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Stacked generalization ensemble learning
strategy for multivariate prediction of
delamination and maximum thrust force in
composite drilling

Mohammad Baraheni1, Behzad Hashemi Soudmand2, Saeid Amini3 and
Mohammad Fotouhi4

Abstract
The complexity of drilling carbon fiber reinforced polymers (CFRP) requires accurate predictive models. This study
addresses the challenge using an ensemble machine learning (ML) approach with stacked generalization. The model
captures the relationships between key input variables—such as graphene nanoplatelet (GNP) content, ultrasonic as-
sistance, tool type, stacking sequence, and feed rate—and output parameters, specifically thrust force and delamination. A
nested feature scoring (NFS) method was employed for importance analysis, revealing tooling type and feed rate as key
features for minimizing delamination and reducing thrust force, respectively. The machinability results revealed that
ultrasonic drilling lowered thrust force by improving chip evacuation and reducing fiber breakage. HSS tools with cobalt
content, alongside symmetrical stacking sequence, helped to further minimize both thrust force and delamination.
However, the inclusion of GNPs led to an increase in thrust force and delamination, attributed to the increased strength of
the CFRP/GNP composite. The process involved meticulous training, resulting in four optimal-fit models serving as inputs
for the stacked meta-model. Iterative enhancements fortified the ensemble robustness, with fine-tuning of hyper-
parameters through Bayesian optimization. The ensemble superiority over individual models manifested in a remarkable
reduction of mean absolute error (MAE) and root mean squared error (RMSE) by up to 97% and 124% for delamination,
and 205% and 154% for thrust force, compared to the best base learner. Visual and statistical assessments effectively
illuminated the intricate interactions between variables in the drilling process. The methodology resulted in a highly
adaptable predictive model with applications across diverse manufacturing contexts.
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Introduction

Carbon fiber reinforced polymers (CFRP) have emerged as
pioneering materials, providing sophisticated applications
due to their remarkable strength-to-weight ratio.1–4 The
significant characteristic of CFRPs lies in the exceptional
load-bearing capacity attributed to the carbon fibers, which
account for up to 80% of the overall strength.5 To ensure the
desired surface integrity of CFRP for structural applications,
it is crucial to carefully select and optimize the structural
and machining parameters during fabrication. Among
fabrication techniques, drilling is a widely used secondary
machining process for assembling parts and joining fiber-
reinforced composites.6,7 Drilling CFRP composites is
followed by challenges due to their heterogenous and
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anisotropic nature, resulting in delamination, fiber pull-out,
fuzzing, and matrix smearing, which can in turn deteriorate
the part quality and lower its service life.8 The integration of
nanofillers into composite materials significantly enhances
their properties due to the substantial surface contact these
fillers provide with the host matrix, even at low inclusion
levels.9–12 This enhancement broadens the range of appli-
cations by allowing the tailoring of nanocomposites to meet
specific performance requirements.13–15 Various types of
nanoparticles have been utilized to improve the reinforce-
ment of laminated composites, including graphene nano-
platelets (GNPs),16–18 nano calcium carbonate,1,3 carbon
nano-onions,19 and multi-walled carbon nanotubes,20

among others.
Delamination is a frequent and problematic defect in

composite drilling, impacting fatigue endurance and surface
integrity.21 It arises from two distinct mechanisms: push-out
and peel-up, based on the workpiece entrance and exit
planes.22 Push-out delamination is more common than peel-
up delamination due to improper material support caused by
excessive thrust force, which weakens intralaminar adhe-
sion strength and promotes crack growth.23 The factors
contributing to this type of delamination can be classified
into two main categories: machining parameters such as
feed rate, torque, and spindle speed and structural properties
like stacking sequence and constituent phases.24 Dubey
et al.25 demonstrated that a stacking sequence comprising
four layers each of glass and carbon fibers yielded an op-
timal balance, with a thrust force of 59.05 N and a de-
lamination factor of 1.001. Similarly, Kumar et al.26

optimized milling parameters to reduce delamination in
laminated nanocomposites, identifying the feed rate as the
most significant factor, contributing 62.60% to the overall
effect. In addition, various criteria for evaluating delami-
nation were suggested, with the key factors outlined in
Table 1.

Various factors influence delamination during the dril-
ling of composites. Employing specialized drill bits, such as

saw, candlestick, and core drills, along with techniques like
step drilling, pilot holes, and the use of back-up plates, was
shown to effectively reduce thrust force and mitigate de-
lamination.34 Rahme et al.35 experimentally and analyti-
cally demonstrated that step gun drills are particularly
effective in minimizing delamination at the hole exit. In
another study, Rahme et al.36 found that incorporating a
woven glass ply at the hole exit can significantly reduce
delamination and improve structural integrity. Furthermore,
non-traditional methods like waterjet, ultrasonic machining,
and laser cutting offer unique benefits, though they often
come with trade-offs, such as higher costs or slower pro-
duction speeds. Vibration-assisted drilling was also proven
to improve traditional drilling methods when applied with
proper control.34

The complexity arising from a large number of input
control factors and constraints on conducting experimental
tests to explore optimal cutting conditions and enhance
surface integrity highlights the need for cognitive com-
puting strategies. These approaches can effectively model
the drilling process and reveal intricate relationships be-
tween the influential input parameters and the desired tar-
gets. In this regard, soft computing techniques, such as
response surface methodology (RSM), Fuzzy design prin-
ciples, artificial neural networks (ANN), and metaheuristic
approaches were utilized in literature as alternatives to
traditional statistical methods for analyzing drilling pro-
cesses of CFRP composites.37–41 Kumar et al.42 employed
an integrated methodology combining Grey relational
analysis (GRA) and principal component analysis (PCA)
within the framework of the technique for order of pref-
erence by similarity to ideal solution (TOPSIS) to optimize
milling outcomes, specifically surface roughness and cut-
ting force. Similarly, Kesrawani et al.43 applied GRA and
GRA-PCA techniques to optimize the machining parame-
ters for hybrid MWCNT/GFRP nanocomposites, achieving
a 4.935% efficiency enhancement using the Taguchi
method. Kumar et al.44 employed simulated annealing (SA)

Table 1. Frequently used delamination factors for evaluating delamination.

Correlation Source Correlation description

Fd ¼ Dmax
D

Chen et al.27 Dmax : Maximum delamination diameter; D: Nominal drilled hole diameter

Fa ¼
� Ad
Anom

�
× 100 Faraz et al.28 Ad: Total damaged area; Anom: Nominal drill area

DRAT ¼ DMAR
AAVG

Mehta et al.29 DMAR: Damaged area at hole periphery; AAVG : Average nominal drilled hole area

Fda ¼ α Dmax
D0

þ β Amax
A0

Davim et al.30 α and β are weights where α = 1- β; β is the ratio of Ad ¼ Ad
ðAmax�A0Þ, with Ad being the damaged

area, Amax the area for Dmax ; and A0 the area for D0

Fed ¼ De
D0

Tsao et al.31
De ¼ 4ðAdþA0Þ

π

� �0:5
, where Ad is the damaged area and A0 is the nominal area

f ¼ 4π A
P2

Durao et al.32 A: Damaged area; P: Perimeter of the damaged area

Fdmin ¼ Dmin
D0

Silva et al.33 Dmin : Minimum diameter enclosing the damaged area; D0: Nominal drilled hole area
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algorithm to optimize delamination in Graphene oxide
(GO)-reinforced CFRP nanocomposites. The input vari-
ables encompassed GO loading, spindle speed, and feed
rate. Validation was performed through a confirmatory test,
demonstrating favorable agreement with actual results. The
study highlighted the significant influence of feed rate on
delamination and thrust, followed by GO concentration.
Vijayan et al.45 utilized an integrated approach involving
RSM and particle swarm optimization (PSO) to enhance the
drilling performance of CFRP- carbon nanotube (CNT)
nanocomposites. Kumar et al.46 investigated the drilling
behavior of GO-reinforced CFRPs using a hybrid approach
of GRA-PCA to determine the optimal drilling process
parameters. Kaybal et al.47 utilized RSM to optimize
delamination factor and thrust force in drilling of CNT-
included CFRP composites, by employing Lagrange
multipliers and Kuhn-Tucker conditions. Shetty et al.48

introduced a genetic algorithm optimized multi-layer per-
ceptron neural network (GA-MLPNN) prediction frame-
work to model and subsequently optimize thrust force in the
drilling of CFRP. They also compared the optimization
outcomes and those obtained from RSM model and the
results demonstrated the superiority of the GA-MLPNN
model over RSM in terms of predictive accuracy. Pan-
chagnula et al.49 employed two deep neural networks
(DNNs) to predict delamination circularity deviation in
glass fiber-reinforced polymers (GFRPs) reinforced with
multi-walled carbon nanotubes (MWCNT). Ge et al.50

combined non-dominated sorting genetic algorithm
(NSGA-II) and TOPSIS to effectively rank the resulting
pareto front and thus identify the optimal solution for op-
timizing the CFRP drilling process. Soepangkat et al.51

employed an integrated back propagation neural network
(BPNN)-PSO algorithm to model the drilling process and
attain optimal responses in the drilling process of CFRP.

