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Abstract

This paper is a literature survey on homotopy type theory, analyzing the formalization of
sets within homotopy type theory. Set theory is embedded in homotopy type theory via
h-sets, with all h-sets forming the type Set. This paper presents the properties of the type
Set from a categorical perspective, comparing it with its set-theoretic counterpart. We
will also compare homotopy type theory to standard axiomatic set theory from the point
of view of mathematical foundations, discussing the axiom of the empty set, the power set
axiom and the axiom of choice and their equivalents in homotopy type theory.
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1. Introduction

Homotopy Type Theory (HoTT) is a novel research area at the intersection of multiple
fields, primarily mathematics and computer science (The Univalent Foundations Program,
2013)1. Within mathematics, HoTT has two main applications. Firstly, it is a new founda-
tional program, referred to as Univalent Foundations, aiming to replace the standard ZFC2

set theory as a constructive3 foundation of mathematics (Awodey, 2014). Secondly, it can
be regarded as an alternative language for category theory, more suitable for capturing
the structural invariance of isomorphic constructs (Ahrens et al., 2015). Within computer
science, HoTT presents novel applications for computer proof-assistants, extending the in-
herently computational nature of type theory to higher-categorical mathematics, lending
itself to novel formalizations in computer proof assistants, such as Coq and Agda (Bauer
et al., 2017) .

HoTT is an extension of intuitionistic type theory, or Martin-Löf Type-Theory (Martin-
Löf, 1975), with Voevodsky’s Univalence Axiom (Awodey et al., 2013) and higher inductive
types. It gives a homotopical interpretation to the regular type-theoretical constructs.
Types are regarded as spaces, with identity types of objects conveying paths between objects
in a certain space, and identity types between paths conveying paths between paths, and so
on. This gives rise to HoTT as a natural language for the categorical notion of ∞-groupoids,
i.e., mathematical structures that capture this infinite upwards connection between higher
paths. The novel addition consists of the Univalence Axiom, which says that equivalence
is equivalent to identity. In other words, if two structures are equivalent, then they are
identical.

Due to the novelty of the field of research, there are many current open problems, e.g.,
extending the semantics and computer formalizations of this theory (Awodey et al., 2015).
Within the foundations of mathematics, type theory, especially extended to homotopy type
theory, is preferred to the standard ZFC due to its computational and constructive prop-
erties (Tsementzis, 2017). Further, for certain branches of mathematics, most notably
category theory, for which weaker notions of identity than equality suffice, homotopy type
theory provides a more adequate language, as category theory fits the least comfortably in
set theoretic foundations (The Univalent Foundations Program, 2013, p. 307). As a founda-
tional effort, univalent foundations should also lend themselves useful to other branches of

1. Page references are to the on-screen view version of the book
2. The axiomatic set theory of Zermelo–Fraenkel with the axiom of choice
3. To oversimplify, constructive mathematics reject the law of excluded middle (P ∨ ¬P ) and proofs by

contradiction, i.e., the equivalence (P ≡ ¬P → ⊥)
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mathematics. As such, it is interesting to see how sets, which form the foundation in ZFC,
fit within homotopy type theory, and to what extent they can be used by the practising
mathematician.

This paper aims to investigate the type of sets in homotopy type theory, based on the
work done by Rijke and Spitters (2015). The paper tries to give an answer to two questions.
Firstly, why do we want sets in HoTT, if one of the main aims of HoTT, the foundational
one, is to replace ZFC as the default foundation of mathematics. Secondly, it aims to
investigate how the formalization of sets in HoTT differs behaviourally from the standard
ZFC. In other words, do sets in HoTT exhibit the same properties as sets in ZFC, and if
not, where do they differ.

This paper will be structured as follows: Section 2 will give an overview of the notation,
main definitions and basic theorems of homotopy type theory used throughout this paper.
Section 3 will present the formalization of sets in homotopy type theory as done by Rijke
and Spitters (2015), presenting their main results in a manner that aims to convert the
category theory definitions to the case of sets. Section 4 will then analyse the behaviour of
sets in homotopy type theory, contrasting it with sets in the classical ZFC, and present the
similarities, as well as the main differences.

2. Homotopy type theory preliminaries

This section will present the necessary theorems, definitions and results needed to under-
stand the category of sets in homotopy type theory. It is assumed that the reader is familiar
with dependent type theory as can be found in, e.g., The Univalent Foundations Program
(2013, Chapter 1), along with some basic notions of category theory such as those in e.g.
Awodey (2010). We will mostly follow the notation present in The Univalent Foundations
Program (2013).

Definition 2.1 (-2-type) A type P : U is called contractible if there is a point a : P ,
such that a =P x for any x : P .

isContr(P ) :≡
∑
(a:P )

∏
(x:P )

(a = x)

In a topological sense, a contractible space is a single point, while the logical reading
says that P is inhabited by an object a, and any object is equal to a. As a visual guide, we
can think of contractible spaces of those that can be continuously deformed into a single
point.

