
Optimizing the PDDL domain of TUSP to improve planner performance
Modifying the domain to improve planner execution time, plan quality, and problem solvability

Shu-wing Chiu

Supervisor(s): Sebastijan Dumancic, Issa Hanou

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Shu-wing Chiu
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumancic, Issa Hanou, Rihan Hai

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The Planning Domain Definition Language
(PDDL) is specifically designed to encode various
problems. Each PDDL problem consists of an
initial state and a goal state, and a domain that
defines the constraints of the problem. Planners
can be used to find a sequence of actions to
achieve the goal state. It is possible to improve the
performance of planners by modifying the PDDL
domain of a problem. The goal of this research is
to implement this to the domain of the Train Unit
Shunting Problem (TUSP), which is the problem
of moving trains in and out of shunting yards. The
research question we attempt to answer is:

To what extent can we improve planner
performance by optimizing the PDDL domain of

TUSP?

The main contributions of this research are: a for-
malization of TUSP and its constraints in PDDL
terminology, a comprehensive evaluation of the
performance of planners on the PDDL domain of
TUSP, provide general approaches and techniques
that can be used to optimize a PDDL domain,
and provide insights into the relationship between
planner performance and the domain properties of
TUSP. To answer the research question, we mea-
sure the performance of the planners in terms of
execution time, plan quality, and problem solvabil-
ity. We modified the domain by combining actions
such that the number of computations is decreased
and by introducing action costs. With these mod-
ifications, we found a decrease in planner execu-
tion time and an increase in plan quality. We found
no difference in problem solvability. Therefore, we
can conclude that we can indeed improve the per-
formance of planners by implementing these mod-
ifications to the domain of TUSP.

1 Introduction
The Train Unit Shunting Problem (TUSP) involves moving
trains of different types in and out of shunting yards [5].
Railway organizations have to deal with this problem daily,
making this a real-world problem [9][11]. How can trains be
parked in such a way that, when it needs to depart again, it
can do so with as little delay as possible?

To automate this train planning process, we use the Plan-
ning Domain Definition Language (PDDL). In classical plan-
ning, it is important to select the right planner for a given
problem [13]. PDDL is language specifically designed to en-
code various problems. Each PDDL problem consists of an
initial state and a goal state, and a domain that defines the
constraints of the problem. Each planner has its properties.
Some may execute better or faster on a given problem in-
stance, while other planners are not able to find a solution to
the problem. How a problem is defined affects the perfor-
mance of such planners.

Previous research has found an increase in planner perfor-
mance [10]. This research provides the definition, characteri-
zation, and computation of preconditions and conditional ef-
fects for complex actions. However, the question of whether
this applies to multiple planners and how it affects perfor-
mance in terms of plan quality and solvability remains unan-
swered.

In this research, the aim is to evaluate the performance of
planners for TUSP. Specifically, the paper attempts to answer
the following question:

To what extent can we improve planner performance by
optimizing the PDDL domain of TUSP?

This can be divided into three sub-questions:

1. Is it possible to improve the total execution time of plan-
ners?

2. Is it possible to improve the plan quality generated by
planners?

3. Is it possible to improve the solvability of problems
within the domain?

By answering these questions, the main contributions of
this paper are:

1. A formalization of TUSP and its constraints in PDDL
terminology.

2. A comprehensive evaluation of the performance of plan-
ners in the PDDL domain.

3. Provide general approaches and techniques that can be
used to optimize a PDDL domain.

4. Provide insights into the relationship between the per-
formance of planners and PDDL domain properties.

By investigating whether PDDL domains can be modified
to improve the performance of different planners, we hope to
contribute to this area of research.

2 Background: TUSP, Planners & PDDL
In this section, the topics that will recur in the next chapters
are explained. The information described here is a prerequi-
site to understanding the problem description and contribu-
tions.

2.1 TUSP
The Train Unit Shunting Problem (TUSP) is the problem of
moving trains in and out of shunting yards [5]. A shunting
yard is a train station where trains are allocated and stored
outside of servicing hours. An example is shown in Figure 1.

In the figure, the initial state of a simple TUSP instance is
shown, with trains 1, 2, and 3 arriving at the shunting yard
at their current locations. Each train will move from the ar-
rival path, towards the switch, and be allocated in one of the
tracks. After all trains have been parked on track 1 or 2, they
can begin to depart the shunting yard (no train can depart if
there is another train in the way). In which order they should
depart, is defined by the goal state of the problem.

For instance, let train 1 be the first to depart, then train 2,
and finally train 3. How should the trains be parked such that



Figure 1: A diagram representing a simple shunting yard, with each
node representing a track part. For simplicity, we assume each train
has the same length, and each track part has the length of one train.
Trains 1, 2, and 3 are arriving at the shunting yard and need to be
parked on either track 1 or track 2. This should be done in such a
way that each train can depart with as little delay as possible when
they need to.

the goal state can be reached? We can see that the best spot
for train 1 would be track 2, as it only has one parking spot.
That leaves trains 2 and 3 to be parked on track 1. From here,
we can see that train 3 needs to be moved out of the way to let
train 2 depart. We can do so by re-allocating train 3 to track
2 after train 1 has departed, let train 2 depart next and finally,
train 3.

2.2 Planners
Human planners make use of different algorithms to help
them create plans that minimize delays in train departures, but
planning systems remain mostly unused by commercial orga-
nizations [14]. In classical planning, PDDL-based planners
can be used to simplify the planning process. These planners
are designed to find a sequence of actions that takes the ini-
tial state to the goal state. A typical planner uses a translator
to turn a PDDL problem into data structures that the planner
can use to search through, and a search engine that uses cer-
tain heuristics to efficiently search for one or more valid plans
[2][4][7][12].

Heuristics are functions used by the planner to estimate the
cost between the current state and the goal state [6]. They
help the planner search for valid plans more efficiently by
making the planner avoid states that either do not lead to the
goal state or have a cost that is too large.

Many planners are publicly available, which can be run on
the domain and problem instances of the problem in question.
Different planners have different properties and their perfor-
mance also varies per problem instance they are executed on
[13]. Hence, selecting the right planner for a problem can be
very important in terms of execution time and plan quality.
In this research, we will analyse four planners that were sub-
mitted to the International Planning Competition 2018 (IPC
2018)1.

1https://ipc2018-classical.bitbucket.io/

2.3 PDDL
To be able to use a planner on a problem, this problem must be
defined in code. The Planning Domain Definition Language
(PDDL) is a language designed for defining various planning
and scheduling domains and problems [8]. It is the standard
language used by IPC 2018 for the different domains of the
competition. A PDDL problem instance will consist of the
following components:

1. A domain definition, which defines the object types,
predicates with arguments that can either be true or false,
and actions (operations) with each a precondition and ef-
fect.

2. A problem definition, which defines the objects, the ini-
tial state, and the goal state of the problem within the
constraints of the domain.

PDDL domains and problems, together with a planner, can be
used to plan the possible solutions to the defined problems.

2.4 Related work
Previous research has found an increase in planner perfor-
mance, in terms of runtime and number of nodes, after de-
signing a complex action that reduces the search space size
[10]. This research provides the definition, characteriza-
tion, and computation of preconditions and conditional ef-
fects for complex actions, where a precondition represents
the required state before a domain action and an effect corre-
sponds to the changes to the state after a domain action. How-
ever, the question of whether this applies to multiple planners
and how it affects performance in terms of plan quality and
solvability remains unanswered.

3 Problem Description: Domain of TUSP
Given a set of trains, a set of track parts, and the initial po-
sitions of the trains, the goal is to find a sequence of train
movements such that the trains are positioned as defined by
the goal state. To achieve this, we must first define the do-
main of TUSP and then define the precondition and effect of
the actions.

3.1 Domain definition
In TUSP, the domain consists of a set of objects: {train
unit, track, track part}, a set of predicates: {(at x y),
(parkOn x y), (hasBeenParked x), (nextTo x y), (free
x), (onTrack x y), (onPath x), (switch x)}, and a set of ac-
tions: {move-on-arrival, move-to-departure, move-to-track,
move-from-track, move-along-track}. Each predicate has the
following meaning:

• (at x y) - train unit x is at track part y.
• (parkOn x y) - train unit x is parked on track y.
• (hasBeenParked x) - train unit x has been parked.
• (nextTo x y) - track part x is next to track part y.
• (free x) - track part x is free.
• (onTrack x y) - track part x is on track y.
• (onPath x) - track part x is on the arrival/departure

path.



• (switch x) - track part x is a switch.
This domain assumes there is exactly one arrival/departure

path on which all trains arrive/depart, and exactly one switch.
A problem in this domain can only be solvable if there are
enough track parts available for all train units to park on.

3.2 Action precondition & effect
Each action contains a precondition, the predicates that must
hold before using an action, and effect, the predicates that
hold as a result of the action. Below are the five actions of
the domain that define what movements a train can make:
moving on the arrival path, moving to the departure, moving
from the switch to a track, moving from a track to the switch,
and moving along a track. The actions of the TUSP domain
are visualized in Figure 2 and the complete domain file can
be found in Appendix A.1.

1 (:action move-on-arrival
2 :parameters (
3 ?train - trainunit
4 ?from ?to - trackpart)
5 :precondition (and
6 (at ?train ?from)
7 (free ?to)
8 (nextTo ?from ?to)
9 (not (hasBeenParked ?train))

10 (onPath ?from))
11 :effect (and
12 (at ?train ?to)
13 (not (at ?train ?from))
14 (free ?from)
15 (not (free ?to))))

Listing 1: move-on-arrival. This action moves a train that is on the
arrival path, to a free adjacent track part.

1 (:action move-to-track
2 :parameters (
3 ?train - trainunit
4 ?from ?to - trackpart
5 ?t - track)
6 :precondition (and
7 (at ?train ?from)
8 (free ?to)
9 (nextTo ?from ?to)

10 (onTrack ?to ?t)
11 (switch ?from))
12 :effect (and
13 (at ?train ?to)
14 (not (at ?train ?from))
15 (free ?from)
16 (not (free ?to))
17 (hasBeenParked ?train)
18 (parkedOn ?train ?t)))

Listing 2: move-to-track. This action moves a train that is on the
switch, to a free adjacent track part that is on a track.

1 (:action move-along-track
2 :parameters (
3 ?train - trainunit
4 ?from ?to - trackpart
5 ?t - track)
6 :precondition (and
7 (at ?train ?from)
8 (free ?to)
9 (nextTo ?from ?to)

10 (onTrack ?from ?t)
11 (onTrack ?to ?t))
12 :effect (and
13 (at ?train ?to
14 (not (at ?train ?from))
15 (free ?from)

16 (not (free ?to))))

Listing 3: move-along-track. This action moves a train that is on a
track, to a free adjacent track part that is on the same track.

1 (:action move-from-track
2 :parameters (
3 ?train - trainunit
4 ?from ?to - trackpart
5 ?t - track)
6 :precondition (and
7 (at ?train ?from)
8 (free ?to)
9 (nextTo ?from ?to)

10 (onTrack ?from ?t)
11 (switch ?to))
12 :effect (and
13 (at ?train ?to)
14 (not (at ?train ?from))
15 (free ?from)
16 (not (free ?to))
17 (not (parkedOn ?train ?t))))

Listing 4: move-from-track. This action moves a train that is on a
track, to a free adjacent track part that is a switch.

1 (:action move-to-departure
2 :parameters (
3 ?train - trainunit
4 ?from ?to - trackpart)
5 :precondition (and
6 (at ?train ?from)
7 (free ?to)
8 (nextTo ?from ?to)
9 (onPath ?to)

10 (forall
11 (?unit - trainunit)
12 (hasBeenParked ?unit)))
13 :effect (and
14 (at ?train ?to)
15 (not (at ?train ?from))
16 (free ?from)
17 (not (free ?to))))

Listing 5: move-to-departure. This action moves a train that is on
any track part, to a free adjacent track part that is on the path.

3.3 Plan quality
A planner will attempt to find a solution to the problem by
providing a sequence of actions. Part of a plan output for this
domain will look something like this:

1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t5 track2)
3 (move-on-arrival train2 v2 v1)
4 (move-on-arrival train2 v1 t0)
5 (move-on-arrival train3 v3 v2)
6 (move-on-arrival train3 v2 v1)
7 (move-on-arrival train4 v4 v3)
8 (move-on-arrival train4 v3 v2)
9 (move-on-arrival train5 v5 v4)

10 (move-on-arrival train5 v4 v3)
11 (move-on-arrival train6 v6 v5)
12 ...

Listing 6: Part of a plan output. This plan was generated by the
DecStar planner of team 2 on the domain.

With v1 - v6 corresponding to track parts on the arrival
path, t0 to the switch, and t1 - t5 to track parts on a track.
Note how this plan moves trains 2, 3, 4, 5, and 6 on the ar-
rival path in sequence. In practice, it would be very costly
for a driver to constantly switch between trains while mov-
ing them one step at a time. A more practical plan would



be to move one train all the way to a track, park it on the
track, and then switch to the next train to repeat the same pro-
cess. Therefore, we determine a plan to be of higher quality
if it keeps switching between trains to a minimum. Besides
switching between trains, a compact plan with a smaller num-
ber of steps is also considered to be of higher quality.

Figure 2: A visualization of the domain actions described in section
3.2. A train can move in a total of five ways: when it moves on the
arrival/departure path, when it moves to the arrival/departure path,
when it moves to and from the switch, and when it moves along a
track.

4 Experimental Work
Given are the domain of TUSP with its objects, predicates,
and actions. To decrease execution time, we must find a way
to minimize the number of computations made by the plan-
ner to select a sequence of actions such that the goal state is
reached while satisfying the precondition of all actions. That
is, we must minimize the number of times the predicates are
called and changed (from true to false, and vice versa). To in-
crease plan quality, we must find a way to minimize switching
between trains over the same actions as described in section
3.3, and decrease plan length by combining actions into com-
plex actions such that the goal state is still reachable and the
problem can still be solved.

In this section, we provide three modifications to the do-
main and multiple approaches that are built on top of these
modifications to achieve this.