Various data-centric methods were examined for mod-
eling and optimizing the drilling process, focusing on
factors like tooling, nano-reinforcements, and machining
parameters. Machine learning (ML) algorithms have shown
promise for improving complex processes across different
fields. Recent research often uses artificial ANNs, either
alone or combined with response surface methods or op-
timization algorithms. Despite their advantages in accurate
non-linear fitting and predictions, ANNs have some
drawbacks: they depend on initial random weight settings,
lack interpretability, may face convergence issues with
backpropagation, and can suffer from overfitting, affecting
generalization.52 As an alternative, decision trees provide
benefits such as faster training, easier hyperparameter
tuning, better interpretability, and improved
generalization.53

Due to the limitations of single ML models, ensemble
learning methods have become more popular. These
methods combine multiple base learners to achieve high

accuracy and improved stability compared to individual
models.54 In this study, a tree-based ensemble technique
was used for modeling CFRP composite drilling operations,
employing a second-level meta-model. The stacking
method was chosen for its ability to integrate various
models into a single, robust model. Stacking involves
training multiple base models and then combining them into
a meta-model to enhance prediction accuracy and
reliability.55

To overcome the limitations of individual ML models
with small datasets, ensemble techniques can be used to
combine multiple learners. Ensemble learning improves the
robustness and generalization of predictive models by ag-
gregating the predictions of several base estimators. This
method enhances performance and resilience against data
variations compared to using a single model.52 Ensembles
can be either homogeneous, using models from the same
algorithm, or heterogeneous, combining models from dif-
ferent algorithms.56 Common ensemble approaches include
bagging, boosting, and stacking.

The bagging algorithm is a fundamental ensemble ma-
chine learning method suited for datasets with limited
training samples. It improves regression and classification
accuracy by combining predictions from multiple models,
each with different classifiers, features, and parameters. This
approach is particularly effective for models with high
variance. By averaging predictions from diverse models, the
method reduces the impact of individual errors, leading to
more accurate forecasts. The effectiveness of the ensemble
depends on the level of error correlation among the models,
with lower correlation typically resulting in better overall
accuracy.57

Boosting, as an ensemble technique, enhances the ac-
curacy and effectiveness of machine learning algorithms
by iteratively introducing new learners to improve the
performance of weaker models. It helps address overfitting
issues often associated with decision trees, leading to
models with reduced variance and bias. Boosting involves
creating multiple training datasets through random sam-
pling with replacement, similar to bagging. The process
begins with training the first model on the initial dataset,
and subsequent models refine the predictions of the earlier
ones. The final robust model is constructed by combining
all weak learners through averaging or weighted majority
voting.58

The use of ensembleML techniques in CFRP drilling has
recently garnered interest due to their capability to enhance
predictive accuracy and handle complex interactions among
variables. Techniques such as bagging-based methods, in-
cluding Random Forest (RF), and boosting approaches like
Gradient Boosting, were applied to predict critical outcomes
in drilling processes. For example, Nargis et al.59 explored
the use of ANN and RF for predictive analysis of drilling
performance in CFRP and hybrid nano-composites,
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highlighting RF superior accuracy over ANN and tradi-
tional statistical methods like response RSM. Similarly, Guo
et al.60 applied the extreme gradient boosting algorithm
(XGBoost) to predict the impact of milling parameters on
CFRP strength, revealing XGBoost enhanced performance
compared to ANN. Despite the high potential of ensemble
machine learning techniques in advancing the precision and
efficiency of CFRP machining processes, very limited
bodies of scholar were conducted in this field.

Stacking, a meta-learning technique, improves predictive
accuracy by combining predictions from multiple base
models. This method involves training a meta-model to
integrate the predictions from various base learners, aiming
to reduce generalization errors and enhance the final en-
semble model’s performance. The process consists of two
main steps: First, multiple first-level models are trained on
the dataset, and their predictions are collected to form a new
dataset, where each instance is labeled with the true value it
predicts. In the second step, this new dataset is used with a
meta-learning algorithm to produce the final output (see 61).
The out-of-fold predictions from the base models are em-
ployed to train the second-level meta-learner, leading to the
final ensemble prediction.

While ML techniques were extensively utilized to de-
velop predictive models for the drilling of CRFP, a research
gap exists in the literature regarding the application of
ensemble ML methods within this specific context. The
stacking approach involves the utilization of a variety of
models to create a comprehensive data learning model. In
this context, a diverse range of base learners, including both
ensemble tree-based and non-ensemble predictors, were
assessed, and the most suitable candidates were selected as
inputs for the meta-model. The dataset was generated
through a design of experiments (DoE) using Taguchi
methodology. The meta-learner chosen was stochastic
gradient boosting regression (SGBR), and its hyper-
parameters were fine-tuned using Bayesian optimization.
The categorical input variables encompassed stacking se-
quence, ultrasonics status (non-ultrasonic or ultrasonic-
induced process), material type (with and without GNP),
and drill type, while feed rate (0.08, 0.15, and 0.25 mm/rev)

was the sole continuous feature. The developed model
aimed to predict delamination and thrust force as desired
outcomes. Moreover, a novel nested method for ranking
feature importance was introduced to gauge the significance
of features and sub-features in terms of their impact on the
target responses. Furthermore, a combination of visual
experimentation and statistical methodologies was em-
ployed to assess both the qualitative and quantitative in-
fluence of the input variables on delamination and thrust
force. The findings presented in this study offer a systematic
approach for comparing different ML techniques con-
cerning their efficacy in predicting delamination and thrust
force in CRFP drilling.

Materials and methods

Material specifications

The samples were fabricated using ML506 epoxy resin,
characterized by a viscosity of 1450 cP at 25°C,62 and
reinforced with T700 unidirectional carbon fibers and GNP.
The hand-layup technique was employed to produce plate-
shaped composites, each measuring 200 × 200 mm with a
thickness of 2 mm. A total of eight plies were layered to
form the plates, following a stacking sequence of (02, 902),
arranged in both symmetrical and asymmetrical configu-
rations. After the layers were assembled, the plates un-
derwent a controlled curing process to ensure optimal
bonding and material consolidation. Two types of speci-
mens were considered: pristine CFRP and hybrid CFRP-
GNP. The GNP loading was 0.25 wt%, selected based on a
previous research findings as the threshold for agglomer-
ation.63 Table 2 presents the properties of the nanoparticles,
carbon fibers, and epoxy resin used in the study.

Experimental layout

The drilling tools used in this investigation included
high-speed steel (HSS), and HSS containing 5% (HSS-5%
Co) and 8% Cobalt (HSS-8% Co), as illustrated in
Figure 1(a). Experimental tests were carried out using a

Table 2. Specifications of the constituent materials.

Property Epoxy ML506 T700 carbon fiber GNP Unit

Density 1.11 1.8 - gr/cm3

Tensile strength 75 3800 - MPa
Tensile modulus 2.82 210 - GPa
Coefficient of thermal expansion 12 × 10�6 0.15 × 10�5 - 1/°C
Thickness - 0.2 <60 mm
Purity - - 98.5 %
Surface area - - 40 m2/gr
Lateral size - - 7 µm
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custom-designed experimental setup mounted on an FP4M
CNC milling machine. Figure 1(b) illustrates the machine
employed, operating within a spindle speed range of 50 to
2500 rpm, with a spindle motor power ranging from 3.7 to
4.4 kW for the main axis and 0.8 to 1.2 kW for the feed axis.
It utilizes an A40 (M16)-DIN 2080 standard tool holder and
supports a feed rate range of 8-630 mm/min. The machine X
axis has a range of 500 mm, while the Y and Z axes each
have a range of 400 mm. During the tests, axial forces were
measured using a three-component Kistler piezoelectric
dynamometer (Type 9257B), and the data were analyzed
with Dynoware software.

To induce ultrasonic vibrations in the rotating tool, a
specialized holder, connected to an AMMM type ultrasonic

vibration generator manufactured by MPI company, was
utilized. To ensure efficient power transmission, an expo-
nential geometry horn was employed to facilitate the
transfer of ultrasonic energy from the holder to the drilling
tool. The horn optimal geometry was determined through
modal analysis conducted using ANSYS R17.0 software,
revealing a resonance frequency of 19,816 Hz. Figure 1(c)
presents the modal analysis results, illustrating longitudinal
vibrations along the tool axis, with the highest deformation
observed at the horn end, indicating effective vibration
transmission to the tool. To facilitate vibration transfer, the
horn material selection was critical, and Al-7075 was
chosen for its suitable vibration transmission properties. The
resonance frequency of the system was adjusted to 21 kHz,

Figure 1. (a) The specifications of applied drilling tools, (b) the experimental test setup developed in-house for conducting the
experiments, and (c) modal analysis of the horn structure to identify its vibrational modes and corresponding frequencies.
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and the amplitude of the tool vibration was monitored with
a gap sensor, resulting in an approximate measurement of
6 µm.

Data acquisition and preprocessing

The experimental factors in this study were categorized into
two groups: machining variables and materials variables.
These factors, along with their respective levels, are pre-
sented in Table 3.

