
Hardware Acceleration

of Bioinformatics

Sequence Alignment Applications

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K. C. A. M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 6 juni 2011 om 12.30 uur

door

Laiq HASAN,

Master of Science in Electrical Engineering

N-W.F.P. University of Engineering and Technology, Peshawar, Pakistan

geboren te Swabi, Pakistan.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. H. J. Sips

Copromotor: Dr. ir. Z. Al-Ars

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. H. J. Sips Technische Universiteit Delft, promotor

Dr. ir. Z. Al-Ars Technische Universiteit Delft, copromotor

Prof. dr. W. Anheier Universität Bremen

Prof. dr. O. Nieto-Taladriz Garcia Universidad Politecnica de Madrid

Prof. dr. ir. C. Vuik Technische Universiteit Delft

Prof. dr. ir. M. J. T. Reinders Technische Universiteit Delft

Dr. ir. T. G. R. M. van Leuken Technische Universiteit Delft

Prof. dr. ir. P. F. A. Van Mieghem Technische Universiteit Delft, reservelid

This thesis has been completed in partial fulfillment of the requirements of Delft Uni-

versity of Technology (Delft, The Netherlands) for the award of the Ph.D. degree. The

research described in this thesis was supported in parts by three institutions. (1) CE

Lab. Delft University of Technology, (2) HEC Pakistan, (3) UET Peshawar, Pakistan.

Published and distributed by: Laiq Hasan, E-mail: laiqhasan@gmail.com

ISBN: 978-90-72298-19-5

Keywords: Bioinformatics, Sequence Alignment, Hardware Acceleration, Systolic

Arrays, Recursive Variable Expansion, FPGAs, GPUs, Performance Analysis.

Copyright© 2011 by Laiq Hasan

All rights reserved. No part of the material protected by this copyright notice may

be reproduced or utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and retrieval system,

without written permission of the author.

Printed in The Netherlands

Dedicated to:

The Sunday morning Sun, cool breeze and clear blue skies.

iv

Summary

Biological sequence alignment is an important and challenging task in bioinformat-

ics. Alignment may be defined as an arrangement of two or more DNA or protein

sequences to highlight the regions of their similarity. Sequence alignment is used to

infer the evolutionary relationship between a set of protein or DNA sequences. An ac-

curate alignment can provide valuable information for experimentation on the newly

found sequences. It is indispensable in basic research as well as in practical appli-

cations such as pharmaceutical development, drug discovery, disease prevention and

criminal forensics.

Many algorithms and methods, such as, dot plot, Needleman-Wunsch, Smith-

Waterman, FASTA, BLAST, HMMER and ClustalW have been proposed to perform

and accelerate sequence alignment activities. However, with the ever increasing vol-

ume of data in bioinformatics databases, the time needed for biological sequence

alignment is always increasing. The main aim of the research presented in this the-

sis is to explore and analyze the existing sequence alignment methods and come up

with better and optimized solutions. The following research goals have been achieved

during the course of this thesis.

1. Classification and comparison of the available sequence alignment methods

with the emphasis on identifying the most optimal but computationally expen-

sive methods that are best suited for hardware acceleration.

2. Optimized systolic array implementations of the Smith-Waterman based se-

quence alignment on FPGAs.

3. A novel FPGA implementation of sequence alignment based on recursive vari-

able expansion and its performance evaluation.

4. An optimized and high performance GPU-based protein sequence alignment

and its comparison with the existing GPU solutions.

v

vi

5. Detailed performance analysis and optimization of the hardware-based sequence

alignment, considering the limiting factors like computational resources, mem-

ory bandwidth and power consumption.

6. Introduction of a technique based on hardware partitioning to improve perfor-

mance by reducing the hardware overhead cost.

Samenvatting

Biologische sequentie uitlijning is een belangrijke en uitdagende taak in bioinformat-

ica. Uitlijning kan gedefinieerd worden als een rangschikking van twee of meer DNA-

of eiwitsequenties om gelijkvormig delen te markeren. Sequentieuitlijning wordt ge-

bruikt om de evolutionaire relatie tussen een set eiwitten of DNA-sequenties af te

leiden. Een nauwkeurige uitlijning kan waardevolle informatie voor experimenten op

nieuw ontdekte sequenties opleveren. Het is onontbeerlijk in basisonderzoeken eve-

nals in praktische toepassingen zoals farmaceutische ontwikkelingen, medicijn onder-

zoek, ziekte preventie en forensisch onderzoek.

Vele algoritmes en methoden, zoals dot plot, Needleman-Wunsch, Smith-Waterman,

FASTA, BLAST, HMMER en ClustalW zijn beoogd om de sequentieuitlijning uit te

voeren en te versnellen. Echter, met het alsmaar groeiende volume van de data in

bio-informatica databanken, groeit ook alsmaar de tijd benodigd voor biologische se-

quentie uitlijning. Het voornaamste doel van het in dit proefschrift gepresenteerde on-

derzoek is het verkennen en analyseren van bestaande sequentieuitlijningsmethoden

en het opzetten van een betere, optimalere oplossing. De volgende onderzoeksdoelen

zijn voltooid in het kader van dit proefschrift.

1. Classificatie en vergelijking van beschikbare sequentieuitlijningsmethoden met

nadruk op het identificeren van de meest optimale maar mathematisch kost-

baarste methoden die het best passen bij hardwareversnelling.

2. Optimalisatie van systolic-array uitvoeringen van de op Smith-Waterman gebas-

eerde sequentieuitlijning in FPGAs.

3. Een nieuwe FPGA-implementatie van sequentieuitlijning gebaseerd op ‘recur-

sive variable expansion’ en zijn performance evaluatie.

4. Een geoptimaliseerde en high performance GPU-gebaseerd eiwit sequentieuitli-

jning en de vergelijking met bestaande GPU-oplossingen.

vii

viii

5. Gedetailleerde performance evaluatie en optimalisatie van hardware gebonden

sequentieuitlijning, met het oog op beperkende factoren zoals computer hulp-

bronnen, geheugenbandbreedte en energieverbruik.

6. Introductie van een werkwijze gebaseerd op hardware partitionering om de

prestatie te verbeteren door het terugbrengen van de hardware overhead kosten.

Acknowledgments

First and foremost, I would like to thank Allah SWT, as counting up His favors is

inconceivable to categorize. “If you would count up the favors of Allah, never would

you be able to number them: for Allah is Oft-Forgiving, Most Merciful.” (Quran,

Surah Al-Nahl, Verse 18)

Next, I thank my family and friends back home, who continuously keep praying

for my success, without expecting anything in return. Thanks are due to my friends

and acquaintances, in The Netherlands in general and Delft in particular, whose sup-

port was necessary for my long stay here. Thanks are also due to my friends abroad,

spread all over the world and whom I keep visiting from time to time. They really

make me feel like a global citizen.

In the Computer Engineering Laboratory, my first thanks go to the late professor

Stamatis Vassiliadis, who gave me the confidence and courage to continue with my

Ph.D. God may rest his soul in peace. Next, thanks to prof. dr. ir. H. J. Sips for

agreeing to be my promotor and approving the thesis. After Stamatis and H. J. Sips,

the next thanks of course go to my co-supervisor, dr. ir. Zaid Al-Ars, who always re-

mained patient and optimistic about my work and guided me to the best of his abilities

throughout my Ph.D. Thanks are due to dr. Koen Bertels and dr. Georgi Gaydadjiev,

who always helped and encouraged during the course of my Ph.D. Thanks to other

faculty members in the laboratory, Said Hamdioui, Sorin Cotofana, Arjan van Gen-

deren and Stephan Wong too, who have always been friendly and cooperative. Thanks

are also due to my colleagues Ioannis Sourdis and Blagomir Donchev for giving me

a start in VHDL, Sebastian Isaza for his friendly discussions and improving the pre-

sentation for my first colloquium talk, Bogdan Spinean for helping me out during our

travel to Rabat, Morocco for DTIS’07, soon after the major surgery on my left kidney

at Erasmus Medical Center in Rotterdam. Bundles of thanks to my colleagues Yao

Wang and Mottaqiallah Taouil for their handy advices about my work during the later

part of my Ph.D. Thanks are also due to Marijn Kentie and Erik Vermij for their con-

tributions in the practical part of the research while doing their M.Sc. projects with

me and Zaid. I also thank all other colleagues at Computer Engineering Laboratory,

ix

x

for providing a friendly and research conducive environment. It would be unfair if I

do not mention the technical and administrative support provided by Bert Meijs, Erik

de Vries, Eef Hartman, Lidwina Tromp and Monique Tromp. Their support gave me

the luxury of focusing only on my work, without caring much about the related issues.

Outside the Computer Engineering Laboratory, thanks to Franca Post from CICAT

(TU Delft), Loes Minkman from NUFFIC (The Netherlands), the concerned people

from the Higher Education Commission of Pakistan and University of Engineering

and Technology Peshawar Pakistan. They smoothly processed all my financial and

‘study leave’ related issues, thus making my life relatively easy. Thanks are due to

my friends Wouter van der Sluis, Weiman Chim, Saleh Safiruddin, Johan Splinter and

Serge Keyser for helping me in translating the summary of my thesis and proposi-

tions into Dutch. Also, my humble thanks to all my friends and their families for

taking good care of me during my necessary treatment at Erasmus Medical Center

in Rotterdam in August 2007. Special thanks go to Ahmad Jan, Saad Hassan Mirza

and my dear friend Waqar who remained with me for around 10 days in the hospital,

my friend Malik Aleem Ahmad for taking good care for more than a month during

my post hospital rest period, Mehfooz, Hamayun, Hisham, Haleem Bangash, Aqeel,

Ahson Jabbar, Ahsan Shabir, Haroon, Omer, Noman, Sant Paul, Jawad, Plamen Gon-

chosov, Blagormir Donchev and all other friends who visited me on regular basis and

kept me away from loneliness, desperation and frustration.

For the leisure times, my first thanks go to the Computer Engineering Laboratory

for organizing those enjoyable social events that are an integral part of life at the

laboratory. Next, I thank Saleh, Marius, George, Mihai, Chunyang, my Belgian friend

Glen and my Swedish friend Henrik for their company and playing my favorite sport

(tennis) with me. I also thank all my Pakistani, Indian, Chinese, Iranian, Dutch and

other friends for the cricket, volleyball, squash, swimming, cycling, going to cinemas

and other amazing activities in which we participated together. These activities were

the best part of my stay in The Netherlands. Thanks to all my friends in Delft and

outside (specially Seyab, Faisal Nadeem, Faisal Kareem, Fakhar, Mehfooz, Cheema,

Hamayun, Dev, Atif, Sandilo, Hanan, Zahid Shabbir, Nadeem, Zubair, Tariq, Hisham,

Sharif Ullah, Husnul Amin, Saleem, Haider, Mazhar, Amir, Sarfaraz, Samad Khan,

Shakir bhai, Niaz, Imran, Adeel, Zaidi, Mafalda and others), who made my stay in

The Netherlands sociable, by inviting me in so many parties and gatherings that they

kept organizing from time to time. I think, I should write a memoir at some point in

time to elaborate all these activities and the people involved.

Finally, I thank members of the opposing committee for devoting some of their

precious time to scrutinize my thesis, give their valuable feedback and above all travel

to Delft for the public defense of this dissertation.

Laiq Hasan

May 09, 2011

Contents

Summary v

Samenvatting vii

Acknowledgments ix

Abbreviations and Symbols xxi

1 Introduction 1

1.1 Molecular biology - an overview . 1

1.1.1 Cells, amino acids and proteins 2

1.1.2 Chromosomes and DNA . 2

1.1.3 RNA and transcription . 3

1.2 Bioinformatics . 4

1.2.1 Fields of bioinformatics . 5

1.2.2 Sequence alignment and its types 6

1.2.3 Applications of sequence alignment 9

1.3 Acceleration of sequence alignment 11

1.3.1 Methods of acceleration . 11

1.3.2 Thesis contribution . 13

1.4 Thesis outline . 14

1.5 Summary . 15

2 Sequence Alignment Methods 17

2.1 Classification of sequence alignment methods 17

2.2 Global methods . 18

2.2.1 Dot plot method . 18

2.2.2 Needleman-Wunsch algorithm 19

2.3 Local methods . 21

2.3.1 Smith-Waterman algorithm 21

xi

xii Contents

2.3.2 FASTA algorithm . 24

2.3.3 BLAST: Basic Local Alignment Search Tool 26

2.4 Mutiple alignment methods . 27

2.4.1 HMMER . 27

2.4.2 ClustalW . 28

2.5 Comparison of sequence alignment methods 29

2.6 Summary . 31

3 Hardware Acceleration 33

3.1 Classification of acceleration methods 33

3.1.1 FPGAs . 34

3.1.2 SIMD solutions . 36

3.2 Accurate acceleration evaluation approach 38

3.2.1 MOLEN platform . 38

3.2.2 S-W implementation on MOLEN 40

3.3 Rectangular (2D) systolic implementation 43

3.3.1 Cell design . 44

3.3.2 System design . 45

3.4 Linear (1D) systolic implementation 46

3.4.1 Cell design . 46

3.4.2 System design . 47

3.4.3 Extended design with DDR RAM 50

3.5 Summary . 51

4 RVE-based FPGA Acceleration 53

4.1 Introduction . 53

4.1.1 The RVE approach . 53

4.1.2 Sequence alignment using RVE approach 54

4.2 Rectangular (2D) RVE implementation 56

4.2.1 Building block description 56

4.2.2 System design . 57

4.2.3 Discussion of results . 57

4.3 Linear (1D) RVE implementation . 60

4.3.1 Building block description 60

4.3.2 System design . 61

4.3.3 Discussion of results . 61

4.4 RVE performance evaluation . 63

4.5 Summary . 67

5 GPU Acceleration 69

5.1 GPU as a computational platform . 69

5.1.1 CUDA framework . 69

5.1.2 Coalescing . 71

5.1.3 Previous implementations 72

Contents xiii

5.2 Optimized GPU implementation . 73

5.2.1 General design . 73

5.2.2 Database conversion . 74

5.2.3 Temporary data reads and writes 77

5.2.4 Substitution matrix accesses 78

5.3 Discussion of results . 79

5.3.1 Experimental setup . 79

5.3.2 Performance comparison . 81

5.4 Performance limits . 83

5.4.1 Limits/bottlenecks . 83

5.4.2 Scalability/future prospects 84

5.5 Summary . 86

6 Performance Analysis 87

6.1 Theoretical performance boundaries 87

6.2 Performance limitations . 90

6.2.1 Performance limited by the computational resources 90

6.2.2 Performance limited by the bandwidth 94

6.3 Performance and bandwidth optimization 96

6.4 Hardware partitioning . 99

6.4.1 Theoretical concept . 99

6.4.2 Example of the process . 100

6.5 Generalizing the hardware partitioning method 101

6.6 Summary . 105

7 Conclusions and Future Research Directions 107

7.1 Conclusions . 107

7.2 Future research directions . 108

A Important Terms in Bioinformatics 111

B Dot Plot Implementation 113

C N-W Examples 115

C.1 Example 1 . 115

C.2 Example 2 . 118

D S-W Examples 123

D.1 Flow chart . 123

D.2 Example 1 . 123

D.3 Example 2 . 125

xiv Contents

E Power Consumption Evaluation 127

E.1 Evaluation of dynamic power consumption 127

E.2 Resource utilization . 129

E.3 Performance optimization . 130

Publications 140

Curriculum Vitae 143

List of Tables

1.1 The 20 amino acids . 6

1.2 The BLOSUM62 amino acid substitution matrix 9

2.1 Dot plot matrix . 19

2.2 Comparison of various sequence alignment methods 29

3.1 Comparison of the work reviewed in Section 3.1 37

3.2 Profiling results . 41

3.3 Performance in GCUPS and frequency in MHz for various number of

PEs (N) . 49

3.4 H matrix for aligning sequences of m characters each 50

4.1 Comparison between 2D systolic array and RVE implementations . . 59

4.2 Comparison between linear systolic array and linear RVE implemen-

tations . 62

4.3 Performance evaluation for various RVE implementations 65

5.1 Performance results with Swiss-Prot 80

5.2 A comparison with CUDASW++ 2.0 83

6.1 Execution time (Texec) in µsec for various combinations of k and N . . 94

6.2 Execution time (Texec) in µ sec for various combinations of N and Bmain 95

6.3 Execution time (Texec) in µ sec for various (Ps) and (Qs) 102

6.4 Resource utilization ratio for various (Ps) and (Qs) 103

B.1 Example to prove our approach and its result 114

D.1 The dynamic programming matrix and the traceback path 125

D.2 Initialization for Example 2 with floating point values 125

xv

xvi List of Tables

D.3 Calculation of first set diagonal similarity scores in the Smith-Waterman

algorithm . 126

D.4 The endpoint of the Smith-Waterman algorithm after calculation of all

scoring parameters. A traceback from the highest score is highlighted 126

E.1 Dynamic power consumption in milliwatts (XC2VP30) 128

E.2 Dynamic power consumption in milliwatts (XC4VFX12) 129

E.3 Dynamic power consumption in milliwatts (XC5VT X240T) 129

E.4 Device utilization and performance results (XC2VP30) 130

E.5 Device utilization and performance results (XC4VFX12) 130

E.6 Device utilization and performance results (XC5VT X240T) 131

E.7 Modeling coefficients for various technologies 132

List of Figures

1.1 The structure of DNA . 3

1.2 Classification of bioinformatics research areas 5

1.3 Types of sequence alignment . 7

1.4 Examples of sequence alignment applications 10

1.5 Broad classification of sequence alignment acceleration 11

2.1 Various methods for sequence alignment 18

2.2 Sample H matrix, where the dotted rectangles show the elements that

can be computed in parallel . 23

2.3 Logic to compute cells in the H matrix, where + is an adder, MAX is a

max operator and SeqCmp is the sequence comparator that generates

match/mismatch scores . 24

2.4 Sample plot for FASTA . 25

2.5 Three stages of progressive alignment: (1) similarity matrix, (2) guided

tree, (3) profile-profile progressive alignment 28

3.1 Hardware acceleration of sequence alignment methods 34

3.2 Pictorial view of systolic array architectures 35

3.3 Block diagram description of MOLEN platform 38

3.4 Block diagram representation of MOLEN implementation approach . 39

3.5 Functional description of a software implementation of S-W algorithm 40

3.6 RTL schematic of the CCU for the function fill matrix 2 42

3.7 Post place and route simulation results 42

3.8 Cell design for rectangular systolic array implementation 44

3.9 Block diagram description of a 4 × 4 systolic array 45

3.10 Description of a 4-element linear systolic array 46

3.11 Cell design for linear systolic array implementation 46

3.12 Linear systolic array design using BRAM for intermediate data storage 48

3.13 Block diagram representation of BRAM control design 48

xvii

xviii List of Figures

3.14 State machine for BRAM address control unit 49

3.15 Linear systolic array design using BRAM and DDR RAM 50

4.1 Circuit for the Example 2 . 55

4.2 Filling a 2 × 2 H matrix using the RVE approach 56

4.3 Block diagram description of a 2D RVE design with b f = 2 × 2 56

4.4 Block diagram representation of a 5 × 5 array using multiple RVE

blocks with b f = 2 × 2 . 57

4.5 5 × 5 array using RVE blocks with b f = 2 × 2 58

4.6 Comparison between various 2D systolic array and 2D RVE imple-

mentations on a logarithmic scale . 59

4.7 Block diagram representation of the linear RVE design with b f = 2 × 2 60

4.8 Logical description of an RVE implementation with b f = 2 × 2 61

4.9 2-block linear RVE design . 62

4.10 Comparison between various linear systolic array and linear RVE im-

plementations on a logarithmic scale 63

4.11 RVE designs with various blocking factors 64

5.1 CUDA hierarchy of threads, blocks and grids 70

5.2 CUDA memory hierarchy . 71

5.3 The effect of coalescing on memory reads 72

5.4 Description of the GPU implementation 74

5.5 The database conversion process . 75

5.6 Sequence storing as interlaced subsets 76

5.7 Query profile . 79

5.8 (a) Execution time (b) Performance for query sequences of varying

lengths . 81

5.9 Performance comparison . 82

6.1 System model for the S-W based sequence alignment 88

6.2 Number of steps and PEs utilization during each step for N = Nq = Ns 89

6.3 Number of steps and PEs utilization during each step for N < (Nq = Ns) 92

6.4 Number of steps and PEs utilization (a) N = Nq < Ns (b) N < Ns < Nq 93

6.5 Texec vs N curve, limited by the computational resources 95

6.6 Performance limited by bandwidth (a) Texec vs bandwidth (b) Texec vs N 96

6.7 Texec vs N design trade off curves . 97

6.8 Texec vs N optimization curves . 98

6.9 2-sequence alignment (a) Sequential (b) Partitioned and in parallel . . 99

6.10 2-sequence alignment example . 101

6.11 P-sequence alignment (a) Sequential (b) Partitioned and in parallel . . 102

6.12 Execution time reduction by hardware partitioning 103

6.13 Resource utilization improvement by hardware partitioning 104

B.1 Dot plot cell design . 114

List of Figures xix

B.2 4-element dot plot array . 114

C.1 Initialization step . 116

C.2 Matrix fill (a) Step 1, (b) Step 2, (c) Step 3 and (d) Step 4 117

C.3 Traceback (a) Step 1, (b) Step 2, (c) Step 3 and (d) Step 4 118

C.4 Matrix fill for Example 2 . 120

C.5 Traceback for Example 2 . 121

D.1 Smith-Waterman flow chart . 124

E.1 Performance per unit Watt for S-W based sequence alignment 131

xx

Abbreviations and Symbols

1D - 1-dimensional or linear

2D - 2-dimensional

b f - blocking factor

A - Adenine

BLAST - Basic Local Alignment Search Tool

BRAM - Block RAM

C - Cytosine

CCU - Custom Computing Unit

CUDA - Compute Unified Device Architecture

CUPS - Cell Updates Per Second

DDR - Double Data Rate

DNA - Deoxyribonucleic Acid

DOPA - Database Optimized Protein Alignment

DP - Dynamic Programming

FASTA - Fast Alignment Search Tools - All

FPGAs - Field Programmable Gate Arrays

G - Guanine

GPUs - Graphic Processing Units

gprof - GNU profiler

HGP - Human Genome Project

HMMs - Hidden Morkov Models

HSPs - High-scoring Segment Pairs

xxi

xxii Abbreviations

INSDC - International Nucleotide Sequence Database Collaboration

MGAP - Micro Grained Array Processor

NCBI - National Center for Biotechnology Information

N-W - Needleman-Wunsch

PE - Processing Element

PIR - Protein Information Resource

QSP - Query Sequence Partitioning

RNA - Ribonucleic Acid

RTR - Run-time Reconfiguration

RVE - Recursive Variable Expansion

S-W - Smith-Waterman

ssearch - Smith-Waterman search

SIMD - Single-Instruction stream, Multiple-Data stream

T - Thymine

tRNA - transfer-RNA

U - Uracyl

Chapter 1
Introduction

With the ever increasing volume of data in the bioinformatics databases, the time

for comparing a query sequence with the pre-existing sequences in the databases

is always increasing. Researchers in various communities are working on accel-

erating the available methods for comparing and aligning these sequences. This

thesis presents one such work. This chapter provides a brief overview of bioin-

formatics in general with a particular emphasis on sequence alignment.

The chapter starts with an overview of molecular biology, presented in Sec-

tion 1.1. It is followed by an introduction to bioinformatics, sequence alignment,

its types and applications, presented in Section 1.2. Further, it presents the accel-

eration approaches for sequence alignment in Section 1.3 followed by an overview

of the thesis contribution. An outline of the thesis is presented in Section 1.4. The

chapter concludes with a summary, presented in Section 1.5.

1.1 Molecular biology - an overview

The field of bioinformatics is the application of computer science to biology in general

and molecular biology in particular. This can involve the development of algorithms

and software that can analyze huge amounts of data, the automation of previously la-

bor intensive tasks, or the creation of tools, for example with which to view 3D models

of biological structures. Although no in-depth knowledge of the chemical processes

involved is required from the perspective of computer scientists and hardware design

experts, subjects such as Deoxyribonucleic Acid (DNA) and protein construction are

integral to understanding the relevance of research topics like sequence alignment. In

the following subsections, a recap of the basics of molecular biology is presented.

1

2 Chapter 1. Introduction

1.1.1 Cells, amino acids and proteins

All living organisms consist of one, or many more, of a basic functional unit, the

cell. Classified as being ‘alive’ (the smallest organisms consist of a single cell), cells

can process and excrete molecules (metabolism), alter their electrical potential and

procreate by cell division. Many of the processes inside cells are governed by proteins.

Proteins are complex chains of molecules called amino acids. Some amino acids, the

‘non-essential’ ones, can be synthesized by the cell. The other, essential, amino acids

must be procured through the ingestion and breakdown of proteins in foods such as

meat. Again, this breaking down of food products is performed by proteins, this time

existing outside of any cell.

Proteins exist for a wide array of functions, for instance actin aids in muscle con-

traction while the proteins of the cytoskeleton form a cell’s ‘skeleton’, giving it its

shape and protection. Another important role of proteins is to act as a catalyst, where

the proteins are called enzymes. Enzymes act as catalysts by binding to the reagents

of a reaction and lowering the activation energy required for it to take place. Designed

to only be compatible with those specific reagents due to their structure, enzymes are

not consumed in the reaction and can be reused. Returning to the example of breaking

down food into nutrients, there are enzymes that split proteins into their component

amino acids, enzymes which break down fat molecules and enzymes that allow in-

gested nucleic acid to be reused for the construction of DNA.

1.1.2 Chromosomes and DNA

The cells require the presence of proteins, both internally and externally, to survive.

In fact, the reproduction of cells relies heavily on proteins too, such as those of the

aforementioned cytoskeleton facilitating the division of the cell membrane. Proteins

are created, from scratch and to specification, within the cell itself. This is where

the DNA comes in. DNA is stored in structures called chromosomes. Made up of

the DNA molecules and a supporting protein packaging, chromosomes are ‘wadded

up’ in the cell similar to a ball of string. Attached to these chromosomes, the DNA is

protected and more compact; this way it is able to fit in the cell (nucleus). The structure

and number of chromosomes varies on a per species bases, additionally the shape

of chromosomes is also determined by what stage of its life cycle the cell currently

resides in.

The DNA itself contains the genetic instructions that describe how the various pro-

teins should be constructed. The structure of DNA is shown in Figure 1.1. Structurally,

DNA consists of two long, coiled nucleotide polymer strands that take the well-known

double-helix form. These polymers are strengthened by a skeleton of sugars and phos-

phate groups, connected to these sugars are the bases, pairs of molecules that specify

the genetic code. Each strand of DNA has one end called the 3
′

end, the other end

is called the 5
′

end. Due to the anti parallel nature of the strands, their ends are mir-

rored. When talking about DNA, these ends can be used to indicate in which direction

a strand is being built/interpreted/etc.

1.1. Molecular biology - an overview 3

Adenine

Tymine

Guanine

Cytosine

Sugar Phosphate
Backbone

Base pair

Nitrogeous base

3

3

5

5

Figure 1.1: The structure of DNA

Four different bases exist, i.e. adenine (A), cytosine (C), guanine (G) and thymine

(T). A base on one strand will be matched by its twin base on the other strand and

connected to it using hydrogen bonds. Adenine is always paired with thymine whereas

cytosine and guanine form the second combination. This duplication of the bases is

central to the replication of DNA, and as such, to that of the cell and the survival of

the host organism.

During the replication of DNA mutations can occur, altering the genes of a host

organism. This ties into the theory of evolution and the field of phylogenetics, the

study of relatedness among organisms by comparing their genetic makeup.

