Hardware Acceleration

of Bioinformatics

Sequence Alignment Applications

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. ir. K. C. A. M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op maandag 6 juni 2011 om 12.30 uur

door

Laig HASAN,
Master of Science in Electrical Engineering
N-W.EP. University of Engineering and Technology, Peshawar, Pakistan

geboren te Swabi, Pakistan.

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. H. J. Sips

Copromotor: Dr. ir. Z. Al-Ars

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. H. J. Sips Technische Universiteit Delft, promotor
Dr. ir. Z. Al-Ars Technische Universiteit Delft, copromotor
Prof. dr. W. Anheier Universitadt Bremen

Prof. dr. O. Nieto-Taladriz Garcia Universidad Politecnica de Madrid

Prof. dr. ir. C. Vuik Technische Universiteit Delft

Prof. dr. ir. M. J. T. Reinders Technische Universiteit Delft

Dr. ir. T. G. R. M. van Leuken Technische Universiteit Delft

Prof. dr. ir. P. F. A. Van Mieghem Technische Universiteit Delft, reservelid

o]
TUDelft

Delft University of Technology

This thesis has been completed in partial fulfillment of the requirements of Delft Uni-
versity of Technology (Delft, The Netherlands) for the award of the Ph.D. degree. The
research described in this thesis was supported in parts by three institutions. (1) CE
Lab. Delft University of Technology, (2) HEC Pakistan, (3) UET Peshawar, Pakistan.

Published and distributed by: Laiq Hasan, E-mail: laighasan @ gmail.com
ISBN: 978-90-72298-19-5

Keywords: Bioinformatics, Sequence Alignment, Hardware Acceleration, Systolic
Arrays, Recursive Variable Expansion, FPGAs, GPUs, Performance Analysis.

Copyright © 2011 by Laiq Hasan

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval system,
without written permission of the author.

Printed in The Netherlands

Dedicated to:

The Sunday morning Sun, cool breeze and clear blue skies.

Summary

Biological sequence alignment is an important and challenging task in bioinformat-
ics. Alignment may be defined as an arrangement of two or more DNA or protein
sequences to highlight the regions of their similarity. Sequence alignment is used to
infer the evolutionary relationship between a set of protein or DNA sequences. An ac-
curate alignment can provide valuable information for experimentation on the newly
found sequences. It is indispensable in basic research as well as in practical appli-
cations such as pharmaceutical development, drug discovery, disease prevention and
criminal forensics.

Many algorithms and methods, such as, dot plot, Needleman-Wunsch, Smith-
Waterman, FASTA, BLAST, HMMER and ClustalW have been proposed to perform
and accelerate sequence alignment activities. However, with the ever increasing vol-
ume of data in bioinformatics databases, the time needed for biological sequence
alignment is always increasing. The main aim of the research presented in this the-
sis is to explore and analyze the existing sequence alignment methods and come up
with better and optimized solutions. The following research goals have been achieved
during the course of this thesis.

1. Classification and comparison of the available sequence alignment methods
with the emphasis on identifying the most optimal but computationally expen-
sive methods that are best suited for hardware acceleration.

2. Optimized systolic array implementations of the Smith-Waterman based se-
quence alignment on FPGAs.

3. A novel FPGA implementation of sequence alignment based on recursive vari-
able expansion and its performance evaluation.

4. An optimized and high performance GPU-based protein sequence alignment
and its comparison with the existing GPU solutions.

vi

5. Detailed performance analysis and optimization of the hardware-based sequence
alignment, considering the limiting factors like computational resources, mem-
ory bandwidth and power consumption.

6. Introduction of a technique based on hardware partitioning to improve perfor-
mance by reducing the hardware overhead cost.

Samenvatting

Biologische sequentie uitlijning is een belangrijke en uitdagende taak in bioinformat-
ica. Uitlijning kan gedefinieerd worden als een rangschikking van twee of meer DNA-
of eiwitsequenties om gelijkvormig delen te markeren. Sequentieuitlijning wordt ge-
bruikt om de evolutionaire relatie tussen een set eiwitten of DNA-sequenties af te
leiden. Een nauwkeurige uitlijning kan waardevolle informatie voor experimenten op
nieuw ontdekte sequenties opleveren. Het is onontbeerlijk in basisonderzoeken eve-
nals in praktische toepassingen zoals farmaceutische ontwikkelingen, medicijn onder-
zoek, ziekte preventie en forensisch onderzoek.

Vele algoritmes en methoden, zoals dot plot, Needleman-Wunsch, Smith-Waterman,
FASTA, BLAST, HMMER en ClustalW zijn beoogd om de sequentieuitlijning uit te
voeren en te versnellen. Echter, met het alsmaar groeiende volume van de data in
bio-informatica databanken, groeit ook alsmaar de tijd benodigd voor biologische se-
quentie uitlijning. Het voornaamste doel van het in dit proefschrift gepresenteerde on-
derzoek is het verkennen en analyseren van bestaande sequentieuitlijningsmethoden
en het opzetten van een betere, optimalere oplossing. De volgende onderzoeksdoelen
zijn voltooid in het kader van dit proefschrift.

1. Classificatie en vergelijking van beschikbare sequentieuitlijningsmethoden met
nadruk op het identificeren van de meest optimale maar mathematisch kost-
baarste methoden die het best passen bij hardwareversnelling.

2. Optimalisatie van systolic-array uitvoeringen van de op Smith-Waterman gebas-
eerde sequentieuitlijning in FPGAs.

3. Een nieuwe FPGA-implementatie van sequentieuitlijning gebaseerd op ‘recur-
sive variable expansion’ en zijn performance evaluatie.

4. Een geoptimaliseerde en high performance GPU-gebaseerd eiwit sequentieuitli-
jning en de vergelijking met bestaande GPU-oplossingen.

vii

viii

5. Gedetailleerde performance evaluatie en optimalisatie van hardware gebonden
sequentieuitlijning, met het oog op beperkende factoren zoals computer hulp-
bronnen, geheugenbandbreedte en energieverbruik.

6. Introductie van een werkwijze gebaseerd op hardware partitionering om de
prestatie te verbeteren door het terugbrengen van de hardware overhead kosten.

Acknowledgments

First and foremost, I would like to thank Allah SWT, as counting up His favors is
inconceivable to categorize. “If you would count up the favors of Allah, never would
you be able to number them: for Allah is Oft-Forgiving, Most Merciful.” (Quran,
Surah Al-Nahl, Verse 18)

Next, I thank my family and friends back home, who continuously keep praying
for my success, without expecting anything in return. Thanks are due to my friends
and acquaintances, in The Netherlands in general and Delft in particular, whose sup-
port was necessary for my long stay here. Thanks are also due to my friends abroad,
spread all over the world and whom I keep visiting from time to time. They really
make me feel like a global citizen.

In the Computer Engineering Laboratory, my first thanks go to the late professor
Stamatis Vassiliadis, who gave me the confidence and courage to continue with my
Ph.D. God may rest his soul in peace. Next, thanks to prof. dr. ir. H. J. Sips for
agreeing to be my promotor and approving the thesis. After Stamatis and H. J. Sips,
the next thanks of course go to my co-supervisor, dr. ir. Zaid Al-Ars, who always re-
mained patient and optimistic about my work and guided me to the best of his abilities
throughout my Ph.D. Thanks are due to dr. Koen Bertels and dr. Georgi Gaydadjiev,
who always helped and encouraged during the course of my Ph.D. Thanks to other
faculty members in the laboratory, Said Hamdioui, Sorin Cotofana, Arjan van Gen-
deren and Stephan Wong too, who have always been friendly and cooperative. Thanks
are also due to my colleagues Ioannis Sourdis and Blagomir Donchev for giving me
a start in VHDL, Sebastian Isaza for his friendly discussions and improving the pre-
sentation for my first colloquium talk, Bogdan Spinean for helping me out during our
travel to Rabat, Morocco for DTIS’07, soon after the major surgery on my left kidney
at Erasmus Medical Center in Rotterdam. Bundles of thanks to my colleagues Yao
Wang and Mottaqiallah Taouil for their handy advices about my work during the later
part of my Ph.D. Thanks are also due to Marijn Kentie and Erik Vermij for their con-
tributions in the practical part of the research while doing their M.Sc. projects with
me and Zaid. I also thank all other colleagues at Computer Engineering Laboratory,

ix

for providing a friendly and research conducive environment. It would be unfair if I
do not mention the technical and administrative support provided by Bert Meijs, Erik
de Vries, Eef Hartman, Lidwina Tromp and Monique Tromp. Their support gave me
the luxury of focusing only on my work, without caring much about the related issues.

Outside the Computer Engineering Laboratory, thanks to Franca Post from CICAT
(TU Delft), Loes Minkman from NUFFIC (The Netherlands), the concerned people
from the Higher Education Commission of Pakistan and University of Engineering
and Technology Peshawar Pakistan. They smoothly processed all my financial and
‘study leave’ related issues, thus making my life relatively easy. Thanks are due to
my friends Wouter van der Sluis, Weiman Chim, Saleh Safiruddin, Johan Splinter and
Serge Keyser for helping me in translating the summary of my thesis and proposi-
tions into Dutch. Also, my humble thanks to all my friends and their families for
taking good care of me during my necessary treatment at Erasmus Medical Center
in Rotterdam in August 2007. Special thanks go to Ahmad Jan, Saad Hassan Mirza
and my dear friend Waqar who remained with me for around 10 days in the hospital,
my friend Malik Aleem Ahmad for taking good care for more than a month during
my post hospital rest period, Mehfooz, Hamayun, Hisham, Haleem Bangash, Aqgeel,
Ahson Jabbar, Ahsan Shabir, Haroon, Omer, Noman, Sant Paul, Jawad, Plamen Gon-
chosov, Blagormir Donchev and all other friends who visited me on regular basis and
kept me away from loneliness, desperation and frustration.

For the leisure times, my first thanks go to the Computer Engineering Laboratory
for organizing those enjoyable social events that are an integral part of life at the
laboratory. Next, I thank Saleh, Marius, George, Mihai, Chunyang, my Belgian friend
Glen and my Swedish friend Henrik for their company and playing my favorite sport
(tennis) with me. I also thank all my Pakistani, Indian, Chinese, Iranian, Dutch and
other friends for the cricket, volleyball, squash, swimming, cycling, going to cinemas
and other amazing activities in which we participated together. These activities were
the best part of my stay in The Netherlands. Thanks to all my friends in Delft and
outside (specially Seyab, Faisal Nadeem, Faisal Kareem, Fakhar, Mehfooz, Cheema,
Hamayun, Deyv, Atif, Sandilo, Hanan, Zahid Shabbir, Nadeem, Zubair, Tariq, Hisham,
Sharif Ullah, Husnul Amin, Saleem, Haider, Mazhar, Amir, Sarfaraz, Samad Khan,
Shakir bhai, Niaz, Imran, Adeel, Zaidi, Mafalda and others), who made my stay in
The Netherlands sociable, by inviting me in so many parties and gatherings that they
kept organizing from time to time. I think, I should write a memoir at some point in
time to elaborate all these activities and the people involved.

Finally, I thank members of the opposing committee for devoting some of their
precious time to scrutinize my thesis, give their valuable feedback and above all travel
to Delft for the public defense of this dissertation.

Laiq Hasan
May 09, 2011

Contents

[Samenvatting vii

|Acknowledgments ix

[Abbreviations and Symbold xxi
[L_Introductiod

L2

1.2.2 Sequence alignment and its tvoeg 6

|| 2.3 Applications of sequence ggjgnmcn‘ 9
1.3 Acceleration of sequence alignment 11

LiJ_Mch.o.d.s_QLa.QQdﬂa.n.Qd 11

xii Contents

232 FASTAaleorithml o 24

2.3.3 BLAST: Basic Local Alignment Search Tool 26

33
33
34
36
38
38
40
43
g 44
3.3.2 _System design 45
[3.4 Linear (1D) systolic implementatiod 46
i 46
47
50
51

4
R o
N\
4
-

422 Svstem esigd 57
423 Discussionofresults 57

Contents xiii
[s.2_Optimized GPU implementatiod 73
521 Generaldesiglo 73

[5.2.2 Database conversion 74

523 Temporary data reads and writed 77

5.2.4 Substitution matrix accesses 78

[5.3 _ Discussionof resultdo 79
[53.1 Experimentalsetup 79

532 Performance comparison 81

[5.4 Performance imitd v v oo 83
541 Limits/bottleneckd 83

[5.42 Scalability/future prospectd 84

s Summand . . oot 86
i6__Performance Analysis 87
l6.1 _Theoretical performance boundaried 87
[6.2 Performance limitationd o oo 90
16.2.1 Performance limited by the computational resourced 90
6.2.2__Performance limited by the bandwidth 94

6.3 Performance and bandwidth optimization 96
(6.4 Hardware partitioning 99
l6.41 Theoreticalconcepl, 99

l6.42 Exampleoftheprocesd 100

6.5 Generalizing the hardware partitioning method 101
6.6 Summard 105
{Z__Conclusions and Future Research Directions 107
1 Conclusiond 107
(7.2 Future research directiond 108
I oo i, o m
[B_Dot Plot Implementation 113
[C_N-W Examples 115
Col Example . . o oo 115
[C2 Exampledo 118
ID_S-W Examples 123
DI Flowehar . . - o oo oo 123
D2 Example . - o oo oooe e 123
D3 Exampled . . o oo voee e 125

xiv Contents

List of Tables

3.1 Comparison of the work reviewed in Sectionﬁ 37

B2 Profilingresultd 41

3.3 Performance in GCUPS and frequency in MHz for various number of
PES(N) o e 49

3.4 H matrix for aligning sequences of m characterseachl 50
4.1 __Comparison between 2D systolic array and RVE implementations . . 59

4.2 Comparison between linear systolic array and linear RVE implemen-

TAtIONS e e e e e e e 62
4.3 Performance evaluation for various RVE implementationd 65
[5.1__Performance results with Swiss-Prof 80

XV

xvi

List of Tables

D.3 Calculation of first set diagonal similarity scores in the Smith-Waterman
algorithm L 126

D.4 The endpoint of the Smith-Waterman algorithm after calculation of all
scoring parameters. A traceback from the highest score is highlighted 126

[E.1 _Dynamic power consumption in milliwatts (XC2VP30) 128

Dvnamic power consumption in m W3 X(C4 X12)

List of Figures

2.2 Sample H matrix, where the dotted rectangles show the elements that
canbe computedinparallel 23

2.3 Logic to compute cells in the H matrix, where + is an adder, MAX is a

| max operator and Seqd'mp is the sequence comparator that generates
match/mismatch scores 24

E

2.5 Three stages of progressive alignment: (1) similarity matrix, (2) guided

tree, (3) profile-profile progressive alignment 28
[3.1 Hardware acceleration of sequence aligmmm_mm.hgdd 34
[3.2 Pictorial view of systolic array architectured 35
B_j_BJQijmgram description of MOLEN platformd 38
[3.4 Block diagram representation of MOLEN implementation approach . 39

[3.5 Functional description of a software implementation of S-W algorithm 40

3.6 RTL schematic of the CCU for the function fill matrix 2 42

[3.7 Post place and route simulation results 42
MJQ]]_d&sj_gn_ﬂzr_mT_angular systolic array implementation 44
ﬁLBkaﬂagram description of a 4 X 4 systolic arrayl 45
[3.10 Description of a 4-element linear systolic array 46
|3 11 _Cel dcs]gn for linear systolic array implementatiod 46
[3.12 Linear systolic array demgngmlg_B_RAM_ﬁ)LmLerm_e_dmLe_d_ams_mLagd 48
[3.13 Block diagram representation of BRAM control design 48

Xvii

xviii List of Figures

4.1 Circuitforthe Example 2 v v v v 55

4.2 Filling a2 x 2 A matrix using the RVE approach 56
E3 Block di escrintion of 2 2D RVE desien with bs = 253 s6

4.4 Block diagram representation of a 5 X 5 array using multiple RVE
blockswithby =2X2 57

4.5 55 array using RVE blocks with by =2x2 58

4.6 Comparison between various 2D systolic array and 2D RVE imple-

mentations on a logarithmicscale 59
i i = 60
IéL_S_LQEica] description of an RVE implementation with b, = 2 X 2.... 61

4.9 2-blocklinear RVE desigl oo oo 62

4.10 Comparison between various linear systolic array and linear RVE im-

plementations on a logarithmicscale 63
h.lLRYE_d:ﬂgnumhxanaus_hlg_ckmgia.cm 64
[5.1 CUDA hierarchy of threads, blocks and grid 70
[5.2 CUDA memory hierarchyl oo oo 71

ing onmemoryreadd 72
[5.4 Description of the GPU implementatiod 74
[5.5 The database conversion process 75
[5.6 Sequence storing as interlaced subsetd 76

57 Queryprofild 79

5.8 (a) Execution time (b) Performance for query sequences of varying

lengths 81
isonm 82
[6.1 System model for the S-W based sequence a]ig,nm_cm_]l 88

[6.2 Number of steps and PEs utilization during each stepfor N = N, = N J 89
[6.3 Number of steps and PEs utilization during each stepfor N < (N, = N 2 92
[6.4 Number of steps and PEs utilization (a) N = N, < N, (0)) N < N, < NJ 93
6.5 7 exec VS N curve, limited by the computational resources 95
[6.6 Performance limited by bandwidth (a) T,,.. vs bandwidth (b) T,.. vs M 96

6.7 _Tereevs N designtrade offcurved L. 97

6.8 7 exec VS N Optimization CUIVES « « v o oo e e e e 98
[6.9 2-sequence alignment (a) Sequential (b) Partitioned and in parallel . . 99
1610 2-sequence alignmentexampld 101
[6.11 P-sequence alignment (a) Sequential (b) Partitioned and in parallel . . 102
[6.12 Execution time reduction by hardware Dartitioniné 103

[6.13 Resource utilization improvement by hardware partitioning 104

List of Figures Xix

B2 4-clement dot plotarraylo 114
[C1 Initializationsted 116
C.2 Matrix fill[(@) Step 1, [(b)] Step 2,[(c)] Step 3 and|(d)|Step 4 117
C.3 Traceback[(a)|Step 1,[(b) Step 2,[(c)| Step 3 and[(d)[Step4 118
(C4 Matrix fill for Example 2 120
[C.5 Traceback for Exampled 121
[D.1_Smith-Waterman flow charf 124

XX

Abbreviations and Symbols

1D
2D

BLAST
BRAM

CCU
CUDA
CUPS
DDR
DNA
DOPA
DP
FASTA
FPGAs

GPUs
gprof
HGP
HMMs
HSPs

1-dimensional or linear
2-dimensional

blocking factor

Adenine

Basic Local Alignment Search Tool
Block RAM

Cytosine

Custom Computing Unit

Compute Unified Device Architecture
Cell Updates Per Second

Double Data Rate
Deoxyribonucleic Acid

Database Optimized Protein Alignment
Dynamic Programming

Fast Alignment Search Tools - All
Field Programmable Gate Arrays
Guanine

Graphic Processing Units

GNU profiler

Human Genome Project

Hidden Morkov Models

High-scoring Segment Pairs

XX1

xxii

Abbreviations

INSDC
MGAP
NCBI
N-W
PE
PIR
QSP
RNA
RTR
RVE
S-W
ssearch
SIMD
T
tRNA
U

International Nucleotide Sequence Database Collaboration
Micro Grained Array Processor

National Center for Biotechnology Information
Needleman-Wunsch

Processing Element

Protein Information Resource

Query Sequence Partitioning

Ribonucleic Acid

Run-time Reconfiguration

Recursive Variable Expansion

Smith-Waterman

Smith-Waterman search

Single-Instruction stream, Multiple-Data stream
Thymine

transfer-RNA

Uracyl

Chapter

Introduction

With the ever increasing volume of data in the bioinformatics databases, the time
for comparing a query sequence with the pre-existing sequences in the databases
is always increasing. Researchers in various communities are working on accel-
erating the available methods for comparing and aligning these sequences. This
thesis presents one such work. This chapter provides a brief overview of bioin-
formatics in general with a particular emphasis on sequence alignment.

The chapter starts with an overview of molecular biology, presented in Sec-
tion[I.1] It is followed by an introduction to bioinformatics, sequence alignment,
its types and applications, presented in Section[I.2l Further, it presents the accel-
eration approaches for sequence alignment in Section [I.3/followed by an overview
of the thesis contribution. An outline of the thesis is presented in Section[1.4l The
chapter concludes with a summary, presented in Section[1.3]

1.1 Molecular biology - an overview

The field of bioinformatics is the application of computer science to biology in general
and molecular biology in particular. This can involve the development of algorithms
and software that can analyze huge amounts of data, the automation of previously la-
bor intensive tasks, or the creation of tools, for example with which to view 3D models
of biological structures. Although no in-depth knowledge of the chemical processes
involved is required from the perspective of computer scientists and hardware design
experts, subjects such as Deoxyribonucleic Acid (DNA) and protein construction are
integral to understanding the relevance of research topics like sequence alignment. In
the following subsections, a recap of the basics of molecular biology is presented.

1

2 Chapter 1. Introduction

1.1.1 Cells, amino acids and proteins

All living organisms consist of one, or many more, of a basic functional unit, the
cell. Classified as being ‘alive’ (the smallest organisms consist of a single cell), cells
can process and excrete molecules (metabolism), alter their electrical potential and
procreate by cell division. Many of the processes inside cells are governed by proteins.
Proteins are complex chains of molecules called amino acids. Some amino acids, the
‘non-essential’ ones, can be synthesized by the cell. The other, essential, amino acids
must be procured through the ingestion and breakdown of proteins in foods such as
meat. Again, this breaking down of food products is performed by proteins, this time
existing outside of any cell.

Proteins exist for a wide array of functions, for instance actin aids in muscle con-
traction while the proteins of the cytoskeleton form a cell’s ‘skeleton’, giving it its
shape and protection. Another important role of proteins is to act as a catalyst, where
the proteins are called enzymes. Enzymes act as catalysts by binding to the reagents
of a reaction and lowering the activation energy required for it to take place. Designed
to only be compatible with those specific reagents due to their structure, enzymes are
not consumed in the reaction and can be reused. Returning to the example of breaking
down food into nutrients, there are enzymes that split proteins into their component
amino acids, enzymes which break down fat molecules and enzymes that allow in-
gested nucleic acid to be reused for the construction of DNA.

1.1.2 Chromosomes and DNA

The cells require the presence of proteins, both internally and externally, to survive.
In fact, the reproduction of cells relies heavily on proteins too, such as those of the
aforementioned cytoskeleton facilitating the division of the cell membrane. Proteins
are created, from scratch and to specification, within the cell itself. This is where
the DNA comes in. DNA is stored in structures called chromosomes. Made up of
the DNA molecules and a supporting protein packaging, chromosomes are ‘wadded
up’ in the cell similar to a ball of string. Attached to these chromosomes, the DNA is
protected and more compact; this way it is able to fit in the cell (nucleus). The structure
and number of chromosomes varies on a per species bases, additionally the shape
of chromosomes is also determined by what stage of its life cycle the cell currently
resides in.

The DNA itself contains the genetic instructions that describe how the various pro-
teins should be constructed. The structure of DNA is shown in Figure[LIl Structurally,
DNA consists of two long, coiled nucleotide polymer strands that take the well-known
double-helix form. These polymers are strengthened by a skeleton of sugars and phos-
phate groups, connected to these sugars are the bases, pairs of molecules that specify
the genetic code. Each strand of DNA has one end called the 3’ end, the other end
is called the 5" end. Due to the anti parallel nature of the strands, their ends are mir-
rored. When talking about DNA, these ends can be used to indicate in which direction
a strand is being built/interpreted/etc.

1.1. Molecular biology - an overview 3

Sugar Phosphate
Backbone

Base pair

Adenine

Nitrogeous base

Tymine

Guanine

Cytosine

Figure 1.1: The structure of DNA

Four different bases exist, i.e. adenine (A), cytosine (C), guanine (G) and thymine
(T). A base on one strand will be matched by its twin base on the other strand and
connected to it using hydrogen bonds. Adenine is always paired with thymine whereas
cytosine and guanine form the second combination. This duplication of the bases is
central to the replication of DNA, and as such, to that of the cell and the survival of
the host organism.

During the replication of DNA mutations can occur, altering the genes of a host
organism. This ties into the theory of evolution and the field of phylogenetics, the
study of relatedness among organisms by comparing their genetic makeup.

1.1.3 RNA and transcription

The bases of DNA can be seen as letters (A, C, G and T). These letters are inter-
preted in words of three, called codons. Each codon describes a single amino acid, the
building blocks of proteins. A portion of DNA that codes for a protein is known as a
gene. As there are four bases and they appear in words of three, there exist 43 pos-
sible codons. However, only 20 different amino acids are encoded. This means that
some words code for the same amino acid. Additionally, some words have special
functions: the start (ATG) and stop (TAG, TAA, TGA) codons function as markers to
aid in the correct interpretation of the code at the RNA stage. A sequence of codons
that starts with a start codon and ends with a stop codon is called an open reading
frame. The process of interpreting the genetic code and using it to synthesize proteins

4 Chapter 1. Introduction

is called genetic expression. The first step is the generation of ribonucleic acid (RNA),
which will mirror the gene in question and be transported to the cell’s ‘protein fac-
tory’. Genes are transcribed to RNA by an enzyme called RNA polymerase. This is
bound to the correct place on the DNA by means of a promoter, which is a sequence
of codons that influences the binding of RNA polymerase directly or indirectly by
means of proteins. The DNA strand, the RNA will be based on, is called the cod-
ing strand. When generating RNA, the strands are separated and the complementary
strand, called the template strand, is walked in the 3" — 5 direction. The strand’s
bases are then paired with a new strand of again complementary bases (with thymine
replaced by uracyl (U)). This is the RNA. This strand is separated from the DNA once
transcription is complete, after which the DNA’s structure is restored. In effect, the
created RNA is a copy of the coding strand with T replaced by U.

Example: consider a strand of DNA coding a gene:

5 ATGGCCTGGACTTCA..3 coding strand
3 TACCGGACCTGAAGT..5 template strand

The resultant RNA will then be:
5 AUGGCCUGGACUUCA..3

Note the start codon ATG (AUG for the RNA). This RNA is transported to the
ribosomes, the cell components which assemble proteins by chaining together amino
acids. Here the RNA is walked and interpreted from the start to the stop codon. The
codons are interpreted by means of transfer-RNA (tRNA). These molecules also con-
tain a complementary codon to match with the RNA and carry an amino acid to link
up to the protein. The ribosomes themselves again consist of proteins and ribosomal
RNA.

This recap of genetic expression glosses over many things, including introns/exons,
the various RNA types, DNA/RNA quality control and the roles of proteins such as
repressors. Although the process is more involved than described here, especially in
humans, more information is not required to understand the basics of bioinformatics
and sequence alignment, presented in the next section. Readers interested in further
details may refer to [1] and [2].

1.2 Bioinformatics

Biology is in the middle of a major paradigm shift, driven by computing technology.
Two decades before the formal inauguration of the Human Genome Project (HGP),
a new hybrid field (partly molecular biology and partly computer science) began to
emerge. The new field was called computational molecular biology or bioinformatics,
which may be defined as a discipline that generates computational tools, databases,
and methods to support genomic and post genomic research. Bioinformatics is the
multidisciplinary research area aimed at organizing and classifying the immense rich-

1.2. Bioinformatics 5

ness of sequence data, where the sequence may refer to either DNA or protein.

Bioinformatics employs a digital language for representing its information using
the four basic alphabets (A, C, G, T). All the DNA molecules in an organism’s cell
have been represented and being identified using these alphabets. The tools of com-
puter science, statistics and mathematics are very critical for studying bioinformatics.
Some of the recent advances happened include improved DNA sequencing methods,
new approaches to identify protein structure and revolutionary methods to monitor the
expression of many genes in parallel. The following subsection presents major fields
of bioinformatics.

1.2.1 Fields of bioinformatics

A wide variety of research topics are being explored by researchers in the diversified
field of bioinformatics. Examples are, gene structure prediction, phylogenetic trees,
protein structure prediction (2D, 3D), sequencing (i.e. mapping) genomes etc. Figure
[[2l gives a broad classification of major research areas in bioinformatics.

= ——— - - === I :
\Phylogenetici :Expressmnl signal transduction

! 1
Protein structurdy ! == == -~ - P A -

prediction

Gene structure

prediction

1Protein domains/!

1
1 . 1
L _ motifs 1 [Eukaryotes]

iPhysical

Sequence
imilarity analysi

Dotplot N-W algorithm

FASTAsesseerd] T }oeseeBLAST

Figure 1.2: Classification of bioinformatics research areas

The relevant field among these to this thesis is the sequence similarity analysis or
sequence alignment. A significant part of bioinformatics is the analysis of sequences,
where the sequences of interest in molecular biology are those of DNA and proteins.
As discussed before, DNA consists of the four bases A, C, G and T. One might say that
DNA is a sequence, or string, of the alphabet {A,C,G,T}. Not surprisingly, RNA can

6 Chapter 1. Introduction

be looked at similarly, with the alphabet {A,C,G,U}. Whereas, proteins, too, can be
viewed as strings of an alphabet [3]. In this case, the alphabet of the 20 amino acids
is {A,C,D,E,FG,H,LLK,L M,N,P,Q,R,S,T,V,W,Y}. The amino acids corresponding to
these letters are shown in Table[T.1]

Table 1.1: The 20 amino acids

Letter| Amino acids | Letter| Amino acids Letter| Amino acids | Letter| Amino acids
A Alanine Q Glutamine L Leucine S Serine
R Arginine E Glutamic acid K Lycine T Threonine
N Asparagine G Glycine M Methionine W Tryptophan
D Aspartic acid H Histidine F Phenylalanine Y Tyrosine
C Cysteine 1 Isoleucine P Proline A% Valine

Numerous projects for sequencing the DNA of particular organisms constantly
supply new amounts of data on an enormous scale [4], with a doubling time esti-
mated to be 9-12 months. The bioinformatics industry has grown to keep up pace
with this information explosion, growing at 25-50% a year. In 2000, the US mar-
ket Research company, Oscar Gruss [5] estimated that the value of the bioinformatics
industry would touch $ 2 billion. With the ever increasing volume of sequence data
in various bioinformatics databases from International Nucleotide Sequence Database
Collaboration (INSDC) [6] (e.g. “public” repositories of gene data like GenBank from
National Center for Biotechnology Information (NCBI) [[1l], SwissProt from the Swiss
Institute of Bioinformatics [8] and PIR from the Protein Information Resource [9]]), the
time for comparing a query sequence with the available databases is always increas-
ing. It could take weeks to months for a researcher to search sequences by hand in
order to find related genes or proteins. Computer technology has provided the obvious
solution to this problem. Not only can computers be used to store and organize se-
quence information into databases, but they can also be used to analyze sequence data
rapidly. The evolution of computing power and storage capacity has, so far, been able
to outpace the increase in sequence information being created. Theoretical scientists
have derived new and sophisticated algorithms which allow sequences to be readily
compared using probability theories. These comparisons become the basis for deter-
mining gene function, developing phylogenetic relationships and simulating protein
models. On the other hand, hardware design experts have been working on designing
and accelerating the more accurate methods of sequence alignment. In the following
subsections, sequence alignment, its types and application are elaborated.

1.2.2 Sequence alignment and its types

In most common terms sequence alignment may be defined as an arrangement of
two or more DNA or protein sequences to highlight the regions of their similarity.
This, in turn indicates the genetic relatedness between the organisms. The similarity
may be a consequence of functional, structural or evolutionary relationship between

1.2. Bioinformatics 7

the sequences [10]. New DNA, RNA and protein sequences develop from the pre-
existing sequences rather than get invented by nature from the scratch. This fact is the
foundation of any sequence analysis.

If two DNA, RNA or amino acid sequences are similar, there is a chance that
they are homologous. Homologous sequences share a common ancestral sequence,
their relative differences are the result of mutations. These mutations might manifest
in various ways: substitutions, where one symbol is replaced by another, insertions
where a new symbol is inserted into the sequence and deletions, the removal of a
symbol. To establish the degree of homology, the sequences are aligned i.e. lined up
in such a way that the degree of similarity is maximized. This process is known as
sequence alignment, which can be classified into various types as shown in Figure[T.3]
Following is a brief description of these types.