It is important to highlight the utilization of two drilling
processes, namely non-ultrasonic (conventional) and
ultrasonic-induced drilling, with the latter incorporating
ultrasonic assistance. To efficiently explore the parameter
space and minimize the number of experiments conducted,
the Taguchi DoE technique was employed. This technique
is renowned for designing high-quality systems and em-
ploys a specialized orthogonal array to comprehensively
investigate the parameter space using a limited number of
experiments. In this study, the experimental design was
based on the L72 array, as per the Taguchi technique, and
the specific array configuration is detailed in Table 4.

In this study, the conventional delamination factor Fd ¼
Dmax
D was selected to analyze damage around the drilled hole
based on several important considerations. Firstly, it offers
a straightforward and easily interpretable measure of de-
lamination by comparing the maximum delaminated area
to the diameter of the hole, which is valuable for both
academic research and practical industrial applications.
Furthermore, this metric is commonly used in the
literature,64,65 allowing for consistency and comparability
with previous studies on drilling composites. The use of
this factor ensures that our results are aligned with es-
tablished research, facilitating meaningful comparisons.
While more advanced delamination assessment methods
could be considered in future research, this factor was
deemed the most appropriate and effective for the ob-
jectives of this contribution.

This study utilized the Easson SP-4030 2D visual mea-
surement machine (VMM), manufactured in China, for precise
measurements and quantification of delamination. The VMM
was specifically designed to provide magnification ranging
from 0.7× to 4.5×. To measure the delamination, a series of
points surrounding the damaged region were initially identi-
fied. Subsequently, the Rasson 2D software was utilized to
generate a circle using the least square method, encompassing
the selected points. Finally, by dividing the diameter of the
resulting circle by the drill diameter, the delamination factor,
referred to as Fd, was determined. This approach offers a
systematic and reliable means of assessing the degree of de-
lamination in the material under investigation. In addition, it is
essential to highlight that this investigation includes an ex-
amination of peel-up delamination.

In the present study, scanning electron microscopy
(SEM) was employed to investigate the morphology of
nanoparticles and carbon fibers embedded within the
epoxy resin matrix. The utilization of SEM for particle
size analysis was justified by its exceptional resolution
capability, which extends up to 10 nm. This high reso-
lution enables the detailed examination and character-
ization of the nanoscale features, thereby facilitating a
comprehensive understanding of the composite system
under investigation.

Machine learning methodology

Hyperparameter tunning and evaluation indicators

To construct, predict, and assess the performance of each
individual base learner, the original database was divided
randomly into two parts: a training set comprising 75% of
the data and a testing set with 25% of the data. Ensuring the
effectiveness of the model requires optimizing the hyper-
parameters involved. These external parameters are not part
of the model and cannot be directly predicted from the
dataset. However, they can be fine-tuned by efficient search
techniques to achieve a satisfactory level of accuracy. The
choice of the optimization approach depends on the number
of key hyperparameters in the model and its complexity.
Various tuning methods are employed to enhance the ac-
curacy of learners by acting on the data and minimizing the
expected generalization error over the hyperparameter
search space. Predictions are evaluated against an inde-
pendent test set or through techniques like cross-validation.
Several search tactics are available, ranging from simple
ones like random search or grid search to more advanced
techniques like Bayesian optimization.66

Grid search is a widely used method for hyperparameter
tuning that involves exploring the performance of a model
across all possible combinations of hyperparameter values.
However, its main drawback lies in its computational cost,
which increases with the number of hyperparameters and
their levels, leading to longer processing times. To over-
come these limitations and improve tuning performance,

Table 3. Variation of process variables in the experimental study.

Input features

Level

1 2 3

Machining variables
Ultrasonic vibration OFF ON -
Tool type HSS HSS-5% Co HSS-8% Co
Feed rate (mm/rev) 0.08 0.15 0.25

Material variables
GNP wt.% 0 0.25 -
Arrangement Asymmetric Symmetric -
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more advanced techniques, such as Bayesian optimization,
can be employed. Unlike grid search, Bayesian optimization
takes into account the influence of individual hyper-
parameters on the optimization process, resulting in more
efficient tuning, especially for complex models.67 Bayesian
optimization is a powerful approach that consistently out-
performs other global optimization techniques. It incorpo-
rates prior knowledge of an unknown function with
observed data to derive a posterior distribution using
Bayesian principles. By adopting this approach, the hy-
perparameter space can be effectively navigated, leading to
more accurate results in a more efficient manner.68

In the present study, hyperparameter tuning of single-
parameter and more intricate multi-parameter models,

containing tree-based, boosting, and bagging algorithms
was performed using grid search and Bayesian optimi-
zation techniques, respectively, coupled with cross-
validation. It was considered that the hyperparameters’
prior distribution followed a Gaussian distribution, en-
abling the efficient exploration of the hyperparameter
space and informed decision-making to improve the model
performance.

Predictive performance and effectiveness of base-
learners and meta-model were quantitatively assessed by
commonly used statistical metric indicators, including mean
absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2). The mathematical ex-
pression of each metric is provided as equations (1)–(3):

Table 4. L72 array experimental design.

No. Ultrasonic Tool Feed rate GNP Arrangement No. Ultrasonic Tool Feed rate GNP Arrangement

1 1 1 1 1 1 37 1 1 1 2 1
2 1 1 2 1 1 38 1 1 2 2 1
3 1 1 3 1 1 39 1 1 3 2 1
4 2 1 1 1 1 40 2 1 1 2 1
5 2 1 2 1 1 41 2 1 2 2 1
6 2 1 3 1 1 42 2 1 3 2 1
7 1 2 1 1 1 43 1 2 1 2 1
8 1 2 2 1 1 44 1 2 2 2 1
9 1 2 3 1 1 45 1 2 3 2 1
10 2 2 1 1 1 46 2 2 1 2 1
11 2 2 2 1 1 47 2 2 2 2 1
12 2 2 3 1 1 48 2 2 3 2 1
13 1 3 1 1 1 49 1 3 1 2 1
14 1 3 2 1 1 50 1 3 2 2 1
15 1 3 3 1 1 51 1 3 3 2 1
16 2 3 1 1 1 52 2 3 1 2 1
17 2 3 2 1 1 53 2 3 2 2 1
18 2 3 3 1 1 54 2 3 3 2 1
19 1 1 1 1 2 55 1 1 1 2 2
20 1 1 2 1 2 56 1 1 2 2 2
21 1 1 3 1 2 57 1 1 3 2 2
22 2 1 1 1 2 58 2 1 1 2 2
23 2 1 2 1 2 59 2 1 2 2 2
24 2 1 3 1 2 60 2 1 3 2 2
25 1 2 1 1 2 61 1 2 1 2 2
26 1 2 2 1 2 62 1 2 2 2 2
27 1 2 3 1 2 63 1 2 3 2 2
28 2 2 1 1 2 64 2 2 1 2 2
29 2 2 2 1 2 65 2 2 2 2 2
30 2 2 3 1 2 66 2 2 3 2 2
31 1 3 1 1 2 67 1 3 1 2 2
32 1 3 2 1 2 68 1 3 2 2 2
33 1 3 3 1 2 69 1 3 3 2 2
34 2 3 1 1 2 70 2 3 1 2 2
35 2 3 2 1 2 71 2 3 2 2 2
36 2 3 3 1 2 72 2 3 3 2 2

Baraheni et al. 3119



MAE ¼ 1

N

XN
i¼1

jyi �byij (1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi �byiÞ2
vuut (2)

R ¼
PN

i¼1ðyi � yiÞ
�byi �byi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyi � yiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

�byi �byi�2
r (3)

where yi, byi, yi, and byi represent the real, predicted, average
real, and average predicted response values, respectively,
and N denotes the total number of sample points.

The specifications of proposed stacked
generalization method

Base-learner adaptation. Figure 2 depicts the process of
transforming base learners into adapted input instances for
the meta-model. Initially, the dataset was partitioned into
four separate folds, with three of them dedicated to training,
and the remaining fold used as the validation set. The
training process for each learner was iterated four times,
corresponding to the number of folds, to build the adapted

training and validation sets for the stacked model. This
approach allows the meta-model to acquire more infor-
mation from the base learners, resulting in more robust and
accurate predictions. Each iteration also involved ten-fold
cross-validation to enhance the model robustness. Fol-
lowing the transformation of the training and sets into
adapted instances, they were employed for training and
prediction of the meta-learner, respectively, as illustrated in
Figure 3. The converted test sets and its performance were
evaluated using specific metric indicators.

Selection of base learners. To boost the efficacy of the
stacked model, the prediction accuracy of different single
ML models was assessed and four best-fit models were
selected to serve as the input first-level learners for the
ensemble stacking approach used in this study, as illustrated
in Figure 4. The model performance was evaluated via
RMSE values of the corresponding model, as a robust in-
dicator of predictive accuracy in ML. Lower RMSE values
indicate better fitness to the training data. Model selection
involved two main classifications: non-ensemble and en-
semble tree-based algorithms. Considering the potential for
improved performance through ensemble models, which
harness the collective impact of multiple learners, one and
three candidates were selected from the non-ensemble and
ensemble groups, respectively. This approach aims to
combine the strengths of both single learners and ensemble

Figure 2. Adaptation of base learners as the precursor for constructing the stacked ensemble meta-model.