1.1.3 RNA and transcription

The bases of DNA can be seen as letters (A, C, G and T). These letters are inter-

preted in words of three, called codons. Each codon describes a single amino acid, the

building blocks of proteins. A portion of DNA that codes for a protein is known as a

gene. As there are four bases and they appear in words of three, there exist 43 pos-

sible codons. However, only 20 different amino acids are encoded. This means that

some words code for the same amino acid. Additionally, some words have special

functions: the start (ATG) and stop (TAG, TAA, TGA) codons function as markers to

aid in the correct interpretation of the code at the RNA stage. A sequence of codons

that starts with a start codon and ends with a stop codon is called an open reading

frame. The process of interpreting the genetic code and using it to synthesize proteins

4 Chapter 1. Introduction

is called genetic expression. The first step is the generation of ribonucleic acid (RNA),

which will mirror the gene in question and be transported to the cell’s ‘protein fac-

tory’. Genes are transcribed to RNA by an enzyme called RNA polymerase. This is

bound to the correct place on the DNA by means of a promoter, which is a sequence

of codons that influences the binding of RNA polymerase directly or indirectly by

means of proteins. The DNA strand, the RNA will be based on, is called the cod-

ing strand. When generating RNA, the strands are separated and the complementary

strand, called the template strand, is walked in the 3
′

−→ 5
′

direction. The strand’s

bases are then paired with a new strand of again complementary bases (with thymine

replaced by uracyl (U)). This is the RNA. This strand is separated from the DNA once

transcription is complete, after which the DNA’s structure is restored. In effect, the

created RNA is a copy of the coding strand with T replaced by U.

Example: consider a strand of DNA coding a gene:

5
′

A T G G C C T G G A C T T C A ... 3
′

coding strand

3
′

T A C C G G A C C T G A A G T ... 5
′

template strand

The resultant RNA will then be:

5
′

A U G G C C U G G A C U U C A ... 3
′

Note the start codon ATG (AUG for the RNA). This RNA is transported to the

ribosomes, the cell components which assemble proteins by chaining together amino

acids. Here the RNA is walked and interpreted from the start to the stop codon. The

codons are interpreted by means of transfer-RNA (tRNA). These molecules also con-

tain a complementary codon to match with the RNA and carry an amino acid to link

up to the protein. The ribosomes themselves again consist of proteins and ribosomal

RNA.

This recap of genetic expression glosses over many things, including introns/exons,

the various RNA types, DNA/RNA quality control and the roles of proteins such as

repressors. Although the process is more involved than described here, especially in

humans, more information is not required to understand the basics of bioinformatics

and sequence alignment, presented in the next section. Readers interested in further

details may refer to [1] and [2].

1.2 Bioinformatics

Biology is in the middle of a major paradigm shift, driven by computing technology.

Two decades before the formal inauguration of the Human Genome Project (HGP),

a new hybrid field (partly molecular biology and partly computer science) began to

emerge. The new field was called computational molecular biology or bioinformatics,

which may be defined as a discipline that generates computational tools, databases,

and methods to support genomic and post genomic research. Bioinformatics is the

multidisciplinary research area aimed at organizing and classifying the immense rich-

1.2. Bioinformatics 5

ness of sequence data, where the sequence may refer to either DNA or protein.

Bioinformatics employs a digital language for representing its information using

the four basic alphabets (A, C, G, T). All the DNA molecules in an organism’s cell

have been represented and being identified using these alphabets. The tools of com-

puter science, statistics and mathematics are very critical for studying bioinformatics.

Some of the recent advances happened include improved DNA sequencing methods,

new approaches to identify protein structure and revolutionary methods to monitor the

expression of many genes in parallel. The following subsection presents major fields

of bioinformatics.

1.2.1 Fields of bioinformatics

A wide variety of research topics are being explored by researchers in the diversified

field of bioinformatics. Examples are, gene structure prediction, phylogenetic trees,

protein structure prediction (2D, 3D), sequencing (i.e. mapping) genomes etc. Figure

1.2 gives a broad classification of major research areas in bioinformatics.

Expression

arrays

Sequence

assembly

Physical

mapping

Metabolic and

signal transduction

pathways

TypeDimension

ab initioby similarity2D3D

Protein-coding genes

tRNA genes

Promoters

Eukaryotes Prokaryotes

Bioinformatics

Research Goals

Protein domains/

motifs

Local

similarity search

FASTA BLAST

S-W algorithm

N-W algorithmDot plotClustalWHMMER

Multiple

Phylogenetic

trees
Protein structure

prediction

Sequence

similarity analysis

Gene structure

prediction

in

Sequence alignment Global

Local

Figure 1.2: Classification of bioinformatics research areas

The relevant field among these to this thesis is the sequence similarity analysis or

sequence alignment. A significant part of bioinformatics is the analysis of sequences,

where the sequences of interest in molecular biology are those of DNA and proteins.

As discussed before, DNA consists of the four bases A, C, G and T. One might say that

DNA is a sequence, or string, of the alphabet {A,C,G,T}. Not surprisingly, RNA can

6 Chapter 1. Introduction

be looked at similarly, with the alphabet {A,C,G,U}. Whereas, proteins, too, can be

viewed as strings of an alphabet [3]. In this case, the alphabet of the 20 amino acids

is {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. The amino acids corresponding to

these letters are shown in Table 1.1.

Table 1.1: The 20 amino acids

Letter Amino acids Letter Amino acids Letter Amino acids Letter Amino acids

A Alanine Q Glutamine L Leucine S Serine

R Arginine E Glutamic acid K Lycine T Threonine

N Asparagine G Glycine M Methionine W Tryptophan

D Aspartic acid H Histidine F Phenylalanine Y Tyrosine

C Cysteine I Isoleucine P Proline V Valine

Numerous projects for sequencing the DNA of particular organisms constantly

supply new amounts of data on an enormous scale [4], with a doubling time esti-

mated to be 9-12 months. The bioinformatics industry has grown to keep up pace

with this information explosion, growing at 25-50% a year. In 2000, the US mar-

ket Research company, Oscar Gruss [5] estimated that the value of the bioinformatics

industry would touch $ 2 billion. With the ever increasing volume of sequence data

in various bioinformatics databases from International Nucleotide Sequence Database

Collaboration (INSDC) [6] (e.g. “public” repositories of gene data like GenBank from

National Center for Biotechnology Information (NCBI) [7], SwissProt from the Swiss

Institute of Bioinformatics [8] and PIR from the Protein Information Resource [9]), the

time for comparing a query sequence with the available databases is always increas-

ing. It could take weeks to months for a researcher to search sequences by hand in

order to find related genes or proteins. Computer technology has provided the obvious

solution to this problem. Not only can computers be used to store and organize se-

quence information into databases, but they can also be used to analyze sequence data

rapidly. The evolution of computing power and storage capacity has, so far, been able

to outpace the increase in sequence information being created. Theoretical scientists

have derived new and sophisticated algorithms which allow sequences to be readily

compared using probability theories. These comparisons become the basis for deter-

mining gene function, developing phylogenetic relationships and simulating protein

models. On the other hand, hardware design experts have been working on designing

and accelerating the more accurate methods of sequence alignment. In the following

subsections, sequence alignment, its types and application are elaborated.

1.2.2 Sequence alignment and its types

In most common terms sequence alignment may be defined as an arrangement of

two or more DNA or protein sequences to highlight the regions of their similarity.

This, in turn indicates the genetic relatedness between the organisms. The similarity

may be a consequence of functional, structural or evolutionary relationship between

1.2. Bioinformatics 7

the sequences [10]. New DNA, RNA and protein sequences develop from the pre-

existing sequences rather than get invented by nature from the scratch. This fact is the

foundation of any sequence analysis.

If two DNA, RNA or amino acid sequences are similar, there is a chance that

they are homologous. Homologous sequences share a common ancestral sequence,

their relative differences are the result of mutations. These mutations might manifest

in various ways: substitutions, where one symbol is replaced by another, insertions

where a new symbol is inserted into the sequence and deletions, the removal of a

symbol. To establish the degree of homology, the sequences are aligned i.e. lined up

in such a way that the degree of similarity is maximized. This process is known as

sequence alignment, which can be classified into various types as shown in Figure 1.3.

Following is a brief description of these types.

Sequence

Alignment Types

Structural

alignment

Global

alignment

Local

alignment

Multiple

alignment

Figure 1.3: Types of sequence alignment

Structural alignment

Structural alignment [11] is an approach of attempting to infer similarity between

proteins by comparing their three dimensional shapes, or tertiary structures. As a pro-

tein’s shape is determined by its amino acid makeup, which, in turn, determines its

function, it is obvious that structural alignment is an attractive tool for homology re-

search. In fact, different protein letter sequences might result in similar 3D structures,

where protein structure is better evolutionary conserved than sequence [12]. Unfortu-

nately, determining the tertiary structure of proteins requires costly, time consuming

procedures such as X-ray crystallography and nuclear magnetic resonance imaging

(bioinformatics databases contain much less protein structures than sequences) [2].

One field of bioinformatics, i.e. protein structure prediction concentrates on unrav-

eling the mysteries behind protein folding, the process in which an unfolded random

coil amino acid takes its characteristic tertiary structure. Using computational protein

folding, any of the myriad available protein sequences could be converted to a 3D

representation. Then, in turn, structural alignment could be used to infer homology.

Currently, however, protein folding is still an open problem and current approaches

have such high computational requirements that researchers have turned to super or

distributed computing [13]. Although mainly used for proteins, structural alignment

is also promising for strands of RNA [14]. It is not suitable for DNA as this always

takes the double-helix structure.

8 Chapter 1. Introduction

Global alignment

Global alignment methods operate directly on all sequence letters. The idea is to line

up two (or more) sequences so that their degree of similarity is maximized. For DNA

and RNA this means matching identical bases. In the case of proteins, amino acids

are matched if they are identical or can be derived from one another through likely

to occur substitutions [2]. Although matching two sequences directly will take into

account substitution/mutations to handle insertions and deletions, the notion of gaps

is introduced. Marked by the symbol ‘-’, a gap can be chosen to be inserted into any

of the sequences to obtain a closer match. Following is an example with the base

sequences TACCAGT and CCCGTAA:

No gaps

T A C C A G T

C C C G T A A

Gaps

T A C C A G T - -

C - C C - G T A A

Clearly the alignment with gaps is more relevant and better exposes the similarities

between both sequences. Note that other alignments are possible. An option would

be:

T A C C A G T - -

- - C C C G T A A

As multiple alignments are possible even in this simple case, it makes sense to

devise a way to rate and then select the best alignment(s). A simple method to ac-

complish this is to assign scores to the alignment letters. A simple scheme is 1 for

a match, -1 for a mismatch and -2 for a gap. Such a scheme is said to have a linear

gap penalty. A more advanced method is to introduce an affine gap penalty, which

assigns different scores to the starting of a new gap and the extension of a current

one. Generally, starting a new gap is given the largest penalty as this is biologically

the hardest [15]. Using the aforementioned scoring system, the first gapped alignment

scores (-1-2+1+1-2+1+1-2-2)=-5 and the second option does so as well with (-2-

2+1+1-1+1+1-2-2)=-5. So in this case, both gapped alignments are ‘as good’ as one

another. However, this does not automatically mean they both have the same biolog-

ical relevance. To judge how relevant an alignment’s score is, probabilistic methods

can be used. The idea is to check whether the probability of an alignment attaining

the score in question is adequately small (Chapter 7 of [15]). In case of using an affine

gap penalty, the second alignment would have the best score, as it contains two gaps

instead of three. The same approach can be used for amino acids as opposed to DNA

bases. Instead of working with fixed scores, amino acid substitutions have been rated

by their evolutionary likeliness and are available as standard 20 × 20 triangular sub-

stitution matrices. The two most well known matrices are the PAM and BLOSUM

families. Table 1.2 shows the BLOSUM62 matrix. Example of global alignment is

the Needleman-Wunsch (N-W) algorithm [16].

1.2. Bioinformatics 9

Table 1.2: The BLOSUM62 amino acid substitution matrix
Ala 4

Arg -1 5

Asn -2 0 6

Asp -2 -2 1 6

Cys 0 -3 -3 -3 9

Gln -1 1 0 0 -3 5

Glu -1 0 0 2 -4 2 5

Gly 0 -2 0 -1 -3 -2 -2 6

His -2 0 1 -1 -3 0 0 -2 8

Ile -1 -3 -3 -3 -1 -3 -3 -4 -3 4

Leu -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

Lys -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

Met -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5

Phe -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

Pro -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

Ser 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4

Thr 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

Trp -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Tyr -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

Val 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Local alignment

Local alignments are similar to global ones. The only difference is that instead of

attempting to align the complete sequences to one another, portions of similarity are

aligned. Following is an example with sequences GTGTACTCCAGAG and GTACC-

CAAG:
Global alignment

G T G T A C T C C A G A G

G - - T A C - C C A - A G

Local alignment

G T G T A C T C C - A G A G

- - G T A C - C C A A G - -
Looking for a local alignment will better expose ‘patches’ of homology in two

relatively dissimilar sequences. Thus it might lead to more biologically relevant results

[15]. Example of local alignment is the Smith-Waterman (S-W) algorithm [17].

Multiple alignment

The previous examples focused on aligning just two sequences, but in some cases it

might be interesting to consider the similarities between a group of sequences. For ex-

ample, if the structure of a protein is unknown, a similarity to a group of other proteins

might give clues. Global and local alignment algorithms can be adapted to deal with

multiple alignments, though this quickly becomes extremely computationally expen-

sive. An alternative is to use specifically designed heuristic algorithms, for example

ClustalW [18].

1.2.3 Applications of sequence alignment

Sequence alignment has many applications in bioinformatics. Figure 1.4 presents

some examples. Following is a brief description of these applications.

10 Chapter 1. Introduction

Sequence Alignment

Applications

Finding

homology

Determining a

sequence's origin

Finding specific

sequences

Constructing

evolutionary trees

Figure 1.4: Examples of sequence alignment applications

Finding homology

One of the main uses for sequence alignment is to find homology. Homology means

that two sequences share a common ancestor; evolution says that all cells must even-

tually trace back to the same ancestor. Finding homology between organisms might

enable knowledge of one to be applied to the other, or to infer the function of one

organism’s gene from that of a related species.

Determining the origin of a sequence

If a DNA or protein sample is recovered but its originating species are unknown,

sequence alignment can be used to find likely sources, i.e. the known sequences most

closely matching the sample.

Finding specific sequences

Suppose we have discovered the function of a part of species X’s genetic code. Then it

might be attractive to search species Y’s code for the sequence. If something similar is

found, it might give clues as to the location of a similar gene in Y. Similarly, suppose

that we might have found the piece of code that expresses a trait, such as a physi-

cal characteristic or the presence of a genetic disease, in one piece of genetic code.

Searching other pieces known to either feature or lack this trait might help validate or

disprove the theory.

Constructing evolutionary trees

From homology data, evolutionary (phylogenetic) trees can be constructed [15]. These

trees are built using the ‘genetic distance’ between species and give insight into species

relationships and the course of evolution. Using the concept of an evolutionary rate,

the species’ sequence homology can be translated into the time they took to develop

from ancestral species. The actual construction of the tree can be done in many ways;

examples include maximum parsony methods (building the tree such that the lowest

amount of evolutionary change is required) and distance methods such as the UPGMA

algorithm which builds the tree from the result matrix of a multiple alignment.

1.3. Acceleration of sequence alignment 11

The information presented in this section is annexed by the definitions of some

important bioinformatics terms given in Appendix A. In the next section, acceleration

of sequence alignment is presented followed by an overview of the thesis contribution.

1.3 Acceleration of sequence alignment

This section presents a broad classification of the methods used for acceleration of

sequence alignment applications. Furthermore, it provides an overview of the contri-

butions of this thesis for acceleration, analysis and optimization of such applications.

1.3.1 Methods of acceleration

Figure 1.5 presents a broad classification for acceleration of sequence alignment ap-

plications. The figure shows that the acceleration of sequence alignment applications

can either be in hardware or software. However, the main focus of the thesis is on

hardware acceleration, as shaded in the figure.

Acceleration of

Sequence Alignment

Hardware

acceleration

Software

acceleration

Intra PE Inter PEFASTA BLAST HMMER

Figure 1.5: Broad classification of sequence alignment acceleration

Software acceleration

Heuristics based algorithmic modifications are done to achieve faster software imple-

mentations of the sequence alignment applications, as done in FASTA, BLAST and

HMMER. These software implementations do not guarantee an optimal alignment

though. Following is a brief description of such heuristics based software implemen-

tations.

FASTA: FASTA was developed in 1985 by Lipman and Pearson [19]. Unlike the N-

W and S-W algorithms, FASTA approximates the optimal alignment by search-

ing and matching k-tuples (i.e. subsequences of length k). The algorithm as-

sumes that related proteins will have regions of identity. By searching with k-

tuples, the FASTA algorithm allows small regions of local identity to be found

quickly. For proteins, these k-tuples tend to be of length two.

12 Chapter 1. Introduction

BLAST: BLAST [20] is similar to the FASTA algorithm, however, it uses words

(w) instead of k-tuples. The computational complexity of both FASTA and

BLAST comes out to be O(MN). The space complexity for FASTA is O(MN),

whereas for BLAST, it is higher than all other algorithms and it comes out to be

O(20w + MN), where w is the word size.

HMMER: HMMER uses Hidden Morkov Models (HMMs) which are widely used

in biological sequence analysis. HMMs are a probabilistic tool which can be

used for sequence alignment [21], finding sequences in genetic code [2], in-

ferring protein structure or building profiles of DNA and proteins [15]. Such

profile HMMs can be used to determine whether a sequence is part of a fam-

ily of DNAs or proteins. HMMs are based on the probability of a sequence

adhering to certain characteristics. To determine these probabilities, machine

learning principles are used. In the case of a profile HMM, the learning set is a

multiple alignment. HMMs originated and still play a significant role in speech

recognition [22].

Hardware acceleration

The heuristics based software implementations just described improves the perfor-

mance at the cost of loosing accuracy. In contrast methods like the S-W algorithm

provides accurate and optimal solution. But based on exhaustive search, the limitation

of such methods is that they become too slow in practical situations, particularly for

long sequences. The focus of the thesis is on hardware acceleration of such accurate

methods on platforms like Field Programmable Gate Arrays (FPGAs) and Graphic

Processing Units (GPUs), which can either be related to the design of the basic Pro-

cessing Element (PE) called intra PE level or related to multiple PEs organization

called inter PE level. Following is a description of the acceleration at both levels.

Intra PE level: At this level of hardware acceleration, a basic building block, called

the PE is designed for a sequence alignment application. The PE is capable of

performing comparison between individual characters of the query and database

sequences and is optimized for high performance and/or efficient resource uti-

lization. In the later chapters of the thesis, such designs and optimizations are

presented in detail. More specifically, high performance PE designs for sys-

tolic array and recursive variable expansion (RVE) based implementations are

presented.

Inter PE level: At the inter PE level, the organization and interconnection of the PEs

is optimized for high performance, efficient resource and bandwidth utilization.

In this thesis, the PEs organized in 2-dimensional (2D) and 1-dimensional or

linear (1D) systolic array fashion are presented. Further, 2D and 1D RVE im-

plementations are discussed and compared with the corresponding systolic array

implementations. Additionally, high performance GPU-based sequence align-

ment is presented that eliminates the need for inter PE communication. Also,

1.3. Acceleration of sequence alignment 13

the issues related to bandwidth requirement and hardware redundancy are dis-

cussed in detail and performance and bandwidth optimizations are presented.

Furthermore, an approach for high performance and resource efficient biologi-

cal sequence alignment is presented. The succeeding chapters of the thesis give

an insight to such optimizations and analysis.

1.3.2 Thesis contribution

The research performed in the course of this thesis has contributed in a number of ways

to the hardware acceleration, performance optimization and analysis of bioinformat-

ics sequence alignment applications. Different ways and means have been explored

to accelerate such applications. Further, detailed performance analysis has been car-

ried out, considering the limiting factors like computational resources and memory

bandwidth. Following are the details of the contribution.

• A review of hardware acceleration of sequence alignment applications and their

comparisons based on various parameters [23] is presented Chapters 2 and 3.

• An accurate profiling and acceleration evaluation procedure has been proposed

[24] and presented in Chapter 3.

• An efficient and high performance systolic array architecture for biological se-

quence alignment [25,26] is presented in Chapter 3.

• An implementation based on the RVE approach to reduce the execution time

at the cost of additional hardware resource utilization [26,27] is presented in

Chapter 4.

• An optimized and high performance GPU-based protein sequence alignment

outperforming the existing GPU solutions [28] is presented in Chapter 5.

• A comprehensive and elaborate mathematical performance and bandwidth anal-

ysis and optimization for biological sequence alignment with particular empha-

sis on the S-W algorithm [29] is presented and maximum theoretical perfor-

mance boundaries are investigated in Chapter 6.

• An approach based on hardware partitioning is proposed to achieve high perfor-

mance and resource efficient biological sequence alignment [30]. This approach

is presented in Chapter 6.

• Power consumption evaluation and its impact on performance [31] is presented

in Appendix E.

14 Chapter 1. Introduction

1.4 Thesis outline

The rest of the thesis is organized as follows.

Chapter 2 presents a classification of various sequence alignment methods and

continues with a discussion of global, local and multiple methods in detail. It describes

exact methods like dot plot, Needleman-Wunsch and Smith-Waterman and approxi-

mate methods like FASTA, BLAST, HMMER and ClustalW. The chapter ends with a

comparison of the presented methods followed by a brief summary of the chapter.

Chapter 3 presents a classification of the various available acceleration methods

for sequence alignment applications and proposes an accurate profiling and accelera-

tion evaluation method using the MOLEN platform. Further, it presents FPGA-based

rectangular (2D) and linear (1D) systolic array implementations for sequence align-

ment. It continues with the discussion of an extended linear systolic array design and

ends with a brief summary of the chapter.

Chapter 4 presents RVE-based approach for sequence alignment and its compar-

ison with traditional systolic array based approaches. Further, it presents rectangular

and linear FPGA-based RVE implementations for sequence alignment and a discus-

sion of the corresponding results. It continues with the RVE performance evaluation

before concluding with a brief summary of the chapter.

Chapter 5 provides an introduction to GPUs, Compute Unified Device Architec-

ture (CUDA) and its programming and memory models. The chapter explores the

parallelization capabilities of GPUs for sequence alignments and reviews the avail-

able GPU-based approaches. It presents an optimized GPU implementation for S-W

based protein sequence alignment. Further, it evaluates the performance of the opti-

mized GPU implementation and compares it with the fastest available similar design.

The chapter concludes with a brief summary.

Chapter 6 presents a comprehensive and elaborate performance and bandwidth

analysis for sequence alignment. It continues with evaluating theoretical performance

boundaries for various cases and optimizing bandwidth requirement. Further, it presents

a method based on hardware partitioning to carry out high performance and resource

efficient biological sequence alignment. Additionally, it develops equations to show

the general trend of execution time reduction, resource utilization improvement and

hence performance enhancement. The chapter ends with a brief summary.

The thesis ends with Chapter 7, where chapter wise brief conclusions are given,

followed by a number of recommendations intended to identify future research direc-

tions.

The main content of the thesis is annexed by five appendices organized as follows.

Appendix A defines some important terms used in bioinformatis. Appendix B

provides a dot plot implementation. Appendix C gives a couple of examples to explain

the N-W algorithm. Appendix D explains S-W algorithm with the help of a flow chart

and two examples. Appendix E presents power consumption evaluation for sequence

alignment and its impact on performance.

At the end, a list of publications related to the thesis and a brief curriculum vitae

of the author are given.

1.5. Summary 15

1.5 Summary

This chapter served as a simple introduction to the concepts associated with molecu-

lar biology, bioinformatics and sequence alignment in general. Further, it presented

the methods for acceleration of sequence alignment applications and provided an

overview of the thesis contribution. The main topics discussed are as follows.

• An overview of molecular biology including a brief discussion about cells,

amino acids, proteins, chromosomes, DNA, RNA and transcription.

• An introduction to bioinformatics including a discussion about its fields with a

particular emphasis on sequence alignment, its types and applications.

• Classification of sequence alignment acceleration and a discussion about the

acceleration methods.

• An overview of the thesis contribution with references to the papers published

during the course of the thesis.

• An outline of the thesis glancing at the topics to be presented in the following

chapters.

16

Chapter 2
Sequence Alignment Methods

This chapter introduces a taxonomy of the various sequence alignment meth-

ods found in the literature. It describes in detail, exact methods like dot plot,

Needleman-Wunsch and Smith-Waterman and approximate methods like FASTA,

BLAST, HMMER and ClustalW. Further, it compares the presented methods

based on their complexities and parameters like alignment type and the search

procedure used.

It starts with a classification of sequence alignment methods, presented in

Section 2.1, followed by a discussion about global methods like dot plot and

Needleman-Wunsch in Section 2.2. Section 2.3 presents local methods like Smith-

Waterman, FASTA and BLAST, whereas Section 2.4 presents multiple alignment

methods like HMMER and ClustalW. Section 2.5 presents a comparison of vari-

ous sequence alignment methods discussed in the previous sections, whereas Sec-

tion 2.6 summarizes the chapter.

2.1 Classification of sequence alignment methods

Sequence alignment aims at identifying regions of similarity between two DNA or

protein sequences (the query sequence and the subject or database sequence). Tra-

ditionally, the methods of pairwise sequence alignment [32] are classified as either

global or local, where pairwise means considering only two sequences at a time.

Global methods [33] attempt to match as many characters as possible, from end to

end, whereas local methods [34] aim at identifying short stretches of similarity be-

tween two sequences [35]. However, in some cases, it might also be needed to investi-

gate the similarities between a group of sequences, hence multiple sequence alignment

methods are introduced. Multiple sequence alignment [36] is an extension of pairwise

alignment to incorporate more than two sequences at a time. Such methods try to align

all of the sequences in a given query set simultaneously. Figure 2.1 gives a classifica-

17

18 Chapter 2. Sequence Alignment Methods

tion of various available sequence alignment methods. These methods are categorized

into three types, i.e. global, local and multiple, as shown in the figure. Further, the fig-

ure also identifies the exact methods and approximate methods. The methods shown

in Figure 2.1 are further elaborated in the following sections.

Global Local

BLAST
S-W

algorithm

N-W

algorithm FASTA

Multiple

ClustalWHMMER

Exact methods Approximate methods

Dot plot

Sequence Alignment

Methods

Figure 2.1: Various methods for sequence alignment

2.2 Global methods

As described earlier, global methods aim at matching as many characters as possible,

from end to end between two sequences i.e. the query sequence (Nq) and the subject or

database sequence (Ns). Methods carrying out global alignment include dot plot and

Needleman-Wunsch algorithm. Both are categorized as exact methods. The difference

is that dot plot is based on a basic search method, whereas Needleman-Wunsch on

dynamic programming, as discussed in the following subsections.

2.2.1 Dot plot method

The most basic method of comparing two sequences is a visual approach known as

a dot plot [37]. The sequences to be compared are arranged along the margins of a

matrix. At every point in the matrix where the two sequences are identical, a dot is

placed (i.e. at the intersection of every row and column that have the same letter in

both sequences). A diagonal stretch of dots indicates regions where the two sequences

are similar. Done in this fashion, a dot plot as shown in Table 2.1 is obtained (for

clarity, dots are marked as ×s in the table).

In general two sequences are considered, i.e. the query sequence (Nq) and the

subject or database sequence (Ns), whose lengths can be different, but in the ideal case

are fairly similar. We proceed by creating a rectangular matrix in which the characters

of Nq are mapped along the x-axis, and those of Ns along the y-axis. Initially, the

2.2. Global methods 19

Table 2.1: Dot plot matrix

a c t g g a c t g g a c t g g

a × × ×

c × × ×

t × × ×

g × × × × × ×

g × × × × × ×

a × × ×

c × × ×

t × × ×

g × × × × × ×

g × × × × × ×

a × × ×

c × × ×

t × × ×

g × × × × × ×

g × × × × × ×

matrix is filled with zeros. Each of its cells, xiy j (where i varies between 1 and the

length of sequence Nq, and j varies between 1 and the length of sequence Ns), is

considered in turn and is assigned a value indicating the level of similarity between

the two residue positions (Nq and Ns). In the simplest scheme, all cells remain zero,

unless Nq = Ns, in which case the element is assigned a value 1.

Such a matrix can be visualized quite simply for short sequences, for example by

printing out the matrix in a particular font, as shown in Table 2.1 or for longer se-

quences, by using an appropriate graphics program. The plot is characterized by some

apparently random dots (noise) and a central diagonal line, where a high density of ad-

jacent dots indicates the regions of greatest similarity between the two sequences. For

full length sequences, a plot must be reduced in size in order to be able to visualize the

complete comparison and in doing so, the ×s in the magnified section shown in Table

2.1 are reduced to dots (hence the dot plot), which, at sufficiently low magnification,

will ultimately merge into lines.

In contrast with identical sequences, two similar sequences will be characterized

by a broken diagonal [37]. The time and space complexity of the dot plot is O(MN),

where M and N are the lengths of sequences Nq and Ns, respectively. This discussion

is annexed by a parallel hardware design for dot plot in Appendix B.

