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1 Introduction

Graphene has been attracting a lot of attention because of its special physical properties[1]. It consists of
a single layer of carbon atoms producing a hexagonal atomic structure. Due to its high electron mobility
(higher than 2 · 105 cm2V −1s−1)[2] it has potential electronic applications such as transistors[3]. Also the
mechanical properties make graphene interesting. With a breaking strenght of 42 Nm−1 graphene is the
strongest material ever measured[4]. The extraordinary electronic and mechanical properties are an impor-
tant drive in the research regarding graphene.

Graphene has a very low mass density[5] and is very thin[5]. The low mass density causes large zero point
motion (xzpf ∝

√
1/m) and the low thickness leads to a large quality factor[6]. Graphene employed as

a resonator has, mainly because of its low mass density and its high quality factor, attractive mechanical
apllications such as mass sensing[7] and force sensing[8].

Cavityoptomechanics is a technique that involves the study of the interaction of electromagnetic radia-
tion with mechanical systems via radiation pressure[9],[10]. It has been used to bring mechanical systems to
their quantum groundstate with side band cooling[11] and to entangle microwave photons with the motion of
a mechanical resonator[12]. To investigate the mechanical properties of graphene, coupling between graphene
and a superconducting cavity can be made. The mechanical motion of the oscillating graphene capacitively
couples to the microwave cavity. It has proven to have good position sensitivity [13]. This approach has
yielded a displacement sensitivity of 17 fm/

√
Hz[14].

In this report coupling between a multilayer graphene oscillator and a superconducting microwave cav-
ity is made. The production technique is described in [14]. The objectives are to determine a nonlinear
term in the restoring force of the oscillating graphene and to qualitatively investigate the behavior of the
oscillator. The importance of the effect of a nonlinear term in the restoring force on the motion of graphene
has been recognized[15]. The internal and external dissipation rate of the microwave cavity were found to be
2π ·51.7 kHz and 2π ·197.8 kHz respectively. The resonance frequency of the cavity was 2π ·5.901 GHz and
the resonance frequency of the mechanical oscillator was 2π · 36.360 MHz. Measurement of the value of the
quality factor yielded 148899 in the low backaction regime accompanied with a value of α of 3.3·1016 kg/m2s2.
The quality factor and the value of α were 62769 and 3.2 · 1017 kg/m2s2 respectively in the high backac-
tion regime. It was concluded that backaction decreases the quality factor of the mechanical resonator and
increases the value of α in the restoring force.
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2 Background theory

2.1 Linear Oscillator

The derivation of the amplitude and phase equations of the linear oscillator and other explanations are based
on [16]. Oscillation is a periodic variation of position in time about an equilibrium point. Most oscillators
can be thought of as a mass on a spring.

Figure 2.1: A mass on a spring oscillating around its equilibrium position.

A Taylor expansion of the potential of an oscillator around its equilibrium can be made.

V (x) = V (x− x0) +
dV

dx
(x− x0) +

1

2

d2V

dx2
(x− x0)2 +O((x− x0)3) (2.1)

At equilibrium the first derivative of the potential is zero. When terms of order (x − x0)3 and higher are
neglected the potential near equilibrium is given by a parabola. The force corresponding with this potential
is given by the equation below.

Frestoring = −kx (2.2)

Equation (2.2) is called the linear restoring force (Hooke’s law). The variable k reflects the stiffness of the
spring. A driving force and a damping force can influence the motion of an oscillator. The assumption is
made that the damping force is linear proportional to the speed at which the ossilator moves and that the
driving force has a sinusoidal form.

Fdamping = −lẋ and Fdrive = Bcos(ωt) (2.3)

The equation of motion of an oscillator is now given below.

mẍ = −kx︸︷︷︸
restoring force

−lẋ︸︷︷︸
damping force

+ Bcos(ωt)︸ ︷︷ ︸
driving force

(2.4)

Rewriting and dividing by m gives:

ẍ+Q−1ω0ẋ+ ω2
0x = ω2

0Acos(ωt) (2.5)

The relations of the symbols between equation (2.4) and equation (2.5) are given in equation (2.6).

Q−1 =
l

mω0
ω0 =

√
k

m
(2.6)

Q is called the quality factor of the oscillator and the ω0 the resonance frequency. When the motion of the
oscillator is given by its steady state solution the energy loss due to damping is matched by the work done
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by the driving force. A steady state pattern of oscillation is expected with the same frequency as the driving
force. A solution that should be tried is given by the equation below.

x(t) = x0cos(ωt− φ) (2.7)

Substituting this solution into equation (2.5) gives equation (2.8).

(ω2
0 − ω2)x0cos(ωt− φ)− x0Q

−1ω0ωsin(ωt− φ) = ω2
0Acos(ωt) (2.8)

Equation (2.8) can be rewritten.

[x0(ω2
0−ω2)cos(φ)+x0Q

−1ω0ωsin(φ)+ω2
0A]cos(ωt)+[x0(ω2

0−ω2)sin(φ)−x0Q
−1ω0ω = cos(φ)]sin(ωt) = 0

(2.9)
This leads to a system of two equations.

x0(ω2
0 − ω2)cos(φ) + x0Q

−1ω0ωsin(φ) + ω2
0A = 0 (2.10a)

(ω2
0 − ω2)sin(φ)−Q−1ω0ωcos(φ) = 0 (2.10b)

The solution of this system is shown below.

x0 =
ω2

0A

[(ω2
0 − ω2)2 +Q−2ω2

0ω
2]

1
2

(2.11a)

φ = arctan

(
Q−1ω0ω

ω2
0 − ω2

)
(2.11b)

Substituting the calculated values into equation (2.7) gives:

x(t) =
ω2

0A

[(ω2
0 − ω2)2 +Q−2ω2

0ω
2]

1
2

cos

[
ωt− arctan

(
Q−1ω0ω

ω2
0 − ω2

)]
(2.12)

The left image in figure 2.2 shows a plot of the dimensionless amplitude of the oscillation for different values
of Q. It is clear from the figure that a higher value of the quality factor, which means less damping, leads to
a larger amplitude. The amplitude is maximal when the driving force is at the resonance frequency of the
oscillator (ω = ω0). The right image shows the phase difference between the driving force and the motion
of the oscillator. For driving frequencies far below the resonance frequency the response of the oscillator
tends to be in phase with the external drive. For driving frequencies far above the resonance frequency the
response of the oscillator tends to be in anti-phase with the drive. For higher quality factors the transition
from in phase to out of phase gets sharper. The amplitude of the linear oscillator (equation (2.11a)) is often
approximated with the help of a Taylor series of the square root in the denominator and ω ≈ ω0. Using this
approach the expression below is obtained for the amplitude of the linear oscillator.

x0 =
A

Q−1 +
(

ω−ω0

Q−1/2ω

)2 (2.13)

The shape of this curve is called a Lorentzian. A plot of the dimensionless amplitude for different values of
Q is shown. Note that the amplitude function is now symmetric.
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Figure 2.2: Left: The amplitude of a linear oscillator divided by the amplitude of the driving force for
different frequencies of the driving force divided by the resonance frequency. Right: The phase difference
between the driving force and the motion of the oscillator divided by π for different frequencies of the driving
force divided by the resonance frequency.