Definition 2.2 (-1-type) A type P : U is a mere proposition if for all x, y : P , x =P y.

isProp(P ) :≡
∏
x,y:P

(x = y)

In other words, mere propositions are types with at most one inhabitant. While the
isContr(P ) and isProp(P ) types seems similar, the important distinction is that a con-
tractible type P is always inhabited, while a mere proposition might not be inhabited. For
example, the contradiction type 0 is a mere proposition, but it is not contractible, since,
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intuitively, nothing can prove a contradiction, and thus, under the propositions as types
paradigm, the contradiction type 0 is uninhabited.

Definition 2.3 (0-type) A type A : U is a set (0-type) if for all x, y : A, and all p, q :
x =A y, then p =x=Ay q

isSet(A) :≡
∏

(x,y:A)

∏
(p,q:x=y)

(p = q)

At this point, the term set has been used with at least three different meanings. To
avoid notational confusion, throughout this paper we will use Set to denote the category
of ZFC-sets. Types that are sets in the meaning of Definition 2.3 will be called h-set. To
refer to the standard ZFC sets, we will simply call them sets.

A type is an h-set, in other words, if there are no non-trivial paths between paths.
Another way to think of this is by means of the following counterexample. We will show a
type that is not an h-set. The classic example is the universe type U , which, historically,
was the main motivation for type theory as a way to overcome Russell’s Paradox. For this,
consider the boolean type 2 : U . While 2 is a type, when considering the universe of types U ,
then types become objects of type U . U can be thought of as a type of types. The boolean
type contains two inhabitants, 02 : 2 and 12 : 2, which can be thought of as the usual
booleans 0, 1. They are indexed to clarify that they are different from the objects of type N,
since types are disjoint. We can define two functions id, neg : 2 → 2, setting id(02) = 02,
id(12) = 12 and neg(02) = 12, neg(12) = 02. If the universe were a set, then id = neg.
Then, if that were the case, then we would reach the conclusion that id(02) = neg(02),
meaning 02 = 12, which is a contradiction. See Figure 1 for a visual representation of the
non-identical loops. Thus, the universe is a non-example of a set.

1

2

N

U

Figure 1: Universe U and its objects, which are types. The existence of two non-identical
loops shows that U is not an h-set

The category (or type) Set of sets consists of all types A : U for which isSet(A) is
inhabited. In formal notation:

Set :≡
∑
A:U

isSet(A)
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Intuitively, the type of sets does not form a set. To prove that, it suffices to find a set
P : Set and a path p : P = P such that p ̸= reflP . Taking the boolean type 2, we can reuse
the same proof that shows the universe U is not a set.

The hierarchy of homotopical structures is upwards closed. This means that any con-
tractible type is also a proposition, any proposition is a set, and so on. However, there also
exists an operation that squashes down the homotopical space to a lower level, in a sense
discarding information about the objects above that certain level. The main one we will be
using is the propositional truncation, which can reduce any n-type to a mere proposition
type.

Definition 2.4 (Propositional Truncation) For any type P, we can define the propo-
sitional truncation type ||P || such that for any x : P , |x| : ||P ||, and for any x, y : ||P ||,
then x = y.

One of the interesting aspects of HoTT is the equivalence between identity and equiv-
alence. The identity-to-equivalence direction of the univalence axiom is trivial, since two
identical objects are equivalent as well. Voevodsky’s novelty comes in the other direction.
Before presenting the formal statement of Voevodsky’s axiom, we will sketch the definition
and main intuition of the equivalence type.

Definition 2.5 (Homotopy) Given two functions f, g : A → B, we call the homotopy
of f and g the type

(f ∼ g) :≡
∏
x:A

(f(x) = g(x))

Definition 2.6 (Equivalence function) A function f : A → B is called an equivalence
if there exist functions g, h : B → A such that for all x : A, y : B, g ◦ f(x) = idA and
f ◦ h(x) = idB, where ”◦” represents function composition.

isEquiv(f) :≡ (
∑

g:B→A

(g ◦ f) ∼ idA)× (
∑

h:B→A

(f ◦ h) ∼ idB)

Definition 2.7 (Type Equivalence) Two types A,B : U are equivalent if there exists a
function f : A → B that is an equivalence.