2.2.2 Needleman-Wunsch algorithm

In 1970, Needleman and Wunsch proposed an alignment method, called Needleman-

Wunsch algorithm [16] that can be obtained computationally by applying a straightfor-

ward Dynamic Programming (DP) [38] algorithm to find an optimal global alignment

20 Chapter 2. Sequence Alignment Methods

of two sequences, i.e. the query sequence (Nq) of length M and the subject or database

sequence (Ns) of length N. The algorithm is based on finding the elements of a matrix

H, according to the following equation,

Hi, j = max



















Hi−1, j−1 + S i, j

Hi−1, j − d

Hi, j−1 − d

(2.1)

where S i, j is the similarity score of comparing Nq to Ns and d is the penalty for a

mismatch. The matrix is initialized with H0, j = Hi,0 = 0, for all i, j.

In a simple scoring scheme, cells representing matches are scored 1 and cells rep-

resenting mismatches are scored 0, assuming the penalty for a mismatch to be zero; the

2D array is thus populated with these values. An operation of successive summation

of cells then commences. This process examines each cell in the matrix, the maxi-

mum score along any path leading to the cell is added to its present contents, and the

summation continues. When this process has been completed, the maximum-match

pathway is constructed.

The algorithm can be implemented using the following pseudo code.

Initialization:

H(0,j) = 0

H(i,0)= 0

Matrix Fill:

for each i,j = 1 to M,N

{

H(i,j) = max(H(i-1,j-1) + S(i,j),

H(i-1,j) - d,

H(i,j-1) - d)

}

Traceback:

H(opt) = max(H(i,j))

traceback(H(opt))

The time complexity of the initialization step is simply O(M + N). The next step

is filling in the matrix with all the scores, Hi, j. For each cell of the matrix, three

neighboring cells (left, above, and diagonally upper-left) must be compared. Three

separate scores are calculated based on all three neighbors, and the maximum score

is assigned to the cell, which is a constant time operation [39]. Thus, to fill the entire

matrix, the time complexity is the number of entries, or O(MN). Finally, we can

traverse a maximum of N rows and M columns during the traceback, and thus the

complexity of this is O(M +N). Thus, the overall time complexity of this algorithm is

O(M + N) +O(MN) +O(M + N) = O(MN). Since this algorithm fills a single matrix

of size MN, the total space complexity is O(MN). Examples of N-W algorithm are

given in Appendix C.

2.3. Local methods 21

2.3 Local methods

In contrast to global methods, local methods attempt to identify short stretches of

similarity between two sequences i.e. Nq and Ns. These include exact method like

Smith-Waterman and heuristics based approximate methods like FASTA and BLAST,

as explained in the following subsections.

2.3.1 Smith-Waterman algorithm

In 1981, Smith and Waterman described a method, commonly known as the Smith-

Waterman algorithm [17], for finding common regions of local similarity. N-W algo-

rithm described in the previous section works well for sequences that show similarity

across most of their lengths. Consider, however, two sequences that are only distantly

related to each other. They will, even so, exhibit small regions of local similarity,

although no satisfactory overall alignment can be found. S-W algorithm solves this

problem and is used for finding these common regions of similarity. Like the tech-

nique of N-W, this is a matrix-based approach, and trace back is used to reconstruct

the gapped alignments. S-W method has been used as the basis for many subsequent

algorithms, and is often quoted as a benchmark when comparing different alignment

techniques.

When obtaining the local S-W alignment, Hi, j for N-W algorithm is modified as

follows:

Hi, j = max































0

Hi−1, j−1 + S i, j

Hi−1, j − d

Hi, j−1 − d

(2.2)

The algorithm can be implemented using the following pseudo code.

Initialization:

H(0,j) = 0

H(i,0) = 0

Matrix Fill:

for each i,j = 1 to M,N

{

H(i,j) = max(0,

H(i-1,j-1) + S(i,j),

H(i-1,j) - d,

H(i,j-1) - d)

}

Traceback:

22 Chapter 2. Sequence Alignment Methods

H(opt) = max(H(i,j))

traceback(H(opt))

The S-W with affine gap penalties [40] is given by Equation 2.3, where S i, j is

the similarity score and α, β are the gap opening and extension penalties, respectively.

Further, H0,0 = D0,0 = E0,0 = Hi,0 = Di,0 = Ei,0 = H0, j = D0, j = E0, j = 0, for 1 ≤ i ≤

M and 1 ≤ j ≤ N, where M and N are the lengths of the sequences to be aligned.

Hi, j = max































0

Hi−1, j−1 + S i, j

Di, j

Ei, j

(2.3)

where Di, j = max

{

Hi−1, j − α

Di−1, j − β
and Ei, j = max

{

Hi, j−1 − α

Ei, j−1 − β

N-W and S-W algorithms share many similarities. Both algorithms consist of

three steps: initialization, matrix fill, and traceback. A matrix is constructed with

one sequence lined up against the rows of a matrix, and another against the columns,

with the first row and column initialized with a predefined value (usually zero) i.e. if

the sequences are of length M and N respectively, then the matrix for the alignment

algorithm will have (M + 1) × (N + 1) dimensions. The matrix fill stage scores each

cell in the matrix. This score is based on whether the two intersecting elements of

each sequence are a match, and also on the score of the cell’s neighbors to the left,

above, and diagonally upper left. Three separate scores are calculated based on all

three neighbors, and the maximum of these three scores (or a zero if a negative value

would result) is assigned to the cell. This is done for each cell in the matrix. Even

though the computation for each cell usually only consists of additions, subtractions,

and comparisons of integers, the algorithm would nevertheless perform very poorly

if the lengths of the query sequences become large. The initialization and matrix fill

steps for N-W and S-W algorithms are the same, so their time complexity would be

O(M + N) and O(MN) respectively. The difference lies in the traceback step. With

N-W, the traceback starts at the last cell in the matrix and traces the maximal score

path back to the first cell. Whereas with the S-W, the traceback starts at the cell with

the highest score in the matrix and ends at a cell when the similarity score drops

below a certain predefined threshold. For doing this, the algorithm requires to find

the maximum cell which is done by traversing the entire matrix, making the time

complexity for the traceback O(MN). It is also possible to keep track of the cell with

the maximum score, during the matrix filling segment of the algorithm, although this

will not change the overall complexity. Thus, the total time complexity of the S-W

algorithm is O(M + N) + O(MN) + O(MN) = O(MN). The space complexity is also

the same as that of the N-W algorithm. This is due to the fact that the same matrix

is used and the same amount of space is needed for the traceback. Thus, there is no

definite space or time advantage of one algorithm over the other. However, the S-W

2.3. Local methods 23

algorithm tends to model protein homology better, as it ignores misalignments at the

ends of the proteins which are often not highly conserved.

In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries

of the H matrix can be calculated in parallel. This is however complicated by data

dependencies, whereby each Hi, j entry depends on the values of three neighboring

entries Hi, j−1, Hi−1, j and Hi−1, j−1, with each of those entries in turn depending on

the values of three neighboring entries, which effectively means that this dependency

extends to every other entry in the region Hx,y : x ≤ i, y ≤ j. This implies that it

is possible to simultaneously compute all the elements in each anti-diagonal, since

they fall outside each others data dependency regions. Figure 2.2 shows a sample H

matrix for two sequences, with the bounding boxes indicating the elements that can

be computed in parallel. The bottom-right cell is highlighted to show that its data

dependency region is the entire remaining matrix. The dark diagonal arrow indicates

the direction in which the computation progresses. At least 9 cycles are required for

this computation, as there are 9 bounding boxes representing 9 anti-diagonals and a

maximum of 5 cells may be computed in parallel.

G A T T A

G

A

C

T

C

0 0 0 00

0

0

0

0

0

1 0 0 0 0

0

0

0

0

2

0

0

0

0

1

1

0

0

0

2

0

1

0

0

0

1

i

j

Figure 2.2: Sample H matrix, where the dotted rectangles show the elements that can

be computed in parallel

The degree of parallelism is constrained to the number of elements in the anti-

diagonal and the maximum number of elements that can be computed in parallel are

equal to the number of elements in the longest anti-diagonal (ld), where,

ld = min(M,N) (2.4)

24 Chapter 2. Sequence Alignment Methods

Theoretically, the lower bound to the number of steps required to calculate the

entries of the H matrix in a parallel implementation of the S-W algorithm is equal to

the number of anti-diagonals required to reach the bottom-right element, i.e. M+N−1

[41].

MAX

MAX

+MAX

++

Seq

Cmp

Hi,j-1 d Hi-1,j Hi-1,j-1 Nq Ns 0

Si,j

Hi,j

 Cycle 1

Cycle 2

Cycle 3

Cycle 4

Figure 2.3: Logic to compute cells in the H matrix, where + is an adder, MAX is a

max operator and SeqCmp is the sequence comparator that generates match/mismatch

scores

Figure 2.3 shows the logic to compute an element of the H matrix. The logic con-

tains three adders, a sequence comparator circuit (SeqCmp) and three max operators

(MAX). The sequence comparator compares the corresponding characters of two input

sequences and outputs a match/mismatch score, depending on whether the two char-

acters are equal or not. Each max operator finds the maximum of its two inputs. The

time to compute an element is 4 cycles, assuming that the time for each cycle is equal

to the latency of one add or compare operation.

For more understanding of the S-W algorithm, refer to Appendix D, where S-W

examples are given in addition to its flow chart description.

2.3.2 FASTA algorithm

Fast Alignment Search Tools - All (FASTA) was developed in 1985 by Lipman and

Pearson [19]. Unlike N-W and S-W algorithms, FASTA approximates the optimal

alignment by searching and matching k-tuples, or subsequences of length k. The algo-

rithm assumes that related proteins will have regions of identity, and by searching with

k-tuples, FASTA algorithm allows small regions of local identity to be found quickly.

For proteins, these k-tuples tend to be of length two. FASTA search process can be

summarized into the following three steps.

2.3. Local methods 25

1. In the first step of this search, the comparison can be viewed as a set of many

dot plots with the query sequence on the vertical axis and each sequence in the

database on the horizontal axis of its particular plot. Set a word size, where a

word is a short sequence of nucleotides. A word of size 2 could be, for instance,

gg. Place a dot wherever words of this size match. For example, if the query

sequence is ggctttcgg and the database sequence is aacggcttacg, then the corre-

sponding plot would be as shown in Figure 2.4. The two diagonal series of dots

Figure 2.4: Sample plot for FASTA

in the figure indicate that the two sequences are identical over these diagonals.

The purpose of this first step is to find the longest diagonals, or highest scoring

regions.

2. In the second step, re-score the 10 best diagonals using a scoring matrix that

allows and takes into account conservative replacements and ambiguity symbols

shorter than the size of a word. This analysis finds high scoring subregions

within the diagonals, called “initial regions”

3. In step three, take the initial regions whose scores are above a predetermined

threshold and check to see if they can be joined together. Impose a penalty on

joined regions so that they have lower scores than continuous runs. Finally, use

a variant of the last part of S-W algorithm to align the sequence and calculate

the optimal score. If the optimal score is above a certain threshold, place the

sequence in the match list.

Like N-W and S-W algorithms, the computational (i.e. time) and space complexities

of FASTA are both O(MN).

26 Chapter 2. Sequence Alignment Methods

2.3.3 BLAST: Basic Local Alignment Search Tool

Basic Local Alignment Search Tool (BLAST) is a heuristic method [20] to find the

highest scoring locally optimal alignments between a query sequence and a database.

It is similar to FASTA, however, the basis of BLAST algorithm is the use of words and

High-scoring Segment Pairs (HSPs) instead of k-tuples. The central idea of BLAST

algorithm is to pay attention only to the segment pairs that contain a word pair of

length w with a score of at least T , i.e. the threshold value [42]. BLAST has three

phases, described as follows.

1. Phase 1: Compile a list of word pairs (typically w = 3 for proteins) above

threshold T (say 11)

Example: For broad bean leghemoglobin (a protein that provides oxygen to

bacteroids) LGAHAEK

A list of words from the given sequence: LGA GAH AHA HAE AEK SHA

AHG ...

Neighborhood

word hits (AHA) AHA 4,8,4 16

above threshold T SHA 1,8,4 13

...... .,.,. ...

AHG 4,8,0 12

...... .,.,. ...

(T = 11) AHI 4,8,-1 11

Neighborhood NHA -2,8,4 10

word hits

below threshold

2. Phase 2: Scan the database for entries that match the compiled list.

3. Phase 3: When you manage to find a hit, extend it in either direction. Use

a scoring matrix to keep track of the score. Stop when the score drops below

some cutoff (default X = 15)

AGVVDSPKLGAHAEKVFG 65 LEGHEMOGLOBIN (query)

GAVMGNPKVKAHGKKVLH 67 BETA GLOBIN (hit)

- extend Hit extend -

In the original (1990) implementation of BLAST [20], all hits were extended in

either direction. The extending step was very time consuming, as it was taking almost

90 percent of the execution time. In a 1997 refinement of BLAST [43], two indepen-

dent (non-overlapping) hits are required. Extending takes place only when the two

hits are within a distance A (default=40) of one another on the same diagonal. This

significantly improves the performance.

2.4. Mutiple alignment methods 27

The computational complexity of BLAST can be calculated and like FASTA, it

also comes out to be O(MN). However, using the elimination of HSPs and words,

BLAST significantly lowers the number of segments that needs to be extended. This

makes BLAST run faster than all the previous algorithms.

For calculating the space complexity of BLAST, we must first take into consid-

eration the hash table, where the words and HSPs are stored. The table contains 20w

rows, one for every possible word of length w. The rows contain the locations for each

of the words, and the total number of positions is of the order N. Thus, there should

be of the order N seeds, which can each lead to a local alignment of a maximum of

length M. The total space complexity is, O(20w) + O(N) + O(MN) = O(20w + MN).

Thus, the space complexity is slightly higher than other algorithms, however the actual

space used may not be significantly larger than the dynamic programming algorithms.

This is because many of the local alignments will be discarded as they do not meet the

threshold.

BLAST is significantly faster than the older, slower algorithms, yet, it does not

always give the optimal alignment. It is possible for BLAST to miss segments of sim-

ilarity smaller than the word size, and ungapped BLAST often produces alignments

which are not biologically relevant. Gapped BLAST can also produce suboptimal

alignments, because when it performs the dynamic programming at the end, the best

alignment may lie outside the predefined threshold. Thus, it is clear that a trade off

exists between the sensitivity of an algorithm and the speed at which it runs. Some

online tools are available to use BLAST, such as [44,45].

2.4 Mutiple alignment methods

The algorithms discussed so far work for pairwise alignment, but as mentioned in the

previous chapter, it might be of interest in some cases to consider the similarities be-

tween a group of sequences. Multiple sequence alignment methods are introduced

to handle such cases. Multiple sequence alignment is an extension of pairwise align-

ment and it tries to align more than two sequences in a given query set simultaneously.

These include HMMER and ClustalW, as elaborated in the following subsections.

2.4.1 HMMER

Among other approaches, profile based Hidden Markov Models (profile HMMs) [46]

have been recently used by biologists to predict the structure and function of a pro-

tein directly from its representation as an amino acid sequence [47]. Profile HMMs

are used to do sensitive database searching using statistical descriptions of a sequence

family’s consensus [48]. The approach consists of building and providing probabilis-

tic models of protein sequences that share similar structures or functions. As of to-

day, there are several software implementations of this model, the HMMER software

package being one of the most widely used. HMMER is an implementation of pro-

file HMMs software for protein sequence analysis. When doing database searches

28 Chapter 2. Sequence Alignment Methods

like BLAST and Smith-Waterman searches, they are based on pairwise alignments

between the query sequences and the sequences in the database. HMMER uses profile

HMMs instead of pairwise alignments. This means that a hit is found based on the

information of many sequences instead of just one sequence. Profile HMMs can be

used in different contexts. For example, when trying to discover the biological func-

tion of a given amino acid sequence, the user matches this sequence against a database

of profiles such as the Pfam database [49], so as to find the best corresponding profile.

The Pfam database is a large collection of multiple sequence alignments that covers

approximately 8000 protein domains and protein families [50]. Another use is gene

annotation, where the user wants to match a whole sequence database against one or

several profile HMMs databases. However, given the computational complexity of the

algorithm, such intensive comparisons lead to prohibitive execution time in the order

of days or weeks [21]. Given N sequences of average length M, the time complexity

of HMMER is O(MN2), whereas the space complexity is O(MN) [51].

2.4.2 ClustalW

ClustalW [52] is a heuristic multiple sequence alignment tool based on the Clustal

algorithm. The Clustal algorithm uses a progressive alignment method [53]. Typically,

progressive alignment consists of three stages, as shown in Figure 2.5 [54]. These

three stages are described as follows [55]:

}

}
}

Figure 1. Three stages of progressive alignment: (1) distance matrix; (2)

guided tree; (3) profile-profile progressive alignment.

—Progressive alignment is a widely used approach for

computing multiple sequence alignments (MSAs). However,

aligning several hundred or thousand sequences with popular

progressive alignment tools such as ClustalW requires hours or

even days on state-of-the-art workstations. This paper presents

MSA-CUDA, a parallel MSA program, which parallelizes all

three stages of the ClustalW processing pipeline using CUDA

and achieves significant speedups compared to the sequential

ClustalW for a variety of large protein sequence datasets. Our Figure 2.5: Three stages of progressive alignment: (1) similarity matrix, (2) guided

tree, (3) profile-profile progressive alignment

1. Pairwise distance computation: Compare all pairs of sequences to obtain a

similarity matrix.

2. Guided tree generation: Based on the similarity matrix, make a guided tree

relating all the sequences.

3. Profile-profile progressive alignment along the guided tree: Perform pro-

gressive alignment where the order of the alignments is determined by the

guided tree.

2.5. Comparison of sequence alignment methods 29

Stage 1 computes a similarity matrix comprised of the distance value between each

pair of sequences using pairwise alignment. The scores of each pairwise alignment

are stored in a triangular matrix as distances from 0 to 1. Stage 2 generates a guided

tree from the distance matrix using distance-based phylogenetic tree reconstruction

methods, where similarity tree is constructed in two steps. First an unrooted tree is

constructed from the distance matrix using the Neighbor-Joining method of creating

phylogenetic trees. Then the tree is transformed to a rooted version. For the Clustal

algorithm all sequences get the same total weight, whereas for the newer ClustalW

version a sequence’s weight depends on its distance from the root and what branches

it has in common with other sequences. Stage 3 performs progressive alignment of

various profiles to form the final MSA along the guided tree. The progressive align-

ment is performed from the ends of the tree branches back to the root, using dynamic

programming algorithms with some side notes. When a gap is introduced, it can not

be removed at a later stage. Furthermore, if a gap is introduced within an existing gap,

the full gap creation penalty is deducted. ClustalW expands on this by varying the

scoring matrices used, depending on the distances between the sequences being com-

pared and, in turn, varying the gap creation and expansion penalties depending on the

current scoring matrix, sequence similarity, sequence lengths and the current position

of the alignment within the sequences. Given N sequences of average length M, the

time complexity of ClustalW is O(M2N2), whereas the space complexity is O(MN).

2.5 Comparison of sequence alignment methods

This section presents a comparison of the sequence alignment methods discussed in

the previous sections. The comparison is based on their temporal and spatial com-

plexities and parameters like alignment type and search procedure, as shown in Table

2.2.

Table 2.2: Comparison of various sequence alignment methods

Method Type Search Time complexity Space complexity

Dot plot Global Basic O(MN) O(MN)

N-W Global DP O(MN) O(MN)

S-W Local DP O(MN) O(MN)

FASTA Local Heuristic O(MN) O(MN)

BLAST Local Heuristic O(MN) O(20w + MN)

HMMER Multiple Heuristic O(MN2) O(MN)

ClustalW Multiple Heuristic O(M2N2) O(MN)

It is interesting to note that all the global and local sequence alignment methods

essentially have the same computational complexity of O(MN), yet despite this, each

of the algorithms has very different running times, with BLAST being the fastest and

30 Chapter 2. Sequence Alignment Methods

the dynamic programming algorithms being the slowest. In case of multiple sequence

alignment methods, ClustalW has the worst time complexity of O(M2N2), whereas

HMMER has a time complexity of O(MN2). The space complexities of all the align-

ment methods are also essentially identical, around O(MN) space, except BLAST, the

space complexity of which is O(20w + MN). In the exact methods, dot plot uses a

basic search method, whereas N-W and S-W use dynamic programming. On the other

hand, all the approximate methods are heuristic based. It is also worthy to note that

FASTA and BLAST have to make sacrifices on sensitivity to be able to achieve higher

speeds. Thus, a trade off exists between speed and sensitivity and we must come to a

compromise to be able to efficiently align sequences in a biologically relevant manner

in a reasonable amount of time.

Being the most sensitive and optimal but computationally expensive sequence

alignment method and the inherent parallelism it offers, S-W algorithm is consid-

ered as the top candidate for hardware acceleration. Furthermore, it is also used as

an essential kernel in heuristics-based sequence alignment applications like FASTA,

making its acceleration helpful in speeding up such applications as well. When run

on a conventional PC, S-W algorithm spends most of the time on calculating elements

of the H matrix, using the same matrix fill step repeatedly. This makes it well suited

for parallelization on other hardware platforms like FPGAs and GPUs. Chapter 3 dis-

cusses hardware acceleration of S-W based sequence alignment applications in detail.

2.6. Summary 31

2.6 Summary

This chapter discussed the available sequence alignment methods, based on a classi-

fication, presented in the beginning of the chapter. The classification is followed by a

discussion about each method. Following are the main topics presented in the chapter.

• Classification of various available sequence alignment methods, like global, lo-

cal and multiple alignment methods.

• Discussion about global methods like dot plot and N-W algorithms.

• Detailed discussion about local methods like S-W, FASTA and BLAST.

• Discussion about multiple alignment methods including HMMER and ClustalW.

• Comparison of various sequence alignment methods presented in the previous

sections, based on various parameters like complexities, alignment type and the

search procedure used.

32

Chapter 3
Hardware Acceleration

This chapter discusses hardware acceleration of S-W based sequence alignment

applications. It presents a number of hardware-accelerated design alternatives

and compares them with existing implementations. Furthermore, it provides

a classification of the available acceleration methods and proposes an accurate

method for acceleration evaluation. It continues with an insight into systolic ar-

rays and presents their application in sequence alignment. The chapter is orga-

nized as follows.

Section 3.1 presents a classification of the available acceleration methods and

a subsequent discussion about the related work. Section 3.2 introduces an accu-

rate acceleration evaluation approach. Sections 3.3 and 3.4 provide rectangular

and linear systolic array based FPGA implementations for sequence alignment

respectively. Section 3.5 summarizes the chapter.

3.1 Classification of acceleration methods

In computing, hardware acceleration is the use of specialized hardware to perform

some function faster than is possible in software running on a general purpose CPU.

The hardware that performs the acceleration, when in a separate unit from the CPU,

is referred to as a hardware accelerator.

Work has been done on accelerating S-W based sequence alignment methods by

implementing them on various available hardware platforms. A classification of this

work, based on the methods of implementation is shown in Figure 3.1 and reviewed

in the following subsections.

33

34 Chapter 3. Hardware Acceleration

FPGAs

Custom

instructions

Systolic

arrays
RTR GPU

Array

processors

Hardware Acceleration

SIMD

solutions

Array

coprocessors

Figure 3.1: Hardware acceleration of sequence alignment methods

3.1.1 FPGAs

FPGAs are re-configurable data processing devices on which an algorithm is directly

mapped to basic processing logic elements, e.g. NAND gates. To take advantage

of using an FPGA, one has to implement massively-parallel algorithms on this re-

configurable device. Thus they are well suited for certain classes of bioinformatics

applications, such as sequence alignment.

FPGA custom instructions

In [56], the authors studied an improvement in the computational processing time of

sequence alignment based on S-W algorithm using custom instructions on an FPGA

board. This was done by first writing S-W algorithm in pure software and then re-

placing the most computationally intensive portion with an FPGA custom instruc-

tion. Finally, they compared the processing runtime between the software-only and

hardware-accelerated versions to calculate the percentage of runtime improvement.

The results showed that the hardware-accelerated algorithm improved the processing

runtime by an average of 287%. Thus using FPGA custom instructions is a promising

direction for further research in sequence alignment.

Run-time reconfiguration

One way to further exploit the reconfigurable resources of FPGAs and increase their

functional density is to reconfigure them during system operation. This process is

referred to as Run-time reconfiguration (RTR). RTR is an approach to system imple-

mentation that divides an application or algorithm into time-exclusive operations that

are implemented as separate configurations. In [57], an approach to realize high speed

sequence alignment using run-time reconfiguration is proposed. With this approach,

it is demonstrated that high performance can be achieved using off-the-shelf FPGA

boards. The performance is almost comparable with dedicated hardware systems.

3.1. Classification of acceleration methods 35

The time for comparing a query sequence of 2048 elements with a database sequence

of 64 million elements using S-W algorithm is about 34 sec, which is about 330 times

faster than a desktop computer with a 1GHz Pentium-III.

In [58], the performance of S-W based sequence alignment has been increased

substantially by using run-time reconfiguration. The percentage of time spent on cal-

culating the elements of Hi, j matrix was cut by nearly a third and the absolute time

spent on the algorithm was dropped from 6,461 seconds to a little over 100 seconds,

approximately 64 times faster than an equivalent software-only implementation.

Systolic arrays

Systolic array is an arrangement of processors in an array, where data flows syn-

chronously across the array between neighbors, usually with different data flowing

in different directions [59], [60]. Each processor at each step takes in data from one

or more neighbors (e.g. North and West), processes it and, in the next step, outputs

results in the opposite direction (South and East). Systolic arrays can be implemented

in rectangular or 2D and linear or 1D fashion. Figure 3.2 gives a pictorial view of both

implementation types.

U11

U43

U33

U42

U32

U23

U41

U31

U22U21

U34

U24

U44

U14U13U12

N1 N2 N3 N4

M1

M2

M3

M4

U
1
1

U
1
4

U
1
3

U
1
2

N
1

N
2

N
3

N
4

M
4 M

3 M
2 M

1

(a) Rectangular (2D) systolic array

(b
) L

in
e

a
r (1

D
) s

y
s
to

lic
 a

rra
y

Figure 3.2: Pictorial view of systolic array architectures

In these configurations, there are two vector array inputs, M and N. The processing

cells have a value, Ui j, that is usually a result due to a defined algorithm within the

cells. Systolic array based architectures are extremely fast, easily scalable and can

36 Chapter 3. Hardware Acceleration

do many tasks that traditional architectures can not attain. They best suit compute-

intensive applications like biological sequence alignment. The disadvantage is that

being highly specialized processors type, they are difficult to implement and build.

In [61], a concept to accelerate S-W algorithm on the bases of linear systolic array

is demonstrated. The reason for choosing this architecture is outlined by demon-

strating the efficiency and simplicity in combination with the algorithm. Nevertheless,

there are two key methodologies to speedup this massively parallel system. By turning

the processing from bit-parallel to bit-serial, the actual improvement is enabled. This

change is performance neutral, but in combination with the drafted early maximum

detection, a considerable speedup is possible. Another effect of this improvement is a

data dependant execution time of the processing elements. Here, the second accelera-

tion prevents idle times to exploit the hardware and speeds up the computation. This

can be accomplished by a globally asynchronous timing representing a self-timed lin-

ear systolic array. The authors have provided no performance estimation due to the

initial stage of their work, that’s why it can’t be compared with other related work.

3.1.2 SIMD solutions

Single-Instruction stream, Multiple-Data stream (SIMD) is a type of multiprocessor

architecture in which multiple sets of operands may be fetched to multiple process-

ing units and may be operated upon simultaneously within a single instruction cycle.

Following is a discussion of several SIMD based approaches for sequence alignment.

Array processors

In [62], an implementation of S-W algorithm for sequence alignment is described

on a general purpose fine-grained architecture, the Micro Grained Array Processor

(MGAP). The authors show that their implementation is about 5 times faster than

the rapid implementation of a genetic sequence comparator using field programmable

logic arrays [63]. Showing thereby that massively parallel processor arrays like the

MGAP possess the capability to solve computationally intensive problems in molec-

ular biology efficiently and inexpensively. The algorithm given in [62] takes M + N

steps to align two sequences. Therefore, if there are K sequences to be aligned, the

entire computation would require only M + N + K steps. The sequential algorithm

would have taken O(MNK) steps to compute K alignments.