4.1 Domain modification 1: oriented graph
Two track parts that are next to each other, are defined by
two predicates in the domain: (nextTo x y), and (nextTo y
x).. This symmetric graph representation allows a train to be
moved in both directions in the domain. That is, the actions
move-from-arrival and move-to-departure can use the same
predicate (nextTo from to), even though they move a train
in opposite directions. This also applies to move-along-track,
which uses this predicate for either direction as well.

As a result, a train can move in either direction through
the actions move-on-arrival and move-to-departure, which is
different than what is shown in Figure 2. This ambiguity is
not desired, as a planner would have to consider these possi-
bilities even if it does not select these actions in the opposite
directions. By adding a directional constraint, we can save
some computation for the planner. Hence, we want to ensure

that these actions can only move a train in the desired direc-
tion.

The first modification we made to the domain, is the re-
moval of inverted edges, turning the directed graph into an
oriented graph. Suppose track part x and track part y are next
to each other, we define this connection with (nextTo x y),
but we leave out (nextTo y x). Moving a train in one di-
rection is still possible by checking whether (nextTo from
to) holds, and moving a train in the opposite direction is also
possible by checking (nextTo to from). The modification
is visualized in Figure 3.

Figure 3: On the left, two track parts are connected through the
predicates (nextTo x y) and (nextTo y x). If we want to move a
train from x to y and vice versa, we check for (nextTo from to)
in the precondition of the action. In the center, two track parts are
connected only through the predicate (nextTo x y). If we want to
move a train from x to y, we check for (nextTo from to) in the
preconditions of the action. If we want to move a train from y to x,
we need to check for (nextTo to from) in the preconditions of the
action. For simplicity, we omit this predicate in all other figures in
this paper as shown on the right.

With this modification, we distinguish two possible direc-
tions: forwards, for moving a train into the shunting yard us-
ing actions with the predicate (nextTo from to), and back-
wards, for moving a train out of the shunting yard using ac-
tions with the predicate (nextTo to from). Note that we
are now required to add an action for moving a train back-
wards along a track, and change the predicate (nextTo from
to) into (nextTo to from) for move-to-departure and move-
from-track.

4.2 Domain modification 2: stack
Each action moves a train to an adjacent track part and modi-
fies the predicates as required. Suppose there is only one train
that needs to be parked in the shunting yard before it can de-
part, a planner would provide a plan with as many steps as
track parts between the arrival track part and the first track
part belonging to a track. In practice, the steps in between
moving from the current location to the destination is not use-
ful to the driver of the train as the train can be moved in one
direction in one operation. What is important, is knowing that
the destination can be reached. Here, an opportunity is pre-
sented to combine actions into complex actions that will still
allow a planner to find a sequence of actions such that the
goal state can be reached from the initial state.

To achieve this, we have introduced a pointer predicate
(trackPointer trackPart track) for each track, that points
to the furthest reachable track part of that track, including
the arrival/departure path for train departures (pathPointer
trackPart). Initially, the pointer of an empty track points to



the last track part of that track since it is the furthest reach-
able track part. Once a train moves into that track, it will
be parked on this last track part and the pointer will move to
the next track part. If the track is full, the track will have no
pointer as none of its track parts are reachable. When a train
moves out of the track (note that this can only be the train that
is closest to the start of the track), the pointer will point to the
current location of the train. This procedure is visualized in
Figure 4.

Figure 4: Part of a shunting yard with an arrival/departure path, a
switch, and a track. Initially, the track pointer starts at the track part
furthest into the shunting yard (step 1) and moves one step back-
wards each time a train parks on the track (step 2), until the track is
full (step 3), after which the pointer disappears. The path pointer be-
haves in the same manner, but in this case, trains leave the path until
it becomes empty, moving the path pointer backwards each time as
well.

4.3 Domain modification 3: action costs
A planner will attempt to find a plan with a minimum number
of steps. However, each action can be selected at any time
without adding cost to the plan. The planner is free to order
the selected actions in any way as long as the sequence of
actions turns the initial state to the goal state. As a result, the
steps included in the plan may not be practical to a human
driver and the plan will not be of high quality (remember the
example in section 3.3).

To increase plan quality, we have introduced action costs.
The domain function (total-cost) keeps track of the total cost
of the plan. Initially, (total-cost) is equal to 0 and, by default,
each action will increase it by 1.

4.4 Approach 1: from path to track (PT)
Using domain modifications 1 and 2, we are now able to move
a train from the path or a track to the switch in a single action,

and vice versa. This approach removes the need for move-
along-track and modifies the actions move-on-arrival, move-
to-track, move-from-track, and move-to-departure. The mod-
ifications of these actions are described below. Figure 5
shows a visualization of these actions. The complete mod-
ified domain can be found in Appendix B.1.

move-on-arrival
Instead of moving a train from the arrival path to a free ad-
jacent track part, this action now checks if the adjacent track
part and switch are both free and if this is the case, it moves
the train to the furthest free track part and on a track.

move-to-track
Instead of moving a train from the switch to a free adjacent
track part that is on a track and on a track, this action now
moves the train to the furthest free track part of a track.

move-from-track
Instead of moving a train from a track to the switch if it is
adjacent and free, the action now checks if the adjacent track
part and switch are both free and if this is the case, moves
the train to the switch. This action can only be done after
all trains have been parked. This action, together with move-
to-track, are only used for reallocating a train to a different
track.

move-to-departure
Instead of moving a train from the switch to a free adjacent
track part that is on the departure path, this action now checks
if the adjacent track part and switch are both free and, if this
is the case, moves the train to the furthest free track part of
the departure path.

Advantages & disadvantages
This modified set of actions only allows one train to be moved
at a time until it is parked or has departed. This means that
once a train moves on arrival, the next train can only move
when the first train has been parked. The same applies to a
train that is parked and wants to depart, it can only do so once
the train before it has departed. This is because any operation
that can be done without the driver having to physically walk
to a different location, is now defined by a single action. The
plan can also not contain the same action to the same train in
consecutive order (e.g. move-on-arrival cannot be done twice
with the same train, consecutively). As a result, the plan will
only contain meaningful steps in an order that makes more
sense to a human driver.

However, it is now possible to find a solution even if the
tracks are not connected to the switch or the path, which
should not be the case. Besides this, the actions will not work
accurately if there are free track parts between two trains on
the arrival path. In this case, a train can move to a switch
while there is another train in the way (e.g. move-on-arrival
only checks if the next track part and switch are free, but not
other track parts in between). The domain now assumes that
these properties are correctly defined in the initial state of the
problem.



Figure 5: A visualization of the actions in the PT domain. A train
can move in a total of four ways: from the arrival path to a track,
from the switch to a track, from a track to the switch, and from
a track to the departure path. Note that it is not possible to move
from the switch to the departure path, as the switch is only used to
reallocate trains from one track to another track.

4.5 Approach 2: minimized switching &
reallocation (MSR)

This approach uses domain modification 3, which introduces
action costs to the domain. By default, each action will incre-
ment (total-cost) by 1. The predicate (currentTrain train)
is added, which keeps track of the current train that is being
moved. Initially, this is the first train to arrive at the shunting
yard.

An additional action switch-to-next-train is added that
switches the current train to the next train. Switching between
trains will increase the cost of the plan, giving the planner the
incentive to minimize train switching. As a result, plans will
move a single train to a track and park it there before moving
the next train.

Besides train switching, the action move-to-track-
hasBeenParked is added that increases (total-cost) by 2.
This action moves a train to a track after all trains have
been parked. This is done to help planners minimize train
reallocation, which is a costly operation. Planners should
already minimize this as it adds additional steps to the
plan, but adding a higher cost to this operation provides an
additional variable to minimize the use of this action. The
new actions are briefly described below and shown Figure 6.

switch-to-next-train
This action takes the current train and the next train, and as-
signs the next train as the current train. Only one train can be
the current train. Switching trains increments (total-cost) by
1.

move-to-track-hasBeenParked
This action is the same as move-to-track, but it can only
be done after all trains have been parked (forall (train -
trains) (haveBeenParked train)), and increments (total-
cost) by 2.

Advantages & disadvantages
Planners are encouraged to minimize switching between
trains and reallocating trains to a different track.

This domain is only compatible with planners that support
the use of action costs. Furthermore, plans for this domain
will contain additional steps for switching between trains.
This can also be considered an advantage, as it is clear when
a driver would need to switch to a different train.

Figure 6: A visualization of the actions in the MSR domain. A
train can move in the same manner as in Figure 2, but now only the
current train is allowed to move. Each action increases (total-cost)
by 1. Moving a train to a track after is was already parked on another
track (move-to-track-hasBeenParked) increases (total-cost) by 2.

4.6 Approach 3: PT + MSR
The final approach combines all the domain modifications de-
scribed in this section, see Figure 7. It contains simplified
actions that each increment (total-cost) by 1. In theory, this
approach does not differ from approach 1, as with PT we are
already ensuring that each train is moved before moving the
next train, and reallocating adds additional steps, which plan-
ners try to avoid by default. We also do not increment (total-
cost) by 2 in move-from-track, as reallocating automatically
adds a cost of 2 by using both move-from-track and move-to-
track.

Figure 7: A visualization of the actions in the PT+MSR domains. A
train can move in the same manner as shown in Figure 5, but now
each action increases (total-cost) by 1.



5 Planner Selection & Analysis
To determine whether our domain modifications make a dif-
ference to planner performance, we need to select suitable
planners that are compatible with our domain. Since there
are many different planners, we have only selected planners
from the satisficing track of IPC 2018. After running all the
planners that participated in the competition, we only found
four planners that were compatible with the domain and were
able to find one or more solutions to the problem within our
the domain. These planners were: baseline LAMA 2011 [12],
DecStar [7], Freelunch-Madagascar [2], and Saarplan [4].

In this section, we will briefly summarize each planner in
an attempt to understand how they interpret a problem in-
stance and what operations they perform to solve the prob-
lem.

5.1 Baseline: LAMA 2011
LAMA 2011 uses a translator to translate a PDDL problem
[12]. It then uses a knowledge compilation module to gener-
ate so called landmarks. The final component of the planner,
is the search engine, which uses different heuristics to search
the data structures generated by the knowledge compilation
module.

One of the heuristics used by LAMA 2011 uses, is the land-
mark heuristic [12]. Landmarks are certain property sets that
must hold in every plan that achieves the goal state. In the
domain of TUSP, we know that each train must be parked at a
track at least once before all trains can depart. The predicate
(hasBeenParked train) could be considered a landmark of
the domain. Landmarks can be seen as sub-goals of a prob-
lem, which decomposes the problem into smaller parts [3]
They can help the planner avoid landmarks with higher cost.
If a no landmark can be reached, then the planner knows that
the problem cannot be solved.

5.2 Team 2: DecStar
DecStar is a planner that uses Star-Topology Decoupling
(STD) to decompose a problem into smaller components that
are independent of each other [7]. It is a technique that re-
duces the size of the state-space representation by exploiting
this independence between components of a planning prob-
lem. It partitions the state variables into components, such
that the interaction between them takes the form of a star
topology, with a single center component and multiple leaf
components. It then searches only over action sequences af-
fecting the center component, and enumerates reachable as-
signments to each leaf component separately. This way, it can
avoid exploring many states that are irrelevant or redundant
for finding a plan.

However, the planner is not able to find such a split for our
domain. So, as a fallback, it switches to the LAMA 2011
planner to find a plan [7].

5.3 Team 4: Freelunch-Madagascar
The Freelunch-Madagascar planner consists of the follow-
ing components: Freelunch or Madagascar, Incplan, and Lin-
geling [2].

Freelunch and Madagascar are two different tools used to
encodes a PDDL problem in to a SAT (satisfiability) instance

[2]. SAT is a logical problem that consists of multiple clauses
that contain literals that are either true or false [1]. To solve
SAT, we need to find an assignment to each literal such that it
satisfies all clauses of the problem instance.

IncPlan is a driver that solves the SAT instance by incre-
mentally calling the final component, Lingeling [2]. Lin-
geling is a SAT solver that uses inprocessing, a technique that
simplifies the SAT instance by removing redundant clauses or
literals. The driver gradually adds clauses to the SAT instance
and calls the solver until a valid plan is found that achieves the
goal state or the instance becomes unsolvable.

5.4 Team 7: Saarplan
The Saarplan planner consists of three components: a similar
decoupled search as DecStar, Grey planning, and Refined-HC
(RHC) [4].

Grey planning is a technique that finds relaxed plans [4].
A relaxed plan is a plan that ignores (some) of the negative
effects of the actions. For instance, if an action normally re-
moves a train from a track part, a relaxed plan may ignore
this negation of the predicate. This means that a relaxed plan
may involve having multiple trains on the same track part. A
relaxed plan is gradually modified by resolving conflicts until
it becomes a real plan or it cannot solve a conflict.

RHC is a technique that uses breadth-first search to itera-
tively find a state with a lower heuristic value and repeats the
process from there [4].

Saarplan uses these different techniques to find the best
plan in terms of steps or cost [4].

6 Planner Results & Discussion
The performance of the planners described in Section 5 are
measured on the different domains. In each domain, the same
problem instance is used with six train units and two tracks,
with track 1 having four track parts, and track 2 having two
track parts, see Appendix A.2 for the code. The problem in-
stance is modified to be compatible with the modified do-
mains, but the objects remain the same. After running the
planners, we measure the total execution time in Figure 8, the
smallest plan length in Figure 9, number of times switching
between trains occurs in the smallest plan in Figure 10, and
the total number of plans found in Figure 11.

initial PT MSR PT+MSR
LAMA 2011 150.50s 0.20s 423.80s 0.75s

DeStar 206.29s 0.34s 591.46s 1.27s
Freelunch-Madagascar 0.01s 0.06s 0.02s 0.11s

Saarplan 7.73s 0.03s 40.84s 0.12s

Figure 8: The total execution time of the planners for each domain,
rounded to two decimals.