3120 Journal of Composite Materials 58(30)



methods to enhance the overall predictive capability of the
final stacked model.

Model optimization. In this study, SGBR was employed to
construct the meta-learner, and Bayesian optimization was
applied to optimize its hyperparameters. Figure 5 illustrates
the overall process for Bayesian optimization of the meta-

learner hyperparameters for best-tuning. The optimization
problem was formulated to minimize the RMSE between
the meta-model predictions and the actual test set outputs.
The specific hyperparameters required for SGBR, along
with their corresponding operation ranges, are presented in
Table 5. The adoption of Bayesian optimization was crucial
due to the considerable number of hyperparameters with

Figure 3. A schematic illustration of implementing transformed base learners according to stacked generalization.
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wide working ranges, significantly enhancing the robust-
ness and prediction accuracy of the stacked SGBR model.

Nested feature scoring (NFS)

Feature importance analysis is one of the versatile sec-
ondary products of ML models, by which the effects of
each instance variation on the overall characteristics of
the output can be scored. The metric for feature scoring
may vary for different learners, as each model uses a
distinct measuring system for importance analysis. For
instance, the average Gain of an instance during node

splitting is computed by XGBoost.69 On the other hand,
in RF, the Gini impurity or mean squared error impurity
criterion is used to rank the importance of the corre-
sponding feature. Lower impurity values are associated
with greater levels of importance for the variable.70 For
categorical variables with different levels, the sub-
feature analysis also plays a key role in significance
analysis. It is hence beneficial to consider the effects of
these sub-instance features during feature scoring. NFS
was hence developed in the present study for the feature
scoring and determining each sub-feature contribution
within the corresponding independent instance.

Figure 4. The selection procedure for most appropriate input models as first-level base learners of the stacked metamodel.
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The flowchart for nested importance analysis is shown
in Figure 6. The process began with building SGBR, RF,
and XGBoost models using both discrete factors (ultra-
sonic, tooling type, material, and lay-up) and a continuous
variable (feed rate). Each feature scoring algorithms de-
termined the significance ratios of these features. These
ratios were then normalized to a scale of 0 to 1, with the
lowest and highest significance effects mapped to 0 and 1,
respectively. For sub-feature scoring, one-hot encoding
was used to convert categorical variables into binary
forms, making them easier for machine learning algo-
rithms to handle and improving the model fitting effi-
ciency, particularly for nonlinear variations. This approach
provided a clearer understanding of feature importance.
The one-hot encoded data was used to build the models,
and scores were normalized again for comparison. Finally,
the normalized scores for nominal features were adjusted
based on their main features’ scores to determine the
relative importance of each sub-variable. The importance

results were then compiled from the normalized features
and sub-features. The evaluation used SGBR, XGBoost,
and RF models, each with its own ranking system. The
average scores from these models were calculated to en-
sure accuracy, with the feed rate considered separately as a
regression variable.

Results and discussion

Microstructural characteristics of the hybrid
composite laminates

Fiber-matrix interaction analysis. To examine the micro- and
nano-structures of both CFRP and CFRP/GNP samples
before the drilling process, specific sections of the samples
were intentionally fractured at cryogenic temperatures,
ensuring a brittle fracture behavior. The resulting images are
displayed in Figures 7 and 8. In Figure 7(a), a closer view
(125x) of CFRP laminates reveals the bonding between

Figure 5. Bayesian process for optimization of meta-learners’ tuning hyperparameters.

Table 5. The specifications and operation range of hyperparameters for the adopted SGBR meta-learner.

Hyperparameter Technical terminology Range

n.trees Boosting Iterations: The count of trees in gradient boosting 100–1000
interaction.depth Maximum number of nodes in each tree 1–10
Shrinkage Learning rate 0.1–1
n.minobsinnode Minimum number of observations in terminal nodes of each individual tree 5–10
bag.fraction Fraction of the training set observations randomly selected to create the next tree in the expansion 0.5–0.8
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carbon fibers and epoxy resin, demonstrating effective fiber
saturation. Figure 7(b) offers an enlarged perspective of
carbon fibers within the epoxy, confirming successful pre-
impregnation. This confirms the epoxy successful attach-
ment to the carbon fibers. Furthermore, Figure 7(c) high-
lights the presence of unidirectional carbon fibers, each
approximately 3.3 mm in diameter. These fibers were
completely aligned in a single direction and were saturated
using the hand layup method.

Nanoparticle distribution in hybrid laminates. Figure 8 pres-
ents the integration of GNPs into CFRP composites. In
Figure 8(a), epoxy resin is shown, containing GNPs.
Figure 8(b) provides a high-magnification SEM image
extracted from Figure 8(a), revealing a single GNP ap-
proximately 500 nm in size. The distribution of GNPs
within the carbon fiber/epoxy matrix is shown in
Figure 8(c), demonstrating a favorable dispersion that
contributes to beneficial mechanical effects. However, some
localized agglomeration of GNPs is evident in certain areas,
as shown in Figure 8(d). This agglomeration could po-
tentially reduce ductility. Such agglomerates might weaken
the interfacial load transfer between the epoxy and GNPs,71

increasing the material vulnerability to fracture under me-
chanical stresses like drilling forces.

Feature importance analysis

The impact of input variables on the delamination and thrust
force during the drilling process can be assessed through
feature importance analysis as detailed in the following sub-
sections.

Delamination. Figure 8 present the NFS-based importance
assessment results for SGBR, RF, XGBoost, and their
average values, along with the normalized sub-feature
scoring results (prior to rescaling) for delamination. The
scoring algorithm involved normalizing the main features,
projecting their minimum and maximum scores to 0 and 1,
respectively. Sub-instances were subsequently rescaled
based on the features’ normalized scores after their first-
stage normalization, allowing for the identification of the
portion they occupy within their group. The importance
values of both main and sub-features on delamination, with
a focus on model-averaging for both normalized and

Figure 6. Nested feature importance analysis based on sub-feature rescaling.

Figure 7. SEM images of CFRP laminates: (a) low magnification showing effective fiber saturation by epoxy resin, (b) higher
magnification highlighting successful fiber pre-impregnation, and (c) uniformly aligned fibers with high resin saturation.
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rescaled states, are also listed in Table 6 to provide more
clarification.

Drilling-induced delamination typically manifests at
both the entry and exit regions of a drilled hole, resulting in
the formation of a delamination zone characterized by its
maximum diameter. The feature importance analysis for
delamination implies that higher scores for an input cate-
gory are associated with more determining effects on the
quality of the part. Similarly, the sub-feature score analysis
indicates that higher importance scores for a sub-variable
correspond to a more significant effect compared to sub-
features with lower scores. In Figure 9a–(d), it can be
observed that the most significant factor affecting delami-
nation is the tool type, followed by the feed rate. The third
significant variable alternates between layup and material;
however, the average results suggest that the material type is

the third most important feature. On the other hand, ul-
trasonic implementation exhibits the least importance on
delamination compared to machining and material param-
eters, highlighting the dominant effects of machining pa-
rameters in altering delamination.

In Figure 9(e), the results of sub-feature scoring, con-
ducted without feature-based rescaling, reveal the signifi-
cant role played by the feed rate in comparison to other sub-
components of the input data. Notably, the feed rate,
considered as a continuous variable, exhibits cumulative
importance across its three sub-levels (0.08, 0.15, and
0.25 mm/rev). Additionally, the selection of the tool, spe-
cifically HSS and HSS-5% Co, exerts a substantial effect on
delamination, while increasing the cobalt content to 8% did
not lead to further impact on the final delamination. By
comparing the score ratio of non-reinforced CFRP to the

Figure 8. SEM images of CFRP composites with GNPs: (a) lowmagnification of epoxy matrix with a GNP, (b) higher magnification of the
GNP nanoplate, (c) example of uniform GNP dispersion, and (d) evidence of GNP nanosheet agglomeration.

Table 6. The averaged NFS results.

Output Main feature Normalized FS Sub-feature Normalized FS Rescaled FS

Delamination Material 0.2560 CFRP 0.4371 0.2102
Nano-reinforced CFRP 0.1022 0.0458

Lay-up 0.0921 Symmetric 0.0629 0.0329
Asymmetric 0.4491 0.0592

Ultrasonic 0.0087 ON 0.0051 0
OFF 0.4146 0.0087

Tooling type 1 HSS 0.6776 0.4716
HSS-5% Co 0.6154 0.4267
HSS-8% Co 0.1411 0.1016

Feed rate 0.4692 Feed rate 1 0.4692
Force (N) Material 0.1364 CFRP 0.0918 0.1342

Nano-reinforced CFRP 0.0102 0.0022
Lay-up 0.0793 Symmetric 0.0420 0.0510

Asymmetric 0.1256 0.0283
Ultrasonic 0.0402 ON 0.0034 0.0006

OFF 0.1108 0.0396
Tooling type 0.4907 HSS 0.1003 0.1940

HSS-5% Co 0.1276 0.2372
HSS-8% Co 0.0382 0.0594

Feed rate 1 Feed rate 1 1
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reinforced state in Figure 9(d) and (e), it is evident that the
inclusion of GNP caused minor effects in delamination be-
havior. The comparative analysis of layup sub-features in
Figure 9(d) and (e) demonstrates the dominance of asymmetric
layup over symmetric structures in affecting delamination.
Furthermore, it is evident from these Fig. s that altering the
drilling state from conventional state to ultrasonic drilling did
not shift the delamination value to a significant extent.

