concept. See and 
Openshaw (1999) developed a fuzzy-logic based hybrid model to forecast river level, in 
which the forecasting data set is split into subsets before training with a series of neural 
networks. Abrahart and See (2000) presented a hybrid network solution based the clustering 
of the hydrological records with a self-organizing map (SOM) neural network. Hu et al. (2001) 
developed range-dependent hybrid neural networks (RDNN), which are virtually threshold 
ANNs, to forecast annual and daily streamflows. Pal et al. (2003) proposed a hybrid ANN 
model that combines the self-organizing feature map (SOFM) and the MLP network for 
temperature prediction, where the SOFM serves to partition the training data.  
 
In addition, perhaps the most thorough DAC algorithm is the nearest neighbor method (NNM), 
in which a time series is reconstructed in a multi-dimensional state-space and then local 
approximation models (parametric or non-parametric) are fitted to the nearest neighbors in the 
space. Parametric NNM could be linear or nonlinear depending on what type of local 
parametric models is used. NNM has been applied to streamflow forecasting by many 
researchers (e.g., Yakowitz and Karlsson, 1987; Bordignon and Lisi, 2000; Sivakumar et al., 
2001). 
 
In this study, three types of hybrid ANN models, namely, the threshold ANN (TANN), the 
cluster-based ANN (CANN), and the periodic ANN (PANN), are used to forecast daily 
streamflows, and the model performance is compared with normal MLP-ANN models.  

6.3.2 Threshold ANN (TANN) 

Threshold ANN (TANN), analogous to the threshold regression model, divides the 
streamflow series into several regimes according to some threshold values, and then builds 
one ANN model for each regime.  
 
To fit a threshold model, whether it is a threshold linear model or a threshold nonlinear model, 
the main concern is to determine the threshold value. Tong (1983) suggested that the location 
of modes and antimodes of the univariate histogram for xt and the bivariate histogram for (xt, 
xt-i) (i = 1, 2, …, p, say) may assist in the identification of the threshold parameters. 
Histogram is the simplest estimator of the probability density function (pdf). An improved 
histogram estimate is the kernel density estimate, which can overcome the histogram’s 
sensitivity to choice of data origin and bin (i.e., class interval) width (Silverman, 1986). The 
kernel pdf is estimated as 
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where n is the sample size, xi = 1, … , n are the data, h is the bandwidth, and K(u) is the 
kernel function, inthis case the Gaussian kernel function. 
 
The kernel density estimate of pdf is calculated for the daily streamflow of the Yellow River 
at TNH. Figure 6.2 shows that the streamflow series has a bimodal pdf, whose two modes 
may indicate two regimes of the flow process dynamics, and the antimode may correspond to 
a point of separation of the two regimes. The low-flow regime is around 195 m3/s (≈ 
exp(5.273)), and the high-flow regime around 671 m3/s (≈ exp(6.508)), the two regimes being 
separated at the antimode, near 381 m3/s (≈ exp(5.942)).  
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Figure 6.2 Probability density estimate of the log-transformed daily average discharges of the Yellow 

River at TNH 

Therefore, we divide the streamflow states in the reconstructed state-space (described in 
Section 2.2) into two regimes, namely, one regime composed of the streamflow states whose 
average discharges are larger than 381 m3/s, and another one composed of the streamflow 
states less than 381 m3/s. Then one MLP network is fitted to the streamflows in each regime. 

6.3.3 Cluster-Based ANN (CANN) 

For the cluster-based ANN (CANN) model, we divide the streamflow state vectors in the 
reconstructed state space into several clusters based on cluster analysis techniques, and then 
build one ANN model for each cluster. The fuzzy C-means (FCM) clustering technique (see 
Section 3.3.2) is applied in the present study to do the clustering, so that we can cluster the 
streamflow state vectors both softly and crisply. 
 
The streamflow states in the reconstructed state space of the Yellow River at TNH are 
grouped into 3 clusters with FCM clustering method. The clustering result of the streamflow 
states in two typical years is shown in Figure 6.3. Compared with Figure 2.9(a) in Chapter 2, 
it is shown that, when grouping the streamflow states into 3 clusters, the three groups 
basically represent three different daily flow regimes, i.e., low flow, medium flow and peak 
flow. For some years, the three groups may be much more fragmented. 
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Figure 6.3 Membership grades of the daily streamflow states in two year with the FCM of 3 clusters 

 

After the streamflow state vectors in the reconstructed state space are grouped into 3 clusters, 
we then fit one ANN to the streamflow states in each cluster, three ANN models in total. 
When making a forecast from a current streamflow state, the final output of the overall 
CANN model is a weighted average of the outputs of the three ANN models. The weights are 
determined according to the distance between the current streamflow state and each cluster 
center. 

6.3.4 Periodic ANN (PANN) Model 

The periodic ANN (PANN) model essentially is a group of ANN models, each of which is 
fitted to the streamflows that occurred in a separate “season” (notice that, season here does 
not mean a real season. It may be a group of neighbouring days or months over the year). The 
idea of fitting the PANN model to daily streamflows is the same as that of fitting periodic 
autoregressive (PAR) model (in Section 3.3), whereby a periodic AR model is fitted to daily 
streamflow based on partitioning of days over the year with clustering techniques. We will fit 
an ANN model to each seasonal partition, and all the ANN models together comprise the 
periodic ANN model.  
 
The PANN differs from CANN in that, in CANN we clusters the discharges in the 
reconstructed phase-space, whereas in PANN we cluster the days over the year according to 
the characters of the discharges of each day. When partitioning the days over the year with the 
clustering analysis method, the raw average daily discharge data and the autocorrelation 
values at different lag times (1 ~ 10 days) are used. The daily discharge data and the 
autocorrelation coefficients are organized as a matrix of the size (N+10)×365, where N is the 
number of years and “10” represents the autocorrelation values at 10 lags. To eliminate the 
influence of big differences among data values on cluster analysis result, the log-
transformation is first applied to the daily discharges before making the cluster analysis. 
 
Then the 365 days over the year are partitioned with the fuzzy c-means clustering described in 
Section 3.3.2. The cluster result is shown in Figure 6.4. Comparing Figure 2.9(a) and Figure 
6.4, we see that if we just follow the clustering result to partition the days over a year into 5 
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groups, the dynamics of streamflow is not well captured because cluster 2 and 3 in Figure 6.4 
mix the streamflow rising limb and falling limb shown in Figure 2.9(a). Therefore, according 
to the FCM clustering result, and considering the dynamics of the streamflow process, we 
partition the 365 days over the year into 7 hard segments, as listed in Table 6.3.  
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Figure 6.4 The membership grades of the days over the year for the daily streamflow at TNH with the 
FCM of 5 clusters 

 

Table 6.3 Hard partitioning of the days over the year for the daily streamflow at TNH 

Pratition 1 2 3 4 5 6 7 
Day span 1-78, 349-365/366 79-114 115-167 168-237 238-302 303-322 323-348 

 
The days over the year can also be softly partitioned, such that each day could belong to 
several partitions. The essence of soft partitioning is the determination of the membership 
grade (or membership function) of each partition, which is one of the most crucial issues in 
the foundation of fuzzy reasoning. In this study, following the pattern of the FCM clustering 
result, the membership grade is formed intuitively for the days over the year, as shown in 
Figure 6.5. 
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Figure 6.5 Soft partitioning of the days over the year for the daily streamflow at TNH according to the 
FCM with 5 clusters 
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Based on the partitioning results, the PANN model is constructed, whereby one MLP model is 
fitted to each (hard) seasonal partition. When forecasting, different MLP models are used 
depending on what season partition the date for which the forecasted is made lies in. The 
fitted PANN model can be applied to forecasting in two ways: based on hard partitioning 
(referred to as hard PANN) and based on soft partitioning (referred to as soft PANN). When 
soft partitioning is applied, one day may belong to several season partitions. Correspondingly, 
the final output would be a weighted average of the outputs of the several ANN models fitted 
for these seasonal partitions. The weight is equal to the membership grade obtained with the 
FCM clustering results. 

6.3.5 Model Performance of Hybrid ANN Models 

The components of all the hybrid ANN models have the same 5-3-1 MLP structure, as 
identified for normal MLP-ANN ANN models considered in Section 6.2.4. According to the 
comparison among different data pre-processing methods described in Section 6.2.4, 
deseasonalization is the best choice of pre-processing method. However, because TANN and 
CANN divide up the streamflow states into different regimes according to their values, it is 
more convenient to standardize the data than to deseasonalize the data for building TANN and 
CANN models. Therefore, the input/output data are log-transformed and then standardized 
before fitting the TANN model and the CANN model, and log-transformed and then 
deseasonalized before fitting the PANN models. 
 
Table 6.4 lists performance evaluation results of the 1- to 10-day ahead forecasts with these 4 
models (including hard PANN and soft PANN). It is shown that the PANN model performs 
best among the three variations of hybrid ANN models under study, and the soft PANN 
performs better than the hard PANN. The scatter plots of one-day, five-day and 10-day ahead 
forecasts versus observed daily discharges for year 1999 and 2000 with the soft- partition 
based PANN are shown in Figure 6.6. The hydrograhs of one-day ahead, five-day ahead, and 
ten-day ahead forecasted daily discharge versus the observed hydrograph are shown in Figure 
6.7, 6.8, and 6.9. 
 
Because the model performance difference measured with CE and SACE is not very 
informative (comparing Table 6.2 and Table 6.4), in order to give a more clear comparison 
between the PANN models and the normal MLP-ANN model that is fitted to the 
deseansonalized data without rescaling or any grouping procedure, the RMSE measure is used 
to evaluate the model performance. The results are listed in Table 6.5, where it is seen that for 
the shorter lead times, the soft PANN performs better than the normal MLP model, but the 
advantage vanishes as the lead time increases (≥ 4 days). 
 