In Figure 8, the PT domain shows a significant decrease in
execution times compared to the initial domain. Combining
the actions of the initial domain into more complex actions
decreases the number of times predicates are checked in the
precondition of actions, and the number of times predicates
are changed in the effect of actions. As a result, it decreases



initial PT MSR PT+MSR
LAMA 2011 70 14 82 26

DeStar 70 14 82 26
Freelunch-Madagascar 74 14 127 27

Saarplan 70 14 127 28

Figure 9: The smallest plan length generated by the planners for
each domain. Keep in mind that the plans outputted in MSR and
PT+MSR will also contain actions for switching between trains. The
complete plans can be found in Appendices E, F, G, and H.

initial PT MSR PT+MSR
LAMA 2011 38 12 12 12

DeStar 48 12 12 12
Freelunch-Madagascar 56 12 57 13

Saarplan 51 12 51 14

Figure 10: The number of times train switching occurs in the small-
est plan of the planners for each domain.

the total execution time. The MSR domain increases execu-
tion times as more computations are done compared to the
initial domain. The PT+MSR domain decreases computa-
tions compared to the initial domain and MSR domain.

In Figure 9, it can be seen that the PT domain allows plan-
ners to find a plan with less steps, as many of the steps in the
plans for the initial domain are now combined to perform the
same operation for the modified domains. The MSR domain
increases the steps because of the additional action switch-to-
next-train, which is done each time we move a different train
than moved in the previous action. Combining these domains
in PT+MSR decreases the plan length. The complete plans of
the planners for each domain can be found in Appendices E,
F, G, and H.

Figures 9 and 10 show that LAMA 2011 and DecStar are
able to effectively minimize the total costs by minimizing the
number of times switching between trains occurs. DecStar
is able to do so as it uses LAMA 2011 as the fallback plan-
ner, which is used for these results as explained in Section 5.
Interestingly, Freelunch-Madagascar adds a switch-to-next-
train at the end of the plan, which is practically redundant.

Figure 11 shows somewhat consistent results with Figure
8. From these two figures, it is clear that the execution time is
correlated to the number of plans a planner outputs. If a plan-
ner continuously finds a better plan with less steps or cost, it
will take more time to execute.

7 Conclusions & Future Work
In this research, we attempt to answer the question: ”To what
extent can we improve planner performance by optimizing
the PDDL domain of TUSP?” Multiple domain modifica-
tions were made and selected planners were run on the initial
domain and modified domains to achieve the answer to this
question.

Combining actions into complex actions and introducing
action costs were found to be effective at decreasing the ex-
ecution time of planners and increasing plan quality by mak-
ing the plans shorter and less costly to a human driver. They

initial PT MSR PT+MSR
LAMA 2011 1 1 10 5

DeStar 2 1 8 6
Freelunch-Madagascar 1 1 1 1

Saarplan 2 1 3 1

Figure 11: The number of plans each planner outputs for each do-
main.

did not affect the solvability of the problem as all planners
that were able to solve the problem within the initial domain,
were able to so do within the modified domains. Therefore,
we can conclude that we have improved the performance of
the selected planners in terms of planner execution time and
plan quality.

LAMA 2011 shows the best results as it incorporates action
costs in the search (unlike Freelunch-Madagascar or Saar-
plan) and does not make use of other planners that are in-
compatible with the domains (DecStar).

7.1 Limitations
Unfortunately, this research does not provide results that rep-
resent varying problem instances. Due to the limited time
period of this research, a single problem instance was used
within the different domains, and most of the focus was put on
designing and implementing the modifications to the domain.
Because of this, we cannot conclude that these modifications
will produce the same results for other problem instances that
may include a larger shunting yard with more trains.

The complete TUSP domain includes many variables such
as varying train unit sizes, different shunting yard types, and
time stamps. These variables were not considered in this re-
search, which limits the scope of our findings and contribu-
tions.

7.2 Future work
Future research into the domain of TUSP would benefit from
the contributions of this research. This includes research into
improving planner performance, as well as research focusing
on other topics surrounding the same domain. The PDDL
domain modifications can be helpful by making planners ex-
ecute faster and generate plans of higher quality.

Besides TUSP, these modifications can be used as inspi-
ration to optimize other domains with similar action defini-
tions. We believe that any domain that involves the logistics
between multiple object types will benefit from the contribu-
tions of this research.

8 Responsible Research
We understand the importance of conducting research in a
responsible manner. Hence, this section is dedicated to ac-
knowledging the resources used to conduct the research, and
providing the steps required to reproduce the same results.

8.1 Resources
To conduct this research, initial PDDL domain and problem
instances were provided by our supervisor Issa Hanou, see
Appendix A. As well as the remote server to run the planners



on the initial and modified domains2. The planners are cre-
ated by different teams that participated in the classical tracks
of IPC 20183. The repositories containing the source code4 of
the planners are publicly available along with the abstracts5

of each planner.

8.2 Reproducibility
To reproduce the results found in this research, you require
the following components: the initial domain, the modified
domains, access to the remote server. The source code of the
domain and problem instances can be found in Appendices
A, B, C, and D.

If read and write access to the server is granted, connect
to student-linux.tudelft.nl through port 22 and login with the
credentials provided by your administrator. Installing PuTTY
is recommended for this6. From here, connect to the remote
server through ssh:

1 $ssh mapfw . ewi . t u d e l f t . n l

Listing 7: Connect to mapfw.ewi.tudelft.nl through ssh. For this,
you will need access to student-linux.tudelft.nl.

On the server, you should be able to access your personal
directory under /home. Here you will need to pull the repos-
itory containing the domains or manually add the domains.
After adding the domains, the planners can be executed by
calling the image of each planner. Now that we have the nec-
essary components in place, execute:

1 $ / d a t a / i pc2018 / s o l v e r s / s a t / team<num>/ p l a n n e r .
img domain1 . pdd l problem2 . pdd l r e . o u t >
team<num>. l o g

Listing 8: Run the planner on the PDDL domain and problem. This
will generate the planner logs and plan outputs.

A log file and plan outputs are generated in the directory
this command is executed from. Note that the paths to the
planner, domain, and problem files will need to be adjusted
depending on their locations on the server.

If you have no access to the server, you will need to setup
the planners on your local machine. Documentation is pro-
vided to setup a planner to allow running it on your domains
locally3. This procedure involves installing Singularity and
using it to pull the images from the planner repositories7.

References
[1] Hans van Maaren Armin Biere, Marijn Heule and Toby

Walsh. Handbook of Satisfiability. IOS Press, 2009.

[2] Toma´s Balyo and Stephan Gocht. The freelunch plan-
ning system entering ipc 2018. 2018.

2mapfw.ewi.tudelft.nl
3https://ipc2018-classical.bitbucket.io/
4https://bitbucket.org/ipc2018-classical/workspace/repositories
5https://ipc2018-classical.bitbucket.io/planner-abstracts/ipc-

2018-planner-abstracts-classical-tracks.pdf
6https://www.putty.org/
7https://sylabs.io/singularity/

[3] Carmel Domshlak, Michael Katz, and Sagi Lefler.
Landmark-enhanced abstraction heuristics. Artificial In-
telligence, 189:48–68, 2012.

[4] Maximilian Fickert, Daniel Gnad, Patrick Speicher, and
Jörg Hoffmann. Saarplan : Combining saarland ’ s
greatest planning techniques. 2018.

[5] Richard Freling, Ramon M. Lentink, Leo G. Kroon, and
Dennis Huisman. Shunting of passenger train units in a
railway station. Transportation Science, 39(2):261–272,
2005.

[6] Clement Gehring, Masataro Asai, Rohan Chitnis, Tom
Silver, Leslie Kaelbling, Shirin Sohrabi, and Michael
Katz. Reinforcement learning for classical planning:
Viewing heuristics as dense reward generators. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, volume 32, pages 588–596,
2022.

[7] Daniel Gnad, Alexander Shleyfman, and Jörg Hoff-
mann. Decstar – star-topology decoupled search at its
best. 2018.

[8] Maxence Grand, Humbert Fiorino, and Damien Pellier.
Retro-engineering state machines into PDDL domains.
In IEEE International Conference on Tools with Artifi-
cial Intelligence, pages 1186–1193, Baltimore (virtual
conference), United States, 2020.

[9] LG. Kroon, RM. Lentink, and A. Schrijver. Shunting of
passenger train units: An integrated approach. Trans-
portation Science, 42(4):436–449, 2008.

[10] Sheila McIlraith and Ronald Fadel. Planning with com-
plex actions. In Non-Monotonic Reasoning, 2002.

[11] Evertjan Peer, Vlado Menkovski, Yingqian Zhang, and
Wan-Jui Lee. Shunting trains with deep reinforcement
learning. 05 2018.

[12] Silvia Richter, Matthias Westphal, and Malte Helmert.
Lama 2008 and 2011. 2011.

[13] Mark Roberts, Adele Howe, and Indrajit Ray. Evaluat-
ing diversity in classical planning. In Proceedings of the
International Conference on Automated Planning and
Scheduling, volume 24, pages 253–261, 2014.

[14] Dave E. Wilkins. Can ai planners solve practical prob-
lems? Artificial Intelligence Center, 1990.



A Initial PDDL domain and problem
A.1 Initial Domain

1 (define (domain domain1)
2
3 (:requirements :adl)
4
5 (:types
6 trackpart track trainunit - object
7 icm virm sng slt - trainunit ; these are the different

types of train units
8 )
9

10 (:predicates
11 (nextTo ?x ?y - trackpart) ;track part x next to other

track part y
12 (onTrack ?x - trackPart ?y - track) ;track part x on

track y
13 (at ?x - trainunit ?y - trackpart) ;train unit x on

track part y
14 (hasBeenParked ?x - trainunit) ;true if x is parked on

some track
15 (free ?x - trackpart) ;trackpart x has nothing parked

there
16 (parkedOn ?x - trainunit ?y - track) ; indicates x

parked on track y
17 (onPath ?x) ;trackpart x is on the arrival/departure

path L
18 (switch ?x) ;trackpart x is a switch
19 )
20
21 ; action to move a trainunit to a neighbouring trackpart

on a track, to park it
22 (:action move-to-track
23 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
24 :precondition (and (at ?train ?from) (free ?to)
25 (nextTo ?from ?to) (onTrack ?to ?t)
26 (switch ?from))
27 :effect (and (at ?train ?to) (not (at ?train ?from))
28 (free ?from) (not (free ?to))
29 (hasBeenParked ?train) (parkedOn ?

train ?t))
30 )
31
32 ; action to move a trainunit to out of a track, and reset

the parkedOn predicate
33 (:action move-from-track
34 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
35 :precondition (and (at ?train ?from) (free ?to)
36 (nextTo ?from ?to) (onTrack ?from ?t)
37 (switch ?to))
38 :effect (and (at ?train ?to) (not (at ?train ?from))
39 (free ?from) (not (free ?to))
40 (not (parkedOn ?train ?t)))
41 )
42
43 ; action to move a trainunit along a track
44 (:action move-along-track
45 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
46 :precondition (and (at ?train ?from) (free ?to)
47 (nextTo ?from ?to) (onTrack ?from ?t)
48 (onTrack ?to ?t))
49 :effect (and (at ?train ?to) (not (at ?train ?from))
50 (free ?from) (not (free ?to)))
51 )
52
53 ; Can only move back to departure if all trains have been

parked.
54 (:action move-to-departure
55 :parameters (?train - trainunit ?from ?to - trackpart)
56 :precondition (and (at ?train ?from) (free ?to)
57 (nextTo ?from ?to) (onPath ?to)
58 (forall (?unit - trainunit) (

hasBeenParked ?unit)))
59 :effect (and (at ?train ?to) (not (at ?train ?from))
60 (free ?from) (not (free ?to)))
61 )

62
63 ; Action to move train unit over the arrival path towards

the shunting yard
64 (:action move-on-arrival
65 :parameters (?train - trainunit ?from ?to - trackpart)
66 :precondition (and (at ?train ?from) (free ?to)
67 (nextTo ?from ?to) (not (hasBeenParked

?train))
68 (onPath ?from))
69 :effect (and (at ?train ?to) (not (at ?train ?from))
70 (free ?from) (not (free ?to)))
71 )
72 )

Listing 9: Initial domain

A.2 Initial Problem
1 (define (problem problem2) (:domain domain1)
2 (:objects
3 train1 - sng
4 train2 - sng
5 train3 - icm
6 train4 - virm
7 train5 - slt
8 train6 - slt
9 v1 v2 v3 v4 v5 v6 t0 t1 t2 t3 t4 t5 t6 - trackpart

10 track1 track2 - track
11 )
12 (:init
13 (at train1 v1)
14 (nextTo v1 v2)
15 (nextTo v2 v1)
16 (at train2 v2)
17 (nextTo v2 v3)
18 (nextTo v3 v2)
19 (at train3 v3)
20 (nextTo v3 v4)
21 (nextTo v4 v3)
22 (at train4 v4)
23 (nextTo v4 v5)
24 (nextTo v5 v4)
25 (at train5 v5)
26 (nextTo v5 v6)
27 (nextTo v6 v5)
28 (at train6 v6)
29 (nextTo v1 t0)
30 (nextTo t0 v1)
31 (nextTo t0 t1)
32 (nextTo t1 t0)
33 (free t0)
34 (free t1)
35 (nextTo t1 t2)
36 (nextTo t2 t1)
37 (free t2)
38 (nextTo t2 t3)
39 (nextTo t3 t2)
40 (free t3)
41 (nextTo t3 t4)
42 (nextTo t4 t3)
43 (free t4)
44 (nextTo t0 t5)
45 (nextTo t5 t0)
46 (free t5)
47 (nextTo t5 t6)
48 (nextTo t6 t5)
49 (free t6)
50 (onTrack t1 track1)
51 (onTrack t2 track1)
52 (onTrack t3 track1)
53 (onTrack t4 track1)
54 (onTrack t5 track2)
55 (onTrack t6 track2)
56 (onPath v1)
57 (onPath v2)
58 (onPath v3)
59 (onPath v4)
60 (onPath v5)
61 (onPath v6)
62 (switch t0)



63 )
64 (:goal (and
65 (forall (?t - slt) (or (at ?t v1) (at ?t v4)))
66 (forall (?t - sng) (or (at ?t v2) (at ?t v5)))
67 (forall (?t - virm) (or (at ?t v3)))
68 (forall (?t - icm) (or (at ?t v6)))
69 (forall (?t - trainunit) (hasBeenParked ?t))
70 )))