(A ≃ B) :≡
∑

f :A→B

isEquiv(f)

Axiom 2.1 (Univalence) For any types A,B : U

(A =U B) ≃ (A ≃U B)

What the univalence axiom says is that equivalent types can be identified, i.e., they are
identical. Equivalences can be thought of as isomorphisms in ZFC. That is to say, abusing
concepts, that a bijection can be established between the two types, and any relationships
between objects of the type are maintained.
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As Ahrens and North (2019) point out, the notion of sameness in ZFC is a very strong
notion, and mathematicians seek weaker notions of sameness and those properties that are
invariant under such notions (p. 138). A more familiar example, in theoretical computer
science and modal logic, is the notion of bisimilar transition systems. Two transition systems
are called bisimilar if they satisfy the same formulas. Thus, regardless of the internal
configuration of the systems, the expressiveness of the two systems would be identical, and
the two systems would be considered equivalent. This is one such weaker notion of sameness
that mathematicians are interested in.

3. What does it mean that Set is a ΠW-pretopos?

This section constitutes a presentation of the results given by Rijke and Spitters (2015).
Their main claim is that Set is a ΠW-pretopos. We will analyse this concept and try to
explain in simpler terms how this result was obtained. To that extent, we will reconstruct
their proof in a way that is more approachable for readers without a strong background in
category theory, doing so in an iterative, bottom-up fashion, focusing on intuitive aspects
rather than mathematical rigour. This section will be more involved in terms of category
theory, but we will aim to explain everything as simply as possible, with a focus on what
the result means for Set. To that extent, for each category-theory concept, we will first
restrict it to the specific case of the category Set. This is, in a sense, the inverse aim
of category theory, whose goal is to generalize set-theoretic notions. Therefore, most of
the category theory generalizations do stem from set-theoretic constructs, and as such, the
inverse direction should be more familiar.

Isomorphisms between sets are called bijections. Naturally, a bijective function is a
function that is both surjective and injective. These two terms have their own meaning in
homotopy type theory, being types as well. We will first define the fibre type, which we will
then use to define injective and surjective function types

Definition 3.1 The fibre of a function f : A → B over a point y : B is a point x : A such
that f(x) = y

fibf (y) :≡
∑
x:A

(f(x) = y)

We are now ready to define the familiar concepts of injective and surjective functions,
together with the image of a function.

Definition 3.2 A function f : A → B is injective if there is an inhabitant of the type

inj(f) :≡
∏
x:A

isContr(fibf (f(x))).

or, equivalently, if A and B are h-sets,

inj(f) :≡
∏
x,y:A

(f(x) = f(y)) → (x = y)

Definition 3.3 A function f : A → B is surjective if the following type is inhabited

surj(f) :≡
∏
y:B

||fibf (y)||
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Definition 3.4 For any function f : A → B, we define the image of f as the type

im(f) :≡
∑
b:B

||fibf (b)||

We are now ready to present the first categorical concept, the pullback. The pullback,
although a categorical concept, can be given, as most concepts in category theory, an
interpretation in HoTT. In set theoretical foundations, restricted to Set, given two functions
f : A → C , g : B → C, we call pullback the subset of the Cartesian product A×B defined
as A×C B = {(a, b)|f(a) = g(b)}. In HoTT, pullbacks are defined similarly.

Definition 3.5 Given functions f : A → C and g : B → C, the pullback of f and g is the
type

A×C B :≡
∑
a:A

∑
b:B

(f(a) =C g(b))

together with the projections π1 : A×C B → A and π2 : A×C B → B

We are now going to reconstruct, in an iterative bottom-up fashion, the results of Rijke
and Spitters (2015). We will be focusing on conveying the intuition behind the results,
rather than the full, formal proofs.

3.1 Set is regular

To show that Set is a regular category, it is sufficient to show, using Gran (2021, Theorem
1.14), that Set is a finitely complete category, that any function can be written as a com-
bination of a surjective4 function followed by an injective function, and that factorization
is stable under pullbacks. This is similar to Theorem 7.6.6 in The Univalent Foundations
Program (2013), restricted to (-1)-types.

Thus, let us first show that Set is finitely complete. We will be making use of Borceux
(1994a, Proposition 2.8.2). Thus, it is enough to show that a category admits pullbacks and
terminal objects in order to show it is finitely complete. We know trivially that Set admits
terminal objects, since any singleton is a terminal object in Set. Now, the easiest way to
show that Set has pullbacks is using Awodey (2010, Corollary 5.6.), and show that Set has
equalizers and products. Trivially, it has (Cartesian) products. Equalizers, for some parallel
functions, i.e., functions with the same domain and codomain, try to capture the concept
of sameness for the two functions. In a sense, an equalizer wants to see where the two
functions agree. Thus, for any two functions f, g : A → B, we can simply define, restricted
to Set, the equalizer of f, g as the subset of A on which the two functions agree. We can
define the equalizer type as Eq(f, g) :≡

∑
(a:A)(f(a) = g(a)), together with the projection

π : Eq(f, g) → A.
We can call f = m◦n the factorization of f. Now, we will show, following The Univalent