Sequence
Alignment Types

Global
alignment

Figure 1.3: Types of sequence alignment

Structural
alignment

Multiple
alignment,

Structural alignment

Structural alignment [[11]] is an approach of attempting to infer similarity between
proteins by comparing their three dimensional shapes, or tertiary structures. As a pro-
tein’s shape is determined by its amino acid makeup, which, in turn, determines its
function, it is obvious that structural alignment is an attractive tool for homology re-
search. In fact, different protein letter sequences might result in similar 3D structures,
where protein structure is better evolutionary conserved than sequence [12]]. Unfortu-
nately, determining the tertiary structure of proteins requires costly, time consuming
procedures such as X-ray crystallography and nuclear magnetic resonance imaging
(bioinformatics databases contain much less protein structures than sequences) [2]].
One field of bioinformatics, i.e. protein structure prediction concentrates on unrav-
eling the mysteries behind protein folding, the process in which an unfolded random
coil amino acid takes its characteristic tertiary structure. Using computational protein
folding, any of the myriad available protein sequences could be converted to a 3D
representation. Then, in turn, structural alignment could be used to infer homology.
Currently, however, protein folding is still an open problem and current approaches
have such high computational requirements that researchers have turned to super or
distributed computing [[13]. Although mainly used for proteins, structural alignment
is also promising for strands of RNA [[14]. It is not suitable for DNA as this always
takes the double-helix structure.

8 Chapter 1. Introduction

Global alignment

Global alignment methods operate directly on all sequence letters. The idea is to line
up two (or more) sequences so that their degree of similarity is maximized. For DNA
and RNA this means matching identical bases. In the case of proteins, amino acids
are matched if they are identical or can be derived from one another through likely
to occur substitutions [2]. Although matching two sequences directly will take into
account substitution/mutations to handle insertions and deletions, the notion of gaps
is introduced. Marked by the symbol ‘-’, a gap can be chosen to be inserted into any
of the sequences to obtain a closer match. Following is an example with the base
sequences TACCAGT and CCCGTAA:

No gaps
T A C C A G T
cC ¢C C G T A A
Gaps
T A CC A G T - -
c - ¢ CcC - G T A A

Clearly the alignment with gaps is more relevant and better exposes the similarities
between both sequences. Note that other alignments are possible. An option would
be:

T A CCA G T - -
- - C C C G T A A

As multiple alignments are possible even in this simple case, it makes sense to
devise a way to rate and then select the best alignment(s). A simple method to ac-
complish this is to assign scores to the alignment letters. A simple scheme is 1 for
a match, -1 for a mismatch and -2 for a gap. Such a scheme is said to have a linear
gap penalty. A more advanced method is to introduce an affine gap penalty, which
assigns different scores to the starting of a new gap and the extension of a current
one. Generally, starting a new gap is given the largest penalty as this is biologically
the hardest [[15]. Using the aforementioned scoring system, the first gapped alignment
scores (-1-2+1+1-2+1+1-2-2)=-5 and the second option does so as well with (-2-
2+14+1-1+1+1-2-2)=-5. So in this case, both gapped alignments are ‘as good’ as one
another. However, this does not automatically mean they both have the same biolog-
ical relevance. To judge how relevant an alignment’s score is, probabilistic methods
can be used. The idea is to check whether the probability of an alignment attaining
the score in question is adequately small (Chapter 7 of [15])). In case of using an affine
gap penalty, the second alignment would have the best score, as it contains two gaps
instead of three. The same approach can be used for amino acids as opposed to DNA
bases. Instead of working with fixed scores, amino acid substitutions have been rated
by their evolutionary likeliness and are available as standard 20 X 20 triangular sub-
stitution matrices. The two most well known matrices are the PAM and BLOSUM
families. Table shows the BLOSUMS62 matrix. Example of global alignment is
the Needleman-Wunsch (N-W) algorithm [16].

1.2. Bioinformatics 9

Table 1.2: The BLOSUMS62 amino acid substitution matrix

Ala

4

Arg -1 5

Asn -2 0 6

Asp -2 -2 1 6

Cys 0 -3 -3 -3 9

Gln -1 1 0 0 -3 5

Glu -1 0 0 2 -4 2 5

Gly 0 -2 0 -1 -3 -2 -2 6

His 2 0 1 -1 -3 0 0 -2 8

Tle -1 -3 -3 -3 -1 -3 -3 -4 -3 4

Leu -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

Lys -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

Met -1 -1 2 -3 -1 0 2 -3 -2 1 2 -1 5

Phe -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

Pro -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

Ser 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 2 -1 4

Thr 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

Trp -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Tyr -2 -2 2 -3 2 -1 2 -3 2 -1 -1 -2 -1 3 -3 2 -2 2 7

Val 0 -3 -3 -3 -1 -2 2 -3 -3 3 1 2 1 -1 -2 2 0 3 -1 4
Ala Arg Asn Asp Cys GIn Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Local alignment

Local alignments are similar to global ones. The only difference is that instead of
attempting to align the complete sequences to one another, portions of similarity are
aligned. Following is an example with sequences GTGTACTCCAGAG and GTACC-

CAAG:
Global alignment

G T GTACTT CTCAGAG

G - - T A C - CCA - AG
Local alignment

G T GTACTTCTC - A G AG

- - G T A C - CCAAG - -

Looking for a local alignment will better expose ‘patches’ of homology in two
relatively dissimilar sequences. Thus it might lead to more biologically relevant results
[LS]]. Example of local alignment is the Smith-Waterman (S-W) algorithm [17]].

Multiple alignment

The previous examples focused on aligning just two sequences, but in some cases it
might be interesting to consider the similarities between a group of sequences. For ex-
ample, if the structure of a protein is unknown, a similarity to a group of other proteins
might give clues. Global and local alignment algorithms can be adapted to deal with
multiple alignments, though this quickly becomes extremely computationally expen-
sive. An alternative is to use specifically designed heuristic algorithms, for example
ClustalW [18].

1.2.3 Applications of sequence alignment

Sequence alignment has many applications in bioinformatics. Figure [[.4] presents
some examples. Following is a brief description of these applications.

10 Chapter 1. Introduction

Sequence Alignment
Applications
I
Finding Determining a Finding specific Constructing
homology, sequence's origin, sequences evolutionary trees

Figure 1.4: Examples of sequence alignment applications

Finding homology

One of the main uses for sequence alignment is to find homology. Homology means
that two sequences share a common ancestor; evolution says that all cells must even-
tually trace back to the same ancestor. Finding homology between organisms might
enable knowledge of one to be applied to the other, or to infer the function of one
organism’s gene from that of a related species.

Determining the origin of a sequence

If a DNA or protein sample is recovered but its originating species are unknown,
sequence alignment can be used to find likely sources, i.e. the known sequences most
closely matching the sample.

Finding specific sequences

Suppose we have discovered the function of a part of species X’s genetic code. Then it
might be attractive to search species Y’s code for the sequence. If something similar is
found, it might give clues as to the location of a similar gene in Y. Similarly, suppose
that we might have found the piece of code that expresses a trait, such as a physi-
cal characteristic or the presence of a genetic disease, in one piece of genetic code.
Searching other pieces known to either feature or lack this trait might help validate or
disprove the theory.

Constructing evolutionary trees

From homology data, evolutionary (phylogenetic) trees can be constructed [[15]. These
trees are built using the ‘genetic distance’ between species and give insight into species
relationships and the course of evolution. Using the concept of an evolutionary rate,
the species’ sequence homology can be translated into the time they took to develop
from ancestral species. The actual construction of the tree can be done in many ways;
examples include maximum parsony methods (building the tree such that the lowest
amount of evolutionary change is required) and distance methods such as the UPGMA
algorithm which builds the tree from the result matrix of a multiple alignment.

1.3. Acceleration of sequence alignment 11

The information presented in this section is annexed by the definitions of some
important bioinformatics terms given in Appendix [Al In the next section, acceleration
of sequence alignment is presented followed by an overview of the thesis contribution.

1.3 Acceleration of sequence alignment

This section presents a broad classification of the methods used for acceleration of
sequence alignment applications. Furthermore, it provides an overview of the contri-
butions of this thesis for acceleration, analysis and optimization of such applications.

1.3.1 Methods of acceleration

Figure presents a broad classification for acceleration of sequence alignment ap-
plications. The figure shows that the acceleration of sequence alignment applications
can either be in hardware or software. However, the main focus of the thesis is on
hardware acceleration, as shaded in the figure.

Acceleration of
Sequence Alignment

Software
acceleration

Hardware
acceleration

GLASD

Figure 1.5: Broad classification of sequence alignment acceleration

Software acceleration

Heuristics based algorithmic modifications are done to achieve faster software imple-
mentations of the sequence alignment applications, as done in FASTA, BLAST and
HMMER. These software implementations do not guarantee an optimal alignment
though. Following is a brief description of such heuristics based software implemen-
tations.

FASTA: FASTA was developed in 1985 by Lipman and Pearson [19]. Unlike the N-
W and S-W algorithms, FASTA approximates the optimal alignment by search-
ing and matching k-tuples (i.e. subsequences of length k). The algorithm as-
sumes that related proteins will have regions of identity. By searching with k-
tuples, the FASTA algorithm allows small regions of local identity to be found
quickly. For proteins, these k-tuples tend to be of length two.

12 Chapter 1. Introduction

BLAST: BLAST [20] is similar to the FASTA algorithm, however, it uses words
(w) instead of k-tuples. The computational complexity of both FASTA and
BLAST comes out to be O(MN). The space complexity for FASTA is O(MN),
whereas for BLAST, it is higher than all other algorithms and it comes out to be
020" + MN), where w is the word size.

HMMER: HMMER uses Hidden Morkov Models (HMMs) which are widely used
in biological sequence analysis. HMMs are a probabilistic tool which can be
used for sequence alignment [21], finding sequences in genetic code [2], in-
ferring protein structure or building profiles of DNA and proteins [15]. Such
profile HMMs can be used to determine whether a sequence is part of a fam-
ily of DNAs or proteins. HMMSs are based on the probability of a sequence
adhering to certain characteristics. To determine these probabilities, machine
learning principles are used. In the case of a profile HMM, the learning set is a
multiple alignment. HMMs originated and still play a significant role in speech
recognition [22].

Hardware acceleration

The heuristics based software implementations just described improves the perfor-
mance at the cost of loosing accuracy. In contrast methods like the S-W algorithm
provides accurate and optimal solution. But based on exhaustive search, the limitation
of such methods is that they become too slow in practical situations, particularly for
long sequences. The focus of the thesis is on hardware acceleration of such accurate
methods on platforms like Field Programmable Gate Arrays (FPGAs) and Graphic
Processing Units (GPUs), which can either be related to the design of the basic Pro-
cessing Element (PE) called intra PE level or related to multiple PEs organization
called inter PE level. Following is a description of the acceleration at both levels.

Intra PE level: At this level of hardware acceleration, a basic building block, called
the PE is designed for a sequence alignment application. The PE is capable of
performing comparison between individual characters of the query and database
sequences and is optimized for high performance and/or efficient resource uti-
lization. In the later chapters of the thesis, such designs and optimizations are
presented in detail. More specifically, high performance PE designs for sys-
tolic array and recursive variable expansion (RVE) based implementations are
presented.

Inter PE level: At the inter PE level, the organization and interconnection of the PEs
is optimized for high performance, efficient resource and bandwidth utilization.
In this thesis, the PEs organized in 2-dimensional (2D) and I-dimensional or
linear (1D) systolic array fashion are presented. Further, 2D and 1D RVE im-
plementations are discussed and compared with the corresponding systolic array
implementations. Additionally, high performance GPU-based sequence align-
ment is presented that eliminates the need for inter PE communication. Also,

1.3. Acceleration of sequence alignment 13

the issues related to bandwidth requirement and hardware redundancy are dis-
cussed in detail and performance and bandwidth optimizations are presented.
Furthermore, an approach for high performance and resource efficient biologi-
cal sequence alignment is presented. The succeeding chapters of the thesis give
an insight to such optimizations and analysis.

1.3.2 Thesis contribution

The research performed in the course of this thesis has contributed in a number of ways
to the hardware acceleration, performance optimization and analysis of bioinformat-
ics sequence alignment applications. Different ways and means have been explored
to accelerate such applications. Further, detailed performance analysis has been car-
ried out, considering the limiting factors like computational resources and memory
bandwidth. Following are the details of the contribution.

e A review of hardware acceleration of sequence alignment applications and their
comparisons based on various parameters [23]] is presented Chapters 2] and Bl

e An accurate profiling and acceleration evaluation procedure has been proposed
[24] and presented in Chapter 3l

e An efficient and high performance systolic array architecture for biological se-
quence alignment [25126]] is presented in Chapter[3

e An implementation based on the RVE approach to reduce the execution time
at the cost of additional hardware resource utilization [26l27] is presented in
Chapter[dl

e An optimized and high performance GPU-based protein sequence alignment
outperforming the existing GPU solutions [28]] is presented in Chapter[3l

o A comprehensive and elaborate mathematical performance and bandwidth anal-
ysis and optimization for biological sequence alignment with particular empha-
sis on the S-W algorithm [29]] is presented and maximum theoretical perfor-
mance boundaries are investigated in Chapter[6l

o An approach based on hardware partitioning is proposed to achieve high perfor-
mance and resource efficient biological sequence alignment [30]. This approach
is presented in Chapter [l

e Power consumption evaluation and its impact on performance [31] is presented
in Appendix [El

14 Chapter 1. Introduction

1.4 Thesis outline

The rest of the thesis is organized as follows.

Chapter [2| presents a classification of various sequence alignment methods and
continues with a discussion of global, local and multiple methods in detail. It describes
exact methods like dot plot, Needleman-Wunsch and Smith-Waterman and approxi-
mate methods like FASTA, BLAST, HMMER and ClustalW. The chapter ends with a
comparison of the presented methods followed by a brief summary of the chapter.

Chapter 3] presents a classification of the various available acceleration methods
for sequence alignment applications and proposes an accurate profiling and accelera-
tion evaluation method using the MOLEN platform. Further, it presents FPGA-based
rectangular (2D) and linear (1D) systolic array implementations for sequence align-
ment. It continues with the discussion of an extended linear systolic array design and
ends with a brief summary of the chapter.

Chapter] presents RVE-based approach for sequence alignment and its compar-
ison with traditional systolic array based approaches. Further, it presents rectangular
and linear FPGA-based RVE implementations for sequence alignment and a discus-
sion of the corresponding results. It continues with the RVE performance evaluation
before concluding with a brief summary of the chapter.

Chapter [3] provides an introduction to GPUs, Compute Unified Device Architec-
ture (CUDA) and its programming and memory models. The chapter explores the
parallelization capabilities of GPUs for sequence alignments and reviews the avail-
able GPU-based approaches. It presents an optimized GPU implementation for S-W
based protein sequence alignment. Further, it evaluates the performance of the opti-
mized GPU implementation and compares it with the fastest available similar design.
The chapter concludes with a brief summary.

Chapter [6] presents a comprehensive and elaborate performance and bandwidth
analysis for sequence alignment. It continues with evaluating theoretical performance
boundaries for various cases and optimizing bandwidth requirement. Further, it presents
a method based on hardware partitioning to carry out high performance and resource
efficient biological sequence alignment. Additionally, it develops equations to show
the general trend of execution time reduction, resource utilization improvement and
hence performance enhancement. The chapter ends with a brief summary.

The thesis ends with Chapter [7, where chapter wise brief conclusions are given,
followed by a number of recommendations intended to identify future research direc-
tions.

The main content of the thesis is annexed by five appendices organized as follows.

Appendix [Al defines some important terms used in bioinformatis. Appendix Bl
provides a dot plot implementation. Appendix[Clgives a couple of examples to explain
the N-W algorithm. Appendix Dlexplains S-W algorithm with the help of a flow chart
and two examples. Appendix [El presents power consumption evaluation for sequence
alignment and its impact on performance.

At the end, a list of publications related to the thesis and a brief curriculum vitae
of the author are given.

1.5. Summary 15

1.5 Summary

This chapter served as a simple introduction to the concepts associated with molecu-
lar biology, bioinformatics and sequence alignment in general. Further, it presented
the methods for acceleration of sequence alignment applications and provided an
overview of the thesis contribution. The main topics discussed are as follows.

e An overview of molecular biology including a brief discussion about cells,
amino acids, proteins, chromosomes, DNA, RNA and transcription.

e An introduction to bioinformatics including a discussion about its fields with a
particular emphasis on sequence alignment, its types and applications.

o Classification of sequence alignment acceleration and a discussion about the
acceleration methods.

e An overview of the thesis contribution with references to the papers published
during the course of the thesis.

e An outline of the thesis glancing at the topics to be presented in the following
chapters.

Chapter

Sequence Alignment Methods

This chapter introduces a taxonomy of the various sequence alignment meth-
ods found in the literature. It describes in detail, exact methods like dot plot,
Needleman-Wunsch and Smith-Waterman and approximate methods like FASTA,
BLAST, HMMER and ClustalW. Further, it compares the presented methods
based on their complexities and parameters like alignment type and the search
procedure used.

It starts with a classification of sequence alignment methods, presented in
Section 2.1} followed by a discussion about global methods like dot plot and
Needleman-Wunsch in Section2.2l Section2.3|presents local methods like Smith-
Waterman, FASTA and BLAST, whereas Section 2.4 presents multiple alignment
methods like HMMER and ClustalW. Section 2.5] presents a comparison of vari-
ous sequence alignment methods discussed in the previous sections, whereas Sec-
tion [2.6/ summarizes the chapter.

2.1 Classification of sequence alignment methods

Sequence alignment aims at identifying regions of similarity between two DNA or
protein sequences (the query sequence and the subject or database sequence). Tra-
ditionally, the methods of pairwise sequence alignment [32] are classified as either
global or local, where pairwise means considering only two sequences at a time.
Global methods [33] attempt to match as many characters as possible, from end to
end, whereas local methods [34] aim at identifying short stretches of similarity be-
tween two sequences [35]]. However, in some cases, it might also be needed to investi-
gate the similarities between a group of sequences, hence multiple sequence alignment
methods are introduced. Multiple sequence alignment [36]] is an extension of pairwise
alignment to incorporate more than two sequences at a time. Such methods try to align
all of the sequences in a given query set simultaneously. Figure 2.1 gives a classifica-

17

18 Chapter 2. Sequence Alignment Methods

tion of various available sequence alignment methods. These methods are categorized
into three types, i.e. global, local and multiple, as shown in the figure. Further, the fig-
ure also identifies the exact methods and approximate methods. The methods shown
in Figure 2.T] are further elaborated in the following sections.

Sequence Alignment

Methods
* Y *
Global Local Multiple

Exact methods Approximate methods

Figure 2.1: Various methods for sequence alignment

2.2 Global methods

As described earlier, global methods aim at matching as many characters as possible,
from end to end between two sequences i.e. the query sequence (V) and the subject or
database sequence (V). Methods carrying out global alignment include dot plot and
Needleman-Wunsch algorithm. Both are categorized as exact methods. The difference
is that dot plot is based on a basic search method, whereas Needleman-Wunsch on
dynamic programming, as discussed in the following subsections.

2.2.1 Dot plot method

The most basic method of comparing two sequences is a visual approach known as
a dot plot [37]. The sequences to be compared are arranged along the margins of a
matrix. At every point in the matrix where the two sequences are identical, a dot is
placed (i.e. at the intersection of every row and column that have the same letter in
both sequences). A diagonal stretch of dots indicates regions where the two sequences
are similar. Done in this fashion, a dot plot as shown in Table 2.1l is obtained (for
clarity, dots are marked as Xs in the table).

In general two sequences are considered, i.e. the query sequence (N,) and the
subject or database sequence (N;), whose lengths can be different, but in the ideal case
are fairly similar. We proceed by creating a rectangular matrix in which the characters
of N, are mapped along the x-axis, and those of N along the y-axis. Initially, the

2.2. Global methods 19

Table 2.1: Dot plot matrix

a ¢ t g g a ¢ t g g a ¢ t g g
a X X
c X X X
t X X X
g X X X X X X
g X X X X X X
a| x X X
c X X X
t X X X
g X X X X X X
g X X X X X X
a| X X X
c X X X
t X X X
g X X X X X X
g X X X X X X

matrix is filled with zeros. Each of its cells, x;y; (where i varies between 1 and the
length of sequence N,, and j varies between 1 and the length of sequence Nj), is
considered in turn and is assigned a value indicating the level of similarity between
the two residue positions (N, and N). In the simplest scheme, all cells remain zero,
unless N, = Ny, in which case the element is assigned a value 1.

Such a matrix can be visualized quite simply for short sequences, for example by
printing out the matrix in a particular font, as shown in Table 2.1] or for longer se-
quences, by using an appropriate graphics program. The plot is characterized by some
apparently random dots (noise) and a central diagonal line, where a high density of ad-
jacent dots indicates the regions of greatest similarity between the two sequences. For
full length sequences, a plot must be reduced in size in order to be able to visualize the
complete comparison and in doing so, the Xs in the magnified section shown in Table
2.1]are reduced to dots (hence the dot plot), which, at sufficiently low magnification,
will ultimately merge into lines.

In contrast with identical sequences, two similar sequences will be characterized
by a broken diagonal [37]]. The time and space complexity of the dot plot is O(MN),
where M and N are the lengths of sequences N, and Ny, respectively. This discussion
is annexed by a parallel hardware design for dot plot in Appendix

2.2.2 Needleman-Wunsch algorithm

In 1970, Needleman and Wunsch proposed an alignment method, called Needleman-
Wunsch algorithm [[16] that can be obtained computationally by applying a straightfor-
ward Dynamic Programming (DP) 38| algorithm to find an optimal global alignment

20 Chapter 2. Sequence Alignment Methods

of two sequences, i.e. the query sequence (N,) of length M and the subject or database
sequence (N;) of length N. The algorithm is based on finding the elements of a matrix
H, according to the following equation,

Hiyj1+ 85
Hi’j = max H,‘_1yj —-d (21)
Hi,j—l —d

where S ; is the similarity score of comparing N, to N, and d is the penalty for a
mismatch. The matrix is initialized with Hy ; = H;p = 0O, for all i, j.

In a simple scoring scheme, cells representing matches are scored 1 and cells rep-
resenting mismatches are scored 0, assuming the penalty for a mismatch to be zero; the
2D array is thus populated with these values. An operation of successive summation
of cells then commences. This process examines each cell in the matrix, the maxi-
mum score along any path leading to the cell is added to its present contents, and the
summation continues. When this process has been completed, the maximum-match
pathway is constructed.

The algorithm can be implemented using the following pseudo code.

Initialization:
H(0,j) =0
H({,0)=0
Matrix Fill:
for each i,j = 1 to M,N
{
H(i,j) = max(H(i-1,j-1) + S(i,3),
H@i-1,7) - d,
H@L,j-D - D
}
Traceback:

H(Copt) = max(H(i,j))
traceback (H(opt))

The time complexity of the initialization step is simply O(M + N). The next step
is filling in the matrix with all the scores, H; ;. For each cell of the matrix, three
neighboring cells (left, above, and diagonally upper-left) must be compared. Three
separate scores are calculated based on all three neighbors, and the maximum score
is assigned to the cell, which is a constant time operation [39]]. Thus, to fill the entire
matrix, the time complexity is the number of entries, or O(MN). Finally, we can
traverse a maximum of N rows and M columns during the traceback, and thus the
complexity of this is O(M + N). Thus, the overall time complexity of this algorithm is
OM + N)+ O(MN) + O(M + N) = O(MN). Since this algorithm fills a single matrix
of size MN, the total space complexity is O(MN). Examples of N-W algorithm are
given in Appendix [C

2.3. Local methods 21

2.3 Local methods

In contrast to global methods, local methods attempt to identify short stretches of
similarity between two sequences i.e. N, and N,;. These include exact method like
Smith-Waterman and heuristics based approximate methods like FASTA and BLAST,
as explained in the following subsections.

2.3.1 Smith-Waterman algorithm

In 1981, Smith and Waterman described a method, commonly known as the Smith-
Waterman algorithm [17], for finding common regions of local similarity. N-W algo-
rithm described in the previous section works well for sequences that show similarity
across most of their lengths. Consider, however, two sequences that are only distantly
related to each other. They will, even so, exhibit small regions of local similarity,
although no satisfactory overall alignment can be found. S-W algorithm solves this
problem and is used for finding these common regions of similarity. Like the tech-
nique of N-W, this is a matrix-based approach, and trace back is used to reconstruct
the gapped alignments. S-W method has been used as the basis for many subsequent
algorithms, and is often quoted as a benchmark when comparing different alignment
techniques.

When obtaining the local S-W alignment, H; ; for N-W algorithm is modified as
follows:

0
_ Hi1;1+8;;
H; ; = max Hiys—d 2.2)
Hi,j—l —-d

The algorithm can be implemented using the following pseudo code.

Initialization:
H(®,j) =0
H(i,0) =0
Matrix Fill:
for each i,j = 1 to M,N
{
H(,j) = max(0,
H(l_llJ_l) + S(]‘!J)!
H(l_]-’J) - d!
H(G,j-1D) - D
}

Traceback:

22 Chapter 2. Sequence Alignment Methods

H(opt) = max(H(i,j))
traceback (H(opt))

The S-W with affine gap penalties [40] is given by Equation where S ; is
the similarity score and a, 8 are the gap opening and extension penalties, respectively.
Further, H()’Q = DO,O = EO,Q = Hi,O = Di,O = Ei,O = H()’j = D()!j = EQ’]' = O, forl <i<
M and 1 < j <N, where M and N are the lengths of the sequences to be aligned.

0
Ho_ .. y
H;; = max Dl -1 S (2.3)
ij
El,j
H-_1<—oz H~_1—a
where D;; = max = and E;; = max b
" { Di ;-8B b { Eij1-B

N-W and S-W algorithms share many similarities. Both algorithms consist of
three steps: initialization, matrix fill, and traceback. A matrix is constructed with
one sequence lined up against the rows of a matrix, and another against the columns,
with the first row and column initialized with a predefined value (usually zero) i.e. if
the sequences are of length M and N respectively, then the matrix for the alignment
algorithm will have (M + 1) X (N + 1) dimensions. The matrix fill stage scores each
cell in the matrix. This score is based on whether the two intersecting elements of
each sequence are a match, and also on the score of the cell’s neighbors to the left,
above, and diagonally upper left. Three separate scores are calculated based on all
three neighbors, and the maximum of these three scores (or a zero if a negative value
would result) is assigned to the cell. This is done for each cell in the matrix. Even
though the computation for each cell usually only consists of additions, subtractions,
and comparisons of integers, the algorithm would nevertheless perform very poorly
if the lengths of the query sequences become large. The initialization and matrix fill
steps for N-W and S-W algorithms are the same, so their time complexity would be
O(M + N) and O(MN) respectively. The difference lies in the traceback step. With
N-W, the traceback starts at the last cell in the matrix and traces the maximal score
path back to the first cell. Whereas with the S-W, the traceback starts at the cell with
the highest score in the matrix and ends at a cell when the similarity score drops
below a certain predefined threshold. For doing this, the algorithm requires to find
the maximum cell which is done by traversing the entire matrix, making the time
complexity for the traceback O(MN). It is also possible to keep track of the cell with
the maximum score, during the matrix filling segment of the algorithm, although this
will not change the overall complexity. Thus, the total time complexity of the S-W
algorithm is O(M + N) + O(MN) + O(MN) = O(MN). The space complexity is also
the same as that of the N-W algorithm. This is due to the fact that the same matrix
is used and the same amount of space is needed for the traceback. Thus, there is no
definite space or time advantage of one algorithm over the other. However, the S-W

2.3. Local methods 23

algorithm tends to model protein homology better, as it ignores misalignments at the
ends of the proteins which are often not highly conserved.

In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries
of the H matrix can be calculated in parallel. This is however complicated by data
dependencies, whereby each H;; entry depends on the values of three neighboring
entries H;;_1, H;_;; and H,_; j_;, with each of those entries in turn depending on
the values of three neighboring entries, which effectively means that this dependency
extends to every other entry in the region H,, : x < i, y < j. This implies that it
is possible to simultaneously compute all the elements in each anti-diagonal, since
they fall outside each others data dependency regions. Figure shows a sample H
matrix for two sequences, with the bounding boxes indicating the elements that can
be computed in parallel. The bottom-right cell is highlighted to show that its data
dependency region is the entire remaining matrix. The dark diagonal arrow indicates
the direction in which the computation progresses. At least 9 cycles are required for
this computation, as there are 9 bounding boxes representing 9 anti-diagonals and a
maximum of 5 cells may be computed in parallel.

G A T T A
0 0 0 0 0 0
G 0
A 0
J C 0
T 0
C 0

Figure 2.2: Sample H matrix, where the dotted rectangles show the elements that can
be computed in parallel

The degree of parallelism is constrained to the number of elements in the anti-
diagonal and the maximum number of elements that can be computed in parallel are
equal to the number of elements in the longest anti-diagonal (/;), where,

I; = min(M, N) (2.4)

24 Chapter 2. Sequence Alignment Methods

Theoretically, the lower bound to the number of steps required to calculate the
entries of the H matrix in a parallel implementation of the S-W algorithm is equal to
the number of anti-diagonals required to reach the bottom-right element, i.e. M+N—1
[41]].

Cycle4 — — — — — _——_———— -

Cycle3—m — —| — — — — — — —— _—

Cycle 2

Cycle 1

Hija d Hia; Hija Ngq Ns 0

Figure 2.3: Logic to compute cells in the H matrix, where + is an adder, MAX is a
max operator and SeqCmp is the sequence comparator that generates match/mismatch
scores

Figure 2.3l shows the logic to compute an element of the H matrix. The logic con-
tains three adders, a sequence comparator circuit (SegCmp) and three max operators
(MAX). The sequence comparator compares the corresponding characters of two input
sequences and outputs a match/mismatch score, depending on whether the two char-
acters are equal or not. Each max operator finds the maximum of its two inputs. The
time to compute an element is 4 cycles, assuming that the time for each cycle is equal
to the latency of one add or compare operation.

For more understanding of the S-W algorithm, refer to Appendix [D] where S-W
examples are given in addition to its flow chart description.

2.3.2 FASTA algorithm

Fast Alignment Search Tools - All (FASTA) was developed in 1985 by Lipman and
Pearson [19]. Unlike N-W and S-W algorithms, FASTA approximates the optimal
alignment by searching and matching k-tuples, or subsequences of length k. The algo-
rithm assumes that related proteins will have regions of identity, and by searching with
k-tuples, FASTA algorithm allows small regions of local identity to be found quickly.
For proteins, these k-tuples tend to be of length two. FASTA search process can be
summarized into the following three steps.

2.3. Local methods 25

1. In the first step of this search, the comparison can be viewed as a set of many
dot plots with the query sequence on the vertical axis and each sequence in the
database on the horizontal axis of its particular plot. Set a word size, where a
word is a short sequence of nucleotides. A word of size 2 could be, for instance,
gg. Place a dot wherever words of this size match. For example, if the query
sequence is ggctttcgg and the database sequence is aacggcttacg, then the corre-
sponding plot would be as shown in Figure 2.4l The two diagonal series of dots

aacggecttacdg

g gc t Lt gy

Figure 2.4: Sample plot for FASTA

in the figure indicate that the two sequences are identical over these diagonals.
The purpose of this first step is to find the longest diagonals, or highest scoring
regions.

2. In the second step, re-score the 10 best diagonals using a scoring matrix that
allows and takes into account conservative replacements and ambiguity symbols
shorter than the size of a word. This analysis finds high scoring subregions
within the diagonals, called “initial regions”

3. In step three, take the initial regions whose scores are above a predetermined
threshold and check to see if they can be joined together. Impose a penalty on
joined regions so that they have lower scores than continuous runs. Finally, use
a variant of the last part of S-W algorithm to align the sequence and calculate
the optimal score. If the optimal score is above a certain threshold, place the
sequence in the match list.

Like N-W and S-W algorithms, the computational (i.e. time) and space complexities
of FASTA are both O(MN).