Listing 10: Initial problem

B PT domain and problem
B.1 PT Domain

1 (define (domain domain1)
2
3 (:requirements :adl)
4
5 (:types
6 trackpart track trainunit - object
7 icm virm sng slt - trainunit ; these are the different

types of train units
8 )
9

10 (:predicates
11 (nextTo ?x ?y - trackpart) ;track part x next to other

track part y
12 (onTrack ?x - trackPart ?y - track) ;track part x on

track y
13 (at ?x - trainunit ?y - trackpart) ;train unit x on

track part y
14 (hasBeenParked ?x - trainunit) ;true if x is parked on

some track
15 (free ?x - trackpart) ;trackpart x has nothing parked

there
16 (parkedOn ?x - trainunit ?y - track) ; indicates x

parked on track y
17 (onPath ?x) ;trackpart x is on the arrival/departure

path L
18 (switch ?x) ;trackpart x is a switch
19 (trackHeader ?x - trackpart ?y - track) ; last free

trackpart x of track y
20 (pathHeader ?x - trackpart) ; last free trackpart x of

path L
21 )
22
23 (:action move-from-arrival-to-track
24 :parameters (?train - trainunit ?from ?next ?toprev ?

to - trackpart ?t - track)
25 :precondition (and
26 (not (parkedOn ?train ?t))
27 (at ?train ?from)
28 (onPath ?from)
29 (free ?next)
30 (free ?to)
31 (trackHeader ?to ?t)
32 (nextTo ?from ?next)
33 (nextTo ?toprev ?to)
34 (onTrack ?to ?t)
35 (not (hasBeenParked ?train))
36 (exists (?switch - trackpart) (and (switch ?switch

) (free ?switch))))
37 :effect (and
38 (at ?train ?to) (not (at ?train ?from))
39 (free ?from) (not (free ?to))
40 (pathHeader ?from) (not (pathHeader ?next))
41 (when (not (switch ?toprev)) (trackHeader ?toprev

?t)) (not (trackHeader ?to ?t))
42 (hasBeenParked ?train)
43 (parkedOn ?train ?t))
44 )
45
46 (:action move-from-track-to-departure
47 :parameters (?train - trainunit ?from ?next ?toprev ?

to - trackpart ?t - track)
48 :precondition (and
49 (parkedOn ?train ?t)
50 (at ?train ?from)

51 (onTrack ?from ?t)
52 (free ?next)
53 (free ?to)
54 (nextTo ?next ?from)
55 (nextTo ?to ?toprev)
56 (onPath ?to)
57 (pathHeader ?to)
58 (forall (?unit - trainunit) (hasBeenParked ?unit))
59 (exists (?switch - trackpart) (and (switch ?switch

) (free ?switch))))
60 :effect (and
61 (at ?train ?to) (not (at ?train ?from))
62 (free ?from) (not (free ?to))
63 (trackHeader ?from ?t) (not (trackHeader ?next ?t)

)
64 (when (not (switch ?toprev)) (pathHeader ?toprev))

(not (pathHeader ?to))
65 (not (parkedOn ?train ?t)))
66 )
67
68 (:action move-from-switch-to-track
69 :parameters (?train - trainunit ?from ?toprev ?to -

trackpart ?t - track)
70 :precondition (and
71 (not (parkedOn ?train ?t))
72 (at ?train ?from)
73 (free ?to)
74 (trackHeader ?to ?t)
75 (nextTo ?toprev ?to)
76 (onTrack ?to ?t)
77 (switch ?from)
78 (forall (?unit - trainunit) (hasBeenParked ?unit))

)
79 :effect (and
80 (at ?train ?to) (not (at ?train ?from))
81 (free ?from) (not (free ?to))
82 (when (not (switch ?toprev)) (trackHeader ?toprev

?t))
83 (not (trackHeader ?to ?t))
84 (parkedOn ?train ?t))
85 )
86
87 (:action move-from-track-to-switch
88 :parameters (?train - trainunit ?from ?next ?to -

trackpart ?t - track)
89 :precondition (and
90 (parkedOn ?train ?t)
91 (at ?train ?from)
92 (onTrack ?from ?t)
93 (nextTo ?next ?from)
94 (free ?next)
95 (free ?to)
96 (switch ?to)
97 (forall (?unit - trainunit) (hasBeenParked ?unit))

)
98 :effect (and
99 (at ?train ?to) (not (at ?train ?from))

100 (free ?from) (not (free ?to))
101 (trackHeader ?from ?t) (not (trackHeader ?next ?t

))
102 (not (parkedOn ?train ?t)))
103 )
104 )

Listing 11: PT domain

B.2 PT Problem
1 (define (problem problem2) (:domain domain1)
2 (:objects
3 train1 - sng
4 train2 - sng
5 train3 - icm
6 train4 - virm
7 train5 - slt
8 train6 - slt
9 v1 v2 v3 v4 v5 v6 t0 t1 t2 t3 t4 t5 t6 - trackpart

10 track1 track2 - track
11 )
12 (:init



13 (at train1 v1)
14 (nextTo v2 v1)
15 (at train2 v2)
16 (nextTo v3 v2)
17 (at train3 v3)
18 (nextTo v4 v3)
19 (at train4 v4)
20 (nextTo v5 v4)
21 (at train5 v5)
22 (nextTo v6 v5)
23 (at train6 v6)
24 (nextTo v1 t0)
25 (nextTo t0 t1)
26 (free t0)
27 (free t1)
28 (nextTo t1 t2)
29 (free t2)
30 (nextTo t2 t3)
31 (free t3)
32 (nextTo t3 t4)
33 (free t4)
34 (nextTo t0 t5)
35 (free t5)
36 (nextTo t5 t6)
37 (free t6)
38 (onTrack t1 track1)
39 (onTrack t2 track1)
40 (onTrack t3 track1)
41 (onTrack t4 track1)
42 (onTrack t5 track2)
43 (onTrack t6 track2)
44 (trackHeader t4 track1)
45 (trackHeader t6 track2)
46 (onPath v1)
47 (onPath v2)
48 (onPath v3)
49 (onPath v4)
50 (onPath v5)
51 (onPath v6)
52 (switch t0)
53 )
54 (:goal (and
55 (forall (?t - slt) (or (at ?t v1) (at ?t v4)))
56 (forall (?t - sng) (or (at ?t v2) (at ?t v5)))
57 (forall (?t - virm) (or (at ?t v3)))
58 (forall (?t - icm) (or (at ?t v6)))
59 (forall (?t - trainunit) (hasBeenParked ?t))
60 )))

Listing 12: PT problem

C MSR domain and problem
C.1 MSR Domain

1 (define (domain domain1)
2
3 (:requirements :adl :action-costs :conditional -effects)
4
5 (:types
6 trackpart track trainunit - object
7 icm virm sng slt - trainunit ; these are the different

types of train units
8 )
9

10 (:predicates
11 (nextTo ?x ?y - trackpart) ;track part x next to other

track part y
12 (onTrack ?x - trackPart ?y - track) ;track part x on

track y
13 (at ?x - trainunit ?y - trackpart) ;train unit x on

track part y
14 (hasBeenParked ?x - trainunit) ;true if x is parked on

some track
15 (free ?x - trackpart) ;trackpart x has nothing parked

there
16 (parkedOn ?x - trainunit ?y - track) ; indicates x

parked on track y

17 (onPath ?x - trackpart) ;trackpart x is on the arrival
/departure path L

18 (switch ?x - trackpart) ;trackpart x is a switch
19 (currtrain ?x - trainunit) ; current train unit x that

is being moved
20 )
21
22 (:functions
23 (total-cost)
24 )
25
26 (:action switch-to-next-train
27 :parameters (?prev ?next - trainunit)
28 :precondition (and
29 (currtrain ?prev)
30 (not (currtrain ?next)))
31 :effect (and
32 (currtrain ?next)
33 (not (currtrain ?prev))
34 (increase (total-cost) 1))
35 )
36
37 ; action to move a trainunit to a neighbouring trackpart

on a track, to park it
38 (:action move-to-track
39 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
40 :precondition (and (at ?train ?from) (free ?to)
41 (nextTo ?from ?to) (onTrack ?to ?t)
42 (switch ?from)
43 (not (hasBeenParked ?train))
44 (currtrain ?train))
45 :effect (and (at ?train ?to) (not (at ?train ?from))
46 (free ?from) (not (free ?to))
47 (hasBeenParked ?train) (parkedOn ?

train ?t)
48 (increase (total-cost) 1))
49 )
50
51 (:action reallocate -to-track
52 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
53 :precondition (and (at ?train ?from) (free ?to)
54 (nextTo ?from ?to) (onTrack ?to ?t)
55 (switch ?from)
56 (hasBeenParked ?train)
57 (currtrain ?train))
58 :effect (and (at ?train ?to) (not (at ?train ?from))
59 (free ?from) (not (free ?to))
60 (parkedOn ?train ?t)
61 (increase (total-cost) 2))
62 )
63
64 ; action to move a trainunit to out of a track, and reset

the parkedOn predicate
65 (:action move-from-track
66 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
67 :precondition (and (at ?train ?from) (free ?to)
68 (nextTo ?from ?to) (onTrack ?from ?t)
69 (switch ?to)
70 (currtrain ?train))
71 :effect (and (at ?train ?to) (not (at ?train ?from))
72 (free ?from) (not (free ?to))
73 (not (parkedOn ?train ?t))
74 (increase (total-cost) 1))
75 )
76
77 ; action to move a trainunit along a track
78 (:action move-along-track
79 :parameters (?train - trainunit ?from ?to - trackpart

?t - track)
80 :precondition (and (at ?train ?from) (free ?to)
81 (nextTo ?from ?to) (onTrack ?from ?t)
82 (onTrack ?to ?t)
83 (currtrain ?train))
84 :effect (and (at ?train ?to) (not (at ?train ?from))
85 (free ?from) (not (free ?to))
86 (increase (total-cost) 1))
87 )
88



89 ; Can only move back to departure if all trains have been
parked.

90 (:action move-to-departure
91 :parameters (?train - trainunit ?from ?to - trackpart)
92 :precondition (and (at ?train ?from) (free ?to)
93 (nextTo ?from ?to) (onPath ?to)
94 (forall (?unit - trainunit) (

hasBeenParked ?unit))
95 (currtrain ?train))
96 :effect (and (at ?train ?to) (not (at ?train ?from))
97 (free ?from) (not (free ?to))
98 (increase (total-cost) 1))
99 )

100
101 ; Action to move train unit over the arrival path towards

the shunting yard
102 (:action move-on-arrival
103 :parameters (?train - trainunit ?from ?to - trackpart)
104 :precondition (and (at ?train ?from) (free ?to)
105 (nextTo ?from ?to) (not (hasBeenParked

?train))
106 (onPath ?from)
107 (currtrain ?train))
108 :effect (and (at ?train ?to) (not (at ?train ?from))
109 (free ?from) (not (free ?to))
110 (increase (total-cost) 1))
111 )
112 )

Listing 13: MSR domain

C.2 MSR Problem
1 (define (problem problem2) (:domain domain1)
2 (:objects
3 train1 - sng
4 train2 - sng
5 train3 - icm
6 train4 - virm
7 train5 - slt
8 train6 - slt
9 v1 v2 v3 v4 v5 v6 t0 t1 t2 t3 t4 t5 t6 - trackpart

10 track1 track2 - track
11 )
12 (:init
13 (= (total-cost) 0)
14 (currtrain train1)
15 (at train1 v1)
16 (nextTo v1 v2)
17 (nextTo v2 v1)
18 (at train2 v2)
19 (nextTo v2 v3)
20 (nextTo v3 v2)
21 (at train3 v3)
22 (nextTo v3 v4)
23 (nextTo v4 v3)
24 (at train4 v4)
25 (nextTo v4 v5)
26 (nextTo v5 v4)
27 (at train5 v5)
28 (nextTo v5 v6)
29 (nextTo v6 v5)
30 (at train6 v6)
31 (nextTo v1 t0)
32 (nextTo t0 v1)
33 (nextTo t0 t1)
34 (nextTo t1 t0)
35 (free t0)
36 (free t1)
37 (nextTo t1 t2)
38 (nextTo t2 t1)
39 (free t2)
40 (nextTo t2 t3)
41 (nextTo t3 t2)
42 (free t3)
43 (nextTo t3 t4)
44 (nextTo t4 t3)
45 (free t4)
46 (nextTo t0 t5)
47 (nextTo t5 t0)

48 (free t5)
49 (nextTo t5 t6)
50 (nextTo t6 t5)
51 (free t6)
52 (onTrack t1 track1)
53 (onTrack t2 track1)
54 (onTrack t3 track1)
55 (onTrack t4 track1)
56 (onTrack t5 track2)
57 (onTrack t6 track2)
58 (onPath v1)
59 (onPath v2)
60 (onPath v3)
61 (onPath v4)
62 (onPath v5)
63 (onPath v6)
64 (switch t0)
65 )
66 (:goal (and
67 (forall (?t - slt) (or (at ?t v1) (at ?t v4)))
68 (forall (?t - sng) (or (at ?t v2) (at ?t v5)))
69 (forall (?t - virm) (or (at ?t v3)))
70 (forall (?t - icm) (or (at ?t v6)))
71 (forall (?t - trainunit) (hasBeenParked ?t))
72 ))
73 (:metric minimize (total-cost)))