Array coprocessors

Kestrel parallel processor is a single-board coprocessor with a 512-element linear ar-

ray of 8-bit, SIMD processing elements [64]. The system was designed to analyze

databases containing billions of characters from DNA, RNA, or proteins. As a case

study, the authors implemented S-W algorithm on kestrel parallel processor for dif-

ferent query sizes and compared its performance with an implementation on a 500

3.1. Classification of acceleration methods 37

MHz Ultra SPARC-II. The results of their implementations are compared with others

in Table 3.1.

Graphics Processing Units (GPUs)

GPUs are single-chip processors, used primarily for computing 3D functions. This

includes things such as lighting effects, object transformations, and 3D motion. GPU

is a good match for bioinformatics sequence alignment applications, as it is an inex-

pensive and high-performance SIMD architecture.

In [65], it has been demonstrated that the streaming architecture of GPUs can be

efficiently used for biological sequence database scanning. To derive an efficient map-

ping onto this type of architecture, the authors reformulated S-W algorithm in terms of

computer graphics primitives. They claim that this is the first reported implementation

of S-W algorithm on graphics hardware and its evaluation on a high-end graphics card

shows a speedup of almost sixteen compared to a Pentium IV 3.0 GHz.

Table 3.1: Comparison of the work reviewed in Section 3.1

Reference Section Platform Compared with Speedup
Query

size

[56] 3.1.1 FPGA Software-only 287× —

[57] 3.1.1 FPGA 1 GHz P-III 330× —

[58] 3.1.1 FPGA Software-only 64× —

[62] 3.1.2
Array

SPLASH 5× —
processors

[64] 3.1.2
Array

Ultra SPARC-II 17× 100
coprocessors

[64] 3.1.2
Array

Ultra SPARC-II 49× 250
coprocessors

[64] 3.1.2
Array

Ultra SPARC-II 99× 500
coprocessors

[65] 3.1.2 GPU 3.0 GHz P-IV 16× —

Table 3.1 gives a comparison of the work reviewed in the section. It identifies

that no standard comparison approach has been adapted, which makes it difficult to

compare different approaches published in the literature [23]. That is why, we can

only look into each implementation on individual basis to see how much improvement

is achieved in comparison with the provided reference. In the following section, an

accurate speedup measurement method is proposed that is independent of any specific

implementation. This is done by comparing both the software-only and hardware-

accelerated versions of S-W algorithm on the same platform in order to achieve an

accurate profiling and acceleration evaluation. In [66], a similar approach is adapted,

but the proposed implementation performs 1.27 times better.

38 Chapter 3. Hardware Acceleration

3.2 Accurate acceleration evaluation approach

Implementing both software-only as well as hardware-accelerated versions of S-W

algorithm on the same platform leads to an accurate acceleration evaluation . We have

used the MOLEN platform for this purpose, since it contains both a general purpose

processor in addition to a reconfigurable hardware module. The following subsections

present a background about the MOLEN platform and S-W implementation on the

platform.

3.2.1 MOLEN platform

Figure 3.3 shows a block diagram representation for MOLEN platform [67]. The first

block on the left indicates that either the software-only or hardware-accelerated ver-

sion of the algorithm arrives as input to the arbiter. For every function in the algorithm,

the arbiter decides whether to send it to either the core or reconfigurable processor.

The arbiter does this by using specialized instructions for calling the hardware.

The core processor is the IBM Power PC, a built-in component in Virtex-II Pro

FPGA and is used for implementing the software portion of the application. There are

two such components in Virtex-II Pro FPGA.

The reconfigurable processor is used for implementing the hardware portion of

the application and has two parts. The main part is the reconfigurable microcode unit,

responsible for the entire operation of the reconfigurable processor and an application

dependant Custom Computing Unit (CCU). The CCU is embedded into the reconfig-

urable processor using the interface provided with the MOLEN platform. The recon-

figurable processor utilizes the microcode unit and the CCU to improve performance

of various applications. The details of the data interface between the core processor

and the reconfigurable processor are given in [67].

Input

application
(software-only or

hardware-accelerated)

Arbiter

Core

processor

CCU

Reconfigurable processor

Reconfigurable

 microcode

unit

Figure 3.3: Block diagram description of MOLEN platform

3.2. Accurate acceleration evaluation approach 39

The methodology for implementation on MOLEN platform comprises of the fol-

lowing four steps.

1. Identifying the desired function in software (code-profile).

2. Designing a CCU for the function identified in the code-profile.

3. Replacing the function identified in the code-profile by the designed CCU.

4. Comparing the cycles consumed by the software-only and hardware-accelerated

versions of the identified function to measure the relative speedup.

Figure 3.4, shows a block diagram representation of MOLEN implementation ap-

proach, where the block in gray represents the desired function, identified in the code-

profile. This is the function for which a CCU is designed [68].

Application program

 (C-code)

Identify the desired

function in software

 (code-profile)

Application program

 (C-code)

The desired function in

HDL (CCU)

Figure 3.4: Block diagram representation of MOLEN implementation approach

40 Chapter 3. Hardware Acceleration

3.2.2 S-W implementation on MOLEN

Following is a discussion of an implementation of the S-W algorithm on MOLEN plat-

form. The discussion starts with details about profiling, followed by CCU design for

the function, identified in the code-profile and concludes with an accurate evaluation

of the speedup achieved.

Profiling

Figure 3.5 gives block diagram representation of a software-only implementation of

S-W algorithm [24], where,

init_matrix trace_back_2fill_matrix_2 trace_back_1fill_matrix_1
Input Output

Initialization Matrix fill Traceback

Figure 3.5: Functional description of a software implementation of S-W algorithm

• The init matrix is a function used for initializing the scoring matrix.

• The fill matrix 1 performs two functions i.e. filling the matrix and at the same

time keeping track of the maximum score in the matrix.

• The fill matrix 2 function finds the corresponding maximum candidate for each

cell in the matrix, using Equation 2.2.

• The trace back 1 function performs the traceback.

• The trace back 2 function keeps track of the direction of the traceback.

The C-code for this software-only implementation is compiled using MOLEN

Power PC compiler [69]. The cycles consumed by each function in the code are eval-

uated, using the Power PC timer instructions. The Power PC has a clock frequency

of 100 MHz, so the time period for one cycle is 1
100
µs = 0.01 µs. Thus the time con-

sumed by each function is equivalent to the number of cycles consumed multiplied by

the time period for one cycle. The overall time consumed is the summation of time

consumed by all functions, which is 172 µs whereas the % time consumed is the ratio

of the time consumed by a function to the overall time consumed. This is an alterna-

tive way of profiling and is more accurate than other methods, such as using the GNU

profiler (gprof), used in [68]. The reason for the inaccuracy of the profiling approach

adopted in [68] is that it does not account for the overhead in the computation time.

This overhead is incurred by some inaccuracies in the gprof tool itself, in addition to

the computational overhead in the operating system.

3.2. Accurate acceleration evaluation approach 41

Table 3.2: Profiling results

Function name No. of calls Clock cycles Time (µs) % Time

init matrix 1 753 7.53 4.33

fill matrix 1 1 688 6.88 4.00

fill matrix 2 48 13392 133.92 78.00

trace back 1 1 102 1.02 0.55

trace back 2 5 2265 22.65 13.12

Table 3.2 gives profiling results of a software-only version of S-W algorithm on

the core processor of MOLEN platform i.e. IBM Power PC. It provides the func-

tion names, number of times that each function is called, the number of clock cycles

consumed by each function, the amount of time consumed by each function in micro

seconds and the % time consumed by each function. In Table 3.2, the fill matrix 2

is highlighted as the most time consuming function and is the right candidate to be

designed in hardware as a CCU. The fill matrix 2 function is based on Equation 2.2,

which is given as follows.

Hi, j = max































0

Hi−1, j−1 + S i, j

Hi−1, j − d

Hi, j−1 − d

The table shows that the fill matrix 2 function consumes 13392 cycles for 48 calls,

so the cycles consumed for 1 call will be 13392/48 = 279. When run on Intel 3.2 GHz

Pentium-IV processor, the time consumed by this function is 52.32 µs (as measured

by gprof). Later in this section, a comparison is made with the Power PC.

CCU design

A hardware module, called CCU is designed in VHDL for the function of interest

(fill matrix 2), identified in the code-profile. Figure 3.6 shows the RTL schematic of

the CCU.

The CCU is a synchronous comparator, which compares four 8-bit numbers and

finds the maximum of them in two comparison levels. For this purpose, three similar

8-bit comparators are used, each having two 8-bit inputs in1 and in2, a 1-bit reset input

rst comp and an 8-bit output out comp. The inputs a, b, c and d in the figure, represent

the four alternatives for the max operator in Equation 2.2. In the 1st level of the design,

a is compared with b and c is compared with d, using two of the three comparators.

Each comparator finds the maximum of the two numbers and provides the result to

the third comparator in the second level. The third comparator finds the maximum of

all four input candidates. To receive the final 8-bit output (max out) at the rising edge

of the clock, a D flip flop with a clear (CLR) input is used. The post place and route

42 Chapter 3. Hardware Acceleration

C

D
max_out(7:0)

CLR

out_comp(7:0)in1(7:0)

in2(7:0)

rst_comp

out_comp(7:0)in1(7:0)

in2(7:0)

rst_comp

INV

out_comp(7:0)in1(7:0)

in2(7:0)

rst_comp

a(7:0)

b(7:0)

rst_n

clk_ext

c(7:0)

d(7:0)

Figure 3.6: RTL schematic of the CCU for the function fill matrix 2

simulation, as shown in Figure 3.7, exhibits that the time consumed by the CCU to

compute the output (max out) is 14.6 ns or 0.0146 µs, whereas the time consumed by

its software equivalent was 52.32 µs. The figure shows that the simulation initializes

the clock and reset signals (clk ext and rst n) with zero. The inputs a, b, c and d are

also initialized with zeros, so that the output (max out) stays zero during the 1st clock

cycle. The clock cycle is set at 20 ns (i.e. 50 MHz frequency), whereas the inputs are

changed after every five clock cycles. The gray blocks in Figure 3.7 highlight the time

required to calculate the output (max out). The time between any two gray blocks is

the idle time where no computation is performed.

00000000 00001111

00000000 00010000 00000000

00000000 00100000 00000000

00000000 01000000 00000000

...00000000 01000000 00100000 00010000 00001111

00000000 00001111

00000000 00010000 00000000

00000000 00100000 00000000

00000000 01000000 00000000

...00000000 01000000 00100000 00010000 00001111

14.6 ns 14.6 ns 14.6 ns 14.6 ns

a

b

c

d

clk_ext

rst_n

max_out

0 ns 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns 350 ns 400 ns

Figure 3.7: Post place and route simulation results

The speedup that a standalone CCU achieved over its software equivalent is given

by the ratio of software time (f ill matrix 2 time) to hardware time (CCU time) and is

calculated as follows.

3.3. Rectangular (2D) systolic implementation 43

Speedup =
software time

hardware time
=

f ill matrix 2 time

CCU time
=

52.32 × 10−6

0.0146 × 10−6
= 3583

The device used for the implementation was Xilinx Virtex-II Pro (XC2VP30)

FPGA with a speed grade of -7. It is worth mentioning that the actual speedup

achieved is lower than the speedup calculated here, since gprof does not account for

the overhead in the computation time. This overhead is incurred by some inaccura-

cies in the gprof tool itself, in addition to the computational overhead in the operating

system. Secondly, the speedup shown is for the identified function only and does not

represent the performance improvement for the entire application. To investigate the

overall runtime improvement and overcome the indicated issues, the entire applica-

tion is run on MOLEN platform. This reduces the achieved speedup, but increases the

level of accuracy.

Accurate speedup evaluation

The designed CCU for the function of interest (fill matrix 2) is modified in a way

that it can be run on MOLEN platform using the provided interface. After modifying

the CCU in the desired way, the definition of fill matrix 2 function is annotated with

#pragma call fpga fill matrix 2 annotation in the C-code. The entire annotated C-

code is compiled, using the MOLEN Power PC compiler. An executable file thus

generated is downloaded locally. The CCU design is embedded into MOLEN using

the Xilinx modular design flow. The generated bit stream is downloaded into the XUP

Virtex-II Pro prototyping board by connecting a configuration cable to the prototyping

board. Using the Power PC timer functions, the cycles consumed by fill matrix 2

function in the annotated C-code are evaluated, which comes out to be 129 cycles.

The comparison between the cycles consumed by the software-only and hardware-

accelerated versions of fill matrix 2 gives the relative speedup, given as follows.

Speedup =
Cycles in software

Cycles with hardware acceleration
=

279

129
= 2.16

This speedup is more accurate than the one presented in the previous subsection,

as the software-only and hardware-accelerated versions are both implemented on the

same platform. To ensure an accurate measurement of the speedup, all bottlenecks

have been taken care of, such that only processing time is the limiting factor. More-

over, the approach is technology independent and can also be implemented on alter-

native available FPGAs, such as Virtex-IV and Virtex-V.

3.3 Rectangular (2D) systolic implementation

In this section, a basic cell design for the S-W based sequence alignment and the

corresponding rectangular (2D) systolic array implementations are presented. It starts

44 Chapter 3. Hardware Acceleration

with a description of the proposed cell design, followed by system design based on this

cell.

3.3.1 Cell design

The performance of systolic array architectures mainly depends on, how simplified

and efficient the corresponding cell design is. By efficient we mean both in terms of

performance and area. Figure 3.8 shows a block diagram description of the cell design

for computing Hi, j values for the systolic array architecture, according to Equation

2.2. In Figure 3.8, Comp1 is a comparator that compares the two input sequences

and outputs the corresponding value of S i, j, depending on the values of the match and

mismatch scores, such that S i, j = match score, if Nq = Ns, otherwise S i, j = mismatch

score. Add1 is an adder that adds the diagonal element Hi−1, j−1 and the value of S i, j.

Comp2 is a comparator that compares the output of the Add1 with a constant value 0

and outputs the greater of the two numbers. Add2 is an adder that adds the left element

Hi−1, j and −d, where d is the penalty for a mismatch. Add3 is an adder that adds the

upper element Hi, j−1 and −d. Comp3 compares the outputs of Add2 and Add3 and

outputs the greater of the two numbers. Comp4 compares the outputs of Comp2 and

Comp3 and outputs the greater of the two numbers. The output of Comp4 is stored in

a buffer, and is the corresponding Hi, j value.

The block diagram shown in Figure 3.8 is implemented in VHDL and the post

place and route simulations show that the asynchronous time consumed by such a cell

is 10 ns on a Xilinx Virtex-II Pro FPGA platform.

Hi,j+

0

+
+

clk

rst

Seq_Comp

Cmp

Cmp

Cmp

Buffer

Nq

Ns

Hi-1,j-1

Hi-1,j

-d

Hi,j-1

If Nq = Ns, then Si,j = match score,
else Si,j = mismatch score
d = penalty for a mismatch

Si,j

Comp1

Comp2

Comp3

Comp4
Add1

Add2

Add3

Figure 3.8: Cell design for rectangular systolic array implementation

3.3. Rectangular (2D) systolic implementation 45

3.3.2 System design

The cell design shown in Figure 3.8 can be used to build systolic array based systems

of any size, depending on the availability of hardware resources. Figure 3.9 shows the

description of such a system design, where a 4×4 systolic array architecture is chosen

as an example.

 H11

 H22 H21

 H13

 H23

 H33

 H43 H44

 H34

 H24

 H12 H14

 H31

 H42 H41

 H32

H00

H10

 H10

 H20

 H30

 H40

H20

H30

H01

H01

H02

H02

H03

H03

H04

Nq4Nq3Nq2Nq1

Ns1

Ns2

Ns3

Ns4

d

d

d

d

Figure 3.9: Block diagram description of a 4 × 4 systolic array

For computing the delay of the entire array, we run the asynchronous time simu-

lation (post place and route simulation), which shows that the time consumed to fill a

4 × 4 array asynchronously = 26.4 ns. On the other hand, the time consumed to fill a

4 × 4 systolic array synchronously = 10 × 7 = 70 ns, showing thereby that the asyn-

chronous approach is 2.6 times faster than the synchronous approach. This speedup

is only significant in terms of computing the delay of the entire circuit, as the asyn-

chronous approach only outputs the final Hi, j value. For the intermediate Hi, j values,

we have to use the synchronous approach.

To evaluate the performance in terms of Cell Updates Per Second (CUPS), we

implemented the design on a Xilinx Virtex-II XC2V6000 FPGA, such that the avail-

able hardware resources were utilized to the maximum. In this way, we were able to

fit a maximum of 1778 cells on the FPGA, where each cell utilized 19 slices. The

clock frequency used for our implementation was 45 MHz and the performance thus

achieved was,

Performance = 1778 × 45 = 80 GigaCUPS

This design significantly under utilizes the hardware, so we switch to a linear

implementation to be discussed in the following section. However, in case of a linear

46 Chapter 3. Hardware Acceleration

implementation, we need to keep track of the Max value as data is overwritten.

3.4 Linear (1D) systolic implementation

Linear systolic array is a linear arrangement of processors (hereafter called cells), con-

nected in series, where data flows synchronously across the array between neighbors,

as shown in Figure 3.10. The cells are used repeatedly during each clock cycle. In the

following subsections, the cell design for linear systolic array implementation, a sub-

sequent system design and an extended design using Double Data Rate (DDR) RAM

are presented.

Hi,j Hi+1,j+1 Hi+2,j+2 Hi+3,j+3

Figure 3.10: Description of a 4-element linear systolic array

3.4.1 Cell design

Figure 3.11 shows the block diagram representation of a basic cell design, for com-

puting the elements of the H matrix for linear systolic array, using Equation 2.2.

0Si,j

Buffer

Buffer

Buffer

Cmp

Cmp

Cmp

Cmp

Cmp

rst

+

+

+

Nq

Ns

Hi-1,j-1

Hi-1,j

-d

Max_in

Ns_out

Hi,j

Max_out

If Nq = Ns, then Si,j = match score,
else Si,j = mismatch score
d = penalty for a mismatch

SeqCmp

Buffer
clk clk

clk

clk

rst

rst

rst

Figure 3.11: Cell design for linear systolic array implementation

In the cell design of Figure 3.11, SeqCmp compares the corresponding characters

of the two input sequences and generates a similarity score. If the corresponding char-

acters are the same, the similarity score is equal to a specific match score, otherwise

3.4. Linear (1D) systolic implementation 47

it is equal to a mismatch score. The diagonal input from element (Hi−1, j−1) is buffered

for one clock cycle, as it is used as a diagonal element after two steps. The similarity

score is added with the delayed diagonal element using an adder, the output of which

is compared with a 0 using a comparator. The comparator returns 0 if the output of

the adder is negative, otherwise it returns the output of the adder. The left element

(Hi−1, j) and the up element (which is the current value of the cell) are added with the

gap penalty using adders, the outputs of which are compared using a comparator that

returns the greater of the two values. This value is then compared with the value of the

previous comparator (the one that compared the sum of the diagonal element and the

similarity score with a 0) and the greater of the two values is returned. The value of

the cell, stored in a buffer, is also compared with the Max in value from the previous

cell to find the global maximum. The current maximum value of the cell, stored in

another buffer, is also compared with the global maximum. The maximum of the cur-

rent and global maximums are compared and the greater of the two values is returned

and hold in a buffer. Another buffer is used to delay the database sequence (Ns) by

one clock cycle for the next element of the array. The external clock and reset lines

are connected with the clk and rst inputs of all the buffers.

3.4.2 System design

The cell design shown in Figure 3.11 can be used to build a linear systolic array

based systems of any size, depending on the availability of hardware resources. Figure

3.12 shows an FPGA-based 4-PE linear systolic array implementation for S-W based

sequence alignment using Block RAM (BRAM) for intermediate data storage before

transmitting the resultant data to the PC. In addition, there are two BRAMs for the

two input sequences, i.e. (BRAM for Nq) and (BRAM for Ns). These two BRAMs

are initialized with the values of the two input sequences. The input sequences are

applied to the PEs in such a way that the Nq values stay fixed in their corresponding

PEs, whereas the Ns values are propagated through the array in synchronism with the

clock.

Figure 3.13 presents a block diagram representation of the design that works as a

BRAM control unit. It consists of a BRAM data control unit, an address control unit

and the BRAM itself. The address control unit generates the appropriate read/write ad-

dresses based on the request from the data control unit and the status of the read/write

flag. Also it sends back an acknowledge signal to the data control unit accordingly.

Figure 3.14 shows a state machine for the BRAM Address Control Unit. It stays

in the IDLE state, unless there is a request from the data control unit. It goes to

SETUP state if there is a request. From the SETUP state it goes to the READ state

if the read/write flag is 0, otherwise it goes to the WRITE state. After each READ or

WRITE it checks the status of the read/write flag and request signal and goes to the

next state accordingly.

A parallelized S-W algorithm requires Ns + Nq − 1 operations for computing the

entire H matrix [29]. If Nq = Ns = N, then the cycles required becomes 2N − 1. In

practice, a large number of PEs is required to align long sequences. The larger the

48 Chapter 3. Hardware Acceleration

4

 3

 2

 1

H11 H12 H13 H14

a

 b

 c

 d

B
R

A
M

 f
o

r
N

s

B
R

A
M

 f
o

r
N

q

B
R

A
M

 f
o

r
D

a
ta

 O
u
t

H_left

Max_in

Ns

Max11 Max12 Max13

H12H11 H13

Ns11 Ns12 Ns13

Max14

H14

Ns14

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

Nq1

Nq2

Nq3

Nq4

PC

Figure 3.12: Linear systolic array design using BRAM for intermediate data storage

BRAM

Data

Control

Unit

B

R

A

M

BRAM

Address

Control

Unit

data_in

data_out DIN

rst_ext

clk_ext

rst

clk

RdWr_Flag_ext

RdWr_Flag

rdwr_address ADDR

EN

WE

CLK DOUT

bram_req

Req

bram_ack

Ack

Figure 3.13: Block diagram representation of BRAM control design

3.4. Linear (1D) systolic implementation 49

IDLE

“00”

SETUP

“01”

WRITE

“11”

READ

“10”

Req = ‘0’

Req = ‘1’
EN = ‘0’

WE = ‘0’

Ack = ‘0’

EN = ‘1’

WE = RdWr_Flag

Ack = ‘0’

RdWr_Flag = ‘0’

RdWr_Flag = ‘0’

and Req = ‘1’

RdWr_Flag = ‘1’

and Req = ‘1’

EN = ‘1’

WE = ‘0’

Ack = ‘1’

EN = ‘1’

WE = ‘1’

R
dW

r_
Fla

g
=

‘1
’

an
d

R
eq

 =
 ‘1

’

o
th

e
rw

is
e

otherw
ise

Figure 3.14: State machine for BRAM address control unit

number of PEs, the longer the query sequence that can be aligned against a database

sequence and the better the performance. Table 3.3 presents performance in Giga Cell

Updates Per Second (GCUPS) and frequency (f) in MHz for varying number of PEs

(N) implemented on Xilinx Virtex-II Pro FPGA.

Table 3.3: Performance in GCUPS and frequency in MHz for various number of PEs

(N)

N f P = N × f N f P = N × f

20 110.26 2.21 80 110.26 8.82

40 110.26 4.41 96 110.26 10.58

60 110.26 6.61 120 110.26 13.23

The maximum number of PEs that could be implemented on a Virtex-II Pro FPGA

platform are 120, but in practice, the size of the sequences may be larger than 120.

The average case sequence length may be considered as 500 (74% of sequences in

Swiss-Prot are ≤ 500 [8]). One possible solution to deal with this issue is to split the

computation into k passes, where k ≥ 1 is an integer.

50 Chapter 3. Hardware Acceleration

3.4.3 Extended design with DDR RAM

Table 3.4 shows a sample H matrix for aligning two sequences of m characters each.

If the precision of the aligned output data is 16 bits wide [70], then, for m = 500 (74%

of sequences in Swiss-Prot are of length ≤ 500 [8]), the total amount of data that needs

to be stored in memory is, 500 × 500 × 16 = 4 Mbits. This amount increases with the

increasing length of the query and database sequences.

Table 3.4: H matrix for aligning sequences of m characters each

A C T G

G H1,1 H1,2 H1,m−1 H1,m

A H2,1 H2,2 H2,m−1 H2,m

...

...

T Hm−1,1 Hm−1,2 Hm−1,m−1 Hm−1,m

C Hm,1 Hm,2 Hm,m−1 Hm,m

In practice, e.g. FPGA implementations, a large number of PEs is required to align

long sequences. The larger the number of PEs, the longer the query sequences that can

be aligned against the database sequences and the better the performance. When all the

PEs are simultaneously active, the bandwidth required to store the resultant output data

increases with the increasing array length. Hence, the on-chip local BRAM becomes

very limited for storing all the intermediate values and can only be used as a buffer that

transfers the data to an off-chip main memory, e.g. the DDR RAM. Figure 3.15 gives

a block diagram description of such a system. Thus, the overall performance of the

hardware system not only depends on the availability of computational resources, i.e.

the number of PEs, but also on the bandwidth of the main memory (Bmain). Both the

issues are further elaborated in Chapter 6, where theoretical performance boundaries

and subsequent performance and bandwidth optimization are presented.

Hardware-

based S-W

design

BRAM for Data Out D

D

R

R

A

M

BRAM used as a buffer

PC
BRAM for

query sequence

B
R

A
M

 fo
r d

a
ta

b
a
s
e

s
e
q
u
e

n
c
e

BmainBlocalBlocal

B
lo

c
a

l

PC
interface

Figure 3.15: Linear systolic array design using BRAM and DDR RAM

3.5. Summary 51

3.5 Summary

Besides providing a classification of the acceleration methods for sequence alignment

and the relevant literature review, this chapter introduced an accurate profiling and

acceleration evaluation approach. Further, it presented rectangular and linear FPGA-

based systolic array implementations for sequence alignment applications. The main

topics presented in the chapter are as follows.

• Classification of various available acceleration methods for S-W based sequence

alignment, followed by a comparison between their respective speedups relative

to some baseline performance, thereby showing the need to identify a common

measure for comparing different acceleration methods presented in the litera-

ture.

• Description of MOLEN reconfigurable platform and its use as an accurate pro-

filing and acceleration evaluation platform for sequence alignment applications.

• Description of a software implementation of S-W algorithm and its profiling

using both gprof and MOLEN power PC compiler. This is followed by a CCU

design using the interface provided by MOLEN platform for the function iden-

tified in the profiling results.

• Implementation of both software-only and hardware-accelerated versions of S-

W algorithm using MOLEN platform and an evaluation of the achieved speedup.

• Rectangular (2D) systolic array implementation, its corresponding cell design

and a system design based on this cell.

• Linear (1D) systolic array implementation, its corresponding cell design and a

subsequent system design.

• An extended design using DDR RAM and an insight to optimize the perfor-

mance and bandwidth limitation which is further elaborated later in the thesis.

52

Chapter 4
RVE-based FPGA Acceleration

RVE is a kind of loop transformation that removes all the data dependencies

from an algorithm, so that the algorithm can be parallelized to its maximum.

In this chapter, RVE-based FPGA acceleration of sequence alignment and its

comparison with traditional systolic array based acceleration is presented.

The chapter starts with an introduction to the RVE technique in Section 4.1,

followed by a rectangular (2D) RVE implementation in Section 4.2. Section 4.3

presents a linear (1D) RVE implementation. Section 4.4 provides RVE perfor-

mance evaluation, whereas Section 4.5 summarizes the chapter.

4.1 Introduction

This section aims at providing some insight into the RVE approach and its application

in biological sequence alignment. An introduction to the RVE approach is provided in

Section 4.1.1, whereas Section 4.1.2 presents an implementation procedure using the

RVE approach.

4.1.1 The RVE approach

RVE [71] is a kind of loop transformation which removes all data dependencies from

a program, so that the program is parallelized to its maximum. The basic idea is that if

any statement Gi is dependent on statement H j for some iteration i and j, then instead

we wait for H j to complete and then execute Gi, we will replace all the occurrences of

the variable in Gi that create dependency with H j with the computation of that variable

in H j. In this way there is no need to wait for the statement H j to complete and

statement Gi can be executed independently of H j. This step is recursively repeated

until the statement Gi is not dependent on any other statement, other than inputs or

known values, which essentially means that Gi can be computed without any delays.

53

54 Chapter 4. RVE-based FPGA Acceleration

This transformation is explained clearly in Example 1, which adds the loop counter.