Figure 2.3: Approximation of the amplitude of a linear oscillator divided by the amplitude of the driving
force for different frequencies of the driving force divided by the resonance frequency.

2.2 Nonlinear Oscillator

The derivation of the amplitude and phase equations of the nonlinear oscillator and other explanations are
based on [17]. When the deformations of the a system become larger, Hooke’s law (equation (2.2)) becomes
too rough an approximation. A better approximation of the restoring force is given by equation (2.14).

Frestoring = −kx− βx2 − αx3 (2.14)
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Also when the amplitudes of motion become larger, non-linear terms in the damping force become more
important. The damping force is now approximated as:

Fdamping = −lẋ− µxẋ− ηx2ẋ (2.15)

The term β in the expression of the restoring force and the term µ in the expression of the damping force
do not qualitatively alter the response curves of the amplitude and phase. They merely rescale the values
of α and η. Therefore they will be left out in the equation of motion. The proof can be found in appendix
A. Assume that the driving force has a sinusodial form. The equation of motion is now given below.

mẍ = −kx− αx3︸ ︷︷ ︸
restoring force

−lẋ− ηx2ẋ︸ ︷︷ ︸
damping force

+ Bcos(ωt)︸ ︷︷ ︸
driving force

(2.16)

If α is positive the higher order term will assist the linear term and the oscillator will behave stiffer than
described by Hooke’s law. It will have a higher resonance frequency. When α is negative the oscillator will
behave softer and have a lower resonance frequency compared to the resonance frequency when the higher
order term is neglected. The following substitutions are made in order to make the variables dimensionless.
This will result in an easier form of equation (2.16).

x̃ = x

√
α

mω2
0

and t̃ = ω0t (2.17)

After the substitutions and dividing by mω2
0

√
mω2

0

α equation (2.18) is obtained.

¨̃x+ x̃+ x̃3 +Q−1 ˙̃x+ η̃x̃2 ˙̃x = Gcos(ω̃t̃) (2.18)

The relation of the dimensionless parameters with the physical ones are apart from equation (2.17) given in
equation (2.19).

Q−1 =
l

mω0
η̃ =

ηω0

α
G =

B

ω3
0

√
α

m3
ω̃ =

ω

ω0
(2.19)

Q is the quality factor of the oscillator.

The method of multiple scales (a perturbation method) is used to approximate the solution of equation
(2.18). The method introduces a fast and a slow timescale which are treated as independent. This leads to
an additional degree of freedom, which is used to remove secular1 terms.

Now define ε as the reciprocal of the quality factor.

ε = Q−1 (2.20)

Note that 0 < ε � 1 because quality factors are often of the order 102 or larger. Two transformations are
made concening equation (2.18).

G = ε3/2g ω̃ = 1 + εΩ (2.21)

Note that these transformations do not affect generality. The new form of the dimensionless equation of
motion is given by equation (2.22).

¨̃x+ x̃+ x̃3 + ε ˙̃x+ η̃x̃2 ˙̃x = ε3/2g cos
[
(1 + ε)t̃

]
(2.22)

The solution to equation (2.22) can be expressed as given by equation (2.23).

x̃(t̃) =

√
ε

2
x0(t̃) + ε3/2x1(t̃) +O(ε5/2) (2.23)

1Secular terms are unphysical parts of a solution. They usually cause divergence when a variable approaches a certain value.
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The definition of the slow and fast time are given below.

T0 = t̃ T1 = εt̃ (2.24)

As dimensionless time increases the fast time increases at the same rate, while the slow time increases at a
rate proportional to ε. The differentiating operator now becomes:

d

dt̃
=

∂

∂T0
+ ε

∂

∂T1
(2.25)

The first and second derivative of the dimensionless position are given by equations (2.26a) and (2.26b).
Terms of order ε5/2 and higher are neglected.

dx̃

dt̃
=

√
ε

2

∂x0

∂T0
+ ε3/2

[
∂x1

∂T0
+

1

2

∂x0

∂T1

]
+O(ε5/2) (2.26a)

d2x̃

dt̃2
=

√
ε

2

∂2x0

∂T 2
0

+ ε3/2
[
∂2x1

∂T 2
0

+
∂2x0

∂T0∂T1

]
+O(ε5/2) (2.26b)

The expressions above are now inserted into equation (2.22).

√
ε

2

∂2x0

∂T 2
0

+ ε3/2
∂2x1

∂T 2
0

+ ε3/2
∂2x0

∂T0T1
+

√
ε

2
x0 + ε3/2x1 +

(√
ε

2
x0 + ε3/2x1

)3

+ ε

(√
ε

2

∂x0

∂T0
+ ε3/2

∂x1

∂T0

+
ε3/2

2

∂x0

∂T1

)
+ η̃

(√
ε

2
x0 + ε3/2x1

)2(√
ε

2

∂x0

∂T0
+ ε3/2

∂x1

∂T0
+
ε3/2

2

∂x0

∂T1

)
= ε3/2gcos(T0 + T1Ω)

(2.27)
Comparing the coefficients for

√
ε and ε3/2 gives:

∂2x0

∂T 2
0

+ x0 = 0 (2.28a)

∂2x1

∂T 2
0

+ x1 = − ∂2x0

∂T0∂T1
− 1

8
x3

0 −
1

2

∂x0

∂T0
− η̃x2

0

8

∂x0

∂T0
+ g cos(T0 + T1Ω) (2.28b)

Equation (2.28a) has the general solution:

x0 = A(T1)ejT0 + c.c. (2.29)

Equation (2.28b) is rewritten with the help of equation (2.29).

∂2x1

∂T 2
0

+ x1 = −
[
j

(
dA

dT1
+

1

2
A+

η̃

8
A2A∗

)
+

3

8
A2A∗ − g

2
ejT1Ω

]
ejT0︸ ︷︷ ︸

Secular term

−1

8
A3e3jT0 − η̃

8
A3je3jT0 + c.c. (2.30)

The left side of equation (2.30) can be seen as an undamped linear oscillator and the right side as the driving
force. The first part of the right side term, indicated with the accolade, is driving at the resonance frequency.
Since there is no damping term this will cause the amplitude of the oscillation to become infinite. The secular
term is forced to be zero.

−
[
j

(
dA

dT1
+

1

2
A+

η̃

8
A2A∗

)
+

3

8
A2A∗ − g

2
ejT1Ω

]
ejT0 = 0 (2.31)

Rewrite equation (2.31).
dA

dT1
= −1

2
A− η̃

8
A2A∗ +

3

8
jA2A∗ − g

2
jejT1Ω (2.32)
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A steady state solution of the form below is tried.