Thrust force. Based on the findings from Figure 10, it is
evident that the feed rate emerged as the most influential
feature on the failure force, showing a marked rise in im-
portance against the previous state. As the second most
significant factor, except for the RF model, the remaining
models favored the tool type. Additionally, the machining
factors demonstrated notable importance in altering the
thrust force compared to other options. As depicted in

Figure 10, the material options ranked third in importance,
with the non-reinforced option having a larger share than the
hybrid CFRP. The layup structure came in fourth, with the
asymmetric structure being more prevalent. Similar to de-
lamination, the incorporation of ultrasonics was not as
effective as other factors, as shown in Figure 10(d), al-
though it displayed a higher score on affecting the thrust
force. Upon independent analysis of sub-features in
Figure 10(e), it was apparent that the feed rate showed much
greater importance compared to other sub-features, while
other parameters presented lower significance. Notably, the
tooling type was more impactful on failure force when using
HSS and HSS-5% Co, and the asymmetric structure
dominated over the symmetric one. Similarly, the addition
of GNP and implementing ultrasonic vibrations did not lead
to significant variations in thrust force, with respect to other
input variables, during the drilling process.

Figure 9. The NFS analysis for delamination based on (a) SGBR, (b) RF, (c) XGBoost, and (d) model averages, and (e) normalized sub-
feature scoring.
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The proposed stacked ensemble implementation

As previously mentioned, the stacked generalization tech-
nique necessitates the selection of several best-fit algorithms
before the stacked ensembling process can be conducted.
Consequently, various non-ensemble and ensemble ML
algorithms were tested, and their prediction efficiency,
based on predefined performance metrics, was comparatively
assessed to identify the four most suitable models. Initially,
several non-ensemble ML models were trained by randomly
selecting 75% of the sample points obtained from experi-
ments, and the remaining points were used for testing. To
improve the prediction efficiency, Bayesian optimization and
grid search techniqueswere employed to optimize themodels
with multiple and limited hyperparameters, respectively.

Non-ensemble base learner assessment. Table 7 displays the
performance measures concerning the assessment of single
non-ensemble learners. The evaluation primarily focused on

the most commonly used practical models. From Table 7, it
can be observed that generalized linear regression models,
such as Ridge regression, Elastic Net, and Bayesian re-
gression, exhibited low levels of accuracy and R-squared
index, indicating limited generalizability for predicting test
sample points. This trend was also observed for more
complex models like support vector regression (SVR) and
k-nearest neighb or regression (kNN). In contrast, improved
performance metrics, characterized by lower error and
higher R-squared index for both responses, were demon-
strated by the classification and regression tree (CART)
model. This superiority can be attributed to the model higher
efficiency in handling data containing categorical input
variables, increased flexibility in capturing complex non-
linear intervariable and input-response interactions, and
reduced sensitivity to outliers, with respect to other non-
ensemble learners. Due to comparatively pronounced ac-
curacy, the CART approach was adopted as the non-
ensemble base learner for the stacked model.

Figure 10. The NFS analysis for thrust force based on (a) SGBR, (b) RF, (c) XGBoost, and (d) model averages, and (e) normalized sub-
feature scoring.

Baraheni et al. 3127



Ensemble tree-based single learner assessment. Several pop-
ular methods with boosting and bagging capabilities, such as
Bagging Decision Tree (BDT), SGBR, RF, Light Gradient
Boosting Regression (LGBR), and XGBoost, were chosen to
evaluate their potential as ensemble base learners with their
demonstrated effectiveness in Table 8. The performance was
assessed using MAE, RMSE, and R-squared index estima-
tors, and the results were tabulated in Table 8. The values of
MAE and RMSE when utilizing ensemble techniques were
generally found to be lower than those of non-ensemble
models (with the exception of CART). This trend indicates
that the inclusion of ensembling improved the fitting accu-
racy compared to models without ensembling, as shown in
Table 8. Among the models, SGBR, LGBR, and XGBoost
demonstrated the lowest errors and highest R-squared
measures. Based on this finding, the three approaches with
boosting capability were selected as ensemble-based input
learners for the stacked model.

The stacked model construction and performance
evaluation. Based on the assessments detailed in previous
sections, the CART, SGBR, LGBR, and XGBoost algo-
rithms emerged as the most effective for predicting de-
lamination and output in composite drilling processes. The
CART model uses a tree-based approach to create simple,
interpretable rules for categorical or regression targets,
employing binary splits at each level until a maximum depth
is reached.72 SGBR builds a robust model by iteratively
training on random subsets of data with gradient descent to
minimize loss, effectively handling imprecise and imbal-
anced datasets while managing non-linear relationships and
outliers.73 XGBoost enhances gradient boosting by intro-
ducing regularization to prevent overfitting.74 LGBR, an
advanced variant of XGBoost, improves training speed and
efficiency by using vertically grown trees, offering superior
performance compared to earlier models.75

In the stacking technique, the SGBR method was used to
create the meta-model, with hyperparameters fine-tuned

through Bayesian optimization. Table 9 shows the results
of the optimized stacked ensemble model for predicting
delamination and thrust force. Metric estimators were
employed to compare the performance of base learners,
including the Ridge regression model, with the stacked
meta-learner. The base tree-based ensemble learners out-
performed non-ensemble models, showing better fitting
and generalization. The Bayesian-optimized two-stage
stacking ensemble further improved performance, sur-
passing individual base learners in predicting both de-
lamination and thrust force for training and test sets. The
stacked meta-model achieved an R-squared value of 1 with
MAE and RMSE scores of 0 for both responses in the
training set, indicating exceptional performance with
limited data and numerous input variables. This approach
significantly reduced MAE and RMSE—by about 97%
and 124% for delamination, and 205% and 154% for thrust
force—compared to the LGBR algorithm, the best-
performing base learner. These results highlight the ef-
fectiveness and superiority of the stacked ensemble
method in this context.

The predictive performance of the meta-model is shown
in Figure 11 for both training and test sets, as well as the
entire dataset. The Fig. includes solid and dashed lines
representing the y = x line and the linear regression line

Table 7. The performance of non-ensemble single models to predict delamination and thrust force.

Method

Delamination Thrust force

MAE RMSE R2 MAE RMSE R2

Linear Regression 0.0158 0.0183 0.5548 28.50 34.00 0.5130
Ridge Regression 0.0177 0.0220 0.2892 27.29 33.78 0.5323
Elastic Net Regression 0.0194 0.0248 0.0288 27.80 34.42 0.5143
Bayesian Regression 0.0157 0.0183 0.5576 28.47 33.97 0.5133
Kernel Ridge Regression 0.0174 0.0207 0.3727 24.80 32.18 0.6746
Robust Regression 0.0157 0.0185 0.5632 29.76 35.69 0.4766
Support Vector Regression 0.0166 0.0204 0.5447 23.96 30.52 0.6200
K-nearest Neighbor Regression 0.0168 0.0198 0.4661 36.80 42.39 0.1963
CART 0.0127 0.0161 0.6907 21.81 26.62 0.6921

Table 8. Performance measures of boosting- and bagging-based
ensemble methods.

Method

Delamination Thrust force

MAE RMSE R2 MAE RMSE R2

BDT 0.0152 0.0178 0.6174 25.24 29.91 0.5866
SGBR 0.0135 0.0154 0.6975 20.12 25.14 0.7560

LGBR 0.0096 0.0130 0.7633 14.82 21.47 0.8273

RF 0.0140 0.0168 0.6381 25.33 29.41 0.6192
XGBoost 0.0130 0.0157 0.6381 22.61 27.71 0.64.46
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for the data points. The close alignment of these lines
indicates how well the model predictions match the
actual values. Figure 11(a) demonstrates that the re-
gression lines closely follow the y ¼ x line, reflecting
accurate predictions and efficient training. Figure 11(b)
highlights the model accuracy in predicting responses,
with the accuracy line closely aligning with the actual
values. Finally, Figure 11(c) confirms the meta-model
ability to effectively predict delamination and thrust
force across the entire dataset, showcasing the model
overall accuracy.

Visual and statistical assessment

To investigate deeper into the impact of independent factors
on delamination and failure thrust force, a series of sta-
tistical analyses were carried out based on main effects
analysis. This method can determine the average response
for each specific input level and reveal the relative influence
of each input parameter in comparison to the others. The
detailed findings and corresponding explanations are pro-
vided in the following sub-sections.