To make a comparison of forecasts for each season, we list the performance evaluation results 
of normal MLP-ANN and soft PANN in Table 6.6 to 6.13. The results show that except for 
daily flows in summer, soft PANN improves the forecasts at short lead time as well as long 
lead time comparing with the normal MLP-ANN model.  
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Table 6.4 Forecsast performances with hybrid ANN models for daily flows at TNH 

Lead time (days) 1 2 3 4 5 6 7 8 9 10 
CANN 0.984 0.942 0.898 0.856 0.815 0.774 0.735 0.698 0.665 0.633
TANN 0.989 0.967 0.941 0.916 0.892 0.867 0.839 0.811 0.784 0.755
hard PANN 0.989 0.966 0.942 0.919 0.895 0.870 0.844 0.818 0.793 0.769

CE 

soft PANN 0.990 0.967 0.943 0.920 0.897 0.873 0.848 0.823 0.799 0.776
CANN 0.969 0.893 0.810 0.733 0.657 0.581 0.508 0.441 0.378 0.320
TANN 0.980 0.938 0.891 0.845 0.799 0.753 0.702 0.650 0.599 0.546
hard PANN 0.980 0.937 0.892 0.849 0.805 0.759 0.711 0.663 0.617 0.571

SACE 

soft PANN 0.981 0.94 0.895 0.852 0.808 0.765 0.718 0.671 0.628 0.584
 

Table 6.5 RMSE measures with normal MLP-ANN and PANN models to daily flows at TNH 

Lead time (days) 1 2 3 4 5 6 7 8 9 10 
MLP 45.9 80.3 105.0 123.9 140.6 156.2 171.0 184.5 196.6 208.3
hard PANN 45.5 80.6 105.7 125.3 142.4 158.1 173.3 187.2 199.5 211.0
soft PANN 44.8 79.2 104.4 124.1 141.1 156.3 171.1 184.8 196.7 207.9
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Figure 6.6 Scatter plots of (a) one-day; (b) five-day and (c) 10-day ahead discharge forecasts for year 

1996-2000 with the PANN based on soft seasonal partitions 
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Figure 6.7 One-day ahead forecasts with the PANN based on soft seasonal partitions 
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Figure 6.8 Five-day ahead forecasts with the PANN based on soft seasonal partitions 
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Figure 6.9 Ten-day ahead forecasts with the PANN based on soft seasonal partitions 
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Table 6.6 Forecast performance with the normal MLP-ANN model for daily flow in spring at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 18.12 0.042 31.2 0.003 0.974 0.974 
2 32.33 0.074 55.2 0.01 0.918 0.921 
3 40.51 0.092 71.7 0.016 0.863 0.87 
4 47.33 0.106 83.5 0.021 0.816 0.828 
5 52.98 0.117 93.7 0.025 0.771 0.787 
6 60.27 0.13 106.1 0.031 0.714 0.735 
7 70.5 0.147 124.6 0.038 0.635 0.658 
8 80.14 0.162 141.5 0.046 0.565 0.591 
9 87.94 0.173 156.6 0.053 0.508 0.535 

10 95.11 0.184 169.0 0.059 0.463 0.491 

Table 6.7 Forecast performance with the normal MLP-ANN model for daily flow in summer at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 56.88 0.058 81.2 0.006 0.974 0.974 
2 102.91 0.105 142.2 0.018 0.92 0.921 
3 133.21 0.136 186.1 0.031 0.863 0.864 
4 155.17 0.159 219.6 0.043 0.81 0.811 
5 177.3 0.183 248.7 0.055 0.757 0.759 
6 200.62 0.207 274.9 0.069 0.703 0.706 
7 219.54 0.226 297.1 0.082 0.654 0.658 
8 236.04 0.244 317.5 0.095 0.606 0.611 
9 250.32 0.262 335.4 0.108 0.561 0.568 

10 263.89 0.277 353.8 0.122 0.512 0.521 

Table 6.8 Forecast performance with the normal MLP-ANN model for daily flow in autumn at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 16.47 0.024 26.5 0.001 0.991 0.991 
2 28.86 0.041 46.4 0.003 0.973 0.974 
3 37.95 0.054 60.8 0.005 0.954 0.955 
4 45.54 0.064 73.4 0.008 0.932 0.934 
5 52.28 0.073 86.2 0.01 0.906 0.909 
6 58.46 0.082 97.5 0.013 0.879 0.884 
7 64.12 0.091 107.8 0.016 0.853 0.859 
8 68.32 0.096 117.0 0.018 0.826 0.835 
9 72.23 0.101 125.3 0.02 0.8 0.812 

10 75.44 0.106 132.8 0.022 0.774 0.79 

Table 6.9 Forecast performance with the normal MLP-ANN model for daily flow in winter at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 5.02 0.03 7.2 0.002 0.968 0.969 
2 7.15 0.043 10.1 0.003 0.93 0.934 
3 8.22 0.049 11.6 0.005 0.897 0.905 
4 8.74 0.053 12.6 0.005 0.866 0.88 
5 9.44 0.057 13.3 0.006 0.834 0.854 
6 9.91 0.061 13.7 0.007 0.806 0.831 
7 10.42 0.064 13.9 0.007 0.784 0.812 
8 10.72 0.066 14.2 0.007 0.759 0.791 
9 10.92 0.068 14.3 0.007 0.744 0.774 

10 11.09 0.069 14.6 0.008 0.723 0.752 
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Table 6.10 Forecast performance with soft PANN model for daily flow in spring at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 17.48 0.041 29.9 0.003 0.976 0.976 
2 31.46 0.073 53.5 0.01 0.923 0.924 
3 39.84 0.091 69.3 0.015 0.872 0.874 
4 46.45 0.105 80.5 0.02 0.829 0.833 
5 52.22 0.117 89.9 0.024 0.79 0.795 
6 58.93 0.129 101.1 0.029 0.741 0.748 
7 68.52 0.145 118.5 0.035 0.67 0.677 
8 77.63 0.159 134.5 0.042 0.607 0.615 
9 85.28 0.17 148.9 0.048 0.555 0.563 

10 92.39 0.181 160.6 0.054 0.515 0.523 

Table 6.11 Forecast performance with soft PANN model for daily flow in summer at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 54.55 0.055 79.4 0.006 0.975 0.975 
2 99.95 0.102 140.7 0.018 0.922 0.922 
3 131.9 0.135 186.4 0.031 0.863 0.864 
4 156.29 0.159 222.3 0.044 0.805 0.807 
5 177.3 0.182 252.3 0.057 0.749 0.752 
6 201.43 0.207 278.7 0.071 0.695 0.698 
7 222.37 0.23 301.8 0.084 0.643 0.646 
8 241.76 0.25 323.0 0.098 0.592 0.596 
9 258.11 0.27 341.0 0.112 0.547 0.551 

10 272.7 0.287 358.6 0.126 0.499 0.504 

Table 6.12 Forecast performance with soft PANN model for daily flow in autumn at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 15.47 0.023 25.9 0.001 0.992 0.992 
2 26.44 0.039 45.2 0.003 0.975 0.976 
3 34.68 0.051 58.3 0.005 0.958 0.96 
4 42.16 0.06 69.9 0.007 0.939 0.942 
5 49.93 0.072 82.4 0.01 0.914 0.92 
6 56.87 0.082 92.8 0.013 0.891 0.9 
7 62.39 0.09 102.6 0.016 0.867 0.878 
8 67.3 0.097 111.6 0.018 0.842 0.856 
9 71.59 0.103 120.2 0.02 0.816 0.833 

10 75.18 0.109 128.0 0.023 0.79 0.812 

Table 6.13 Forecast performance with soft PANN model for daily flow in winter at TNH 

Lead time (day) MAE MAPE RMSE MSRE CE r2 
1 4.9 0.029 7.0 0.002 0.97 0.97 
2 6.81 0.041 9.6 0.003 0.937 0.939 
3 7.86 0.047 11.0 0.004 0.908 0.913 
4 8.54 0.052 12.0 0.005 0.879 0.888 
5 9.24 0.056 12.7 0.005 0.849 0.864 
6 9.71 0.06 13.2 0.006 0.822 0.841 
7 10.11 0.062 13.4 0.006 0.8 0.823 
8 10.3 0.064 13.7 0.007 0.776 0.801 
9 10.5 0.065 13.9 0.007 0.757 0.782 

10 10.83 0.068 14.3 0.007 0.735 0.758 
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6.4 Some Discussions about Building ANN Models 

6.4.1 About the Pre-processing of Input/Output Data 

It is recognized that data pre-processing can have a significant effect on model performance 
(e.g., Maier and Dandy, 2000). It is commonly considered that, because the outputs of some 
transfer functions are bounded, the outputs of an MLP-ANN model must be in the interval 
[0,1] or [-1,1] depending on the transfer function used in the neurons. Some authors suggest 
using even smaller intervals for streamflow modelling, such as [0.1, 0.85] (Shamseldin, 1997), 
[0.1, 0.9] (e.g., Hsu et al., 1995; Abrahart and See, 1999) and [-0.9, 0.9] (e.g., Braddock et al., 
1998), so that extreme (high and low) flow events occurring outside the range of the 
calibration data may be accommodated. For model building convenience, it is common that 
both input and output data are rescaled before fitting ANN models (e.g., Hsu et al., 1995; 
Pajurkar et al., 2004). However, the advantage of rescaling the data into a small interval is not 
supported by this study. In the case of forecasting for the daily flow at TNH, not only is the 
general performance of the MLP-ANN with standardization pre-processing better than the 
MLP-ANN with rescaling pre-processing, but the performance for low flow and high flow 
periods is better also.  
 
There are two explanations for this result. On the one hand, suppose we only consider the 
relationship between one input and one neuron with a hyperbolic tangent transfer function 
tansig(x). To rescale the input data to [-1, 1] would limit the output range of the tansig(x) 
function approximately to [-0.7616, 0.7616]. To rescale the input range to [-0.9, 0.9] would 
further shrink the output range approximately to [-0.7163, 0.7163]. Both 0.7616 and 0.7163 
are still far away from the extreme limits of the tansig(x) function, whereas such a small 
output data range will make the output less sensitive to the change of the weights between the 
hidden layer and output layer, and will therefore possibly make the training process more 
difficult. On the other hand, because the neurons in an ANN are combined linearly with many 
weights (as in a MLP model), any rescaling of the input vector can be effectively offset by 
changing the corresponding weights and biases. Therefore, to standardize the input/output 
data may be a better choice than to rescale them into a small interval (e.g., [–1, 1]), especially 
when the data size is large enough to include possible data extremes.  
 
A related subject is the choice of transfer function. The most commonly used transfer 
functions are the logistic sigmoid function and hyperbolic tangent function, the logistic 
sigmoid function (logsig(x) = 1/(1+e-x)) being much more frequently used than the hyperbolic 
tangent function (e.g., Hsu et al., 1995; Minns and Hall, 1996; Zealand et al., 1999; Abrahart 
and See, 2000). However, Kalman and Kwasny (1992) argue that the hyperbolic tangent 
transfer function should be used, and the empirical results obtained by Maier and Dandy 
(1998) also indicate that not only is training with the hyperbolic tangent function faster than 
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training with the sigmoidal transfer function, but the predictions obtained using networks with 
the hyperbolic tangent are slightly better than those with the sigmoid transfer functions. 
However, no comparison of the logistic sigmoid function and hyperbolic tangent function is 
carried out in this present study. Kalman and Kwasny (1992) show mathematically that the 
hyperbolic tangent function possesses particular properties that make it appealing for use 
while training. We only make a heuristic analysis about this problem here. Suppose we only 
consider the relationship between one input and one neuron with a logistic sigmoid function. 
When the input is in the interval [-1,1], then the output is in the range 0.26894 ~ 0.73106 
(logsig(-1) ≈ 0.26894, logsig(1) ≈ 0.73106), less than 1/3 of that of the hyperbolic tangent 
function. It is possible that, because the output of the logistic sigmoid function is constrained 
into a much smaller range than that of the hyperbolic tangent function, this results in the 
output of the ANN with logistic sigmoid functions being less sensitive to the change of 
connection weights, consequently making the training of the ANN with the logistic sigmoid 
function more difficult than that of ANNs with the hyperbolic tangent function. 