A(T1) = aejΩT1+φ, a εR (2.33)

With the help of equation (2.23) and (2.29) it now follows that is x̃(t̃) of the form:

x̃(t̃) = a
√
ε cos(ω̃t̃+ φ) +O(ε3/2) (2.34)

Substituting this in equation (2.32) gives the implicit relations for the amplitude and phase of the first order
term of x̃(t̃).

|a|2 =
g2(

2Ω− 3
4 |a|2

)2
+
(
1 + 1

4 η̃|a|2
)2 (2.35a)

φ = arctan

(
1 + 1

4 η̃|a|
2

2Ω− 3
4 |a|2

)
(2.35b)

Equations (2.35a) and (2.35b) are rewritten so that it consists of the original physical quantities.

x2
0 =

(
B

2mω2
0

)2

(
ω−ω0

ω0
− 3

8
α

mω2
0
x2

0

)2

+
(

1
2Q
−1 + 1

8
η

mω0
x2

0

)2 (2.36a)

φ = arctan

(
l
2 + η

8x
2
0

mω −mω0 − 3α
8ω0

x2
0

)
(2.36b)

The image on the left shows the scaled dimensionless amplitude (equation (2.35a)) as a function of the
frequency Ω. Equation (2.35a) has three solutions for a given frequency, three real solutions or one real
solution and two complex solutions. The dimensionless nonlinear damping term η̃ is varied. The right image
shows the phase difference between the driving force and the motion of the oscillator (equation (2.35b)).
When α is taken negative (equation (2.14)) the peaks of the amplitude will bend to the left and the phase
will change by 180 degrees. In order to find an expression for the resonance frequency the amplitude function
(equation (2.35a)) is differentiated with respect to Ω.[

3

64
(9 + η̃2)|a|4 +

1

4
(η̃ − 6Ω)|a|2 +

1

4
+ Ω2

]
d|a|2 =

[
3

4
|a|4 − 2Ω|a|2

]
dΩ (2.37)

Setting d|a|2/dΩ to zero gives:

Ωmax =
3

8
|a|2max (2.38)

Equation (2.38) is rewritten in the original physical quantities.

ωmax = ω0 +
3

8

α

mω0
X2
max (2.39)

Where Xmax is the amplitude of the first order term of equation (2.23). Rewrite equation (2.39) to get an
explicit expression for α.

α =
8

3

mω0

X2
max

(ωmax − ω0) (2.40)

The result agrees with the expectation. When α is zero the frequency where the amplitude is at the max-
imum occurs at ω0. The resonance frequency is in this case equal to the resonance frequency of the linear
oscillator. When α is positive the oscillator behaves stiffer and the resonance frequency is indeed higher
according to equation (2.40). A negative α produces a lower resonance frequency.
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Figure 2.4: Left: The dimensionless amplitude of a nonlinear oscillator for different frequencies. Right:
The phase difference between the driving force and the motion of the oscillator divided by π for different
frequencies Ω.

At the bifurcation points, where the number of solutions changes from one to three or from three to one,
dΩ/d|a|2 = 0.

3

64
(9 + η̃2)|a|4 +

1

4
(η̃ − 6Ω)|a|2 +

1

4
+ Ω2 = 0 (2.41)

Solving for Ω gives:

Ω±bifurcation =
3

4
|a|2 ± 1

2

√
3

16
(3− η̃2)|a|4 − η̃|a|2 − 1 (2.42)

2.3 Optical Cavity

The discussion and derivations of the optical cavity are based on [10] and [9]. A general schematic description
of an optical cavity is discussed below. An optical cavity is created by placing two highly reflective mirrors
in front of eachother. To the left of the left mirror a laser is positioned. Assume that the light of the laser is

Figure 2.5: A schematic setup of an optical cavity.

monochromatic. The light emitted by the laser may be transmitted into the cavity or may be reflected by the
mirror. The frequencies of the laserlight which leads to a large transmittance are the resonance frequencies
of the cavity.

ωm = m
πc

L
, m = 1, 2, 3, ... (2.43)

m is called the mode number and L is the length of the cavity. The separation between the resonance
frequencies is called the free spectral range.

∆ωFSR = π
c

L
(2.44)
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Due to the high reflectivity of the mirrors the photons inside the cavity “bounce” between the mirrors.
Imperfections of the cavity cause internal absorption of photons and photons are scattered out of the cavity.
These leads to a decay rate of the photons in the cavity. The decay rate is denoted as κ. Another useful
quantity is the optical finesse: F .

F =
∆ωFSR

κ
(2.45)

The optical finesse is equal to the average number of roundtrips of the photons in the cavity times 2π. It
is a dimensionless parameter that gives information about the quality of the cavity. An alternative for the
optical finesse is the quality factor of the cavity.

Qopt = ωcavτ (2.46)

τ is the average lifetime of the photon in the cavity (τ = κ−1). The decay rate is ussually divided in an
external and an internal part. The external decay rate, κex, represents losses that are caused outside the
cavity. For example: if the transmission condition is met, some light still gets reflected of the left cavity
mirror. The internal part, κ0, represents losses that are caused inside the cavity. For example: absortion of
photons inside the cavity, scattering of photons from the inside to the outside of the cavity and transmission
of photons through the right cavity mirror.

κ = κex + κ0 (2.47)

The input-output relation is now discussed. âin denotes the field amplitude to the left of the left mirror, â
the field amplitude inside the cavity and âout the field amplitude to the right of the right mirror. The input
and output field amplitudes must satisfy equation (2.48).

âout = âin −
√
κexâ (2.48)

The Heisenberg equation of motion for the field amplitude is given by:

˙̂a = −κ
2
â+ i∆â+

√
κexâin (2.49)

In equation (2.49): ∆ = ωL − ωc, the amount of detuning of the laser from the cavity resonance frequency.
The field amplitude âin is normalized such that the input power is given by ~ω |〈âin〉|2. (The angle brackets
represent an average). When the optical cavity is at steady state: ˙̂a = 0. Equation (2.48) and equation
(2.49) can be combined to get a relation between the average field amplitude in the optical cavity and the
average field amplitude to the left of the left mirror.

〈â〉 =

√
κex 〈âin〉
κ
2 − i∆

(2.50)

The average number of photons “bouncing” in optical cavity is given by:

〈ncav〉 = |〈a〉|2 =
κex

∆2 + (κ/2)2
|
〈
â2
in

〉
|= κex

∆2 + (κ/2)2

P

~ωL
(2.51)

With the help of equation (2.47),(2.48) and (2.50) a formula for 〈âout〉 / 〈âin〉 and it’s phase is found.

R =
〈âout〉
〈âin〉

=
(κ0 − κex)/2− i∆
(κ0 + κex)/2− i∆

(2.52a)

φ = arctan

(
4∆κex

κ2
0 − κ2

ex + 4∆2

)
(2.52b)

The reflection coefficient is now:

Γ =
|〈âout〉|2

|〈âin〉|2
=
κ2

0 + κ2
ex − 2κ0κex + 4∆2

κ2
0 + κ2

ex + 2κ0κex + 4∆2
(2.53)
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Three regimes based on the internal and external dacay rate are distinguished. If κex � κ0 the reflection is
almost equal to 1. The cavity is said to be overcoupled. Almost all the photons from the laser come back out
of the cavity without being absorbed, scattered or transmitted. The case where κex = κ0 refers to critical
coupling. The reflection coefficient is 0 at the resonance frequencies (∆ = 0). The input power must be
dissipated inside the cavity or fully transmitted through the right mirror. The last possibility is κex � κ0.
The cavity is said to be undercoupled. Photons are mostly lost inside the cavity. To more easily refer to the
kind of coupling, the coupling efficiency is introduced.

η =
κex
κ

(2.54)

Values of 1/2 < η ≤ 1 indicate overcoupling, η = 1/2 critical coupling and 0 ≤ η < 1/2 undercoupling. The
left image in figure 2.6 shows a plot of the reflection coefficient for different values of η. The undercoupling
regime shows a sharp dip at the resonance frequency, indicating that the reflection quickly goes to one
when the laser is more detuned. The overcoupling regime shows a much broader dip. In the right figure
the minimum of the reflection is plotted as a function of the coupling efficiency. At critical coupling the
minimum of the reflection goes to zero and for over- and undercoupling the minimum goes at the same pace
to higher values.