Foundations Program (2013, Lemma 7.6.4.), that any function f admits such a factorization,
where m is injective and n is surjective. To that extent, assume there is a function f : A →
B. Define n : A → im(f), and m : im(f) → B, such that n(a) :≡ (f(a), |(a, reflf(a))|) and

4. Technically, the definition says that it must be a regular epimorphism, but it can be shown that, restricted
to Set, surjective functions are always regular epimorphisms, see Rijke and Spitters (2015, Theorem 3.10)
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m :≡ π1(im(f)). We first show that n is surjective. A ≃
∑

b:B fibf (b), so n becomes akin
to

∏
b:B(fibf (b) → ||fibf (b)||), which is surjective by The Univalent Foundations Program

(2013, Corollary 7.5.8, Lemma 7.5.13). To show m is injective, given x, y : imf such that
m(x) = m(y), we show that x = y. Supposing x : (b, |α|) and y : (b′, |β|), then m(x) = m(y)
amounts to b = b′. Since in the propositional truncation any two objects are equal, it follows
that |α| = |β|. Thus, x = y, and therefore m is injective, completing the proof.

What does it mean that the factorization is stable under pullbacks? To simplify, given
the following diagram, where f = m ◦ n, then π2 = m′ ◦ n′ is the factorization of π2 :
A×C D → D such that n′ is also surjective and m′ is injective, given that the squares are
pullback squares.

A×C D B ×C D D

A B C

n′

π1

π2

m′

π′
1

π′′
1

n

f

m

Monomorphisms (i.e., injective functions) are always stable under pullbacks (Johnstone,
2002, p. 18). Therefore, since m is injective, then so is m′. Supposing that n is surjective,
we just need to show n′ is also surjective. We base our proof on Gran (2021, Section 1.3).
Take some (x, y) : B×C D. Since B×C D is a pullback, and π′

1 is its projection, then there
is b : B such that π′

1((x, y)) = b. Further, n is surjective. Then there is some a : A such
that n(a) = b. By The Univalent Foundations Program (2013, Lemma 2.1.2), it follows
that n(a) = π′

1((x, y)). But then, since all the squares are pullbacks, the left square is also
a pullback, and thus there is an element (a, y) : A ×C D such that n′((a, y)) = (x, y), and
thus n′ is surjective.

3.2 Set is exact

To form an exact category, a category must be regular, and equivalence relations must be
effective. Having shown that Set is regular, we only need to show the second condition.

Just as in classical mathematics, an equivalence relation is a relation that is reflexive,
symmetric and transitive. That is, given a relation R : A → A → U , there is an inhabitant
of the type isEqRel(R) :≡ (

∏
x:AR(x, x))× (

∏
x,y:AR(x, y) → R(y, x))× (

∏
x,y,z:AR(y, z) →

R(x, y) → R(x, z)), and showing that, for some a, b : A, aRb holds means giving an inhabi-
tant of

∑
a,b:AR(a, b).

What does it mean that equivalence relations are effective? We will base our answer on
the presentation done by Birkedal et al. (1998). Take some equivalence relation, customary
denoted by ∼5, and some set S on which this relation is defined. For example, some set
of integers being divided into equivalence classes with respect to modular arithmetic. In
category theory, the object S/ ∼ is called the quotient of S by ∼, analogous to how we think

5. Since the homotopy type is not used in this subsection, ∼ will only denote equivalence relations for this
subsection
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of quotients in division6. More intuitively, this can be thought of as the equivalence class
of S with respect to ∼, or as a partition of S defined by ∼, where each equivalence class
is disjoint. Being effective means that, according to Definition 2.5.3 in Borceux (1994b), in
the following diagram

∼ S S/ ∼
r2

r1 q

q exists as the coequalizer of (r1, r2) and (r1, r2) is the kernel pair of q. We have seen the
equalizer before. The coequalizer is its dual. We can think of it as the arrow that collapses
S into its quotient set. In other words, equivalent elements of S are being placed into an
equivalence class, which becomes then an element of the quotient set. For (r1, r2) to form
the kernel pair of q, it suffices for the following to be a pullback square

∼ S

S S/ ∼

r1

r2

q

q

Combining the two requirements and applying the definition of a pullback, it means
showing that ∼ ≃ S ×S/∼ S ≡

∑
(a,b:S)(q(a) = q(b)). In other words, that a ∼ b ≃ (q(a) =

q(b)), i.e., that equivalent objects in S belong to the same equivalence class in S/ ∼.