6.4.2 About the Selection of the Optimal ANN Model 

It is well known that an ANN is sensitive to the initial weights. When building an ANN model, 
every time we train it, we may get a different set of parameters. One way to increase the 
likelihood of obtaining near-optimum set of parameters is to train the ANN with different 
independent initial weights, and then the model builders choose the best ANN model 
according to the training or validation performance among many competitive ANN models 
(e.g., Pajurkar et al., 2004). However, in practical applications, real validation data are future 
values which virtually do not exist when we fit an ANN model, therefore we cannot choose 
the best model according to the validation performance. On the other hand, if we choose the 
best ANN model according to the training performances, best training performance actually 
does not guarantee best validation performance, especially for multi-step forecasts, although 
best training performance mostly indicate best validation performance. That means, suppose 
we split all the available data into 3 parts, namely one training data set, and two validation 
data sets (A and B), a model which is the best for validation set A does not necessarily 
perform the best for validation set B. This is because the generality of an ANN model may be 
limited even though the size of training data may be sufficiently large, especially in the case 
of a natural watershed system which may have more or less underlying changes due to 
climate changes and human activities. On the other hand, there may be many parameter sets 
within a model structure that are equally acceptable as simulators of a dynamical process of 
interest. Therefore, the attempt to choose a best ANN model is not sound. Instead, it is much 
better to make the ensemble forecast (e.g. Sharkey, 1996). One robust way of making 
ensemble forecast is simply taking the average of the forecasts of an ensemble of ANN 
models. To minimize the possibility that some of the ensemble members are poorly trained 
due to the effects of local minima in the error surface, we may train a number of networks 
(say, 10) first, then choose several best ones (say, 5) as ensemble members according to their 
training performance. This is the approach taken in this study. 
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6.5 Combining the Forecasts of ARMA, PAR, MLP and PANN 

6.5.1 Introduction to Forecast Combination 

There are various models available for streamflow forecasting nowadays. However, when building a 
forecasting model, it is not an easy task to choose a suitable model, because on one hand, no model is 
powerful and general enough to outperform the others for all types of catchments and under all 
circumstances; on the other hand, every model has some degree of uncertainty, including structure 
uncertainty and parameter uncertainty. Instead of using a single model, we may alternatively handle 
the model selection problem by combining the forecasts from several models so as to obtain a more 
reliable and accurate output than would be obtained by selecting a single model. After the seminal 
paper of Bates and Granger (1969), many combining methods have been proposed such as simple 
average method, weighted average method, Bayesian methods (Bunn, 1975; Winkler, 1981), the 
minimum-variance method (Dickinson, 1975) and regression based methods (Granger and 
Ramanathan, 1984). More recently, Deutsch et al. (1994) proposed to combine forecasts using 
changing weights derived from switching regression models or from smooth transition regression 
models; Donaldson and Kamstra (1996) developed a neural network based approach to the nonlinear 
combination of forecasts; Fiordaliso (1998) proposed a nonlinear forecast combining method, in which 
a first order Takagi-Sugeno fuzzy system is used to combine a set of individual forecasts; He and Xu 
(2005) proposed to use the self-organizing data mining algorithms to combine forecasts. Many studies 
and empirical tests have shown the advantage of combining forecasts in practice (see Clemen, 1989). 
 
While the combined forecasting has a long history in the econometrics community, it has not received 
much attention in the field of hydrological forecasting until recently. In the pioneering work of 
McLeod et al. (1987), they showed that significant improvements in forecast performance can be 
achieved by combining forecasts produced by different types of models applied to quarter-monthly 
river flows. Shamseldin et al. (1997) examined three different combination methods in the context of 
flood forecasting, namely, the simple average method, the weighted-average method and the neural 
network method, and confirmed that better discharge estimates can be obtained by combining the 
outputs of different models. See and Openshaw (2000) used four different approaches (i.e., an average, 
a Bayesian approach, and two fuzzy logic models) to combine the river level forecasts of three models 
(i.e., a hybrid neural network, an autoregressive moving average model, and a simple fuzzy rule-based 
model), and found that the addition of fuzzy logic to the crisp Bayesian approach yielded overall 
results that were superior to the other individual and integrated approaches. Xiong et al. (2001) 
showed that the first-order Takagi-Sugeno fuzzy system works almost the same as the weighted 
average method and neural network method in combining five rainfall-runoff models. Coulibaly et al. 
(2005) showed that, using weighted average method to combine three dynamically different models 
can significantly improve the accuracy of the daily reservoir inflow forecast for up to 4 days ahead. 
 
While many studies confirm the effectiveness of the weighted average method (WAM) for 
hydrological applications (e.g., McLeod et al., 1987; Shamseldin et al., 1997; Xiong et al., 2001), none 
of the previous studies has considered the effect of how the weights are estimated on the effectiveness 
of WAM. In this section, we will investigate the possibility of improving the daily streamflow 
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forecasts by combining four dynamically different models that have been built in previous 
chapters/sections for the daily streamflow process of the upper Yellow River at TNH. The 
four models used here include: (i) the ARMA model, which captures the overall linear 
autocorrelation structure of the streamflow process; (ii) the PAR model, which captures the 
seasonal difference of linear autocorrelation structure; (iii) the MLP-ANN model, which 
captures the overall nonlinear autocorrelation structure; and (iv) the PANN model, which 
captures the seasonal difference of nonlinear autocorrelation structure. The dynamical 
difference of the four models makes it possible to improve the forecast accuracy by 
combining them together. 

6.5.2 Methods of Combining Forecasts 

Forecast combination methods may be roughly broken into two categories. The first one is the 
ensemble approach, by which a set of forecasts are produced on the same task with different 
models (or one model with different inputs), and then the forecasts are combined. The second 
one is the modular approach, under which a task or problem is divided into a number of 
subtasks (regimes), and the complete task solution requires the contribution of all of the 
individual regimes.  
 
6.5.2.1 Ensemble approach 

Essentially, the ensemble combination is a weighted average of the outputs of ensemble 
members. While the ensemble prediction technique is normally used to provide probabilistic 
predictions as in ESP, it may also be extended to be used as a forecast combination technique. 
What differs between using ensemble prediction technique in ESP and using ensemble 
prediction technique for combining forecasts is that, in ESP the ensemble members are 
composed of forecasts from a single model with different inputs, whereas in forecast 
combination different models (either different parameters, or different structures, or even 
difference types) with the same (or basically the same) inputs are used.  
 
There are two main issues about ensemble combination: First, how to select a set of models 
and generate an ensemble of forecasts to be combined; and second, how to estimate the 
combining weights so as to minimize the out-of-sample forecast errors. The selection of the 
ensemble models should provide the information of a specific process from different 
perspectives. In this study, we choose ARMA-type model and ANN-type model aiming to 
combine the strength of linear and nonlinear approximation ability of ARMA and ANN 
respectively. Furthermore, to capture the seasonality of streamflow processes, periodic 
models (PAR and PANN) are applied. As for the estimation of combining weights, some 
studies show that equally weighted combination, namely, the simple average method (SAM), 
can produce forecasts that are better than those of the individual models (Makridakis et al., 
1982), and its accuracy depends mainly on the number of the models involved and on the 
actual forecasting ability of the specific models included in the simple average (Makridakis 
and Winkler, 1983). Because of its robustness, the SAM method has been consistently the 
choice of many researchers (see Clemen, 1989). However, when some of the individual 
models selected for combination appear to be consistently more accurate than others, in which 
case the use of the SAM for combination can be quite inefficient (Armstrong, 1989), the use 
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of weighted average method (WAM) would be considered. One of the most common 
procedures used to estimate the combining weights is to perform the ordinary least squares 
regression (see e.g., Crane and Crotty, 1967; Winkler and Makridakis, 1983; Granger and 
Ramanathan, 1984):  

1 0 , 1
1

k

t j t j t
j

y a a f ε+ +
=

= + +∑            (6.5) 

where ft,j is the one step ahead forecast made at time t of yt+1 with model i; a0 is a constant 
term; and aj is the regression coefficient.  
Another common method to estimate the combining weights is the optimal method (Bates and 
Granger, 1969), in which the linear weights are calculated to minimize the error variance of 
the combination (assuming the unbiasedness for individual forecast). Granger and 
Ramanathan (1984) showed that the optimal method is equivalent to a least squares regression 
(referred to as Equality Restricted Least Squares, ERLS) in which the constant is suppressed 
and the weights are constrained to sum to one. One more option for estimating the combining 
weights is the Nonnegativity Restricted Least Squares (NRLS) regression (see Gunter, 1992), 
in which the weights are constrained to be nonnegative. Aksu and Gunter (1992) examined 
the relative accuracy of OLS, ERLS and NRLS and SAM combined forecasts using 40 
economic series, and the empirical results revealed that NRLS and SA combinations almost 
always outperform OLS and ERLS combinations, while NRLS combinations are at least as 
robust and accurate as SA combinations. 
 
6.5.2.2 Modular approach 

The modular approach is based on the principle of divide-and-conquer (DAC), which deals 
with a complex problem by breaking it into simple problems whose solutions can be 
combined to yield a solution to the complex problem (Jordan and Jacobs, 1994). In a narrow 
sense, the ensemble approach and the modular approach are distinct, in that the modular 
approach assumes that each data point is assigned to only one model whereas with ensemble 
combination, each data point is likely to be treated by all the component models in an 
ensemble. However, the two approaches may be mixed up in a broad sense, in that on the one 
hand, the component model in the ensemble approach may be a modular model (e.g., a PAR 
model may be viewed as a modular AR model), on the other hand, each component in a 
modular combination can take the form of an ensemble of models. In fact, the modular 
approach may be viewed as a modeling strategaty as well as a forecast combination approach. 
When each component in a modular combination is made of a single model rather than an 
ensemble of several models, the modular approach is simply reduced to a hybrid modeling 
approach. 
 
The modular combination may be expressed in a fashion of switching regime model (see e.g., 
Goldfeld and Quandt, chapter 9, 1972) where the model parameters change over time: 
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where Ij is the regime; g(t ∈ Ij) = 1 if t ∈ Ij and g(t ∈ Ij) = 0 if t ∉ Ij; ft,j denotes the forecast for 
regime Ij at time t. The forecast ft,j may come either from a single model fitted to regime Ij, or 
more generally, from an ensemble combination of the forecasts from several models. 
Consequently, there are three major issues about the modular combination method: first, the 
division of the problem under concern; second, the selection of models for each regime; and 
third, the method of combination if more than one model is chosen for each regime. A 
sensible division relies on a clear understanding of the problem. Because streamflow 
generation processes, especially daily streamflow processes, usually have pronounced 
seasonal means, variances, and at the same time, dependence structures and the under-lying 
mechanisms of streamflow generation are likely to be quite different during low, medium, and 
high flow periods, hence, three approaches may be taken to divide a streamflow process: use 
threshold values to divide the streamflow regimes; cluster the streamflow process into several 
domains (e.g., low flow, medium flow and flood); or, partition the streamflow process 
according to the seasonal difference. Hu et al. (2001) developed a threshold-based ANN 
model to make streamflow forecsts for the Yangtze River. In the studies of Zhang and 
Govindaraju (2000), See and Openshaw (2000) and Xiong et al. (2001), the model 
combinations are fundamentally based on dividing the hydrological process into several 
domains according to conditions of the hydrological process. However, the comparison of 
several hybrid ANN models in Section 6.3 shows that, among three hybrid ANN models (i.e., 
threshold-based hybrid ANN, cluster-based ANN and season-based periodic ANN), season-
based periodic ANN performs best, indicating a possibly better generality of dividing the 
daily streamflow according to seasonal difference. After we divide a time series, we may 
either chose one optimal model or choose a set of models for each partition of the series. In 
the cases that we choose a set of models, the same methods for estimating the combining 
weights for the ensemble combination may apply here too. 