Figure 2.6: Left: The reflection versus the detuning of the laser for different couling regimes. Right: The
minimum of the reflection versus the coupling efficiency.

2.4 Microwave resonators

The wavelength of microwaves with frequency of order GHz is a few mm. The microwave cavity can be
made in this frequency range by terminating a transmissionline of a quarter or half wavelength. A discussion
and derivations regarding transmissionlines is included in appendix B. In this research the superconducting
cavity is a quarter wavelength coplanar waveguide resonator. As shown in the appendix the inductance and
capacitance per unit length can be tuned such that the resonance frequency is in the few GHz range.

2.5 Optomechanics

The discussion and derivations in this section are based on [9] and [18]. Now suppose the right mirror of
the optical cavity is connected to a mechanical oscillator. The left mirror remains fixed, see figure 2.8.
The movement of the mechanical oscillator will change the length of the cavity and thus the transmittance
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Figure 2.7: A schematic setup of an optical cavity.

condition. The signal of the detector contains information about the motion of the oscillator. Assume that
the oscillator has a frequency of ωm. When a photon is reflected momentum of |∆p| = 2h/λ is transfered.

Figure 2.8: A schematic setup of an optomechanical system.

The force caused by the radiation pressure is given by:

〈F 〉 =
2h

λ
· 1

τc
· 〈ncav〉 =

~ω
L
|〈â〉|2 = ~G|〈â〉|2 (2.55)

Where τc = 2L/c, the time it takes the photon to make a roundtrip in the cavity and G is the frequency pull
parameter, the change of resonance frequency due to change in position. From equation (2.55) it is clear that
the radiation pressure force decreases when the lenght of the cavity increases. The oscillator experiences the
momentum transfer as a radiation pressure from the light inside the cavity. The movement of the oscillator
results in more or less light in the cavity and thus in more or less radiation pressure. The motion of the right
mirror influences itself by changing the radiation pressure it experiences. This is called dynamical backaction.

Due to the particle nature of light the laser exhibits shot noise. The number of photons emitted by the
laser fluctuates. The leads to variations in the radiation pressure. If the intensity of the laser increases the
signal to noise ratio improves. Higher laser intensities leads to more photons in the cavity and gives a higher
radiation pressure. Optimum sensitivity is achieved at the standard quantum limit (SQL). At the SQL the
contribution of the shot noise and quantumback action are both equal to half of the zero-point motion the

right mirror (xzpf =
√

~
2mωm

).

Because the right mirror is now connected to a mechanical oscillator, the equation for the field amplitude
(equation (2.49)) has to be modified.

˙̂a = −κ
2
â+ i(∆−Gx̂)â+

√
κexâin (2.56)
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We also write down the equation of motion of the oscillator in the linear regime.

meff
¨̂x = −meffω

2
mx̂−meffΓm ˙̂x− ~G|〈â〉|2 (2.57)

Equation (2.56) and equation (2.57) are linearized around a steady state solution: â = ā+δâ and x̂ = x̄+δx̂.In
order to find ā and x̄, the derivatives ˙̂a, ¨̂x and ˙̂x are set to zero in equation (2.56) and equation (2.57).

ā =

√
κexâin

κ
2 − i(∆−Gx̄)

(2.58a)

x̄ =
~G|〈â〉|2

meffω2
m

(2.58b)

Substituting â = ā+ δâ and x̂ = x̄+ δx̂ in equation (2.56) and equation (2.57) gives:

d

dt
δâ = (i∆̄− κ

2
)δâ− iGāδx̂+

√
κexδâin (2.59a)

d2

dt2
δx̂+ Γm

d

dt
δx̂+ ω2

mδx̂ = − ~G
meff

(δâ+ δâ†) (2.59b)

Where ∆̄ = ∆ − Gx̄ and only first order terms in the quantities δâ and δx̂ are retained. We assume that
δâin can be written as: δâin = spe

−i(ωp−ωd)t = spe
−iΩt. Here ωp is the probe frequency, ωd the drive

frequency (see the experimental set-up section) and sp the number of photons as a function of the probe
power. Another Ansatz is introduced:

δâ(t) = A−e−iΩt +A+e+iΩt (2.60a)

δâ†(t) = (A+)∗e−iΩt + (A−)∗eiΩt (2.60b)

δx̂(t) = Xe−iΩt +X∗eiΩt (2.60c)

Equation (2.60a) and equation (2.60c) are substituted into equation (2.59a). Comparing coefficients for e−iΩt

and eiΩt gives:

−iΩA− =
(
i∆̄− κ

2

)
A− − iGāX +

√
κexsp (2.61a)

iΩA+ = (i∆̄− κ

2
)A+ − iGāX∗ (2.61b)

Equations (2.60a), (2.60b) and (2.60c) are substituted into equation (2.59b). Comparing coefficients for
e−iΩt and eiΩt gives:

X(−Ω2 − iΩΓm + ω2
m) = − ~G

meff
(A− + (A+)∗) (2.62a)

X∗(−Ω2 + iΩΓm + ω2
m) = − ~G

meff
(A+ + (A−)∗) (2.62b)

From equations (2.61a) and (2.61b):

A− =
iGāX −√κexsp
i(Ω + ∆̄)− κ

2

(2.63a)

A+ =
−iGāX∗

i(Ω− ∆̄) + κ
2

(2.63b)

Equations (2.63a) and (2.63b) are substituted in equation (2.62a). Equation (2.62b) is needed to rewrite the
result.

X =
~Gāχ(Ω)

√
κexsp

i(∆̄ + Ω)− κ
2 − 2∆̄f(Ω)

(2.64)
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Where:

f(Ω) = ~G2ā2 χ(Ω)

i(∆̄− Ω) + κ
2

(2.65a)

χ(Ω) =
1

meff
· 1

Ω2
m − Ω2 − iΩΓm

(2.65b)

Also the following two equations hold.

sp =

√
κex
κ/2

·
√
Pprobe
~ωc

(2.66)

A− = sp(1− |S11|) (2.67)

Here S11 is the measured reflection.

Now the equation for the amplitude of the mechanical resonator is:

X = χ~GāA− (2.68)

Equation (2.68) will be used to calculate the amplitude of the oscillator.

For a discussion of the influence of back-action on the measured reflection see appendix C.
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3 Experimental Set-up

The left image of figure 3.1 shows a falso colored picture of the device. A multilayer graphene flake, with a
thickness of approximately 10 nm, forms a capacitor between the superconducting cavity and the transmis-
sionline (feedline). This capacitor is denoted as Cm in the right image of figure 3.1. The distance between the
cavity and the drum is approximately 150 nm. The mircowave photons are coupled in and out of the cavity
via the transmissionline. A more detailed description of the production technique can be found in [14]. The
circuit model of the superconducting cavity and the graphene resonator is shown in the right image. The
ground displayed at the bottom forms one of the “mirrors” and the high impedance of the two capacitors
at the top (C1 and Cm) forms the other “mirror” (see equation (B.14) in appendix B). Low frequency RF
voltages can be applied to the microwave feedline.