Rijke and Spitters (2015, Theorem 3.22), show that the equivalence holds in the following
way. They extend∼ from a relation on S to a relation on S/ ∼. Call this relation∼q: S/ ∼→
S/ ∼→ U , defined inductively as ∼q (q(x), q(y)) :≡∼ (x, y). The gist of the proof comes in
showing that w ∼q w

′ ≃ w =S/∼ w′. This has been proven in two ways. In Rijke and Spitters
(2015), it is done by showing there is an inhabitant of

∏
w:S/∼ isContr(

∑
w′:S/∼w ∼q w

′). In
The Univalent Foundations Program (2013, Lemma 10.1.8), this is proven in the usual way,
by giving the two functions that result in the equivalence. As an alternative, more intuitive
proof, see Borceux and Bourn (2004, Example A.5.14).

3.3 Set is a pretopos

A category is a pretopos when it is exact and extensive. We have already discussed why
Set is exact, so all that is left to show is that it is extensive. We will be using the definition
of extensive, distributive and lextensive categories as stated in Carboni et al. (1993), and
Theorem 2.23 from Rijke and Spitters (2015). This amounts to showing, using Carboni
et al. (1993, Proposition 2.2), the equivalence

(A×D C) + (B ×D C) ≃ (A+B)×D C

holds, for functions f : A → D, g : B → D and h : C → D, or, in other words, that
coproducts commute with pullbacks. This equivalence can be thought of as akin to distribu-
tivity of summation and multiplication in arithmetic, or distributivity of conjunction and
disjunction in propositional logic, generalized to categorical level, over pullbacks. Reduced

6. I.e., what is left after computing the division
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to the level of Set, this means that disjoint union distributes over pullbacks (which are, in
Set, just special subsets of the Cartesian product).7

The way this is proven in Rijke and Spitters (2015, Theorem 2.23) is using Σ-types.
From a set-theoretic perspective, Cartesian products and disjoint union produce an identical
structure: a set of pairs, but of course with a different formation rule. Therefore, it suffices
to show that ∑

a:A

(P (a)×D B) ≃
∑
a:A

P (a)×D B

for P : A → U , f :
∑

a:A P (a) → D and g : B → D. The equivalence is straightfor-
ward, using the rules for the Σ-type. The equivalence used is

∑
(a:A)

∑
(p:P (a))(a, p) ≃∑

(x:
∑

a:A P (a)) x. As such, unravelling the definition of the pullback and applying the above

equivalence,
∑

a:A(P (a)×DB) ≡
∑

a:A

∑
p:P (a)

∑
b:B(f(a, p) =D g(b) ≃

∑
(x:

∑
a:A P (a))

∑
b:B

(f(x) =D g(b) ≡
∑

a:A P (a)×D B.

What does Set lack for it to be a topos, instead of a pretopos? In short, it lacks power
objects, which, for sets, are power sets. An additional axiom, called propositional resizing,
would allow Set to exhibit power sets, but it would also make the theory impredicative.
We will discuss more on that in section 4.3.

3.4 Set is a ΠW-pretopos

A ΠW-pretopos is a pretopos which is also a locally Cartesian closed category and exhibits
W-types. We will first sketch the importance of locally cartesian closed categories, and
then give some ideas about the proof that Set is indeed locally cartesian closed. We will
skip the categorical definitions in this section, and instead focus on the connection between
(dependent) type theory and (locally) cartesian closed categories

Cartesian closed categories, as pointed out by Johnstone (2002, p. 44), are categories
that correspond to typed λ-calculus, having the proper properties needed to model the
rules of the system. Categories can be used to model different formal systems, such as
first or second order logic, as well as λ-calculus and dependent type theory. Different sys-
tems require different properties, hence the importance of the classifications. For example,
cartesian closed categories model λ-calculus, while locally cartesian closed categories model
Martin-Löf type theory (Awodey, 2010, p. 237).

To show that Set is locally cartesian closed, we can rely on the interpretation of Martin-
Löf type theory in locally cartesian closed categories. The rules of type theory are follows by
Set, as a type of the theory. Since type theory is interpreted in cartesian closed categories,
and dependent type theory is interpreted in locally cartesian closed category, then the
rules of dependent type theory model additional properties. Those come in the form of
the dependent types, i.e., the Σ-type and the Π-type. To oversimplify, these types model
certain categorical constructs which allow Set, as a part of Martin-Löf type theory, to be
locally cartesian closed. The proof of the equivalence between dependent type theory and
locally cartesian closed categories is given in Hofmann (1995) and Seely (1984).

W-types are a kind of inductive type, whose purpose is to generalize many inductive
types in order to facilitate an easier formalization of their properties (The Univalent Founda-

7. This is a special case of what MacLane (1971, p. 210) calls the interchange of limits, or the commutativity
of limits, the treatment of which is outside the scope of this paper.
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tions Program, 2013, p. 154). Many familiar recursive structures are captured by W-types,
such as the natural numbers, or, to give a data structure more familiar to computer scien-
tists, lists. For simplicity, the type theory of Martin-Löf includes W-types as shown in The
Univalent Foundations Program (2013, Section 5.3), and so Set does have W-types. Since
it is also locally cartesian closed, it means that Set is a ΠW-pretopos.