Listing 14: MSR problem

D PT+MSR domain and problem
D.1 PT+MSR Domain

1 (define (domain domain1)
2
3 (:requirements :adl :action-costs)
4
5 (:types
6 trackpart track trainunit - object
7 icm virm sng slt - trainunit ; these are the different

types of train units
8 )
9

10 (:predicates
11 (nextTo ?x ?y - trackpart) ;track part x next to other

track part y
12 (onTrack ?x - trackPart ?y - track) ;track part x on

track y
13 (at ?x - trainunit ?y - trackpart) ;train unit x on

track part y
14 (hasBeenParked ?x - trainunit) ;true if x is parked on

some track
15 (free ?x - trackpart) ;trackpart x has nothing parked

there
16 (parkedOn ?x - trainunit ?y - track) ; indicates x

parked on track y
17 (onPath ?x) ;trackpart x is on the arrival/departure

path L
18 (switch ?x) ;trackpart x is a switch
19 (trackHeader ?x - trackpart ?y - track) ; last free

trackpart x of track y
20 (pathHeader ?x - trackpart) ; last free trackpart x of

path L
21 (currtrain ?x - trainunit) ; current train unit x that

is being moved
22 )
23
24 (:functions
25 (total-cost)
26 )
27
28 (:action switch-to-next-train
29 :parameters (?prev ?next - trainunit)
30 :precondition (and
31 (currtrain ?prev)
32 (not (currtrain ?next)))
33 :effect (and
34 (currtrain ?next)
35 (not (currtrain ?prev))



36 (increase (total-cost) 1))
37 )
38
39 (:action move-from-arrival
40 :parameters (?train - trainunit ?from ?next ?toprev ?

to - trackpart ?t - track)
41 :precondition (and
42 (not (parkedOn ?train ?t))
43 (at ?train ?from)
44 (onPath ?from)
45 (free ?next)
46 (free ?to)
47 (trackHeader ?to ?t)
48 (nextTo ?from ?next)
49 (nextTo ?toprev ?to)
50 (onTrack ?to ?t)
51 (not (hasBeenParked ?train))
52 (exists (?switch - trackpart) (and (switch ?switch

) (free ?switch)))
53 (currtrain ?train))
54 :effect (and
55 (at ?train ?to) (not (at ?train ?from))
56 (free ?from) (not (free ?to))
57 (pathHeader ?from) (not (pathHeader ?next))
58 (when (not (switch ?toprev)) (trackHeader ?toprev

?t)) (not (trackHeader ?to ?t))
59 (hasBeenParked ?train)
60 (parkedOn ?train ?t)
61 (increase (total-cost) 1))
62 )
63
64 (:action move-to-departure
65 :parameters (?train - trainunit ?from ?next ?toprev ?

to - trackpart ?t - track)
66 :precondition (and
67 (parkedOn ?train ?t)
68 (at ?train ?from)
69 (onTrack ?from ?t)
70 (free ?next)
71 (free ?to)
72 (nextTo ?next ?from)
73 (nextTo ?to ?toprev)
74 (onPath ?to)
75 (pathHeader ?to)
76 (forall (?unit - trainunit) (hasBeenParked ?unit))
77 (exists (?switch - trackpart) (and (switch ?switch

) (free ?switch)))
78 (currtrain ?train))
79 :effect (and
80 (at ?train ?to) (not (at ?train ?from))
81 (free ?from) (not (free ?to))
82 (trackHeader ?from ?t) (not (trackHeader ?next ?t)

)
83 (when (not (switch ?toprev)) (pathHeader ?toprev))

(not (pathHeader ?to))
84 (not (parkedOn ?train ?t))
85 (increase (total-cost) 1))
86 )
87
88 (:action move-to-track
89 :parameters (?train - trainunit ?from ?toprev ?to -

trackpart ?t - track)
90 :precondition (and
91 (not (parkedOn ?train ?t))
92 (at ?train ?from)
93 (free ?to)
94 (trackHeader ?to ?t)
95 (nextTo ?toprev ?to)
96 (onTrack ?to ?t)
97 (switch ?from)
98 (forall (?unit - trainunit) (hasBeenParked ?unit))
99 (currtrain ?train))

100 :effect (and
101 (at ?train ?to) (not (at ?train ?from))
102 (free ?from) (not (free ?to))
103 (when (not (switch ?toprev)) (trackHeader ?toprev

?t))
104 (not (trackHeader ?to ?t))
105 (parkedOn ?train ?t)
106 (increase (total-cost) 1))
107 )

108
109 (:action move-from-track
110 :parameters (?train - trainunit ?from ?next ?to -

trackpart ?t - track)
111 :precondition (and
112 (parkedOn ?train ?t)
113 (at ?train ?from)
114 (onTrack ?from ?t)
115 (nextTo ?next ?from)
116 (free ?next)
117 (free ?to)
118 (switch ?to)
119 (forall (?unit - trainunit) (hasBeenParked ?unit))
120 (currtrain ?train))
121 :effect (and
122 (at ?train ?to) (not (at ?train ?from))
123 (free ?from) (not (free ?to))
124 (trackHeader ?from ?t) (not (trackHeader ?next ?t

))
125 (not (parkedOn ?train ?t))
126 (increase (total-cost) 1))
127 )
128 )

Listing 15: PT+MSR domain

D.2 PT+MSR Problem
1 (define (problem problem2) (:domain domain1)
2 (:objects
3 train1 - sng
4 train2 - sng
5 train3 - icm
6 train4 - virm
7 train5 - slt
8 train6 - slt
9 v1 v2 v3 v4 v5 v6 t0 t1 t2 t3 t4 t5 t6 - trackpart

10 track1 track2 - track
11 )
12 (:init
13 (= (total-cost) 0)
14 (currtrain train1)
15 (at train1 v1)
16 (nextTo v2 v1)
17 (at train2 v2)
18 (nextTo v3 v2)
19 (at train3 v3)
20 (nextTo v4 v3)
21 (at train4 v4)
22 (nextTo v5 v4)
23 (at train5 v5)
24 (nextTo v6 v5)
25 (at train6 v6)
26 (nextTo v1 t0)
27 (nextTo t0 t1)
28 (free t0)
29 (free t1)
30 (nextTo t1 t2)
31 (free t2)
32 (nextTo t2 t3)
33 (free t3)
34 (nextTo t3 t4)
35 (free t4)
36 (nextTo t0 t5)
37 (free t5)
38 (nextTo t5 t6)
39 (free t6)
40 (onTrack t1 track1)
41 (onTrack t2 track1)
42 (onTrack t3 track1)
43 (onTrack t4 track1)
44 (onTrack t5 track2)
45 (onTrack t6 track2)
46 (trackHeader t4 track1)
47 (trackHeader t6 track2)
48 (onPath v1)
49 (onPath v2)
50 (onPath v3)
51 (onPath v4)
52 (onPath v5)



53 (onPath v6)
54 (switch t0)
55 )
56 (:goal (and
57 (forall (?t - slt) (or (at ?t v1) (at ?t v4)))
58 (forall (?t - sng) (or (at ?t v2) (at ?t v5)))
59 (forall (?t - virm) (or (at ?t v3)))
60 (forall (?t - icm) (or (at ?t v6)))
61 (forall (?t - trainunit) (hasBeenParked ?t))
62 ))
63 (:metric minimize (total-cost)))

Listing 16: PT+MSR problem

E LAMA 2011 Output Plans
The plans generated by LAMA 2011 in each domain. Only
the plans with the shortest plan length are included.

E.1 Initial domain
1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t5 track2)
3 (move-on-arrival train2 v2 v1)
4 (move-on-arrival train2 v1 t0)
5 (move-to-track train2 t0 t1 track1)
6 (move-on-arrival train3 v3 v2)
7 (move-on-arrival train3 v2 v1)
8 (move-on-arrival train3 v1 t0)
9 (move-on-arrival train4 v4 v3)

10 (move-on-arrival train4 v3 v2)
11 (move-on-arrival train4 v2 v1)
12 (move-on-arrival train5 v5 v4)
13 (move-on-arrival train5 v4 v3)
14 (move-on-arrival train5 v3 v2)
15 (move-on-arrival train6 v6 v5)
16 (move-on-arrival train6 v5 v4)
17 (move-on-arrival train6 v4 v3)
18 (move-along-track train1 t5 t6 track2)
19 (move-to-track train3 t0 t5 track2)
20 (move-on-arrival train4 v1 t0)
21 (move-on-arrival train5 v2 v1)
22 (move-on-arrival train6 v3 v2)
23 (move-along-track train2 t1 t2 track1)
24 (move-to-track train4 t0 t1 track1)
25 (move-on-arrival train5 v1 t0)
26 (move-on-arrival train6 v2 v1)
27 (move-along-track train2 t2 t3 track1)
28 (move-along-track train4 t1 t2 track1)
29 (move-to-track train5 t0 t1 track1)
30 (move-on-arrival train6 v1 t0)
31 (move-along-track train2 t3 t4 track1)
32 (move-along-track train4 t2 t3 track1)
33 (move-along-track train5 t1 t2 track1)
34 (move-to-track train6 t0 t1 track1)
35 (move-from-track train3 t5 t0 track2)
36 (move-to-departure train3 t0 v1)
37 (move-to-departure train3 v1 v2)
38 (move-to-departure train3 v2 v3)
39 (move-to-departure train3 v3 v4)
40 (move-to-departure train3 v4 v5)
41 (move-to-departure train3 v5 v6)
42 (move-along-track train1 t6 t5 track2)
43 (move-from-track train1 t5 t0 track2)
44 (move-to-departure train1 t0 v1)
45 (move-to-departure train1 v1 v2)
46 (move-to-departure train1 v2 v3)
47 (move-to-departure train1 v3 v4)
48 (move-to-departure train1 v4 v5)
49 (move-from-track train6 t1 t0 track1)
50 (move-to-departure train6 t0 v1)
51 (move-along-track train5 t2 t1 track1)
52 (move-to-departure train6 v1 v2)
53 (move-to-departure train6 v2 v3)
54 (move-to-departure train6 v3 v4)
55 (move-along-track train4 t3 t2 track1)
56 (move-along-track train2 t4 t3 track1)
57 (move-from-track train5 t1 t0 track1)

58 (move-along-track train4 t2 t1 track1)
59 (move-to-track train5 t0 t5 track2)
60 (move-along-track train2 t3 t2 track1)
61 (move-from-track train4 t1 t0 track1)
62 (move-to-departure train4 t0 v1)
63 (move-along-track train2 t2 t1 track1)
64 (move-to-departure train4 v1 v2)
65 (move-to-departure train4 v2 v3)
66 (move-from-track train2 t1 t0 track1)
67 (move-to-departure train2 t0 v1)
68 (move-to-departure train2 v1 v2)
69 (move-from-track train5 t5 t0 track2)
70 (move-to-departure train5 t0 v1)
71 ; cost = 70 (unit cost)

Listing 17: LAMA 2011 output plan in the initial domain.

E.2 PT domain
1 (move-from-arrival-to-track train1 v1 t0 t3 t4 track1)
2 (move-from-arrival-to-track train2 v2 v1 t5 t6 track2)
3 (move-from-arrival-to-track train3 v3 v2 t0 t5 track2)
4 (move-from-arrival-to-track train4 v4 v3 t2 t3 track1)
5 (move-from-arrival-to-track train5 v5 v4 t1 t2 track1)
6 (move-from-arrival-to-track train6 v6 v5 t0 t1 track1)
7 (move-from-track-to-departure train3 t5 t0 v5 v6 track2)
8 (move-from-track-to-departure train2 t6 t5 v4 v5 track2)
9 (move-from-track-to-departure train6 t1 t0 v3 v4 track1)

10 (move-from-track-to-switch train5 t2 t1 t0 track1)
11 (move-from-switch-to-track train5 t0 t5 t6 track2)
12 (move-from-track-to-departure train4 t3 t2 v2 v3 track1)
13 (move-from-track-to-departure train1 t4 t3 v1 v2 track1)
14 (move-from-track-to-departure train5 t6 t5 t0 v1 track2)
15 ; cost = 14 (unit cost)

Listing 18: LAMA 2011 output plan in PT.

E.3 MSR domain
1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t1 track1)
3 (move-along-track train1 t1 t2 track1)
4 (move-along-track train1 t2 t3 track1)
5 (move-along-track train1 t3 t4 track1)
6 (switch-to-next-train train1 train2)
7 (move-on-arrival train2 v2 v1)
8 (move-on-arrival train2 v1 t0)
9 (move-to-track train2 t0 t5 track2)

10 (move-along-track train2 t5 t6 track2)
11 (switch-to-next-train train2 train3)
12 (move-on-arrival train3 v3 v2)
13 (move-on-arrival train3 v2 v1)
14 (move-on-arrival train3 v1 t0)
15 (move-to-track train3 t0 t5 track2)
16 (switch-to-next-train train3 train4)
17 (move-on-arrival train4 v4 v3)
18 (move-on-arrival train4 v3 v2)
19 (move-on-arrival train4 v2 v1)
20 (move-on-arrival train4 v1 t0)
21 (move-to-track train4 t0 t1 track1)
22 (move-along-track train4 t1 t2 track1)
23 (move-along-track train4 t2 t3 track1)
24 (switch-to-next-train train4 train5)
25 (move-on-arrival train5 v5 v4)
26 (move-on-arrival train5 v4 v3)
27 (move-on-arrival train5 v3 v2)
28 (move-on-arrival train5 v2 v1)
29 (move-on-arrival train5 v1 t0)
30 (move-to-track train5 t0 t1 track1)
31 (move-along-track train5 t1 t2 track1)
32 (switch-to-next-train train5 train6)
33 (move-on-arrival train6 v6 v5)
34 (move-on-arrival train6 v5 v4)
35 (move-on-arrival train6 v4 v3)
36 (move-on-arrival train6 v3 v2)
37 (move-on-arrival train6 v2 v1)
38 (move-on-arrival train6 v1 t0)
39 (move-to-track train6 t0 t1 track1)



40 (switch-to-next-train train6 train3)
41 (move-from-track train3 t5 t0 track2)
42 (move-to-departure train3 t0 v1)
43 (move-to-departure train3 v1 v2)
44 (move-to-departure train3 v2 v3)
45 (move-to-departure train3 v3 v4)
46 (move-to-departure train3 v4 v5)
47 (move-to-departure train3 v5 v6)
48 (switch-to-next-train train3 train2)
49 (move-along-track train2 t6 t5 track2)
50 (move-from-track train2 t5 t0 track2)
51 (move-to-departure train2 t0 v1)
52 (move-to-departure train2 v1 v2)
53 (move-to-departure train2 v2 v3)
54 (move-to-departure train2 v3 v4)
55 (move-to-departure train2 v4 v5)
56 (switch-to-next-train train2 train6)
57 (move-from-track train6 t1 t0 track1)
58 (move-to-departure train6 t0 v1)
59 (move-to-departure train6 v1 v2)
60 (move-to-departure train6 v2 v3)
61 (move-to-departure train6 v3 v4)
62 (switch-to-next-train train6 train5)
63 (move-along-track train5 t2 t1 track1)
64 (move-from-track train5 t1 t0 track1)
65 (reallocate -to-track train5 t0 t5 track2)
66 (switch-to-next-train train5 train4)
67 (move-along-track train4 t3 t2 track1)
68 (move-along-track train4 t2 t1 track1)
69 (move-from-track train4 t1 t0 track1)
70 (move-to-departure train4 t0 v1)
71 (move-to-departure train4 v1 v2)
72 (move-to-departure train4 v2 v3)
73 (switch-to-next-train train4 train1)
74 (move-along-track train1 t4 t3 track1)
75 (move-along-track train1 t3 t2 track1)
76 (move-along-track train1 t2 t1 track1)
77 (move-from-track train1 t1 t0 track1)
78 (move-to-departure train1 t0 v1)
79 (move-to-departure train1 v1 v2)
80 (switch-to-next-train train1 train5)
81 (move-from-track train5 t5 t0 track2)
82 (move-to-departure train5 t0 v1)
83 ; cost = 83 (general cost)

Listing 19: LAMA 2011 output plan in MSR.