Figure 3.1: Left: False colored electron microscope image of the device. The image is taken from [14]. Right:
Model of superconducting cavity with the graphene resonator. The graphene resonator is denoted as Cm.

3.1 Cavity response

Figure 4.1 shows a schematic view of the setup used to measure the cavity response. The impendance of the
cavity is 50 Ω. Note that Cm is fixed and R is very large, because the cavity is cooled to a temperature of
order 10 mK. To the attenuation of 39.6 dB another 40 dB is added and the cable at the input gives an-
other 8 dB attenuation. The attenuation at the input brings the signal to a more thermalized state (smaller
frequency peak). There is a frequency sweep at the input and the reflection for each frequency is measured.

Equation (2.53) applies to the ideal case. An α is introduced which gives the quality of isolation from
port 1 to 3 of the circulator. There is an incoming field amplitude at port 1 of the circulator. Most of the
signal goes to port 2, but some of the signal leaks directly to port 3 and skips the cavity. The signal that
goes from port 1 directly to port 3 undergoes some phase shift. Figure 3.3 illustrates the process described
above. Equation (2.52a) is now rewritten.

R = αeiφ + (1− α)

(
1− κex

κ/2− i∆

)
(3.1)

Squaring equation (3.1) gives:

R2 = α2 + 2α(1− α) cos(φ) + (1− α)2 +
4(α− 1)κex
κ2 + 4∆2

[ακ cos(φ) + (1− α)κ0 + 2α∆ sin (φ)] (3.2)
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Figure 3.2: Schematic view of the setup to measure the cavity response.

Figure 3.3: Schematic view of an imperfect circulator. An ideal circulator would have α = 0. In practice
some signal leaks across to port 3 instead of going to port 2. This is relevant for the asymmetry in figure
4.1.

The squared form (equation (3.2)) was used to make the fit and extract the parameters.
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Figure 3.4: Schematic view of the setup to measure the response of the oscillating graphene layer. Signal
ωd comes in at port 1. At the first directional coupler the signal splits and a small part of the signal is used
in the cancellation proces. The larger part of the signal goes on and at the second directional coupler ωp
is added. The signals combine and beat at ωm. The carrier signal at ωp is cancelled as much as possible
by adjusting the phase and amplitude of the reference signal and monitoring the result with a spectrum
analyser. The desired signal comes out at port 2.

3.2 Optomechanical induced transparancy (OMIT)

Figure 3.2 shows the schematic setup used to measure the response of the graphene oscillator. The ampli-
fiers used in the circuit are HEMT amplifiers with a gain of 35 dB at 6 GHz. The coupling factors of the
directional couplers vary. The shaded output ports of the directional couplers are closed (infinite resistance).
The graphene layer is driven. This means that the Cm becomes a function of time.

The signal at the input (port 1) has a relatively large amplitude and has frequency ωd = ωc ± ωm. If
ωd = ωc − ωm is chosen, the cavity is said to be driven at the red side band. If ωd = ωc + ωm is chosen, the
cavity is driven at the blue side band. The first directional coupler has a coupling factor of -10 dB. The small
signal obtained from the side port is used as a reference signal and for cancellation. At the second directional
coupler ωp is added. The second directional coupler has a coupling factor of -20 dB. This signal is further
attenuated by adding an attenuation of 48 dB. (This attenuation consists of two attenuators of 20 dB and
the cable provides another 8 dB). The total signal is again attenuated by 39.6 dB in order to get a more
thermalized state. The two signals ωd and ωp combine and beat at ωm. Now ωm and ωd combine to give a
signal at ωp. In order to analyse the relevant signal the carrier signal has to be attenuated through a carrier
cancellation process. The amplitude for different frequencies is monitored with a spectrum analyser. The
amplitude and phase of the signal obtained from the side port of the first directional coupler are adjusted
so that the signal has a low amplitude at the frequency ωd. The signal at ωp is now amplified.
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4 Results and discussion

4.1 Cavity response measurement

Figure 4.1 shows the measurement of the reflection2 of the microwave cavity. The asymmetry of the figure
is caused by the imperfect circulator (see figure 3.3). The measurement was done at T ≈ 13 mK. The
following parameters are estimated with the help of a least square fit:

κ0 = 2π · 51.7 kHz

κex = 2π · 197.8 kHz

ωc = 2π · 5.901 GHz

a = 0.064

φ

π
= −0.317

(4.1)

The cavity is in the overcoupling regime: η = 0.751.

2The reflection will from now on be denoted as |S11|.
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Figure 4.1: Measurement of the resonant frequency of a microwave cavity.

4.2 Linear and Non-Linear mechanics with OMIT setup.

The cavity response is used to measure mechanics. The mechanical resonator is driven by adding a small
RF signal and a DC voltage to the microwave feedline. The force on the graphene layer is proportional to
the pump power and probe power: Driveforce ∝ Ppump · Pprobe. The cavity is driven at the red side band
frequency 3: ωd = ωc − ωm = 2π · 5.864187 GHz. (The blue side band would be ωc + ωm). A typical signal
that is measured is shown in figure 4.2. The sharp dip in the middle of the large dip shows the mechanical
response. We now zoom in on the sharp dip (see figure 4.3). The driving force is adjusted by changing the
power of the pump and probe. It is observed that the sharp dip has a Lorenzian shape when the power of
the pump and probe are set to a low value. The shape of the signal changes when the power of the pump
and probe are set to a higher value. The signal gets a “shark fin” shape.

As the frequency goes up the response follows the curve as was shown in the image on the left of figure
2.4. As frequency keeps rising the curve the response was initially following bends backward in frequency
and the signal drops sharply to the lower solution. This explains the “shark fin” like shape that appears.

3The location of the red side band frequency in the frequency domain can be found by taking a big sweep of the drive frequency.
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Figure 4.2: Measurement of the response when the oscillator is driven and the frequency is swept. The image
is taken from [14].
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Figure 4.3: Left: Example of the signal when the driving force is low. The shape is Lorenzian. Right:
Example of a signal when the driving force is high. The shape is duffing.

It is noted that the signal to noise ratio is worse a low powers. Also at low powers the signal tends to
become more unstable: the peak drifts back and forth in frequency.
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4.3 Vary probe power with fixed pump power at the red side band

We fix the pump power and vary the probe power. For the first probe power sweep the pump power is fixed
at 14 dBm and for the second one the pump power is set to 17 dBm. The effect of backaction is small at the
pump power of 14 dBm and more significant at the pump power of 17 dBm. A more extensive explanation
can be found in appendix D.

4.3.1 Pump power is set to 14 dBm and the probe power is varied.

The pump power is fixed at 14 dBm and the reflection is measured at the integer probe powers between
−20 dBm and 15 dBm. The frequency sweep is done in both directions: from a low to a high frequency
and the other way round. At a low probe power the signal has a Lorenzian shape. The measurement with a
Lorenzian shape that is the most stable is sought out and fitted with equation (2.11a) to extract the quality
factor (see figure 4.8). The estimated quality factor was 148899.
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Figure 4.4: Signal and fit for a pump power of 14 dBm and a probe power of −13 dBm. The frequency was
swept upwards. The quality factor was estimated to be 148899.