4. Contrasting HoTT and ZFC

The motivation behind h-sets is a categorical one, under which the main focus is structural
invariance. However, a foundational effort in mathematics should model a wide range of
mathematical domains, or at least the most basic fields upon which the others are built.
The Univalent Foundations Program (2013) gives a presentation of how HoTT can be used
to model Homotopy Theory, Category Theory, Real Analysis and, most importantly, Set
Theory. In this section, we will compare some aspect of HoTT and ZFC, focusing first on
the foundational aspects of each theory, and then how some axioms of ZFC are modelled
in HoTT.

4.1 Foundational differences

The first foundational difference between HoTT and ZFC is in terms of primitives. Both
theories confer a basic status to certain elements, from which the rest of the formal system
is then expanded. In ZFC, the two primitives are sets and the membership relation ”∈”.
In ZFC, everything is a set. This is where the first contrast between the formal theory
and regular use comes to light. To most practitioners, statements such as {∅} ∈ 4 seem
nonsense, but are true in ZFC due to the way natural numbers are defined.

In HoTT, types form, just like in Martin-Löf Type-Theory, the primitive elements, being
given the homotopical interpretation of spaces. In other words, types and elements are the
primitive, being seen through the homotopical lense as spaces, points, and paths.

When speaking of HoTT as a foundational effort, the focus falls upon Axiom 2.1. The
idea of replacing ZFC with a type theoretical foundation of mathematics dates back to
Russell’s type theory and Church’s λ-calculus (Coquand, 2018). Therefore, one may wonder
if the novelty comes mainly in the form of the univalence axiom, what prevents us from
enriching ZFC with the univalence axiom? The answer is straightforward, and is proven in
Proposition 4.1.

Proposition 4.1 (ZFC + Univalence) is inconsistent

Proof Take two sets, S0 = {0} and S1 = {1}. The two sets belong to the same hierarchical
universe U . In categorical terms, isomorphism in set theory consists of a bijective function.
Thus, take f : S0 → S1 defined as f(0) = 1. Trivially, f is bijective, and thus S0 ≃ S1.
According to ZFC’s axiom of extensionality, S0 ̸= S1. Since the axiom holds in ZFC, it also
holds in ZFC + Univalence. Then, according to univalence, since S0 ≃ S1, then S0 = S1.
Thus, (ZFC + Univalence) ⊢ ⊥.

Thus, as a result, in standard ZFC, the univalence axiom would identify all sets of the
same cardinality. However, adding the univalence axiom to Martin-Löf type theory does
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not lead to an inconsistency, which is what made it a suitable starting point for HoTT. In
addition, univalence leads to another axiom, more familiar to its equivalent in ZFC, the
extensionality axiom (The Univalent Foundations Program, 2013, Section 4.9).

In ZFC, extensionality means that two sets are deemed equal iff they have the same ele-
ments. In HoTT, extensionality applies similarly, but only to functions, i.e., two functions8

are equal iff they are equal for all elements of the domain. While in ZFC extensionality
applies to the primitive elements of the theory, in HoTT this is not the case. In type theory,
types are disjunct. This means that no two types share an object. If, by some means, it is
shown that two types share a common object, then automatically those types are deemed
equal. As Angere (2021) points out, this can imply that type theory has a weaker notion
of extensionality than ZFC.

We will now analyse a few of the axioms of ZFC. We will base our analysis on the
following goal. We will present a simple theorem in HoTT, for which an axiom is needed in
ZFC (i.e., the axiom of the empty set). Then, we will cover an axiom from ZFC which does
not hold in HoTT without an additional, separate axiom (i.e., the power set axiom). Finally,
we will discuss the well known case of the axiom of choice, and its different implications in
HoTT.

4.2 The Axiom of Empty Set

In ZFC, the existence of the empty set must be stated as an axiom. This is because, in
ZFC, anything must behave as a set, and as such the existence of the empty set is stated
to prevent further inconsistencies. For example, if two sets A,B are disjoint, then A ∩ B
would not be defined without the existence of an empty set. Thus, in ZFC, the axiom of
the empty set is defined as

∃x∀y¬(y ∈ x)

Or, informally, that there exists at least one set such that no set is a member of that set.
Using the axiom of extensionality, it is then proven that there is exactly one such set, called
the empty set, usually denoted as ∅ or {}.