26 Chapter 2. Sequence Alignment Methods

2.3.3 BLAST: Basic Local Alignment Search Tool

Basic Local Alignment Search Tool (BLAST) is a heuristic method [20] to find the
highest scoring locally optimal alignments between a query sequence and a database.
It is similar to FASTA, however, the basis of BLAST algorithm is the use of words and
High-scoring Segment Pairs (HSPs) instead of k-tuples. The central idea of BLAST
algorithm is to pay attention only to the segment pairs that contain a word pair of
length w with a score of at least T, i.e. the threshold value [42]. BLAST has three
phases, described as follows.

1. Phase 1: Compile a list of word pairs (typically w = 3 for proteins) above
threshold 7 (say 11)

Example: For broad bean leghemoglobin (a protein that provides oxygen to
bacteroids) LGAHAEK

A list of words from the given sequence: LGA GAH AHA HAE AEK SHA
AHG ...

Neighborhood
word hits (AHA) | AHA 484 16
above threshold 7 | SHA 1,84 13

ee egege eee

AHG 48,0 12

(T =11 AHI4,8,-1 11
Neighborhood NHA -2,8,4 10

word hits
below threshold

2. Phase 2: Scan the database for entries that match the compiled list.

3. Phase 3: When you manage to find a hit, extend it in either direction. Use
a scoring matrix to keep track of the score. Stop when the score drops below
some cutoff (default X = 15)

AGVVDSPKLGAHAEKVFG 65 LEGHEMOGLOBIN (query)
GAVMGNPKVKAHGKKVLH 67 BETA GLOBIN (hit)
- extend Hit extend -

In the original (1990) implementation of BLAST [20], all hits were extended in
either direction. The extending step was very time consuming, as it was taking almost
90 percent of the execution time. In a 1997 refinement of BLAST [43]], two indepen-
dent (non-overlapping) hits are required. Extending takes place only when the two
hits are within a distance A (default=40) of one another on the same diagonal. This
significantly improves the performance.

2.4. Mutiple alignment methods 27

The computational complexity of BLAST can be calculated and like FASTA, it
also comes out to be O(MN). However, using the elimination of HSPs and words,
BLAST significantly lowers the number of segments that needs to be extended. This
makes BLAST run faster than all the previous algorithms.

For calculating the space complexity of BLAST, we must first take into consid-
eration the hash table, where the words and HSPs are stored. The table contains 20"
rows, one for every possible word of length w. The rows contain the locations for each
of the words, and the total number of positions is of the order N. Thus, there should
be of the order N seeds, which can each lead to a local alignment of a maximum of
length M. The total space complexity is, O(20") + O(N) + O(MN) = O(20" + MN).
Thus, the space complexity is slightly higher than other algorithms, however the actual
space used may not be significantly larger than the dynamic programming algorithms.
This is because many of the local alignments will be discarded as they do not meet the
threshold.

BLAST is significantly faster than the older, slower algorithms, yet, it does not
always give the optimal alignment. It is possible for BLAST to miss segments of sim-
ilarity smaller than the word size, and ungapped BLAST often produces alignments
which are not biologically relevant. Gapped BLAST can also produce suboptimal
alignments, because when it performs the dynamic programming at the end, the best
alignment may lie outside the predefined threshold. Thus, it is clear that a trade off
exists between the sensitivity of an algorithm and the speed at which it runs. Some
online tools are available to use BLAST, such as [44//45]].

2.4 Mutiple alignment methods

The algorithms discussed so far work for pairwise alignment, but as mentioned in the
previous chapter, it might be of interest in some cases to consider the similarities be-
tween a group of sequences. Multiple sequence alignment methods are introduced
to handle such cases. Multiple sequence alignment is an extension of pairwise align-
ment and it tries to align more than two sequences in a given query set simultaneously.
These include HMMER and ClustalW, as elaborated in the following subsections.

24.1 HMMER

Among other approaches, profile based Hidden Markov Models (profile HMM:s) [46]]
have been recently used by biologists to predict the structure and function of a pro-
tein directly from its representation as an amino acid sequence [47]. Profile HMMs
are used to do sensitive database searching using statistical descriptions of a sequence
family’s consensus [48]]. The approach consists of building and providing probabilis-
tic models of protein sequences that share similar structures or functions. As of to-
day, there are several software implementations of this model, the HMMER software
package being one of the most widely used. HMMER is an implementation of pro-
file HMMs software for protein sequence analysis. When doing database searches

28 Chapter 2. Sequence Alignment Methods

like BLAST and Smith-Waterman searches, they are based on pairwise alignments
between the query sequences and the sequences in the database. HMMER uses profile
HMMs instead of pairwise alignments. This means that a hit is found based on the
information of many sequences instead of just one sequence. Profile HMMs can be
used in different contexts. For example, when trying to discover the biological func-
tion of a given amino acid sequence, the user matches this sequence against a database
of profiles such as the Pfam database [49], so as to find the best corresponding profile.
The Pfam database is a large collection of multiple sequence alignments that covers
approximately 8000 protein domains and protein families [50]. Another use is gene
annotation, where the user wants to match a whole sequence database against one or
several profile HMMs databases. However, given the computational complexity of the
algorithm, such intensive comparisons lead to prohibitive execution time in the order
of days or weeks [21]. Given N sequences of average length M, the time complexity
of HMMER is O(MN?), whereas the space complexity is O(MN) [51]).

2.4.2 ClustalW

ClustalW [52] is a heuristic multiple sequence alignment tool based on the Clustal
algorithm. The Clustal algorithm uses a progressive alignment method [S3]]. Typically,
progressive alignment consists of three stages, as shown in Figure 2.5] [54]. These
three stages are described as follows [55]):

AN

oo o
(=T eIl i N
——

(D 2))

Figure 2.5: Three stages of progressive alignment: (1) similarity matrix, (2) guided
tree, (3) profile-profile progressive alignment

1. Pairwise distance computation: Compare all pairs of sequences to obtain a
similarity matrix.

2. Guided tree generation: Based on the similarity matrix, make a guided tree
relating all the sequences.

3. Profile-profile progressive alignment along the guided tree: Perform pro-
gressive alignment where the order of the alignments is determined by the
guided tree.

2.5. Comparison of sequence alignment methods 29

Stage 1 computes a similarity matrix comprised of the distance value between each
pair of sequences using pairwise alignment. The scores of each pairwise alignment
are stored in a triangular matrix as distances from O to 1. Stage 2 generates a guided
tree from the distance matrix using distance-based phylogenetic tree reconstruction
methods, where similarity tree is constructed in two steps. First an unrooted tree is
constructed from the distance matrix using the Neighbor-Joining method of creating
phylogenetic trees. Then the tree is transformed to a rooted version. For the Clustal
algorithm all sequences get the same total weight, whereas for the newer ClustalW
version a sequence’s weight depends on its distance from the root and what branches
it has in common with other sequences. Stage 3 performs progressive alignment of
various profiles to form the final MSA along the guided tree. The progressive align-
ment is performed from the ends of the tree branches back to the root, using dynamic
programming algorithms with some side notes. When a gap is introduced, it can not
be removed at a later stage. Furthermore, if a gap is introduced within an existing gap,
the full gap creation penalty is deducted. ClustalW expands on this by varying the
scoring matrices used, depending on the distances between the sequences being com-
pared and, in turn, varying the gap creation and expansion penalties depending on the
current scoring matrix, sequence similarity, sequence lengths and the current position
of the alignment within the sequences. Given N sequences of average length M, the
time complexity of ClustalW is O(M>N?), whereas the space complexity is O(MN).

2.5 Comparison of sequence alignment methods
This section presents a comparison of the sequence alignment methods discussed in

the previous sections. The comparison is based on their temporal and spatial com-

plexities and parameters like alignment type and search procedure, as shown in Table
2.2]

Table 2.2: Comparison of various sequence alignment methods

Method Type Search | Time complexity | Space complexity
Dot plot Global Basic O(MN) O(MN)

N-W Global DP O(MN) O(MN)

S-W Local DP O(MN) O(MN)
FASTA Local Heuristic O(MN) O(MN)
BLAST Local Heuristic O(MN) 020" + MN)
HMMER | Multiple | Heuristic O(MN?) O(MN)
ClustalW | Multiple | Heuristic O(M*N?) O(MN)

It is interesting to note that all the global and local sequence alignment methods
essentially have the same computational complexity of O(MN), yet despite this, each
of the algorithms has very different running times, with BLAST being the fastest and

30 Chapter 2. Sequence Alignment Methods

the dynamic programming algorithms being the slowest. In case of multiple sequence
alignment methods, ClustalW has the worst time complexity of O(M?N?), whereas
HMMER has a time complexity of O(MN?). The space complexities of all the align-
ment methods are also essentially identical, around O(MN) space, except BLAST, the
space complexity of which is O(20" + MN). In the exact methods, dot plot uses a
basic search method, whereas N-W and S-W use dynamic programming. On the other
hand, all the approximate methods are heuristic based. It is also worthy to note that
FASTA and BLAST have to make sacrifices on sensitivity to be able to achieve higher
speeds. Thus, a trade off exists between speed and sensitivity and we must come to a
compromise to be able to efficiently align sequences in a biologically relevant manner
in a reasonable amount of time.

Being the most sensitive and optimal but computationally expensive sequence
alignment method and the inherent parallelism it offers, S-W algorithm is consid-
ered as the top candidate for hardware acceleration. Furthermore, it is also used as
an essential kernel in heuristics-based sequence alignment applications like FASTA,
making its acceleration helpful in speeding up such applications as well. When run
on a conventional PC, S-W algorithm spends most of the time on calculating elements
of the H matrix, using the same matrix fill step repeatedly. This makes it well suited
for parallelization on other hardware platforms like FPGAs and GPUs. Chapter 3] dis-
cusses hardware acceleration of S-W based sequence alignment applications in detail.

2.6. Summary 31

2.6 Summary

This chapter discussed the available sequence alignment methods, based on a classi-
fication, presented in the beginning of the chapter. The classification is followed by a
discussion about each method. Following are the main topics presented in the chapter.

o Classification of various available sequence alignment methods, like global, lo-
cal and multiple alignment methods.

e Discussion about global methods like dot plot and N-W algorithms.
e Detailed discussion about local methods like S-W, FASTA and BLAST.
o Discussion about multiple alignment methods including HMMER and ClustalW.

o Comparison of various sequence alignment methods presented in the previous
sections, based on various parameters like complexities, alignment type and the
search procedure used.

32

Chapter

Hardware Acceleration

This chapter discusses hardware acceleration of S-W based sequence alignment
applications. It presents a number of hardware-accelerated design alternatives
and compares them with existing implementations. Furthermore, it provides
a classification of the available acceleration methods and proposes an accurate
method for acceleration evaluation. It continues with an insight into systolic ar-
rays and presents their application in sequence alignment. The chapter is orga-
nized as follows.

Section 3.1l presents a classification of the available acceleration methods and
a subsequent discussion about the related work. Section B.2]introduces an accu-
rate acceleration evaluation approach. Sections and [3.4] provide rectangular
and linear systolic array based FPGA implementations for sequence alignment
respectively. Section 3.5l summarizes the chapter.

3.1 Classification of acceleration methods

In computing, hardware acceleration is the use of specialized hardware to perform
some function faster than is possible in software running on a general purpose CPU.
The hardware that performs the acceleration, when in a separate unit from the CPU,
is referred to as a hardware accelerator.

Work has been done on accelerating S-W based sequence alignment methods by
implementing them on various available hardware platforms. A classification of this
work, based on the methods of implementation is shown in Figure 3.1l and reviewed
in the following subsections.

33

34 Chapter 3. Hardware Acceleration

Hardware Acceleration

FPGAs 2 M 2
solutions
RTR Systolic Array Array
arrays processors / \coprocessors

Figure 3.1: Hardware acceleration of sequence alignment methods

3.1.1 FPGAs

FPGAs are re-configurable data processing devices on which an algorithm is directly
mapped to basic processing logic elements, e.g. NAND gates. To take advantage
of using an FPGA, one has to implement massively-parallel algorithms on this re-
configurable device. Thus they are well suited for certain classes of bioinformatics
applications, such as sequence alignment.

FPGA custom instructions

In [56]], the authors studied an improvement in the computational processing time of
sequence alignment based on S-W algorithm using custom instructions on an FPGA
board. This was done by first writing S-W algorithm in pure software and then re-
placing the most computationally intensive portion with an FPGA custom instruc-
tion. Finally, they compared the processing runtime between the software-only and
hardware-accelerated versions to calculate the percentage of runtime improvement.
The results showed that the hardware-accelerated algorithm improved the processing
runtime by an average of 287%. Thus using FPGA custom instructions is a promising
direction for further research in sequence alignment.

Run-time reconfiguration

One way to further exploit the reconfigurable resources of FPGAs and increase their
functional density is to reconfigure them during system operation. This process is
referred to as Run-time reconfiguration (RTR). RTR is an approach to system imple-
mentation that divides an application or algorithm into time-exclusive operations that
are implemented as separate configurations. In [57], an approach to realize high speed
sequence alignment using run-time reconfiguration is proposed. With this approach,
it is demonstrated that high performance can be achieved using off-the-shelf FPGA
boards. The performance is almost comparable with dedicated hardware systems.

3.1. Classification of acceleration methods 35

The time for comparing a query sequence of 2048 elements with a database sequence
of 64 million elements using S-W algorithm is about 34 sec, which is about 330 times
faster than a desktop computer with a 1GHz Pentium-III.

In [58], the performance of S-W based sequence alignment has been increased
substantially by using run-time reconfiguration. The percentage of time spent on cal-
culating the elements of H;; matrix was cut by nearly a third and the absolute time
spent on the algorithm was dropped from 6,461 seconds to a little over 100 seconds,
approximately 64 times faster than an equivalent software-only implementation.

Systolic arrays

Systolic array is an arrangement of processors in an array, where data flows syn-
chronously across the array between neighbors, usually with different data flowing
in different directions [39], [60]. Each processor at each step takes in data from one
or more neighbors (e.g. North and West), processes it and, in the next step, outputs
results in the opposite direction (South and East). Systolic arrays can be implemented
in rectangular or 2D and linear or 1D fashion. Figure[3.2] gives a pictorial view of both
implementation types.

z
z
&
z
&
z
£

=
=
=

M=) Ui =)

Uiz Uia

M=)

)

!
= 5 ke 5K s ke
d o4 L0
o £ k= £ K=
d o4 L0
= £ Ko £ K=
L
Aeue o1j01sAs (Q1) Jesur (q)

= = ko £ k4
<: v C: e C: an C: A C:szw‘ewvw

U43 U44

M4|:(> Uss :D Usz

—
—
—
—

(a) Rectangular (2D) systolic array

Figure 3.2: Pictorial view of systolic array architectures

In these configurations, there are two vector array inputs, M and N. The processing
cells have a value, U;;, that is usually a result due to a defined algorithm within the
cells. Systolic array based architectures are extremely fast, easily scalable and can

36 Chapter 3. Hardware Acceleration

do many tasks that traditional architectures can not attain. They best suit compute-
intensive applications like biological sequence alignment. The disadvantage is that
being highly specialized processors type, they are difficult to implement and build.

In [61], a concept to accelerate S-W algorithm on the bases of linear systolic array
is demonstrated. The reason for choosing this architecture is outlined by demon-
strating the efficiency and simplicity in combination with the algorithm. Nevertheless,
there are two key methodologies to speedup this massively parallel system. By turning
the processing from bit-parallel to bit-serial, the actual improvement is enabled. This
change is performance neutral, but in combination with the drafted early maximum
detection, a considerable speedup is possible. Another effect of this improvement is a
data dependant execution time of the processing elements. Here, the second accelera-
tion prevents idle times to exploit the hardware and speeds up the computation. This
can be accomplished by a globally asynchronous timing representing a self-timed lin-
ear systolic array. The authors have provided no performance estimation due to the
initial stage of their work, that’s why it can’t be compared with other related work.

3.1.2 SIMD solutions

Single-Instruction stream, Multiple-Data stream (SIMD) is a type of multiprocessor
architecture in which multiple sets of operands may be fetched to multiple process-
ing units and may be operated upon simultaneously within a single instruction cycle.
Following is a discussion of several SIMD based approaches for sequence alignment.

Array processors

In [62], an implementation of S-W algorithm for sequence alignment is described
on a general purpose fine-grained architecture, the Micro Grained Array Processor
(MGAP). The authors show that their implementation is about 5 times faster than
the rapid implementation of a genetic sequence comparator using field programmable
logic arrays [63]. Showing thereby that massively parallel processor arrays like the
MGAP possess the capability to solve computationally intensive problems in molec-
ular biology efficiently and inexpensively. The algorithm given in [62] takes M + N
steps to align two sequences. Therefore, if there are K sequences to be aligned, the
entire computation would require only M + N + K steps. The sequential algorithm
would have taken O(MNK) steps to compute K alignments.

Array coprocessors

Kestrel parallel processor is a single-board coprocessor with a 512-element linear ar-
ray of 8-bit, SIMD processing elements [[64]. The system was designed to analyze
databases containing billions of characters from DNA, RNA, or proteins. As a case
study, the authors implemented S-W algorithm on kestrel parallel processor for dif-
ferent query sizes and compared its performance with an implementation on a 500

3.1. Classification of acceleration methods 37

MHz Ultra SPARC-II. The results of their implementations are compared with others
in Table 3.1l

Graphics Processing Units (GPUs)

GPUs are single-chip processors, used primarily for computing 3D functions. This
includes things such as lighting effects, object transformations, and 3D motion. GPU
is a good match for bioinformatics sequence alignment applications, as it is an inex-
pensive and high-performance SIMD architecture.

In [65], it has been demonstrated that the streaming architecture of GPUs can be
efficiently used for biological sequence database scanning. To derive an efficient map-
ping onto this type of architecture, the authors reformulated S-W algorithm in terms of
computer graphics primitives. They claim that this is the first reported implementation
of S-W algorithm on graphics hardware and its evaluation on a high-end graphics card
shows a speedup of almost sixteen compared to a Pentium IV 3.0 GHz.

Table 3.1: Comparison of the work reviewed in Section [3.1]

Reference | Section Platform Compared with | Speedup Qsl;zezy
[36] B.11 FPGA Software-only 287% —
1570 B1Tl FPGA 1 GHz P-1II 330x% —
(58] BI11 FPGA Software-only 64x —
[62] kW) Array SPLASH 5x _

processor S

[64] 312 Array Ultra SPARC-II 17x 100
coprocessors

(64| B12 Array Ultra SPARC-TI | 49x 250
COpProcessors

[64] B12 Array Ultra SPARC-II 99x 500
COpI‘OCCSSOI‘S

1631 B12 GPU 3.0 GHz P-1V 16x —

Table 3.1] gives a comparison of the work reviewed in the section. It identifies
that no standard comparison approach has been adapted, which makes it difficult to
compare different approaches published in the literature [23]]. That is why, we can
only look into each implementation on individual basis to see how much improvement
is achieved in comparison with the provided reference. In the following section, an
accurate speedup measurement method is proposed that is independent of any specific
implementation. This is done by comparing both the software-only and hardware-
accelerated versions of S-W algorithm on the same platform in order to achieve an
accurate profiling and acceleration evaluation. In [66], a similar approach is adapted,
but the proposed implementation performs 1.27 times better.

38 Chapter 3. Hardware Acceleration

3.2 Accurate acceleration evaluation approach

Implementing both software-only as well as hardware-accelerated versions of S-W
algorithm on the same platform leads to an accurate acceleration evaluation . We have
used the MOLEN platform for this purpose, since it contains both a general purpose
processor in addition to a reconfigurable hardware module. The following subsections
present a background about the MOLEN platform and S-W implementation on the
platform.

3.2.1 MOLEN platform

Figure 3.3l shows a block diagram representation for MOLEN platform [67]. The first
block on the left indicates that either the software-only or hardware-accelerated ver-
sion of the algorithm arrives as input to the arbiter. For every function in the algorithm,
the arbiter decides whether to send it to either the core or reconfigurable processor.
The arbiter does this by using specialized instructions for calling the hardware.

The core processor is the IBM Power PC, a built-in component in Virtex-1I Pro
FPGA and is used for implementing the software portion of the application. There are
two such components in Virtex-II Pro FPGA.

The reconfigurable processor is used for implementing the hardware portion of
the application and has two parts. The main part is the reconfigurable microcode unit,
responsible for the entire operation of the reconfigurable processor and an application
dependant Custom Computing Unit (CCU). The CCU is embedded into the reconfig-
urable processor using the interface provided with the MOLEN platform. The recon-
figurable processor utilizes the microcode unit and the CCU to improve performance
of various applications. The details of the data interface between the core processor
and the reconfigurable processor are given in [67].

Core

processor
Input
application Arbiter
(software-only or
hardware-accelerated) Reconfigurable
microcode
unit
CCuU
Reconfigurable processor

Figure 3.3: Block diagram description of MOLEN platform

3.2. Accurate acceleration evaluation approach 39

The methodology for implementation on MOLEN platform comprises of the fol-
lowing four steps.

1. Identifying the desired function in software (code-profile).
2. Designing a CCU for the function identified in the code-profile.
3. Replacing the function identified in the code-profile by the designed CCU.

4. Comparing the cycles consumed by the software-only and hardware-accelerated
versions of the identified function to measure the relative speedup.

Figure 3.4l shows a block diagram representation of MOLEN implementation ap-
proach, where the block in gray represents the desired function, identified in the code-
profile. This is the function for which a CCU is designed [68].

Application program
(C-code)

Identify the desired

function in software P S
(code-profile)

The desired function in
HDL (CCU)

Application program
(C-code)

Figure 3.4: Block diagram representation of MOLEN implementation approach

40 Chapter 3. Hardware Acceleration

3.2.2 S-W implementation on MOLEN

Following is a discussion of an implementation of the S-W algorithm on MOLEN plat-
form. The discussion starts with details about profiling, followed by CCU design for
the function, identified in the code-profile and concludes with an accurate evaluation
of the speedup achieved.

Profiling

Figure gives block diagram representation of a software-only implementation of
S-W algorithm [24], where,

Input Output
—>1 init_matrix fill_matrix_1 fill_matrix_2 trace_back_1 trace_back_2 |F———

Initialization Matrix fill Traceback

Figure 3.5: Functional description of a software implementation of S-W algorithm

o The init_matrix is a function used for initializing the scoring matrix.

o The fill_ matrix_I performs two functions i.e. filling the matrix and at the same
time keeping track of the maximum score in the matrix.

o The fill_matrix_2 function finds the corresponding maximum candidate for each
cell in the matrix, using Equation 2.2

o The trace_back_I function performs the traceback.

e The trace_back_2 function keeps track of the direction of the traceback.

The C-code for this software-only implementation is compiled using MOLEN
Power PC compiler [69]. The cycles consumed by each function in the code are eval-
uated, using the Power PC timer instructions. The Power PC has a clock frequency
of 100 MHz, so the time period for one cycle is ﬁ us = 0.01 us. Thus the time con-
sumed by each function is equivalent to the number of cycles consumed multiplied by
the time period for one cycle. The overall time consumed is the summation of time
consumed by all functions, which is 172 us whereas the % time consumed is the ratio
of the time consumed by a function to the overall time consumed. This is an alterna-
tive way of profiling and is more accurate than other methods, such as using the GNU
profiler (gprof), used in [68]]. The reason for the inaccuracy of the profiling approach
adopted in [68] is that it does not account for the overhead in the computation time.
This overhead is incurred by some inaccuracies in the gprof tool itself, in addition to
the computational overhead in the operating system.

3.2. Accurate acceleration evaluation approach 41

Table 3.2: Profiling results
Function name | No. of calls | Clock cycles | Time (us) [% Time

init_matrix 1 753 7.53 4.33
fill_matrix_1 1 6388 6.88 4.00
fill_matrix_2 48 13392 133.92 78.00
trace_back_1 1 102 1.02 0.55
trace_back 2 5 2265 22.65 13.12

Table 3.2] gives profiling results of a software-only version of S-W algorithm on
the core processor of MOLEN platform i.e. IBM Power PC. It provides the func-
tion names, number of times that each function is called, the number of clock cycles
consumed by each function, the amount of time consumed by each function in micro
seconds and the % time consumed by each function. In Table 3.2] the fill_matrix_2
is highlighted as the most time consuming function and is the right candidate to be
designed in hardware as a CCU. The fill_matrix_2 function is based on Equation 2.2]
which is given as follows.

0
_ Hi1;1+8i;
H; ; = max Hiis—d
Hl',j—l _d

The table shows that the fill_matrix_2 function consumes 13392 cycles for 48 calls,
so the cycles consumed for 1 call will be 13392/48 = 279. When run on Intel 3.2 GHz
Pentium-IV processor, the time consumed by this function is 52.32 us (as measured
by gprof). Later in this section, a comparison is made with the Power PC.

CCU design

A hardware module, called CCU is designed in VHDL for the function of interest
(fill_matrix_2), identified in the code-profile. Figure shows the RTL schematic of
the CCU.

The CCU is a synchronous comparator, which compares four 8-bit numbers and
finds the maximum of them in two comparison levels. For this purpose, three similar
8-bit comparators are used, each having two 8-bit inputs in/ and in2, a 1-bit reset input
rst_.comp and an 8-bit output out_comp. The inputs a, b, ¢ and d in the figure, represent
the four alternatives for the max operator in Equation2.2] In the 1st level of the design,
a is compared with b and ¢ is compared with d, using two of the three comparators.
Each comparator finds the maximum of the two numbers and provides the result to
the third comparator in the second level. The third comparator finds the maximum of
all four input candidates. To receive the final 8-bit output (max_out) at the rising edge
of the clock, a D flip flop with a clear (CLR) input is used. The post place and route

42 Chapter 3. Hardware Acceleration
a(7:0) in1(7:0) out_comp(7:0), in1(7:0) out_comp(7:0)|
b(7:0) in2(7:0) in2(7:0)
rst_n rst_comp —Jrst_comp max_out(7:0)
D >
clk_ext c
Neo
1° CLR
INV
c(7:0) in1(7:0) out_comp(7:0)
d(7:0) in2(7:0)
L—{rst_comp

Figure 3.6: RTL schematic of the CCU for the function fill_matrix_2

simulation, as shown in Figure 3.7] exhibits that the time consumed by the CCU to
compute the output (max_out) is 14.6 ns or 0.0146 us, whereas the time consumed by
its software equivalent was 52.32 us. The figure shows that the simulation initializes
the clock and reset signals (clk_ext and rst_n) with zero. The inputs a, b, ¢ and d are
also initialized with zeros, so that the output (max_out) stays zero during the 1st clock
cycle. The clock cycle is set at 20 ns (i.e. 50 MHz frequency), whereas the inputs are
changed after every five clock cycles. The gray blocks in Figure[3.7lhighlight the time
required to calculate the output (max_out). The time between any two gray blocks is
the idle time where no computation is performed.

a 00000 foooorr I
b 00000000 leUUU
¢ 0N fovoom
4 TO00000 i
ck_ext
rstn
max_out]00000000 (01000000 00100000 00010000 00001111
N | N N
146ns 146ns 146ns 146ns
crccboro broccdboeo oo bococboeoc oo oo oo beocebeccboecc boooc b oo boeee ben
Ons 50ns 100ns 150 ns 200ns 250ns 300ns 350ns 400ns

Figure 3.7: Post place and route simulation results

The speedup that a standalone CCU achieved over its software equivalent is given
by the ratio of software time (fill_matrix_2 time) to hardware time (CCU time) and is
calculated as follows.

3.3. Rectangular (2D) systolic implementation 43

software time fill_ matrix 2 time 52.32 X 1076

Speedup = = = = 3583
peedup hardware time CCU time 0.0146 x 10-°

The device used for the implementation was Xilinx Virtex-II Pro (XC2VP30)
FPGA with a speed grade of -7. It is worth mentioning that the actual speedup
achieved is lower than the speedup calculated here, since gprof does not account for
the overhead in the computation time. This overhead is incurred by some inaccura-
cies in the gprof tool itself, in addition to the computational overhead in the operating
system. Secondly, the speedup shown is for the identified function only and does not
represent the performance improvement for the entire application. To investigate the
overall runtime improvement and overcome the indicated issues, the entire applica-
tion is run on MOLEN platform. This reduces the achieved speedup, but increases the
level of accuracy.

Accurate speedup evaluation

The designed CCU for the function of interest (fill_matrix_2) is modified in a way
that it can be run on MOLEN platform using the provided interface. After modifying
the CCU in the desired way, the definition of fill_matrix_2 function is annotated with
#pragma call fpga fill_ matrix_2 annotation in the C-code. The entire annotated C-
code is compiled, using the MOLEN Power PC compiler. An executable file thus
generated is downloaded locally. The CCU design is embedded into MOLEN using
the Xilinx modular design flow. The generated bit stream is downloaded into the XUP
Virtex-II Pro prototyping board by connecting a configuration cable to the prototyping
board. Using the Power PC timer functions, the cycles consumed by fill_matrix_2
function in the annotated C-code are evaluated, which comes out to be 129 cycles.
The comparison between the cycles consumed by the software-only and hardware-
accelerated versions of fill_matrix_2 gives the relative speedup, given as follows.

Speed Cycles in software 279)16
up = = — = 2.
P P Cycles with hardware acceleration 129

This speedup is more accurate than the one presented in the previous subsection,
as the software-only and hardware-accelerated versions are both implemented on the
same platform. To ensure an accurate measurement of the speedup, all bottlenecks
have been taken care of, such that only processing time is the limiting factor. More-
over, the approach is technology independent and can also be implemented on alter-
native available FPGAs, such as Virtex-IV and Virtex-V.

3.3 Rectangular (2D) systolic implementation

In this section, a basic cell design for the S-W based sequence alignment and the
corresponding rectangular (2D) systolic array implementations are presented. It starts

44 Chapter 3. Hardware Acceleration

with a description of the proposed cell design, followed by system design based on this
cell.

3.3.1 Cell design

The performance of systolic array architectures mainly depends on, how simplified
and efficient the corresponding cell design is. By efficient we mean both in terms of
performance and area. Figure[3.8]shows a block diagram description of the cell design
for computing H; ; values for the systolic array architecture, according to Equation
22l In Figure Compl is a comparator that compares the two input sequences
and outputs the corresponding value of §; ;, depending on the values of the match and
mismatch scores, such that S; ; = match score, if N, = N, otherwise S; ; = mismatch
score. Addl is an adder that adds the diagonal element H,_; ;_; and the value of §; ;.
Comp?2 is a comparator that compares the output of the Add! with a constant value 0
and outputs the greater of the two numbers. Add? is an adder that adds the left element
H,_; j and —d, where d is the penalty for a mismatch. Add3 is an adder that adds the
upper element H; ;_; and —d. Comp3 compares the outputs of Add2 and Add3 and
outputs the greater of the two numbers. Comp4 compares the outputs of Comp2 and
Comp3 and outputs the greater of the two numbers. The output of Comp4 is stored in
a buffer, and is the corresponding H; ; value.

The block diagram shown in Figure 3.8] is implemented in VHDL and the post
place and route simulations show that the asynchronous time consumed by such a cell
is 10 ns on a Xilinx Virtex-1I Pro FPGA platform.

Ng
c 1 If Ng = Ns, then Si,j = match score,
omp else Si,j = mismatch score
d = penalty for a mismatch
Ns Seq_Comp

1st

Buffer Hi,
clk

Figure 3.8: Cell design for rectangular systolic array implementation

3.3. Rectangular (2D) systolic implementation 45

3.3.2 System design

The cell design shown in Figure 3.8 can be used to build systolic array based systems
of any size, depending on the availability of hardware resources. Figure 3.9 shows the
description of such a system design, where a 4 X 4 systolic array architecture is chosen
as an example.