6.5.3 Results of Combined Forecasts 

In this study, both the ensemble approach and the modular approach are applied. Be aware 
that, we cannot use the forecasts for the validation period to estimate the weights in either 
approaches, therefore, one important practical issue for estimating the combining weights is 
which data are used for the estimation. Some studies use fixed weights that are estimated with 
the calibration data (e.g., Shamseldin et al., 1997; Xiong et al., 2001), whereas some others 
considered the combination using changing weights that are estimated with a number of 
previous forecasts (e.g., McLeod et al., 1987). Taking the selection of the techniques as well 
as the data used for estimating weights into account, the following four combination methods 
are compared. 
 
(1) Simple average (SA). A simple average of the forecasts from four competitive models, 

implying equal weights. In fact, the SAM method has already been used in the 
construction of the MLP-ANN and PANN model in this study, where the ensemble 
members are composed of purely neural networks of the same structure. 

 
(2) Rollingly-updated Weighted Average (RWA). Weights are updated on the basis of a 

rolling-forward window. That is, we estimate the weights for each day according to the 
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forecasts of previous L days, where L is the length of the rolling window. By trying 
different values of L, we find that the greater the length of rolling window employed to 
calculate the weights, the smaller the resulting combined RMSE. But no significant 
improvement is observed after L is larger than 365. So we choose L to be 365. Weights 
are estimated with the nonnegative least-squares regression method (see Lawson and 
Hanson, 1974), in which the constant is suppressed. 

 
(3) Semi-Fixed Weighted Average (SFWA). Weights are estimated on the forecasts for the 

previous two years and these weights are unchanged for making forecasts for the current 
year. When making forecasts for the next year, we update the weights again.  

 
(4) Modular Semi-Fixed Weighted Average (MSFWA). Weights are estimated with a 

modular approach, where the modules are defined on the basis of seasonal partitions. The 
weights for each seasonal partition are estimated with the nonnegative regression method 
based on the previous two years’ forecasts. The weights are updated every year when we 
make forecasts for a new year. 

 
With the above-mentioned methods, we combine the one- to ten-day forecasts of the four 
models for year 1996 to 2000. We compare the overall performance of five competitive 
models (including ARFIMA model) and four combination methods by taking the entire 
validation period (1996 – 2000) into account. The results are listed in Table 6.14.  Notice that, 
the values in bold style indicate the corresponding model behaves best among all 
models/methods for the specific leading time. An examination of the two tables reveals the 
following: 
 

Table 6.14 Overall performances of five models and four combination methods 

Lead time (days) 1 2 3 4 5 6 7 8 9 10 
ARMA 45.93 80.21 104.47 122.87 138.60 153.36 167.89 181.53 193.34 203.99

ARFIMA 45.57 79.59 103.78 122.19 137.86 152.52 166.95 180.17 191.62 202.18
PAR 45.38 80.68 104.40 125.05 143.60 161.28 178.93 195.47 209.81 223.80
MLP 45.86 80.30 104.99 123.93 140.65 156.21 170.98 184.53 196.61 208.26

PANN 44.75 79.16 104.36 124.10 141.06 156.32 171.12 184.77 196.68 207.86
SA 44.87 78.95 103.11 122.16 138.70 153.99 168.90 182.72 194.77 206.18

RWA 45.03 79.76 104.71 124.33 141.42 157.01 172.20 186.40 198.90 210.65
SFWA 44.99 79.04 102.95 122.38 139.27 154.77 169.77 183.66 195.75 207.18

RMSE 

MSFWA 45.11 79.05 103.48 123.16 140.30 156.20 171.67 185.94 198.31 209.96
ARMA 0.980 0.938 0.895 0.855 0.815 0.774 0.729 0.683 0.640 0.599

ARFIMA 0.980 0.939 0.896 0.856 0.817 0.776 0.732 0.687 0.646 0.606
PAR 0.980 0.937 0.895 0.849 0.801 0.750 0.692 0.632 0.576 0.518
MLP 0.980 0.938 0.894 0.852 0.810 0.765 0.719 0.672 0.628 0.582

PANN 0.981 0.940 0.895 0.852 0.808 0.765 0.718 0.671 0.628 0.584
SA 0.981 0.940 0.898 0.856 0.815 0.772 0.725 0.679 0.635 0.591

RWA 0.980 0.939 0.894 0.851 0.807 0.763 0.715 0.665 0.619 0.573
SFWA 0.981 0.940 0.898 0.856 0.813 0.769 0.723 0.675 0.631 0.587

SACE 

MSFWA 0.980 0.940 0.897 0.854 0.810 0.765 0.716 0.667 0.621 0.576
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(1) The overall performance of PANN is the best for one-day ahead forecasts according to 

the fact that it has a minimum RMSE value, whereas the ARFIMA model outperforms all 
the other models/methods for long lead-time forecasts. 

 
(2) SAM generally performs best among the four competitive combination methods, and it 

outperforms all the 5 individual models for up to 4-day ahead forecasts (except for the 
PANN model for one-day ahead forecasts), and outperforms three models (except for the 
ARMA model and the ARFIMA model) for up to 10-day ahead forecasts. The result 
confirms the robustness of SAM method for improving the forecast accuracy. 

 
(3) Among the other three combination methods (i.e., RWA, SFWA and MSFWA), SFWA 

performances slightly better than the two others. In addition, RWA has a disadvantage of 
being much more computation-intensive than the other methods. There is no significant 
improvement with the modular combination approach for this particular case of the 
Yellow River. 

 
The reason that SAM perform the best in the four competitive methods probably results from 
the fact that no individual models selected for combination appears to be consistently more 
accurate than others, and no individual models appears to be consistently poorer than others. 
Take a close look at the semi-fixed weights in either SFWA or MSFWA, we find that weights 
may change significantly from one year to the next, which means that the performance of 
models are not consistently good or poor throughout the validation period. Evidence from 
economics also supports the use of equal weights. In an analysis of five econometric models’ 
forecasts, Pencavel (1971) found no tendency for models that produced the most accurate in 
one year to do so in the next. Similarly, Batchelor (1990) concluded that “all forecasters are 
equal” in economics. In a comprehensive review, Cleman (1989) found equal weighting to be 
accurate for many types of forecasting. Armstrong (2001) suggested using equal weights 
unless one has strong evidence to support unequal weighting of forecasts.  

6.6 Conclusions 

ANN models are gaining more and more popularity the hydrology community. ANN models 
have a good ability of nonlinear approximation. However, for modeling a complicated 
streamflow process efficiently, an overall ANN may be not enough. Based on the principle of 
divide-and-conquer (DAC), which deals with a complex problem by dividing it into simple 
problems whose solutions can be combined to yield a solution to the complex problem, three 
types of hybrid ANN models, namely, the periodic ANN (PANN) model, the threshold ANN 
(TANN) and the cluster-based ANN (CANN), are applied to forecasting 1- to 10-day ahead 
daily discharges of the upper Yellow River at TNH. The model evaluation results indicate that 
the PANN based on soft seasonal partitions (referred to as soft PANN) performs slightly 
better than the PANN based on hard seasonal partitions. Comparing with the normal feed-
forward multi-layer perceptron (MLP) ANN, soft PANN outperform normal ANN at short 



6.6 Conclusions  167 

 

lead times, but slightly worse in long lead times taking the whole year into account. However, 
comparing the performance of normal MLP-ANN and soft PANN, we find that, except for the 
summer, soft PANN outperforms normal MLP-ANN in all other three seasons. 
 
In addition, the influence of different data pre-processing procedures, namely, standardization, 
rescaling and deseasonalization, on the ANN model performance is analysed in the case 
univariate time series forecasting. It is shown that, for MLP networks with a tan-sigmoid 
transfer function, when data length is long enough, standardizing the data by subtracting the 
mean value and dividing by the standard deviation is better than with rescaling the data to a 
small interval of [-1, 1]. For seasonal data such as streamflow series, deseasonalization 
accomplished by subtracting the seasonal (e.g., daily or monthly) means and dividing by 
seasonal standard deviations, is better than normal standardization. 
 
The comparison of the ARMA model, ARFIMA model, PAR model, ARFIMA model, 
normal MLP-ANN model and soft PANN model shows that the overall performance of 
PANN is the best for one-day ahead forecasts, whereas the ARFIMA model outperforms all 
the other models/methods for long lead-time forecasts. Despite of the existence of 
nonlinearity in daily streamflow series and despite of the capacity of ANN-type models to 
model nonlinearity, ANNs are not always superior to ARMA-type model (either ARMA 
model or ARFIMA model). This is in agreement with some other studies. For instance, 
Goswami et al. (2002) found that simpler models for continuous river-flow simulation can 
surpass their complex counterparts in performance. For some large catchments with strong 
seasonality, the Linear Perturbation Model outperforms both the SMAR (Soil Moisture 
Accounting and Routing) model and the ANN model. In comparing the forecasting results of 
the naïve AR model with the MLP ANN model, O’Connor et al. (2004) found that the 
performances were virtually the same in the calibration period for both model forms, for lead 
times up to 6 days. In another comparison of linear and nonlinear techniques in river flow 
forecasting, Yawson et al. (2005) found that, where limited data are available, the use of more 
complex models in river flow forecasting might not be very advantageous to the modeller. 
 
To combine the strength of four dynamically different models (the ARMA model, PAR model, 
ARFIMA model, normal MLP-ANN model and soft PANN model), four forecast 
combination methods are applied in this study: simple average method (SAM), rollingly-
updated weighted average method, semi-fixed weighted average method, and modular semi-
fixed weighted average method. The results show that SAM can improve the accuracy of up 
to 4- to 5-day ahead forecasts compared with any individual models, and it generally performs 
the best among the four competitive combination methods, which confirms the robustness of 
the SAM method. Because of its simplicity and robustness, SAM is recommended for 
improving streamflow forecast accuracy when no individual model performs consistently 
more accurately or more poorer than the others among the members to be combined. 
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Chapter 7 Generalization of ANN Models for Streamflow 

Forecasting 

7.1 Introduction to the Generalization of ANN model 

Artificial neural networks (ANNs) are prone to either underfitting or overfitting (Sarle, 2002). 
A network that is not sufficiently complex can fail to detect fully the signal in a complicated 
data set, leading to underfitting. A network that is too complex may fit the noise, not just the 
signal, leading to overfitting, which may result in predictions far beyond the range of the 
training data. Therefore, one crucial issue in constructing a neural network is generalization, 
namely, the capacity of an ANN to make predictions for cases that are unseen in the training 
set.  
 