In Martin-Löf Type-Theory, and by extension in HoTT as well, the existence of an
empty type is a theorem of the system. In other words, no axiom is needed to state that
such a type exists, unlike in ZFC. Formally, these are the rules for the introduction and
the elimination of the empty type, as given in The Univalent Foundations Program (2013,
A.2):

Γ ctx
0-form

Γ ⊢ 0 : Ui

Γ, x : 0 ⊢ C : Ui Γ ⊢ a : 0
0-elim

Γ ⊢ ind0(x.C, a) : C[a/x]

The formation rule simply states that the empty type 0 exists as part of some universe
Ui. The elimination rule is the equivalent of the ex falso principle in logic, which states
that a contradiction implies anything. In HoTT, whenever we can construct a proof a : 0,
then we are allowed to imply anything we want by virtue of its elimination rule, giving us
its induction principle.

The empty type is also a set since, according to the induction principle of the empty
type, for any two inhabitants x, y : 0, we may deduce anything, and in particular, we can

8. With the same domain and codomain
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deduce an inhabitant p : isSet(0). Therefore, the empty type also behaves like a set, and
therefore it is a member of Set.

The empty type is thus a simple example of a construction in HoTT that arises as a
simple consequence of the established rule of the formal theory, and no axiom is needed to
state the existence of this type. This is a simple example of the different characteristic of
each theory.

4.3 The Axiom of Power Set

In ZFC, the power set axiom states, roughly, that given any set W , there exists a set called
the power set of W , usually denoted as P(W ), which contains all the subsets of W . In
formal notation, the axiom is stated as:

∀x∃y∀z(z ∈ y ⇐⇒ ∀w(w ∈ z → w ∈ x))

Unlike the empty set axiom discussed previously, Martin-Löf type theory does not in-
clude as part of the formal theory an equivalent formulation. Adding the univalence axiom
does not lead to anything similar to the power set axiom in HoTT either. However, there
is a method to obtain such a construct in HoTT, by adding another axiom to the theory,
which will be discussed below.

The power set axiom is an example of an existence axiom which, contrary to the empty
set axiom, is not obtained for free as a consequence of the rules and primitives of type
theory. To obtain something similar power sets in HoTT, an additional axiom is needed:

Axiom 4.1 (Propositional resizing) Given the type of all propositions in a universe Ui,
denoted as PropUi

:≡
∑

A:Ui
isProp(A), we have that PropUi

≃ PropUi+1

Using this axiom, power sets can then be defined in HoTT as follows: for a set A, define
P(A) :≡ A → PropU0

, where PropU0
is the type of all mere propositions.

As The Univalent Foundations Program (2013, p. 116) point out, the addition of Axiom
4.1 would make HoTT an impredicative theory. Roughly speaking, a definition is impredica-
tive if it makes reference to something which contains the defined object. Thus, the power
set axiom, and the existence of power objects in general, makes a theory impredicative
(Crosilla, 2020, Section 1.3.2).

Within set-theoretical foundations, the category of sets forms a topos. In other words,
in addition to the already described properties of a ΠW-pretopos, it also has, among other
characteristics, power sets. Therefore, adding propositional resizing to Set would make Set
a topos, but it would also make the theory impredicative.

However, as it will become clear in the next subsection, there are also advantages to
adding such axioms. The final result of The Univalent Foundations Program (2013, Chapter
10) is that the entirety of ZFC can be modelled within HoTT. In other words, ZFC can be
embedded within HoTT, allowing the practice of set theory within univalent foundations.
This provides, to use the terminology employed by Maddy (2019), the generous arena and
shared standard of ZFC, i.e., the possibility of formalizing a multitude of mathematical fields,
that share a common base for what counts as good mathematical practice. In addition,
HoTT provides an excellent field for proof checking, and thus ZFC embedded within HoTT
would benefit from the good computational properties of HoTT.
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4.4 The Axiom of Choice

The axiom of choice has, within ZFC, many equivalent statements (Herrlich, 2006, Chapter
2). One of those equivalent statements is the following: For S = (Ai) a collection (or a set) of
pairwise disjoint non-empty sets, there exists a set C = {xi|xi ∈ Ai} (Jech, 1977). In other
words, for a collection of non-empty sets, there is a set which contains (or chooses) exactly
one element from each set. Alternatively, one can formulate it in terms of a choice function:
For every set S = (Ai) of non-empty sets, there is a function f such that f(Ai) ∈ Ai.

For constructivists, at a first glance, the axiom of choice poses serious problems. As Jech
(1977) points out, it states the existence of a set or a function, without specifying a way to
construct such a set or function. Therefore, it is surprising that, given the non-constructive
nature of this axiom, that there is a formulation of the axiom of choice in HoTT. The logical
statement of the axiom of choice used for the type-theoretical formalization is the following
(The Univalent Foundations Program, 2013, p. 119):

∀(x : X).(∃(a : A(x)).P (x, a)) → ∃(g :
∏
x:X

A(x)).∀(x : X).P (x, g(a))

where it is important that X,A(x) are sets and P (x, a) a mere proposition, for otherwise
the axiom fails (The Univalent Foundations Program, 2013, Lemma 3.8.5.). In other words,
if for any object from the h-set X, there is an object a from the h-set A(x) such that P (x, a),
then there is a dependent function g from x : X to A(x), such that for all x in X, P (x, g(a))
holds. In terms of the set-theoretical formulations given at the beginning of the subsection,
to abuse concepts, X can be thought of as the family of sets, A(x) is similar to each Ai

smaller non-empty set, while P , as a mere proposition, can be thought of as akin to the
membership relation.