Hoo Ng1 Hos Ng2 Hoz Ng3 Hos Ng4
l Ho1 l Hoz l Hos l Hos
T + I + [+ T +
Nst— Bt ——— L — Bt ——— L — B ——— 1+ — |
d—V—JI-———-—-V—JI-———-—-V—JI-———-—-P :
Hio— | Hit > Hiz > His L Hia
Hio t t t t
| | | |
v v vV vy \ A
[| | |
Ns2—P—+——— 1 — Pt ———F — P ——— T — P |
d—»—*l-—————-»—+———-—->—+———-—-> |
Hao — | Has > : Haz, > : Has > : Haq
Hao T T I T
! | | |
\ A Yy Vv vy Vv \ A |
| | | |
NS3— W~ ——— =P~ ———F =P ——— T — P |
d——t+———r -t ———F =P ——— T — P |
Hao — : Ha1 > : Haz > : Has > : Has
Hao T T T T
| | | |
Yy v LA | Yy v v Y
Ns4—p»— — — — — F—————— F— - ———— - — P
d—p————— F——————— = ———— - — P
Heo = He [He [Ho [Hes

Figure 3.9: Block diagram description of a 4 x 4 systolic array

For computing the delay of the entire array, we run the asynchronous time simu-
lation (post place and route simulation), which shows that the time consumed to fill a
4 X 4 array asynchronously = 26.4 ns. On the other hand, the time consumed to fill a
4 x 4 systolic array synchronously = 10 X 7 = 70 ns, showing thereby that the asyn-
chronous approach is 2.6 times faster than the synchronous approach. This speedup
is only significant in terms of computing the delay of the entire circuit, as the asyn-
chronous approach only outputs the final H; ; value. For the intermediate H; ; values,
we have to use the synchronous approach.

To evaluate the performance in terms of Cell Updates Per Second (CUPS), we
implemented the design on a Xilinx Virtex-II XC2V6000 FPGA, such that the avail-
able hardware resources were utilized to the maximum. In this way, we were able to
fit a maximum of 1778 cells on the FPGA, where each cell utilized 19 slices. The
clock frequency used for our implementation was 45 MHz and the performance thus
achieved was,

Performance = 1778 x 45 = 80 GigaCUPS

This design significantly under utilizes the hardware, so we switch to a linear
implementation to be discussed in the following section. However, in case of a linear

46 Chapter 3. Hardware Acceleration

implementation, we need to keep track of the Max value as data is overwritten.

3.4 Linear (1D) systolic implementation

Linear systolic array is a linear arrangement of processors (hereafter called cells), con-
nected in series, where data flows synchronously across the array between neighbors,
as shown in Figure The cells are used repeatedly during each clock cycle. In the
following subsections, the cell design for linear systolic array implementation, a sub-
sequent system design and an extended design using Double Data Rate (DDR) RAM
are presented.

—p| H; |—p»{ Hirjpr —P| Hizpz —pp] Hizjes —Pp

Figure 3.10: Description of a 4-element linear systolic array

3.4.1 Cell design

Figure B.11] shows the block diagram representation of a basic cell design, for com-
puting the elements of the H matrix for linear systolic array, using Equation

Nq
|
|
Y

If Ng = Ns, then Si,j = match score, rst
Ns SeqCmp else Si,j = mismatch score Buffer= Ns out
) d = penalty for a mismatch olk -
Sijf 0

rst

Cmp rst
Hi-1,-1 —>{Buffer| Bufferf Hij

Hi-1j — a a

Cmp

Bufferjer> Max_out
clk

Max_in

Figure 3.11: Cell design for linear systolic array implementation

In the cell design of Figure B.11] SeqCmp compares the corresponding characters
of the two input sequences and generates a similarity score. If the corresponding char-
acters are the same, the similarity score is equal to a specific match score, otherwise

3.4. Linear (1D) systolic implementation 47

it is equal to a mismatch score. The diagonal input from element (H;_; j-;) is buffered
for one clock cycle, as it is used as a diagonal element after two steps. The similarity
score is added with the delayed diagonal element using an adder, the output of which
is compared with a 0 using a comparator. The comparator returns O if the output of
the adder is negative, otherwise it returns the output of the adder. The left element
(H;_1,j) and the up element (which is the current value of the cell) are added with the
gap penalty using adders, the outputs of which are compared using a comparator that
returns the greater of the two values. This value is then compared with the value of the
previous comparator (the one that compared the sum of the diagonal element and the
similarity score with a 0) and the greater of the two values is returned. The value of
the cell, stored in a buffer, is also compared with the Max_in value from the previous
cell to find the global maximum. The current maximum value of the cell, stored in
another buffer, is also compared with the global maximum. The maximum of the cur-
rent and global maximums are compared and the greater of the two values is returned
and hold in a buffer. Another buffer is used to delay the database sequence (Ny) by
one clock cycle for the next element of the array. The external clock and reset lines
are connected with the clk and rst inputs of all the buffers.

3.4.2 System design

The cell design shown in Figure 3.11] can be used to build a linear systolic array
based systems of any size, depending on the availability of hardware resources. Figure
[B.12]shows an FPGA-based 4-PE linear systolic array implementation for S-W based
sequence alignment using Block RAM (BRAM) for intermediate data storage before
transmitting the resultant data to the PC. In addition, there are two BRAMs for the
two input sequences, i.e. (BRAM for N,;) and (BRAM for N,). These two BRAMs
are initialized with the values of the two input sequences. The input sequences are
applied to the PEs in such a way that the N, values stay fixed in their corresponding
PEs, whereas the N; values are propagated through the array in synchronism with the
clock.

Figure 3.13] presents a block diagram representation of the design that works as a
BRAM control unit. It consists of a BRAM data control unit, an address control unit
and the BRAM itself. The address control unit generates the appropriate read/write ad-
dresses based on the request from the data control unit and the status of the read/write
flag. Also it sends back an acknowledge signal to the data control unit accordingly.

Figure [3.14] shows a state machine for the BRAM Address Control Unit. It stays
in the IDLE state, unless there is a request from the data control unit. It goes to
SETUP state if there is a request. From the SETUP state it goes to the READ state
if the read/write flag is 0, otherwise it goes to the WRITE state. After each READ or
WRITE it checks the status of the read/write flag and request signal and goes to the
next state accordingly.

A parallelized S-W algorithm requires Ns + N, — 1 operations for computing the
entire H matrix [29]]. If Ng = Ns = N, then the cycles required becomes 2N — 1. In
practice, a large number of PEs is required to align long sequences. The larger the

48 Chapter 3. Hardware Acceleration

N4
o| ©
% ~ 7|Nas
Q (8]
<§(a Ng;
[a') .
o g [Nas
L Y | A | \
Max_in—p»{ a: =, Ma)lp& ar& Max1.4
Hi{ H H H
H_left—m Hi ”T- > He B Hy el He e
> Ly L K
[7) N%11 Nsk2 Nsyi3 >
2 | | [
8 bm— | TTTTITTTT o _____ !
= B
| I
14
& YYVY

T T
Hi1) Hiz) Hia) Hia

1,717 71
Ha1) Haz) Has) Has

| 17,71
H41| H42| H43| Hag
om

RAM for Data Out
|
|
|
|
|
o)
(@]

Figure 3.12: Linear systolic array design using BRAM for intermediate data storage

data_in e —e—mRdWr_Flag_ext

BRAM

Data
rst_ext > Control

Unit
-
clk_ext o data_outp— DN
bram_req bram_ack B
4
CLK i - DOUT
A J
Req Ack M
rdwr_address me——]- ADDR
——rst
BRAM
A
L clk Address EN +
Control
Unit
»- RdWr_Flag WE

Figure 3.13: Block diagram representation of BRAM control design

3.4. Linear (1D) systolic implementation 49

EN="0 EN="1
WE =0 WE = RdWr_Flag
Ack =0 Ack =0’
RdWr_Flag = ‘0’
EN =
\I,EVI\'; ! WE =0
Ack =1
RdWr_Flag = ‘1’ RdWr_Flag = ‘0’

and Req =1’ and Req = ‘1’

Figure 3.14: State machine for BRAM address control unit

number of PEs, the longer the query sequence that can be aligned against a database
sequence and the better the performance. Table[3.3]presents performance in Giga Cell
Updates Per Second (GCUPS) and frequency (f) in MHz for varying number of PEs
(N) implemented on Xilinx Virtex-II Pro FPGA.

Table 3.3: Performance in GCUPS and frequency in MHz for various number of PEs
)

IN| f [P=Nxf][N]| f [P=Nxf]

20 | 110.26 221 80 | 110.26 8.82
40 | 110.26 4.41 9 | 110.26 10.58
60 | 110.26 6.61 120 | 110.26 13.23

The maximum number of PEs that could be implemented on a Virtex-II Pro FPGA
platform are 120, but in practice, the size of the sequences may be larger than 120.
The average case sequence length may be considered as 500 (74% of sequences in
Swiss-Prot are < 500 [8]]). One possible solution to deal with this issue is to split the
computation into k passes, where k > 1 is an integer.

50 Chapter 3. Hardware Acceleration

3.4.3 Extended design with DDR RAM

Table 3.4l shows a sample H matrix for aligning two sequences of m characters each.
If the precision of the aligned output data is 16 bits wide [70]], then, for m = 500 (74%
of sequences in Swiss-Prot are of length < 500 [8]]), the total amount of data that needs
to be stored in memory is, 500 x 500 x 16 = 4 Mbits. This amount increases with the
increasing length of the query and database sequences.

Table 3.4: H matrix for aligning sequences of m characters each

[A € .].] T [G |
G Hl,l H1’2 Hl,m—l Hl,m
A H2,1 H2’2 H2,m—1 HZ,m
T Hm—l,l Hm—1,2 Hm—l,m—l Hm—l,m
C Hy 1 H,» Hypm-1 H,p

In practice, e.g. FPGA implementations, a large number of PEs is required to align
long sequences. The larger the number of PEs, the longer the query sequences that can
be aligned against the database sequences and the better the performance. When all the
PEs are simultaneously active, the bandwidth required to store the resultant output data
increases with the increasing array length. Hence, the on-chip local BRAM becomes
very limited for storing all the intermediate values and can only be used as a buffer that
transfers the data to an off-chip main memory, e.g. the DDR RAM. Figure gives
a block diagram description of such a system. Thus, the overall performance of the
hardware system not only depends on the availability of computational resources, i.e.
the number of PEs, but also on the bandwidth of the main memory (B,,,). Both the
issues are further elaborated in Chapter [6] where theoretical performance boundaries
and subsequent performance and bandwidth optimization are presented.

@
2
2= | Bioca Hardware- [Bj,cq Bumain
5o :D based S-W :D BRAM for Data Out :{) D
88 design D
g BRAM used as a buffer R
@
3 R
& A
PC <:=: M
BRAM for PC
query sequence interface

Figure 3.15: Linear systolic array design using BRAM and DDR RAM

3.5. Summary 51

3.5

Summary

Besides providing a classification of the acceleration methods for sequence alignment
and the relevant literature review, this chapter introduced an accurate profiling and
acceleration evaluation approach. Further, it presented rectangular and linear FPGA-
based systolic array implementations for sequence alignment applications. The main
topics presented in the chapter are as follows.

Classification of various available acceleration methods for S-W based sequence
alignment, followed by a comparison between their respective speedups relative
to some baseline performance, thereby showing the need to identify a common
measure for comparing different acceleration methods presented in the litera-
ture.

Description of MOLEN reconfigurable platform and its use as an accurate pro-
filing and acceleration evaluation platform for sequence alignment applications.

Description of a software implementation of S-W algorithm and its profiling
using both gprof and MOLEN power PC compiler. This is followed by a CCU
design using the interface provided by MOLEN platform for the function iden-
tified in the profiling results.

Implementation of both software-only and hardware-accelerated versions of S-
W algorithm using MOLEN platform and an evaluation of the achieved speedup.

Rectangular (2D) systolic array implementation, its corresponding cell design
and a system design based on this cell.

Linear (1D) systolic array implementation, its corresponding cell design and a
subsequent system design.

An extended design using DDR RAM and an insight to optimize the perfor-
mance and bandwidth limitation which is further elaborated later in the thesis.

52

Chapter

RVE-based FPGA Acceleration

RVE is a kind of loop transformation that removes all the data dependencies
from an algorithm, so that the algorithm can be parallelized to its maximum.
In this chapter, RVE-based FPGA acceleration of sequence alignment and its
comparison with traditional systolic array based acceleration is presented.

The chapter starts with an introduction to the RVE technique in Section 4.1}
followed by a rectangular (2D) RVE implementation in Section [4.2] Section [4.3]
presents a linear (1D) RVE implementation. Section 4.4] provides RVE perfor-
mance evaluation, whereas Section [4.5] summarizes the chapter.

4.1 Introduction

This section aims at providing some insight into the RVE approach and its application
in biological sequence alignment. An introduction to the RVE approach is provided in
Section 1.1} whereas Section B.1.2] presents an implementation procedure using the
RVE approach.

4.1.1 The RVE approach

RVE [71] is a kind of loop transformation which removes all data dependencies from
a program, so that the program is parallelized to its maximum. The basic idea is that if
any statement G; is dependent on statement /; for some iteration 7 and j, then instead
we wait for H; to complete and then execute G;, we will replace all the occurrences of
the variable in G; that create dependency with H; with the computation of that variable
in H;. In this way there is no need to wait for the statement H; to complete and
statement G; can be executed independently of H;. This step is recursively repeated
until the statement G; is not dependent on any other statement, other than inputs or
known values, which essentially means that G; can be computed without any delays.

53

54 Chapter 4. RVE-based FPGA Acceleration

This transformation is explained clearly in Example 1, which adds the loop counter.
Therefore after applying the RVE, we get an expression with five terms to be added,
as shown in Example 2.

Example 1: A simple example which adds the loop counter

All] =1

for i = 2to5

Ali] = Ali-1]+i ——- (G))
end for

Example 2: After applying RVE on Example 1
A[5] = A[4]+5

A[3]+4+5

A[2]+3+4+5

All]+2+3+4+5

1+2+3+4+5

In this way, the whole expanded statement in Example 2 can be computed in paral-
lel and efficiently using binary tree structure as shown in Figure d.Ilrequiring 3 cycles
for the entire computation. The major drawback of this technique is that the speed up
is achieved at the cost of redundancy, which consumes a lot of hardware resources.

In this chapter, we present various implementations of S-W based sequence align-
ment applications using the RVE approach and compare the results with implementa-
tions based on the systolic array approach as discussed in the previous chapter.

4.1.2 Sequence alignment using RVE approach

To eliminate the limitation posed by the inherent data dependencies in the S-W based
sequence alignment applications, we apply the RVE approach. Instead of computing
an element of the H matrix at a time, as discussed in Chapter 2l we can compute a
block of k x k elements in parallel, by partially applying the RVE approach. When it
is applied to Equation[2.2] we get the following equations for H; j in a 2 x 2 block.

Hi1j2-d
Hipj2+8i1j1
Hio;1—-d

0

H[—l,j—l = max (41)

Hi_yj>—2d
Hizjo—d+S;i1;
H,'_l’j = max H,‘_z‘j_l + Si—l,j (42)
Hi_z’j - d
0

4.1. Introduction 55

A[5]

Cycle 3 T

Cycle 2

et

17

Figure 4.1: Circuit for the Example 2

Cycle 1

Hi,j—2 —-d
Hi1j2+S;;-1
H,"j,l = max H,'_Q’j_z —-d+ Si—l,j—l “4.3)
Hisj1—2d
0

(Hi,j—2 MAX Hi_g,]’) + =2d
Hi—],j—z - d + (Si’_j—] MAXSZ,])

Hij=maxq Hi 52+ S 1;1+S;; 4.4)
Hioj1—d+(Si1 MAX S,))
0

Figure [4.2] shows the way to fill a 2 X 2 H matrix using the RVE approach, as per
Equations .11 B.2] and[£.4] where S is the match/mismatch score and d is the gap
penalty [72]. In each case the cell to be filled is highlighted along with the cells which
are required for its computation.

We define the size of RVE block as the blocking factor (by). So, for a2 X 2 array,
implemented using RVE, the blocking factor is by = 2 x 2. The advantage of this
approach is that all four elements in the 2 X 2 array are computed in parallel, without
waiting for the previous elements to be computed. Thus, the data dependencies are
minimized, as compared to the traditional systolic array implementation.

56 Chapter 4. RVE-based FPGA Acceleration

Ng1 Nqg2 Nq1 Nqg2 Ng1 Nqg2 Nq1 Ng2
0| o o oo | o 0| o0 o | o
z 0 z o He| & 0 Z 0 | Hy
E 0 Ha, § % 0 | Hy E
(@) (b) (c) (d)

Figure 4.2: Filling a 2 X 2 H matrix using the RVE approach

4.2 Rectangular (2D) RVE implementation

In this section, a building block for 2-dimensional RVE implementation is described
and system design based on this building block is presented. Further a discussion of
the results obtained is given.

4.2.1 Building block description

Figure [4.3] shows the block diagram description of a building block for RVE imple-
mentation with by = 2 x 2. It provides the detailed pin outs of the RVE block, where
four pins are reserved for the corresponding characters of the input sequences N, and
Ny, i.e Ny, Nyi-1y, Ngj and Ny¢_1y. Five pins are for the H inputs, i.e. H; 5,
Hij, Hi»j, Hi_i j» and H;_ j_;. One pin is for the gap penalty (d) and two for the
clock (CLK) and reset (RST). The four output pins are H; j, H;_y j, H; j_1 and H;_y j_i.

d Hizj Hizjt
Hizjz i HI’-? i H,I/-z i
Nsgj—m .
Nisgi-1) —9 RVE > Hiq
N (With bf=2%2) |4,
Nog.1)— .,
CLK RST

Figure 4.3: Block diagram description of a 2D RVE design with by = 2 x 2

When implemented on a Xilinx Virtex-II Pro (XC2VP30) FPGA, the RVE block
shown in Figure 3] consumes 30 ns for a clock frequency of 50 MHz. The slices
utilized by the block design are 95 out 13696.

4.2. Rectangular (2D) RVE implementation 57

4.2.2 System design

Using the RVE block with by = 2 X2 as a macro design, a 5 X 5 blocks array is imple-
mented. Figure 4.4 shows the block diagram representation of this implementation.

H Nq1 Nq2 Nqg3 Nq10
)
RNE 2 JEN 2 v
Ns1 - > Hiq
Ns2—»| d Hi.z; Hizj1 !
| Hijz Hiij.2 ! |
Ns3—»- Hizj2 —» Hi 10
o v v |
|
} - Hoq
M ST
! | !
! | !
| L H
‘ i N1y — RVE > H.y i 2 10
! I . I |
Ns10—» Ny (With bp=2%2) | »p,, | |
| | 3
Clk—eXt»‘; Nyg-1)—» —» Hi11 %
| |
rst_ext %} f f i» Hio0
! |
d—» CLK RST

Figure 4.4: Block diagram representation of a 5 X 5 array using multiple RVE blocks
with by =2 %2

Figure.3lshows, how a 5x5 blocks array is constructed by using RVE blocks with
by = 2 2. For the blocks in the first row and first column of Figure[4.3] all the inputs
come from outside, as shown by external input pins of Figure[d.4l The four outputs of
each block go to the inputs of corresponding neighboring blocks, where the remaining
inputs corresponding to sequence characters come from outside. The entire design
consumes 2409 out of 13696 slices without considering the /0 hardware overhead.
The resources utilized with the /O hardware overhead are equivalent to 2630, thus a
maximum of 130 PEs (RVE blocks with by = 2 X 2) can be fitted, while implementing
on a Xilinx Virtex-II Pro (XC2VP30) FPGA. Since four H;; elements are calculated
per PE, the maximum number of H; ; elements calculated is 130 x 4 = 520. There are
9 anti-diagonals in a 5 X 5 array using RVE blocks with by = 2 x 2, represented by
letters A, B, C, D, E, F, G, H and I in Figure 4.3l Each anti-diagonal is computed in
one clock cycle, so the latency is equivalent to 9 clock cycles = 9 x 30 = 270 ns.

4.2.3 Discussion of results

Tabled.T]displays the results of comparing various systolic array implementation with
their equivalent RVE implementations, where the first column represents the type of
implementation. The second column represent the time consumed. The third col-
umn shows the speedup of each design with respect to its equivalent systolic array

58 Chapter 4. RVE-based FPGA Acceleration

Ng1 Ng2 Ng3 Ng4 Ng5 Ng6 Nqg7 Ng8 Ng9 Ng10

0 0 0 0 0 0 0 0 0 0 0

% 0 | Hyt | Hiz | Hyq | Hiz | Hyq | Hiz | Hyq | Hiz | Hyq | Hiz
- 1 | + |

% 0 | Hat | Hae | Haq | Hzo | Hzq | Haz | Hzq | Haz | Hzp | Haz

§ 0 | Hir | Hiz | Hit | Hiz | Hyg | Hiz | Hyq | Hiz | Hyg | Hyz
| 1 + 1 |

% 0 | Hz1 | Haz | Hat | Ha2 | Hat | Haz | H21 | Haz | Hag | Ha

E 0 | Hyt | Hiz | Hyq | Hiz | Hyq | Hiz | Hyq | Hiz | Hyq | Hiz
| + | 1

i 0 | Hz21 | Ha | Hat | Hao | Haq | Hao | H2g | Haz | Hay | Ha

% 0 | Hir | Hiz | Hir | Hiz | Hyg | Hiz | Hyq | Hiz | Hyg | Hyz
+ ! | (. -

E 0 | Hz1 | Haz | Hat | Haz | Hat | Haz | H2q | Haz | Hag | Ha

é 0 | Hit | Hiz2 | Hyg | Hiz | Hyg | Hi2 | Hyq | Hi2 | Hyg | Hyz

> i 1 -

@ 0 | Hzt | Hao | Haq | Hao | Haq | Hao | Hag | Haz | Hay | Ha

S

Figure 4.5: 5 x 5 array using RVE blocks with by =2 x 2

design. The fourth column gives the number of slices utilized by each implementation
including the /0 hardware overhead. The device used for implementation is Xilinx
Virtex-II Pro FPGA, where the total number of available slices is 13696. The last
column presents the hardware utilization cost.

The performance gain in terms of latency, achieved by 5 X 5 array using RVE
blocks with by = 2 X 2, as compared to its equivalent 10 X 10 traditional systolic
array implementation (discussed in the previous chapter) = 380/270 = 1.41. This per-
formance gain is achieved at the cost of utilizing 2630/2096 = 1.25 times additional
hardware resources. In case of 14 x 10 array using RVE blocks with by = 2 x 2, the
performance gain in comparison with its equivalent 28 x 20 systolic array implemen-
tation = 940/690 = 1.36, at the cost of utilizing 13694/10751 = 1.27 times additional
hardware resources. Figure shows a graphical comparison of the results given in

Table[d.1]

The performance gain achieved by the RVE approach is due to the fact that it
eliminates the limitation posed by the inherent data dependencies in the S-W based
sequence alignment applications. However, this performance is achieved at the cost of
utilizing additional hardware resources. The speedup achieved by applying RVE in-
creases with the increasing blocking factor (b), but resource utilization also increases

4.2. Rectangular (2D) RVE implementation

59

Table 4.1: Comparison between 2D systolic array and RVE implementations

Implementation | Time (ns) | Speedup | Slices | Hardware cost
2‘>< 2 60 | 0 1
systolic array
RVE block
with by = 2 x 2 30 2 95 1.36
10.>< 10 380 | 2006 1
systolic array
5 x 5 array using
RVE blocks with by =2x2 | 2/ 141 | 2630 1.25
o - 20 940 1 10751 1
systolic array
14 x 10 array using
RVE blocks with by = 2 x 2 690 136 | 13694 127

W Systolicarray @ RVE

100 1000

Time consumed in nanoseconds
10

- 2x2 10x10
Array size

28x20

Slices utilized

10000 100000

100 1000

10

W Systolicarray @RVE

10x10
Array size

28x20

(@)

(b)

Figure 4.6: Comparison between various 2D systolic array and 2D RVE implementa-

tions on a logarithmic scale

as a consequence. Thus the limiting factor is the availability of hardware resources
on the device used for implementation, Xilinx Virtex-II Pro (XC2VP30) FPGA in this
case. Other major issue with this implementation is that the hardware is underutilized
most of the times. To overcome this issue, we present a linear RVE design as discussed

in the next section.

60 Chapter 4. RVE-based FPGA Acceleration

4.3 Linear (1D) RVE implementation

This section presents the design of a basic building block for the linear RVE im-
plementation. Further, it presents system designs based on this building block and
presents a discussion of the results achieved.

4.3.1 Building block description

Figure 4.7] shows the block diagram representation of the linear RVE design that im-
plements a 2x2 array. This RVE block depends on the search and target sequences (i.e.
the query and database sequences), the gap penalty (d), Max input, CLK and RST, in
addition to the three external elements i.e. H;_ 5 j_», H; j_» and H;_; ;_», and two feed-
back elements H;_,; and H;_, ;_. Similarly, in addition to the four elements of the
H matrix i.e. H;j, H; j_1, Hi-1 j and H;_y j_;, the RVE block also outputs Max output,
Ny and Ny, which become inputs for the next block, when the array is extended.

d
Hi;.
Hizjo i iz

Ns2_in(Ns)) —
Ns1_in(Nsg.1)) —™ RVE = Hiq
NG2(Nqg) — . > Hea
(with by = 2x2)
—® Max_out
NQT(Ng(g-1))— 9 B
—m»Ns1_out
Max_in—
—Ns2_out

} !

CLK RST

Figure 4.7: Block diagram representation of the linear RVE design with by = 2 x 2

Figure[d.8shows the logical description of an RVE implementation with by = 2x2.
The comparators in the 1% column of Figure 4.8 compare the corresponding characters
of the input sequences and generate the similarity score accordingly. The adders in
the 2" column add the gap penalty with the elements H; j_», H,_1 j», H; j and H; ;_i,
where the 1% two are external elements and the 2"¢ two are feedback elements. The
AND gates in the 3" column perform logic anding between the outputs of the upper 3
comparators in the 1* column. The adders and comparators in the following columns
perform addition and max operation on the inputs from the preceding columns. The

4.3. Linear (1D) RVE implementation 61

Figure 4.8: Logical description of an RVE implementation with by = 2 x 2

values of the five outputs H;;, H;;_1, Hi_yj, Hi_j ;-1 and Max_out are buffered at
the output. Ny, and Ny, are also buffered in the last column to get Ny, and
N> _ou for the next block in the array. When implemented in VHDL, this block with
by = 2x2 consumes 13 ns, where the clock period is 30 ns and the frequency is 33.33
MHz. Using this block as a macro, RVE designs of various sizes can be developed
depending on the availability of hardware resources.

4.3.2 System design

The basic building block for the linear RVE design shown in Figure [4.8]is used to de-
velop RVE based systems of various sizes for sequence alignment applications. Figure
shows a 2-block linear RVE implementation as an example, where the blocks are
connected in a linear systolic array fashion.

The 2-block linear RVE design shown in Figure which is equivalent to the
4-element linear systolic array design, is implemented in VHDL and the post place
and route simulation results show that the latency of the array is 300 ns, whereas the
slices consumed are 254 out of 13696. The platform used for implementation is Xilinx
Virtex-1I Pro FPGA.

4.3.3 Discussion of results

Table 4.2] presents the implementation results for various linear systolic array and lin-
ear RVE designs. It demonstrates that a 4-element linear systolic array implementation

62 Chapter 4. RVE-based FPGA Acceleration

- o ™ <

o > >

Zi Zi Zl Zi
Hizj.z

q

Ns2_in ——m S
Hirjo —— e Hitgr | Hiaj g Hirtju1 | Histjez —®> Ns2_out
Max_in_ext . . » Max_out_ext
Hiz —® t., | H, P Hivzjer | Hiszjez = Ns1_out
Ns1_in ———m| »
A y
d d

RST CLK RST CLK

Figure 4.9: 2-block linear RVE design

consumes 700 ns and utilizes 127 out of 13696 slices, when implemented on a Xilinx
Virtex-1I Pro FPGA. Thus a maximum of 107 PEs can be implemented on the same de-
vice, thereby consuming most of the available slices on the FPGA. This implementa-
tion is used as a reference for comparison, which is traditionally used for accelerating
the S-W based sequence alignment applications. The 2-block linear RVE implemen-
tation consumes 300 ns and utilizes 254 out of 13696 slices, when implemented on
a Xilix Virtex-II Pro FPGA. Thus a maximum of 53 PEs can be implemented, using
the same device. Thus in comparison with a traditional 4-element linear systolic array
implementation, the 2-block linear RVE implementation improves the performance
by a factor of 700/300 = 2.33, at the cost of utilizing 254/127 = 2 times additional
hardware resources.

Table 4.2: Comparison between linear systolic array and linear RVE implementations

Implementation \ Time (ns) \ Speedup \ Slices \ Hardware cost
_ d-clement 700 1 127 1
linear systolic array
2-block
linear RVE 300 2.33 254 2
. 10-clement 1900 1 297 1
linear systolic array
5-block
linear RVE 900 2.11 601 2.02
_ 200-clement 39900 I 6350 1
linear systolic array
100-block
linear RVE 19900 2.01 12700 2

The table also shows a comparison between 10-element linear systolic array and
5-block linear RVE implementations, where the 5-block linear RVE design performs

4.4. RVE performance evaluation 63

2.11 times better than the 10-element linear systolic array implementation at the cost
of utilizing 2.02 times additional hardware resources. The table further demonstrates
a comparison between 200-element linear systolic array and 100-block linear RVE im-
plementations, where the 100-block linear RVE implementation achieves 39900/19900
= 2.01 times higher performance than the linear systolic array implementation at the
cost of utilizing 12700/6350 = 2 times additional hardware resources. A full scale
linear systolic array implementation fits a maximum of 428 elements, whereas a full
scale linear RVE implementation fits a maximum of 106 RVE blocks, where the de-
vice utilized for implementation is Xilinx Virtex-II Pro FPGA. Thus due to higher
resource utilization by the linear RVE design, the full scale implementations are not
comparable. From Table £.2] it can be concluded that the linear RVE implementation
is preferred in cases where high performance is desired and hardware cost is not a big
concern.

The chart in Figure shows a graphical comparison between various linear
systolic array and linear RVE implementations, where the factors considered for com-
parison are the time consumed and the number of slices utilized. Clearly, the time
consumption decreases by applying RVE, as shown in Figure B.10(a). On the other
hand, the resource utilization increases by applying RVE, as shown in Figure L. I0(b).

W Linear systolic @ Linear RVE W Linear systolic @ Linear RVE

10000 100000
10000 100000

1000

1

Slices utilized
1000

1

100
.

Time consumed in nanoseconds
100
.

10
10
.

- 4-element 10-element 200-element « d-element 10-element 200-element

Array size Array size

(@) (b)

Figure 4.10: Comparison between various linear systolic array and linear RVE imple-
mentations on a logarithmic scale

In the following section, the performance of RVE implementations is evaluated for
various array sizes, taking the hardware utilization (area) cost into consideration.
4.4 RVE performance evaluation

The RVE designs discussed in the previous sections focused mainly on the latency as
a performance metric, which is the time it takes a character of the database sequence
to travel through the design. The latency is given by Equation 4.3 where f,, is the

64 Chapter 4. RVE-based FPGA Acceleration

maximum operating frequency and each RVE block consumes one cycle to compute
the results.

Latency = Number of RVE blocks x 4.5

opr

In this section, we use other performance metrics to optimize the designs. RVE

designs with various blocking factors, as shown in Figure[L.1T]are analyzed using per-

formance metrics like throughput and performance/area besides latency. This results

in a better understanding of the RVE implications. The diagonal lines in Figure
indicate the RVE blocks that can be computed in parallel.

s\ 77 Pl /// / // // // /// 4
/ //// |~ /// / /7 Wl //’— /
/ e -
Ll = P VAN, - /
AVinay 7 RV |- P
1x1 1x2 2x1 1x3
+-T /
// // // // —— NI 4
| -+~ /
T - o A
aay _-17 Rl / /
A _1-r AT , .
3x1 1x4 4x1 2%2
< / / -
g 7 £ ‘ - . /
4
- / / // / /
< / / -
1z 7 / /
g / T - / /
2x3 3x2 2%x4 4x2
) 2
4 // d // / ‘
)
4 / /// / /I Z
7/ / e / / 7
~17 s -+ T 7 ! /
3x3 3%x4 4x3 4x4

Figure 4.11: RVE designs with various blocking factors

Table [4.3] presents the performance evaluation results of linear RVE implementa-

4.4. RVE performance evaluation 65

tions with various blocking factors. The number of PEs is chosen such that a query
sequence that is 36 characters long can be aligned in one run. It is clear from the 3¢
column of the table that for square blocking factors (i.e., 1 X 1,2x 2,3 x 3 and 4 x 4),
increasing blocking factors result in lower frequencies. All non-square blocking fac-
tors (e.g., 2x1,3x1,4x1,3%2,4x2 and 4 X 3) run on lower frequencies as well. For
example, the 1 x 1 and 2 1 blocks run at similar frequencies, but if the blocking factor
is increased from 2 X 1 to 3 X 1, the frequency drops by 37 MHz. This can partly be
explained by the way the formulas expand, i.e. the number of sequential additions and
the logic depth of the comparators. For the 1 X 1,2 x 1 and 3 x 1 blocking factors, the
number of adder stages is respectively 2, 3 and 3, whereas, the number of comparator
stages is respectively 2, 3 and 3, as reported by the synthesis tool. This shows that not
only the theoretical logic depth, but also the actual implementation of the circuit plays
a key role in determining the maximum frequency.