We now proceed to convert the measured reflections to mechanical amplitudes with equation (2.68) for the
different probe powers. The values of meff and G are taken from [14].

meff = 0.276 pg

G = 2π · 26.5 kHz/nm
(4.2)

The maximal mechanical amplitude and the frequency at which this maximal amplitude occurs are de-
termined for each of the probe powers. Figure 4.5 illustrates the situation for the linear regime and the
non-linear regime.
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Figure 4.5: Left: Example of the mechanical response when the driving force is low. The probe power is
−16 dBm. The red signal corresponds with a frequency sweep in the upward direction and the blue signal
with a frequency sweep in the downward direction. The maximal amplitude and the frequency at which it
occurs are indicated with the help of the dotted lines. Right: Example of the mechanical response when the
driving force is high. The probe power is 15 dBm.

The signal that corresponds with a low power (left image) shows a Lorentzian shape in contrast to the “shark
fin” shape of the signal that corresponds with the higher power (right image). The signal observed at low
probe powers tended to become more unstable. The dip drifts back and forth in frequency. This can be seen
in the images, the dips should have occured at the same frequency if the signal was stable. Also is the signal
to noise ratio worse at low powers.

It is noticed in the right image of figure 4.5 that the height of the dips differs a lot. This can be ex-
plained with figure 2.4 in mind. When frequency is swept in the direction of the bending of the amplitude
the signal will follow the upper branch and when the amplitude tends to bend back in frequency, the signal
bifurcates to the lower solution. This will result in the large amplitude. When frequency is swept from
the other direction, the lower branch is followed until the amplitude tends to bent back in frequency, then
the signal bifurcates to the upper solution. This will result in a lower amplitude. When the frequency is
swept from a low to a high frequency the bifurcation frequency is larger than the bifurcation frequency that
correponds with a sweep from a high to a low frequency as can be seen in figure 2.4. This is reflected in the
right image of figure 4.5 where the sharp jump from the maximal amplitude tot the background signal occurs
at a larger frequency for the forward frequency sweep and earlier in frequency for the backward frequency
sweep. To illustrate the difference between the sweep up and the sweep down measurements figure 4.6 is
included. It shows the frequency where the amplitude is maximal as a function of probe power.
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Figure 4.6: Frequency at which the maximal amplitude occurs for the different probe powers and a fixed
pump power of 14 dBm. At large probe powers the amplitude response bends sharper (becomes more
duffing) which results in a bigger difference between the bifurcation frequencies of the sweep up and sweep
down measurement.
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The frequency at which the maximum amplitude occurs, is plotted as a function of the mechanical amplitude
squared for each of the probe powers for the upward sweep measurements. The result should be a straight
line according to equation (2.39) with slope equal to 3

8
α

mω0
. Equation (2.39) is only valid for the sweep up

measurements4. The value of α is estimed by making a linear fit through the measurement points and setting
the slope of the fit equal to 3

8
α

mω0
. The estimated value of α is 3.3 · 1016 kg/m2s2.
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Figure 4.7: The frequency at which the amplitude is maximal as a function of the maximal amplitude squared.
The pump power is 14 dBm and the probe powers vary between −20 and 15 dBm. The measurement points
are fitted with a straight line in accordance with equation 2.39. By setting the slope equal to 3

8
α

mω0
the value

of α is estimated to be 3.3 · 1016 kg/m2s2.

4.3.2 Pump power is set to 17 dBm and the probe power is varied.

The pump power is now fixed at 17 dBm and the probe is varied again. The reflection is measured at
the integer probe powers between −20 dBm and 15 dBm. The frequency sweeps are again done in both
directions. The measurement with a Lorentzian shape that is most stable is sought out and fitted with
equation 2.11a. This yields a quality factor of 62769.

4This is because equation (2.39) was derived by setting d|a|2/dΩ to zero.
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Figure 4.8: Signal and fit for a pump power of 17 dBm and a probe power of −18 dBm. The frequency was
swept upwards. The quality factor was estimated to be 62769.

Next the frequency, at which the maximal amplitude occurs, is plotted as a function of probe power. The
image is qualitatively similar to figure 4.6. Again ωmax is higher for the sweep up measurement compared
to the sweep down measurement for high probe powers.
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Figure 4.9: Frequency at which the maximal amplitude occurs for the different probe powers and a fixed
pump power of 17 dBm. When the amplitude response becomes more duffing the difference between the
bifurcation frequencies becomes larger. As a result the red and blue curve split.

The value of α is determined in exactly the same way as in the previous section. The frequency, at which the
maximum amplitude occurs, is plotted as a function of the mechanical amplitude squared and fitted with a
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straight line. The slope of the fit is set equal to 3
8

α
mω0

, which yields α = 3.2 · 1017 kg/m2s2
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Figure 4.10: Frequency at which the maximal amplitude occurs as a function of mechanical amplitude
squared for the different probe powers of the upward sweep. The pump power is fixed at 17 dBm. A linear
fit is made through the measurements in accordance with equation (2.39). The slope is set equal to 3

8
α

mω0
.

This gives 3.2 · 1017 kg/m2s2 for the value of α.

5 Conclusion

In this research a multilayer graphene resonator was coupled to a superconducting microwave cavity. The
mechanical resonator was driven by adding a RF signal and a DC voltage to the feedline. The reflection
from the cavity was measured.

The mechanical repsonse of the multilayer graphene resonator could be altered by changing the pump or
probe power. Low pump and probe powers gave a Lorentzian shape and high pump and probe powers gave
a duffing shape as was predicted by the theory.

Further the hysteresis in the duffing regime due to the difference in bifurcation frequency was observed.
The sweep up measurements had higher amplitudes and higher bifurcation frequencies than the sweep down
measurements. This was also predicted by the theory.

Also in this research the effect of backaction on the quality factor and the nonlinear term in the restoring
force5 of the oscillator was investigated. The lower pump power of 14 dBm corresponds with less backaction
and gave a quality factor of 148899 and an α of 3.3 · 1016 kg/m2s2. The higher pump power of 17 dBm
yielded a quality factor of 62769 and 3.2 · 1017 kg/m2s2 for the value of α. The conclusion is that backaction
not only decreases the quality factor, but also causes an increase in the value of α.

5See equation (2.15)
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Appendices

Appendix A

The term β proportional to x2 in the restoring force and the term µ proportional to xẋ in the dampling
force only rescale the values of α and η (see equation (2.14) and (2.15)). The equation of motion with the
additional terms is given by eqaution (A.1).

mẍ = −kx− βx2 − αx3︸ ︷︷ ︸
restoring force

−lẋ− µxẋ− ηx2ẋ︸ ︷︷ ︸
damping force

+ Bcos(ωt)︸ ︷︷ ︸
driving force

(A.1)

The following substitions are made in order to make the variables dimensionless.

x̃ = x

√
α

mω2
0

and t̃ = ω0t (A.2)

After the substitutions and dividing by mω2
0

√
mω2

0

α the dimensionless equation of motion is obtained.

¨̃x+ x̃+ β̃x̃2 + x̃3 +Q−1 ˙̃x+ µ̃x̃ ˙̃x+ η̃x̃2 ˙̃x = Gcos(ω̃t̃) (A.3)

The relation of the dimensionless parameters with the physical ones are apart from equation (A.2) given in
equation (A.4).