The formulation in HoTT of the above logical statement is the following (The Univalent
Foundations Program, 2013, p. 119):(∏

x:X

(∥∥∥∥ ∑
a:A(x)

P (x, a)

∥∥∥∥)) →
∥∥∥∥ ∑
(g:

∏
(x:X) A(x))

∏
(x:X)

P (x, g(a))

∥∥∥∥
We could also add the conditions that X,A(x), P are h-sets and h-propositions, respec-

tively, in the antecedent. The interesting aspect comes in the presence of the propositional
truncation in the type of the axiom of choice. The role of the propositional truncation is
to allow us to assume the existence of some object of a certain type, without having to
provide the exact construction, and use that object in our proof as long as the result does
not depend on the particular value of the object. However, this works solely when the
codomain is a mere proposition.

Furthermore, it was proven that the axiom of choice implies the law of excluded middle
(Diaconescu, 1975), one of the main logical principles rejected by constructivist mathemat-
ics. Therefore, from the perspective of foundational efforts, HoTT can, indeed, be used to
model most of mathematics depending on which axiom one chooses to incorporate into the
theory. The axiom of choice can be generalized to higher levels by replacing propositional
truncation with n-truncation, or even eliminating it entirely for ∞-groupoids (The Univa-
lent Foundations Program, 2013, Chapter 7). Therefore, the axiom of choice has multiple
non-trivial variants within HoTT, as opposed to the unified account in ZFC.
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5. Conclusion

In this paper, we provided a review of the type of sets in homotopy type theory. We first
presented the preliminaries of homotopy type theory, the concepts of h-sets, as well as the
importance of the univalence axiom from the perspective of structuralist approaches to
mathematics. We have then presented the formalization of the type Set as done by Rijke
and Spitters (2015) and The Univalent Foundations Program (2013, Chapter 10.1), recon-
structing their results and giving more intuition to the reader without a strong background
in category theory. Finally, we compared homotopy type theory and ZFC from a founda-
tional perspective, as well as from the point of view of three set-theoretic axioms, showing
whether they can be formalized in homotopy type theory.

Various additional axioms can be added to HoTT, such as propositional resizing, in order
to obtain differing models and results. As Shulman (2017) points out, HoTT is a young
field, and as such there is still active research involving the core theory. But importantly,
this proves that HoTT can be enhanced to suit one’s needs, be them modeling ZFC or
keeping the constructive purity of the theory.

Possible areas of future research into the connections between ZFC and HoTT include
the formalization of all the set-theoretic axioms in ZFC, besides the ones already mentioned
here. For example, an interesting case would be the axiom of infinity, which states the
existence of at least one infinite set in ZFC. Such a set cannot be constructed from finite
sets, and as such could be thought of as an inductive type, similarly to the natural numbers.
However, as with most axioms of existence, care has to be taken to follow the constructive
principles which motivate HoTT.

Responsible Research

The work conducted in this paper falls within the broad field of pure mathematics. While
HoTT’s most obvious application is computer-assisted proof checking, that was not the
focus of our research. As such, problems of experiment reproducibility, code availability, or
data bias are not applicable.

We have aimed to follow established guidelines within mathematical research, such as
those published by established mathematical societies, such as the American Mathematical
Society9 and the European Mathematical Society10. As such, all theorems and lemmas used
in our proofs are properly referenced, and mathematical results are properly attributed to
their respective authors.

A commonly held ethical objection against pure mathematics is that researchers should
focus on more pressing, concrete problems, instead of abstract research with no immedi-
ate applications (Franklin, 1991). However, as Kachapova (2014) points out, many purely
mathematical results found, in time, concrete applications, e.g., number theory in cryp-
tography, or Fourier analysis in computer graphics and signal processing. Further, most
constructions in pure mathematics, due to their high degree of abstraction, can be readily
applied in multiple other domains, such as groups and fields in cryptography, or sets being

9. https://www.ams.org/about-us/governance/policy-statements/sec-ethics
10. https://euro-math-soc.eu/system/files/uploads/COP-approved.pdf
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used in almost all scientific fields. As HoTT is a young field, the practical applications
might still be unclear, but progress is being made, see, e.g., Kunii and Hilaga (2015).
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