E.4 PT+MSR domain
1 (move-from-arrival train1 v1 t0 t5 t6 track2)
2 (switch-to-next-train train1 train2)
3 (move-from-arrival train2 v2 v1 t3 t4 track1)
4 (switch-to-next-train train2 train3)
5 (move-from-arrival train3 v3 v2 t0 t5 track2)
6 (switch-to-next-train train3 train4)
7 (move-from-arrival train4 v4 v3 t2 t3 track1)
8 (switch-to-next-train train4 train5)
9 (move-from-arrival train5 v5 v4 t1 t2 track1)

10 (switch-to-next-train train5 train6)
11 (move-from-arrival train6 v6 v5 t0 t1 track1)
12 (switch-to-next-train train6 train3)
13 (move-to-departure train3 t5 t0 v5 v6 track2)
14 (switch-to-next-train train3 train1)
15 (move-to-departure train1 t6 t5 v4 v5 track2)
16 (switch-to-next-train train1 train6)
17 (move-from-track train6 t1 t0 t0 track1)
18 (move-to-track train6 t0 t5 t6 track2)
19 (switch-to-next-train train6 train5)
20 (move-to-departure train5 t2 t1 v3 v4 track1)
21 (switch-to-next-train train5 train4)
22 (move-to-departure train4 t3 t2 v2 v3 track1)
23 (switch-to-next-train train4 train2)
24 (move-to-departure train2 t4 t3 v1 v2 track1)
25 (switch-to-next-train train2 train6)
26 (move-to-departure train6 t6 t5 t0 v1 track2)
27 ; cost = 26 (unit cost)

Listing 20: LAMA 2011 output plan in PT+MSR.

F DecStar Output Plans
The plans generated by DecStar in each domain. Only the
plans with the shortest plan length are included.

F.1 Initial domain
1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t5 track2)
3 (move-on-arrival train2 v2 v1)
4 (move-on-arrival train2 v1 t0)
5 (move-on-arrival train3 v3 v2)
6 (move-on-arrival train3 v2 v1)
7 (move-on-arrival train4 v4 v3)
8 (move-on-arrival train4 v3 v2)
9 (move-on-arrival train5 v5 v4)

10 (move-on-arrival train5 v4 v3)
11 (move-on-arrival train6 v6 v5)
12 (move-to-track train2 t0 t1 track1)
13 (move-on-arrival train3 v1 t0)
14 (move-along-track train1 t5 t6 track2)
15 (move-on-arrival train4 v2 v1)
16 (move-on-arrival train5 v3 v2)
17 (move-on-arrival train6 v5 v4)
18 (move-to-track train3 t0 t5 track2)
19 (move-on-arrival train6 v4 v3)
20 (move-on-arrival train4 v1 t0)
21 (move-on-arrival train5 v2 v1)
22 (move-on-arrival train6 v3 v2)
23 (move-along-track train2 t1 t2 track1)
24 (move-to-track train4 t0 t1 track1)
25 (move-on-arrival train5 v1 t0)
26 (move-on-arrival train6 v2 v1)
27 (move-along-track train2 t2 t3 track1)
28 (move-along-track train4 t1 t2 track1)
29 (move-to-track train5 t0 t1 track1)
30 (move-on-arrival train6 v1 t0)
31 (move-along-track train2 t3 t4 track1)
32 (move-along-track train4 t2 t3 track1)
33 (move-along-track train5 t1 t2 track1)
34 (move-to-track train6 t0 t1 track1)
35 (move-from-track train3 t5 t0 track2)
36 (move-to-departure train3 t0 v1)
37 (move-to-departure train3 v1 v2)
38 (move-to-departure train3 v2 v3)
39 (move-to-departure train3 v3 v4)
40 (move-to-departure train3 v4 v5)
41 (move-to-departure train3 v5 v6)
42 (move-along-track train1 t6 t5 track2)
43 (move-from-track train1 t5 t0 track2)
44 (move-to-departure train1 t0 v1)
45 (move-to-departure train1 v1 v2)
46 (move-to-departure train1 v2 v3)
47 (move-to-departure train1 v3 v4)
48 (move-to-departure train1 v4 v5)
49 (move-from-track train6 t1 t0 track1)
50 (move-to-departure train6 t0 v1)
51 (move-along-track train5 t2 t1 track1)
52 (move-along-track train4 t3 t2 track1)
53 (move-from-track train5 t1 t0 track1)
54 (move-along-track train2 t4 t3 track1)
55 (move-along-track train4 t2 t1 track1)
56 (move-to-track train5 t0 t5 track2)
57 (move-along-track train2 t3 t2 track1)
58 (move-from-track train4 t1 t0 track1)
59 (move-along-track train2 t2 t1 track1)
60 (move-to-departure train6 v1 v2)
61 (move-to-departure train4 t0 v1)
62 (move-to-departure train6 v2 v3)
63 (move-to-departure train4 v1 v2)
64 (move-to-departure train6 v3 v4)
65 (move-to-departure train4 v2 v3)
66 (move-from-track train2 t1 t0 track1)
67 (move-to-departure train2 t0 v1)
68 (move-to-departure train2 v1 v2)
69 (move-from-track train5 t5 t0 track2)
70 (move-to-departure train5 t0 v1)
71 ; cost = 70 (unit cost)

Listing 21: DecStar output plan in the initial domain.



F.2 PT domain

1 (move-from-arrival-to-track train1 v1 t0 t3 t4 track1)
2 (move-from-arrival-to-track train2 v2 v1 t5 t6 track2)
3 (move-from-arrival-to-track train3 v3 v2 t0 t5 track2)
4 (move-from-arrival-to-track train4 v4 v3 t2 t3 track1)
5 (move-from-arrival-to-track train5 v5 v4 t1 t2 track1)
6 (move-from-arrival-to-track train6 v6 v5 t0 t1 track1)
7 (move-from-track-to-departure train3 t5 t0 v5 v6 track2)
8 (move-from-track-to-departure train2 t6 t5 v4 v5 track2)
9 (move-from-track-to-departure train6 t1 t0 v3 v4 track1)

10 (move-from-track-to-switch train5 t2 t1 t0 track1)
11 (move-from-switch-to-track train5 t0 t5 t6 track2)
12 (move-from-track-to-departure train4 t3 t2 v2 v3 track1)
13 (move-from-track-to-departure train1 t4 t3 v1 v2 track1)
14 (move-from-track-to-departure train5 t6 t5 t0 v1 track2)
15 ; cost = 14 (unit cost)

Listing 22: DecStar output plan in PT.

F.3 MSR domain

1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t1 track1)
3 (move-along-track train1 t1 t2 track1)
4 (move-along-track train1 t2 t3 track1)
5 (move-along-track train1 t3 t4 track1)
6 (switch-to-next-train train1 train2)
7 (move-on-arrival train2 v2 v1)
8 (move-on-arrival train2 v1 t0)
9 (move-to-track train2 t0 t5 track2)

10 (move-along-track train2 t5 t6 track2)
11 (switch-to-next-train train2 train3)
12 (move-on-arrival train3 v3 v2)
13 (move-on-arrival train3 v2 v1)
14 (move-on-arrival train3 v1 t0)
15 (move-to-track train3 t0 t5 track2)
16 (switch-to-next-train train3 train4)
17 (move-on-arrival train4 v4 v3)
18 (move-on-arrival train4 v3 v2)
19 (move-on-arrival train4 v2 v1)
20 (move-on-arrival train4 v1 t0)
21 (move-to-track train4 t0 t1 track1)
22 (move-along-track train4 t1 t2 track1)
23 (move-along-track train4 t2 t3 track1)
24 (switch-to-next-train train4 train5)
25 (move-on-arrival train5 v5 v4)
26 (move-on-arrival train5 v4 v3)
27 (move-on-arrival train5 v3 v2)
28 (move-on-arrival train5 v2 v1)
29 (move-on-arrival train5 v1 t0)
30 (move-to-track train5 t0 t1 track1)
31 (move-along-track train5 t1 t2 track1)
32 (switch-to-next-train train5 train6)
33 (move-on-arrival train6 v6 v5)
34 (move-on-arrival train6 v5 v4)
35 (move-on-arrival train6 v4 v3)
36 (move-on-arrival train6 v3 v2)
37 (move-on-arrival train6 v2 v1)
38 (move-on-arrival train6 v1 t0)
39 (move-to-track train6 t0 t1 track1)
40 (switch-to-next-train train6 train3)
41 (move-from-track train3 t5 t0 track2)
42 (move-to-departure train3 t0 v1)
43 (move-to-departure train3 v1 v2)
44 (move-to-departure train3 v2 v3)
45 (move-to-departure train3 v3 v4)
46 (move-to-departure train3 v4 v5)
47 (move-to-departure train3 v5 v6)
48 (switch-to-next-train train3 train2)
49 (move-along-track train2 t6 t5 track2)
50 (move-from-track train2 t5 t0 track2)
51 (move-to-departure train2 t0 v1)
52 (move-to-departure train2 v1 v2)
53 (move-to-departure train2 v2 v3)
54 (move-to-departure train2 v3 v4)
55 (move-to-departure train2 v4 v5)
56 (switch-to-next-train train2 train6)
57 (move-from-track train6 t1 t0 track1)

58 (move-to-departure train6 t0 v1)
59 (move-to-departure train6 v1 v2)
60 (move-to-departure train6 v2 v3)
61 (move-to-departure train6 v3 v4)
62 (switch-to-next-train train6 train5)
63 (move-along-track train5 t2 t1 track1)
64 (move-from-track train5 t1 t0 track1)
65 (reallocate -to-track train5 t0 t5 track2)
66 (switch-to-next-train train5 train4)
67 (move-along-track train4 t3 t2 track1)
68 (move-along-track train4 t2 t1 track1)
69 (move-from-track train4 t1 t0 track1)
70 (move-to-departure train4 t0 v1)
71 (move-to-departure train4 v1 v2)
72 (move-to-departure train4 v2 v3)
73 (switch-to-next-train train4 train1)
74 (move-along-track train1 t4 t3 track1)
75 (move-along-track train1 t3 t2 track1)
76 (move-along-track train1 t2 t1 track1)
77 (move-from-track train1 t1 t0 track1)
78 (move-to-departure train1 t0 v1)
79 (move-to-departure train1 v1 v2)
80 (switch-to-next-train train1 train5)
81 (move-from-track train5 t5 t0 track2)
82 (move-to-departure train5 t0 v1)
83 ; cost = 83 (general cost)

Listing 23: DecStar output plan in MSR.

F.4 PT+MSR domain
1 (move-from-arrival train1 v1 t0 t3 t4 track1)
2 (switch-to-next-train train1 train2)
3 (move-from-arrival train2 v2 v1 t5 t6 track2)
4 (switch-to-next-train train2 train3)
5 (move-from-arrival train3 v3 v2 t0 t5 track2)
6 (switch-to-next-train train3 train4)
7 (move-from-arrival train4 v4 v3 t2 t3 track1)
8 (switch-to-next-train train4 train5)
9 (move-from-arrival train5 v5 v4 t1 t2 track1)

10 (switch-to-next-train train5 train6)
11 (move-from-arrival train6 v6 v5 t0 t1 track1)
12 (switch-to-next-train train6 train3)
13 (move-to-departure train3 t5 t0 v5 v6 track2)
14 (switch-to-next-train train3 train2)
15 (move-to-departure train2 t6 t5 v4 v5 track2)
16 (switch-to-next-train train2 train6)
17 (move-from-track train6 t1 t0 t0 track1)
18 (move-to-track train6 t0 t5 t6 track2)
19 (switch-to-next-train train6 train5)
20 (move-to-departure train5 t2 t1 v3 v4 track1)
21 (switch-to-next-train train5 train4)
22 (move-to-departure train4 t3 t2 v2 v3 track1)
23 (switch-to-next-train train4 train1)
24 (move-to-departure train1 t4 t3 v1 v2 track1)
25 (switch-to-next-train train1 train6)
26 (move-to-departure train6 t6 t5 t0 v1 track2)
27 ; cost = 26 (unit cost)

Listing 24: DecStar output plan in PT+MSR.

G Freelunch-Madagascar Output Plans
The plans generated by Freelunch-Madagascar in each do-
main. Only the plans with the shortest plan length are in-
cluded.