β̃ =
β√
mω2

0α
Q−1 =

l

mω0
µ̃ =

µ√
mα

η̃ =
ηω0

α
G =

B

ω3
0

√
α

m3
ω̃ =

ω

ω0
(A.4)

Again the method of multiple scales is used to approximate the solution of equation (A.3). Define ε again
as the reciprocal of the quality factor (ε = Q−1) and make two transformations: G = ε3/2g and ω̃ = 1 + εΩ.
The new form of the dimensionless equation of motion is given by equation (A.5).

¨̃x+ x̃+ β̃x̃2 + x̃3 + ε ˙̃x+ µ̃x̃ ˙̃x+ η̃x̃2 ˙̃x = ε3/2g cos
[
(1 + εΩ)t̃

]
(A.5)

The solution of equation (A.5) can be expressed by the following expansion.

x̃(t̃) =
√
εx0(t̃) + εx1/2(t̃) + ε3/2x1(t̃) +O(ε2) (A.6)

Note that there are now also terms of order ε. The definitions of the slow and fast time are: T0 = t̃ and
T1 = εt̃. The first and second derivative of the dimensionless position are now calculated. Terms of order ε2

and higher are neglected.

dx̃

dt̃
=
√
ε
∂x0

∂T0
+ ε

∂x1/2

∂T0
+ ε3/2

[
∂x1

∂T0
+
∂x0

∂T1

]
+O(ε2) (A.7a)

d2x̃

dt̃2
=
√
ε
∂2x0

∂T 2
0

+ ε
∂2x1/2

∂T 2
0

+ ε3/2
[
∂2x1

∂T 2
0

+ 2
∂2x0

∂T0∂T1

]
+O(ε2) (A.7b)

The expansions of the derivatives are now inserted into equation (A.5).

√
ε
∂2x0

∂T 2
0

+ ε
∂2x1/2

∂T 2
0

+ ε3/2
∂2x1

∂T 2
0

+ 2ε3/2
∂2x0

∂T0T1
+
√
εx0 + εx1/2 + ε3/2x1 + β̃

(√
εx0 + εx1/2 (A.8)

+ε3/2x1

)2

+
(√

εx0 + εx1/2 + ε3/2x1

)3

+ ε

(√
ε
∂x0

∂T0
+ ε

∂x1/2

∂T0
+ ε3/2

∂x1

∂T0
+ ε3/2

∂x0

∂T1

)
+ µ̃

(√
εx0 (A.9)

+εx1/2 + ε3/2x1

)(√
ε
∂x0

∂T0
+ ε

∂x1/2

∂T0
+ ε3/2

∂x1

∂T0
+ ε3/2

∂x0

∂T1

)
+ η̃

(√
εx0 + εx1/2+ (A.10)

ε3/2x1

)2
(√

ε
∂x0

∂T0
+ ε

∂x1/2

∂T0
+ ε3/2

∂x1

∂T0
+ ε3/2

∂x0

∂T1

)
= ε3/2gcos(T0 + T1Ω) (A.11)
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Comparing coefficients for
√
ε, ε and ε3/2 gives:

∂2x0

∂T 2
0

+ x0 = 0 (A.12a)

∂2x1/2

∂T 2
0

+ x1/2 + β̃x0 + µ̃x0
∂x0

∂T0
= 0 (A.12b)

∂2x1

∂T 2
0

+ 2
∂2x0

∂T0∂T1
+ x1 + 2β̃x0x1/2 + x3

0 +
∂x0

T0
+ µ̃x0

∂x1/2

∂T0
+ (A.12c)

µ̃x1/2
∂x0

∂T0
+ η̃x2

0

∂x0

∂T0
= g cos(T0 + T1Ω)

The general solution of equation (A.12a) may be written as: x0 = 1
2A(T1)ejT0 + c.c. .With the help of this

solution equation (A.12b) is rewritten.

∂2x1/2

∂T 2
0

+ x1/2 = − β̃
2
|A|2 − 1

4

[
(β̃ + µ̃j)A2e2jT0 + c.c.

]
(A.13)

Equation (A.13) contains no secular terms and can be solved directly.

x1/2 = − β̃
2
|A|2 +

1

12

[
(β̃ + µ̃j)A2e2jT0 + c.c.

]
(A.14)

The expressions of x0 and x1/2 can be used to rewrite equation (A.12c).

∂2x1

∂T 2
0

+ x1 = −
[
j

(
dA

dT1
+

1

2
A+

1

8

(
η̃ − µ̃β̃

)
A2A∗

)
+

3

8

(
1− 10

9
β̃2 − 1

9
µ̃2

)
A2A∗− (A.15)

g

2
ejT1Ω

]
ejT0 + nonsecular terms

Setting the secular term to zero and rearranging the equation gives:

dA

dT1
= −1

2
A− 1

8

(
η̃ − µ̃β̃

)
A2A∗ +

3

8
j

(
1− 10

9
β̃2 − 1

9
µ̃2

)
A2A∗ − g

2
jejT1Ω (A.16)

The form of equation (A.16) equation is similar to equation (2.32). We introduce an effective η̃ and α̃.

dA

dT1
= −1

2
A− 1

8
η̃effA

2A∗ +
3

8
jα̃effA

2A∗ − g

2
jejT1Ω (A.17)

Where:

η̃eff = η̃ − µ̃β̃ (A.18a)

α̃eff = 1− 10

9
β̃2 − 1

9
µ̃2 (A.18b)

The amplitude and phase equations ((2.35a) and (2.35b)) still apply except that η̃ is now replaced with η̃eff
and α̃ is replaced with α̃eff . We conclude that the term β proportional to x2 in the restoring force and the
term µ proportional to xẋ in the dampling force only rescale the values of α and η.

Appendix B

The discussion and derivations of the transmission line are based on [19]. Photons are coupled in and
out of the cavity with the help of a transmission line. A transmission line is ussually long comparable to the
wavelenght of the light. Voltages and current vary in magnitude and phase over its length. A model of a
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ModelTransmissionLine.png

Figure B.1: Model for a transmission line.

Figure B.2: A small lenght ∆x of a transmission line.
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transmission line is shown in figure B.1. The resistance R1 is due to the finite conductivity of the conductors,
the solenoid L represents the self-inductance of the two conductors, the resistance R2 stands for dielectric
losses between the conductors and the capacitance C is due to the close proximity of the two conductors. A
slice of the transmission line with width ∆x is shown in figure B.2. Where R̃ represents the resistance per
unit length, L̃ the inductance per unit length and C̃ the capacitance per unit length. Kirchhoff’s law for
voltage and current is applied to figure B.2.

v(x, t)− R̃1∆xi(x, t)− L̃∆x
∂i

∂t
− v(x+ ∆x, t) = 0 (B.1a)

i(x, t)− G̃2∆xv(x, t)− C̃∆x
∂v

∂t
− i(x+ ∆x.t) = 0 (B.1b)

Note that G̃2 is the conductance per unit lenght (1/R̃2). Divide both equations by ∆x and take the limit
∆x→ 0.

∂v

∂x
= −R̃1i(x, t)− L̃

∂i

∂t
(B.2a)

∂i

∂t
= −G̃2v(x, t)− C̃ ∂v

∂t
(B.2b)

The Fourier transform of both equations is taken.