Therefore after applying the RVE, we get an expression with five terms to be added,

as shown in Example 2.

Example 1: A simple example which adds the loop counter

A[1] = 1

for i = 2 to 5

A[i] = A[i-1] + i ——- (Gi)

end for

Example 2: After applying RVE on Example 1

A[5] = A[4] + 5

= A[3] + 4 + 5

= A[2] + 3 + 4 + 5

= A[1] + 2 + 3 + 4 + 5

= 1 + 2 + 3 + 4 + 5

In this way, the whole expanded statement in Example 2 can be computed in paral-

lel and efficiently using binary tree structure as shown in Figure 4.1 requiring 3 cycles

for the entire computation. The major drawback of this technique is that the speed up

is achieved at the cost of redundancy, which consumes a lot of hardware resources.

In this chapter, we present various implementations of S-W based sequence align-

ment applications using the RVE approach and compare the results with implementa-

tions based on the systolic array approach as discussed in the previous chapter.

4.1.2 Sequence alignment using RVE approach

To eliminate the limitation posed by the inherent data dependencies in the S-W based

sequence alignment applications, we apply the RVE approach. Instead of computing

an element of the H matrix at a time, as discussed in Chapter 2, we can compute a

block of k × k elements in parallel, by partially applying the RVE approach. When it

is applied to Equation 2.2, we get the following equations for Hi, j in a 2 × 2 block.

Hi−1, j−1 = max































Hi−1, j−2 − d

Hi−2, j−2 + S i−1, j−1

Hi−2, j−1 − d

0

(4.1)

Hi−1, j = max











































Hi−1, j−2 − 2d

Hi−2, j−2 − d + S i−1, j−1

Hi−2, j−1 + S i−1, j

Hi−2, j − d

0

(4.2)

4.1. Introduction 55

+

+

+

+

1 2 3 4 5

Cycle 1

Cycle 2

Cycle 3

A[5]

Figure 4.1: Circuit for the Example 2

Hi, j−1 = max











































Hi, j−2 − d

Hi−1, j−2 + S i, j−1

Hi−2, j−2 − d + S i−1, j−1

Hi−2, j−1 − 2d

0

(4.3)

Hi j = max











































(Hi, j−2 MAX Hi−2, j) + −2d

Hi−1, j−2 − d + (S i, j−1 MAX S i, j)

Hi−2, j−2 + S i−1, j−1 + S i, j

Hi−2, j−1 − d + (S i−1, j MAX S i, j)

0

(4.4)

Figure 4.2 shows the way to fill a 2 × 2 H matrix using the RVE approach, as per

Equations 4.1, 4.2, 4.3 and 4.4, where S is the match/mismatch score and d is the gap

penalty [72]. In each case the cell to be filled is highlighted along with the cells which

are required for its computation.

We define the size of RVE block as the blocking factor (b f). So, for a 2 × 2 array,

implemented using RVE, the blocking factor is b f = 2 × 2. The advantage of this

approach is that all four elements in the 2 × 2 array are computed in parallel, without

waiting for the previous elements to be computed. Thus, the data dependencies are

minimized, as compared to the traditional systolic array implementation.

56 Chapter 4. RVE-based FPGA Acceleration

H12

Nq2Nq1

N
s
1

N
s
2 H22H21

H11

000

0

0

H12

Nq2Nq1

N
s
1

N
s
2 H22H21

H11

000

0

0

H12

Nq2Nq1

N
s
1

N
s
2 H22H21

H11

000

0

0

H12

Nq2Nq1

N
s
1

N
s
2 H22H21

H11

000

0

0

 (a) (b) (c) (d)

Figure 4.2: Filling a 2 × 2 H matrix using the RVE approach

4.2 Rectangular (2D) RVE implementation

In this section, a building block for 2-dimensional RVE implementation is described

and system design based on this building block is presented. Further a discussion of

the results obtained is given.

4.2.1 Building block description

Figure 4.3 shows the block diagram description of a building block for RVE imple-

mentation with b f = 2 × 2. It provides the detailed pin outs of the RVE block, where

four pins are reserved for the corresponding characters of the input sequences Ns and

Nq, i.e Ns(i), Ns(i−1), Nq(j) and Nq(j−1). Five pins are for the H inputs, i.e. Hi−2, j−2,

Hi, j−2, Hi−2, j, Hi−1, j−2 and Hi−2, j−1. One pin is for the gap penalty (d) and two for the

clock (CLK) and reset (RST). The four output pins are Hi, j, Hi−1, j, Hi, j−1 and Hi−1, j−1.

RVE

(with bf = 2×2)

Hi-2,j-2

d
Hi,j-2

Hi-2,j

Hi-1,j-2

Hi-2,j-1

Ns(i)

Ns(i-1)

Nq(j)

Nq(j-1)

Hi,j

Hi-1,j

Hi,j-1

Hi-1,j-1

CLK RST

Figure 4.3: Block diagram description of a 2D RVE design with b f = 2 × 2

When implemented on a Xilinx Virtex-II Pro (XC2VP30) FPGA, the RVE block

shown in Figure 4.3 consumes 30 ns for a clock frequency of 50 MHz. The slices

utilized by the block design are 95 out 13696.

4.2. Rectangular (2D) RVE implementation 57

4.2.2 System design

Using the RVE block with b f = 2× 2 as a macro design, a 5× 5 blocks array is imple-

mented. Figure 4.4 shows the block diagram representation of this implementation.

RVE

(with bf = 2×2)

Hi-2,j-2

d
Hi,j-2

Hi-2,j

Hi-1,j-2

Hi-2,j-1

Ns(i)

Ns(i-1)

Nq(j)

Nq(j-1)

Hi,j

Hi-1,j

Hi,j-1

Hi-1,j-1

Ns1

Ns2

Ns3

Ns10

clk_ext

d

H1,1

H1,10

H2,1

H2,10

H10,10

Nq1 Nq3Nq2 Nq10

CLK RST

rst_ext

H00

Figure 4.4: Block diagram representation of a 5 × 5 array using multiple RVE blocks

with b f = 2 × 2

Figure 4.5 shows, how a 5×5 blocks array is constructed by using RVE blocks with

b f = 2× 2. For the blocks in the first row and first column of Figure 4.5, all the inputs

come from outside, as shown by external input pins of Figure 4.4. The four outputs of

each block go to the inputs of corresponding neighboring blocks, where the remaining

inputs corresponding to sequence characters come from outside. The entire design

consumes 2409 out of 13696 slices without considering the IO hardware overhead.

The resources utilized with the IO hardware overhead are equivalent to 2630, thus a

maximum of 130 PEs (RVE blocks with b f = 2×2) can be fitted, while implementing

on a Xilinx Virtex-II Pro (XC2VP30) FPGA. Since four Hi, j elements are calculated

per PE, the maximum number of Hi, j elements calculated is 130 × 4 = 520. There are

9 anti-diagonals in a 5 × 5 array using RVE blocks with b f = 2 × 2, represented by

letters A, B, C, D, E, F, G, H and I in Figure 4.5. Each anti-diagonal is computed in

one clock cycle, so the latency is equivalent to 9 clock cycles = 9 × 30 = 270 ns.

4.2.3 Discussion of results

Table 4.1 displays the results of comparing various systolic array implementation with

their equivalent RVE implementations, where the first column represents the type of

implementation. The second column represent the time consumed. The third col-

umn shows the speedup of each design with respect to its equivalent systolic array

58 Chapter 4. RVE-based FPGA Acceleration

H12

Nq1

N
s
1

N
s
2 H22H21

H11

000

0

0

H12

H22H21

H11

00

H12

H22H21

H11

00

H12

H22H21

H11

00

H12

H22H21

H11

00

H12

H22H21

H11 H12

H22H21

H11 H12

H22H21

H11

H12

H22H21

H11 H12

H22H21

H11

H12

H22H21

H11 H12

H22H21

H11H12

H22H21

H11

H12

H22H21

H11H12

H22H21

H11

H12

H22H21

H11 H12

H22H21

H11

H12

H22H21

H11H12

H22H21

H11H12

H22H21

H11

H12

H22H21

H11H12

H22H21

H11

H12

H22H21

H11H12

H22H21

H11H12

H22H21

H11

0

0

0

0

0

0

0

0

Nq2 Nq3 Nq4 Nq5 Nq6 Nq7 Nq8 Nq9 Nq10

N
s
3

N
s
4

N
s
5

N
s
6

N
s
7

N
s
8

N
s
9

N
s
1

0

A C

C

C

E

E

E

E

E

G

G

G I

B

B

D

D

D

D

F

F

F

F

H

H

Figure 4.5: 5 × 5 array using RVE blocks with b f = 2 × 2

design. The fourth column gives the number of slices utilized by each implementation

including the IO hardware overhead. The device used for implementation is Xilinx

Virtex-II Pro FPGA, where the total number of available slices is 13696. The last

column presents the hardware utilization cost.

The performance gain in terms of latency, achieved by 5 × 5 array using RVE

blocks with b f = 2 × 2, as compared to its equivalent 10 × 10 traditional systolic

array implementation (discussed in the previous chapter) = 380/270 = 1.41. This per-

formance gain is achieved at the cost of utilizing 2630/2096 = 1.25 times additional

hardware resources. In case of 14 × 10 array using RVE blocks with b f = 2 × 2, the

performance gain in comparison with its equivalent 28 × 20 systolic array implemen-

tation = 940/690 = 1.36, at the cost of utilizing 13694/10751 = 1.27 times additional

hardware resources. Figure 4.6 shows a graphical comparison of the results given in

Table 4.1.

The performance gain achieved by the RVE approach is due to the fact that it

eliminates the limitation posed by the inherent data dependencies in the S-W based

sequence alignment applications. However, this performance is achieved at the cost of

utilizing additional hardware resources. The speedup achieved by applying RVE in-

creases with the increasing blocking factor (b f), but resource utilization also increases

4.2. Rectangular (2D) RVE implementation 59

Table 4.1: Comparison between 2D systolic array and RVE implementations

Implementation Time (ns) Speedup Slices Hardware cost

2 × 2
60 1 70 1

systolic array

RVE block
30 2 95 1.36

with bf = 2 × 2

10 × 10
380 1 2096 1

systolic array

5 × 5 array using
270 1.41 2630 1.25

RVE blocks with bf = 2 × 2

28 × 20
940 1 10751 1

systolic array

14 × 10 array using
690 1.36 13694 1.27

RVE blocks with bf = 2 × 2

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0

2x2 10x10 28x20

Array size

S
li

ce
s

 u
ti

li
ze

d

Systolic array RVE

(b)

1
1

0
1

0
0

1
0

0
0

2x2 10x10 28x20

Array size

T
im

e

co
n

su
m

e
d

 i
n

 n
a

n
o

se
co

n
d

s

Systolic array RVE

(a)

Figure 4.6: Comparison between various 2D systolic array and 2D RVE implementa-

tions on a logarithmic scale

as a consequence. Thus the limiting factor is the availability of hardware resources

on the device used for implementation, Xilinx Virtex-II Pro (XC2VP30) FPGA in this

case. Other major issue with this implementation is that the hardware is underutilized

most of the times. To overcome this issue, we present a linear RVE design as discussed

in the next section.

60 Chapter 4. RVE-based FPGA Acceleration

4.3 Linear (1D) RVE implementation

This section presents the design of a basic building block for the linear RVE im-

plementation. Further, it presents system designs based on this building block and

presents a discussion of the results achieved.

4.3.1 Building block description

Figure 4.7 shows the block diagram representation of the linear RVE design that im-

plements a 2×2 array. This RVE block depends on the search and target sequences (i.e.

the query and database sequences), the gap penalty (d), Max input, CLK and RST, in

addition to the three external elements i.e. Hi−2, j−2, Hi, j−2 and Hi−1, j−2, and two feed-

back elements Hi−2, j and Hi−2, j−1. Similarly, in addition to the four elements of the

H matrix i.e. Hi, j, Hi, j−1, Hi−1, j and Hi−1, j−1, the RVE block also outputs Max output,

Ns1 and Ns2, which become inputs for the next block, when the array is extended.

RVE

(with bf = 2×2)

Hi-2,j-2

d

Hi,j-2

Hi-2,j

Hi-1,j-2

Hi-2,j-1

Ns2_in(Ns(i))

Ns1_in(Ns(i-1))

Nq2(Nq(j))

Nq1(Nq((j-1))

Hi,j

Hi,j-1

Hi-1,j

Hi-1,j-1

CLK RST

Max_in

Max_out

Ns1_out

Ns2_out

Figure 4.7: Block diagram representation of the linear RVE design with b f = 2 × 2

Figure 4.8 shows the logical description of an RVE implementation with b f = 2×2.

The comparators in the 1st column of Figure 4.8 compare the corresponding characters

of the input sequences and generate the similarity score accordingly. The adders in

the 2nd column add the gap penalty with the elements Hi, j−2, Hi−1, j−2, Hi, j and Hi, j−1,

where the 1st two are external elements and the 2nd two are feedback elements. The

AND gates in the 3rd column perform logic anding between the outputs of the upper 3

comparators in the 1st column. The adders and comparators in the following columns

perform addition and max operation on the inputs from the preceding columns. The

4.3. Linear (1D) RVE implementation 61

Seq_

Comp

Hi-2,j-2

BUF

Max_out

CLK

RST

BUF
CLK

RST

BUF
CLK

RST

BUF
CLK

RST

BUF
CLK

RST

BUF
CLK

RST

Seq_

Comp

Seq_

Comp

A

N

D

A

N

D

Seq_

Comp

Nq1

N
s
2
_
in

Nq2

N
s
1
_
in

Hi,j-2

d

Hi-1,j-2

Max_in

Hi,j

Hi,j-1

Hi-1,j

Hi-1,j-1

BUF
CLK

RST

BUF
CLK

RST
Ns1_out

Ns2_out

cmp

cmp

cmp

cmp

cmp

cmp

cmp

cmp
cmp

cmp

cmp

cmp
cmp

cmp

cmp

cmp

cmp

cmp

cmp
cmp

Figure 4.8: Logical description of an RVE implementation with b f = 2 × 2

values of the five outputs Hi, j, Hi, j−1, Hi−1, j, Hi−1, j−1 and Max out are buffered at

the output. Ns1 in and Ns2 in are also buffered in the last column to get Ns1 out and

Ns2 out for the next block in the array. When implemented in VHDL, this block with

b f = 2× 2 consumes 13 ns, where the clock period is 30 ns and the frequency is 33.33

MHz. Using this block as a macro, RVE designs of various sizes can be developed

depending on the availability of hardware resources.

4.3.2 System design

The basic building block for the linear RVE design shown in Figure 4.8 is used to de-

velop RVE based systems of various sizes for sequence alignment applications. Figure

4.9 shows a 2-block linear RVE implementation as an example, where the blocks are

connected in a linear systolic array fashion.

The 2-block linear RVE design shown in Figure 4.9, which is equivalent to the

4-element linear systolic array design, is implemented in VHDL and the post place

and route simulation results show that the latency of the array is 300 ns, whereas the

slices consumed are 254 out of 13696. The platform used for implementation is Xilinx

Virtex-II Pro FPGA.

4.3.3 Discussion of results

Table 4.2 presents the implementation results for various linear systolic array and lin-

ear RVE designs. It demonstrates that a 4-element linear systolic array implementation

62 Chapter 4. RVE-based FPGA Acceleration

Ns2_in

Ns1_in

Hi-2,j-2

Hi,j-2

Hi-1,j-2

N
q

1

N
q

2

N
q

3

N
q

4

dd

RST RSTCLK

Max_in_ext Max_out_ext

Hi,j

Hi-1,j

Hi,j-1

Hi-1,j-1

Hi+2,j+2Hi+2,j+1

Hi+1,j+2Hi+1,j+1 Ns2_out

Ns1_out

CLK

Figure 4.9: 2-block linear RVE design

consumes 700 ns and utilizes 127 out of 13696 slices, when implemented on a Xilinx

Virtex-II Pro FPGA. Thus a maximum of 107 PEs can be implemented on the same de-

vice, thereby consuming most of the available slices on the FPGA. This implementa-

tion is used as a reference for comparison, which is traditionally used for accelerating

the S-W based sequence alignment applications. The 2-block linear RVE implemen-

tation consumes 300 ns and utilizes 254 out of 13696 slices, when implemented on

a Xilix Virtex-II Pro FPGA. Thus a maximum of 53 PEs can be implemented, using

the same device. Thus in comparison with a traditional 4-element linear systolic array

implementation, the 2-block linear RVE implementation improves the performance

by a factor of 700/300 = 2.33, at the cost of utilizing 254/127 = 2 times additional

hardware resources.

Table 4.2: Comparison between linear systolic array and linear RVE implementations

Implementation Time (ns) Speedup Slices Hardware cost

4-element
700 1 127 1

linear systolic array

2-block
300 2.33 254 2

linear RVE

10-element
1900 1 297 1

linear systolic array

5-block
900 2.11 601 2.02

linear RVE

200-element
39900 1 6350 1

linear systolic array

100-block
19900 2.01 12700 2

linear RVE

The table also shows a comparison between 10-element linear systolic array and

5-block linear RVE implementations, where the 5-block linear RVE design performs

4.4. RVE performance evaluation 63

2.11 times better than the 10-element linear systolic array implementation at the cost

of utilizing 2.02 times additional hardware resources. The table further demonstrates

a comparison between 200-element linear systolic array and 100-block linear RVE im-

plementations, where the 100-block linear RVE implementation achieves 39900/19900

= 2.01 times higher performance than the linear systolic array implementation at the

cost of utilizing 12700/6350 = 2 times additional hardware resources. A full scale

linear systolic array implementation fits a maximum of 428 elements, whereas a full

scale linear RVE implementation fits a maximum of 106 RVE blocks, where the de-

vice utilized for implementation is Xilinx Virtex-II Pro FPGA. Thus due to higher

resource utilization by the linear RVE design, the full scale implementations are not

comparable. From Table 4.2, it can be concluded that the linear RVE implementation

is preferred in cases where high performance is desired and hardware cost is not a big

concern.

The chart in Figure 4.10 shows a graphical comparison between various linear

systolic array and linear RVE implementations, where the factors considered for com-

parison are the time consumed and the number of slices utilized. Clearly, the time

consumption decreases by applying RVE, as shown in Figure 4.10(a). On the other

hand, the resource utilization increases by applying RVE, as shown in Figure 4.10(b).

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0

4‐element 10‐element 200‐element

Array size

T
im

e

co
n

su
m

e
d

 i
n

 n
a

n
o

se
co

n
d

s

Linear systolic Linear RVE

(a)

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0

4‐element 10‐element 200‐element

Array size

S
li

ce
s

 u
ti

li
ze

d

Linear systolic Linear RVE

(b)

Figure 4.10: Comparison between various linear systolic array and linear RVE imple-

mentations on a logarithmic scale

In the following section, the performance of RVE implementations is evaluated for

various array sizes, taking the hardware utilization (area) cost into consideration.

4.4 RVE performance evaluation

The RVE designs discussed in the previous sections focused mainly on the latency as

a performance metric, which is the time it takes a character of the database sequence

to travel through the design. The latency is given by Equation 4.5, where fopr is the

64 Chapter 4. RVE-based FPGA Acceleration

maximum operating frequency and each RVE block consumes one cycle to compute

the results.

Latency = Number of RVE blocks ×
1

fopr

(4.5)

In this section, we use other performance metrics to optimize the designs. RVE

designs with various blocking factors, as shown in Figure 4.11 are analyzed using per-

formance metrics like throughput and performance/area besides latency. This results

in a better understanding of the RVE implications. The diagonal lines in Figure 4.11

indicate the RVE blocks that can be computed in parallel.

2×1 1×31×1 1×2

4×1 2×23×1 1×4

2×4 4×22×3 3×2

4×3 4×43×3 3×4

Figure 4.11: RVE designs with various blocking factors

Table 4.3 presents the performance evaluation results of linear RVE implementa-

4.4. RVE performance evaluation 65

tions with various blocking factors. The number of PEs is chosen such that a query

sequence that is 36 characters long can be aligned in one run. It is clear from the 3rd

column of the table that for square blocking factors (i.e., 1× 1, 2× 2, 3× 3 and 4× 4),

increasing blocking factors result in lower frequencies. All non-square blocking fac-

tors (e.g., 2×1, 3×1, 4×1, 3×2, 4×2 and 4×3) run on lower frequencies as well. For

example, the 1×1 and 2×1 blocks run at similar frequencies, but if the blocking factor

is increased from 2 × 1 to 3 × 1, the frequency drops by 37 MHz. This can partly be

explained by the way the formulas expand, i.e. the number of sequential additions and

the logic depth of the comparators. For the 1× 1, 2× 1 and 3× 1 blocking factors, the

number of adder stages is respectively 2, 3 and 3, whereas, the number of comparator

stages is respectively 2, 3 and 3, as reported by the synthesis tool. This shows that not

only the theoretical logic depth, but also the actual implementation of the circuit plays

a key role in determining the maximum frequency.

Table 4.3: Performance evaluation for various RVE implementations

Blocking Number fopr Latency Throughput Performance/area

factor of PEs (MHz) (ns) (MCUPS) (MCUPS/slice)

1 × 1 36 159.0 226.4 5724 6.30

2 × 1 36 158.0 227.8 11376 6.81

3 × 1 36 121.0 297.5 13068 4.81

4 × 1 36 115.0 313.0 16560 4.19

2 × 2 18 118.0 152.5 8496 4.69

3 × 2 18 86.0 209.3 9288 2.61

4 × 2 18 67.0 268.6 9648 1.57

3 × 3 12 74.0 162.2 7992 1.76

4 × 3 12 66.8 179.6 9619 1.22

4 × 4 9 59.0 152.5 8496 0.81

The 4th column of Table 4.3 shows that for the 2 × 2 square blocking factor, the

latency of the design decreases significantly. But increasing the blocking factor fur-

ther, the latency does not improve anymore, suggesting that going beyond 2 × 2 has

no advantage. For the non-square blocking factors like 2 × 1 and 3 × 1, it is more

complicated, as these blocks can be organized in two different ways giving rise to dif-

ferent latencies. This indicates that latency alone is not the best metric to evaluate the

performance of an RVE design, as it only tells about how fast the end of the design

is reached. To investigate the amount of work done by the design during every time

unit, we compute throughput, which is defined as the number of cell updates per sec-

ond. The throughput for RVE designs with various blocking factors is shown in the

5th column of Table 4.3 and is calculated as per Equation 4.6, where each RVE block

consumes one cycle to compute the results.

Throughput = Number of RVE blocks × blocking factor × fopr (4.6)

66 Chapter 4. RVE-based FPGA Acceleration

Like the latency, the throughput also becomes better from 1 × 1 to 2 × 2, but the

improvement becomes small for larger blocking factors. This is due to the fact that the

frequency decreases rapidly for larger blocking factors, as shown in Table 4.3. Only

the n × 1 blocks perform increasingly better. This is due to the fact that the frequency

does not drop that fast here.

The last column of Table 4.3 gives performance/area in terms of MCUPS/slice. It

is a useful performance metric that takes the hardware resource utilization or area cost

into account and is calculated as per Equation 4.7.

Performance per slice =
Throughput

Number of slices
(4.7)

It becomes clear that when taking the area into account, RVE does not perform

better than the default 1×1 design for most cases. Only the RVE design with the 2×1

blocking factor gives a better performance per slice than the default case, giving rise

to the conclusion that RVE designs with non-square blocking factors should also be

explored for higher performance.

4.5. Summary 67

4.5 Summary

Besides providing an introduction to the RVE approach, this chapter presented rectan-

gular and linear RVE implementations for biological sequence alignment applications

and evaluated the performance for various RVE implementations. The main topics

presented in the chapter are as follows.

• Introduction to the RVE approach and its application in biological sequence

alignment.

• Rectangular (2D) RVE implementation, its corresponding building block de-

scription and the subsequent system design. Moreover, its comparison with

equivalent 2D systolic array implementation and a discussion of the results.

• Linear (1D) RVE implementation, its corresponding building block description

and subsequent system design. Its comparison with the equivalent linear systolic

array implementation and a discussion of the results.

• A discussion about the speedups achieved by various RVE implementations and

their hardware resource utilization costs.

• Performance evaluation of RVE designs with various blocking factors.

68

Chapter 5
GPU Acceleration

This chapter aims at exploiting the parallelization capabilities of the GPUs for

biological sequence alignments. The chapter begins with a discussion of GPU as

a computational platform in Section 5.1. Section 5.2 presents an optimized GPU

implementation for protein sequence alignment. Section 5.3 provides a discussion

of the results achieved by the optimized implementation. Section 5.4 discusses the

performance limits, whereas Section 5.5 summarizes the chapter.

5.1 GPU as a computational platform

This section provides background information about GPU as a computational platform

by discussing the CUDA framework, its programming and memory models. Further-

more, it explains the important phenomenon of coalescing to reduce latency of global

memory. It also discusses the previous GPU implementations for biological sequence

alignment.

5.1.1 CUDA framework

CUDA is the hardware and software architecture that enables NVIDIA GPUs [73]

to execute programs written in C, C++, Fortran, OpenCL [74], DirectCompute [75],

and other languages. A CUDA program calls kernels that run on the GPU, as shown

in Figure 5.1. A kernel executes in parallel across a set of threads, where a thread

is the basic unit in the programming model that executes an instance of the kernel,

and has access to registers and per thread local memory. The programmer organizes

these threads in grids of thread blocks, where a thread block is a set of concurrently

executing threads and has a shared memory for communication between the threads.

A grid is an array of thread blocks that execute the same kernel, read inputs from and

write outputs to global memory, and synchronize between interdependent kernel calls.

69

70 Chapter 5. GPU Acceleration

Host (PC)

Kernel

1

Device (GPU)

Grid 1

Kernel

2

Grid 2

Block (1, 1)

Thread

0

Thread

1
- - - - -

Thread

31

Thread

0

Thread

1

Thread

31
warp 2

Thread

31

Thread

1

Thread

0

Block

(0, 0)

Block

(1, 0)

Multiprocessor 1 Multiprocessor 2

Block

(0, 1)

Block

(1, 1)

warp 1

warp n

-
-

-
-

- - - - -

- - - - -

Figure 5.1: CUDA hierarchy of threads, blocks and grids

CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU. A

GPU executes one or more kernel grids. A GPU consists of multiprocessors that ex-

ecute one or more thread blocks, as shown in Figure 5.1. Multiple thread blocks can

be scheduled by the GPU to run on one multiprocessor sequentially, or in parallel by

using thread switching. CUDA cores, i.e. the processing elements within a multipro-

cessor, execute threads in groups of 32 called warps. Performance on GT200-class

GPUs can be optimized a great deal by having threads in a half-warp (16 threads)

execute the same code path and access memory in a close vicinity.

In the CUDA parallel programming model various memory spaces exist [73]. The

complete set of CUDA memory spaces is given in Figure 5.2, where global memory

is the GPU’s RAM. Accessing it has a high latency, which can be hidden by switching

execution to other threads that are not waiting for memory accesses.

The second type of memory shown in Figure 5.2 is the texture cache. Textures are

cached ‘windows’ into global memory, optimized for spatially local reads.

The third type of memory is the constant cache, which is a read-only portion of

5.1. GPU as a computational platform 71

Grid

Block (0, 0)

Local

memory
(per thread)

Registers
(per thread)

Host

Block (0, 1)

Host

(PC)

Thread (0, 1)Thread (0, 0) Thread (0, 0) Thread (0, 1)

Shared memory
(per block)

Shared memory
(per block)

Registers
(per thread)

Registers
(per thread)

Registers
(per thread)

Local

memory
(per thread)

Local

memory
(per thread)

Local

memory
(per thread)

Constant

cache

Texture

cache

Multiprocessor

Global

memory

Figure 5.2: CUDA memory hierarchy

global memory. It is cached at each multiprocessor and accessing it is as fast as ac-

cessing a register.

The other types of memories are shared memory and local memory, where shared

memory is a fast memory used for inter-thread communication within a thread block

and local memory is a per thread portion of the global memory used for function calls

and register spills. Additionally, each multiprocessor offers a bank of registers, shared

between its processors.