Delamination. Figure 12 displays the main effects plots il-
lustrating the connection between delamination and dif-
ferent inputs. To complement the main effects analysis for
delamination assessment, visual representations of post-
drilled holes with their corresponding delamination fac-
tors were included in Figures 13–17 under various settings.
In Figure 12(a), the variation in delamination between
ultrasonic-assisted and conventional drilling was found to
be relatively minor, which aligns with the feature scoring
analysis discussed in section 4.2.1. However, previous

research, such as 76, showed that ultrasonic vibrations can
have a more substantial impact on reducing delamination. In
this study, while ultrasonic assistance led to a reduction in
thrust force, the effect on delamination was less significant
than anticipated. This outcome may be influenced by
several experimental factors, including the specific ampli-
tude of ultrasonic vibrations, the geometry of the tool, and
the material unique response to the combined effects of
ultrasonic vibration and drilling parameters. It is possible
that the ultrasonic vibration frequency or amplitude used in
this work did not reach the optimal range for achieving a
notable reduction in delamination. Moreover, the presence
of GNPs and other material properties may have interacted
with the ultrasonic vibrations in ways that altered the de-
lamination behavior. Future studies could examine a wider
range of ultrasonic parameters and compare them with the
conditions used here to gain deeper insight into the
mechanisms affecting delamination reduction. Figure 13
illustrates and quantifies the comparison between delami-
nation under non-ultrasonic and ultrasonic-assisted drilling.
The delamination factor magnitudes depicted in Figure 13
show that conducting ultrasonic-induced experiments
resulted in a slight decrease in delamination factor in
comparison to the non-ultrasonic tests. This improvement
can be attributed to the intermittent nature of the ultrasonic
drilling process, which facilitates the cutting of fibers and
consequently reduces the occurrence of machining-induced
damage.77 As evident in Figure 13(a), it’s noticeable that the
damaged area along the hole boundaries was more pro-
nounced under non-ultrasonic conditions compared to when
ultrasonic assistance was employed.

In Figure 12(b), the impact of different tooling types on
delamination variation is illustrated. Based on Figure 12(b),

Table 9. The comparison of different base learners performance with that of the proposed stacked ensemble algorithm.

Factor Set

Algorithm

Ridge CART SGBR LGBR XGBoost Ensemble

Train set
Delamination R2 0.1869 0.5426 0.6909 0.8268 0.5322 1

MAE 0.0145 0.0106 0.0095 0.0059 0.0109 0
RMSE 0.0178 0.0133 0.0111 0.0082 0.0135 0

Thrust force R2 0.3772 0.4356 0.6106 0.7446 0.6189 1
MAE 33.28 29.81 24.52 18.98 23.53 0
RMSE 40.68 38.72 32.64 26.48 31.90 0

Test set
Delamination R2 0.2892 0.6907 0.6975 0.7633 0.6381 0.9661

MAE 0.0177 0.0127 0.0135 0.0096 0.0130 0.0038
RMSE 0.0220 0.0161 0.0154 0.0130 0.0157 0.0058

Thrust force R2 0.5323 0.6921 0.7560 0.8273 0.6446 0.9732
MAE 27.29 21.81 20.12 14.82 22.61 4.8538
RMSE 33.78 26.62 25.14 21.47 27.71 8.4416
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Figure 11. Graphical illustration of the proposed stacked generalization strategy for predicting (a) training, (b) testing, and (c) the entire
dataset.

Figure 12. Main effects plots showing delamination variation with respect to (a) ultrasonic activation, (b) tool type, (c) feed rate, (d)
GNP content, and (e) lay-up configuration.
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the average delamination factor exhibited the highest var-
iations across the diverse tool types, aligning with the tool’s
elevated importance score for delamination, as discussed in
section 4.2.1. HSS tools are commonly utilized in the in-
dustry due to their cost-effectiveness and strength. How-
ever, the incorporation of cobalt into HSS tools enhances
their durability and wear resistance. This enhancement is
evident in Figure 14(b), where holes drilled using the HSS-
8% Co tool displayed reduced delamination (Fd ¼ 1:0402).
The increase in cobalt content up to 8% in the HSS tool
proved to be beneficial for drilling CFRP. In contrast, the
HSS-5% Co tool resulted in the most significant delami-
nation damage (Fd ¼ 1:0791) among all applied tools.
Consequently, the HSS-8% Co type emerged as the most
effective among the HSS family tools for minimizing de-
lamination. As a clear validation, the drilled hole quality is
visibly improved when using HSS-8% Co as the cutting
tool, as depicted in Figure 14(c). In contrast, Figure 14(a)
and (b) exhibit evident surface damage with noticeably
higher levels of roughness. Babu et al.78 investigated the
performance of different cutting tools—HSS, HSS Co, and
solid carbide—during the drilling of pure CFRP. Their
results showed that the HSS Co (M42) tool exhibited su-
perior performance compared to the HSS (M35) tool,
demonstrating better overall drilling efficiency.

Figure 15 visually demonstrates the impact of different
feed rates on delamination. Based on NFS analysis in
Figure 9, feed rate played a substantial role in delamination
during drilling, as also affirmed in Figure 12(c) where the
notable variation of delamination with feed rate was evi-
dent. Yaşar et al.79 emphasized that feed rate plays a crucial
role in influencing delamination during the drilling of CFRP
composites. Similarly, Shyha et al.,80 supported this ob-
servation, showing that both the type of drill bit and the feed
rate are significant factors affecting thrust force and de-
lamination. These findings collectively highlight the critical
impact of feed rate and tool selection on drilling perfor-
mance in CFRP, reinforcing the need for careful parameter
optimization in minimizing delamination. The trends in
delamination levels within Figure 15 indicate a clear cor-
relation: higher feed rates led to increased drilling-induced
delamination, while lower feed rates correlated with re-
duced delamination. This is due to the easier cutting of
carbon fibers at lower feed rates, resulting in decreased
delamination. Conversely, higher feed rates can pull fibers
instead of cutting them, leading to increased delamination.
Additionally, higher feed rates generally lead to increased
thrust force, contributing to greater material damage around
the hole. The visual depictions in Figure 15 also illustrate
that a feed rate of 0.08 mm/rev resulted in smoother hole

Figure 13. The drilled holes subjected to two different processing techniques: (a) non-ultrasonic process and (b) ultrasonic-induced
process.

Figure 14. Visualization of the drilled holes by (a) HSS, (b) HSS-5% Co, and (c) HSS-8% Co drilling tools.
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boundaries and limited damaged region compared to a feed
rate of 0.15 mm/rev.

In Figure 12(d), a notable impact on material delami-
nation was evident based on the material type, as also re-
inforced by the feature scoring in section 4.2.1. This
observation was consistent with both Figures 12(d) and 16,
indicating that the inclusion of GNP led to increased de-
lamination factor. This effect can be attributed to the en-
hanced strength of the CFRP material with GNP
incorporation. The higher material strength contributed
to greater cutting forces during failure, subjecting the
fibers to increased tension forces during drilling. Con-
sequently, this resulted in more significant degradation
of the hole periphery, as demonstrated in Figure 16.
Visual representations of the drilled holes in Figure 16
further support this finding. The smoother surface and
limited surface failure extent around the hole for CFRP
in Figure 16(a), in contrast to Figure 16(b) where GNP
was incorporated, highlight the influence of GNP on
delamination behavior during the drilling process. Ku-
mar et al.44 also observed that incorporating GNP re-
sulted in a noticeable rise in thrust force, accompanied
by an increase in delamination.

Referring to the NFS analysis in section 4.2.1, the impact
of the layup structure on delamination status aligns with the
ultrasonic option, as also depicted in Figure 12(e). The
delamination values in Figure 17(a) and (b) demonstrate that
employing a symmetric arrangement slightly reduced de-
lamination compared to an asymmetric layout. Tabatabaeian
et al.29 observed that delamination damage tends to be more
pronounced when an unsymmetrical layup arrangement is
used. This reduction can be attributed to the lower thermal
expansion coefficient between layers in a symmetrical lay-
up, diminishing residual stress during curing and cooling
processes. Since delamination is linked to residual
stress,81–83 symmetrical lay-up specimens experience re-
duced occurrences. The curved nature of asymmetric
specimens makes them prone to delamination due to
bending, while the flat geometry of symmetric ones acts as a
protective measure. Figure 17(c) visually compares the
holes created in both lay-up configurations. Additionally,
Figure 17(a) and (b) reveal that the drilled boundaries of

symmetric layup were noticeably smoother than their
asymmetric counterparts. Figure 17(b) shows evident traces
of material flaking-off, a characteristic less prominent in
symmetric configurations.

Thrust force. The evaluation of thrust force contributes to
longer tool lifespan and higher machining efficiency, fa-
cilitating the planning of CFRP machining processes.84 The
main effects plot in Figure 18 depicts the impact of different
control parameters on thrust force, clarifying their rela-
tionships and providing useful information about the con-
tribution rate of each factor. The values of thrust force were
obtained by computing the maximum value from the in-
terpolated force-time diagrams, as illustrated in Figure 19.
The overall configuration of the plots suggests that the feed
rate had the highest sensitivity to thrust force, while other
factors show much lower impacts. This trend was previ-
ously confirmed by feature scoring analysis in section 4.2.2.