The simplest way of achieving generalization is of course using enough training data. Amari 
et al. (1997) showed that, when the ratio (R) of the sample size to the number of weights in 
the network is larger than 30, no overfitting is observed. However, Wang et al. (2005b) 
showed that slight overfitting might still be observed even when R is as high as 50, and the 
shortage of data is common in the real world. There are basically two ways to deal with 
overfitting when training sample size is not large enough: reducing the size (i.e., number of 
neurons) of the network or reducing the size of each weight connecting neurons. Methods for 
reducing the size of networks include constructive learning algorithm (see e.g., Kwok and 
Yeung, 1997) which starts with a small network and then adds additional hidden units and 
weights until a satisfactory solution is found, pruning (e.g., Reed, 1993; Prechelt, 1997) which 
searches for a good network in the other direction, and weight sharing (e.g., Nowlan and 
Hinton, 1992) in which two or more units are forced to have the same weight values so that 
the true number of parameters in the model are reduced. Methods for reducing the size of each 
weight are early stopping (e.g., Prechelt, 1998), which stops training at the appropriate point 
to avoid the network learning the high frequency noise, and the regularization (or weight 
decay) technique (e.g., Buntine and Weigend, 1991; Mackay, 1991; Weigend et al., 1991; 
Krogh and Hertz, 1992; Neal, 1996), which encourages smoother network mappings by 
adding a penalty term to the objective function to be minimized. The two methods may be 
combined to hopefully achieve better generalization. For instance, Tresp et al. (1997) propose 
Early Brain Damage method, which extends a pruning technique - Optimal Brain Damage (Le 
Cun et la., 1990) so that it can be used in connection with early stopping. Besides, the 
addition of noise (e.g., Holmström and Koistinen, 1992), and combining networks may help 
to reduce generalization errors. 

 
In this chapter, after briefly describe the two techniques, we will first compare the two 
generalization techniques, i.e., Bayessian regularization or cross-validated early stopping in 
making one-step ahead forecasts for univariate time series, including several synthetic 
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nonlinear time series and several real-world observed time series; then we make multi-step 
forecasts for daily streamflows of the Yellow River at TNH in the case of involving several 
exogenous variables (upstream discharges, precipitations and temperature).  

7.2 Methods of Generalization 

7.2.1 Cross-validated Early stopping 

Cross-validated early stopping (referred to as CVES hereafter) is the most popular method to 
achieve generalization through using cross-validation data. Cross-validation method has a 
long history of being used as a standard tool for selecting models in statistics and improving 
the reliability of parameter estimation for statistical models (see, e.g., Toussaint, 1974; Golub 
et al., 1979). In CVES, the available data are usually split into two subsets: training and cross-
validation (CV) sets. The training set is used for updating the network weights and biases. 
The CV set is used to monitor the error variation during the training process. The validation 
error will normally decrease during the initial phase of training, as does the training set error. 
If the network begins to overfit the data, the error on the validation set will typically begin to 
rise. When the validation error increases for a specified number of iterations, the training is 
stopped. More generally, we can make k-fold CV, in which the data are divided into k subsets 
of (approximately) equal size. The net is trained k times, each time leaving out one of the 
subsets from training, but using only the omitted subset to compute whatever error criterion 
interests you. If k equals the sample size, this is called leave-one-out CV.  
 
One important issue with regard to CVES method is in what ratio to split the training samples 
into training set and CV set. Amari et al. (1997) suggested that the average generalization 
error would be minimized asymptotically when the ratio of CV set size to training set size is: 

2 1 1
2( 1)opt

kr
k
− −

=
−              (7.1) 

where k is the total number of weights in the ANN. When k is large enough, 1 2optr k= . 

7.2.2 Bayesian Regularization 

Large weights can hurt generalization of networks in two different ways (Sarle, 2002). 
Excessively large weights leading to hidden units can cause the output function to be too 
rough, possibly with near discontinuities. Excessively large weights leading to output units 
can cause wild outputs far beyond the range of the data if the output activation function is not 
bounded to the same range as the data. To put it another way, large weights can cause 
excessive variance of the output (Geman et al., 1992). A traditional way of dealing with the 
negative effect of large weights is regularization. Regularization is a well-known concept in 
statistical parameter estimation (e.g., Vapnik, 1982). The idea of regularization is to make the 
network response smoother through modification in the objective function by adding a 
penalty term that consists of the squares of all network coefficients. This additional term 
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favours small values of weights and decreases the tendency of a model to overfit noise in the 
training data.  
 
Let D represent the data set, w represent the vector of network parameters. The typical 
objective for training feed-forward neural networks is to minimize the sum of squared errors 
ED. With regularization, the objective becomes to minimize 

( ) D wF w E Eβ α= +              (7.2) 

where Ew is the sum of squares of the network parameters, and α and β are objective function 
parameters which dictate the emphasis of the training. If α << β, then the training algorithm 
will drive the errors small. But if α >> β, then training will emphasize weight size reduction at 
the expense of network errors, thus producing a smoother network response. The task of 
regularization is to find optimal values of α and β so that the data fitted but not overfitted. 
 
Mackay (1991) proposed a technique, called Bayesian regularization, which automatically 
sets the optimal performance function to achieve the best generalization based on Bayesian 
inference techniques. In the Bayesian framework the weights w of the network are considered 
random variables. After data D is taken, the density function for w can be updated according 
to Bayes’ rule 
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where M is the particular network used; P(w|α, M) is the prior density, which represents our 
knowledge of the weights before any data is collected; P(D|w, β, M) is the likelihood function, 
which is the probability of the data occurring given the weights w. P(D|α, β, M) is a 
normalization factor, which guarantees that the total probability is 1. 
 
Assuming that the noise and the prior distribution for the weights are both Gaussian, the 
probability densities can be written as 
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where ZD(β) = (π/β)N/2, ZD(α) = (π/α)k/2, and N is the size of training sample, k is the total 
number of parameters in the network. Substitute (7.4) into (7.3), we get the posterior 
probability of w: 

1 1 exp( )
( ) ( )( | , , , )

( | , , )
1 exp( ( ))

( , )

D w
w D

F

E E
Z ZP w D M

P D M

F w
Z

β α
α βα β

α β

α β

− −
=

= −

       (7.5) 



172  Chapter 7 Generalization of ANN Models for Streamflow Forecasting 

 

 
In the Bayesian framework, the optimal weights should maximize the posterior probability 
(7.5), which is equivalent to minimizing the regularized objective function given in (7.2). 
With (7.3), (7.4) and (7.5), P(D|α, β, M) can be expressed as 

( , )( | , , )
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=            (7.6) 

The constants ZD(β) and Zw(α) are known from (7.4). What needs to be estimated is ZF(α, β). 
Since the objective function has the shape of a quadratic shape in a small area surrounding a 
minimum point with the parameter vector wMP, we can expand F(w) around the minimum 
point of the posterior density with Taylor series expansion. This yields 

MP MP MP
1( ) ( ) ( ) ( )
2

TF w F w w w H w w= + − − .        (7.7) 

where H = β∇2ED + α∇2Ew is the Hessian matrix of the objective function. Then ZF(α, β) is 
the Gaussian integral: 

/ 2 1/ 2

( , ) exp( ( , , ))

(2 ) exp( ( ))det H

k
F

k

Z d w F w

F w

α β α β

π −

= −

≈ −
∫ .         (7.8) 

To optimize the value of α and β, we apply Bayes’ rule 
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Assuming a uniform prior density P(α, β|M) for the regularization parameter α and β, then 
maximizing the posterior of α and β is achieved by maximizing the likelihood function P(D|α, 
β, M), whose logarithm can be written as 

MP MP 1( | , , ) log det log ( ) log ( ) log 2
2 2w D w D
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(7.10) 

We can solve for the optimal value of β and α at the minimum point by taking the derivatives 
of (7.10) with respect to α and β, and set them equal to zero. This yields 
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2 ( ) 2 ( )MP MP

w MP D MP

N
E w E w

γ γα β −
= = , 

where γ = k - 2αMPtr(H-1) is called the effective number of parameters. 
 
The Bayesian optimization of the regularization parameters requires the computation of the 
Hessian matrix of at the minimum point wMP. Foresee and Hagan (1997) propose using the 
Gauss-Newton approximation to Hessian matrix, which is readily available if the Levenberg-
Marquardt optimization algorithm is used to locate the minimum point. The additional 
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computation required of the regularization is thus minimal. In this study, the function trainbr 
built in the Neural Network Toolbox in Matlab (version 7) is used to implement the training 
of ANN models with the BR technique. 

7.3 Data Used 

7.3.1 Univariate Time Series Data 

Twelve univariate time series data are used in this study, including three synthetic series and 
nine observed real-world time series.  
 
7.3.1.1 Synthetic time series 
 
Two classical chaotic time series and one synthetic time series generated with a ANN model 
are used in the study.  
 
(1) Henon map chaotic series (Henon, 1976) of the form 
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With a = 1.4 and b= 0.3, for initials such as x = 0, y = 0.9, Henon map series has one 
strange chaotic attractor.  

(2) The discretized Mackey-Glass (Mackey and Glass, 1977) chaotic series of the form: 
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With a = 0.2, b = 0.1 and c = 10, the time series has chaotic attractors of different 
dimension for τ > 16.8. We choose m = 30, τ = 30. 

(3) A time series generated with an ANN model with a structure 5-3-1, namely, five inputs, 
one hidden layer with three hidden nodes, and one output. It has a standard Gaussian 
noise term. The size of the ANN series is 3000 points.  

 
Both the synthetic chaotic time series have a size of 10,000 points. Gaussian noises are added 
to the two chaotic series. The mean of the Gaussian noise is zero, and the standard deviation 
is 2% that of the chaotic series.  
 
7.3.1.2 Observed time series 
 
Six observed streamflow time series are used, including: (1) and (2) daily and monthly 
streamflow series of the Yellow River at Tangnaihai (TNH), China, from January 1, 1956 to 
December 31, 2000; (3) and (4) daily and monthly streamflow series of the Rhine River at 
Lobith, the Netherlands, from January 1, 1901 to December 31, 1996; (5) and (6) daily and 
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monthly streamflow series of the Danube River at Achleiten, Austria, from January 1, 1901 to 
December 31, 1990. 
 
In addition, three other observed geophysical time series are used, including: (1) The monthly 
sunspot number series, starting from January, 1749 and ending up in December, 2004, 
available on the Belgium Solar Influences Data analysis Center website http://sidc.oma.be; (2) 
The yearly sunspot number series, starting from 1700, and ending up in 2004, also available 
on the website of Belgium Solar Influences Data analysis Center; (3) Monthly Southern 
Oscillation index (SOI) series, from January, 1933 to December, 2004, available on the 
NOAA website at http://www.cpc.ncep.noaa.gov/data/indices/; 

7.3.2 Multivariate Hydrological Time Series Data 

So far in this study, we focus on investigating the forecasting of streamflow processes based 
on univariate streamflow time series. To compare the performances of different generalization 
techniques in the cases where multivariate time series are involved, besides using the average 
discharges at TNH in previous several days, we also use several streamflow series and 
meteorological series that are recorded in the area above TNH gauging station as explanatory 
variables to forecast multi-day ahead average discharges at TNH. The used hydrological time 
series include: observed daily average discharges at Maqu (MQ) and at Jimai (JM), daily 
precipitation data at MQ and at Dari (DR, the same place as the gauging station JM), and 
daily average temperature data at DR. The locations of all the gauging stations are shown in 
Figure 7.1. All the data used here start from January 1, 1960, and end on December 31, 2000. 
 