5.1.2 Coalescing

Latency of global memory can be avoided altogether by coalescing memory accesses

as shown in Figure 5.3, where each thread of a half-warp of 16 threads accesses a

4-byte value in global memory. The values in Figure 5.3(a) are all stored at unordered

different addresses. In this case, each thread will execute a 32-byte (instead of 4-

byte) memory access sequentially, since 32 bytes is the smallest memory access size

supported by the GPU. Other possible access sizes are 64 and 128 bytes. This wastes

28 bytes of bandwidth per access adding to a total bandwidth wastage of 28×16 = 448

72 Chapter 5. GPU Acceleration

bytes for all 16 threads and as accesses take place sequentially, latency will be high.

In Figure 5.3(b), the values accessed are stored at neighboring addresses. In this

case, coalescing takes place. The GPU issues a single 64-byte load, thus no bandwidth

is wasted and only a single access is needed.

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread

Thread

Thread

Memory address 0

Memory address 4

Memory address 8

Memory address 12

Memory address 80

Memory address 84

Memory address 88

Memory address 92

Memory address 0

Memory address 4

Memory address 8

Memory address 12

Memory address 16

Memory address 20

Memory address 24

Memory address 28

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

16 x 32 bytes = 512 bytes 1 x 64 bytes

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Memory address 100

Memory address 104

Memory address 108

Memory address 112

…

Memory address 32

Memory address 36

Memory address 40

Memory address 44

Memory address 48

Memory address 52

Memory address 56

Memory address 60

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

(a) non-coalesced (b) coalesced

Figure 5.3: The effect of coalescing on memory reads

5.1.3 Previous implementations

The first known implementations of S-W based sequence alignment on a GPU are

presented in [65] and [76]. These approaches are similar and use the OpenGL graphics

API to search protein databases. First the database and query sequences are copied to

GPU texture memory. The score matrix is then processed in a systolic array fashion

[25], where the data flows in anti-diagonals. The results of each anti-diagonal are

again stored in texture memory, which are then used as inputs for the next pass. The

implementation in [65] searched 99.8% of Swiss-Prot (almost 180,000 sequences) and

managed to obtain a maximum speed of 650 MCUPS compared to around 75 for the

compared CPU version. The implementation discussed in [76] offers the ability to run

in two modes, i.e. one with and one without traceback. The version with no traceback

managed to perform at 241 MCUPS, compared to 178 with traceback and 120 for the

compared CPU implementation. Both implementations were benchmarked using a

Geforce GTX 7800 graphics card.

The first known CUDA implementation, ‘SW-CUDA’, is discussed in [77]. In

this approach, each of the GPU’s processors performs a complete alignment instead

of them being used to stream through a single alignment. The advantage of this is

that no communication between processing elements is required, thereby reducing

memory reads and writes. This implementation managed to perform at 1.9 GCUPS

5.2. Optimized GPU implementation 73

on a single Geforce GTX 8800 graphics card when searching Swiss-Prot, compared

to around 0.12 GCUPS for the compared CPU implementation. Furthermore, it is

shown to scale almost linearly with the amount of GPUs used by simply splitting up

the database.

Various improvements have been suggested to the approach presented in [77], as

shown in [78,79]. In the ‘CUDASW++’ solution presented in [79], for sequences of

more than 3,072 amino acids an ‘inter-task parallelization’ method similar to the sys-

tolic array and OpenGL approaches is used as this, while slower, requires less memory.

This ‘CUDASW++’ solution manages a maximum speed of about 9.5 GCUPS search-

ing Swiss-Prot on a Geforce GTX 280 graphics card. An improved version, ‘CUD-

ASW++ 2.0’ has been published recently [80]. Being the fastest Smith-Waterman

GPU implementation to date, ‘CUDASW++ 2.0’ managed 17 GCUPS on a single

GTX 280 GPU, outperforming CPU-based BLAST in its benchmarks.

5.2 Optimized GPU implementation

This section presents our high performance GPU implementation for protein sequence

alignment. The implementation is called Database Optimized Protein Alignment (DO-

PA). Section 5.2.1 outlines the design and structure of the implementation, while Sec-

tion 5.2.2 details the database conversion process. Section 5.2.3 discusses the load-

ing/storing of temporary data, whereas Section 5.2.4 demonstrates the optimization of

substitution matrix accesses.

5.2.1 General design

Being the most mature GPU programming toolkit to date, NVIDIA CUDA is used for

the GPU programming (device code) in conjunction with C++ for the PC program-

ming (host code). Like with other existing GPU implementations, protein sequences

from the Swiss-Prot database [81] are considered for alignment. The reason is that

protein alignment is more complex than the DNA version, which makes supporting

DNA alignments later on relatively simple. Figure 5.4 shows a block diagram de-

scription of the implementation. The host code is mostly concerned with loading data

structures, copying them to the GPU, and copying back and presenting the results. The

query sequence, converted database and other data are copied to the GPU. Then the

device code is launched, which aligns the query sequence with the database sequences

using the S-W algorithm.

Like other GPU implementations, our implementation returns maximum S-W scor-

es instead of the actual alignments. Skipping the algorithm’s traceback step signifi-

cantly simplifies and speeds up the implementation. Furthermore, as no data structures

like pointer lists need to be kept, memory consumption is decreased as well. However,

to be able to generate full alignments, a number of top-scoring sequences are exported

to a new database file. The sequences in this file can then be aligned on the host PC

using the Smith-Waterman search (ssearch) tool. This approach leads to some redun-

74 Chapter 5. GPU Acceleration

dancy as some sequences are aligned twice, however, the number of such sequences

is relatively small. By default 20 top scoring sequences are returned, whereas the

Swiss-Prot database contains more than 500,000.

����������	
��

�

���

��
�����

����
������

��
��

�������
���

������������

������		���������� ������		�����������

�����
����

����
��
�

 !�

�����

	�"�	�	

 �#�
���

����$�

�

 �#

%�
��

��
��
����$�

����
�
���

Figure 5.4: Description of the GPU implementation

Each processing element in our implementation is used to independently generate

a complete alignment between a query sequence and a database sequence. This elim-

inates the need for inter-processor communication and results in efficient resource

utilization. The GPU used for implementation (i.e. NVIDIA GTX 275) contains

240 processors, while the latest release of Swiss-Prot contains more than 500,000 se-

quences. Hence, it is possible to keep all processors well occupied [82].

5.2.2 Database conversion

The Swiss-Prot database is organized in FASTA format, where sequences are preceded

by sequence descriptions that give names and other biological information about them.

Instead of directly loading databases in FASTA format, the GPU implementation con-

verts them to a custom GPU format to better match the device capabilities. A database

only needs to be converted once, after which it is locally stored in the new format. The

conversion process as shown in Figure 5.5 consists of the following steps.

Sorting

In practice the threads in a half-warp will have to wait for each other to finish their

workload instead of continuing on independently. To reduce this waiting time, the

5.2. Optimized GPU implementation 75

 (c) Sequence sets of concatenated sequence groups(b) Sorted and descriptions separated(a) Original database

Description 0

Description 1

Description 2

Description 4

Description 3

Description 15

Description 0

Description 1

Description 2

Description 3

Description 4

Description 5

Description 6

Description 7

Description 8

Description 9

Description 10

Description 11

Description 12

Description 13

Description 14

Description 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequence groups

Sequence set 0

Sequence set 1

Sequence terminator

Sequence group terminator

Figure 5.5: The database conversion process

76 Chapter 5. GPU Acceleration

database sequences are sorted by length to minimize length differences between neigh-

boring threads, as shown in Figure 5.5(b). Sequence descriptions are stored in a sep-

arate file that is not uploaded to the GPU, saving memory and decreasing load times.

Furthermore, sequence characters are replaced with numeric indexes to facilitate eas-

ier substitution matrix lookups.

Concatenation

After sorting, groups of 16 sequences are taken and processed in sequence sets that

will have a half-warp of threads working on them, as shown in Figure 5.5(c). Even

though sorting by length has somewhat equalized workload within each sequence set,

various sequence sets still have different sizes. To combat this, sequences within a

sequence set are concatenated with leftover sequences to form sequence groups. The

total length of each sequence group within a sequence set nearly equals or, ideally,

matches the length of the longest sequence in that set. This results in an equal work-

load for each thread in a half-warp processing a sequence set.

Sequence terminators are inserted between the concatenated sequences; these tell

the GPU kernel to initiate a new alignment. Sequence group terminators are inserted

at the end of each sequence group signifying the end of a group of concatenated se-

quences, at which point a thread will wait for the rest of the threads in the half-warp

to cease execution.

Interlacing

Once all database sequences have been processed into 16-wide sets of sequence groups,

they are written to file. The sequence sets are written in an interlaced fashion, as shown

in Figure 5.6. Each interlaced subset consists of eight characters from each sequence

group.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

D
a

ta
b

a
s
e

c
h

a
ra

c
te

rs

8 9 10 111213 1415 8 9 10 111213 1415 8 9 10 1112131415

0 8 120

S
e

q
u

e
n

c
e

s
u

b
s
e

ts

Sequence group 0 Sequence group 1 Sequence group 15

Sequence set

Address (bytes)

Figure 5.6: Sequence storing as interlaced subsets

5.2. Optimized GPU implementation 77

Eight characters of the set’s first sequence group are written, then eight characters

of the set’s second group and so on. As there are 16 sequence groups in each sequence

set, each thread in a half-warp is now able to load 8 bytes of sequence data from

neighboring addresses. As a result, 128-byte coalesced loading takes place.

Equal length sets

During code development, alignments were conducted with a synthetic (randomly

generated) database, each sequence of which had the same length. The performance

of this synthetic database is twice that of the Swiss-Prot database, which has sequences

ranging in length from 2 to 35213 characters. The drop in performance for Swiss-Prot

is the result of different workloads between different half-warps.

Though concatenation resulted in an equal workload distribution for threads within

every sequence set, it still varies among different sequence sets. To resolve this, the

length of each sequence group within every sequence set is made equal or nearly equal

to the length of the longest sequence in the database, as shown in Figure 5.5(c). This

results in an equal workload distribution for all GPU threads in general. The outcome

of this is a 1.7 times increase in performance.

Evidently, equal workload across different threads improves performance; possi-

bly a result of the GPU’s thread scheduling not being optimal in the previous case.

For example, the GPU thread scheduler might only schedule a new thread block once

all the threads in a previous thread block have completed their execution.

5.2.3 Temporary data reads and writes

Memory bandwidth represented a serious bottleneck while developing the GPU im-

plementation. A number of steps have been taken to optimize for high performance

by reducing the number of memory accesses, the frequent temporary data accesses in

particular. As no traceback is performed on the GPU, S-W matrix values do not need

to be saved for the entire execution time and can be overwritten. As such, only a single

column of S-W scores is kept. This score column stores values to the left of the cur-

rently processing column, i.e. Hi−1,1≤ j≤N in Equation 2.3. The size of this temporary

data column is set to the size of the query sequence, not the database sequence, so that

the column can have one fixed size for all database sequences. This usually requires

less memory, as it is unlikely that the query sequence will be as long as the longest

database sequence. The temporary data column is set to zero whenever a new database

sequence is started. In addition to this temporary score column, variables are used to

keep the values of the upper and upper-left cells required by the algorithm, i.e. Hi, j−1

and Hi−1, j−1 in Equation 2.3. To support affine gap penalties, another temporary data

column is added for D values. Additionally, an upper E value is kept (see Equation

2.3).

Each S-W iteration involves reading and writing two temporary values (score and

D), for four accesses in total. When both are non-coalesced, 32 byte reads/writes are

78 Chapter 5. GPU Acceleration

issued for each access. This means that per half-warp

16 threads × 32 bytes × 2 values × 2 read/write = 2048 bytes

of bandwidth is used, resulting in a major memory bottleneck. The optimization steps

mentioned below decrease this to one 128-byte coalesced read and write for every sec-

ond iteration. This is a 16 times bandwidth improvement and requires only 1 instead

of 64 accesses. 128 bytes is the largest allowed coalesced access size, and is faster

than multiple smaller coalesced accesses [82]. The optimizations are as follows:

• Smaller, 16-bit data type for the temporary values, cutting the theoretically re-

quired bandwidth in half and allowing for better coalescing.

• Each thread stores one data value in turn, resulting in an interlaced storage

scheme. Instead of direct array accesses, a pointer into the temporary storage is

started at the thread id, and increased by the total number of threads to move to

the next element of the H matrix. Each thread in a half-warp then reads a 2-byte

coalesced value, meaning that instead of two 32-byte accesses per thread, two

such accesses take place per half-warp. This sixteen times bandwidth improve-

ment results in an almost ten times net speedup.

• To again halve the number of memory accesses, the temporary score and D

values are interlaced. This is done by defining a data structure consisting of

these values and using it to access the score and D values for an iteration in one

go. At this point, a thread accesses two 2-byte values in one read, for a total

of 16 × 2 × 2 bytes bandwidth per half warp. The result is a 64-byte coalesced

access.

• Finally, two temporary values are interlaced to move to 128-byte accesses. This

has an additional benefit of temporary reads/writes only being required for every

second query sequence symbol processed.

5.2.4 Substitution matrix accesses

Aligning proteins requires the use of a substitution matrix, which is accessed every

time two symbols are aligned, making its access time critical to the implementation’s

performance. Substitution matrix (e.g. BLOSUM 62) accesses are random and are

completely dependent on the database sequence, complicating the choice of memory

used. Global memory is not a good choice for such a frequent usage due to its high

access time. Also the random nature of substitution matrix accesses makes coalescing

very difficult. As an alternative, the substitution matrix is stored in texture memory.

Texture memory is a cached window into global memory that offers lower latency and

does not require coalescing for best performance. It is thus well suited for random

access. Texture memory has the ability to fetch four values at a time. This mechanism

can be used to fetch four substitution matrix values from a query profile.

5.3. Discussion of results 79

A L R K A A R K …

A

R

N

D

V

…

Query

P
ro

te
in

 a
lp

h
a

b
e

t

Query position

Fetch 4 characters
Current db character

Figure 5.7: Query profile

A query profile is shown in Figure 5.7. It is a type of substitution matrix where,

instead of the protein alphabet, the query sequence is used along the top row. This

means that for a given database character, the substitution matrix is not random any-

more: multiple substitution scores can be loaded simultaneously when aligning the

query with a database character. Furthermore, query sequence lookups are not re-

quired anymore; only the current position within the query is needed to index into

the profile. A query profile is generated once for every query sequence. Each query

profile column stores values for 23 characters. The number of columns and hence the

memory requirement for a query profile depends on the length of the query sequence.

The GTX 275 GPU used for our implementation has 8KB of texture cache per multi-

processor. This means that a query sequence having more than ⌊8 × 1024/23⌋ = 356

characters will result in increased cache misses, as described in [78]. Tests were per-

formed to quantify the texture cache miss rate, which was shown to be very small.

For example, aligning an 8000 character query sequence resulted in 0.009% miss rate.

Using this query profile method resulted in a 17% performance improvement with

Swiss-Prot [82].

5.3 Discussion of results

In this section, the performance of DOPA, the optimized GPU implementation for pro-

tein sequence alignment is evaluated and compared with other available approaches.

5.3.1 Experimental setup

The experimental setup used to test the implementation and measure its performance

is as follows:

• Intel Core 2 Quad Q6600 (2.4 GHz) with 4GB of RAM

80 Chapter 5. GPU Acceleration

• NVIDIA Geforce GTX 275 graphics card with 896 MB of memory and clock

speeds of 633, 1134 and 1404 MHz for its core, memory and shaders respec-

tively

• 64 bit Microsoft Windows 7 Professional

• Video drivers version 257.21

• CUDA toolkit version 3.1

• Swiss-Prot release October 2010

• Substitution matrix BLOSUM62

• Gap penalty: -10 and gap extend penalty: -2 (these do not influence the execu-

tion time)

The run time is measured using the C clock() instruction, the accuracy of which

is verified using the CUDA profiling application. Table 5.1 displays the performance

results, where the execution time in seconds and the performance in GCUPS are given

for query sequences of varying lengths taken from Swiss-Prot and aligned against the

same database.

Table 5.1: Performance results with Swiss-Prot
Query

Length
Execution time Performance

sequence (seconds) (GCUPS)

P02232 144 1.24 21.35

P05013 189 1.65 21.06

P14942 222 1.93 21.15

P07327 375 3.24 21.28

P01008 464 3.99 21.38

P03435 567 4.89 21.32

P27895 1000 8.60 21.38

P07756 1500 12.91 21.36

P04775 2005 17.27 21.35

P19096 2504 21.54 21.37

P28167 3005 25.88 21.35

P0C6B8 3564 30.67 21.37

P20930 4061 34.97 21.35

Q9UKN1 5478 47.15 21.36

Figure 5.8(a) shows that the execution time increases linearly with sequence length,

resulting in an almost constant performance of around 21.4 GCUPS, shown in Figure

5.8(b).

5.3. Discussion of results 81

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

5

10

15

20

25

30

35

40

45

50

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

Query sequence length Query sequence length

E
x
e
c
u

ti
o
n

 t
im

e
 i
n
 s

e
c
o

n
d
s

P
e
rf

o
rm

a
n
c
e

 i
n
 G

C
U

P
S

(a) (b)

Figure 5.8: (a) Execution time (b) Performance for query sequences of varying lengths

5.3.2 Performance comparison

The optimized version of our implementation is compared with: a multi-threaded high

performance ssearch (SSE2); a less optimized version of our implementation with no

equal length sequence sets; and with CUDASW++ 2.0 [80], the fastest GPU-based

Smith-Waterman implementation to date. The comparison is shown in Figure 5.9 and

described as follows.

Comparison with ssearch

Ssearch (SSE2) is an accelerated and multi-threaded version of ssearch, where ssearch

is a CPU-based Smith-Waterman alignment tool that can be found in the FASTA suite

of applications [83]. The SSE2 optimizations, described in [84] utilize modern CPU’s

vector extensions for a performance increase. The ssearch is run on the same system,

using the same settings, as our GPU implementation mentioned in Section 5.3.1. The

results demonstrate that our implementation performs 2.14 times better in terms of

GCUPS than this accelerated and multi-threaded version of ssearch.

Comparison with a less optimized version

In the less optimized version, only some of the database optimization steps mentioned

in Section 5.2.2 have been performed. In this version, sequences are only sorted, con-

catenated and interlaced. However, no equal length sets were used, making the length

of each sequence set depend on the longest sequence within that set. When run on

the same experimental setup described in Section 5.3.1, this less optimized version

results in a performance of around 12.5 GCUPS. The comparison shows that our fully

optimized GPU implementation performs around 1.7 times better than the less opti-

82 Chapter 5. GPU Acceleration

1000 2000 3000 4000 5000

4

6

8

10

12

14

16

18

20

22

Query sequence length

P
e

rf
o

rm
a

n
c
e

 i
n

 G
C

U
P

S

DOPA (optimized)

CUDASW++ 2.0

DOPA (less optimized)

ssearch

Figure 5.9: Performance comparison

mized version. This demonstrates the performance impact of the crucial optimization

of equal length sequence sets, which results in an improved scheduling.

Comparison with CUDASW++ 2.0

CUDASW++ 2.0 is the fastest GPU implementation to date for S-W based protein se-

quence alignment. When run on the same system with the same settings, as mentioned

in Section 5.3.1, CUDASW++ 2.0 achieves a performance of around 19 GCUPS. Thus

our fully optimized implementation performs 1.13 times better than CUDASW++ 2.0

in terms of GCUPS. Both approaches are sensitive to the structure of the database

used. Like our implementation, CUDASW++ 2.0 also uses 16-bit score values, as

discussed in Section 5.2.3. Table 5.2 summarizes the optimization steps undertaken by

our fully optimized implementation called DOPA in comparison with CUDASW++

2.0.

Additionally, DOPA also brings in the following improvements:

• In comparison with CUDASW++ 2.0, DOPA is simpler, as it uses just one

search kernel instead of two, requiring no inter-processor communication.

• The optimized database organization scheme used in DOPA allows an equal

workload for each thread block, while CUDASW++ 2.0 uses a hand-picked

point at which it switches from one kernel to the other for its work distribution.

• DOPA is complete and usable, as it exports the top scoring sequences for full

5.4. Performance limits 83

Table 5.2: A comparison with CUDASW++ 2.0

Optimization DOPA CUDASW++ 2.0

1 Database sorting + +

2
Concatenation into

+ −
sequence groups

3 Interlacing + +

4 Equal length sequence sets + −

5 Query profile + +

alignment with ssearch. CUDASW++ 2.0 does not provide this facility. Our

implementation also provides a web interface that allows it to be used conve-

niently and remotely.

In comparison with CUDASW++ 2.0, our less optimized implementation per-

forms 1.52 times slower in terms of GCUPS, as shown in Figure 5.9. This is because

CUDASW++ 2.0 switches to its secondary systolic array based alignment stage for

long sequences. Long sequences in a database inherently have the largest length dif-

ferences, specifically true for Swiss-Prot. Thus, aligning them using systolic array

based approach reduces the workload differences.

5.4 Performance limits

This section explores the maximum performance limits, scalability and future prospects

of our GPU-based design for protein sequence alignment.

5.4.1 Limits/bottlenecks

The optimizations mentioned in Section 5.2 eliminate various performance bottle-

necks. Below, we show practical performance limits/bottlenecks to give an impression

of the maximum achievable performance.

• Database layout: With a synthetic test database containing same length se-

quences, performance increases to 24 GCUPS, whereas the practical perfor-

mance with Swiss-Prot stays at 21 GCUPS. This is the result of overhead fac-

tors such as processing the sequence group terminators, and the fact that the

synthetic database can be created in such a way that the number of database

blocks matches the number of thread half-warps.

• Memory bandwidth: The maximum theoretical memory bandwidth for the

GTX 275 GPU is 127GB/sec [85]. During benchmarking with the test database

about 50GB/sec of bandwidth is used in practice. This can be interpreted in two

ways. The maximum possible bandwidth is not utilized; however, on the other

84 Chapter 5. GPU Acceleration

hand, due to proper coalescing no more data is transferred than strictly required.

In any case, memory bandwidth is not a bottleneck anymore.

Not just pure bandwidth determines performance due to memory factors, but

latency is an issue too. Many small sequential transfers will be slower than a

single larger one. To further investigate the practical effect of memory accesses

on performance, the saving and loading of temporary values (the most frequent

memory accesses) are commented out. This resulted in a performance of 25.5

GCUPS with the test database, only a slight increase, verifying that memory

accesses are not a limiting factor anymore.

• Arithmetic throughput: With memory not being a limiting factor, arithmetic

performance is a likely candidate. To test this, the actual S-W formula is com-

mented out from the kernel code. This resulted in a performance of 50 GCUPS

with the synthetic test database, thereby showing that arithmetic throughput im-

poses the actual limit on the practical performance. Also, for the original code,

the CUDA profiler reports an instruction throughput of 1, which means that

instructions are issued at the maximum possible speed.

5.4.2 Scalability/future prospects

The concatenation of sequences into database blocks means that many sequences are

combined to match the length of the longest sequence in the database. In other words,

the longer the longest database sequence is, the fewer database blocks there will be.

With the current releases of Swiss-Prot running on a GTX 275 GPU, this results in a

number of launched threads having no database blocks to process.

The number of sequence blocks will increase with the Swiss-Prot database’s growth,

as in turn will the number of threads that have work to do. This will increase future per-

formance effectively for free. However, two caveats apply. First of all, if the number of

sequence groups grows to more than the number of GPU half-warps launched, some

processing elements will have to perform multiple alignments, resulting in unequal

work between half-warps and, as such, a performance penalty. However, this issue can

be curtailed by increasing the size of each database sequence block by concatenating

more sequences to each group, lowering the amount of sequence blocks needed. The

second issue is the opposite, and arises if the longest sequence in the database were

to grow. All blocks would grow larger, resulting in less blocks to spread work across.

However, this happening is unlikely, as long sequences are rare; the current longest

sequence is significantly longer than the second-longest one, it is not in danger of

being overtaken. In support of all this, a performance increase of 3% is achieved by

updating from the August to the October release of Swiss-Prot, which contains 1668

more sequences and results in one additional sequence block being created. Further

evaluating the workings of the GPU’s thread scheduling might allow these factors to

be optimized further, decreasing the dependence on database structure.

The GPU-based S-W implementation is optimized for GT200-series GPUs. Al-

though it will run just fine on newer GPUs such as the Geforce 400 series, performance

5.4. Performance limits 85

may not be optimal. These newer GPUs offer many more processors, which might re-

quire the workload distribution to be re-evaluated. They also run two half-warps at a

time, and offer a cache hierarchy. This means that memory layouts might need to be

changed, or that for example texture memory is not the best option to store a query

profile anymore. Furthermore, some instructions perform differently. For example a

24-bit integer multiplication is slower, not faster, than 32-bit one on these GPUs due

to architectural reasons.

86 Chapter 5. GPU Acceleration

5.5 Summary

Besides providing an introduction to GPUs, this chapter exploited the parallelization

capabilities of GPUs for biological sequence alignments. It presented an optimized

GPU implementation for S-W based protein sequence alignment and compared its

performance with the best available similar design. The main topics presented in the

chapter are as follows.

• General purpose computing on GPUs, a discussion about CUDA, its program-

ming and memory models.

• A discussion about coalescing which is used to reduce latency of the global

memory.

• A review of GPU-based sequence alignment.

• An optimized GPU implementation for S-W based protein sequence alignment.

• Optimization steps taken for improving performance of the implementation,

such as optimizing the database conversion, temporary data reads and writes,

and substitution matrix accesses.

• A discussion of results, performance evaluation and comparison with other

available approaches.

• A discussion of the maximum achievable performance, practical performance

limits and bottlenecks, scalability and future prospects.

Chapter 6
Performance Analysis

Performance of hardware-based sequence alignment depends on various param-

eters, such as computational resources and bandwidth. This chapter carries out a

detailed performance analysis and proposes optimizations resulting in enhanced

performance and efficient resource utilization. The chapter is organized as fol-

lows:

Section 6.1 provides theoretical performance boundaries. Section 6.2 presents

performance limitations based on computational resources and bandwidth. Sec-

tion 6.3 presents performance and bandwidth optimization. Section 6.4 intro-

duces a method based on hardware partitioning to improve performance, whereas

Section 6.5 generalizes the method. Section 6.6 summarizes the chapter.

6.1 Theoretical performance boundaries

Performance of the hardware-based sequence alignment depends on the available

computational resources, i.e. the number of PEs. Hardware platforms like FPGAs

offer abundant hardware resources, sufficient for fitting large number of PEs. There-

fore, for some applications including sequence alignment, the maximum performance

is limited by the available memory bandwidth. The more the memory bandwidth, the

more the overall performance gain. Figure 6.1 shows a system model for the S-W

based sequence alignment of two sequences, i.e. the query sequence (Nq) and the

database sequence (Ns). The upper long horizontal bar in the figure represents N

number of PEs, i.e. (NPEs). The lower part of the figure represents the memory re-

quirement (in terms of data width and depth), where the data width is shown for 1 PE.

The width for Nq and Ns are both 5 bits, as with 5 bits we can cover alphabets for both

DNA and protein sequences [3,86]. The depth for both Nq and Ns is N, based on the

assumption that both the query and database sequences are of the same length, which

is equal to the number of PEs N. The width for each element of the substitution ma-

87

88 Chapter 6. Performance Analysis

trix is 5 bits, assuming that the substitution matrix under consideration is Blosum62.

In Blosum62, there are both positive and negative values, with the maximum positive

substitution value as 11. So 4 bits are enough for storing the magnitude and 1 bit

for sign. The depth for the substitution matrix (Blosum62) is 20. The width for the

scoring matrix is 16 bits [70]. The depth for the scoring matrix is 2N − 1, as there are

2N − 1 computational steps and the output of each one has to be written in the scoring

matrix.

����� ����� ����� �����

���	

���
�����

�
���	 �
���	 �
���	 ��
���	

� �

�
�

�
�
��

��
�	

���	��������

������

���� �!
���"#�

�$����%
������

�&
�������

�
�

�
��	

�
�

�
��	

�
�

�
��	

�
�

�
��	

��

Figure 6.1: System model for the S-W based sequence alignment

The total execution time Texec for the hardware-based S-W design is given by the

following equation:

Texec = Tcompute + Taccess (6.1)

where Tcompute is the total computation time and Taccess is the total time to load/store

data in memory.

For a square scoring matrix (i.e. when Nq and Ns are of the same length), the

number of steps to compute different matrix cells is as shown in Figure 6.2(a). Since

the elements in each anti-diagonal are computed in parallel, the computation time is

given by,

Tcompute = (2N − 1) × TPE (6.2)

where N is the number of PEs, such that, the total number of steps needed for the

entire computation is (2N − 1). TPE is the computation time for 1 step, such that,

TPE = CPE × Tcycle

where CPE is the number of cycles consumed by 1 PE and Tcycle is the time for 1 cycle.