In Figure 18(a), it can be observed that the reduction in
thrust force was achieved through the application of ul-
trasonics, as compared to non-ultrasonic drilling. This re-
duction was attributed to the intermittent impacts exerted on
the CFRP sample during ultrasonic vibration, leading to
increased fiber breakage within the material.85 It is well
established that higher thrust forces contribute to increased
delamination during drilling, as the elevated mechanical
stress tends to cause more damage around the hole. The use
of ultrasonic-assisted drilling proves effective in reducing
thrust force, which plays a key role in mitigating delami-
nation. The ultrasonic vibrations enhance chip removal and
reduce the load on the cutting edge, thereby decreasing the
force required to penetrate the composite material. This
reduction in mechanical stress at the drill-material interface
leads to less pronounced delamination. The observed re-
lationship between lower thrust forces and reduced de-
lamination highlights the importance of controlling thrust
force—particularly through ultrasonic assistance—in min-
imizing delamination in CFRP drilling. The impact of the
tool type on thrust force is demonstrated in Figure 18(b),
where the use of HSS drills containing cobalt resulted in
reduced thrust force. This reduction can be attributed to the
higher feed rates associated with the presence of cobalt in

Figure 15. Illustration of the drilled holes at feed rates of (a) 0.08, (b) 0.15, and (c) 0.25 mm/rev.
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the cutting tool, which enhances heat resistance and con-
tributes to improved performance. Figure 18(c) illustrates a
substantial increase in thrust force at elevated feed rates,
attributed to two primary factors. First, an augmented feed
rate leads to greater cutting depth and larger material re-
moval rate per revolution, subjecting the tool to higher
forces during drilling.86 Second, downward pressure is
exerted by the tool on the CFRP for higher feed rates instead
of cutting through the carbon fibers, amplifying the cutting
force.

In Figure 18(d), the increase in thrust force from adding
GNP to CFRP is evident. This is attributed to the greater
strength of the CFRP/GNP hybrid nanocomposite com-
pared to non-reinforced CFRP. Çelik et al.87 previously
reported similar findings, noting enhanced tensile strength
in CFRP with GNP addition, as shown in the SEM images
of Figure 7. The strong compatibility of GNP with carbon

fibers further boosts the composite overall strength, making
it more difficult to machine. Figure 18(e) illustrates how the
lay-up arrangement affects thrust force during drilling. A
symmetrical lay-up reduces thrust force, as opposed to an
asymmetric lay-up, which creates a curved shape due to
differences in interlayer thermal expansion coefficients.
This curvature increases cutting forces needed to drill
asymmetric CFRP, as seen in Figure 17(c).

Limitations, challenges, and future scope

This study reveals key findings about predictive modeling
of delamination and thrust force during CFRP composite
drilling, but certain limitations must be acknowledged. A
notable limitation is the relatively small dataset employed
for training and testing the machine learning models, which
may limit the generalizability of the findings. Although a

Figure 16. Illustration of the drilled holes with different materials: (a) CFRP, (b) CFRP/GNP.

Figure 17. Illustration of CFRP drilled holes with different layups: (a) symmetrical, (b) asymmetrical, and (c) curved configuration of
samples with an asymmetrical lay-up.
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robust ensemble learning approach was used, the perfor-
mance of the models could vary if tested on larger, more
diverse datasets. Furthermore, the study primarily focused
on specific machining parameters and material properties,
omitting other factors such as environmental conditions,
tool wear, and operator variability, all of which can influ-
ence drilling outcomes. Future research should explore the
impact of these factors.

In addition, the study employed a nested feature scoring
method to analyze feature importance, which, although
useful, may not fully capture complex interactions between

variables. More advanced techniques for analyzing feature
interactions would yield a more thorough analysis in future
investigations. The stacked generalization approach used in
this research did improve predictive accuracy, but its
complexity may present challenges for practical im-
plementation in industrial settings. Simplifying the model or
offering clear guidelines for its use would enhance its ap-
plicability for practitioners.

Moreover, integrating real-time monitoring systems
could further improve predictive accuracy by allowing
dynamic adjustment of drilling parameters based on
real-time data. The practical implications of this study
are significant, as applying these findings could lead to
improvements in drilling efficiency, reduction in ma-
terial waste, and enhanced quality of CFRP components.
These outcomes hold considerable potential for industries
such as aerospace, where lightweight and durable mate-
rials are crucial, automotive, where high-performance
parts are in demand, and wind energy, which requires
resilient turbine blades. Addressing the limitations of this
study while advancing predictive modeling methods could
foster innovation and efficiency across these critical
sectors.

Conclusion

The complexity of CFRP heterogeneous and anisotropic
nature in drilling processes highlights the need for ac-
curate predictive models. This study addressed this need

Figure 18. Main effects plots showing thrust force variation with respect to (a) ultrasonic activation, (b) tool type, (c) feed rate, (d) GNP
content, and (e) lay-up configuration.

Figure 19. An exemplary diagram for determining the
representative thrust force.
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by using an advanced predictive modeling approach with
ensemble ML and stacked generalization. The model
aimed to link input factors such as material type, ultra-
sonic assistance, tooling type, stacking sequence, and
feed rate with outcomes like delamination and thrust
force. A Taguchi-based DoE was implemented, resulting
in 72 data points from an orthogonal array. Various base
learners were trained with optimized hyperparameters using
grid search and Bayesian optimization. Four top-performing
models were chosen from both non-ensemble and ensemble
categories to enhance the ensemble effectiveness. The meta-
model, constructed using stacked generalization with SGBR,
was refined through iterative adjustments to improve robust-
ness. Hyperparameters were further optimized using Bayesian
techniques, leading to significant improvements in predictive
accuracy. The ensemble approach notably reduced MAE and
RMSE by approximately 97% and 124% for delamination,
and 205% and 154% for thrust force compared to the best base
learner, LGBR, demonstrating the effectiveness of the pro-
posed ensemble method.

A novel NFS methodology was used to assess feature
importance, combining rankings from SGBR, XGBoost,
and RF for a thorough evaluation of primary and sub-
features. Techniques such as one-hot encoding and
normalization were applied to improve the analysis of
feature significance, including categorical variables. The
NFS evaluation revealed that tooling type and feed rate
were the most critical factors affecting delamination and
thrust force, respectively, while ultrasonic status had the
least impact. The study also included visual and statis-
tical analyses to explore variable-response interactions,
comparing these insights with those from the NFS
technique. Overall, this research advanced predictive
modeling of CFRP drilling processes by employing a
stacked ensemble learning strategy, resulting in a
robust predictive model with extensive manufacturing
applications.

The predictive methodology developed in this study
offers significant industrial benefits by enhancing drilling
efficiency, reducing material waste, and improving
component quality in sectors reliant on CFRP compos-
ites. The advanced machine learning model, employing
ensemble techniques and stacked generalization, opti-
mizes drilling processes by accurately predicting thrust
force and delamination. This leads to smoother opera-
tions, minimized tool wear, and better performance in
high-stakes applications such as aerospace, automotive,
and wind energy. The model provides practical guidance
for tool selection and process optimization, and its
adaptability supports diverse manufacturing contexts.
Future enhancements, including real-time monitoring,
could further refine the model, driving innovation and
contributing to advancements in CFRP composite drilling
technologies.

Acknowledgments

This is to certify that to the best of my knowledge; the content of
this paper is our own work. This paper has not been submitted for
any degree. I certify that the intellectual content of this paper is the
product of our own work and that all the assistance received in
preparing this paper and sources have been acknowledged.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Iran National Science Foundation
(INSF) is gratefully acknowledged for financial support of this
work (Project No. 99000063).

ORCID iDs

Mohammad Baraheni  https://orcid.org/0000-0003-3500-0038
Saeid Amini  https://orcid.org/0000-0003-4650-707X
Mohammad Fotouhi  https://orcid.org/0000-0002-5956-4703

Data availability statement

Data sharing not applicable to this article as no datasets were
generated or analyzed during the current study.

References

1. Shokrian MD, Shelesh-Nezhad K and Soudmand BH. 3D FE
analysis of tensile behavior for co-PP/SGF composite by
considering interfacial debonding using CZM. J Reinforc
Plast Compos 2016; 35: 365–374.

2. Kaveh A, Hashemi SB and Sheikholeslami R. Optimal design
of laminated composite structures via hybrid charged system
search and particle swarm optimization. Asian Journal of
Civil Engineering 2013; 14(4): 587–604.

3. Shokrian MD, Shelesh-Nezhad K and H Soudmand B. Nu-
merical simulation of a hybrid nanocomposite containing Ca-
CO3 and short glass fibers subjected to tensile loading.
Mechanics of Advanced Composite Structures 2017; 4:
117–125.

4. Baraheni M, Hoseini AM and Najimi MR. Investigation on
carbon fiber-reinforced polymer combined with graphene
nanoparticles subjected to drilling operation using response
surface methodology and non-dominated sorting genetic al-
gorithm-II. Proc IME E J Process Mech Eng. 2024. DOI: 10.
1177/09544089241230160.

5. Tabatabaeian A, Baraheni M, Amini S, et al. Environmental,
mechanical and materialistic effects on delamination damage
of glass fiber composites: analysis and optimization.
J Compos Mater 2019; 53: 3671–3680.

Baraheni et al. 3135

https://orcid.org/0000-0003-3500-0038
https://orcid.org/0000-0003-3500-0038
https://orcid.org/0000-0003-4650-707X
https://orcid.org/0000-0003-4650-707X
https://orcid.org/0000-0002-5956-4703
https://orcid.org/0000-0002-5956-4703
https://doi.org/10.1177/09544089241230160
https://doi.org/10.1177/09544089241230160


6. Baraheni M, Soudmand BH, Amini S, et al. Burr constitution
analysis in ultrasonic-assisted drilling of CFRP/nano-graphene
via experimental and data-driven methodologies. J Reinforc
Plast Compos. 2024. DOI: 10.1177/07316844231225593.