Figure 7.1 Locations of the hydrological gauge stations and meteorological gauge stations  

7.4 On the Generalization of ANNs for Univariate Time Series Prediction 

7.4.1 Building ANN Models for Univariate Time Series 

When building a neural network model, a number of decisions must be made, including the 
neural network type, network structure, methods of pre- and post-processing of input/output 
data, training algorithm and training stop criteria. The feed-forward multi-layer perceptron 
(MLP) ANN is adopted in the present study. The network structure includes the number of 

TNH

MQ

JM (DR)
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input, the number of hidden layers, the number of hidden nodes in each layer, and the number 
of outputs. These structure parameters determine the total number of weights in the network. 
For a univariate time series, the number of inputs is virtually the embedding dimension m. 
With the embedding dimension m, we convert the scalar time series {xi}, i=1, …, N,  to state 
vectors {Xt}, where Xt = [xt, xt -1 , ..., xt –m+1], and m is chosen depending on the time series. In 
the present study, the structure of ANNs for the synthetic time series and streamflow series 
are chosen according to previous studies in the literature or according to the trial and error 
procedure. De Oliveira et al. (2000) suggest using m-2m-m-1 structure to model chaotic series, 
i.e., m inputs, 2 hidden layers with 2m and m hidden nodes for each layer, and one output. 
Follow their suggestion, we use 6:12:6:1 for Henon series as well as the discretized Mackey-
Glass series. With trial and error procedure, the chosen structure for all three monthly flow 
series is 4-3-1. The number of inputs (i.e., values of m) of ANN models fitted to daily flow of 
the Danube and the Rhine are determined according to their partial autocorrelation functions, 
and the chosen structure is 23-12-1 for daily flow of Danube, and 16-8-1 for daily flow of 
Rhine. The number of inputs of the ANN model fitted to daily flow of the Yellow River is 
5,which is determined by the false neighbor method (See Section 6.2.1), and the ANN 
structure is 5-3-1. Although it has been shown (see Section 6.2) that deseasonalization is the 
best pre-processing procedure for streamflow series, but for simplicity, all the data are 
standardized by subtracting the mean of the series and dividing by the standard deviation to 
make the data have a mean of 0 and variance 1. 
 
The ANNs are constructed with Matlab Neural network toolbox. In all ANNs, tansig transfer 
function is used in the hidden layer. The training algorithm for the MLP network with CVES 
is the backpropagation algorithm that updates weight values according to gradient descent 
with momentum, whereas the Bayesian regularization takes place within the Levenberg-
Marquardt algorithm (Foresee and Hagan, 1997). To avoid the problem of the sensitivity of 
networks to initial weights, simple ensemble technique is applied. That is, for each case, we 
fit 10 networks, and then choose five best ones, which have best training performance, and 
take the average of the outputs of the five selected networks to be the final output. 

7.4.2 How Many Data are Demanded to Avoid Overfitting? 

Amari et al. show that (1997), when the ratio (referred to as R hereafter) of the training 
sample size to the number of weights is larger than 30, no overtraining is observed. This view 
is accepted by many researchers as a guideline for training ANNs (e.g., Mair and Dandy, 
2000; Sarle, 2002). But, is there such a clear cut-off value of R? Here, we test the impact of R 
on root mean squared error (RMSE) of training data and testing data with three synthetic 
series. To avoid the possible impact of nonstationarity, real world data are not applied here. 
 
We make experiments with different values of R range from 5 to 50. We use the last 1000 
points of each synthetic series as the test data, while the training data vary according to the 
value of R. Networks are trained with Levenberg-Marquardt backpropagation algorithm and 
the training epoch is 1000. The variation in RMSE of training data and test data with different 
values of R for the three synthetic series are plotted in Figure 7.2. 
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Figure 7.2 RMSE of training data and test data with different values of R for (a) Henon series; (b) 
Mackey-Glass series and (c) simulated ANN series. 

From Figure 7.2, we see that with the increase of R, the training error grows, whereas, the 
testing error decreases with the increase of R, which indicates that the intensity of overfitting 
decrease. However, there is no clear cut-off value of R, above which overfitting vanishes. 
When R=30, suggested by Amari et al. (1997), overfitting is still observed for all three fitted 
networks. When the ratio R is as high as 50, the overfitting basically disappears. However, the 
test error is still slightly higher than, albeit very close to, the training error, for the Mackay-
Glass series and simulated ANN series, which indicates the existence of slight overfitting. 

7.4.3 How to Split the Training Samples in Cross-Validated Early Stopping? 

Now we investigate whether there is an optimal value ropt of the CV to training ratio r, with 
which the generalization error is minimized with limited training samples. We calculate the 
training error and testing error with different values of r, ranging from 0.02 to 0.3, for 
different size of training data with different values of training sample size to number of 
weight ratio R. The results for R = 10 are plotted in Figure 7.3. 
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Figure 7.3 RMSE of training set and test data with different CV to training ratio r for (a) Henon series; 
(b) Mackey-Glass series and (c) simulated ANN series when R = 10. 

The networks for Henon series and Mackey-Glass series have the structure of 6-12-6-1 
structure, with total number of weights k = 169. The network for the synthetic ANN data set 
have a 5-3-1 structure, k = 22. Therefore, according to the optimal ratio proposed by Amari et 
al. (1997), as shown in Equation (1), for the former two networks, ropt ≅ 0.077; for the later 
one, ropt ≅ 0.132. However, there is no clear evidence of the existence of such optimal ratios 
from the visual inspection of Figure 2 as well as the results for other experimental results 
when R is 5, 15 and 20. 
 

(a) (b) (c) 

(a) (b) (c) 
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Sarle (2002) comments that the results of Amari et al. (1997) contain serious errors that 
completely invalidate. From the experiments in this study, it seems that this comment is 
substantiated. In practice, many research use a large part, such as 1/3 (e.g., Prechelt, 1998), of 
total available data as CV set. However, according to this experiment, the ratio of CV set to 
training set seems to be not very important for early stopping. 10% could be a practical choice 
when the data series is stationary. 

7.4.4 Which Technique Works Better, Bayesian Regularization Or Cross-Validated 
Early Stopping? 

To compare the performances of the Bayesian regularization or cross-validated early stopping, 
we make one-step ahead forecasts for the seven time series described above with the two 
techniques with varying size of training data, which is reflected by varying values of R (the 
ratio of the training data size to the number of weights in a network). As a benchmark, the no-
stop training (NST) is also applied, in which the training is stopped after 1000 epochs. The 
performances of ANNs with these three approaches are measured with RMSE. The results are 
presented in Table 7.1. The comparison of the performances shows that:  
 
(1) The BR method outperforms CVES in most cases, except for the cases of Mackay-Glass 

series and monthly sunspot series.  
 
(2) When training sample size is small (R < 20), the BR method and CVES method generally 

may help to improve the generalization of ANN models. But these techniques do not 
always work. For several cases (e.g., the case of daily streamflow of the Danube) they fail 
even when R ≤ 10, especially with the CVES method.  

 
(3) The NST outperforms the CVES in most cases when R ≥ 20. That means, albeit 

overfitting still may be observed when R ≥ 20 or even when R is as high as 50, cross-
validated early stopping does not improve the generalization when R ≥ 20 for most cases. 
In contrast, the BR method still outperforms the NST in the most cases even when R ≥ 30. 

 
(4) An advantage of CVES is its fastness compared with the BR method and the NST, 

especially when the network is complicated. In contrast, the time-costness is a major 
disadvantage with the BR method, especially when the training data size is big and the 
network is complicated. 

 
(5) The performance of CVES is highly variable. Namely, when we run the training process 

for a network with different initial weights, the networks we obtain in these different runs 
may give significant forecasting performance, which indicating that CVES technique is 
not robust. This is because it often ends up the training process too early due to lots of 
local minima of error function for the CV data set. Therefore, care must be taken when 
using CVES in making streamflow forecasts despite of its fastness, unless the speed is of 
the most importance. It’s better to check the error function surface of CV data to see if 
there are local minima that may stop training too early before we use the CVES method. 
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(6) The performance of Bayesian generalization is highly stable, especially compared with 
CVES. In some cases (e.g., the simulated ANN series), the 10 runs with different initial 
weights give almost the same result. 

 
 

Table 7.1 Compare the RMSEs of one-step ahead forecasts with Bayesian regularization (BR), cross-
validated early stopping (CVES) and no-stop training (NST)  

Series R BR CVES NST Series R BR CVES NST 
Henon 5 0.02778  0.02790 0.03684 Rhine 4.9 227 291 230 

 10 0.02642  0.02655 0.02745 daily 10 185 277 220 
 20 0.02508  0.02575 0.02565  15 188 508 218 
 30 0.02491  0.02545 0.02520  25.1 168 276 217 
 40 0.02468  0.02531 0.02497  37.7 185 280 211 
 50 0.02468  0.02482 0.02439  50.3 186 281 217 

Mackay- 5 0.01300  0.01253 0.01666 Danube 6.3 380 395 387 
Glass 10 0.01198  0.01186 0.01362 monthly 12.6 377 396 376 

 20 0.01144  0.01142 0.01186  18.9 369 386 369 
 30 0.01140  0.01131 0.01146  25.3 369 384 364 
 40 0.01130  0.01130 0.01128  31.6 367 388 361 
 50 0.01133  0.01129 0.01134  37.9 367 380 362 

ANN 5 1.080  1.098  1.199  Danube 4.8 218 174 169 
 10 1.055  1.072  1.102  daily 9.6 184 178 162 
 20 1.045  1.055  1.048   14.5 177 175 163 
 30 1.038  1.062  1.044   24.2 172 175 164 
 40 1.026  1.044  1.040   36.3 163 170 159 
 50 1.017  1.046  1.026   48.5 162 171 159 

Yellow 3.8  303  271  317  Sunspot 5 20.9 20.9 20.5 
monthly 7.6  289  282  297  Yearly 10 18.9 21.4 19.6 

 11.4  253  271  268   15 18.8 21.0 19.4 
 15.2  248  259  274  Sunspot 5 20.9 19.3 19.4 
 18.9  245  268  265  monthly 10 19.7 18.1 18.2 

 22.7  244  265  257   15 19.5 18.0 17.8 
Yellow 16.4  50.6  113.8  48.1   20 18.4 17.6 17.6 
daily 33.0  56.4  68.7  47.8  SOI 5 1.327 1.409 1.468 

 82.8  45.8  86.2  46.3  monthly 10 1.357 1.559 1.461 
 165.8  45.2  68.0  46.5   15 1.315 1.373 1.354 
 331.8  45.1  63.6  46.2   20 1.333 1.436 1.448 

Rhine 6.3 840 867 886  30 1.313 1.393 1.363 
monthly 12.6 839 935 858      

 18.9 848 862 867      
 25.3 850 897 853      
 31.6 850 898 854      
 37.9 855 876 855      

Note: R refers to the ratio of the training data size to the number of weights. 
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7.5 Streamflow Forecasting with the Inclusion of Exogenous Variables 

7.5.1 Building ANN Models for Streamflow Forecasting with the Inclusion of 
Exogenous Variable 

As in the case of univariate time series, the MLP ANN is also used for the case of multivariate 
streamflow time series, and we adopt the one-hidden-layer structure. The major concern is the 
selection of inputs. According to the result of false-neighborhood method (see Section 6.2.1), 
we include the average discharges in the past five days as part of the inputs. According to the 
cross-correlation analysis, the average discharge Qt at TNH has the highest correlation with 
one-day past discharge at MQ, three-day past discharge at JM, seven-day past precipitations at 
both MQ and DR, about 20-day past temperature at DR. Therefore, the following 32 inputs 
are used in building the ANN for making 1-day ahead forecast Q(t): 
 

 daily discharges QTNH(t-1), …, QTNH(t-4) at TNH; 
 daily discharges QMQ(t-1) at MQ; 
 daily discharges QJM(t-1), …, QJM(t-2) at JM; 
 daily precipitation RMQ(t-1), …, RMQ(t-8) at MQ;  
 daily precipitation RDR(t-1), …, RDR(t-8) at DR; 
 daily temperature TDR(i1), …, TDR(i7) at DR, where TDR(i1) = [TDR(t-1) + TDR(t-2) + 

TDR(t-3) ]/3 , …, TDR(i7) = [TDR(t-19) + TDR(t-20) + TDR(t-21) ]/3. 
 