Table 4.3: Performance evaluation for various RVE implementations

Blocking | Number fopr Latency | Throughput | Performance/area
factor of PEs (MHz) (ns) (MCUPS) (MCUPS/slice)
1x1 36 159.0 226.4 5724 6.30
2x1 36 158.0 227.8 11376 6.81
3x1 36 121.0 297.5 13068 4.81
4x1 36 115.0 313.0 16560 4.19
2x2 18 118.0 152.5 8496 4.69
3x2 18 86.0 209.3 9288 2.61
4x2 18 67.0 268.6 9648 1.57
3x3 12 74.0 162.2 7992 1.76
4x%x3 12 66.8 179.6 9619 1.22
4x4 9 59.0 152.5 8496 0.81

The 4™ column of Table B3] shows that for the 2 x 2 square blocking factor, the
latency of the design decreases significantly. But increasing the blocking factor fur-
ther, the latency does not improve anymore, suggesting that going beyond 2 X 2 has
no advantage. For the non-square blocking factors like 2 x 1 and 3 X 1, it is more
complicated, as these blocks can be organized in two different ways giving rise to dif-
ferent latencies. This indicates that latency alone is not the best metric to evaluate the
performance of an RVE design, as it only tells about how fast the end of the design
is reached. To investigate the amount of work done by the design during every time
unit, we compute throughput, which is defined as the number of cell updates per sec-
ond. The throughput for RVE designs with various blocking factors is shown in the
5" column of Table B3] and is calculated as per Equation 6] where each RVE block
consumes one cycle to compute the results.

Throughput = Number of RVE blocks X blocking factor X f;,, 4.6)

66 Chapter 4. RVE-based FPGA Acceleration

Like the latency, the throughput also becomes better from 1 X 1 to 2 x 2, but the
improvement becomes small for larger blocking factors. This is due to the fact that the
frequency decreases rapidly for larger blocking factors, as shown in Table £.3] Only
the n X 1 blocks perform increasingly better. This is due to the fact that the frequency
does not drop that fast here.

The last column of Table [4.3] gives performance/area in terms of MCUPS/slice. It
is a useful performance metric that takes the hardware resource utilization or area cost
into account and is calculated as per Equation 4.7

Throughput

_— 4.7
Number of slices “.7)

Performance per slice =

It becomes clear that when taking the area into account, RVE does not perform
better than the default 1 x 1 design for most cases. Only the RVE design with the 2 x 1
blocking factor gives a better performance per slice than the default case, giving rise
to the conclusion that RVE designs with non-square blocking factors should also be
explored for higher performance.

4.5. Summary 67

4.5

Summary

Besides providing an introduction to the RVE approach, this chapter presented rectan-
gular and linear RVE implementations for biological sequence alignment applications
and evaluated the performance for various RVE implementations. The main topics
presented in the chapter are as follows.

Introduction to the RVE approach and its application in biological sequence
alignment.

Rectangular (2D) RVE implementation, its corresponding building block de-
scription and the subsequent system design. Moreover, its comparison with
equivalent 2D systolic array implementation and a discussion of the results.

Linear (1D) RVE implementation, its corresponding building block description
and subsequent system design. Its comparison with the equivalent linear systolic
array implementation and a discussion of the results.

A discussion about the speedups achieved by various RVE implementations and
their hardware resource utilization costs.

Performance evaluation of RVE designs with various blocking factors.

68

Chapter

GPU Acceleration

This chapter aims at exploiting the parallelization capabilities of the GPUs for
biological sequence alignments. The chapter begins with a discussion of GPU as
a computational platform in Section[5.1l Section[5.2] presents an optimized GPU
implementation for protein sequence alignment. Section[5.3|provides a discussion
of the results achieved by the optimized implementation. Section3.4ldiscusses the
performance limits, whereas Section 5.5 summarizes the chapter.

5.1 GPU as a computational platform

This section provides background information about GPU as a computational platform
by discussing the CUDA framework, its programming and memory models. Further-
more, it explains the important phenomenon of coalescing to reduce latency of global
memory. It also discusses the previous GPU implementations for biological sequence
alignment.

5.1.1 CUDA framework

CUDA is the hardware and software architecture that enables NVIDIA GPUs [73]
to execute programs written in C, C++, Fortran, OpenCL [74], DirectCompute [75]],
and other languages. A CUDA program calls kernels that run on the GPU, as shown
in Figure 5.1l A kernel executes in parallel across a set of threads, where a thread
is the basic unit in the programming model that executes an instance of the kernel,
and has access to registers and per thread local memory. The programmer organizes
these threads in grids of thread blocks, where a thread block is a set of concurrently
executing threads and has a shared memory for communication between the threads.
A grid is an array of thread blocks that execute the same kernel, read inputs from and
write outputs to global memory, and synchronize between interdependent kernel calls.

69

70 Chapter 5. GPU Acceleration

Host (PC) Device (GPU)
Grid 1
Multiprocessor 1 Multiprocessor 2
Kernel I Block Block
1 (0, 0) 0, 1)
Block /| Block)
(1, 0) 7 1,1) \
s \
/
7 // \“ \‘
Grid 2/’ // [
s o
Kernel | 7 ,/ Loy
2 Z / |
y4 / (I
/ (I Y
/ / \
Block (1, 1)
\J
Thread | Thread | Thread warp 1
0 1 31
Thread | Thread Thread 2
0 1| T 31 ware
Thread | Thread Thread warb n
0 1| e 31 o

Figure 5.1: CUDA hierarchy of threads, blocks and grids

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU. A
GPU executes one or more kernel grids. A GPU consists of multiprocessors that ex-
ecute one or more thread blocks, as shown in Figure 5.1l Multiple thread blocks can
be scheduled by the GPU to run on one multiprocessor sequentially, or in parallel by
using thread switching. CUDA cores, i.e. the processing elements within a multipro-
cessor, execute threads in groups of 32 called warps. Performance on GT200-class
GPUs can be optimized a great deal by having threads in a half-warp (16 threads)
execute the same code path and access memory in a close vicinity.

In the CUDA parallel programming model various memory spaces exist [73]]. The
complete set of CUDA memory spaces is given in Figure [3.2] where global memory
is the GPU’s RAM. Accessing it has a high latency, which can be hidden by switching
execution to other threads that are not waiting for memory accesses.

The second type of memory shown in Figure[5.2]is the texture cache. Textures are
cached ‘windows’ into global memory, optimized for spatially local reads.

The third type of memory is the constant cache, which is a read-only portion of

5.1. GPU as a computational platform 71

Grid Multiprocessor
Block (0, 0) Block (0, 1)
Shared memory Shared memory
(per block) (per block)

Y A A A

Registers Registers Registers Registers

(per thread) (per thread) (per thread) (per thread)
y \ 4

Thread (0, 0) || Thread (0, 1)|| || Thread (0, 0)|(Thread (0, 1)

¢ AAA ¢ AAA ¢ AAA ¢ AAA

Local Local Local Local

memory memory memory memory
(per thread) (per thread) (per thread) (per thread)

Constant
cache

Host Texture
(PC) 1 cache

Global
memory

Figure 5.2: CUDA memory hierarchy

global memory. It is cached at each multiprocessor and accessing it is as fast as ac-
cessing a register.

The other types of memories are shared memory and local memory, where shared
memory is a fast memory used for inter-thread communication within a thread block
and local memory is a per thread portion of the global memory used for function calls
and register spills. Additionally, each multiprocessor offers a bank of registers, shared
between its processors.

5.1.2 Coalescing

Latency of global memory can be avoided altogether by coalescing memory accesses
as shown in Figure where each thread of a half-warp of 16 threads accesses a
4-byte value in global memory. The values in Figure[5.3(a) are all stored at unordered
different addresses. In this case, each thread will execute a 32-byte (instead of 4-
byte) memory access sequentially, since 32 bytes is the smallest memory access size
supported by the GPU. Other possible access sizes are 64 and 128 bytes. This wastes
28 bytes of bandwidth per access adding to a total bandwidth wastage of 2816 = 448

72 Chapter 5. GPU Acceleration

bytes for all 16 threads and as accesses take place sequentially, latency will be high.

In Figure 5.3(b), the values accessed are stored at neighboring addresses. In this
case, coalescing takes place. The GPU issues a single 64-byte load, thus no bandwidth
is wasted and only a single access is needed.

16 x 32 bytes = 512 bytes 1 x 64 bytes
Memory address 0 Thread 0 Memory address 0 Thread 0
[Memory address 4]\ Thread 1 Memory address 4 Thread 1
Memory address 8 Thread 2 Memory address 8 Thread 2
[__Memory address 12 }4 Thread 3 Memory address 12 Thread 3
Thread 4 Memory address 16 [Thread 4 |
Memory address 80 [Thread 5 | Memory address 20 Thread 5
Memory address 84 [Thread 6 | Memory address 24 [Thread 6 |
Memory address 88 Thread 7 | [__Memory address 28 | Thread 7
Memory address 92 \1 Thread 8] [Memory address 32| Thread 8
[| | Thread 9] Memory address 36 Thread 9
Memory address 100 [Thread 10] Memory address 40 Thread 10
Memory address 104 Thread 11] Memory address 44 Thread 11
Memory address 108 Thread 12] Memory address 48 Thread 12
Memory address 112 [Thread 13 | Memory address 52 Thread 13
Thread 14 Memory address 56 Thread 14
Thread 15 Memory address 60 Thread 15
(a) non-coalesced (b) coalesced

Figure 5.3: The effect of coalescing on memory reads

5.1.3 Previous implementations

The first known implementations of S-W based sequence alignment on a GPU are
presented in [65]] and [[76]]. These approaches are similar and use the OpenGL graphics
API to search protein databases. First the database and query sequences are copied to
GPU texture memory. The score matrix is then processed in a systolic array fashion
[25], where the data flows in anti-diagonals. The results of each anti-diagonal are
again stored in texture memory, which are then used as inputs for the next pass. The
implementation in [65] searched 99.8% of Swiss-Prot (almost 180,000 sequences) and
managed to obtain a maximum speed of 650 MCUPS compared to around 75 for the
compared CPU version. The implementation discussed in [76] offers the ability to run
in two modes, i.e. one with and one without traceback. The version with no traceback
managed to perform at 241 MCUPS, compared to 178 with traceback and 120 for the
compared CPU implementation. Both implementations were benchmarked using a
Geforce GTX 7800 graphics card.

The first known CUDA implementation, ‘SW-CUDA’, is discussed in [77]. In
this approach, each of the GPU’s processors performs a complete alignment instead
of them being used to stream through a single alignment. The advantage of this is
that no communication between processing elements is required, thereby reducing
memory reads and writes. This implementation managed to perform at 1.9 GCUPS

5.2. Optimized GPU implementation 73

on a single Geforce GTX 8800 graphics card when searching Swiss-Prot, compared
to around 0.12 GCUPS for the compared CPU implementation. Furthermore, it is
shown to scale almost linearly with the amount of GPUs used by simply splitting up
the database.

Various improvements have been suggested to the approach presented in [77], as
shown in [78/79]]. In the ‘CUDASW++’ solution presented in [[79]], for sequences of
more than 3,072 amino acids an ‘inter-task parallelization’ method similar to the sys-
tolic array and OpenGL approaches is used as this, while slower, requires less memory.
This ‘CUDASW++’ solution manages a maximum speed of about 9.5 GCUPS search-
ing Swiss-Prot on a Geforce GTX 280 graphics card. An improved version, ‘CUD-
ASW++ 2.0’ has been published recently [80]. Being the fastest Smith-Waterman
GPU implementation to date, ‘CUDASW++ 2.0’ managed 17 GCUPS on a single
GTX 280 GPU, outperforming CPU-based BLAST in its benchmarks.

5.2 Optimized GPU implementation

This section presents our high performance GPU implementation for protein sequence
alignment. The implementation is called Database Optimized Protein Alignment (DO-
PA). Section[5.2.T]outlines the design and structure of the implementation, while Sec-
tion [5.2.2] details the database conversion process. Section [3.2.3] discusses the load-
ing/storing of temporary data, whereas Section[3.2.4ldemonstrates the optimization of
substitution matrix accesses.

5.2.1 General design

Being the most mature GPU programming toolkit to date, NVIDIA CUDA is used for
the GPU programming (device code) in conjunction with C++ for the PC program-
ming (host code). Like with other existing GPU implementations, protein sequences
from the Swiss-Prot database [81] are considered for alignment. The reason is that
protein alignment is more complex than the DNA version, which makes supporting
DNA alignments later on relatively simple. Figure [5.4] shows a block diagram de-
scription of the implementation. The host code is mostly concerned with loading data
structures, copying them to the GPU, and copying back and presenting the results. The
query sequence, converted database and other data are copied to the GPU. Then the
device code is launched, which aligns the query sequence with the database sequences
using the S-W algorithm.

Like other GPU implementations, our implementation returns maximum S-W scor-
es instead of the actual alignments. Skipping the algorithm’s traceback step signifi-
cantly simplifies and speeds up the implementation. Furthermore, as no data structures
like pointer lists need to be kept, memory consumption is decreased as well. However,
to be able to generate full alignments, a number of top-scoring sequences are exported
to a new database file. The sequences in this file can then be aligned on the host PC
using the Smith-Waterman search (ssearch) tool. This approach leads to some redun-

74 Chapter 5. GPU Acceleration

dancy as some sequences are aligned twice, however, the number of such sequences
is relatively small. By default 20 top scoring sequences are returned, whereas the
Swiss-Prot database contains more than 500,000.

Host PC GPU
Query
Database sequence

conversion

Align using tolpiigggng @_> GPU-based
ssearch tool sequences Swiss-Prot S-W

Full alignment maximum
results S-W scores
Programming in C++ Programming in CUDA

Figure 5.4: Description of the GPU implementation

Each processing element in our implementation is used to independently generate
a complete alignment between a query sequence and a database sequence. This elim-
inates the need for inter-processor communication and results in efficient resource
utilization. The GPU used for implementation (i.e. NVIDIA GTX 275) contains
240 processors, while the latest release of Swiss-Prot contains more than 500,000 se-
quences. Hence, it is possible to keep all processors well occupied [82].

5.2.2 Database conversion

The Swiss-Prot database is organized in FASTA format, where sequences are preceded
by sequence descriptions that give names and other biological information about them.
Instead of directly loading databases in FASTA format, the GPU implementation con-
verts them to a custom GPU format to better match the device capabilities. A database
only needs to be converted once, after which it is locally stored in the new format. The
conversion process as shown in Figure [5.3] consists of the following steps.

Sorting

In practice the threads in a half-warp will have to wait for each other to finish their
workload instead of continuing on independently. To reduce this waiting time, the

5.2. Optimized GPU implementation

75

Description 0

O

Description 1
Description 2

Description 3

————1

Description 4

—

Description 5

H

Description 6

Description 7

Description 8

1

Description 9

1

Description 10

Description 11

1

Description 12

1

Description 13

1

Description 14

O

Description 15

(a) Original database

Description 0
Description 1
Description 2
Description 3

Description 4

——— 1
————1
———
————1
—
—
—
—1
—
—

Description 15]

So0goa

(b) Sorted and descriptions separated

~«——— Sequence groups ——»
12345678 9101112131415

0

[
[0}
e}
c
@
>
Q
@
%3
@
=

||
||
||
|)
||
||
||
° M
[
||
||

| I o |
| I o |
| I o |
| I o |
| I o |
N
| I o |
| - - - -
| I o |
| I o |

Sequence set

[0 Sequence terminator

| Sequence group terminator

(c) Sequence sets of concatenated sequence groups

Figure 5.5: The database conversion process

76 Chapter 5. GPU Acceleration

database sequences are sorted by length to minimize length differences between neigh-
boring threads, as shown in Figure 3.3(b). Sequence descriptions are stored in a sep-
arate file that is not uploaded to the GPU, saving memory and decreasing load times.
Furthermore, sequence characters are replaced with numeric indexes to facilitate eas-
ier substitution matrix lookups.

Concatenation

After sorting, groups of 16 sequences are taken and processed in sequence sets that
will have a half-warp of threads working on them, as shown in Figure 5.5(c). Even
though sorting by length has somewhat equalized workload within each sequence set,
various sequence sets still have different sizes. To combat this, sequences within a
sequence set are concatenated with leftover sequences to form sequence groups. The
total length of each sequence group within a sequence set nearly equals or, ideally,
matches the length of the longest sequence in that set. This results in an equal work-
load for each thread in a half-warp processing a sequence set.

Sequence terminators are inserted between the concatenated sequences; these tell
the GPU kernel to initiate a new alignment. Sequence group terminators are inserted
at the end of each sequence group signifying the end of a group of concatenated se-
quences, at which point a thread will wait for the rest of the threads in the half-warp
to cease execution.

Interlacing

Once all database sequences have been processed into 16-wide sets of sequence groups,
they are written to file. The sequence sets are written in an interlaced fashion, as shown
in Figure Each interlaced subset consists of eight characters from each sequence

group.

Address (bytes)

0 8 = ememmaa= 120
9 g Sequence group 0 Sequencegroup1 -------- Sequence group 15 o @
g“g<.~_1234567 oj1]2]3[4]|5]|6]|7] - ==-==-=-=-~= 0f112]3]4]5]6]|7 g_.g
..g 54_%'8 9 110]11|12[13[14]15] 819 10[11[12[13]14[15] 819 101112131415—>a o
(a3t G a

I
I I
R T Sequence set ------------o----ooos >

Figure 5.6: Sequence storing as interlaced subsets

5.2. Optimized GPU implementation 77

Eight characters of the set’s first sequence group are written, then eight characters
of the set’s second group and so on. As there are 16 sequence groups in each sequence
set, each thread in a half-warp is now able to load 8 bytes of sequence data from
neighboring addresses. As a result, 128-byte coalesced loading takes place.

Equal length sets

During code development, alignments were conducted with a synthetic (randomly
generated) database, each sequence of which had the same length. The performance
of this synthetic database is twice that of the Swiss-Prot database, which has sequences
ranging in length from 2 to 35213 characters. The drop in performance for Swiss-Prot
is the result of different workloads between different half-warps.

Though concatenation resulted in an equal workload distribution for threads within
every sequence set, it still varies among different sequence sets. To resolve this, the
length of each sequence group within every sequence set is made equal or nearly equal
to the length of the longest sequence in the database, as shown in Figure [3.3(c). This
results in an equal workload distribution for all GPU threads in general. The outcome
of this is a 1.7 times increase in performance.

Evidently, equal workload across different threads improves performance; possi-
bly a result of the GPU’s thread scheduling not being optimal in the previous case.
For example, the GPU thread scheduler might only schedule a new thread block once
all the threads in a previous thread block have completed their execution.

5.2.3 Temporary data reads and writes

Memory bandwidth represented a serious bottleneck while developing the GPU im-
plementation. A number of steps have been taken to optimize for high performance
by reducing the number of memory accesses, the frequent temporary data accesses in
particular. As no traceback is performed on the GPU, S-W matrix values do not need
to be saved for the entire execution time and can be overwritten. As such, only a single
column of S-W scores is kept. This score column stores values to the left of the cur-
rently processing column, i.e. H;_j <<y in Equation 23] The size of this temporary
data column is set to the size of the query sequence, not the database sequence, so that
the column can have one fixed size for all database sequences. This usually requires
less memory, as it is unlikely that the query sequence will be as long as the longest
database sequence. The temporary data column is set to zero whenever a new database
sequence is started. In addition to this temporary score column, variables are used to
keep the values of the upper and upper-left cells required by the algorithm, i.e. H; ;_
and H;_; j-; in Equation[2.3] To support affine gap penalties, another temporary data
column is added for D values. Additionally, an upper E value is kept (see Equation
2.3).

Each S-W iteration involves reading and writing two temporary values (score and
D), for four accesses in total. When both are non-coalesced, 32 byte reads/writes are

78 Chapter 5. GPU Acceleration

issued for each access. This means that per half-warp
16 threads x 32 bytes x 2 values X 2 read/write = 2048 bytes

of bandwidth is used, resulting in a major memory bottleneck. The optimization steps
mentioned below decrease this to one 128-byte coalesced read and write for every sec-
ond iteration. This is a 16 times bandwidth improvement and requires only 1 instead
of 64 accesses. 128 bytes is the largest allowed coalesced access size, and is faster
than multiple smaller coalesced accesses [82]]. The optimizations are as follows:

o Smaller, 16-bit data type for the temporary values, cutting the theoretically re-
quired bandwidth in half and allowing for better coalescing.

e Each thread stores one data value in turn, resulting in an interlaced storage
scheme. Instead of direct array accesses, a pointer into the temporary storage is
started at the thread id, and increased by the total number of threads to move to
the next element of the H matrix. Each thread in a half-warp then reads a 2-byte
coalesced value, meaning that instead of two 32-byte accesses per thread, two
such accesses take place per half-warp. This sixteen times bandwidth improve-
ment results in an almost ten times net speedup.

e To again halve the number of memory accesses, the temporary score and D
values are interlaced. This is done by defining a data structure consisting of
these values and using it to access the score and D values for an iteration in one
go. At this point, a thread accesses two 2-byte values in one read, for a total
of 16 X 2 x 2 bytes bandwidth per half warp. The result is a 64-byte coalesced
access.

o Finally, two temporary values are interlaced to move to 128-byte accesses. This
has an additional benefit of temporary reads/writes only being required for every
second query sequence symbol processed.

5.2.4 Substitution matrix accesses

Aligning proteins requires the use of a substitution matrix, which is accessed every
time two symbols are aligned, making its access time critical to the implementation’s
performance. Substitution matrix (e.g. BLOSUM 62) accesses are random and are
completely dependent on the database sequence, complicating the choice of memory
used. Global memory is not a good choice for such a frequent usage due to its high
access time. Also the random nature of substitution matrix accesses makes coalescing
very difficult. As an alternative, the substitution matrix is stored in texture memory.
Texture memory is a cached window into global memory that offers lower latency and
does not require coalescing for best performance. It is thus well suited for random
access. Texture memory has the ability to fetch four values at a time. This mechanism
can be used to fetch four substitution matrix values from a query profile.

5.3. Discussion of results 79

| Query position |

Current db character | J, Fetch 4 characters

Query => |

o A [t JrR_[x _Ja _[A [rR_]k
=) A

0]

5 R

= N

el

= D

3

o v

o]

Figure 5.7: Query profile

A query profile is shown in Figure[3.7] It is a type of substitution matrix where,
instead of the protein alphabet, the query sequence is used along the top row. This
means that for a given database character, the substitution matrix is not random any-
more: multiple substitution scores can be loaded simultaneously when aligning the
query with a database character. Furthermore, query sequence lookups are not re-
quired anymore; only the current position within the query is needed to index into
the profile. A query profile is generated once for every query sequence. Each query
profile column stores values for 23 characters. The number of columns and hence the
memory requirement for a query profile depends on the length of the query sequence.
The GTX 275 GPU used for our implementation has 8KB of texture cache per multi-
processor. This means that a query sequence having more than |8 x 1024/23| = 356
characters will result in increased cache misses, as described in [78]. Tests were per-
formed to quantify the texture cache miss rate, which was shown to be very small.
For example, aligning an 8000 character query sequence resulted in 0.009% miss rate.
Using this query profile method resulted in a 17% performance improvement with
Swiss-Prot [82].

5.3 Discussion of results

In this section, the performance of DOPA, the optimized GPU implementation for pro-
tein sequence alignment is evaluated and compared with other available approaches.

5.3.1 Experimental setup

The experimental setup used to test the implementation and measure its performance
is as follows:

e Intel Core 2 Quad Q6600 (2.4 GHz) with 4GB of RAM

80 Chapter 5. GPU Acceleration

e NVIDIA Geforce GTX 275 graphics card with 896 MB of memory and clock
speeds of 633, 1134 and 1404 MHz for its core, memory and shaders respec-
tively

e 64 bit Microsoft Windows 7 Professional
e Video drivers version 257.21

o CUDA toolkit version 3.1

o Swiss-Prot release October 2010

o Substitution matrix BLOSUM62

e Gap penalty: -10 and gap extend penalty: -2 (these do not influence the execu-
tion time)

The run time is measured using the C clock () instruction, the accuracy of which
is verified using the CUDA profiling application. Table[3.1] displays the performance
results, where the execution time in seconds and the performance in GCUPS are given
for query sequences of varying lengths taken from Swiss-Prot and aligned against the
same database.

Table 5.1: Performance results with Swiss-Prot

Query Length Execution time | Performance
sequence (seconds) (GCUPS)
P02232 144 1.24 21.35
P05013 189 1.65 21.06
P14942 222 1.93 21.15
P07327 375 3.24 21.28
P01008 464 3.99 21.38
P03435 567 4.89 21.32
P27895 1000 8.60 21.38
P07756 1500 12.91 21.36
P04775 2005 17.27 21.35
P19096 2504 21.54 21.37
P28167 3005 25.88 21.35
POC6B8 3564 30.67 21.37
P20930 4061 34.97 21.35
QIUKNI1 5478 47.15 21.36

Figure[3.8a) shows that the execution time increases linearly with sequence length,
resulting in an almost constant performance of around 21.4 GCUPS, shown in Figure

B8lb).

5.3. Discussion of results 81

N
N

=
oo

~
>

~
=

g
)

Y

206

Performance in GCUPS
8 N
= N

Execution time in seconds

204r

2021

. 2
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Query sequence length Query sequence length

Figure 5.8: (a) Execution time (b) Performance for query sequences of varying lengths

5.3.2 Performance comparison

The optimized version of our implementation is compared with: a multi-threaded high
performance ssearch (SSE2); a less optimized version of our implementation with no
equal length sequence sets; and with CUDASW++ 2.0 [80], the fastest GPU-based
Smith-Waterman implementation to date. The comparison is shown in Figure[5.9]and
described as follows.

Comparison with ssearch

Ssearch (SSE2) is an accelerated and multi-threaded version of ssearch, where ssearch
is a CPU-based Smith-Waterman alignment tool that can be found in the FASTA suite
of applications [83]. The SSE2 optimizations, described in [[84]] utilize modern CPU’s
vector extensions for a performance increase. The ssearch is run on the same system,
using the same settings, as our GPU implementation mentioned in Section[5.3.1] The
results demonstrate that our implementation performs 2.14 times better in terms of
GCUPS than this accelerated and multi-threaded version of ssearch.

Comparison with a less optimized version

In the less optimized version, only some of the database optimization steps mentioned
in Section[5.2.21 have been performed. In this version, sequences are only sorted, con-
catenated and interlaced. However, no equal length sets were used, making the length
of each sequence set depend on the longest sequence within that set. When run on
the same experimental setup described in Section 3.3.1] this less optimized version
results in a performance of around 12.5 GCUPS. The comparison shows that our fully
optimized GPU implementation performs around 1.7 times better than the less opti-

82 Chapter 5. GPU Acceleration

2 : :
20 4
B L S S o
18 4
L 161 A
)
0
O 14} A
=
@ -F - -H - - - = T
% 12m E 'D' E 'D' E -E' E EA
€
g 10r *,*-*-*_*_*_-*_* ______ *|
* 8r * i
I DOPA (optimized)
/] = CUDASW++ 2.0
6l % = B = DOPA (less optimized) | |
4; = 3% = ssearch
1000 2000 3000 4000 5000

Query sequence length

Figure 5.9: Performance comparison

mized version. This demonstrates the performance impact of the crucial optimization
of equal length sequence sets, which results in an improved scheduling.

Comparison with CUDASW++ 2.0

CUDASW++ 2.0 is the fastest GPU implementation to date for S-W based protein se-
quence alignment. When run on the same system with the same settings, as mentioned
in Section[5.3.11 CUDASW++ 2.0 achieves a performance of around 19 GCUPS. Thus
our fully optimized implementation performs 1.13 times better than CUDASW++ 2.0
in terms of GCUPS. Both approaches are sensitive to the structure of the database
used. Like our implementation, CUDASW++ 2.0 also uses 16-bit score values, as
discussed in Section[5.2.3] Table[5.2lsummarizes the optimization steps undertaken by
our fully optimized implementation called DOPA in comparison with CUDASW++
2.0.
Additionally, DOPA also brings in the following improvements:

e In comparison with CUDASW++ 2.0, DOPA is simpler, as it uses just one
search kernel instead of two, requiring no inter-processor communication.

e The optimized database organization scheme used in DOPA allows an equal
workload for each thread block, while CUDASW++ 2.0 uses a hand-picked
point at which it switches from one kernel to the other for its work distribution.

e DOPA is complete and usable, as it exports the top scoring sequences for full

5.4. Performance limits 83

Table 5.2: A comparison with CUDASW++ 2.0

| #] Optimization | DOPA | CUDASW++ 2.0
1 Database sorting + +
’ Concatenation into N 3
sequence groups
3 Interlacing + +
4 | Equal length sequence sets + -
5 Query profile + +

alignment with ssearch. CUDASW++ 2.0 does not provide this facility. Our
implementation also provides a web interface that allows it to be used conve-
niently and remotely.

In comparison with CUDASW++ 2.0, our less optimized implementation per-
forms 1.52 times slower in terms of GCUPS, as shown in Figure This is because
CUDASW++ 2.0 switches to its secondary systolic array based alignment stage for
long sequences. Long sequences in a database inherently have the largest length dif-
ferences, specifically true for Swiss-Prot. Thus, aligning them using systolic array
based approach reduces the workload differences.

5.4 Performance limits

This section explores the maximum performance limits, scalability and future prospects
of our GPU-based design for protein sequence alignment.

5.4.1 Limits/bottlenecks

The optimizations mentioned in Section [5.2] eliminate various performance bottle-
necks. Below, we show practical performance limits/bottlenecks to give an impression
of the maximum achievable performance.

e Database layout: With a synthetic test database containing same length se-
quences, performance increases to 24 GCUPS, whereas the practical perfor-
mance with Swiss-Prot stays at 21 GCUPS. This is the result of overhead fac-
tors such as processing the sequence group terminators, and the fact that the
synthetic database can be created in such a way that the number of database
blocks matches the number of thread half-warps.

o Memory bandwidth: The maximum theoretical memory bandwidth for the
GTX 275 GPU is 127G B/ sec [85]. During benchmarking with the test database
about 50G B/ sec of bandwidth is used in practice. This can be interpreted in two
ways. The maximum possible bandwidth is not utilized; however, on the other

84 Chapter 5. GPU Acceleration

hand, due to proper coalescing no more data is transferred than strictly required.
In any case, memory bandwidth is not a bottleneck anymore.

Not just pure bandwidth determines performance due to memory factors, but
latency is an issue too. Many small sequential transfers will be slower than a
single larger one. To further investigate the practical effect of memory accesses
on performance, the saving and loading of temporary values (the most frequent
memory accesses) are commented out. This resulted in a performance of 25.5
GCUPS with the test database, only a slight increase, verifying that memory
accesses are not a limiting factor anymore.

o Arithmetic throughput: With memory not being a limiting factor, arithmetic
performance is a likely candidate. To test this, the actual S-W formula is com-
mented out from the kernel code. This resulted in a performance of 50 GCUPS
with the synthetic test database, thereby showing that arithmetic throughput im-
poses the actual limit on the practical performance. Also, for the original code,
the CUDA profiler reports an instruction throughput of 1, which means that
instructions are issued at the maximum possible speed.

5.4.2 Scalability/future prospects

The concatenation of sequences into database blocks means that many sequences are
combined to match the length of the longest sequence in the database. In other words,
the longer the longest database sequence is, the fewer database blocks there will be.
With the current releases of Swiss-Prot running on a GTX 275 GPU, this results in a
number of launched threads having no database blocks to process.