7. Baraheni M and Amini S. Influence of machining condition
and nano-graphene incorporation on drilling load and hole
quality in both conventional drilling and ultrasonic-assisted
drilling of CFRP. Arabian J Sci Eng 2024; 49. DOI: 10.1007/
s13369-024-08758-4.

8. Raj SSR, Dhas JER and Jesuthanam CP. Challenges on ma-
chining characteristics of natural fiber-reinforced composites–A
review. J Reinforc Plast Compos 2021; 40: 41–69.

9. Soudmand BH, Biglari H, Fotouhi M, et al. A finite element
approach for addressing the interphase modulus and size
interdependency and its integration into micromechanical elastic
modulus prediction in polystyrene/SiO2 nanocomposites.
Polymer 2024; 309: 127463.

10. Mohsenzadeh R, Soudmand BH, NajafiA, et al. Morphology-
Driven nanofiller size measurement integrated with micro-
mechanical finite element analysis for quantifying interphase
in polymer nanocomposites. ACS Appl Mater Interfaces
2024; 16: 39927–39941. DOI: 10.1021/acsami.4c02797.

11. Soudmand BH and Mohsenzadeh R. Mechanical, morpho-
logical, and numerical evaluation of biocompatible ultra-high
molecular weight polyethylene/nano-zeolite nanocomposites.
Polym Compos 2024; 45: 3666–3682. DOI: 10.1002/pc.
28018.

12. Mohsenzadeh R, Soudmand BH, NajafiAH, et al. Analysis of
interfacial characteristics in polymer nanocomposites via
visual particle recognition methodology and micro-
mechanical predictive models. Compos Sci Technol 2024;
245: 110360.

13. Mohsenzadeh R, Soudmand BH and Shelesh-Nezhad K.
Synergetic impacts of two rigid nano-scale inclusions on the
mechanical and thermal performance of POM/carbon black/
CaCO3 ternary nanocomposite systems. Polym Compos
2022; 43(5): 3041–3056.

14. Mohsenzadeh R, Soudmand BH and Shelesh-Nezhad K.
Failure analysis of POM ternary nanocomposites for gear
applications: experimental and finite element study. Eng Fail
Anal 2022; 140: 106606.

15. Mohsenzadeh R, Soudmand BH and Shelesh-Nezhad K. A
combined experimental-numerical approach for life analysis
and modeling of polymer-based ternary nanocomposite gears.
Tribol Int 2022; 173: 107654.

16. Baraheni M, Shabgard MR, Amini S, et al. Experimental
evaluation and optimization of parameters affecting delamina-
tion, geometrical tolerance and surface roughness in ultrasonic
drilling of 3D-Printed PLA thermoplastic. J Thermoplast
Compos Mater. 2024. DOI: 10.1177/08927057241264803.

17. Kumar J, Abhishek K, Xu J, et al. Experimental investigation
on machine-induced damages during the milling test of
graphene/carbon incorporated thermoset polymer nano-
composites. J Compos Sci 2022; 6: 77.

18. Kumar J and Verma RK. A new criterion for drilling ma-
chinability evaluation of nanocomposites modified by
graphene/carbon fiber epoxy matrix and optimization using
combined compromise solution. Surf Rev Lett 2021; 28:
2150082. DOI: 10.1142/S0218625X21500827.

19. Kumar J, Kesarwani S, Kharwar PK, et al. Mechanical
performance and drilling machinability evaluation of carbon
nano onions (CNOs) reinforced polymer nanocomposites. Int
J Interact Des Manuf 2023; 17: 169–186. DOI: 10.1007/
s12008-022-01160-0.

20. Kumar K, Kumar J, Singh VK, et al. An integrated module for
machinability evaluation and correlated response optimiza-
tion during milling of carbon nanotube/glass fiber modified
polymer composites. Multiscale and Multidiscip Model Exp
and Des 2021; 4: 303–318. DOI: 10.1007/s41939-021-
00099-1.

21. Baraheni M, Shabgard MR and Amini S. Evaluating the hole
quality produced by vibratory drilling: additive manufactured
PLA+. Int J Adv Manuf Technol 2021; 117: 785–794.

22. Kumar D, Singh KK and Zitoune R. Experimental investi-
gation of delamination and surface roughness in the drilling of
GFRP composite material with different drills. Adv Manuf
Polym Compos Sci 2016; 2: 47–56.

23. Kumar D and Singh KK. Investigation of delamination and
surface quality of machined holes in drilling of multiwalled
carbon nanotube doped epoxy/carbon fiber reinforced poly-
mer nanocomposite. Proc Inst Mech Eng Part L 2019; 233:
647–663.

24. Abrao AM, Faria PE, Rubio JC, et al. Drilling of fiber re-
inforced plastics: a review. J Mater Process Technol 2007;
186: 1–7.

25. Dubey AD, Kumar J, Kyratsis P, et al. Stacking effect of
carbon/glass fiber during drilling operation of laminated
polymer composite. Arch Metall Mater 2024; 69: 589–598.

26. Kumar J and Verma RK. Delamination assessment during
machining of laminated polymer nanocomposite. Interna-
tional Journal of Modern Manufacturing Technologies
(IJMMT) 2021; 13.

27. Chen W-C. Some experimental investigations in the drilling
of carbon fiber-reinforced plastic (CFRP) composite lami-
nates. Int J Mach Tool Manufact 1997; 37: 1097–1108.

28. Faraz A, Biermann D and Weinert K. Cutting edge
rounding: an innovative tool wear criterion in drilling
CFRP composite laminates. Int J Mach Tool Manufact
2009; 49: 1185–1196.

29. Mehta M, Reinhart TJ and Soni AH. Effect of fastener hole
drilling anomalies on structural integrity of PMR-15/Gr
composite laminates. In: Machining of composite materials
(A 95-15178 02-37). Materials Park, OH: ASM International,
1992, pp. 113–126.

30. Davim JP, Rubio JC and Abrao AM. A novel approach based
on digital image analysis to evaluate the delamination factor
after drilling composite laminates. Compos Sci Technol 2007;
67: 1939–1945.

3136 Journal of Composite Materials 58(30)

https://doi.org/10.1177/07316844231225593
https://doi.org/10.1007/s13369-024-08758-4
https://doi.org/10.1007/s13369-024-08758-4
https://doi.org/10.1021/acsami.4c02797
https://doi.org/10.1002/pc.28018
https://doi.org/10.1002/pc.28018
https://doi.org/10.1177/08927057241264803
https://doi.org/10.1142/S0218625X21500827
https://doi.org/10.1007/s12008-022-01160-0
https://doi.org/10.1007/s12008-022-01160-0
https://doi.org/10.1007/s41939-021-00099-1
https://doi.org/10.1007/s41939-021-00099-1


31. Tsao CC, KuoKL and Hsu IC. Evaluation of a novel approach
to a delamination factor after drilling composite laminates
using a core–saw drill. Int J Adv Manuf Technol 2012; 59:
617–622. DOI: 10.1007/s00170-011-3532-y.

32. Durão LMP, Tavares JMR, de Albuquerque VHC, et al.
Damage evaluation of drilled carbon/epoxy laminates based
on area assessment methods. Compos Struct 2013; 96:
576–583.

33. da Silva DNR. Image processing methodology for assessment
of drilling induced damage in CFRP. Lisbon, Portugal:
Universidade Nova de Lisboa, 2013.

34. Hocheng H and Tsao CC. The path towards delamination-free
drilling of composite materials. J Mater Process Technol
2005; 167: 251–264.

35. Rahme P, Landon Y, Lachaud F, et al. Drilling of thick
composite materials using a step gundrill. Compos Appl Sci
Manuf 2017; 103: 304–313.
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performances of nanocomposites reinforced with graphene
and graphene oxide. Int J Adv Manuf Technol 2019; 100:
2371–2385.

3138 Journal of Composite Materials 58(30)

https://doi.org/10.1007/s40430-023-04267-x
https://doi.org/10.1177/0954405417690552
https://doi.org/10.1177/0954405415619343

	Stacked generalization ensemble learning strategy for multivariate prediction of delamination and maximum thrust force in c ...
	Introduction
	Materials and methods
	Material specifications
	Experimental layout
	Data acquisition and preprocessing

	Machine learning methodology
	Hyperparameter tunning and evaluation indicators
	The specifications of proposed stacked generalization method
	Base-learner adaptation
	Selection of base learners
	Model optimization

	Nested feature scoring (NFS)

	Results and discussion
	Microstructural characteristics of the hybrid composite laminates
	Fiber
	Nanoparticle distribution in hybrid laminates

	Feature importance analysis
	Delamination
	Thrust force

	The proposed stacked ensemble implementation
	Non
	Ensemble tree
	The stacked model construction and performance evaluation

	Visual and statistical assessment
	Delamination
	Thrust force


	Limitations, challenges, and future scope
	Conclusion
	Acknowledgments
	Declaration of Conflicting Interests
	Funding
	ORCID iDs
	Data availability statement
	References