Note that, first, we include the precipitations in the past 8 days rather than 7 days because of 
the importance of the precipitation. Second, in fact, if we remove the seasonal means of the 
discharges and those of the temperatures, the correlation between the daily average discharges 
and the daily average temperatures is very low and the lag time is very short. The reason that 
we keep the information of the past 21 days in the inputs is on one hand, the temperature is 
related to the evaporation and the amount of snowmelt; on the other hand, the temperatures 
may act as an indicator of seasonal variation. 
 
The same inputs are used to make 2- to 5-day ahead forecasts, i.e., Q(t+1), Q(t+2), Q(t+3), 
Q(t+4). The data in year 1960-1995 will be used for training the network (but data in 1991 are 
not used because the discharge data at JM in 1991 are missing), and we make 1- to 5-day 
ahead forecasts for year 1996 to 2000. To train a network with 32 inputs using 34 years’ data 
is very time consuming if we determine the number of hidden nodes with the trial and error 
procedure. Ebberhart and Dobbins (1990) suggested starting with hidden nodes equal to half 
of the input nodes. Following their suggestion, we simply take a half of the number of inputs 
as the number of hidden nodes. Namely, the structure we adopt for the case of multivariate 
hydrological time series is 32-16-1. 
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7.5.2 Comparing Normal MLP-ANN with BR-ANN 

As it has been shown that the CVES technique is not as reliable as the NST method and the 
BR method, we do not consider the CVES technique when making the 1- to 5-day ahead 
forecasts with multivariate hydrological time series. We use the data from 1960 to 1995 to 
train the network (data in 1990 are not used, because the streamflow data at JM in 1990 are 
missing), about 12,740 points in total. Therefore, for a network with a 32-16-1 structure, the 
ratio R of training sample size to the number of weights in the network is about 23.4. The 
performance of non-stop training and the BR method for making 1- to 5-step ahead daily 
discharge forecasts in year 1996-2000 are shown in Table 2. Model performance measures 
used here include RMSE, CE and SACE. 
 
The result shows that for making 1- to 4-day ahead forecasts, the BR method outperforms the 
NST method. But the advantage of the BR decreases with the increase of lead times, and it 
disappears for making 5-day ahead forecasts. The scatter plot of observed discharges versus 
forecasted values are shown in Figure 7.4, and the hydrographs of observed discharges and 
one-day ahead and five-day ahead forecasted values are shown in Figure 7.5. 
 

Table 7.2 Compare the performance of non-stop training (NST) and Bayesian regularization (BR) for 
forecasting 1- to 5-step ahead daily discharges in year 1996-2000. 

Lead time NST BR 
(day) RMSE CE SACE RMSE CE SACE 

1 39.82 0.992 0.985 37.12 0.993 0.987 
2 67.34 0.976 0.956 63.43 0.979 0.961 
3 85.10 0.962 0.93 83.07 0.964 0.933 
4 100.02 0.948 0.903 99.43 0.949 0.905 
5 114.27 0.932 0.874 114.65 0.932 0.873 
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Figure 7.4 Scatter plot of observed discharges versus forecasted values. (a) 1-day ahead forecasts; (b) 
5-day ahead forecasts 

 

(a) (b) 
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Figure 7.5 Hydrographs of the observed discharges and forecasted values. (a) 1-day ahead forecasts; 
(b) 5-day ahead forecasts 

7.6 Conclusions 

Generalization is a crucial issue in constructing a neural network when the size of training 
data is not big enough. Two commonly used techniques to achieve generalization are the 
Bayesian regularization (BR) method and the cross-validated early stopping (CVES) method. 
In this present study, some experiments are made to compare the performances of these two 
techniques and the no-stop training (NST, in which the training is stopped after 1000 epochs) 
for making forecasts in the case of univariate time series and multivariate hydrological time 
series. The results show that, for making one-step ahead forecast, both the BR method and the 
CVES method generally outperforms the NST method when the ratio R of training sample 
size to the number of weights in the network is less than 20. But the advantage of the two 
techniques over the NST method is not guaranteed. In several cases (e.g., the case of daily 
streamflow of Danube) they fail even when the ratio R ≤ 10, especially the CVES method. 
Furthermore, the performance of the CVES method is highly variable because it may stop the 
training process prematurely due to many local minima.  
 

(b) 

(a) 
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Comparing the BR method outperforms the CVES method for making one-step ahead 
forecasts for univariate processes, the BR method outperforms the CVES method in most 
cases, and it still outperforms the NST method in some cases even when the ratio R is larger 
than 30. The BR method is further used to make 1- to 5-day ahead streamflow forecasts for 
the headwater of the Yellow River, and compared with the NST method. The result shows 
that for making 1- to 4-day ahead forecasts, BR outperforms NST. But the advantage of the 
BR method decreases with the increase of lead times, and the advantage disappears for 
making 5-day ahead forecasts. The major disadvantage of the BR method is its time-costliness. 
Therefore, when the speed of training is not a major concern, the BR method is recommended 
for making streamflow forecasts. 
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Chapter 8 Conclusions and Recommendations 

Streamflow forecasting is of great importance to water resources management and flood 
defence. Significant progresses had been seen in the last several decades on this issue. The 
methods for forecasting streamflows may fall into two general classes: process-driven 
methods and data-driven methods. Good streamflow forecasting models are built on the basis 
of the good understanding of the streamflow process. Equivalent to the classification of 
forecasting methods, methods for understanding streamflow processes may also be broken 
into two categories: physically-based methods and mathematically-based methods. With the 
former group of methods, we go directly into the underlying mechanisms of the hydrological 
processes, then try to describe the mechanisms with mathematical formula, whereas with the 
latter group of methods, we give mathematical descriptions of the hydrological processes first, 
then try to find physical explanations behind the mathematical descriptions. 
 
This thesis focuses on using mathematically-based methods to analyze stochasticity and 
nonlinearity of streamflow processes based on univariate historic streamflow records, and 
presents data-driven models that are also mainly based on univariate streamflow time series 
for forecasting the streamflows of the upper Yellow River in northern China. 
 
In this study, six streamflow processes of five rivers in different geological regions (the 
Yellow River in China, the Rhine and the Danube in Europe, the Umpqua and Ocmulgee in 
the United States) are investigated for stochasticity and nonlinearity at several characteristic 
timescales (i.e., one day, one month, 1/3 month, and one year). Several important aspects of 
the stochasticity are examined in this study, including trend, seasonality, stationarity, and 
long-memory. As for the study of nonlinearity, besides the general nonlinearity, two special 
types of nonlinearity are examined, i.e., conditional heteroskedasticity and chaos. To do so, 
some statistical test methods, which originate from the econometrics but have not been used 
in testing hydrological time series, are introduced and successfully applied to the streamflow 
time series analysis. 
 
Data-driven models based on the univariate streamflow time series are fitted to the daily 
streamflows and monthly streamflows of the upper Yellow River at Tangnaihai (TNH) for 
making 1 to 10 day ahead, and one-month ahead forecasts. Due to the strong persistence of 
the daily streamflow series of the daily streamflow at TNH, in terms of the measure of 
seasonally-adjusted coefficient of efficiency (SACE), a satisfying accuracy (SACE > 0.8) can 
be achieved for five-day ahead forecasts with a linear autoregressive moving average (ARMA) 
model, a fractionally integrated ARMA model (i.e., ARFIMA model), or an artificial neural 
network (ANN) model. Taking an individual model into account, periodic ANN (PANN) 
model performs best for one-day ahead forecasts. The forecasts for short lead times can be 
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improved by combining the forecasts of several individual models with a simple average 
combination. But for the forecasts of long lead times (> 4 days), ARFIMA model performs 
best. With the inclusion of several explanatory variables (upstream discharges, precipitations 
and temperature), a very satisfying accuracy (SACE > 0.9) can be achieved for four-day ahead 
forecasts with the ANN models. 

8.1 On Stochasticity 

In the context of global warming, how hydrological processes are impacted is an issue of wide 
concern. The analyses of two streamflow processes of the Yellow River show that there is no 
obvious trend in the average annual flow process of the upper reach at TNH from 1956 to 
2000, whereas the streamflow process recorded at Tongguan in the middle reaches exhibits 
significant declining trend. No significant decline is found in the precipitation processes (Fu 
et al., 2004), on the other hand, it is found that the lower the reaches of the Yellow River, the 
more significant the downward trend. This indicates that the impact of climate warming on 
the streamflow processes of the Yellow River are far less significant than anthropogenic 
influences.  
 
Stationarity is required for the construction of many types of models and for the application of 
many data analysis techniques. Many methods are available to check whether the data of 
interest are stationary. In the present study, ADF unit root test (Dickey and Fuller, 1979; Said 
and Dickey, 1984) and KPSS test (Kwiatkowski et al., 1992), which originate from the 
econometrics, are introduced to test for the nonstationarity in hydrological time series. It is 
found that the smaller the timescale of the streamflow process is, the more likely it tends to be 
nonstationary.  
 
Seasonality is a common feature in hydrological time series. Before fitting a time series 
model, it is popular to deseasonalize the hydrological time series by subtracting the seasonal 
means and dividing by seasonal standard deviations. But it is shown in the study that seasonal 
variations still exist more or less in the autocorrelation structures of all the deseasonalized 
daily, 1/3-monthly and monthly streamflow processes. This indicates that, the 
deseasonalization procedure can remove the seasonality in the mean and variance, but not the 
seasonality in the autocorrelation structure. 
 
Many studies have shown that, many hydrological processes, especially streamflow processes, 
have long-memory property. This is also confirmed by the present study. Furthermore, the 
investigation of the long-memory phenomenon in streamflow processes at different timescales 
shows that, with the increase of timescale, the intensity of long-memory decreases. Generally 
speaking, according to the test results, all daily flow series exhibit strong long-memory; 1/3-
monthly flow series may be considered as weak long-memory processes; monthly series may 
be considered as short memory processes or at most processes of very weak long-memory.  
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8.2 On Nonlinearity 

It is well accepted that watershed systems are nonlinear. Correspondingly, the output of 
watershed systems, streamflow processes, may also exhibit nonlinearity. But there is no well-
accepted methods to quantify the degree of nonlinearity. What is less-accepted or even 
controversial is the sources or the nature of the nonlineairty, such as whether or not 
hydrological processes are deterministic chaotic processes. 
 