G.1 Initial domain
1 0 : (move-on-arrival train1 v1 t0)
2 1 : (move-on-arrival train2 v2 v1)
3 2 : (move-to-track train1 t0 t5 track2)
4 3 : (move-on-arrival train2 v1 t0)
5 4 : (move-on-arrival train3 v3 v2)
6 5 : (move-along-track train1 t5 t6 track2)
7 6 : (move-on-arrival train3 v2 v1)



8 7 : (move-on-arrival train4 v4 v3)
9 8 : (move-to-track train2 t0 t1 track1)

10 9 : (move-along-track train2 t1 t2 track1)
11 10 : (move-on-arrival train3 v1 t0)
12 11 : (move-on-arrival train4 v3 v2)
13 12 : (move-on-arrival train5 v5 v4)
14 13 : (move-along-track train2 t2 t3 track1)
15 14 : (move-on-arrival train4 v2 v1)
16 15 : (move-on-arrival train5 v4 v3)
17 16 : (move-on-arrival train6 v6 v5)
18 17 : (move-to-track train3 t0 t5 track2)
19 18 : (move-on-arrival train4 v1 t0)
20 19 : (move-on-arrival train5 v3 v2)
21 20 : (move-on-arrival train6 v5 v4)
22 21 : (move-along-track train2 t3 t4 track1)
23 22 : (move-on-arrival train5 v2 v1)
24 23 : (move-on-arrival train6 v4 v3)
25 24 : (move-to-track train4 t0 t1 track1)
26 25 : (move-along-track train4 t1 t2 track1)
27 26 : (move-on-arrival train5 v1 t0)
28 27 : (move-on-arrival train6 v3 v2)
29 28 : (move-along-track train4 t2 t3 track1)
30 29 : (move-on-arrival train6 v2 v1)
31 30 : (move-to-track train5 t0 t1 track1)
32 31 : (move-along-track train5 t1 t2 track1)
33 32 : (move-on-arrival train6 v1 t0)
34 33 : (move-to-track train6 t0 t1 track1)
35 34 : (move-from-track train3 t5 t0 track2)
36 35 : (move-along-track train1 t6 t5 track2)
37 36 : (move-to-departure train3 t0 v1)
38 37 : (move-from-track train1 t5 t0 track2)
39 38 : (move-to-departure train3 v1 v2)
40 39 : (move-to-departure train1 t0 v1)
41 40 : (move-to-departure train3 v2 v3)
42 41 : (move-from-track train6 t1 t0 track1)
43 42 : (move-to-departure train1 v1 v2)
44 43 : (move-to-departure train3 v3 v4)
45 44 : (move-along-track train5 t2 t1 track1)
46 45 : (move-to-departure train1 v2 v3)
47 46 : (move-to-departure train3 v4 v5)
48 47 : (move-to-track train6 t0 t5 track2)
49 48 : (move-along-track train4 t3 t2 track1)
50 49 : (move-along-track train6 t5 t6 track2)
51 50 : (move-from-track train5 t1 t0 track1)
52 51 : (move-to-departure train1 v3 v4)
53 52 : (move-along-track train2 t4 t3 track1)
54 53 : (move-along-track train4 t2 t1 track1)
55 54 : (move-to-departure train1 v4 v3)
56 55 : (move-to-departure train5 t0 v1)
57 56 : (move-along-track train2 t3 t2 track1)
58 57 : (move-from-track train4 t1 t0 track1)
59 58 : (move-to-departure train1 v3 v4)
60 59 : (move-to-departure train3 v5 v6)
61 60 : (move-to-departure train5 v1 v2)
62 61 : (move-along-track train2 t2 t1 track1)
63 62 : (move-to-departure train1 v4 v5)
64 63 : (move-to-departure train4 t0 v1)
65 64 : (move-to-departure train5 v2 v3)
66 65 : (move-from-track train2 t1 t0 track1)
67 66 : (move-to-departure train4 v1 v2)
68 67 : (move-to-departure train5 v3 v4)
69 68 : (move-along-track train6 t6 t5 track2)
70 69 : (move-to-departure train2 t0 v1)
71 70 : (move-to-departure train4 v2 v3)
72 71 : (move-from-track train6 t5 t0 track2)
73 72 : (move-to-departure train2 v1 v2)
74 73 : (move-to-departure train6 t0 v1)

Listing 25: Freelunch-Madagascar output plan in the initial domain.

G.2 PT domain
1 0 : (move-from-arrival-to-track train1 v1 t0 t5 t6 track2)
2 1 : (move-from-arrival-to-track train2 v2 v1 t3 t4 track1)
3 2 : (move-from-arrival-to-track train3 v3 v2 t0 t5 track2)
4 3 : (move-from-arrival-to-track train4 v4 v3 t2 t3 track1)
5 4 : (move-from-arrival-to-track train5 v5 v4 t1 t2 track1)
6 5 : (move-from-arrival-to-track train6 v6 v5 t0 t1 track1)
7 6 : (move-from-track-to-departure train3 t5 t0 v5 v6

track2)

8 7 : (move-from-track-to-departure train1 t6 t5 v4 v5
track2)

9 8 : (move-from-track-to-switch train6 t1 t0 t0 track1)
10 9 : (move-from-switch-to-track train6 t0 t5 t6 track2)
11 10 : (move-from-track-to-departure train5 t2 t1 v3 v4

track1)
12 11 : (move-from-track-to-departure train4 t3 t2 v2 v3

track1)
13 12 : (move-from-track-to-departure train2 t4 t3 v1 v2

track1)
14 13 : (move-from-track-to-departure train6 t6 t5 t0 v1

track2)

Listing 26: Freelunch-Madagascar output plan in PT.

G.3 MSR domain
1 0 : (move-on-arrival train1 v1 t0)
2 1 : (switch-to-next-train train1 train2)
3 2 : (move-on-arrival train2 v2 v1)
4 3 : (switch-to-next-train train2 train3)
5 4 : (move-on-arrival train3 v3 v2)
6 5 : (switch-to-next-train train3 train4)
7 6 : (move-on-arrival train4 v4 v3)
8 7 : (switch-to-next-train train4 train1)
9 8 : (move-to-track train1 t0 t1 track1)

10 9 : (switch-to-next-train train1 train2)
11 10 : (move-on-arrival train2 v1 t0)
12 11 : (move-to-track train2 t0 t5 track2)
13 12 : (move-along-track train2 t5 t6 track2)
14 13 : (switch-to-next-train train2 train1)
15 14 : (move-along-track train1 t1 t2 track1)
16 15 : (switch-to-next-train train1 train3)
17 16 : (move-on-arrival train3 v2 v1)
18 17 : (switch-to-next-train train3 train4)
19 18 : (move-on-arrival train4 v3 v2)
20 19 : (switch-to-next-train train4 train3)
21 20 : (move-on-arrival train3 v1 t0)
22 21 : (switch-to-next-train train3 train5)
23 22 : (move-on-arrival train5 v5 v4)
24 23 : (move-on-arrival train5 v4 v3)
25 24 : (switch-to-next-train train5 train4)
26 25 : (move-on-arrival train4 v2 v1)
27 26 : (switch-to-next-train train4 train3)
28 27 : (move-to-track train3 t0 t5 track2)
29 28 : (switch-to-next-train train3 train5)
30 29 : (move-on-arrival train5 v3 v2)
31 30 : (switch-to-next-train train5 train6)
32 31 : (move-on-arrival train6 v6 v5)
33 32 : (switch-to-next-train train6 train4)
34 33 : (move-on-arrival train4 v1 t0)
35 34 : (move-to-track train4 t0 t1 track1)
36 35 : (switch-to-next-train train4 train5)
37 36 : (move-on-arrival train5 v2 v1)
38 37 : (switch-to-next-train train5 train6)
39 38 : (move-on-arrival train6 v5 v4)
40 39 : (move-on-arrival train6 v4 v3)
41 40 : (switch-to-next-train train6 train1)
42 41 : (move-along-track train1 t2 t3 track1)
43 42 : (switch-to-next-train train1 train4)
44 43 : (move-along-track train4 t1 t2 track1)
45 44 : (switch-to-next-train train4 train1)
46 45 : (move-along-track train1 t3 t4 track1)
47 46 : (switch-to-next-train train1 train4)
48 47 : (move-along-track train4 t2 t3 track1)
49 48 : (switch-to-next-train train4 train6)
50 49 : (move-on-arrival train6 v3 v2)
51 50 : (switch-to-next-train train6 train5)
52 51 : (move-on-arrival train5 v1 t0)
53 52 : (move-to-track train5 t0 t1 track1)
54 53 : (switch-to-next-train train5 train6)
55 54 : (move-on-arrival train6 v2 v1)
56 55 : (move-on-arrival train6 v1 t0)
57 56 : (switch-to-next-train train6 train5)
58 57 : (move-along-track train5 t1 t2 track1)
59 58 : (switch-to-next-train train5 train6)
60 59 : (move-to-track train6 t0 t1 track1)
61 60 : (switch-to-next-train train6 train3)
62 61 : (move-from-track train3 t5 t0 track2)
63 62 : (move-to-departure train3 t0 v1)



64 63 : (move-to-departure train3 v1 v2)
65 64 : (switch-to-next-train train3 train2)
66 65 : (move-along-track train2 t6 t5 track2)
67 66 : (move-from-track train2 t5 t0 track2)
68 67 : (move-to-departure train2 t0 v1)
69 68 : (switch-to-next-train train2 train3)
70 69 : (move-to-departure train3 v2 v3)
71 70 : (switch-to-next-train train3 train2)
72 71 : (move-to-departure train2 v1 v2)
73 72 : (switch-to-next-train train2 train6)
74 73 : (move-from-track train6 t1 t0 track1)
75 74 : (switch-to-next-train train6 train5)
76 75 : (move-along-track train5 t2 t1 track1)
77 76 : (switch-to-next-train train5 train4)
78 77 : (move-along-track train4 t3 t2 track1)
79 78 : (switch-to-next-train train4 train3)
80 79 : (move-to-departure train3 v3 v4)
81 80 : (switch-to-next-train train3 train6)
82 81 : (reallocate -to-track train6 t0 t5 track2)
83 82 : (switch-to-next-train train6 train5)
84 83 : (move-from-track train5 t1 t0 track1)
85 84 : (switch-to-next-train train5 train4)
86 85 : (move-along-track train4 t2 t1 track1)
87 86 : (switch-to-next-train train4 train1)
88 87 : (move-along-track train1 t4 t3 track1)
89 88 : (switch-to-next-train train1 train3)
90 89 : (move-to-departure train3 v4 v5)
91 90 : (switch-to-next-train train3 train2)
92 91 : (move-to-departure train2 v2 v3)
93 92 : (switch-to-next-train train2 train5)
94 93 : (move-to-departure train5 t0 v1)
95 94 : (switch-to-next-train train5 train1)
96 95 : (move-along-track train1 t3 t2 track1)
97 96 : (switch-to-next-train train1 train3)
98 97 : (move-to-departure train3 v5 v6)
99 98 : (switch-to-next-train train3 train2)

100 99 : (move-to-departure train2 v3 v4)
101 100 : (move-to-departure train2 v4 v5)
102 101 : (switch-to-next-train train2 train5)
103 102 : (move-to-departure train5 v1 v2)
104 103 : (switch-to-next-train train5 train4)
105 104 : (move-from-track train4 t1 t0 track1)
106 105 : (switch-to-next-train train4 train1)
107 106 : (move-along-track train1 t2 t1 track1)
108 107 : (switch-to-next-train train1 train4)
109 108 : (move-to-departure train4 t0 v1)
110 109 : (switch-to-next-train train4 train1)
111 110 : (move-from-track train1 t1 t0 track1)
112 111 : (switch-to-next-train train1 train5)
113 112 : (move-to-departure train5 v2 v3)
114 113 : (switch-to-next-train train5 train4)
115 114 : (move-to-departure train4 v1 v2)
116 115 : (switch-to-next-train train4 train5)
117 116 : (move-to-departure train5 v3 v4)
118 117 : (switch-to-next-train train5 train1)
119 118 : (move-to-departure train1 t0 v1)
120 119 : (switch-to-next-train train1 train4)
121 120 : (move-to-departure train4 v2 v3)
122 121 : (switch-to-next-train train4 train1)
123 122 : (move-to-departure train1 v1 v2)
124 123 : (switch-to-next-train train1 train6)
125 124 : (move-from-track train6 t5 t0 track2)
126 125 : (move-to-departure train6 t0 v1)
127 126 : (switch-to-next-train train6 train5)

Listing 27: Freelunch-Madagascar output plan in MSR.

G.4 PT+MSR domain
1 0 : (move-from-arrival train1 v1 t0 t5 t6 track2)
2 1 : (switch-to-next-train train1 train2)
3 2 : (move-from-arrival train2 v2 v1 t3 t4 track1)
4 3 : (switch-to-next-train train2 train3)
5 4 : (move-from-arrival train3 v3 v2 t0 t5 track2)
6 5 : (switch-to-next-train train3 train4)
7 6 : (move-from-arrival train4 v4 v3 t2 t3 track1)
8 7 : (switch-to-next-train train4 train5)
9 8 : (move-from-arrival train5 v5 v4 t1 t2 track1)

10 9 : (switch-to-next-train train5 train6)
11 10 : (move-from-arrival train6 v6 v5 t0 t1 track1)

12 11 : (switch-to-next-train train6 train3)
13 12 : (move-to-departure train3 t5 t0 v5 v6 track2)
14 13 : (switch-to-next-train train3 train1)
15 14 : (move-to-departure train1 t6 t5 v4 v5 track2)
16 15 : (switch-to-next-train train1 train6)
17 16 : (move-from-track train6 t1 t0 t0 track1)
18 17 : (move-to-track train6 t0 t5 t6 track2)
19 18 : (switch-to-next-train train6 train5)
20 19 : (move-to-departure train5 t2 t1 v3 v4 track1)
21 20 : (switch-to-next-train train5 train4)
22 21 : (move-to-departure train4 t3 t2 v2 v3 track1)
23 22 : (switch-to-next-train train4 train2)
24 23 : (move-to-departure train2 t4 t3 v1 v2 track1)
25 24 : (switch-to-next-train train2 train6)
26 25 : (move-to-departure train6 t6 t5 t0 v1 track2)
27 26 : (switch-to-next-train train6 train1)

Listing 28: Freelunch-Madagascar output plan in PT+MSR.

H Saarplan Output Plans
The plans generated by Saarplan in each domain. Only the
plans with the shortest plan length are included.