The number of sequence blocks will increase with the Swiss-Prot database’s growth,
as in turn will the number of threads that have work to do. This will increase future per-
formance effectively for free. However, two caveats apply. First of all, if the number of
sequence groups grows to more than the number of GPU half-warps launched, some
processing elements will have to perform multiple alignments, resulting in unequal
work between half-warps and, as such, a performance penalty. However, this issue can
be curtailed by increasing the size of each database sequence block by concatenating
more sequences to each group, lowering the amount of sequence blocks needed. The
second issue is the opposite, and arises if the longest sequence in the database were
to grow. All blocks would grow larger, resulting in less blocks to spread work across.
However, this happening is unlikely, as long sequences are rare; the current longest
sequence is significantly longer than the second-longest one, it is not in danger of
being overtaken. In support of all this, a performance increase of 3% is achieved by
updating from the August to the October release of Swiss-Prot, which contains 1668
more sequences and results in one additional sequence block being created. Further
evaluating the workings of the GPU’s thread scheduling might allow these factors to
be optimized further, decreasing the dependence on database structure.

The GPU-based S-W implementation is optimized for GT200-series GPUs. Al-
though it will run just fine on newer GPUs such as the Geforce 400 series, performance

5.4. Performance limits 85

may not be optimal. These newer GPUs offer many more processors, which might re-
quire the workload distribution to be re-evaluated. They also run two half-warps at a
time, and offer a cache hierarchy. This means that memory layouts might need to be
changed, or that for example texture memory is not the best option to store a query
profile anymore. Furthermore, some instructions perform differently. For example a
24-bit integer multiplication is slower, not faster, than 32-bit one on these GPUs due
to architectural reasons.

86 Chapter 5. GPU Acceleration

5.5 Summary

Besides providing an introduction to GPUs, this chapter exploited the parallelization
capabilities of GPUs for biological sequence alignments. It presented an optimized
GPU implementation for S-W based protein sequence alignment and compared its
performance with the best available similar design. The main topics presented in the
chapter are as follows.

e General purpose computing on GPUs, a discussion about CUDA, its program-
ming and memory models.

e A discussion about coalescing which is used to reduce latency of the global
memory.

o A review of GPU-based sequence alignment.
e An optimized GPU implementation for S-W based protein sequence alignment.

e Optimization steps taken for improving performance of the implementation,
such as optimizing the database conversion, temporary data reads and writes,
and substitution matrix accesses.

e A discussion of results, performance evaluation and comparison with other
available approaches.

e A discussion of the maximum achievable performance, practical performance
limits and bottlenecks, scalability and future prospects.

Chapter

Performance Analysis

Performance of hardware-based sequence alignment depends on various param-
eters, such as computational resources and bandwidth. This chapter carries out a
detailed performance analysis and proposes optimizations resulting in enhanced
performance and efficient resource utilization. The chapter is organized as fol-
lows:

Section[6.T|provides theoretical performance boundaries. Section[6.2] presents
performance limitations based on computational resources and bandwidth. Sec-
tion presents performance and bandwidth optimization. Section intro-
duces a method based on hardware partitioning to improve performance, whereas
Section [6.5] generalizes the method. Section[6.6]summarizes the chapter.

6.1 Theoretical performance boundaries

Performance of the hardware-based sequence alignment depends on the available
computational resources, i.e. the number of PEs. Hardware platforms like FPGAs
offer abundant hardware resources, sufficient for fitting large number of PEs. There-
fore, for some applications including sequence alignment, the maximum performance
is limited by the available memory bandwidth. The more the memory bandwidth, the
more the overall performance gain. Figure shows a system model for the S-W
based sequence alignment of two sequences, i.e. the query sequence (N,) and the
database sequence (Ny). The upper long horizontal bar in the figure represents N
number of PEs, i.e. (Npgs). The lower part of the figure represents the memory re-
quirement (in terms of data width and depth), where the data width is shown for 1 PE.
The width for N, and N, are both 5 bits, as with 5 bits we can cover alphabets for both
DNA and protein sequences [3186]. The depth for both N, and N; is N, based on the
assumption that both the query and database sequences are of the same length, which
is equal to the number of PEs N. The width for each element of the substitution ma-

87

88 Chapter 6. Performance Analysis

trix is 5 bits, assuming that the substitution matrix under consideration is Blosum62.
In Blosum62, there are both positive and negative values, with the maximum positive
substitution value as 11. So 4 bits are enough for storing the magnitude and 1 bit
for sign. The depth for the substitution matrix (Blosum62) is 20. The width for the
scoring matrix is 16 bits [70]. The depth for the scoring matrix is 2N — 1, as there are
2N — 1 computational steps and the output of each one has to be written in the scoring
matrix.

D SR NPEs - - cveeeaac i }
PE(1)|PEQ2) |[PE(3)| -~ - """ e PE(N)
ét Et CEEEEEEEEE R R Datafvidih -~ - - 1--- Et >
=5 bits— =5 bits— <5 bits —> 16 bits
A A A A
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 . . 1
ZI . ZI . .\') Sul:;;trlil)t:on é, Scoring matrix
q s :
! ! c: (Lookup table) »'I—] i)
1 1 1 1
1 1 1 1
1 1 1 1
\l v v A

Figure 6.1: System model for the S-W based sequence alignment

The total execution time 7T, for the hardware-based S-W design is given by the
following equation:

Texec = 1L compute + Taccesx (61)
where Tpmpue 18 the total computation time and Ty, is the total time to load/store
data in memory.

For a square scoring matrix (i.e. when N, and N; are of the same length), the
number of steps to compute different matrix cells is as shown in Figure [6.2a). Since
the elements in each anti-diagonal are computed in parallel, the computation time is
given by,

Tcompute = (2N -1)xTpg (6.2)
where N is the number of PEs, such that, the total number of steps needed for the
entire computation is (2N — 1). Tpg is the computation time for 1 step, such that,
Tpg = Cpg X Tcy(,'le

where Cp is the number of cycles consumed by 1 PE and T, is the time for 1 cycle.
Tpg is equal to the computation time for 1 PE, as the PEs utilized during each step are
computed in parallel. The total time to transfer data to the main memory is given by,
Dmuin

Bmain

Taccess -

6.1. Theoretical performance boundaries 89

where D, is the total amount of data that needs to be stored in the main memory
and By, 1s the bandwidth of the main memory in bits/sec, such that,

D yain = 16Ny X N,

where the precision of each output is 16 bits wide. For a square matrix, the total data
becomes,

Dmain = 16N 2
So,
16N?
Taccesx = 6.3
Bmuin ()
Substituting Equation[6.2] and [6.3]in Equation
2N — 1) X Tpg X Bygin + 16N?
T = = DX Tre X Bna 6.4)

Bmain

l
fagerars
jajalizgag

[[
’ ’ ’ ’ 2
(a) Number of steps D D D .7

[l utitized PEs

O AR RN

0
0
m
"

b) PEs utilization during each step

[] unutilized PEs
Figure 6.2: Number of steps and PEs utilization during each step for N = N, = N;

Now, the overall performance is given by the ratio of the total number of matrix
fill operations to the total execution time, i.e.

Total operations
Overall Performance = Pyerqn = _ot& operations

Texec
P Al
overall = oN 1) T pr X By + 16N2
Biain
N 2 X Bmain
Poveranl = (6.5)

(2N — 1) X Tpg X Byain + 16N2

90 Chapter 6. Performance Analysis

If the number of PEs is less than the size of the query sequence, then we need to
partition the query sequence, so that the computation takes place in k passes, where
k > 1 is an integer. In this case the total time becomes,

Ny
Tiotal = k X Toxec, Where k = v

and the total operations become k x N?.
From Equation [6.3] the parameters that can limit the performance of hardware-
based sequence alignment are:

e N : The amount of available hardware computational resources, i.e. the number
of PEs.

® Byuin : The memory bandwidth.

e Tpg : The computation time for a step.

6.2 Performance limitations

This section presents performance analysis based on limitations in computational re-
sources and bandwidth.

6.2.1 Performance limited by the computational resources

Assume that we have infinite bandwidth and the performance is only limited by the
computational resources, then,

Pcompute = f(TPEs N)

where Pcoppure 18 the performance limited by the computational resources, T'pg is
the computation time for 1 step and N is the number of PEs. In this case, Tyecess = 0,
S0,

Texec = compute = Nsteps X T.s‘fep (6.6)
where, N, is the number of anti-diagonals and Ty, is the time taken by each
anti-diagonal. Now performance, limited by the computational resources, is given by,

Ny % f, e .
P compute = qc—f(p x Utilization ratio 6.7)
PE

where Cpg is the number of cycles consumed by 1 PE and Utilization ratio is the

ratio of utilized to available computational resources. Performance may also be given
by,

Total operations

TE.XEC (6.8)

P compute =

6.2. Performance limitations 91

For the sake of clarity, the analysis of T, and utilization ratios is divided into
four sub cases, as follows:

N=N,=N,

Figure shows the number of steps and the PEs utilized during each step for this
case. In Figure[6.2(a), each anti-diagonal represents a computational step, such that
there is a total number of 2N — 1 steps. Since all the PEs in each step (each anti-
diagonal) are processed in parallel, therefore, T, = Tpg. Hence Equation be-
comes,

Texec|N:Nq:N,Y = (ZN - 1) X Tpg (69)

For the given example in Figure[6.2l N = N, = Ny =4 = 2N — 1 = 7. In Figure
[6.21(b), each row represents the number of PEs available in each step, whereas the solid
black cells represent the number of PEs utilized. So,

PEs utilized N, t?
Utilizat tio = - 6.10
ilization ratio PEs available N X Neps (:

where, Nyeps = 2N — 1

N < (N, = Ny)

Figure shows the number of steps and the PEs utilized during each step for the
case where N < (N, = Ny). For example, it is shown that N = 3 and N, = Ny, = 4. In
Figure[6.3la), each anti-diagonal represents a computational step, except anti-diagonal
4, which is partitioned into 2 computational parts. The reason for this is that 4 cells
can’t be computed simultaneously with the three available PEs. The solid thick and
tilted small line represents the partition of the steps along this anti-diagonal, such that
the top gray cell is computed during the 2nd part. The total number of steps in this
case is,

2N, -1

Z {mln(z 2N, —1)} i{mm(z —l)w g

i=1 i=1

The execution time for this case is,

Texec|N<(Nq:NS) = Nvteps X Tszep

2 T min(i, 2N, - i) (6.11)
=| > || % Tee
i=1 N

In Figure [6.3[b), each row represents the number of PEs available in each step,
whereas the solid black cells represent the number of PEs utilized.

92 Chapter 6. Performance Analysis

Nl

W [
Q
.......... 7]
, / : % =
“1¢ A N N
gD ¢
’ x g
b "EEE
S 71-[» =
:
’ ’ ¢ ’ gEII__'I |
. N
[1:L1 =
Rl : 4 N N
P SR G LA 4
’ 53]
’ ’ -y
:0m .
’ ’ ’
(a) Number of steps, when N < Nq D D .

Figure 6.3: Number of steps and PEs utilization during each step for N < (N, = Ny)

Resource utilization for this case is also given by Equation [6.10] where,

2 Tmin(i, 2N, - i)
Nsrepsz Z T

N =N, <N,

Figure [6.4((a) depicts a case, where the number of PEs is the same as the length of the
query sequence i.e. N = N, = 4 and the length of the database sequence is larger than
the number of PEs i.e. Ny = 16. Equation [6.6] for this case becomes,

TexecIN:Nq<NA =Ny +N-1)XTpg (6.12)

The utilization ratio is given by Equation where the utilization is dependent
on the &= term. The lower the &= term, the more efficient the hardware resource
utilization.

Utilizati tio| Ny x N
111zation ratio|y= =
N=Ng<sNs = N+ N=) x N
| (6.13)
T+

Ny

6.2. Performance limitations

93

>
gl

Z
2

N=Ng=4
Ns =16

ale
¢

Z
-~

|4_

I
1

= WEIEREE R AR EERET

O
-

~

D

-0~ 01-1-

5 —

e
> <

(k-1)Ns

»le
N

|<-'2

=
12

pEEEEeE] (eEEEE

non
N

=
5

|:| Ngq partition 1
- Nq partition 2
|:| Nq partition 3
|:| Nq partition 4

Figure 6.4: Number of steps and PEs utilization (a) N = N, < Ny (b) N < Ny < N,

N <Ng <N,

Figure [6.4[b) depicts the case, when N < N, < N,. In this case, we partition N,
into k parts, where the size of each part is N, such that N(; = N. In other words,
we scale down N, to the size of N and perform multiple (k) passes instead, where

k = [11:’7"] This approach is referred to as Query Sequence Partitioning (QSP). For the
given example, N, =8, Ny=4, N, =N =2 and k = ’—g] =4

The execution time for this case becomes,

Texec|k>l, N<N;<N, = (NY + (k - 1) XNg+ N - 1) X Tpg

=(kXNg+N-1)XTpg

(6.14)

The utilization ratio for this case is given by Equation[6.13] where the utilization is
dependent on the 2=L term. The lower the 2=I term, the more efficient the hardware

94 Chapter 6. Performance Analysis

resource utilization.

Utilizati tio| kX NgxN
111zation ratio =
L NN = kX Ng+ N= 1) x N
| (6.15)
= N-1
1+ kXN,

Table presents the corresponding calculated values of T, for various combina-
tions of k and N (as per Equation [6.14), where, Tpg = 10 ns and N, = N, = 500.
The table shows that if we have the same number of processing elements as the size
of the query sequence, i.e. N = N, = 500, then the computation takes place in one
pass, i.e. k = 1, which completes in 9.99 usec. But if the number of PEs available are
half the size of the query sequence, i.e. N = %Nq, then the computation completes in
two passes, i.e. k = 2, that takes 12.49 usec. Note that by halving the number of PEs,
the execution time is increasing only by 25%, however, using half of the resources
requires half of the bandwidth for data transfer.

Table 6.1: Execution time (7,,..) in usec for various combinations of k and N
N7 k ‘ Texec H N? k ‘ Texec H N, k ‘ Texec ‘

sz =530 2500 ZZ = 518 250.00 || k=:1;)0 25.99
Moot 1250 [P22 nasg ||V 00
kN: - ;5 625 ZZ - 223 10024 || k:=2250 12.49
kN: =1050 500 IZ - 15(()) s0.49 [kzj)o 9.99

Figure shows the T,,.. versus number of PEs (N) curve, limited by the com-
putational resources, where, T, decreases with the increasing number of PEs (V).

6.2.2 Performance limited by the bandwidth

Assume that we have infinite computational resources, i.e. zero computation time,
then? Texec = T(IL'C&YS? as’ Tcumpute = 0
From Equation [6.3]

16N? (bits) B 2N? (Bytes)
Bmuin (Mbps) B Bmain (MBPS)

(6.16)

access =

where, Mbps is the bandwidth in Mega bits per second and MBps is the bandwidth
in Mega Bytes per second. Now, performance limited by the bandwidth is,

6.2. Performance limitations 95
700
x

600 B
2 500 1
5
3
8
S 400 4
€
£
Q
£
= 300 B
§
E A
&
w 200+ B

100 B

o L
0 50 100 150 200 250 300 350 400 450 500
Number of PEs (N)
Figure 6.5: T,y Vs N curve, limited by the computational resources
Total operations N? Biin
Prandwian = —————— = Dy (6.17)
T€X€C B_ 2

Table 6.2: Execution time (7 ,,,.) in u sec for various combinations of N and B,4in

N

B 500 ‘ 250 125 100 50 25 ‘ 20 ‘ 10 ‘ 5 ‘ 4 ‘ 2 ‘ 1 ‘
main

100 5000 1250 312 200 50 12.5 8 2 0.5 0.32 0.08 0.02

200 2500 625 156 100 25 6.25 4 1 0.25 0.16 0.04 0.01

300 1667 417 104 67 17 4.17 2.7 0.67 0.17 0.1 0.03 0.007
400 1250 312 78 50 12 3.12 2 0.5 0.12 0.08 0.02 0.005
500 1000 250 62 40 10 2.5 1.6 0.4 0.1 0.06 0.016 0.004
600 833 208 52 33 8 2.1 1.3 0.33 0.08 0.05 0.013 0.0033
700 714 178 44 28 7 1.8 1.14 0.28 0.07 0.046 0.011 0.0029
800 625 156 39 25 6.2 1.6 1 0.25 0.06 0.04 0.01 0.0025
900 556 139 34 22 5.6 1.4 0.89 0.22 0.056 0.036 0.0089 0.0022
1000 500 125 31 20 5 1.25 0.8 0.2 0.05 0.032 0.008 0.002

Table[6.2] gives the execution time in (usec), for various combinations of the num-
ber of PEs (N) and the bandwidth (B,,.;,) in MBps. Figure[6.6(a) gives the execution
time versus bandwidth curves for various values of N. The curves show that the execu-
tion time (calculated as per Equation decreases with the increasing bandwidth,
where the execution time is equal to the memory access time, as the computational
time is nearly zero.

For a limited bandwidth, the execution time increases with the increasing length
of the query sequence. Figure[6.6(b) shows the T, versus N curve for a case, where
the limited bandwidth is 500 M Bps and the number of PEs (N) varies from 1 to 500.
The execution time (calculated as per Equation [6.16), has a quadratic dependence
on N, which causes it to increase rapidly for higher N values. In the next section, we

96 Chapter 6. Performance Analysis

1000

900

i

200 800F

\,
S
3

=Y
3
3

IS
=]
3

Execution time in microseconds
Execution time in microseconds
g
8

P
=3
3

2001

100

0 1 . I .
100 200 300 400 500 600 700 800 900 1000 50 100 150 200 250 300 350 400 450 500
Bandwidth in MBps Number of PEs (N)

(a)

Figure 6.6: Performance limited by bandwidth (a) Ty, vs bandwidth (b) T,y VS N

investigate the minimum execution time that gives optimum performance with reduced
bandwidth requirement.

6.3 Performance and bandwidth optimization

In this section, performance gain and bandwidth requirements are optimized and a
generalized equation is developed for the execution time that considers both the com-
putational resources and bandwidth limitations. Figure shows the T, versus N
design trade off curves for the following three cases, considering B, = 500 MBps
and Tpg = 10 ns.

e When performance is limited by the computational resources
e When performance is limited by the bandwidth

e When performance is limited by both the computational resources and band-
width

T.x.c decreases with the increasing number of N along the T, vs N curve, limited
by the computational resources and based on Equation Decreased T,,,. results
in improved performance, but the bandwidth requirement also increases as a conse-
quence. On the other hand, for a particular available bandwidth, T,,.. increases with
the increasing number of PEs along the T,,.. vs N curve, limited by the bandwidth
and based on Equation The T,y Vs N optimization curve represents the total
execution time, considering both computational resources and bandwidth limitations
and is based on the following equation.

6.3. Performance and bandwidth optimization 97

2

Tovee =(kXNg+N—1)XTpg + (6.18)

main

250 T T T T T

= B = Texec vs N optimization curve
—e— Texec vs N curve, limited by computational resources
—©— Texec vs N curve, limited by bandwidth

200+

-

o

=]
T

N

o

=]
T

Execution time in microseconds

. . .
0 20 40 60 80 100 120 140 160 180 200
Number of PEs (N)

0'0© —

Figure 6.7: T,y vs N design trade off curves

To find the N value, at which the function 7, is minimum along the T, vs N
optimization curve, we differentiate Equation 6. 18| w.r.t. N.

d(Texee) d 2N?
————— = — (kXN +N-1)XTpg +
dN dN (’) P main
N, N,
where, k = N—Z = W" S0,
A(T pxec d | N;,xN. 2N?
M:_ (2 y N= 1) X Tpp +
dN dN N Bmain
~ AN3 + Tpg X Buain X N* = Tpg X Bygin X Ny X Ny
B N2 X Bmain
Now, to find the N value, at which T, is minimum along the T,.. vs N opti-
mization curve, we equate % to zero, so that,
4N? + Tpg X Bygin X N* = Tpg X Bygin X Ny X Ny = 0 (6.19)

The discriminant of Equation[6.19]is,

A=4T} X B2 oo X Ny X No(T3y X B2

main main

— 108N, x N,)

There are two cases, i.e.

98 Chapter 6. Performance Analysis

2 g2
TopXB i

1. A> 0, if NygXN,< o s
which does not take place in practice. Therefore, this case is not taken into
consideration.

. T? xB?
2. A<0, if Nyx N> e,

which implies that Equation has a unique positive real solution which is
given as,

A2 - 3TPE X Bmain

N =
6A

(6.20)

where, A = {/ 27T pByinNoN, + 3 33T}, B, + 8173, B, N2N?

For a given bandwidth, Equation gives the N value, at which the function
Texec 1s minimum along the T, vs N optimization curve. The minimum 7y, value
guarantees an optimum performance, as any performance gain due to increasing num-
ber of PEs beyond this point is counterbalanced by the bandwidth limitation. As an
example, if, Tpr = 10 ns, B4, = 500 MBps and N, = Ny = 500, then, the value
of N, as computed per Equation would be N = 67.8. This means that N = 68
guarantees an optimum performance for the given example. Therefore, any further
increase in the number of PEs will result in subsequent performance loss due to band-
width limitation.

200 T T T

T T
% | ' =¥="Bmain = 100 MBps ;A
180 ! A Bma!n =400 MBps A:]
! = H = Bmain = 700 MBps
—©— Bmain = 1000 MBps

160 -

140}

120+

100 -

80

Execution time in microseconds

60

40r :

20 q

20 40 60 80 100 120 140 160 180 200
Number of PEs (N)

Figure 6.8: T,,.. vs N optimization curves

Figure[6.8] shows the optimization curves for various values of B,,;, in MBps and
Tpr = 10 ns, where the optimum point shifts towards higher N values for increasing

6.4. Hardware partitioning 99

bandwidth. This implies that for higher available bandwidth a higher value of N can
be used to improve the performance further.

6.4 Hardware partitioning

In this section, we present a novel method based on hardware partitioning to reduce
the execution time and improve the resource utilization of S-W based sequence align-
ment, resulting in a higher performance as compared to conventional approaches. The
method reduces the execution time and improves the resource utilization by up to
33.3%. Further, equations are developed, showing the general trend of execution time
reduction, resource utilization improvement and hence performance enhancement.

6.4.1 Theoretical concept

A parallelized S-W algorithm requires N, + N, — 1 operations for computing the entire
H; ; matrix [29]]. Since every operation performed by one S-W PE takes time Tpg, the
total execution time is given by,

Toxee = (Ng + Nq - 1) X Tpg

where, Tpg = Cpg X Teyee, such that Cpp is the number of cycles consumed by 1
PE and T, is the time for 1 cycle.

If two query sequences (N, and Ny) need to be aligned one after the other against
the same database sequence (N;), as shown in Figure[6.9)(a),

Nql then Nq2

&} N =Ngql =Ngq2
(a) Nql and Nq2 aligned one after the other against Ns

Nql(partitioned) Nqg2(partitioned)

&} N'=Nql/2 &} N'=Nq2/2
(b) Partitioned Nql and Nq2 aligned in parallel against Ns

Figure 6.9: 2-sequence alignment (a) Sequential (b) Partitioned and in parallel

then the execution time becomes,

Texecl = (ZNS' +N - 1) X TPE (621)
where Nyi = N = The nubmer of PEs (V)

100 Chapter 6. Performance Analysis

The resource utilization ratio for this case is,

PEs utilized

PEs available
2N, x N 1 (6.22)

TN, +N-DxN 141

Utilization ratio =

Figure [6.9(b) shows that each query sequence is partitioned into two parts and is

processed in two passes, in parallel with the other. The number of PEs utilized by each
. v Ng _ Np _ N .

query sequence is half its size, and is given as, N = =~ = == = 7. The execution

-
time for this case is given by,
Tewec2 = 2Ns+ N = 1) X Tpg (6.23)

The resource utilization ratio for this case is,

e 2Ny X N
Utilization ratio = - -
(2Ng+N - 1)XN
| (6.24)
= N -1
1+ N

6.4.2 Example of the process

Figure [6.10 shows an example, where,

Njy=Np=N;=N=4, N =2, and Tpg = 10ns

Figure [6.10(a) depicts the case, where two query sequences (N, and Ny) are
aligned one after the other, against the same database sequence (N,). The solid black
cells in Figure[6.10(a) represent the data flow and PEs utilization for N,;, whereas the
light gray cells for N,,. In Figure [6.10(b), the hardware is partitioned in two equal
parts such that the two query sequences are aligned in parts and in parallel with each
other, against the same database sequence (Ny). The solid black cells in Figure[6.10(b)
represent the data flow and PEs utilization for N,;, whereas the light gray cells for N,.

Texecl = Terec2

Texecl
_(Ng+N-1)XTpg —(2N;+ N - 1) X Tpg
B 2Ny + N - 1) x Tpg
_ N-N
T 2N, +N -1

% time reduction =

(6.25)

Substituting values in Equation[6.23]results in 18.18% reduction in the execution time.
Substituting values for the given example in Equation [6.22]
Utilization ratio = —— = 0.73 = 73%

-
1+53

6.5. Generalizing the hardware partitioning method 101

N

Q

1 then Ng2 Nql(partitioned) Nq2(partitioned)

Ns—fll [t N—[]

»l
g}

Ns=—pp|

1bN
I (Tuonnied)zbN —pf

|
|4 (ruonnred)[bN

14
1€

bN
OO0 O0O0OCEmnm
mE B R B B B B

EREEREERERENR
N

-]
oo O
OO0o0O0oOoonod

Je— (zuonnred)[bN —p]

Je— (zuonnred)zb

(b)

OO0 OO MEERE([]
OO0 O EmEERC0O
OO0 MEmRECO0o0

&
I«

[] unutilized PEs

—~
)
Na

. Utilized PEs for Nq1 D Utilized PEs for Nq2

Figure 6.10: 2-sequence alignment example

Similarly, substituting the same values in Equation
Utilization ratio = —5— = 0.89 = 89%

455
Thus 16% better resource utilization ratio is achieved by applying the hardware

partitioning method.

In practice, the lengths of the query and subject sequences are 500 characters long
in most cases [70]. To evaluate a practical case, consider Njy = Np = Ny = N =
500, N = 1. Substituting these values in Equation a 33.3% reduction in the
execution time is achieved. To evaluate the resource utilization improvement, the
values are substituted in Equations and showing thereby an improvement
of 33.3% in resource utilization.

6.5 Generalizing the hardware partitioning method

To generalize the idea, consider P number of query sequences that needs to be aligned
against the same database sequence (Nj), such that the length of each query sequence
is equal to the number of available PEs (N). Figure [6.11(a) depicts the case, where
P query sequences are aligned one after the other against N;. Here 1 < P < i, such
that i > 1 is an integer. Figure [6.11[b) shows that the hardware is partitioned into Q
parts such that P query sequences are aligned in parts and in parallel with the others,
against the]:v slameNI\zl_Y. The nl}\l}mberN of PEs utilized by each query sequence in this case
4q q qi

1S, N=?=?=...=?=§

The execution time becomes,

102 Chapter 6. Performance Analysis

Nql,Ngqg2,....,Nqi

&} N=Nql =Ng2=....=Ngqi

(a) P number of query sequences aligned one after the other against Ns

Nql(partitioned) Nqg2(partitioned) Nqi(partitioned)

iﬁb N'=Nql/Q iﬁb N'=Nq2/Q ”.Qﬁb N'=Ngqi/Q

(b) Partitioned P query sequences aligned in parallel against Ns

Figure 6.11: P-sequence alignment (a) Sequential (b) Partitioned and in parallel

Tovee = (PXNy+ N = 1) X Tpg (6.26)

Table [6.3] shows the execution time in microseconds for various number of query
sequences (Ps) and possible number of hardware partitions (Qs). The execution time
is computed as per Equation where N, = Ny = 500 and Tpg = 10 ns. The
table demonstrates that the execution time decreases with the increasing number of
hardware partitions (Qs), for all Ps.

Table 6.3: Execution time (7,,..) in i sec for various (Ps) and (Qs)

2l s[e s e[s o]][n]s]a]au]
12 65 62.5 61.6 61.2 — 60.8 — — — 60.4 — — —
18 95 92.5 91.6 — — 90.8 — 90.5 — — 90.3 — —
20 105 102.5 — 101.2 101 — — — 100.5 — — 100.2 —

24 125 122.5 121.6 121.2 — 120.8 120.6 — — 120.4 — — 120.2

Figure[6.12]shows execution time reduction by applying the hardware partitioning
for various number of query sequences (Ps). The Ty, versus Q curves, shown in the
figure for various number of Ps, demonstrate that the execution time decreases with
the increasing number of hardware partitions, where T, is computed as per Equation
6.20

The resource utilization ratio is given by,

o , PxN;xN
Utilization ratio = - ;
(PXNg+N —1)XN
| (6.27)
= N'-1
1+ PXNj

where the utilization ratio is dependent on the gxle‘ term. The smaller the gx;\ll term,

the better the resource utilization. The S5 term in itself decreases with the increas-

6.5. Generalizing the hardware partitioning method

103

Texec in microseconds

104

103

102

101

Texec in microseconds

100

2
Number of hardware partitions (Q)

4

6

10

12

——P =

20

5

10

15

20

Number of hardware partitions (Q)

Texec in microseconds

Texec in microseconds

124

123

122

121

120

5

15
Number of hardware partitions (Q)

—k—P

=24

5

10

15 20
Number of hardware partitions (Q)

Figure 6.12: Execution time reduction by hardware partitioning

ing number of hardware partitions (i.e. decreasing N'), so increasing the number of
hardware partitions leads to a better resource utilization, as shown in Figure[6.13] The
figure demonstrates that the resource utilization ratio improves with the increasing
number of hardware partitions for various number query sequences (Ps), where the

resource utilization ratio is computed as per Equation

Table [6.4] shows the resource utilization ratio for various number of query se-
quences (Ps) and valid number of hardware partition (Qs), such that P is divisi-
ble by Q. The resource utilization ratio is computed as per Equation where
N, = N, = 500. The table demonstrates that the resource utilization ratio improves
with the increasing number of hardware partitions (Qs), for all Ps.

Table 6.4: Resource utilization ratio for various (Ps) and (Qs)

=2l [= [> [« [«[o [o] [

-

—
3

0.8574

0.9234

0.9477

0.9733

0.8891

0.9414

0.9699

0.9849

0.9093

0.9526

0.9232

0.9602

0.9731

0.9798

0.9865

0.9933

0.9475

0.9731

0.9819

0.9909

0.9940

0.9970

The same theory applies for reducing the execution time and improving the re-
source utilization ratio for the case, when there is only one query sequence and the

104 Chapter 6. Performance Analysis

1
2 ko)
I I
c c

2 2 0.95
© ©
o o
] i
® ®

o 2 09
3 3
I} I}
0 0

¢ ¢ (——r=¢)
0.85
1 2 3 4 5 6 2 4 6 8
Number of hardware partitions (Q) Number of hardware partitions (Q)

1
2 i)

© © 0.98
c c
2 S

E ﬁ 0.96
] 5

© o 0.94
<4 <
3 3
0 0

3 3 0.9 |:+ P-12
0.9
2 4 6 8 10 2 4 6 8 10 12
Number of hardware partitions (Q) Number of hardware partitions (Q)

Figure 6.13: Resource utilization improvement by hardware partitioning

database is split into equal parts, such that the same query sequence is scanned against
all parts of the database in parallel. This approach is adapted in GPU-based sequence
alignment presented in Chapter [3] resulting in execution time reduction, resource uti-
lization improvement and eliminating the need for inter processor communication.

To see the effect of execution time reduction and utilization ratio improvement on
performance, we observe the performance equations, given as follows,

Ny X fop
PE

where f,, is the operating frequency.

Performance may also be given by,

Performance = x Utilization ratio (6.28)

Total ti N;
Performance = %4’ operations _ e (6.29)
T("XEC Texec

Equations and imply that higher resource utilization ratio and lower
execution time improve the performance.

In comparison with the traditional methods, the initialization process for the pro-
posed hardware partitioning method is modified, such that the initialization input is
equal to a predefined value at the start of the computation. For every succeeding array
computation, the initialization input is a feed back from the last PE in the partitioned
array.