In this study, the BDS test method (Brock et al., 1996) is introduced to test for the existence 
of nonlinearity in general in streamflow processes. It is found that the shorter the timescale, 
the stronger the nonlinearity. All annual series are linear, whereas all daily streamflow 
processes are strongly nonlinear. Although after removing seasonal effects some 1/3-monthly 
and monthly streamflow series are linear according to BDS test results, we cannot conclude 
that there is no nonlinearity present in these 1/3-monthly and monthly streamflow series, 
because the power analysis of BDS test shows that BDS test is not powerful enough for 
detecting weak nonlinearity.  
 
Besides those well-recognized physical sources, such as the mechanisms involved in the 
rainfall–runoff transformation, some other sources can be identified as viewed from the 
streamflow time series itself. Asymmetric seasonality in the mean and variance of raw (or 
log-transformed) streamflow processes and the seasonality in the variance of the pre-whitened 
streamflow processes (i.e., residual series) play a role in the exhibition of nonlinearity. The 
conditional heteroskedasticity is an important source of the nonlinearity of streamflow 
processes, so is long-memory if it is also viewed as a type of nonlinearity. The degree of 
nonstationarity has a significant impact on the test for nonlinearity. Nonstationarity or the 
stationarity of low significance level may give rise to positive results (i.e., the existence of 
nonlinearity) in nonlinearity test.  
 
The nonlinear mechanism autoregressive conditional heteroskedasticity (ARCH) in 
hydrological processes has not received much attention by the hydrology community so far. 
The existence of ARCH effect is detected in the residual series from linear models fitted to 
the daily and monthly streamflow processes of the upper Yellow River. It is shown that the 
ARCH effect is fully caused by seasonal variation in the variance for monthly flows, but 
seasonal variation in variance only partly explains the ARCH effect for daily streamflow. To 
capture the ARCH effect in the daily streamflow processes so as to improve the estimate of 
forecast uncertainty, the ARMA-GARCH error model with seasonal standard deviations is 
proposed, in which an ARMA model is used to model the mean behaviour and a GARCH 
model to model the ARCH effect in the residuals from the ARMA model.  
 
Whether or not hydrological processes are deterministic chaotic processes is a widely 
concerned and quite controversial issue in the last decade. No finite correlation dimension is 
found for all the streamflow series in the present study with correlation exponent method. 
Because the existence of finite correlation dimension is crucial for verifying the existence of 
chaos, therefore, while nonlinear behaviour seemed to be present with different intensity at 
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various timescales, the dynamics would not seem to be associable to the presence of low 
dimensional chaos. On the other hand, even if we found the evidence of the existence of chaos 
in a time series, it does not necessarily mean determinism. Experiments with three well-
known chaotic systems (i.e., Henon map, Ikeda map, discretized Mackey-Glass flow) show 
that chaos could be stochastic. A chaotic system with stochastic components behaves similar 
to a noise-free system when the stochastic disturbances are not strong. 

8.3 On Forecasting 

When forecasting streamflow processes, both the forecasting model (or method) and the 
model performance measure are needed. Coefficient of efficiency (CE) (Nash and Sutcliffe, 
1974) is a popular measure for evaluating the performances of hydrological models. However 
this measure could be misleading about the model performance when being applied to 
seasonal processes. Therefore, a seasonally-adjusted CE (SACE) is proposed to measure how 
good forecasts from a model are better than seasonal mean values, instead of the overall mean 
value as with CE. The measure SACE is more suitable than CE for evaluating seasonal 
processes. For non-seasonal stationary processes, SACE is reduced to CE. 
 
Two groups of data-driven models are used in the study: (i) ARMA-type models, including 
the ARMA(20,1) model, the ARFIMA(7,d,0) model, and the periodic AR (PAR) model; and 
(ii) ANN-type models, including the normal multi-layer perceptron (MLP) ANN model, the 
cluster-based ANN model, the threshold-based ANN model, the period-based ANN model (or, 
periodic ANN model, PANN) and its variations (i.e., soft PANN and hard PANN). Among 
these models, PAR and PANN are proposed for modeling daily streamflow processes in this 
study. They are fundamentally a group of AR models or ANN models. Each AR model or 
ANN model are fitted to a specific season partition, so that the seasonality in daily streamflow 
processes is better captured. In addition, to combine the strength of these dynamically 
different models, four forecast combination methods are adopted in this study: simple average 
method (SAM), rollingly-updated weighted average method (RWA), semi-fixed weighted 
average method (SFWA), and modular semi-fixed weighted average method (MSFWA). 
 
The comparison of forecast performances of various models and methods shows that, despite 
of the limitation of univariate streamflow time series, in terms of the SACE measure, 
satisfactory forecasts can be made for lead times of up to 5 days (SACE > 0.8). The overall 
performance of PANN that is based on soft seasonal partitions performs the best for one-day 
ahead forecasts. SAM generally performs best among the four competitive combination 
methods, and it outperforms all the five individual models for forecasts of up to 4 days ahead 
(except for the PANN model for one-day ahead forecasts). The ARFIMA model performs the 
best for long lead times (longer than four days). 
 
Generalization is a crucial issue in constructing a neural network when the size of training 
data is not big enough. Two commonly used techniques to achieve generalization are the 
Bayesian regularization (BR) method and the cross-validated early stopping (CVES) method. 
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It is shown that the BR method outperforms the CVES method in general for making one step 
ahead forecasts for univariate time series, and it still outperforms the no-stop training (NST) 
method sometimes even when the ratio of the training data size to the number of weights in 
the ANN model is larger than 30. The BR method is further used to make 1- to 5-day ahead 
streamflow forecasts for the headwater of the Yellow River at TNH, and compared with the 
NST method. The result shows that for making 1- to 4-day ahead forecasts, BR outperforms 
NST. The major disadvantage of the BR method is its time-costliness. Therefore, when the 
speed of training is not a major concern, the BR method is recommended for making 
streamflow forecasts. 
 
Interval forecasts are important to supplement point forecasts, especially for medium- and 
long-range forecasting, so as to define the predictive uncertainty. The residual based empirical 
approach and bootstrap approach are applied to construct prediction interval (PI) for monthly 
streamflow forecasts. The results show that both empirical approach and bootstrap method 
work reasonably well, and the empirical approach gives results comparable to or even better 
than bootstrap method. Because of the simplicity and calculation-effectiveness, empirical 
method is preferable to the bootstrap method. When there is significant seasonal variation in 
the variance of the residuals, to improve the PI construction, it is necessary to use seasonal 
empirical distribution functions which are defined by residuals in different seasons.  
 
Predictability is an important aspect of the dynamics of hydrological processes. However, the 
predictability of hydrological processes has not attracted much attention by the hydrology 
community until recent several years. A univariate time series based approach is proposed in 
the present study, in which the predictability of a process is defined as the predictable horizon 
for which the prediction is no better than the mean value for a stationary process or the 
seasonal mean value for a seasonal process. At the same time, for practical purposes, we 
define the predictability at a given CE or SACE level as the predictable horizon for which the 
CE or SACE of predictions is larger than a given value. With such a definition, the 
predictability is easily comparable among different streamflow processes. Investigation of the 
predictabilities of a number of streamflow series at different basin scales shows that, in 
general, the larger the basin scale, the better the predictability. 

8.4 Recommendations  

One limitation of the present study in the aspect of forecasting is that only one streamflow 
process (the daily streamflow series of the Yellow River at the Tangnaihai gauging station) is 
considered for modelling in detail, and only in one case with the ANN model explanatory 
variables (such as precipitation data and upstream discharge data) are included for make daily 
streamflow forecast. To establish generality of the conclusions about forecast modelling, 
more streamflow processes should be analysed. In addition, for improving the accuracy of 
long-range streamflow forecasts, the investigation of the linkage between streamflow 
processes and remote factors (e.g., SSTs and ENSO events) would be inevitable. 
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A contribution in streamflow process modeling in this study is the introduction of periodic 
modeling approach, including the PAR model and the PANN model, for the case of daily 
streamflow forecasting. Both the PAR model and the PANN model may be considered as a 
hybrid modeling approach. As a matter of fact, besides the cluster-based and the threshold-
based approaches which are compared with PANN in this study, there is a variety of other 
hybrid modeling techniques available nowadays to break the complicated streamflow 
forecasting problem down before solving the resulting sub-problems with different models 
(e.g., neural networks). It would be interesting to further compare the season-based PANN 
approach with other techniques, such as Bayesian-concept based modular ANN (e.g., Zhang 
et al., 2000), fuzzy-logic based hybrid modeling (e.g., See and Openshaw, 1999) and SOM-
cluster based hybrid modeling (Abrahart and See, 2000). In addition, the PAR model and 
PANN model proposed in this study are based on univariate streamflow time series. It would 
be interesting to extent the idea of the PAR and PANN model to the cases where exogenous 
variables are included. 
 
The ARMA-GARCH error model with seasonal standard deviations is proposed to capture the 
autoregressive conditional heteroskedasticity effects in streamflow processes. The purpose of 
proposing the model is to improve the estimation of forecasting variance, so as improve our 
knowledge of forecast uncertainty. It would be interesting to see whether we can get better 
estimation about the prediction interval with this type of model in the future work. 
 
The characteristics of hydrological time series investigated in the present study, including the 
seasonality, nonstationarity, long-memory, nonlinearity, and conditional heteroskedasticity, 
may be closely linked to each other. For example, the test results of stationarity and long-
memory for streamflow processes have similar timescale pattern, i.e., the shorter the timescale, 
the stronger the degree of stationarity or long-memory, and there is a general tendency that 
the stronger is the nonstationarity, the more intense is the long-memory. In fact, there are 
some attempts to use KPSS stationarity test to test for the existence of long-memory (e.g., Lee 
and Schmidt, 1996). It would be worthwhile to investigate such kind of linkage, and go 
further to see to what extent these characteristics are separable. This will help to give more 
insightful knowledge of the characteristics of different streamflow processes. 
 
Pre-processing is of great importance in hydrological time series analysis. Because on one 
hand, the assumption of normality and stationarity by many time series models are often 
violated by the hydrological time series in their original forms; on the other hand, many 
hypothesis testing methods (e.g., Mann-Kendall trend test) require the removal of serial 
dependence from the time series. Therefore, one may pre-white, normalize, standardize, re-
scale, deseasonalize the hydrological time series data before using them. In some cases the 
impacts of pre-processing have been addressed in the present study. For example, when 
analysing the stationarity, it was noticed that deseasonalization tends to make the KPSS test 
more likely to reject the hypothesis of stationarity; when testing for nonlinearity, an analysis 
was conducted about the impacts of different pre-processing procedures on the results; when 
forecasting daily streamflows with ANN models, several different pre-processing procedures 
are also compared. However, the side effects of pre-processing procedures worth further 
investigation. 
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