H.1 Initial domain
1 (move-on-arrival train1 v1 t0)
2 (move-on-arrival train2 v2 v1)
3 (move-on-arrival train3 v3 v2)
4 (move-on-arrival train4 v4 v3)
5 (move-on-arrival train5 v5 v4)
6 (move-on-arrival train6 v6 v5)
7 (move-to-track train1 t0 t5 track2)
8 (move-on-arrival train2 v1 t0)
9 (move-on-arrival train3 v2 v1)

10 (move-on-arrival train4 v3 v2)
11 (move-on-arrival train5 v4 v3)
12 (move-to-track train2 t0 t1 track1)
13 (move-along-track train1 t5 t6 track2)
14 (move-on-arrival train3 v1 t0)
15 (move-on-arrival train4 v2 v1)
16 (move-on-arrival train5 v3 v2)
17 (move-on-arrival train6 v5 v4)
18 (move-on-arrival train6 v4 v3)
19 (move-to-track train3 t0 t5 track2)
20 (move-on-arrival train4 v1 t0)
21 (move-on-arrival train5 v2 v1)
22 (move-along-track train2 t1 t2 track1)
23 (move-to-track train4 t0 t1 track1)
24 (move-on-arrival train6 v3 v2)
25 (move-along-track train2 t2 t3 track1)
26 (move-on-arrival train5 v1 t0)
27 (move-on-arrival train6 v2 v1)
28 (move-along-track train4 t1 t2 track1)
29 (move-along-track train2 t3 t4 track1)
30 (move-to-track train5 t0 t1 track1)
31 (move-along-track train4 t2 t3 track1)
32 (move-on-arrival train6 v1 t0)
33 (move-along-track train5 t1 t2 track1)
34 (move-to-track train6 t0 t1 track1)
35 (move-from-track train3 t5 t0 track2)
36 (move-to-departure train3 t0 v1)
37 (move-along-track train1 t6 t5 track2)
38 (move-to-departure train3 v1 v2)
39 (move-to-departure train3 v2 v3)
40 (move-to-departure train3 v3 v4)
41 (move-to-departure train3 v4 v5)
42 (move-to-departure train3 v5 v6)
43 (move-from-track train1 t5 t0 track2)
44 (move-to-departure train1 t0 v1)
45 (move-to-departure train1 v1 v2)
46 (move-to-departure train1 v2 v3)
47 (move-to-departure train1 v3 v4)
48 (move-to-departure train1 v4 v5)
49 (move-from-track train6 t1 t0 track1)
50 (move-to-departure train6 t0 v1)
51 (move-along-track train5 t2 t1 track1)
52 (move-to-departure train6 v1 v2)



53 (move-to-departure train6 v2 v3)
54 (move-to-departure train6 v3 v4)
55 (move-along-track train4 t3 t2 track1)
56 (move-along-track train2 t4 t3 track1)
57 (move-from-track train5 t1 t0 track1)
58 (move-along-track train4 t2 t1 track1)
59 (move-to-track train5 t0 t5 track2)
60 (move-along-track train2 t3 t2 track1)
61 (move-from-track train4 t1 t0 track1)
62 (move-to-departure train4 t0 v1)
63 (move-along-track train2 t2 t1 track1)
64 (move-to-departure train4 v1 v2)
65 (move-to-departure train4 v2 v3)
66 (move-from-track train2 t1 t0 track1)
67 (move-to-departure train2 t0 v1)
68 (move-to-departure train2 v1 v2)
69 (move-from-track train5 t5 t0 track2)
70 (move-to-departure train5 t0 v1)
71 ; cost = 70 (unit cost)

Listing 29: Saarplan output plan in the initial domain.

H.2 PT domain
1 (move-from-arrival-to-track train1 v1 t0 t3 t4 track1)
2 (move-from-arrival-to-track train2 v2 v1 t5 t6 track2)
3 (move-from-arrival-to-track train3 v3 v2 t0 t5 track2)
4 (move-from-arrival-to-track train4 v4 v3 t2 t3 track1)
5 (move-from-arrival-to-track train5 v5 v4 t1 t2 track1)
6 (move-from-arrival-to-track train6 v6 v5 t0 t1 track1)
7 (move-from-track-to-departure train3 t5 t0 v5 v6 track2)
8 (move-from-track-to-departure train2 t6 t5 v4 v5 track2)
9 (move-from-track-to-departure train6 t1 t0 v3 v4 track1)

10 (move-from-track-to-switch train5 t2 t1 t0 track1)
11 (move-from-switch-to-track train5 t0 t5 t6 track2)
12 (move-from-track-to-departure train4 t3 t2 v2 v3 track1)
13 (move-from-track-to-departure train1 t4 t3 v1 v2 track1)
14 (move-from-track-to-departure train5 t6 t5 t0 v1 track2)
15 ; cost = 14 (unit cost)

Listing 30: Saarplan output plan in PT.

H.3 MSR domain
1 (move-on-arrival train1 v1 t0)
2 (move-to-track train1 t0 t1 track1)
3 (switch-to-next-train train1 train2)
4 (move-on-arrival train2 v2 v1)
5 (move-on-arrival train2 v1 t0)
6 (switch-to-next-train train2 train3)
7 (move-on-arrival train3 v3 v2)
8 (move-on-arrival train3 v2 v1)
9 (switch-to-next-train train3 train4)

10 (move-on-arrival train4 v4 v3)
11 (move-on-arrival train4 v3 v2)
12 (switch-to-next-train train4 train5)
13 (move-on-arrival train5 v5 v4)
14 (move-on-arrival train5 v4 v3)
15 (switch-to-next-train train5 train6)
16 (move-on-arrival train6 v6 v5)
17 (move-on-arrival train6 v5 v4)
18 (switch-to-next-train train6 train2)
19 (move-to-track train2 t0 t5 track2)
20 (switch-to-next-train train2 train1)
21 (move-along-track train1 t1 t2 track1)
22 (switch-to-next-train train1 train3)
23 (move-on-arrival train3 v1 t0)
24 (switch-to-next-train train3 train4)
25 (move-on-arrival train4 v2 v1)
26 (switch-to-next-train train4 train5)
27 (move-on-arrival train5 v3 v2)
28 (switch-to-next-train train5 train6)
29 (move-on-arrival train6 v4 v3)
30 (switch-to-next-train train6 train1)
31 (move-along-track train1 t2 t1 track1)
32 (switch-to-next-train train1 train2)
33 (move-along-track train2 t5 t6 track2)
34 (switch-to-next-train train2 train3)

35 (move-to-track train3 t0 t5 track2)
36 (switch-to-next-train train3 train4)
37 (move-on-arrival train4 v1 t0)
38 (switch-to-next-train train4 train1)
39 (move-along-track train1 t1 t2 track1)
40 (switch-to-next-train train1 train5)
41 (move-on-arrival train5 v2 v1)
42 (switch-to-next-train train5 train6)
43 (move-on-arrival train6 v3 v2)
44 (switch-to-next-train train6 train2)
45 (switch-to-next-train train2 train4)
46 (move-to-track train4 t0 t1 track1)
47 (switch-to-next-train train4 train5)
48 (move-on-arrival train5 v1 t0)
49 (switch-to-next-train train5 train1)
50 (move-along-track train1 t2 t3 track1)
51 (switch-to-next-train train1 train4)
52 (move-along-track train4 t1 t2 track1)
53 (switch-to-next-train train4 train5)
54 (move-to-track train5 t0 t1 track1)
55 (move-from-track train5 t1 t0 track1)
56 (switch-to-next-train train5 train4)
57 (move-along-track train4 t2 t1 track1)
58 (switch-to-next-train train4 train6)
59 (move-on-arrival train6 v2 v1)
60 (switch-to-next-train train6 train1)
61 (move-along-track train1 t3 t4 track1)
62 (switch-to-next-train train1 train4)
63 (move-along-track train4 t1 t2 track1)
64 (move-along-track train4 t2 t3 track1)
65 (switch-to-next-train train4 train5)
66 (reallocate -to-track train5 t0 t1 track1)
67 (move-along-track train5 t1 t2 track1)
68 (switch-to-next-train train5 train6)
69 (move-on-arrival train6 v1 t0)
70 (move-to-track train6 t0 t1 track1)
71 (switch-to-next-train train6 train3)
72 (move-from-track train3 t5 t0 track2)
73 (move-to-departure train3 t0 v1)
74 (switch-to-next-train train3 train2)
75 (move-along-track train2 t6 t5 track2)
76 (switch-to-next-train train2 train3)
77 (move-to-departure train3 v1 v2)
78 (move-to-departure train3 v2 v3)
79 (move-to-departure train3 v3 v4)
80 (move-to-departure train3 v4 v5)
81 (move-to-departure train3 v5 v6)
82 (switch-to-next-train train3 train1)
83 (switch-to-next-train train1 train2)
84 (move-from-track train2 t5 t0 track2)
85 (move-to-departure train2 t0 v1)
86 (move-to-departure train2 v1 v2)
87 (move-to-departure train2 v2 v3)
88 (move-to-departure train2 v3 v4)
89 (move-to-departure train2 v4 v5)
90 (switch-to-next-train train2 train1)
91 (switch-to-next-train train1 train6)
92 (move-from-track train6 t1 t0 track1)
93 (switch-to-next-train train6 train5)
94 (move-along-track train5 t2 t1 track1)
95 (switch-to-next-train train5 train4)
96 (move-along-track train4 t3 t2 track1)
97 (switch-to-next-train train4 train1)
98 (move-along-track train1 t4 t3 track1)
99 (switch-to-next-train train1 train6)

100 (reallocate -to-track train6 t0 t5 track2)
101 (switch-to-next-train train6 train5)
102 (move-from-track train5 t1 t0 track1)
103 (move-to-departure train5 t0 v1)
104 (switch-to-next-train train5 train4)
105 (move-along-track train4 t2 t1 track1)
106 (switch-to-next-train train4 train1)
107 (move-along-track train1 t3 t2 track1)
108 (switch-to-next-train train1 train5)
109 (move-to-departure train5 v1 v2)
110 (move-to-departure train5 v2 v3)
111 (move-to-departure train5 v3 v4)
112 (switch-to-next-train train5 train1)
113 (switch-to-next-train train1 train4)
114 (move-from-track train4 t1 t0 track1)
115 (move-to-departure train4 t0 v1)



116 (switch-to-next-train train4 train1)
117 (move-along-track train1 t2 t1 track1)
118 (switch-to-next-train train1 train4)
119 (move-to-departure train4 v1 v2)
120 (move-to-departure train4 v2 v3)
121 (switch-to-next-train train4 train1)
122 (move-from-track train1 t1 t0 track1)
123 (move-to-departure train1 t0 v1)
124 (move-to-departure train1 v1 v2)
125 (switch-to-next-train train1 train6)
126 (move-from-track train6 t5 t0 track2)
127 (move-to-departure train6 t0 v1)
128 ; cost = 129 (general cost)

Listing 31: Saarplan output plan in MSR.

H.4 PT+MSR domain
1 (move-from-arrival train1 v1 t0 t5 t6 track2)
2 (switch-to-next-train train1 train2)
3 (move-from-arrival train2 v2 v1 t3 t4 track1)
4 (switch-to-next-train train2 train3)
5 (move-from-arrival train3 v3 v2 t0 t5 track2)
6 (switch-to-next-train train3 train4)
7 (move-from-arrival train4 v4 v3 t2 t3 track1)
8 (switch-to-next-train train4 train5)
9 (move-from-arrival train5 v5 v4 t1 t2 track1)

10 (switch-to-next-train train5 train6)
11 (move-from-arrival train6 v6 v5 t0 t1 track1)
12 (switch-to-next-train train6 train3)
13 (move-to-departure train3 t5 t0 v5 v6 track2)
14 (switch-to-next-train train3 train1)
15 (move-to-departure train1 t6 t5 v4 v5 track2)
16 (switch-to-next-train train1 train2)
17 (switch-to-next-train train2 train6)
18 (move-to-departure train6 t1 t0 v3 v4 track1)
19 (switch-to-next-train train6 train2)
20 (switch-to-next-train train2 train5)
21 (move-from-track train5 t2 t1 t0 track1)
22 (move-to-track train5 t0 t5 t6 track2)
23 (switch-to-next-train train5 train4)
24 (move-to-departure train4 t3 t2 v2 v3 track1)
25 (switch-to-next-train train4 train2)
26 (move-to-departure train2 t4 t3 v1 v2 track1)
27 (switch-to-next-train train2 train5)
28 (move-to-departure train5 t6 t5 t0 v1 track2)
29 ; cost = 28 (unit cost)

Listing 32: Saarplan output plan in PT+MSR.


	Introduction
	Background: TUSP, Planners & PDDL
	TUSP
	Planners
	PDDL
	Related work

	Problem Description: Domain of TUSP
	Domain definition
	Action precondition & effect
	Plan quality

	Experimental Work
	Domain modification 1: oriented graph
	Domain modification 2: stack
	Domain modification 3: action costs
	Approach 1: from path to track (PT)
	move-on-arrival
	move-to-track
	move-from-track
	move-to-departure
	Advantages & disadvantages

	Approach 2: minimized switching & reallocation (MSR)
	switch-to-next-train
	move-to-track-hasBeenParked
	Advantages & disadvantages

	Approach 3: PT + MSR

	Planner Selection & Analysis
	Baseline: LAMA 2011
	Team 2: DecStar
	Team 4: Freelunch-Madagascar
	Team 7: Saarplan

	Planner Results & Discussion
	Conclusions & Future Work
	Limitations
	Future work

	Responsible Research
	Resources
	Reproducibility

	Initial PDDL domain and problem
	Initial Domain
	Initial Problem

	PT domain and problem
	PT Domain
	PT Problem

	MSR domain and problem
	MSR Domain
	MSR Problem

	PT+MSR domain and problem
	PT+MSR Domain
	PT+MSR Problem

	LAMA 2011 Output Plans
	Initial domain
	PT domain
	MSR domain
	PT+MSR domain

	DecStar Output Plans
	Initial domain
	PT domain
	MSR domain
	PT+MSR domain

	Freelunch-Madagascar Output Plans
	Initial domain
	PT domain
	MSR domain
	PT+MSR domain

	Saarplan Output Plans
	Initial domain
	PT domain
	MSR domain
	PT+MSR domain