6.6. Summary 105

6.6 Summary

This chapter provided a detailed performance and bandwidth analysis for sequence
alignments. Furthermore, it introduced a method to improve performance and resource
utilization. Following are the topics presented in the chapter.

o Theoretical performance boundaries.
e Performance limited by computational resources.
e Performance limited by bandwidth.

e Performance optimization when both the computational resources and band-
width are limited.

e Hardware partitioning method for high performance and resource efficient se-
quence alignment.

e Execution time reduction and resource utilization improvement for various num-
ber of query sequences and hardware partitions.

o Generalization of the hardware partitioning method.

106

Chapter

Conclusions and Future Research
Directions

In this chapter conclusions of the thesis and future research directions are pre-
sented. Section[Z.1] gives conclusions of the work presented in the previous chap-
ters, whereas, Section [7.2] gives an insight into the future research directions.

7.1 Conclusions

This thesis began with a discussion about molecular biology and continued with an
overview of bioinformatics, a broad classification of its research areas with a particular
emphases on sequence alignment, its types and applications. It proceeded further with
a classification of acceleration methods for sequence alignment, followed by relevant
literature review and discussion of an accurate profiling and acceleration evaluation
approach. Further, it presented FPGA-based systolic array and RVE implementations
for biological sequence alignment. The succeeding chapters presented GPU-based
sequence alignment and a detailed performance and bandwidth analysis. Following
are brief chapter wise conclusions of the thesis.

Chapter[Ilpresented an introduction about molecular biology by giving an overview
of cells, amino acids, proteins, chromosomes, DNA, RNA and transcription. It con-
tinued with a classification of the major subfields in bioinformatics and a discussion
about sequence alignment, its types and applications. Further, it presented acceleration
methods for sequence alignment and details of the thesis contribution. The penulti-
mate section provided an outline of the thesis before the summary of the chapter in
the final section.

Chapter 2l gave a classification of global, local and multiple methods like dot plot,
N-W and S-W algorithms, FASTA, BLAST, HMMER and ClustalW. It elaborated the
difference between exact and approximate methods and continued with a comparison

107

108 Chapter 7. Conclusions and Future Research Directions

of these methods based on their time and space complexities. The chapter ended by
giving a brief summary of these methods.

Chapter [3] presented an overview about the hardware acceleration of sequence
alignment methods and introduced a taxonomy of the various acceleration methods
found in the literature. Further, it introduced an accurate speedup evaluation approach.
It continued with FPGA-based systolic array implementations for sequence alignment
and the discussion of an extended linear systolic array design using BRAM and DDR
RAM. The chapter ended with a brief summary.

Chapter @] presented an RVE-based approach for sequence alignment and its com-
parison with traditional systolic array based approaches. It presented rectangular and
linear FPGA-based RVE implementations for sequence alignment and a compari-
son of results with corresponding systolic array implementations thereby showing a
speedup at the cost of utilizing additional hardware resources. The chapter contin-
ued with the RVE performance evaluation and concluded with a brief summary of the
chapter itself.

Chapter [provided an introduction to GPUs and exploited its parallelization capa-
bilities for biological sequence alignments. It discussed CUDA and its programming
and memory models. It provided a brief review of GPU-based sequence alignment
and continued with the presentation of an optimized GPU implementation for S-W
based protein sequence alignment. It presented the optimization steps undertaken for
improving performance of the GPU implementation. More specifically, optimization
of the database organization, temporary data reads and writes and substitution ma-
trix accesses. Performance evaluation of the optimized GPU implementation and its
comparison with the fastest available design using the same experimental setup. The
chapter concluded with a brief summary.

Chapter[6l presented a detailed performance and bandwidth analysis for biological
sequence alignment. It continued with developing theoretical performance bound-
aries for various cases and optimizing memory bandwidth requirement. Further, it
introduced an approach based on hardware partitioning to reduce the execution time
and improve resource utilization. The chapter also developed generalized equations
for high performance and resource efficient sequence alignment. It ended with a brief
summary.

Chapter [/l ends the thesis by giving chapter wise brief conclusions and providing
future research directions.

7.2 Future research directions

In this thesis the main focus is on the S-W based pairwise local sequence alignment,
its acceleration using different available platforms and detailed performance, band-
width and power analysis. Similar analysis can be done for other applications such
as multiple sequence alignment and global alignment. As far as the S-W algorithm is
concerned, innovative techniques can be explored to reduce the amount of data storage
on FPGA, so that all the data can be stored locally without the need of transferring it

7.2. Future research directions 109

to external memory. One such approach can be storing compressed data instead of
the actual one. If at all it becomes possible to store all the data locally in an easily
interpretable manner then the trace back step may also be carried out locally. If that
happens then only the final alignment result will be required to transfer to the external
memory or directly to the output interface thereby significantly improving the perfor-
mance. An alternative way is the one adapted in the GPU implementation, where only
the top scoring sequences are identified and fully aligned using ssearch. The optimiza-
tion approach provided for the bandwidth requirement reduction can be implemented
on different hardware platforms to visualize its practical impact. The hardware par-
titioning approach introduced in the thesis and evaluated with GPU implementation
can also be applied and tested for various FPGA platforms. The GPU implementation
itself can be ported and optimized for the latest available GPUs to harvest maximum
possible computational power offered by the GPUs. The RVE approach for rectangu-
lar blocking factors can be explored further for performance enhancement.

110

Appendix

Important Terms in
Bioinformatics

1. Nucleic acid is a complex, high-molecular-weight biochemical macromolecule
composed of nucleotide chains that convey genetic information. The most
common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA). Nucleic acids are found in all living cells and viruses [87].

2. Deoxyribonucleic acid (DNA) is a nucleic acid usually in the form of a double
helix that contains the genetic instructions monitoring the biological develop-
ment of all cellular forms of life.

3. Ribonucleic acid (RNA) is a nucleic acid polymer consisting of nucleotide
monomers. RNA nucleotides contain ribose rings and uracil unlike deoxyri-
bonucleic acid (DNA), which contains deoxyribose and thymine. It is tran-
scribed from DNA by enzymes called RNA polymerases and further processed
by other enzymes. RNA serves as the template for translation of genes into
proteins, transferring amino acids to the ribosome to form proteins, and also
translating the transcript into proteins.

4. Nucleotides are the structural units of RNA and DNA. In the cell they play
important roles in energy production, metabolism, and signaling.

5. Amino acid In chemistry, an amino acid is any molecule that contains both
amine and carboxylic acid functional groups. In biochemistry, this shorter and
more general term is frequently used to refer to alpha amino acids: those amino
acids in which the amino and carboxylate functionalities are attached to the
same carbon, the so-called « - carbon.

An amino acid residue is what is left of an amino acid once a molecule of water
has been lost (an H+ from the nitrogenous side and an OH- from the carboxylic

111

112 Appendix A

side) in the formation of a peptide bond. Amino acids may come in a variety of
shapes and properties. They may be small or bulky, hidrophobic or hidrophyllic,
electrically charged or neutral, etc, hence allowing for very complex shapes and
interactions to be produced. Amino acids are commonly referred to by name or
by an abbreviation, usually in three or one letter. This allows for more efficient
descriptions of how they are chained together to build a protein.

6. A protein (from the Greek protas meaning “of primary importance”) is a com-
plex, high-molecular-mass organic compound that consists of amino acids ar-
ranged in a linear chain linked by peptide bonds.

7. A peptide bond is a chemical bond formed between two molecules when the
carboxyl group of one molecule reacts with the amino group of the other molecule,
releasing a molecule of water (H,0).

8. Phylogenetic tree is a tree showing the evolutionary interrelationships among
various species or other entities that are believed to have a common ancestor.

9. Molecular phylogeny is the use of the structure of molecules to gain infor-
mation on an organism’s evolutionary relationships. The result of a molecular
phylogenetic analysis is expressed in a so-called phylogenetic tree.

10. Sequence motif In genetics, a sequence motif is a nucleotide or amino-acid se-
quence pattern that is widespread and has, or is conjectured to have, a biological
significance.

11. Nucleic acid codes The most common nucleic acid codes are given below.

Nucleic acid code Meaning

A: Adenosine
C: Cytidine
G: Guanine
T: Thymidine
U: Uracil

12. K-tuples means subsequences of length k.

13. Homology In biology, two or more structures are said to be homologous if they
share a common ancestor.

14. A highly conserved sequence is a sequence of nucleotides that is identical or
very homologous to genes of a wide range of organisms.

Appendix

Dot Plot Implementation

The dot plot algorithm [88] is one of the oldest computational tools for comparative
genomics. It creates a pairwise comparison between two sequences and renders the
results as a dot matrix. A dot matrix for two sequences 1 and 2 is simply a grid
with the presence of a point at position p = (i, j), if the k-tuple beginning at the
ith position of Sequence 1 and the jth position of Sequence 2 coincide. For years,
the quadratic running time for the dot plot algorithm was acceptable because most
available sequences were short, but to make it applicable in the era of bioinformatics
databases that grow exponentially, there is serious need of speeding it up. The O(MN)
complexity of the dot plot can be easily reduced to O(M + N) by implementing it
in hardware. Here, we look beyond this reduction and try to develop a hardware
implementation approach that will bring the complexity further down to O(M).

Figure [B.T]shows the dot plot cell design, where the comparator compares the two
input sequences and produces a result based on the match or mismatch. The result is
a 1 if there is a match otherwise 0. The adder adds the result of the comparator with
the value from the previous cell. The result of the adder is stored in a register used
for storing the current value of the cell. The current value is denoted by Vy, where V
stands for value and N represents the number of the cell, such that Vy = Vy_; + 1.
There is another register called the backup register, which keeps a backup of the cell’s
maximum value. Vy is reset to O if there is a mismatch, but before reseting, its value
is compared with the value of the backup register and if Viy { Viackup, then Vigerp is
updated with the new Vy value. The ViyyuauxPymax block keeps track of the maximum
value and its index. Figure[B.2]shows a 4-element dot plot array constructed using the
cell design in Figure B.1l The operation of the array is explained with the help of an
example given in Table BTl

Table [B.1] (a) gives an example, where two 4 character DNA sequences are com-
pared using our dot plot implementation approach. The bold digits in the table rep-
resents the values in the backup registers, whereas the other digits represent the Vy
values. Sequence 1 is fixed along the array, such that each character is an input to a

113

114 Appendix B

Seql

l

Seq2— 3 Comparator

Nmax Nmax

1 if match *

0 else

\{mckup

*
W

\

Figure B.1: Dot plot cell design

Figure B.2: 4-element dot plot array

different PE, whereas Sequence 2 is propagated through the array character by char-
acter. During the 1st clock cycle letter A is passed through the array and compared
with the corresponding Sequence 1 letters. The resultant Vy and Vjacrp values are
recorded in the 1st row of the table. The same process is repeated for all characters in
Sequence 2 and the resultant values are recorded in the table. The last row in the table
gives the final Viy and Vit values, whereas the position or index of the maximum
backup value is given by the Vg Pymax block. The maximum backup value is traced
back the number of steps equal to the maximum value itself, considering the current
cell as the 1st step. The result of the process is given in Table[B.1](b).

Table B.1: Example to prove our approach and its result

(a) Example (b) Result

L [elc|T[A] €
A 0000
010 (0]1
0001
¢ 0] 1]0]0
0101
T 0j]0]21]0
01|21
G 110102

Appendix

N-W Examples

In this appendix, a couple of examples of global sequence alignment using the
Needleman-Wunsch algorithm are presented. Section presents an example
with a simple scoring scheme, whereas Section presents another example
with the same sequences but an advanced scoring scheme.

C.1 Example 1

Here, the two sequences to be globally aligned using Needleman-Wunsch techniques
are: GAATTCAGTT A (query sequence), GG AT C G A (database sequence), so
that, N, = 11 and N = 7 (the lengths of query and database sequences, respectively).
A simple scoring scheme is assumed as follows,

S = 1 if Ny = N, (match score)
51 0 else (mismatch score)
and d =0 (gap penalty)

The three steps in dynamic programming are: Initialization, Matrix fill (scoring)
and Traceback.

Initialization step

The first step in the global alignment dynamic programming approach is to create a
matrix H with N, + 1 columns and N, + 1 rows. Since this example assumes that there
is no gap opening or gap extension penalty, the first row and first column of the matrix
can be initially filled with O (as shown in Figure and thus they are considered as
row 0 and column 0.

115

116 Appendix C

s B e i I
o |lo|lo|lao|ao|ao|o

Figure C.1: Initialization step

Matrix fill step

One possible solution of the matrix fill step finds the maximum global alignment score
by starting in the upper left hand corner in the matrix and finding the maximal score
H; ; for each position in the matrix. In order to find H; ; for any i, j (where i is assumed
to be column number and j is assumed to be row number), it is important to know the
score for the matrix positions to the left, above and diagonal to i, j. In terms of matrix
positions, it is necessary to know H;_; j, H; ;-1 and H;_; ;_;. For each position, H; ; is
defined to be the maximum score at position i,j; i.e.

Hi_yj-1 +S;; (match/mismatch in the diagonal),
H;j=max{ H;; | —d (gapin N,),
H;_,;—d (gapin Ny)

Using this information, the score at position (1,1) in the matrix can be calculated.
Since the first character in both sequences is a G, S| = 1, and by the assumptions
stated at the beginning, d = 0. Thus, H;; = 1, as shown in Figure[C.2(a)]

Since the gap penalty d is 0, the rest of row 1 and column 1 can be filled in with
the value 1. Take the example of row 1. At column 2, the value is the maximum of
0 (for a mismatch), O (for a vertical gap) and 1 (horizontal gap). The rest of row 1
can be filled out similarly until we get to column 8. At this point, there is a G in both
sequences. Thus, the value for the cell at row 1, column 8§ is the maximum of 1 (for a
match), O (for a vertical gap) and 1 (horizontal gap). The value will again be 1. The
rest of row 1 and column 1 can be filled with 1, as shown in Figure [C.2(b)] using the
above reasoning.

Now let’s look at column 2. The location at row 2 will be assigned the value of
the maximum of 1 (mismatch), 1 (horizontal gap) and 1 (vertical gap). So its value is
1. At the position column 2, row 3, there is an A in both sequences. Thus, its value
will be the maximum of 2 (match), 1 (horizontal gap) and 1 (vertical gap), so its value
is 2. Moving along to position column 2 row 4, its value will be the maximum of 1
(mismatch), 1 (horizontal gap) and 2 (vertical gap), so its value is 2. Note that for all
of the remaining positions except the last one in column 2, the choices for the value

C.1. Example 1 117

AATT CAGTT A GAATTTCOTT A
oJol o o] of o of of o] o] o]0 oloJoJefo o olelolo]o]g
041 0]\f’*f G T N T PN T 2
alo 0l
a0 INEE!

T |0 T [0
clo clof
a o 01
&0 & o0

(a) Matrix fill Step 1 (b) Matrix fill Step 2

G 4 ATTOCAGTT & GAATTC CA GTT 4
ofofofofoo]o o o oo o ofofofofo]ofolololo]o]o
slohhihiliihiiii il AN EREE
sloif] gloftfififtfififalz]ze]2]2
slo g2 slofr]z]z]zfzlzlzlz]2]z]s
Tlo|142 tloftzlzls s alalss]s]s
clofig? clofifzlz]s]s|alals]a]e]a
Glo|1$2 glofifzfzs[s]sfa]5]5]s 5
slofrd: slofi]z]sfsfsfslals]s]s[e

(c) Matrix fill Step 3 (d) Matrix fill Step 4

Figure C.2: Matrix fill[(2)] Step 1,[(b)| Step 2, [(c)] Step 3 and [(d)] Step 4

will be exactly the same as in row 4, since there are no matches. The final row will
contain the value 2, since it is the maximum of 2 (match), 1 (horizontal gap) and 2
(vertical gap), see Figure[C.2(c)]

Using the same techniques, the entire scoring matrix is filled with its correspond-

ing values, as shown in Figure[C.2(d)]

Traceback step

After the matrix fill step, the maximum alignment score for the two test sequences is
6. The traceback step determines the actual alignment(s) that result in the maximum
score. Note that with a simple scoring algorithm such as the one that is used here,
there are likely to be multiple maximal alignments.

The traceback step begins in the last row, last column position in the matrix, i.e.
the position that leads to the maximal score. In this case, there is a 6 in that location.

Traceback takes the current cell and looks to the neighbor cells that could be direct
predecessors. This means it looks to the neighbor to the left (gap in N;), the diagonal
neighbor (match/mismatch), and the neighbor above it (gap in N,). The algorithm for
traceback chooses as the next cell in the sequence one of the possible predecessors.
They are all equal to 5, as shown in Figure [C.3(a)|

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for
anything else, the only possible predecessor is the diagonal match/mismatch neighbor.

118 Appendix C

-

o (e | [b2 = o |

— [==T=T=T=]=]a
wlww|p | — | = a4
w | fw | m3 = o]y
| E|w]|
i = PP) Y P P

w2 =S|y
mlelw|wl—] =]

pa b b b | = | | e

bbb b = ||

[EL NE N R UR o I S B e]

4

I o T B o |
o|la|lo|o|la|lal|a

wlt(w|w|wn|—|—|{o]| =
v | w|w | = —]a]—H
[[Y VP N R R N
Elals|lw|(|=|—]a]|n
[FS IS P O P A e
(= |w|o|w|—a|o
NN E N EE
NEENEE I EmEE

kel =]a]e

=] ===]—=] ==

oA Q
o|lo|lo|la|lo|a|oc|oa

I
o

(a) Traceback Step 1 (b) Traceback Step 2
GA ATTOCAG TT A Ga &8 T TCOCAG TT A

b o B o I R S o R o
o o T B o B |

(c) Traceback Step 3 (d) Traceback Step 4

Figure C.3: Traceback[(a)| Step 1,[(b)] Step 2, [(c)] Step 3 and [(d)| Step 4

If more than one possible predecessor exists, any can be chosen.
N,s: A
Ny A

Now, we look at the current cell and determine which cell is its direct predecessor.
In this case, it is the cell to the left with score 5, as shown in Figure The
alignment as described in the above step adds a gap to sequence 2,
Ny T A
Ny - A

Continuing on, with the traceback step in the same way, we eventually get to a
position in column 0, row 0, which indicates the completion of the traceback. One
possible maximum alignment is given in Figure [C.3(c)]

This gives us a current alignment of:

so the current alignment is:

.. . G A A TTIU CAGTT A
giving an alignment of: G G A - TC - G - - a
An alternate solution is given in Figure [C.3(d)}

.. . A A TTT CAGTT A
giving an alignment of : G G - A - T C - G - - A

C.2 Example 2

Let us consider another example with the same sequences as in Example 1, but here
an advanced scoring scheme is assumed where,

C.2. Example 2 119

g = 2 if Ny = N, (match score)
“ 71 =1 otherwise (mismatch score)

and d =2 (gap penalty)

Initialization step

As in Example 1, again the first row and first column of the matrix can be initially
filled with Os and regarded as row 0 and column 0, as shown in Figure [C1]

Matrix fill step

Using the same approach as in Example 1, the score at position (1,1) in the matrix is
calculated, as shown in Figure Note that there is also an arrow placed back
into the cell Hyy, that resulted in the maximum score, as shown in Figure

Moving down the first column to row 2, we can see that there is once again a match
in both sequences. Thus, S|, = 2 and

Hp; +2 0+2 2
Hyi, =max{ H;;—2 =maxq 2-2 =maxq O
Hp, -2 0-2 -2

Hence, a value of 2 is placed in position (1,2) of the scoring matrix, as shown in
Figure and an arrow is placed to point back to Hy; which led to the maximum
score, as shown in Figure [C.4(c)]

Looking at column 1, row 3, there is no match in the sequences, so §;3 = —1 and
H(),z -1
H133:max H1,2—2 =0
H0!3 -2

Thus, a value, 0, is placed in position (1,3) of the scoring matrix, as shown in Figure
[C:4(c)and an arrow is placed to point back to H », which led to the maximum score,
as shown in Figure

The same procedure is continued for filling in the cells of the scoring matrix.
Eventually, we get to column 3, row 2, as shown in Figure There is no match

in the sequences at this position, so, S3, = —1 and
Hyp -1 -1
Hs, =maxq Hz;—2 =maxq -3
Hyp -2 -1

In this case, there are two different ways to get the maximum score. In such a case,
pointers are placed back to all the cells that can produce the maximum score, as shown
in Figure The rest of the scoring matrix is filled in the same manner. The
completed scoring matrix is shown in Figure [C.A(D)]

120 Appendix C

AATT CAGTT A LAATT CAGTT &
oo |ojojojojojoofo]afo olo | ol o of of of of of of ofa
0402 clof2
g o o472
A0 Ao
T |0 T |0
Clo clo
a0 g0
A0 Ao
(a) Matrix fill Step 1 (b) Matrix fill Step 2
A A T T C A GT T A& G & A TT CALAGT T &
oo ol ol ol ol oo of of ofo o0 Olojojojojojo)ojo
glol2 GlolaT it
0z G0 N a1
alofn A0 0] 4
T o T [0]-1[2
oo clol-1]o
G lo aglo[dTo
a0 aslolols
(c) Matrix fill Step 3 (d) Matrix fill Step 4
G A ATT CAGTT A G A ATTCAGTT A
oo ol o of of of of of ofo oo fojoojojofofolofo o
g o2 al-1 e} Tool-=1=1=1=1 2T a]-1-1
alo 2l 1T-1 G| 0, =1]-2|-2[-2] -2, T-1]-2
alo]ofs sl ol ol s T-mal ot ol 1
T |0 —1:;:2 T —1; Bl N SIEEN T
clo -0 o -1__ *.1.1.3 A iIs"zi-l:_-l_ol?ll
Gglo[2fo gl ol 2T aol-1 12l 3] 4] sT 3T 1]-
alofofs al o[o[4T 2T o] o[t 5%"3 REE
(e) Matrix fill Step 5 (f) Matrix fill Step 6

Figure C.4: Matrix fill for Example 2

C.2. Example 2 121

Traceback step

After the matrix fill step, the maximum global alignment score for the two sequences
is 3. The traceback step determines the actual alignment(s) that result in the maximum
score. The traceback step begins in the last row, last column position in the matrix, i.e.
the position where both sequences are globally aligned. Since, we have kept pointers
back to all possible predecessors, the traceback step is simple. At each cell, we look
to see, where we move next according to the pointers. To begin, the only possible
predecessor is the diagonal match, as shown in Figure

G A A TTOC
ajojojo 0

= |

GTT & G A A TTOCAGTT A
ofo o oo fo

(a) Traceback Step 1 (b) Traceback Step 2
G A ATTOCAGTT A g A A TTCAGTT &

(c) Traceback Step 3 (d) Traceback Step 4

Figure C.5: Traceback for Example 2

This gives us an alignment of: A

We continue to follow the path using a single pointer until we get to the situation,
as shown in Figure
The alignment at this point is: c A G T T
T ¢ - G - -
Note, that there are now two possible neighbors that could result in the current
score. In such a case, one of the neighbors is arbitrarily chosen. Once, the traceback is
completed, it can be seen that there are only two possible paths leading to a maximal
global alignment. One possible path is shown in Figure[C.5(c)]
A AT TOCAGTT A
G GA - TC - G - - A

The other possible path is shown in figure [C.5(d)]

A
A

giving an alignment of:

122 Appendix C

A AT T C A G T T A
G G AT - C - G - - A
Remembering that the scoring scheme is +2 for a match, -1 for a mismatch, and
the gap penalty is 2, both sequences can be tested to make sure that they result in a
score of 3.

giving an alignment of:

G A AT T CAGTT A
G G A - TOC - G - - A
+ - 4+ - + 4+ -+ - +
2 1 2 2 2 2 2 2 2 2 2
2-14+2-2+4+2+2-2+2-2-2+2=3

G A AT TCAGTT A
G G AT - C - G - - A
+ - 4+ + - 4+ - + - - o+
21 2 2 2 2 2 2 2 2 2
2-14+2+42-2+2-2+2-2-2+2=3

Hence, both of these alignments indeed do result in the maximal alignment score.

Appendix

S-W Examples

In this appendix, a flow chart description of the S-W algorithm and a couple of
examples of local sequence alignment using the S-W algorithm are presented. It
starts with the flow chart description in Section [D.1} followed by a simple S-W
example in Section It is concluded by another example in Section that
explains the SW algorithm in comparison with Needleman-Wunsch algorithm.

D.1 Flow chart

Figure [D.T] describes S-W algorithm in the form of a flow chart to elaborate its theo-
retical basis [23]].

D.2 Example 1

In this example, the Smith-Waterman algorithm, based on the dynamic programming
technique, is used to compute the optimal local alignment of two sequences,
ie. Ny=aggtacand Ny=cagcgttg. Assume that,

S = +2 if Ny = N;
BT —1 else

and gap penalty (d) = 2.
The procedure consists of three steps:
1. Fill in the dynamic programming matrix.

2. Find the maximal value (score) in the matrix.

123

124

Appendix D

Input
sequences M
and N

i Initialization
1 complexity = O(M + N)

Y

foreachj=0. N

H(0,)=0

foreachi=0. M

H(i,0)= 0
i=0
j=0

Matrix fill
complexity
= O(MN)

Trace back
i complexity = O(MN)

Figure D.1:

H(ij) =

max (0,
H(-1,j-1) + S(i.j),
H(i1,j) —d,
H(ij-1) - d)

J++

Trace back
max(H(i./))

Output =
aligned
sequence

Smith-Waterman flow chart

D.3. Example 2 125

Table D.1: The dynamic programming matrix and the traceback path

clalglclg|t|t]|eg
0j0[o[0[0][0[0[0]O0
al0j0|[2]0]0]0[0]0]O
g|ojolol4][2]2]0]0]2
g|ojolo0[2[3][4]2]0]2
t|0J0[0[O0|1|2]64]2
al0]0]|2/0]0][0][4]5]3
clol2(o1[2]0[2]3]4

3. Trace back the path that leads to the maximal score to find the optimal local
alignment.

Table [D.l illustrates the calculation of the dynamic programming matrix H and
the path of tracing back (shown in bold digits). The best score found in the matrix is
6 and
a g - gt

g ¢ g t

the corresponding optimal local alignment is: g

D.3 Example 2

A key feature of the Smith-Waterman algorithm is that each cell in the matrix defines
the end point of a potential alignment, whose similarity is represented by the value
stored in the cell. The algorithm thus begins by filling the edge elements with 0.0
values, as illustrated in Table[D.2] because these cells represent the ends of alignments
of length zero and consequently, their similarity score is zero. Note that, here, cells
in the matrix are populated with floating-point values, rather than integers, which are
characteristic of the Needleman-Wunsch method; however, there is no reason why
either method could not be implemented using integers or floating-point values. The
symbol ‘x’ is used as a placeholder, as the first row and first column cannot be the
endpoint of any alignment.

Table D.2: Initialization for Example 2 with floating point values

X A D L G A v F A L C D R Y F Q
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

O ATNZORmAQC TP =

126 Appendix D

Table D.3: Calculation of first set diagonal similarity scores in the Smith-Waterman
algorithm

X A D L G A N F A L C D R Y F Q
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.3 0.0 1.0 0.3 0.0 0.7 0.0 0.0 0.0
0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0 37 0.0 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 33 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17 3.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 4.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23 37 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 4.7

KL AITNZORmQC T » =

Table D.4: The endpoint of the Smith-Waterman algorithm after calculation of all
scoring parameters. A traceback from the highest score is highlighted

X A D L G A N F A L C D R Y F Q
X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D 0.0 0.0 2.0 0.7 0.3 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0
L 0.0 0.0 0.7 3.0 1.7 13 1.0 0.7 0.3 1.0 0.3 0.0 0.7 0.0 0.0 0.0
G 0.0 0.0 0.3 0.0 4.0 2.7 23 2.0 1.7 1.3 1.0 0.7 03 0.3 0.0 0.0
R 0.0 0.0 0.0 0.0 2.7 3.7 23 2.0 1.7 1.3 1.0 0.7 1.0 0.0 0.0 0.0
T 0.0 0.0 0.0 0.0 23 23 33 2.0 1.7 13 1.0 0.7 03 0.7 0.0 0.0
Q 0.0 0.0 0.0 0.0 2.0 2.0 2.0 3.0 1.7 1.3 1.0 0.7 03 0.0 0.3 1.0
N 0.0 0.0 0.0 0.0 1.7 1.7 1.7 1.7 2.7 13 1.0 0.7 03 0.0 0.0 0.0
C 0.0 0.0 0.0 0.0 1.3 13 13 13 1.3 23 1.0 0.7 03 0.0 0.0 0.0
D 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 0.7 0.3 0.0 0.0
R 0.0 0.0 0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.7 3.0 1.7 13 1.0
Y 0.0 0.0 0.0 0.0 0.3 03 0.3 0.3 0.3 03 0.3 0.3 1.7 4.0 27 23
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.7 37 23
Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 23 23 4.7

The next step is to populate the remaining cells in the matrix. This is achieved by
evaluating three functions and choosing the maximum of the three values, or zero if a
negative value would result. These functions consider the possibilities for ending an
alignment at any particular cell. First, the similarity score (e.g., 1.0 for a match, -0.333
for a mismatch) for the diagonal predecessor of the cell under consideration is added
to that cell’s score, as shown in Table[D.3l then the maximum value is calculated for a
deletion represented along (a) the current row of the matrix, and (b) along the current
column of the matrix. Finally, if a negative score would result, 0.0 is substituted, to
indicate that there is no alignment similarity up to the current cell position. Once
the matrix is complete, the highest score is located (representing the endpoint of the
highest scoring alignment between the two sequences), and the other elements leading
to this cell are determined using a traceback procedure, as illustrated in Table[D.4] If
necessary, we can search the matrix for lower-scoring local alignments simply by
finding other high scores that do not form part of a previous traceback.

The essential difference between the N-W and S-W is that, in the Smith-Waterman,
the matrix contains a maximum value that may not be at the N-termini of the se-
quences. It represents the endpoint of an alignment such that no other pair of segments
with greater similarity exists between the two sequences. Hence, this is a local, rather
than a global, alignment method.

Appendix

Power Consumption Evaluation

Due to the utilization of abundant hardware resources, power consumption is
becoming an important constraint for modern day sequence alignment appli-
cations. The overall power consumption consists of static and dynamic power.
Static power is due to the leakage current and is technology dependent, whereas
dynamic power is due to the transient current and is a consequence of the switch-
ing activity. The switching activity in turn depends on the size and type of logic
and the nature of input data set. Dynamic power consumption is critical for se-
quence alignment applications, as it influences the performance, particularly for
larger designs. In this appendix, an evaluation of dynamic power consumption
for sequence alignment applications is presented and the performance per unit
Watt for various number of PEs is investigated. Additionally, resource utiliza-
tion and performance results are provided for implementation with a number of
different platforms.

E.1 Evaluation of dynamic power consumption

The dynamic power consumed by S-W based sequence alignment implemented on
a hardware platform like an FPGA is largely due to the charging and discharging
activities of the capacitive elements, such as logic resources and the interconnecting
fabric [89]. This can be modeled as,

Pi=Y CiVif (E.D)

where C;, V; and f; are the capacitance, supply voltage and operating frequency of
resource i, respectively [90].

Randomly selected input sequences from ssearch class-c benchmark of BioPerf
are used to evaluate the dynamic power consumption for S-W based sequence align-
ment. The BioPerf suite [91] includes benchmark source codes (e.g. ssearch for the

127

128 Appendix E

S-W algorithm), input datasets of various sizes, and information for compiling and
using the benchmarks. It contains codes from highly popular bioinformatics pack-
ages [92] and covers the major fields of study in computational molecular biology,
such as sequence comparison, phylogenetic reconstruction, protein structure predic-
tion, and sequence homology & gene finding. The benchmark considered for simula-
tions represents the complete genome. The number of PEs are scaled according to the
lengths of the input biological sequences, randomly selected from the benchmark for
the evaluation of dynamic power consumption. However, sequences of lengths larger
than the maximum available PEs are aligned by partitioning the query sequences [30].
For each selected length, a variety of input sequences are considered for simulations
and the average dynamic power consumption is recorded. Power analyzer tool XPower
of Xilinx ISE 10.1 Design Suite is used for the power analysis, whereas the devices
used for implementations are Xilinx Virtex-1I Pro (XC2VP30), Virtex-1V (XC4VFX12)
and Virtex-V (XC5VTX240T) FPGAs.