TPE is equal to the computation time for 1 PE, as the PEs utilized during each step are

computed in parallel. The total time to transfer data to the main memory is given by,

Taccess =
Dmain

Bmain

6.1. Theoretical performance boundaries 89

where Dmain is the total amount of data that needs to be stored in the main memory

and Bmain is the bandwidth of the main memory in bits/sec, such that,

Dmain = 16Ns × Nq

where the precision of each output is 16 bits wide. For a square matrix, the total data

becomes,

Dmain = 16N2

So,

Taccess =
16N2

Bmain

(6.3)

Substituting Equation 6.2 and 6.3 in Equation 6.1,

Texec =
(2N − 1) × TPE × Bmain + 16N2

Bmain

(6.4)

(a) Number of steps

(b
)

P
E

s
u

ti
li

za
ti

o
n

 d
u

ri
n

g
 e

ac
h

 s
te

p1 2 3 4

5

6

7

1

2

3

4

5

6

7

Utilized PEs

Unutilized PEs

Figure 6.2: Number of steps and PEs utilization during each step for N = Nq = Ns

Now, the overall performance is given by the ratio of the total number of matrix

fill operations to the total execution time, i.e.

Overall Performance = Poverall =
Total operations

Texec

Poverall =
N2

(2N−1)×TPE×Bmain+16N2

Bmain

Poverall =
N2 × Bmain

(2N − 1) × TPE × Bmain + 16N2
(6.5)

90 Chapter 6. Performance Analysis

If the number of PEs is less than the size of the query sequence, then we need to

partition the query sequence, so that the computation takes place in k passes, where

k ≥ 1 is an integer. In this case the total time becomes,

Ttotal = k × Texec, where k =

⌈

Nq

N

⌉

and the total operations become k × N2.

From Equation 6.5, the parameters that can limit the performance of hardware-

based sequence alignment are:

• N : The amount of available hardware computational resources, i.e. the number

of PEs.

• Bmain : The memory bandwidth.

• TPE : The computation time for a step.

6.2 Performance limitations

This section presents performance analysis based on limitations in computational re-

sources and bandwidth.

6.2.1 Performance limited by the computational resources

Assume that we have infinite bandwidth and the performance is only limited by the

computational resources, then,

Pcompute = f (TPE ,N)

where Pcompute is the performance limited by the computational resources, TPE is

the computation time for 1 step and N is the number of PEs. In this case, Taccess � 0,

so,

Texec = Tcompute = Nsteps × Tstep (6.6)

where, Nsteps is the number of anti-diagonals and Tstep is the time taken by each

anti-diagonal. Now performance, limited by the computational resources, is given by,

Pcompute =
Nq × fop

CPE

× Utilization ratio (6.7)

where CPE is the number of cycles consumed by 1 PE and Utilization ratio is the

ratio of utilized to available computational resources. Performance may also be given

by,

Pcompute =
Total operations

Texec

(6.8)

6.2. Performance limitations 91

For the sake of clarity, the analysis of Texec and utilization ratios is divided into

four sub cases, as follows:

N = Nq = Ns

Figure 6.2 shows the number of steps and the PEs utilized during each step for this

case. In Figure 6.2(a), each anti-diagonal represents a computational step, such that

there is a total number of 2N − 1 steps. Since all the PEs in each step (each anti-

diagonal) are processed in parallel, therefore, Tstep = TPE . Hence Equation 6.6 be-

comes,

Texec|N=Nq=Ns
= (2N − 1) × TPE (6.9)

For the given example in Figure 6.2, N = Nq = Ns = 4 ⇒ 2N − 1 = 7. In Figure

6.2(b), each row represents the number of PEs available in each step, whereas the solid

black cells represent the number of PEs utilized. So,

Utilization ratio =
PEs utilized

PEs available
=

N2
q

N × Nsteps

(6.10)

where, Nsteps = 2N − 1

N < (Nq = Ns)

Figure 6.3 shows the number of steps and the PEs utilized during each step for the

case where N < (Nq = Ns). For example, it is shown that N = 3 and Nq = Ns = 4. In

Figure 6.3(a), each anti-diagonal represents a computational step, except anti-diagonal

4, which is partitioned into 2 computational parts. The reason for this is that 4 cells

can’t be computed simultaneously with the three available PEs. The solid thick and

tilted small line represents the partition of the steps along this anti-diagonal, such that

the top gray cell is computed during the 2nd part. The total number of steps in this

case is,

2Nq−1
∑

i=1

⌈

min(i, 2Nq − i)

N

⌉

=

7
∑

i=1

⌈

min(i, 8 − i)

3

⌉

= 8

The execution time for this case is,

Texec|N<(Nq=Ns) = Nsteps × Tstep

=

















2Nq−1
∑

i=1

⌈

min(i, 2Nq − i)

N

⌉

















× TPE

(6.11)

In Figure 6.3(b), each row represents the number of PEs available in each step,

whereas the solid black cells represent the number of PEs utilized.

92 Chapter 6. Performance Analysis

��������	
����
�	�
����	��������

��
��
�
�

�
�
��
��
��
��
�
�
��
�

�
�
�
�	
��
�
�

�	
�

Figure 6.3: Number of steps and PEs utilization during each step for N < (Nq = Ns)

Resource utilization for this case is also given by Equation 6.10, where,

Nsteps =

2Nq−1
∑

i=1

⌈

min(i, 2Nq − i)

N

⌉

N = Nq < Ns

Figure 6.4(a) depicts a case, where the number of PEs is the same as the length of the

query sequence i.e. N = Nq = 4 and the length of the database sequence is larger than

the number of PEs i.e. Ns = 16. Equation 6.6 for this case becomes,

Texec|N=Nq<Ns
= (Ns + N − 1) × TPE (6.12)

The utilization ratio is given by Equation 6.13, where the utilization is dependent

on the N−1
Ns

term. The lower the N−1
Ns

term, the more efficient the hardware resource

utilization.

Utilization ratio|N=Nq<Ns
=

Ns × N

(Ns + N − 1) × N

=
1

1 + N−1
Ns

(6.13)

6.2. Performance limitations 93

2

3 2

4 3

5 4

1

1

2

3

11 10 9

1

1

2

8

6 5

7 6

8 7

89

10 9

4

5

6

7

8

3

4

5

6

7

911

13 11

14 13

15 14

16 15

10

12

12

13

14

12

10

11

12

13

16 15

16

14

15

16

2

3 2

4 3

1 4

1

3 2

1

2 1

3 2

4 3

41

2 1

3

1

2 1

3 2

4 3

4

4

4

Ns

(k-1)Ns

N-1

N

Nq partition 1

Nq partition 2

Nq partition 3

Nq partition 4

Nq = 8, Ns = 4

N = 2, k = 4

N

Ns

N-1

N = Nq = 4

Ns = 16

(a)

(b)

Figure 6.4: Number of steps and PEs utilization (a) N = Nq < Ns (b) N < Ns < Nq

N < Ns < Nq

Figure 6.4(b) depicts the case, when N < Ns < Nq. In this case, we partition Nq

into k parts, where the size of each part is N
′

q, such that N
′

q = N. In other words,

we scale down Nq to the size of N and perform multiple (k) passes instead, where

k =

⌈

Nq

N
′
q

⌉

. This approach is referred to as Query Sequence Partitioning (QSP). For the

given example, Nq = 8, Ns = 4, N
′

q = N = 2 and k =
⌈

8
2

⌉

= 4

The execution time for this case becomes,

Texec|k>1, N<Ns<Nq
= (Ns + (k − 1) × Ns + N − 1) × TPE

= (k × Ns + N − 1) × TPE

(6.14)

The utilization ratio for this case is given by Equation 6.15, where the utilization is

dependent on the N−1
k×Ns

term. The lower the N−1
k×Ns

term, the more efficient the hardware

94 Chapter 6. Performance Analysis

resource utilization.

Utilization ratio|k>1, N<Ns<Nq
=

k × Ns × N

(k × Ns + N − 1) × N

=
1

1 + N−1
k×Ns

(6.15)

Table 6.1 presents the corresponding calculated values of Texec for various combina-

tions of k and N (as per Equation 6.14), where, TPE = 10 ns and Nq = Ns = 500.

The table shows that if we have the same number of processing elements as the size

of the query sequence, i.e. N = Nq = 500, then the computation takes place in one

pass, i.e. k = 1, which completes in 9.99 µsec. But if the number of PEs available are

half the size of the query sequence, i.e. N = 1
2
Nq, then the computation completes in

two passes, i.e. k = 2, that takes 12.49 µsec. Note that by halving the number of PEs,

the execution time is increasing only by 25%, however, using half of the resources

requires half of the bandwidth for data transfer.

Table 6.1: Execution time (Texec) in µsec for various combinations of k and N

N, k Texec N, k Texec N, k Texec

N = 1
2500

N = 10
250.09

N = 100
25.99

k = 500 k = 50 k = 5

N = 2
1250

N = 20
125.19

N = 125
21.24

k = 250 k = 25 k = 4

N = 4
625

N = 25
100.24

N = 250
12.49

k = 125 k = 20 k = 2

N = 5
500

N = 50
50.49

N = 500
9.99

k = 100 k = 10 k = 1

Figure 6.5 shows the Texec versus number of PEs (N) curve, limited by the com-

putational resources, where, Texec decreases with the increasing number of PEs (N).

6.2.2 Performance limited by the bandwidth

Assume that we have infinite computational resources, i.e. zero computation time,

then, Texec = Taccess, as, Tcompute � 0

From Equation 6.3,

Taccess =
16N2 (bits)

Bmain (Mbps)
=

2N2 (Bytes)

Bmain (MBps)
(6.16)

where, Mbps is the bandwidth in Mega bits per second and MBps is the bandwidth

in Mega Bytes per second. Now, performance limited by the bandwidth is,

6.2. Performance limitations 95

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

Number of PEs (N)

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Figure 6.5: Texec vs N curve, limited by the computational resources

Pbandwidth =
Total operations

Texec

=
N2

2N2

Bmain

=
Bmain

2
(6.17)

Table 6.2: Execution time (Texec) in µ sec for various combinations of N and Bmain
X
X
X

X
XBmain

N
500 250 125 100 50 25 20 10 5 4 2 1

100 5000 1250 312 200 50 12.5 8 2 0.5 0.32 0.08 0.02

200 2500 625 156 100 25 6.25 4 1 0.25 0.16 0.04 0.01

300 1667 417 104 67 17 4.17 2.7 0.67 0.17 0.1 0.03 0.007

400 1250 312 78 50 12 3.12 2 0.5 0.12 0.08 0.02 0.005

500 1000 250 62 40 10 2.5 1.6 0.4 0.1 0.06 0.016 0.004

600 833 208 52 33 8 2.1 1.3 0.33 0.08 0.05 0.013 0.0033

700 714 178 44 28 7 1.8 1.14 0.28 0.07 0.046 0.011 0.0029

800 625 156 39 25 6.2 1.6 1 0.25 0.06 0.04 0.01 0.0025

900 556 139 34 22 5.6 1.4 0.89 0.22 0.056 0.036 0.0089 0.0022

1000 500 125 31 20 5 1.25 0.8 0.2 0.05 0.032 0.008 0.002

Table 6.2 gives the execution time in (µsec), for various combinations of the num-

ber of PEs (N) and the bandwidth (Bmain) in MBps. Figure 6.6(a) gives the execution

time versus bandwidth curves for various values of N. The curves show that the execu-

tion time (calculated as per Equation 6.16) decreases with the increasing bandwidth,

where the execution time is equal to the memory access time, as the computational

time is nearly zero.

For a limited bandwidth, the execution time increases with the increasing length

of the query sequence. Figure 6.6(b) shows the Texec versus N curve for a case, where

the limited bandwidth is 500 MBps and the number of PEs (N) varies from 1 to 500.

The execution time (calculated as per Equation 6.16), has a quadratic dependence

on N, which causes it to increase rapidly for higher N values. In the next section, we

96 Chapter 6. Performance Analysis

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Bandwidth in MBps

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ic

ro
s
e

c
o

n
d

s

N=100
N=125

N=150

N=175

N=200

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

900

1000

Number of PEs (N)

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ic

ro
s
e

c
o

n
d

s
(a) (b)

Figure 6.6: Performance limited by bandwidth (a) Texec vs bandwidth (b) Texec vs N

investigate the minimum execution time that gives optimum performance with reduced

bandwidth requirement.

6.3 Performance and bandwidth optimization

In this section, performance gain and bandwidth requirements are optimized and a

generalized equation is developed for the execution time that considers both the com-

putational resources and bandwidth limitations. Figure 6.7 shows the Texec versus N

design trade off curves for the following three cases, considering Bmain = 500 MBps

and TPE = 10 ns.

• When performance is limited by the computational resources

• When performance is limited by the bandwidth

• When performance is limited by both the computational resources and band-

width

Texec decreases with the increasing number of N along the Texec vs N curve, limited

by the computational resources and based on Equation 6.14. Decreased Texec results

in improved performance, but the bandwidth requirement also increases as a conse-

quence. On the other hand, for a particular available bandwidth, Texec increases with

the increasing number of PEs along the Texec vs N curve, limited by the bandwidth

and based on Equation 6.16. The Texec vs N optimization curve represents the total

execution time, considering both computational resources and bandwidth limitations

and is based on the following equation.

6.3. Performance and bandwidth optimization 97

Texec = (k × Ns + N − 1) × TPE +
2N2

Bmain

(6.18)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Number of PEs (N)

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Texec vs N optimization curve

Texec vs N curve, limited by computational resources

Texec vs N curve, limited by bandwidth

Optimum point

Figure 6.7: Texec vs N design trade off curves

To find the N value, at which the function Texec is minimum along the Texec vs N

optimization curve, we differentiate Equation 6.18 w.r.t. N.

d(Texec)

dN
=

d

dN

[

(k × Ns + N − 1) × TPE +
2N2

Bmain

]

where, k =
Nq

N
′
q

=
Nq

N
, so,

d(Texec)

dN
=

d

dN

[

(
Nq × Ns

N
+ N − 1) × TPE +

2N2

Bmain

]

=
4N3 + TPE × Bmain × N2 − TPE × Bmain × Nq × Ns

N2 × Bmain

Now, to find the N value, at which Texec is minimum along the Texec vs N opti-

mization curve, we equate d(Texec)
dN

to zero, so that,

4N3 + TPE × Bmain × N2 − TPE × Bmain × Nq × Ns = 0 (6.19)

The discriminant of Equation 6.19 is,

∆ = 4T 2
PE × B2

main × Nq × Ns(T
2
PE × B2

main − 108Nq × Ns)

There are two cases, i.e.

98 Chapter 6. Performance Analysis

1. ∆ > 0, if Nq × Ns <
T 2

PE
×B2

main

108
,

which does not take place in practice. Therefore, this case is not taken into

consideration.

2. ∆ < 0, if Nq × Ns >
T 2

PE
×B2

main

108
,

which implies that Equation 6.19 has a unique positive real solution which is

given as,

N =
A2 − 3TPE × Bmain

6A
(6.20)

where, A =
3

√

27TPE BmainNqNs + 3

√

3T 3
PE

B3
main
+ 81T 2

PE
B2

main
N2

q N2
s

For a given bandwidth, Equation 6.20 gives the N value, at which the function

Texec is minimum along the Texec vs N optimization curve. The minimum Texec value

guarantees an optimum performance, as any performance gain due to increasing num-

ber of PEs beyond this point is counterbalanced by the bandwidth limitation. As an

example, if, TPE = 10 ns, Bmain = 500 MBps and Nq = Ns = 500, then, the value

of N, as computed per Equation 6.20 would be N = 67.8. This means that N = 68

guarantees an optimum performance for the given example. Therefore, any further

increase in the number of PEs will result in subsequent performance loss due to band-

width limitation.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Number of PEs (N)

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Bmain = 100 MBps

Bmain = 400 MBps

Bmain = 700 MBps

Bmain = 1000 MBps

Figure 6.8: Texec vs N optimization curves

Figure 6.8 shows the optimization curves for various values of Bmain in MBps and

TPE = 10 ns, where the optimum point shifts towards higher N values for increasing

6.4. Hardware partitioning 99

bandwidth. This implies that for higher available bandwidth a higher value of N can

be used to improve the performance further.

6.4 Hardware partitioning

In this section, we present a novel method based on hardware partitioning to reduce

the execution time and improve the resource utilization of S-W based sequence align-

ment, resulting in a higher performance as compared to conventional approaches. The

method reduces the execution time and improves the resource utilization by up to

33.3%. Further, equations are developed, showing the general trend of execution time

reduction, resource utilization improvement and hence performance enhancement.

6.4.1 Theoretical concept

A parallelized S-W algorithm requires Ns+Nq−1 operations for computing the entire

Hi, j matrix [29]. Since every operation performed by one S-W PE takes time TPE , the

total execution time is given by,

Texec = (Ns + Nq − 1) × TPE

where, TPE = CPE × Tcycle, such that CPE is the number of cycles consumed by 1

PE and Tcycle is the time for 1 cycle.

If two query sequences (Nq1 and Nq2) need to be aligned one after the other against

the same database sequence (Ns), as shown in Figure 6.9(a),

N = Nq1 = Nq2

N' = Nq2/2N' = Nq1/2

Nq1 then Nq2

Nq2(partitioned)Nq1(partitioned)

Ns Ns

Ns

(a) Nq1 and Nq2 aligned one after the other against Ns

(b) Partitioned Nq1 and Nq2 aligned in parallel against Ns

Figure 6.9: 2-sequence alignment (a) Sequential (b) Partitioned and in parallel

then the execution time becomes,

Texec1 = (2Ns + N − 1) × TPE (6.21)

where Nq1 = Nq2 = The nubmer of PEs (N)

100 Chapter 6. Performance Analysis

The resource utilization ratio for this case is,

Utilization ratio =
PEs utilized

PEs available

=
2Ns × N

(2Ns + N − 1) × N
=

1

1 + N−1
2Ns

(6.22)

Figure 6.9(b) shows that each query sequence is partitioned into two parts and is

processed in two passes, in parallel with the other. The number of PEs utilized by each

query sequence is half its size, and is given as, N
′

=
Nq1

2
=

Nq2

2
= N

2
. The execution

time for this case is given by,

Texec2 = (2Ns + N
′

− 1) × TPE (6.23)

The resource utilization ratio for this case is,

Utilization ratio =
2Ns × N

′

(2Ns + N
′
− 1) × N

′

=
1

1 + N
′
−1

2Ns

(6.24)

6.4.2 Example of the process

Figure 6.10 shows an example, where,

Nq1 = Nq2 = Ns = N = 4, N
′

= 2, and TPE = 10ns

Figure 6.10(a) depicts the case, where two query sequences (Nq1 and Nq2) are

aligned one after the other, against the same database sequence (Ns). The solid black

cells in Figure 6.10(a) represent the data flow and PEs utilization for Nq1, whereas the

light gray cells for Nq2. In Figure 6.10(b), the hardware is partitioned in two equal

parts such that the two query sequences are aligned in parts and in parallel with each

other, against the same database sequence (Ns). The solid black cells in Figure 6.10(b)

represent the data flow and PEs utilization for Nq1, whereas the light gray cells for Nq2.

% time reduction =
Texec1 − Texec2

Texec1

=
(2Ns + N − 1) × TPE − (2Ns + N

′

− 1) × TPE

(2Ns + N − 1) × TPE

=
N − N

′

2Ns + N − 1

(6.25)

Substituting values in Equation 6.25 results in 18.18% reduction in the execution time.

Substituting values for the given example in Equation 6.22,

Utilization ratio = 1

1+ 4−1
2×4

= 0.73 = 73%

6.5. Generalizing the hardware partitioning method 101

Ns

(a)

(b)

Nq1 then Nq2

Ns Ns

Nq2(partitioned)

N
q
1

N
q
2

Nq1(partitioned)

N
q
1
(p

artitio
n
1
)

N
q
1
(p

artitio
n
2
)

N
q
2
(p

artitio
n
1
)

N
q
2
(p

artitio
n
2
)

Utilized PEs for Nq1 Utilized PEs for Nq2

Unutilized PEs

Figure 6.10: 2-sequence alignment example

Similarly, substituting the same values in Equation 6.24,

Utilization ratio = 1

1+ 2−1
2×4

= 0.89 = 89%

Thus 16% better resource utilization ratio is achieved by applying the hardware

partitioning method.

In practice, the lengths of the query and subject sequences are 500 characters long

in most cases [70]. To evaluate a practical case, consider Nq1 = Nq2 = Ns = N =

500, N
′

= 1. Substituting these values in Equation 6.25, a 33.3% reduction in the

execution time is achieved. To evaluate the resource utilization improvement, the

values are substituted in Equations 6.22 and 6.24, showing thereby an improvement

of 33.3% in resource utilization.

6.5 Generalizing the hardware partitioning method

To generalize the idea, consider P number of query sequences that needs to be aligned

against the same database sequence (Ns), such that the length of each query sequence

is equal to the number of available PEs (N). Figure 6.11(a) depicts the case, where

P query sequences are aligned one after the other against Ns. Here 1 ≤ P ≤ i, such

that i > 1 is an integer. Figure 6.11(b) shows that the hardware is partitioned into Q

parts such that P query sequences are aligned in parts and in parallel with the others,

against the same Ns. The number of PEs utilized by each query sequence in this case

is, N
′

=
Nq1

Q
=

Nq2

Q
= ... =

Nqi

Q
= N

Q

The execution time becomes,

102 Chapter 6. Performance Analysis

N = Nq1 = Nq2 = = Nqi

N' = Nq2/QN' = Nq1/Q

Nq1 , Nq2 , , Nqi

Nq2(partitioned)Nq1(partitioned)

Ns Ns

Ns

(a) P number of query sequences aligned one after the other against Ns

(b) Partitioned P query sequences aligned in parallel against Ns

. . . . N' = Nqi/Q

Nqi(partitioned)

Ns

Figure 6.11: P-sequence alignment (a) Sequential (b) Partitioned and in parallel

Texec = (P × Ns + N
′

− 1) × TPE (6.26)

Table 6.3 shows the execution time in microseconds for various number of query

sequences (Ps) and possible number of hardware partitions (Qs). The execution time

is computed as per Equation 6.26, where Nq = Ns = 500 and TPE = 10 ns. The

table demonstrates that the execution time decreases with the increasing number of

hardware partitions (Qs), for all Ps.

Table 6.3: Execution time (Texec) in µ sec for various (Ps) and (Qs)
P
P
P
PP

Q
1 2 3 4 5 6 8 9 10 12 18 20 24

12 65 62.5 61.6 61.2 — 60.8 — — — 60.4 — — —

18 95 92.5 91.6 — — 90.8 — 90.5 — — 90.3 — —

20 105 102.5 — 101.2 101 — — — 100.5 — — 100.2 —

24 125 122.5 121.6 121.2 — 120.8 120.6 — — 120.4 — — 120.2

Figure 6.12 shows execution time reduction by applying the hardware partitioning

for various number of query sequences (Ps). The Texec versus Q curves, shown in the

figure for various number of Ps, demonstrate that the execution time decreases with

the increasing number of hardware partitions, where Texec is computed as per Equation

6.26.

The resource utilization ratio is given by,

Utilization ratio =
P × Ns × N

′

(P × Ns + N
′
− 1) × N

′

=
1

1 + N
′
−1

P×Ns

(6.27)

where the utilization ratio is dependent on the N
′
−1

P×Ns
term. The smaller the N

′
−1

P×Ns
term,

the better the resource utilization. The N
′
−1

P×Ns
term in itself decreases with the increas-

6.5. Generalizing the hardware partitioning method 103

2 4 6 8 10 12
60

61

62

63

64

65

Number of hardware partitions (Q)

T
e

x
e

c
 i
n

 m
ic

ro
s
e
c
o

n
d

s P = 12

5 10 15
90

91

92

93

94

95

Number of hardware partitions (Q)

T
e

x
e

c
 i
n

 m
ic

ro
s
e
c
o

n
d

s P = 18

5 10 15 20
100

101

102

103

104

105

Number of hardware partitions (Q)

T
e

x
e

c
 i
n

 m
ic

ro
s
e
c
o

n
d

s P = 20

5 10 15 20
120

121

122

123

124

125

Number of hardware partitions (Q)

T
e

x
e

c
 i
n

 m
ic

ro
s
e
c
o

n
d

s P = 24

Figure 6.12: Execution time reduction by hardware partitioning

ing number of hardware partitions (i.e. decreasing N
′

), so increasing the number of

hardware partitions leads to a better resource utilization, as shown in Figure 6.13. The

figure demonstrates that the resource utilization ratio improves with the increasing

number of hardware partitions for various number query sequences (Ps), where the

resource utilization ratio is computed as per Equation 6.27.

Table 6.4 shows the resource utilization ratio for various number of query se-

quences (Ps) and valid number of hardware partition (Qs), such that P is divisi-

ble by Q. The resource utilization ratio is computed as per Equation 6.27, where

Nq = Ns = 500. The table demonstrates that the resource utilization ratio improves

with the increasing number of hardware partitions (Qs), for all Ps.

Table 6.4: Resource utilization ratio for various (Ps) and (Qs)
P
P
P
PP

Q
1 2 3 4 5 6 8 9 10 12 18

6 0.8574 0.9234 0.9477 — — 0.9733 — — — — —

8 0.8891 0.9414 — 0.9699 — — 0.9849 — — — —

10 0.9093 0.9526 — — 0.9806 — — — 0.9903 — —

12 0.9232 0.9602 0.9731 0.9798 — 0.9865 — — — 0.9933 —

18 0.9475 0.9731 0.9819 — — 0.9909 — 0.9940 — — 0.9970

The same theory applies for reducing the execution time and improving the re-

source utilization ratio for the case, when there is only one query sequence and the

104 Chapter 6. Performance Analysis

1 2 3 4 5 6
0.85

0.9

0.95

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 6

2 4 6 8
0.85

0.9

0.95

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 8

2 4 6 8 10
0.9

0.92

0.94

0.96

0.98

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 10

2 4 6 8 10 12
0.9

0.92

0.94

0.96

0.98

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 12

Figure 6.13: Resource utilization improvement by hardware partitioning

database is split into equal parts, such that the same query sequence is scanned against

all parts of the database in parallel. This approach is adapted in GPU-based sequence

alignment presented in Chapter 5, resulting in execution time reduction, resource uti-

lization improvement and eliminating the need for inter processor communication.

To see the effect of execution time reduction and utilization ratio improvement on

performance, we observe the performance equations, given as follows,

Performance =
Nq × fop

CPE

× Utilization ratio (6.28)

where fop is the operating frequency.

Performance may also be given by,

Performance =
Total operations

Texec

=
N2

q

Texec

(6.29)

Equations 6.28 and 6.29 imply that higher resource utilization ratio and lower

execution time improve the performance.

In comparison with the traditional methods, the initialization process for the pro-

posed hardware partitioning method is modified, such that the initialization input is

equal to a predefined value at the start of the computation. For every succeeding array

computation, the initialization input is a feed back from the last PE in the partitioned

array.

6.6. Summary 105

6.6 Summary

This chapter provided a detailed performance and bandwidth analysis for sequence

alignments. Furthermore, it introduced a method to improve performance and resource

utilization. Following are the topics presented in the chapter.

• Theoretical performance boundaries.

• Performance limited by computational resources.

• Performance limited by bandwidth.

• Performance optimization when both the computational resources and band-

width are limited.

• Hardware partitioning method for high performance and resource efficient se-

quence alignment.

• Execution time reduction and resource utilization improvement for various num-

ber of query sequences and hardware partitions.

• Generalization of the hardware partitioning method.

106

Chapter 7
Conclusions and Future Research

Directions

In this chapter conclusions of the thesis and future research directions are pre-

sented. Section 7.1 gives conclusions of the work presented in the previous chap-

ters, whereas, Section 7.2 gives an insight into the future research directions.

7.1 Conclusions

This thesis began with a discussion about molecular biology and continued with an

overview of bioinformatics, a broad classification of its research areas with a particular

emphases on sequence alignment, its types and applications. It proceeded further with

a classification of acceleration methods for sequence alignment, followed by relevant

literature review and discussion of an accurate profiling and acceleration evaluation

approach. Further, it presented FPGA-based systolic array and RVE implementations

for biological sequence alignment. The succeeding chapters presented GPU-based

sequence alignment and a detailed performance and bandwidth analysis. Following

are brief chapter wise conclusions of the thesis.