∂V

∂x
= −(R̃1 + jωL̃)I(x, ω) (B.3a)

∂I

∂x
= −(G̃2 + jωC̃)V (x, ω) (B.3b)

Combining both equations gives:

∂2V

∂x2
− γ2V (x, ω) = 0 (B.4a)

∂2I

∂x2
− γ2I(x, ω) = 0 (B.4b)

Where:

γ = α+ jβ =

√
(R̃1 + jωL̃)(G̃2 + jωC̃) (B.5)

The general solutions of the equations (B.4a) and (B.4b) are:

V (x, ω) = V +
0 e−γx + V −0 eγx (B.6a)

I(x, ω) = I+
0 e
−γx + I−0 e

γx (B.6b)

Here e−γx is the wave propagating in the positive x-direction and eγx is the wave propagating in the negative
x-direction. Now combine equations (B.3a) and (B.6a) or equations (B.3b) and (B.6b) to get:

Z0 =
V +

0

V +
0

= −V
−
0

I−0
=
R̃1 + jωL̃

γ
=

√
R̃1 + jωL̃

G̃2 + jωC̃
(B.7)

If the transmission line is in the superconducting regime we can set R̃1 = 0 and R̃2 =∞. This gives:

Z0 =

√
L̃

C̃
(B.8)

In the superconducting regime the impedance of the transmission line solely depends on the self-inductance
and the capacitance per unit lenght.
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Figure B.3: Model for a lossless transmission line with a load. L is the total lenght of the transmission line.

Now the influence of the attachment of an arbritary load to the transmission line is discussed. In figure
B.3 the transmission line with the attachted load is shown. Assume that the transmission line is in the
superconducting regime. Expanding equation (B.5) and setting R1 and G2 to zero yields:

γ = jω
√
L̃C̃ (B.9)

And thus:
β = ω

√
L̃C̃ (B.10)

The solutions for the voltage and current in the frequency domain are now adjusted to the superconducting
regime (equations (B.6a) and (B.6b)).

V (x, ω) = V +
0 e−βx + V −0 eβx (B.11a)

I(x, ω) =
V +

0

Z0
e−βx − V −0

Z0
eβx (B.11b)

Assume that an incident wave of the form V +
0 e−βx is generated from the source. We identify V −0 eβx as the

relected wave. The load is located at x = 0. ZL must be equal to the voltage divided by the current at the
location of the load.

ZL =
V +

0 + V −0
V +

0 − V
−
0

Z0 (B.12)

Equation (B.12) is rewritten to get an explicit expression for the amplitude of the reflected wave.

V −0 = V +
0

ZL − Z0

ZL + Z0
(B.13)

The amplitude of the reflected wave is often divided by the amplitude of the incident wave.

Γ =
V −0
V +

0

=
ZL − Z0

ZL + Z0
(B.14)

The voltage and current are now rewritten in terms of Γ.

V (x, ω) = V +
0 (e−βx + Γeβx) (B.15a)

I(x, ω) =
V +

0

Z0
(e−βx − Γeβx) (B.15b)

The voltage and the current in the transmission line consist of a superposition of the incident and reflected
wave. Also note that if the load is matched to the impedance of the transmission line Γ becomes zero. There
is no reflected wave is this case. The reflection is maximal when ZL =∞ or when ZL = 0. (When ZL = 0,
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Figure B.4: Two circuits that are equivalent except for a scaling factor.

Γ = −1 which means there is a phase shift of 180◦).

The series connection of the inductance and the capacitor in the transmissionline (figure B.3) has a scaled
equivalent of a capacitor in series with a parallel circuit of an inductance and a capacitor for frequencies
near the resonance frequency.

Figure B.4 shows the two circuits. The impedance of the lowest of the two circuits displayed in figure
B.4 is given by equation (B.16).

Z =
1

jωC
+

jωL · 1/jωCc
jωL+ 1/jωCc

(B.16)

Equation (B.16) can be rewritten.

Z =
1

jωC
+ jωL

[
1

1− ω2

ω2
0

]
(B.17)

In equation (B.17): ω0 = 1/
√
LC, the resonance frequency of the circuit. Assume that the the frequency of

an incoming signal is near the resonance frequency: ω = ω0 + δ. Substituting this in equation (B.17) and
neglecting the term of order δ2 gives:

Z =
1

jωC
+ β · jωL (B.18)

Where: β = −ω0/2δ. Equation (B.18) is the impedance for a series connection of a capacitor and an induc-
tance with a scaling factor β.

Appendix C

In this appendix the backaction on the cavity and mechanical resonator is discussed. The presence of
the oscillator effects the internal dissipation rate when the oscillator is driven at the blue or red side band.
The red side band is the frequency ωc − ωm and the blue side band is the frequency ωc + ωm. Where ωc is
the cavity resonant frequency and ωm the mechanical resonant frequency of the oscillator.

κeff0 = κ0 ±
4g2

γeffm

(C.1)
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Where:
g = G · xzpf ·

√
nd (C.2)

γeffm = γm(1± C) (C.3)

And:

C =
4g2

0nd
γmκ

(C.4)

In equation (C.2) G is the pull in parameter, xzpf is the zero point motion of the oscillatora and
√
nd is the

number of drive photons. The plus sign in equation (C.1) corresponds with the red side band and the minus
sign with the blue side band. Equations (2.52a) and (2.52b) are adjusted.

R =
〈âout〉
〈âin〉

=
(κeff0 − κex)/2− i∆
(κeff0 + κex)/2− i∆

(C.5a)

φ = arctan

(
4∆κex

(κeff0 )2 − κ2
ex + 4∆2

)
(C.5b)

The change of the internal dissipation rate effects the coupling efficiency.

ηeff =
κex

κeff0 + κex
(C.6)

Appendix D

In section 4.3 the probe power was swept with a fixed pump power. The chosen pump powers were 14 dBm
and 17 dBm. This part of the appendix explains why this decision was made.

The cavity is driven at the red side band frequency: ωd = 2π · 5.864187 GHz. The pump power is var-
ied from 0 till 30 dBm and ωp is swept. The signal is measured at all integers from 0 dBm to 30 dBm.
Figure D.1 shows the amplitude of the signal as a function of probe power.

As the drive power goes up from 0 dBm the amplitude initially rises, but starts to decrease at powers
higher than 15 dBm. This is caused by backaction and can be explained with the help of figure 2.6 and
equations (C.1) and (C.6) in appendix C. The change in drive power changes the internal dissipation rate and
this leads to a change in the coupling efficieny. The amplitude is maximal at critical coupling but decreases
when the coupling is changed to the undercoupling or overcoupling regime. This can be seen in the left
image of figure 2.6. Initially the amplitude increases with increasing drive power, but when the η starts to
become smaller the cavity becomes undercoupled and the amplitude decreases (see the right image in figure
2.6).
When the amplitude of the signal is too small the signal to noise ratio is bad. This means that pump powers
should be chosen where the amplitude of the signal is large. We want one pump power that gives a good
signal to noise ratio but where backaction is not significant and we want one pump power that gives a good
signal to noise ratio and where backaction is significant. Based on the above the choice of the two pump
powers of 14 dBm and 17 dBm are justified.
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Figure D.1: The cavity is driven at the red side band frequency and the pump power is varied. The change in
pump power influences the coupling efficiency through backaction. When the cavity becomes undercoupled
the amplitude of the signal starts to decrease for increasing pump powers. This figure can be compared with
the right image of figure 2.6.
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