Table [ET] presents an evaluation of the dynamic power consumption for varying
number of PEs, considering XC2V P30 FPGA for implementation. The 1st column
represents the number of PEs. The 2nd column shows the power consumed by clock
transitions, which increases with the increasing number of PEs. The 3rd column gives
the power consumed by logic. Again, the power consumption increases with the in-
creasing number of PEs except for the 1st row, where more power is consumed than
for the succeeding higher number of PEs. The reason for this is that memories are
also implemented as logic by the Xilinx ISE tool and no BRAMs are instantiated. The
4th column provides the power consumed by the signals, i.e. the dynamic power con-
sumption due to the switching activity along the wires. The 5th column represents the
combined power consumed by I0s and BRAMs. The last column presents the total
dynamic power consumption, which is the sum of power consumed by clocks, logic,
signals, IOs and BRAMs, i.e.

PTotal = PClocks + PLogic + PSignuls + PIOs + PBRAMS (EZ)

Table E.1: Dynamic power consumption in milliwatts (XC2VP30)
| PEs | Clocks | Logic | Signals | 10s + BRAMs | Total |

4 2.07 1.19 1.50 0.10 4.85

6 2.23 0.69 2.23 0.10 5.25

8 2.75 0.84 2.33 0.11 6.02

20 5.34 0.89 5.17 0.12 11.51
44 8.18 1.86 11.38 0.40 21.81
72 10.15 2.99 19.63 0.43 33.18
108 | 10.87 543 33.64 0.53 50.46

Tables and [E3] present dynamic power consumption results for implemen-
tations using XC4VFX12 and XC5VTX240T devices, where similar trends are ob-

E.2. Resource utilization 129

served, as for XC2V P30 device in Table [E.Il The maximum number of PEs in Table
is limited due to the reduced amount of resources offered by XC4V FX12 device.

Table E.2: Dynamic power consumption in milliwatts (XC4VFX12)
| PEs | Clocks | Logic | Signals | I0s + BRAMs | Total |

4 28.11 0.36 0.33 0.03 28.82
6 29.00 0.19 0.34 2.34 31.87
8 32.92 0.21 0.58 248 36.19
20 37.24 0.26 0.85 7.71 46.06
44 41.26 0.57 2.68 17.61 62.12
48 41.21 0.68 4.53 19.15 65.57

Table E.3: Dynamic power consumption in milliwatts (XC5VT X240T)
| PEs [Clocks | Logic | Signals | 10s + BRAMs | Total |

4 9.32 0.15 0.16 0.03 9.66

6 11.10 0.10 0.21 0.78 12.19
8 12.03 0.12 0.23 1.02 13.39
20 22.05 0.19 0.47 242 25.12
44 37.82 0.41 1.38 5.25 44.85
72 81.93 0.63 2.39 8.84 93.79
108 | 118.22 | 1.14 4.51 13.04 136.90

E.2 Resource utilization

Table[E 4l presents device utilization in terms of slices and BRAMs, considering XC2-
VP30 implementation. Further, it provides the maximum frequency in MHz and per-
formance in GCUPS for the S-W based sequence alignment. The Ist column in the
table represents the number of PEs. The 2nd column provides the number of slices
consumed for all given numbers of PEs. The 3rd column presents the BRAMs utiliza-
tion. The reason for having no BRAMs in the 1st row is that when a limited number
of memories needs to be instantiated then the Xilinx ISE synthesizer puts them in
Look Up Tables (LUTs) instead of BRAMs during the synthesis process, to avoid any
wastage of BRAM resources. The on-chip BRAM in FPGAs is a limited commod-
ity and this approach saves them for other applications. The fourth column gives the
maximum post place and route frequency in MHz. The last column presents the per-
formance in GCUPs, calculated as follows:

Performance = Npg X fo, (E.3)

130 Appendix E

where Npg is the number of PEs and f,, is the operating frequency.

Table E.4: Device utilization and performance results (XC2V P30)
| PEs | Slices | BRAMs | Frequency (MHz) | Performance (GCUPS) |

4 646 — 110.26 0.441

6 723 3 110.00 0.660

8 975 4 109.80 0.878

20 2307 10 109.00 2.180
44 4897 24 107.20 4.717

72 7762 38 105.50 7.596
108 | 11737 56 103.70 11.908

Similarly, Tables and present device utilization and performance results
for implementations with XC4VFX12 and XC5VTX240T devices. Tables [E.4]
and indicate an increase in performance for higher number of PEs. However, a
decreasing trend is observed for the maximum operating frequency due to the higher
latency for larger designs.

Table E.5: Device utilization and performance results (XC4VFX12)
] PEs \ Slices \ BRAMs | Frequency (MHz) \ Performance (GCUPS) ‘

4 670 — 140.64 0.563
6 816 3 140.00 0.840
8 1072 4 139.44 1.115
20 | 2478 10 136.32 2.726
44 | 4943 24 129.79 5.711
48 | 5359 26 128.63 6.174

E.3 Performance optimization

Figure [E.] depicts the results of performance per unit Watt for various number of
PEs, considering different technologies, i.e. different FPGA platforms like XC2V P30,
XC4VFX12 and XC5VT X240T devices, for implementations.

The results in the figure demonstrate that the performance per unit Watt increases
with the increasing number of PEs initially. It stabilizes after increasing the num-
ber of PEs beyond a certain point and eventually starts to decrease. The curve for
XC4VFX12 is shorter than the other two curves due to a limited amount of resources
offered by the device. The results are influenced by the following two factors.

1. The sub-linear increase in performance with the increasing number of PEs. The

E.3. Performance optimization

131

Table E.6: Device utilization and performance results (XC5VT X240T)

| PEs | Slices | BRAMs

Frequency (MHz) | Performance (GCUPS) |

4 317 — 198.63 0.794
6 429 3 197.38 1.184
8 552 4 196.13 1.569
20 1461 10 192.31 3.846
44 | 3343 21 189.13 8.322
72 | 5479 35 186.42 13.422
108 | 8286 52 181.56 19.608

Figure E.1: Performance per unit Watt for S-W based sequence alignment

250

Performance per unit Watt

—— XC2VP30

= B = XC4VFX12

1=Q= " XC5VTX240T]
T

0
0

.
0 40 60 80
Number of PEs

100

120

reason for this is that the maximum operating frequency decreases due to the
increasing latency for larger designs.

2. The slightly super-linear increase in dynamic power consumption with the in-
creasing number of PEs. The reason for this is that larger designs generate

higher switching activity and hence consume more dynamic power.

This analysis helps in approximating the number of PEs that gives an optimized
performance per unit Watt. It is observed from Figure that for achieving an op-
timized performance per unit Watt, the number of PEs can be approximated between
40 and 60 for XC4VFX12 and XC5VT X240T FPGA devices. Similarly, it can be
approximated between 70 and 80 for XC2V P30 device. Beyond these numbers, the
performance per unit Watt decreases with any further increase in the number of PEs.
For future work, we intend to use a larger Virtex-IV FPGA device with more resources
than the device under consideration to observe the behavior of the device beyond the

132 Appendix E

current limit and better approximate the number of PEs for an optimized performance
per unit Watt. Also, the XC5VT X240T implementation can be scaled up for align-
ing longer input biological sequences in one pass to observe an onward trend for the
performance per unit Watt curve based on Virtex-V FPGA.

The results are approximated by using the MATLAB Curve Fitting Tool and select-
ing a 4th degree polynomial for the curve fit, as it better resembles the experimental
curves and gives a minimum Root Mean Square Error (RMSE).

fO = xxt+oxP +ax®+eaxx+cs (E.4)

Equation [E.4] gives an approximated model where, x = Npg, and the values of the
polynomial coefficients and RMSE for various FPGA platforms under consideration
are given in Table[E7l

Table E.7: Modeling coefficients for various technologies

Coefficients | XC2VP30 XC4VFX12 | XC5VTX240T
) —1.87 x 1079 [5302 x 1079 [3212 x 10790
c 0.004467 0.0005742 3.455 x 107005
c3 -0.368 -0.04786 -0.09594
c4 12.73 3.376 6.668
cs 55.93 7.03 61.48
| RMSE | 11.78 0.8504 7.464

Bibliography

[1] A. M. Lesk, “Introduction to Bioinformatics”, Oxford University Press, Oxford,
New York, 2004.

[2] J. Cohen, “Bioinformatics: An Introduction for Computer Scientists”, ACM
Computing Surveys, vol. 36(2), pages 122—158, June 2004.

[3] L. R. Murphy, A. Wallgvist and R. M. Levy, “Simplified Amino Acid Alphabets
for Protein Fold Recognition and Implication for Folding”, Protein Engineering,
vol. 13(3), pages 149-152, 2000.

[4] C. M. Keet, “Conceptual Modeling for Applied Bioscience”, School of Comput-
ing, Napier University, Edinburgh, Scotland.

[5] Oscar Gruss BioTechnology Review, 13 March 2000.

[6] “http://www.insdc.org”, International Nucleotide Sequence Database Collabo-
ration, April 2010.

[7] http://www.ncbi.nlm.nih.gov.

[8] Boeckmann et al., “The SWISS-PROT Protein Knowledge Base and its Supple-
ment TTEMBL”, Nucleic Acids Research, vol. 31, pages 365-370, 2003.

[9] http://pir.georgetown.edu/.

[10] D. M. Mount, “Bioinformatics: Sequence and Genome Analysis”, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY, 2nd ed., 2004.

[11] L. Holm and C. Sander, “Protein Structure Comparison by Alignment of Dis-
tance Matrices”, Journal of Molecular Biology, vol. 233(1), pages 123-138,
1993.

[12] C. Chothia and A. M. Lesk, “The Relation Between the Divergence of Sequence
and Structure in Proteins”, The EMBO Journal, vol. 5(4), pages 823-826, April
1986.

133

134 BIBLIOGRAPHY

[13] S. M. Larson et al, “Using Distributed Computing to Tackle Previ-
ously Intractable Problems in Computational Biology”, Folding@Home and
Genome@Home.

[14] J. H. Havgaard, R. B. Lyngs, G. D. Stormo and J. Gorodkin, “Pairwise Lo-
cal Structural Alignment of RNA Sequences with Sequence Similarity less than
40%”, Bioinformatics, vol. 21(9), pages 1815-1824, 2005.

[15] A. Isaev, “Introduction to Mathematical Methods in Bioinformatics (Universi-
text)”, Springer, vol. 58(1), June 2004.

[16] S. Needleman and C. Wunsch, “A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of two Proteins”, Journal of Molecular
Biology, vol. 48(3), pages 443—453.

[17] T. E. Smith and M. S. Waterman, “Identification of Common Molecular Subse-
quences”, Journal of Molecular Biology, vol. 147, pages 195-197, 1981.

[18] “http://www.clustal.org”, Clustal: Multiple Sequence Alignment, April 2010.

[19] W. R. Pearson and D. J. Lipman, “Rapid and Sensitive Protein Similarity
Searches”, Science, vol. 227, pages 1435-1441, 1985.

[20] S. F. Altschul et al., “A Basic Local Alignment Search Tool”, Journal of Molec-
ular Biology, vol. 215, pages 403—410, 1990.

[21] S. Derrien and P. Quinton “Hardware Acceleration of HMMER on FPGAs”,
Journal of Signal Processing System, 58, pages 53-67, 2010.

[22] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition”, Proc. IEEE 77, vol. 2, pages 257-286, 1989.

[23] L. Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration of Sequence
Alignment Algorithms - An Overview”, International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS’07), pages 96-101,
Rabat, Morocco, September 2-5, 2007.

[24] L. Hasan and Z. Al-Ars, “Accurate Profiling and Acceleration Evaluation of the
Smith-Waterman Algorithm using the MOLEN Platform”, International Confer-
ence on Applied Computing, pages 188—194, Algarve, Portugal, April 2008.

[25] L. Hasan, Y. M. Khawaja and A. Bais, “A Systolic Array Architecture for The
Smith-Waterman Algorithm with High Performance Cell Design”, IADIS Euro-
pean Conference on Data Mining, Amsterdam, The Netherlands, July 2008.

[26] L.Hasan, Z. Al-Ars, Z. Nawaz and K. L. M. Bertels, “Hardware Implementation
of the Smith-Waterman Algorithm Using Recursive Variable Expansion”, 3"

International Design and Test Workshop IDTO8, Monastir, Tunisia, December
2008.

BIBLIOGRAPHY 135

[27] L. Hasan and Z. Al-Ars, “An Efficient and High Performance Linear Recursive
Variable Expansion Implementation of the Smith-Waterman Algorithm”, 31*
Annual International Conference of the IEEE EMBS, pages 3845-3848, Min-
neapolis, Minnesota, USA, September 2009.

[28] L. Hasan, M. Kentie and Z. Al-Ars, “DOPA: GPU-based Protein Alignment Us-
ing Database and Memory Access Optimizations”, Submitted to BMC Bioinfor-
matics, ISSN 1471-2105, 2011.

[29] L. Hasan, Z. Al-Ars, M. Taouil and K. L. M. Bertels, “Performance and Band-
width Optimization for Biological Sequence Alignment”, 5" International De-
sign and Test Workshop (IDT’10), Abu Dhabi, UAE, December 14-15, 2010.

[30] L. Hasan, Z. Al-Ars and M. Taouil, “High Performance and Resource Efficient
Biological Sequence Alignment”, 32 Annual International Conference of the
IEEE EMBS, Pages 17671770, Buenos Aires, Argentina, August 31-September
4, 2010.

[31] L. Hasan and Z. Al-Ars, “Power Consumption Evaluation for Biological Se-
quence Alignment”, 1% STW.ICT Conference, Pages 1-6, Veldhoven, The
Netherlands, November 18-19, 2010.

[32] Waterman and Michael, “Introduction to Computational Biology”, Chapman
and Hall, 1995.

[33] 1. Eidhammer, 1. Jonassen and W. R. Taylor, ‘“Pairwise Global Alignment of
Sequences”, Protein Bioinformatics, 2004.

[34] C. A. Orengo and W. R. Taylor, “A Local Alignment Method for Protein Struc-
ture Motifs”, Journal of Molecular Biology, 233, pages 488-497, 1993.

[35] http://www.dbmi.columbia.edu/bioinformatics/.

[36] R. C. Edgar and S. Batzoglou, “Multiple Sequence Alignment”, Elsevier, 16,
pages 368-373, 2006.

[37] T. K. Attwood and D. J. P. Smith, “Introduction to Bioinformatics”, Cell and
Molecular Biology in Action Series.

[38] R. Giegerich, “A Systematic Approach to Dynamic Programming in Bioinfor-
matics”, Bioinformatics, vol. 16, pages 665-677, 2000.

[39] T. Ramdas and G. Egan, “A Survey of FPGA-based High Performance Com-
putation in Molecular Biology and other Domains”, Technical Report, MECSE,
2005.

[40] O. Gotoh, “An improved algorithm for matching biological sequences”, Journal
of Molecular Biology, vol. 162, pages 705-708, December 1982.

136 BIBLIOGRAPHY

[41] H. Y. Liao, M. L. Yin and Y. Cheng, “A Parallel Implementation of the Smith-
Waterman Algorithm for Massive Sequences Searching”, 26" Annual Interna-
tional Conference of the IEEE EMBS”, San Francisco, CA, USA, September
1-5, 2004.

[42] http://www.geocities.com/bioinformaticsweb/seqanalysis.html.

[43] S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: A New Generation of
Protein Database Search Programs”, Nucleic Acids Research, vol. 25(17), pages
3389-3402, 1997.

[44] NCBI - BLAST (http://www.ncbi.nlm.nih.gov/BLASTY/).
[45] EMBL - EBI (http://www.ebi.ac.uk/blast2/index.html).

[46] S. R. Eddy., “Profile Hidden Markov Models”, Bioinformatics, 14(9), pages
755-763, 1998.

[47] A. Krogh, et al., “Hidden Markov Models in Computational Biology: Appli-
cations to Protein Modeling”, Journal of Molecular Biology, 235, pages 1501-
1531, 1994.

[48] “White Paper on CLC Bioinformatics Cell 2.1.2”, March 27, 2009.
[49] http://www.sanger.ac.uk/Software/Pfam/.

[50] Bateman et al., “The Pfam Protein Families Database”, Nucleic Acids Research,
32(Database issue), pages D138-D141, 2004.

[51] J. Lu, M. Perrone, K. Albayraktaroglu and M. Franklin, “HMMer-Cell: High
Performance Protein Profile Searching on the Cell/B.E. Processor”, IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS-
2008), pages 223-232, Austin, Texas, USA, April 20-22, 2008.

[52] J. D. Thompson, D. G. Higgins and T. J. Gibson, “ClustalW: Improving the Sen-
sitivity of Progressive Multiple Sequence Alignment through Sequence Weight-
ing, Position-Specific Gap Penalties and Weight Matrix Choice”, Nucleic Acids
Research, 22(22), pages 4673—4680, 1994.

[53] D. Feng and R. Doolittle, “Progressive Sequence Alignment as a Prerequisite
to Correct Phylogenetic Trees”, Journal of Molecular Evolution, vol. 25, pages
351-360, August 1987.

[54] Y. Liu, B. Schmidt and D. L. Maskell, “MSA-CUDA: Multiple Sequence
Alignment on Graphics Processing Units with CUDA”, 20" IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors
(ASAPO9), pages 121-128, Boston MA, USA, July 7-9, 2009.

BIBLIOGRAPHY 137

[55] Jonassen and Inge, “http://www.ii.uib.no/ inge/kb207/slides/tsld001.htm”, Mul-
tiple Sequence Alignment, 2007.

[56] J. Chiang et al., “Hardware Accelerator for Genomic Sequence Alignment”, 28"
IEEE EMBS Annual International Conference, New York City, USA, Aug 30-
Sept 3, 2006.

[57] Y. Yamaguchi, Y. Miyajima, T. Maruyama and A. Konagaya, “High Speed Ho-
mology Search Using Run-Time Reconfiguration”, FPL 2002.

[58] S. Margerm, Cray Inc, “Reconfigurable Computing in Real-World Applica-
tions”, FPGA and Structured ASIC Journal (www.fpgajournal.com), February
7, 2006.

[59] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, in: C.
Mead, L. Conway (eds.): Introduction to VLSI Systems; Addison-Wesley, 1979.

[60] P. Quinton and Y. Robert, “Systolic Algorithms and Architectures”, Prentice
Hall International, 1991.

[61] G. Pfeiffer, H. Kreft and M. Schimmler, “Hardware Enhanced Biosequence
Alignment”, International Conference on METMBS, 2005.

[62] M. Borah, R. S. Bajwa, S. Hannenhalli and M. J. Irwin, “A SIMD Solution to
the Sequence Comparison Problem on the MGAP”, International Conference on
Application Specific Array Processors, 1994.

[63] D. P. Lopresti, “Rapid Implementation of a Genetic Sequence Comparator Using
Field Programmable Logic Arrays”, Conference on Advanced Research in VLSI,
pages 138-152, 1991.

[64] A.D. Blas et al., “The UCSC Kestrel Parallel Processor”, IEEE Transactions on
Parallel and Distributed Systems, vol. 16(1), pages 80-92, 2005.

[65] A. Schroder et al., “Bio-Sequence Database Scanning on a GPU” HICOMB,
2006.

[66] M. Gok and C. Yilmaz, “Efficient Cell Designs for Systolic Smith-Waterman
Implementation”, FPL 2006.

[67] S. Vassiliadis et al., “The Molen Polymorphic Processor”, IEEE Transactions on
Computers, vol. 53(11), pages 1363—1375, November 2004.

[68] L.Hasan and Z. Al-Ars, “Performance Improvement of the Smith-Waterman Al-
gorithm”, Annual Workshop on Circuits, Systems and Signal Processing (ProR-
ISC 2007), Veldhoven, The Netherlands, November 29-30, 2007.

[69] E. M. Panainte, “The Molen Compiler for Reconfigurable Architectures”, Ph.D.
Thesis, Computer Engineering Laboratory, Technical University Delft, The
Netherlands, 2007.

138 BIBLIOGRAPHY

[70] T. Oliver, B. Schmidt and D. Maskell, “Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs”, FPGA’05, Monterey, California,
USA, February 20-22, 2005.

[71] Z. Nawaz et al., “Recursive Variable Expansion: A Loop Transformation for Re-
configurable Systems”, International Conference on Field-Programmable Tech-
nology 2007, Kokurakita, Kitakyushu, JAPAN, December 2007.

[72] Z. Nawaz, M. Shabbir, Z. Al-Ars and K. L. M. Bertels, “Acceleration of Smith-
Waterman Using Recursive Variable Expansion”, 11" Euromicro Conference on
Digital System Design 2008, Parma, Italy, September 2008.

[73] Fermi™ “NVIDIA’s Next Generation CUDA™ Compute Architecture”, White
paper NVIDIA Corporation, 2009.

[74] http://www.khronos.org/opencl.
[75] http://www.nvidia.com/object/cuda_directcompute.html.

[76] Y. Liu, W. Huang, J. Johnson and S. Vaidya, “GPU Accelerated Smith-
Waterman”, International Conference on Computational Science, ICCS 2006,
University of Reading, UK, May 28-31 2006.

[77] S. A. Manavski and G. Valle, “CUDA Compatible GPU Cards as Efficient Hard-
ware Accelerators for Smith-Waterman Sequence Alignment”, BMC Bioinfor-
matics, vol. 9, Suppl 2:S10, 2008.

[78] A. Akoglu and G. M. Striemer, “Scalable and Highly Parallel Implementation of
Smith-Waterman on Graphics Processing Unit using CUDA”, Cluster Comput-
ing, vol. 12(3), pages 341-352, 2009.

[79] Y. Liu, D. Maskell and B. Schmidt, “CUDASW++: Optimizing Smith-
Waterman Sequence Database Searches for CUDA-enabled Graphics Processing
Units”, BMC Research Notes, vol. 2(1):73, 2009.

[80] Y. Liu, B. Schmidt and D. Maskell, “CUDASW++2.0: Enhanced Smith-
Waterman Protein Database Search on CUDA-enabled GPUs based on SIMT
and Virtualized SIMD Abstractions”, BMC Research Notes, vol. 3(1):93, 2010.

[81] “http://www.uniprot.org”, Universal Protein Resource, April 2010.

[82] M.A. Kentie, “Biological Sequence Alignment Using Graphics Processing
Units”, M.Sc. Thesis CE-MS-2010-35, Computer Engineering Laboratory, Tech-
nical University Delft, The Netherlands, 2010.

[83] “UVa Fasta Server”, http://fasta.bioch.virginia.edu, February 2011.

[84] M. Farrar, “Striped Smith-Waterman Speeds Database Searches Six Times over
other SIMD Implementations”, Bioinformatics, vol. 23(2), pages 156—161, 2007.

BIBLIOGRAPHY 139

[85] “NVIDIA”, Nvidia cuda best practices guide 3.0, 2010.
[86] http://www.yourgenome.org.
[87] http://en.wikipedia.org/wiki/.

[88] A.J. Gibbs and G. A. Mclntyre, “The Diagram, a Method for Comparing Se-
quences, Its Use with Amino Acid and Nucleotide Sequences”, European Jour-
nal of Biochemistry, vol. 16, pages 1-11, 1970.

[89] L. Shang, A. S. Kaviani and K. Bathala, “Dynamic Power Consumption in
Virtex”™-11 FPGA Family”, FPGA’02, Monterey, California, USA, February
24-26, 2002.

[90] G. Yeap, “Practical Low Power Digital VLSI Design”, Kluwer Academic Pub-
lishers, 1998.

[91] http://www.bioperf.org/.

[92] Y. Yu, L. A. Santat and S. Choi, “Bioinformatics Packages for Sequence Analy-
sis”, Bioinformatics, vol. 6, pages 143-160, 2006.

140

Publications

Book chapter:

1. L. Hasan and Z. Al-Ars, “An Overview of Hardware-based Acceleration of Bi-

ological Sequence Alignment”, Accepted for publication as a book chapter in
Bioinformatics, 2011, ISBN 978-953-307-269-2.

Journal:

1. L. Hasan, M. Kentie and Z. Al-Ars, “DOPA: GPU-based Protein Alignment
Using Database and Memory Access Optimizations”, Submitted to BMC Bioin-
formatics, 2011, ISSN 1471-2105.

International conferences/workshops:

1. L. Hasan, M. Kentie and Z. Al-Ars, “GPU-Accelerated Protein Sequence Align-
ment”, Submitted to 33rd Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC ’11), Boston, USA, August
30-September 03, 2011.

2. L. Hasan, Z. Al-Ars, M. Taouil and K. L. M. Bertels, “Performance and Band-
width Optimization for Biological Sequence Alignment”, 5" International De-
sign and Test Workshop (IDT’10), Pages 155-160, Abu Dhabi, UAE, December
14-15, 2010.

3. L. Hasan, Z. Al-Ars and M. Taouil, “High Performance and Resource Effi-
cient Biological Sequence Alignment”, 32"¢ Annual International Conference
of the IEEE EMBS, Pages 1767-1770, Buenos Aires, Argentina, August 31—
September 4, 2010.

4. L. Hasan and Z. Al-Ars, “An Efficient and High Performance Linear Recursive
Variable Expansion Implementation of the Smith-Waterman Algorithm”, 31
Annual International Conference of the IEEE EMBS, Pages 3845-3848, Min-
neapolis, Minnesota, USA, September 2009.

141

142 BIBLIOGRAPHY

5. L Hasan, Z. Al-Ars, Z. Nawaz and K.L.M. Bertels, “Hardware Implementa-
tion of the Smith-Waterman Algorithm Using Recursive Variable Expansion”,
3" International Design and Test Workshop IDT0S, Pages 135-140, Monastir,
Tunisia, December 2008.

6. L Hasan, Y.M. Khawaja and A. Bais, “A Systolic Array Architecture for The
Smith-Waterman Algorithm With High Performance Cell Design”, IADIS Euro-
pean Conference on Data Mining, Pages 35-42, Amsterdam, The Netherlands,
July 2008.

7. L Hasan and Z. Al-Ars, “Accurate Profiling and Acceleration Evaluation of the
Smith-Waterman Algorithm using the MOLEN Platform”, International Con-
ference on Applied Computing, Pages 188—194, Algarve, Portugal, April 2008.

8. L Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration of Sequence
Alignment Algorithms — An Overview”, International Conference on Design
and Technology of Integrated Systems in Nanoscale Era, Pages 92-97, Rabat,
Morocco, September 2007.

Local conferences/workshops:

1. L. Hasan and Z. Al-Ars, “Power Consumption Evaluation for Biological Se-
quence Alignment”, 1* STW.ICT Conference, Pages 1-6, Veldhoven, The Nether-
lands, November 18-19, 2010.

2. L. Hasan and Z. Al-Ars, “Performance Comparison between Linear RVE and
Linear Systolic Array Implementations of the Smith-Waterman Algorithm”, An-
nual Workshop on Circuits, Systems and Signal Processing (ProRISC 2009),
Pages 451-456, Veldhoven, The Netherlands, November 2009.

3. L Hasan, Z. Al-Ars and Z. Nawaz, “A Novel Approach for Accelerating the
Smith-Waterman Algorithm using Recursive Variable Expansion”, Annual Work-
shop on Circuits, Systems and Signal Processing (ProRISC 2008), Pages 4045,
Veldhoven, The Netherlands, November 2008.

4. L Hasan and Z. Al-Ars, “Performance Improvement of the Smith-Waterman Al-
gorithm”, Annual Workshop on Circuits, Systems and Signal Processing (ProR-
ISC 2007), Pages 211-214, Veldhoven, The Netherlands, November 2007.

Curriculum Vitae

Laiq Hasan was born on the 117 of April, 1976 in Karnal Sher
Killi, Swabi, Pakistan. He completed all his education, prior
to his PhD, in Pakistan. For his primary and high schooling,
he attended the Govt. Primary School Karnal Sher Killi 1981
- 1986, and Govt. High School Karnal Sher Killi 1986 - 1992.
For his higher secondary school studies, he attended the presti-
gious Islamia College Peshawar 1992 - 1994. He did his B.Sc.
in Electrical Engineering from N-W.F.P. University of Engineer-
ing and Technology Peshawar (UET Peshawar) 1995 - 2000 and
subsequently his M.Sc. in Computer Information Systems Engineering from the same
university in the period 2001 - 2003. While doing his M.Sc., he was working as a
junior lecturer in UET Peshawar, 1st in the Electrical Engineering Department and
then in the Department of Computer Systems Engineering (DCSE). He was appointed
as an Assistant Professor in DCSE in the year 2003. In the year 2005, he was awarded
a scholarship by the Higher Education Commission of Pakistan for pursuing his PhD
studies in The Netherlands. Since September 16, 2005, he has been in the Nether-
lands, pursuing his PhD studies in Computer Engineering Laboratory, at the Technical
University Delft.

During his PhD, he worked on accelerating bioinformatics applications, designed
FPGA and GPU based hardware accelerators for biological sequence alignment and
carried out a comprehensive and elaborate theoretical analysis of crucial parameters
like performance, computational resources, power and bandwidth limitations. He has
presented various scientific papers in local and international conferences related to
computer engineering and/or bioinformatics. Additionally, he published a journal pa-
per and a book chapter in the same field and supervised two master thesis projects.
This thesis is mainly based on the published papers relevant to the thesis topic.

He takes part in a variety of sports like cricket, volleyball, tennis and swimming.
He enjoys expeditions like sailing, hiking and trekking. He also likes walking and
riding his bike for hours. Reading newspapers, watching news and sports TV channels,
and learning about different societies, cultures and languages are his main hobbies.
Tourism and exploring new places are his passions. Making good friends, talking to
diversified people and enjoying a variety of food and drinks are his additional interests.

143

	Summary
	Samenvatting
	Acknowledgments
	Abbreviations and Symbols
	Introduction
	Molecular biology - an overview
	Cells, amino acids and proteins
	Chromosomes and DNA
	RNA and transcription

	Bioinformatics
	Fields of bioinformatics
	Sequence alignment and its types
	Applications of sequence alignment

	Acceleration of sequence alignment
	Methods of acceleration
	Thesis contribution

	Thesis outline
	Summary

	Sequence Alignment Methods
	Classification of sequence alignment methods
	Global methods
	Dot plot method
	Needleman-Wunsch algorithm

	Local methods
	Smith-Waterman algorithm
	FASTA algorithm
	BLAST: Basic Local Alignment Search Tool

	Mutiple alignment methods
	HMMER
	ClustalW

	Comparison of sequence alignment methods
	Summary

	Hardware Acceleration
	Classification of acceleration methods
	FPGAs
	SIMD solutions

	Accurate acceleration evaluation approach
	MOLEN platform
	S-W implementation on MOLEN

	Rectangular (2D) systolic implementation
	Cell design
	System design

	Linear (1D) systolic implementation
	Cell design
	System design
	Extended design with DDR RAM

	Summary

	RVE-based FPGA Acceleration
	Introduction
	The RVE approach
	Sequence alignment using RVE approach

	Rectangular (2D) RVE implementation
	Building block description
	System design
	Discussion of results

	Linear (1D) RVE implementation
	Building block description
	System design
	Discussion of results

	RVE performance evaluation
	Summary

	GPU Acceleration
	GPU as a computational platform
	CUDA framework
	Coalescing
	Previous implementations

	Optimized GPU implementation
	General design
	Database conversion
	Temporary data reads and writes
	Substitution matrix accesses

	Discussion of results
	Experimental setup
	Performance comparison

	Performance limits
	Limits/bottlenecks
	Scalability/future prospects

	Summary

	Performance Analysis
	Theoretical performance boundaries
	Performance limitations
	Performance limited by the computational resources
	Performance limited by the bandwidth

	Performance and bandwidth optimization
	Hardware partitioning
	Theoretical concept
	Example of the process

	Generalizing the hardware partitioning method
	Summary

	Conclusions and Future Research Directions
	Conclusions
	Future research directions

	Important Terms in Bioinformatics
	Dot Plot Implementation
	N-W Examples
	Example 1
	Example 2

	S-W Examples
	Flow chart
	Example 1
	Example 2

	Power Consumption Evaluation
	Evaluation of dynamic power consumption
	Resource utilization
	Performance optimization

	Publications
	Curriculum Vitae