Chapter 1 presented an introduction about molecular biology by giving an overview

of cells, amino acids, proteins, chromosomes, DNA, RNA and transcription. It con-

tinued with a classification of the major subfields in bioinformatics and a discussion

about sequence alignment, its types and applications. Further, it presented acceleration

methods for sequence alignment and details of the thesis contribution. The penulti-

mate section provided an outline of the thesis before the summary of the chapter in

the final section.

Chapter 2 gave a classification of global, local and multiple methods like dot plot,

N-W and S-W algorithms, FASTA, BLAST, HMMER and ClustalW. It elaborated the

difference between exact and approximate methods and continued with a comparison

107

108 Chapter 7. Conclusions and Future Research Directions

of these methods based on their time and space complexities. The chapter ended by

giving a brief summary of these methods.

Chapter 3 presented an overview about the hardware acceleration of sequence

alignment methods and introduced a taxonomy of the various acceleration methods

found in the literature. Further, it introduced an accurate speedup evaluation approach.

It continued with FPGA-based systolic array implementations for sequence alignment

and the discussion of an extended linear systolic array design using BRAM and DDR

RAM. The chapter ended with a brief summary.

Chapter 4 presented an RVE-based approach for sequence alignment and its com-

parison with traditional systolic array based approaches. It presented rectangular and

linear FPGA-based RVE implementations for sequence alignment and a compari-

son of results with corresponding systolic array implementations thereby showing a

speedup at the cost of utilizing additional hardware resources. The chapter contin-

ued with the RVE performance evaluation and concluded with a brief summary of the

chapter itself.

Chapter 5 provided an introduction to GPUs and exploited its parallelization capa-

bilities for biological sequence alignments. It discussed CUDA and its programming

and memory models. It provided a brief review of GPU-based sequence alignment

and continued with the presentation of an optimized GPU implementation for S-W

based protein sequence alignment. It presented the optimization steps undertaken for

improving performance of the GPU implementation. More specifically, optimization

of the database organization, temporary data reads and writes and substitution ma-

trix accesses. Performance evaluation of the optimized GPU implementation and its

comparison with the fastest available design using the same experimental setup. The

chapter concluded with a brief summary.

Chapter 6 presented a detailed performance and bandwidth analysis for biological

sequence alignment. It continued with developing theoretical performance bound-

aries for various cases and optimizing memory bandwidth requirement. Further, it

introduced an approach based on hardware partitioning to reduce the execution time

and improve resource utilization. The chapter also developed generalized equations

for high performance and resource efficient sequence alignment. It ended with a brief

summary.

Chapter 7 ends the thesis by giving chapter wise brief conclusions and providing

future research directions.

7.2 Future research directions

In this thesis the main focus is on the S-W based pairwise local sequence alignment,

its acceleration using different available platforms and detailed performance, band-

width and power analysis. Similar analysis can be done for other applications such

as multiple sequence alignment and global alignment. As far as the S-W algorithm is

concerned, innovative techniques can be explored to reduce the amount of data storage

on FPGA, so that all the data can be stored locally without the need of transferring it

7.2. Future research directions 109

to external memory. One such approach can be storing compressed data instead of

the actual one. If at all it becomes possible to store all the data locally in an easily

interpretable manner then the trace back step may also be carried out locally. If that

happens then only the final alignment result will be required to transfer to the external

memory or directly to the output interface thereby significantly improving the perfor-

mance. An alternative way is the one adapted in the GPU implementation, where only

the top scoring sequences are identified and fully aligned using ssearch. The optimiza-

tion approach provided for the bandwidth requirement reduction can be implemented

on different hardware platforms to visualize its practical impact. The hardware par-

titioning approach introduced in the thesis and evaluated with GPU implementation

can also be applied and tested for various FPGA platforms. The GPU implementation

itself can be ported and optimized for the latest available GPUs to harvest maximum

possible computational power offered by the GPUs. The RVE approach for rectangu-

lar blocking factors can be explored further for performance enhancement.

110

Appendix A
Important Terms in

Bioinformatics

1. Nucleic acid is a complex, high-molecular-weight biochemical macromolecule

composed of nucleotide chains that convey genetic information. The most

common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid

(RNA). Nucleic acids are found in all living cells and viruses [87].

2. Deoxyribonucleic acid (DNA) is a nucleic acid usually in the form of a double

helix that contains the genetic instructions monitoring the biological develop-

ment of all cellular forms of life.

3. Ribonucleic acid (RNA) is a nucleic acid polymer consisting of nucleotide

monomers. RNA nucleotides contain ribose rings and uracil unlike deoxyri-

bonucleic acid (DNA), which contains deoxyribose and thymine. It is tran-

scribed from DNA by enzymes called RNA polymerases and further processed

by other enzymes. RNA serves as the template for translation of genes into

proteins, transferring amino acids to the ribosome to form proteins, and also

translating the transcript into proteins.

4. Nucleotides are the structural units of RNA and DNA. In the cell they play

important roles in energy production, metabolism, and signaling.

5. Amino acid In chemistry, an amino acid is any molecule that contains both

amine and carboxylic acid functional groups. In biochemistry, this shorter and

more general term is frequently used to refer to alpha amino acids: those amino

acids in which the amino and carboxylate functionalities are attached to the

same carbon, the so-called α - carbon.

An amino acid residue is what is left of an amino acid once a molecule of water

has been lost (an H+ from the nitrogenous side and an OH- from the carboxylic

111

112 Appendix A

side) in the formation of a peptide bond. Amino acids may come in a variety of

shapes and properties. They may be small or bulky, hidrophobic or hidrophyllic,

electrically charged or neutral, etc, hence allowing for very complex shapes and

interactions to be produced. Amino acids are commonly referred to by name or

by an abbreviation, usually in three or one letter. This allows for more efficient

descriptions of how they are chained together to build a protein.

6. A protein (from the Greek protas meaning “of primary importance”) is a com-

plex, high-molecular-mass organic compound that consists of amino acids ar-

ranged in a linear chain linked by peptide bonds.

7. A peptide bond is a chemical bond formed between two molecules when the

carboxyl group of one molecule reacts with the amino group of the other molecule,

releasing a molecule of water (H2O).

8. Phylogenetic tree is a tree showing the evolutionary interrelationships among

various species or other entities that are believed to have a common ancestor.

9. Molecular phylogeny is the use of the structure of molecules to gain infor-

mation on an organism’s evolutionary relationships. The result of a molecular

phylogenetic analysis is expressed in a so-called phylogenetic tree.

10. Sequence motif In genetics, a sequence motif is a nucleotide or amino-acid se-

quence pattern that is widespread and has, or is conjectured to have, a biological

significance.

11. Nucleic acid codes The most common nucleic acid codes are given below.

Nucleic acid code Meaning

A: Adenosine

C: Cytidine

G: Guanine

T: Thymidine

U: Uracil

12. K-tuples means subsequences of length k.

13. Homology In biology, two or more structures are said to be homologous if they

share a common ancestor.

14. A highly conserved sequence is a sequence of nucleotides that is identical or

very homologous to genes of a wide range of organisms.

Appendix B
Dot Plot Implementation

The dot plot algorithm [88] is one of the oldest computational tools for comparative

genomics. It creates a pairwise comparison between two sequences and renders the

results as a dot matrix. A dot matrix for two sequences 1 and 2 is simply a grid

with the presence of a point at position p = (i, j), if the k-tuple beginning at the

ith position of Sequence 1 and the jth position of Sequence 2 coincide. For years,

the quadratic running time for the dot plot algorithm was acceptable because most

available sequences were short, but to make it applicable in the era of bioinformatics

databases that grow exponentially, there is serious need of speeding it up. The O(MN)

complexity of the dot plot can be easily reduced to O(M + N) by implementing it

in hardware. Here, we look beyond this reduction and try to develop a hardware

implementation approach that will bring the complexity further down to O(M).

Figure B.1 shows the dot plot cell design, where the comparator compares the two

input sequences and produces a result based on the match or mismatch. The result is

a 1 if there is a match otherwise 0. The adder adds the result of the comparator with

the value from the previous cell. The result of the adder is stored in a register used

for storing the current value of the cell. The current value is denoted by VN , where V

stands for value and N represents the number of the cell, such that VN = VN−1 + 1.

There is another register called the backup register, which keeps a backup of the cell’s

maximum value. VN is reset to 0 if there is a mismatch, but before reseting, its value

is compared with the value of the backup register and if VN ¿ Vbackup, then Vbackup is

updated with the new VN value. The VNmaxPNmax block keeps track of the maximum

value and its index. Figure B.2 shows a 4-element dot plot array constructed using the

cell design in Figure B.1. The operation of the array is explained with the help of an

example given in Table B.1.

Table B.1 (a) gives an example, where two 4 character DNA sequences are com-

pared using our dot plot implementation approach. The bold digits in the table rep-

resents the values in the backup registers, whereas the other digits represent the VN

values. Sequence 1 is fixed along the array, such that each character is an input to a

113

114 Appendix B

+

Comparator
V

Nmax
P
Nmax

Vbackup

VN

V
N-1

Seq1

Seq2

1 if match

0 else

Figure B.1: Dot plot cell design

�

����������
�
	��

�
	��

���
���

�	

�
	��

�����

����

�

����������
� �

���
���

�	��

�����

�

����������
� �

���
���

�	��

����

�

����������
� �

���
���

�	��

�����

	����
 	����
 	����
	����
 	����
 	����

��������
��

������

��������
��

������

��������
��

������

��������
��

������

Figure B.2: 4-element dot plot array

different PE, whereas Sequence 2 is propagated through the array character by char-

acter. During the 1st clock cycle letter A is passed through the array and compared

with the corresponding Sequence 1 letters. The resultant VN and Vbackup values are

recorded in the 1st row of the table. The same process is repeated for all characters in

Sequence 2 and the resultant values are recorded in the table. The last row in the table

gives the final VN and Vbackup values, whereas the position or index of the maximum

backup value is given by the VNmaxPNmax block. The maximum backup value is traced

back the number of steps equal to the maximum value itself, considering the current

cell as the 1st step. The result of the process is given in Table B.1 (b).

Table B.1: Example to prove our approach and its result

(a) Example

G C T A

A
0 0 0 0

0 0 0 1

C
0 0 0 1

0 1 0 0

T
0 1 0 1

0 0 2 0

G
0 1 2 1

1 0 0 2

(b) Result

C T

C T

Appendix C
N-W Examples

In this appendix, a couple of examples of global sequence alignment using the

Needleman-Wunsch algorithm are presented. Section C.1 presents an example

with a simple scoring scheme, whereas Section C.2 presents another example

with the same sequences but an advanced scoring scheme.

C.1 Example 1

Here, the two sequences to be globally aligned using Needleman-Wunsch techniques

are: G A A T T C A G T T A (query sequence), G G A T C G A (database sequence), so

that, Nq = 11 and Ns = 7 (the lengths of query and database sequences, respectively).

A simple scoring scheme is assumed as follows,

S i, j =

{

1 if Nq = Ns (match score)

0 else (mismatch score)

and d = 0 (gap penalty)

The three steps in dynamic programming are: Initialization, Matrix fill (scoring)

and Traceback.

Initialization step

The first step in the global alignment dynamic programming approach is to create a

matrix H with Nq + 1 columns and Ns + 1 rows. Since this example assumes that there

is no gap opening or gap extension penalty, the first row and first column of the matrix

can be initially filled with 0 (as shown in Figure C.1) and thus they are considered as

row 0 and column 0.

115

116 Appendix C

Figure C.1: Initialization step

Matrix fill step

One possible solution of the matrix fill step finds the maximum global alignment score

by starting in the upper left hand corner in the matrix and finding the maximal score

Hi, j for each position in the matrix. In order to find Hi, j for any i, j (where i is assumed

to be column number and j is assumed to be row number), it is important to know the

score for the matrix positions to the left, above and diagonal to i, j. In terms of matrix

positions, it is necessary to know Hi−1, j, Hi, j−1 and Hi−1, j−1. For each position, Hi, j is

defined to be the maximum score at position i, j; i.e.

Hi, j = max



















Hi−1, j−1 + S i, j (match/mismatch in the diagonal),

Hi, j−1 − d (gap in Nq),

Hi−1, j − d (gap in Ns)

Using this information, the score at position (1,1) in the matrix can be calculated.

Since the first character in both sequences is a G, S 1,1 = 1, and by the assumptions

stated at the beginning, d = 0. Thus, H1,1 = 1, as shown in Figure C.2(a).

Since the gap penalty d is 0, the rest of row 1 and column 1 can be filled in with

the value 1. Take the example of row 1. At column 2, the value is the maximum of

0 (for a mismatch), 0 (for a vertical gap) and 1 (horizontal gap). The rest of row 1

can be filled out similarly until we get to column 8. At this point, there is a G in both

sequences. Thus, the value for the cell at row 1, column 8 is the maximum of 1 (for a

match), 0 (for a vertical gap) and 1 (horizontal gap). The value will again be 1. The

rest of row 1 and column 1 can be filled with 1, as shown in Figure C.2(b), using the

above reasoning.

Now let’s look at column 2. The location at row 2 will be assigned the value of

the maximum of 1 (mismatch), 1 (horizontal gap) and 1 (vertical gap). So its value is

1. At the position column 2, row 3, there is an A in both sequences. Thus, its value

will be the maximum of 2 (match), 1 (horizontal gap) and 1 (vertical gap), so its value

is 2. Moving along to position column 2 row 4, its value will be the maximum of 1

(mismatch), 1 (horizontal gap) and 2 (vertical gap), so its value is 2. Note that for all

of the remaining positions except the last one in column 2, the choices for the value

C.1. Example 1 117

(a) Matrix fill Step 1 (b) Matrix fill Step 2

(c) Matrix fill Step 3 (d) Matrix fill Step 4

Figure C.2: Matrix fill (a) Step 1, (b) Step 2, (c) Step 3 and (d) Step 4

will be exactly the same as in row 4, since there are no matches. The final row will

contain the value 2, since it is the maximum of 2 (match), 1 (horizontal gap) and 2

(vertical gap), see Figure C.2(c).

Using the same techniques, the entire scoring matrix is filled with its correspond-

ing values, as shown in Figure C.2(d).

Traceback step

After the matrix fill step, the maximum alignment score for the two test sequences is

6. The traceback step determines the actual alignment(s) that result in the maximum

score. Note that with a simple scoring algorithm such as the one that is used here,

there are likely to be multiple maximal alignments.

The traceback step begins in the last row, last column position in the matrix, i.e.

the position that leads to the maximal score. In this case, there is a 6 in that location.

Traceback takes the current cell and looks to the neighbor cells that could be direct

predecessors. This means it looks to the neighbor to the left (gap in Ns), the diagonal

neighbor (match/mismatch), and the neighbor above it (gap in Nq). The algorithm for

traceback chooses as the next cell in the sequence one of the possible predecessors.

They are all equal to 5, as shown in Figure C.3(a).

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for

anything else, the only possible predecessor is the diagonal match/mismatch neighbor.

118 Appendix C

(a) Traceback Step 1 (b) Traceback Step 2

(c) Traceback Step 3 (d) Traceback Step 4

Figure C.3: Traceback (a) Step 1, (b) Step 2, (c) Step 3 and (d) Step 4

If more than one possible predecessor exists, any can be chosen.

This gives us a current alignment of:
Nq: A

Ns: A

Now, we look at the current cell and determine which cell is its direct predecessor.

In this case, it is the cell to the left with score 5, as shown in Figure C.3(b). The

alignment as described in the above step adds a gap to sequence 2,

so the current alignment is:
Nq: T A

Ns: - A

Continuing on, with the traceback step in the same way, we eventually get to a

position in column 0, row 0, which indicates the completion of the traceback. One

possible maximum alignment is given in Figure C.3(c),

giving an alignment of:
G A A T T C A G T T A

G G A - T C - G - - A

An alternate solution is given in Figure C.3(d),

giving an alignment of :
G - A A T T C A G T T A

G G - A - T C - G - - A

C.2 Example 2

Let us consider another example with the same sequences as in Example 1, but here

an advanced scoring scheme is assumed where,

C.2. Example 2 119

S i, j =

{

2 if Nq = Ns (match score)

−1 otherwise (mismatch score)

and d = 2 (gap penalty)

Initialization step

As in Example 1, again the first row and first column of the matrix can be initially

filled with 0s and regarded as row 0 and column 0, as shown in Figure C.1.

Matrix fill step

Using the same approach as in Example 1, the score at position (1,1) in the matrix is

calculated, as shown in Figure C.4(a). Note that there is also an arrow placed back

into the cell H0,0, that resulted in the maximum score, as shown in Figure C.4(b).

Moving down the first column to row 2, we can see that there is once again a match

in both sequences. Thus, S 1,2 = 2 and

H1,2 = max



















H0,1 + 2

H1,1 − 2

H0,2 − 2

= max



















0 + 2

2 − 2

0 − 2

= max



















2

0

−2

Hence, a value of 2 is placed in position (1,2) of the scoring matrix, as shown in

Figure C.4(b) and an arrow is placed to point back to H0,1 which led to the maximum

score, as shown in Figure C.4(c).

Looking at column 1, row 3, there is no match in the sequences, so S 1,3 = −1 and

H1,3 = max



















H0,2 − 1

H1,2 − 2

H0,3 − 2

= 0

Thus, a value, 0, is placed in position (1,3) of the scoring matrix, as shown in Figure

C.4(c) and an arrow is placed to point back to H1,2, which led to the maximum score,

as shown in Figure C.4(d).

The same procedure is continued for filling in the cells of the scoring matrix.

Eventually, we get to column 3, row 2, as shown in Figure C.4(d). There is no match

in the sequences at this position, so, S 3,2 = −1 and

H3,2 = max



















H2,1 − 1

H3,1 − 2

H2,2 − 2

= max



















−1

−3

−1

In this case, there are two different ways to get the maximum score. In such a case,

pointers are placed back to all the cells that can produce the maximum score, as shown

in Figure C.4(e). The rest of the scoring matrix is filled in the same manner. The

completed scoring matrix is shown in Figure C.4(f).

120 Appendix C

(a) Matrix fill Step 1 (b) Matrix fill Step 2

(c) Matrix fill Step 3 (d) Matrix fill Step 4

(e) Matrix fill Step 5 (f) Matrix fill Step 6

Figure C.4: Matrix fill for Example 2

C.2. Example 2 121

Traceback step

After the matrix fill step, the maximum global alignment score for the two sequences

is 3. The traceback step determines the actual alignment(s) that result in the maximum

score. The traceback step begins in the last row, last column position in the matrix, i.e.

the position where both sequences are globally aligned. Since, we have kept pointers

back to all possible predecessors, the traceback step is simple. At each cell, we look

to see, where we move next according to the pointers. To begin, the only possible

predecessor is the diagonal match, as shown in Figure C.5(a).

(a) Traceback Step 1 (b) Traceback Step 2

(c) Traceback Step 3 (d) Traceback Step 4

Figure C.5: Traceback for Example 2

This gives us an alignment of:
A

A
We continue to follow the path using a single pointer until we get to the situation,

as shown in Figure C.5(b).

The alignment at this point is:
T C A G T T A

T C - G - - A
Note, that there are now two possible neighbors that could result in the current

score. In such a case, one of the neighbors is arbitrarily chosen. Once, the traceback is

completed, it can be seen that there are only two possible paths leading to a maximal

global alignment. One possible path is shown in Figure C.5(c),

giving an alignment of:
G A A T T C A G T T A

G G A - T C - G - - A
The other possible path is shown in figure C.5(d),

122 Appendix C

giving an alignment of:
G A A T T C A G T T A

G G A T - C - G - - A
Remembering that the scoring scheme is +2 for a match, -1 for a mismatch, and

the gap penalty is 2, both sequences can be tested to make sure that they result in a

score of 3.

G A A T T C A G T T A

G G A - T C - G - - A

+ - + - + + - + - - +

2 1 2 2 2 2 2 2 2 2 2

2 - 1 + 2 - 2 + 2 + 2 - 2 + 2 - 2 - 2 + 2 = 3

G A A T T C A G T T A

G G A T - C - G - - A

+ - + + - + - + - - +

2 1 2 2 2 2 2 2 2 2 2

2 - 1 + 2 + 2 - 2 + 2 - 2 + 2 - 2 - 2 + 2 = 3

Hence, both of these alignments indeed do result in the maximal alignment score.

Appendix D
S-W Examples

In this appendix, a flow chart description of the S-W algorithm and a couple of

examples of local sequence alignment using the S-W algorithm are presented. It

starts with the flow chart description in Section D.1, followed by a simple S-W

example in Section D.2. It is concluded by another example in Section D.3 that

explains the SW algorithm in comparison with Needleman-Wunsch algorithm.

D.1 Flow chart

Figure D.1 describes S-W algorithm in the form of a flow chart to elaborate its theo-

retical basis [23].

D.2 Example 1

In this example, the Smith-Waterman algorithm, based on the dynamic programming

technique, is used to compute the optimal local alignment of two sequences,

i.e. Nq = a g g t a c and Ns = c a g c g t t g. Assume that,

S i, j =

{

+2 if Nq = Ns

−1 else

and gap penalty (d) = 2.

The procedure consists of three steps:

1. Fill in the dynamic programming matrix.

2. Find the maximal value (score) in the matrix.

123

124 Appendix D

Start

M

N

 for each j = 0 .. N

H(0,j) = 0

i = 0 .. M

H(i,0) = 0

i = 0

j = 0

i < M

j < N

 H(i,j) =

max (0,
H(i-1,j-1) + S(i,j),

H(i-1,j) – d,

H(i,j-1) – d)

j++

j = 0

i++

Trace back

 max(H(i,j))

Output =

aligned

sequence

Initialization

complexity = O(M + N)

Matrix fill

complexity

= O(MN)

Trace back

MN)

No

No

complexity = O(

 Input

sequences

and

Yes

Yes

for each

Figure D.1: Smith-Waterman flow chart

D.3. Example 2 125

Table D.1: The dynamic programming matrix and the traceback path

c a g c g t t g

0 0 0 0 0 0 0 0 0

a 0 0 2 0 0 0 0 0 0

g 0 0 0 4 2 2 0 0 2

g 0 0 0 2 3 4 2 0 2

t 0 0 0 0 1 2 6 4 2

a 0 0 2 0 0 0 4 5 3

c 0 2 0 1 2 0 2 3 4

3. Trace back the path that leads to the maximal score to find the optimal local

alignment.

Table D.1 illustrates the calculation of the dynamic programming matrix H and

the path of tracing back (shown in bold digits). The best score found in the matrix is

6 and

the corresponding optimal local alignment is:
A: a g - g t

B: a g c g t

D.3 Example 2

A key feature of the Smith-Waterman algorithm is that each cell in the matrix defines

the end point of a potential alignment, whose similarity is represented by the value

stored in the cell. The algorithm thus begins by filling the edge elements with 0.0

values, as illustrated in Table D.2, because these cells represent the ends of alignments

of length zero and consequently, their similarity score is zero. Note that, here, cells

in the matrix are populated with floating-point values, rather than integers, which are

characteristic of the Needleman-Wunsch method; however, there is no reason why

either method could not be implemented using integers or floating-point values. The

symbol ‘x’ is used as a placeholder, as the first row and first column cannot be the

endpoint of any alignment.

Table D.2: Initialization for Example 2 with floating point values
x A D L G A V F A L C D R Y F Q

x 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A 0.0

D 0.0

L 0.0

G 0.0

R 0.0

T 0.0

Q 0.0

N 0.0

C 0.0

D 0.0

R 0.0

Y 0.0

Y 0.0

Q 0.0

126 Appendix D

Table D.3: Calculation of first set diagonal similarity scores in the Smith-Waterman

algorithm
x A D L G A V F A L C D R Y F Q

x 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D 0.0 0.0 2.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0

L 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.3 0.0 1.0 0.3 0.0 0.7 0.0 0.0 0.0

G 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0

R 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0

N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 1.0 0.0 0.0 0.0 0.0 0.0

D 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0

R 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 3.0 0.0 0.0 0.0

Y 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 4.0 0.0 0.0

Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 3.7 0.0

Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 4.7

Table D.4: The endpoint of the Smith-Waterman algorithm after calculation of all

scoring parameters. A traceback from the highest score is highlighted
x A D L G A V F A L C D R Y F Q

x 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D 0.0 0.0 2.0 0.7 0.3 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0

L 0.0 0.0 0.7 3.0 1.7 1.3 1.0 0.7 0.3 1.0 0.3 0.0 0.7 0.0 0.0 0.0

G 0.0 0.0 0.3 0.0 4.0 2.7 2.3 2.0 1.7 1.3 1.0 0.7 0.3 0.3 0.0 0.0

R 0.0 0.0 0.0 0.0 2.7 3.7 2.3 2.0 1.7 1.3 1.0 0.7 1.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0 2.3 2.3 3.3 2.0 1.7 1.3 1.0 0.7 0.3 0.7 0.0 0.0

Q 0.0 0.0 0.0 0.0 2.0 2.0 2.0 3.0 1.7 1.3 1.0 0.7 0.3 0.0 0.3 1.0

N 0.0 0.0 0.0 0.0 1.7 1.7 1.7 1.7 2.7 1.3 1.0 0.7 0.3 0.0 0.0 0.0

C 0.0 0.0 0.0 0.0 1.3 1.3 1.3 1.3 1.3 2.3 1.0 0.7 0.3 0.0 0.0 0.0

D 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 0.7 0.3 0.0 0.0

R 0.0 0.0 0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1.7 3.0 1.7 1.3 1.0

Y 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.7 4.0 2.7 2.3

Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.7 3.7 2.3

Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.3 2.3 4.7

The next step is to populate the remaining cells in the matrix. This is achieved by

evaluating three functions and choosing the maximum of the three values, or zero if a

negative value would result. These functions consider the possibilities for ending an

alignment at any particular cell. First, the similarity score (e.g., 1.0 for a match, -0.333

for a mismatch) for the diagonal predecessor of the cell under consideration is added

to that cell’s score, as shown in Table D.3; then the maximum value is calculated for a

deletion represented along (a) the current row of the matrix, and (b) along the current

column of the matrix. Finally, if a negative score would result, 0.0 is substituted, to

indicate that there is no alignment similarity up to the current cell position. Once

the matrix is complete, the highest score is located (representing the endpoint of the

highest scoring alignment between the two sequences), and the other elements leading

to this cell are determined using a traceback procedure, as illustrated in Table D.4. If

necessary, we can search the matrix for lower-scoring local alignments simply by

finding other high scores that do not form part of a previous traceback.

The essential difference between the N-W and S-W is that, in the Smith-Waterman,

the matrix contains a maximum value that may not be at the N-termini of the se-

quences. It represents the endpoint of an alignment such that no other pair of segments

with greater similarity exists between the two sequences. Hence, this is a local, rather

than a global, alignment method.

Appendix E
Power Consumption Evaluation

Due to the utilization of abundant hardware resources, power consumption is

becoming an important constraint for modern day sequence alignment appli-

cations. The overall power consumption consists of static and dynamic power.

Static power is due to the leakage current and is technology dependent, whereas

dynamic power is due to the transient current and is a consequence of the switch-

ing activity. The switching activity in turn depends on the size and type of logic

and the nature of input data set. Dynamic power consumption is critical for se-

quence alignment applications, as it influences the performance, particularly for

larger designs. In this appendix, an evaluation of dynamic power consumption

for sequence alignment applications is presented and the performance per unit

Watt for various number of PEs is investigated. Additionally, resource utiliza-

tion and performance results are provided for implementation with a number of

different platforms.

E.1 Evaluation of dynamic power consumption

The dynamic power consumed by S-W based sequence alignment implemented on

a hardware platform like an FPGA is largely due to the charging and discharging

activities of the capacitive elements, such as logic resources and the interconnecting

fabric [89]. This can be modeled as,

Pi =
∑

CiV
2
i fi (E.1)

where Ci,Vi and fi are the capacitance, supply voltage and operating frequency of

resource i, respectively [90].

Randomly selected input sequences from ssearch class-c benchmark of BioPerf

are used to evaluate the dynamic power consumption for S-W based sequence align-

ment. The BioPerf suite [91] includes benchmark source codes (e.g. ssearch for the

127

128 Appendix E

S-W algorithm), input datasets of various sizes, and information for compiling and

using the benchmarks. It contains codes from highly popular bioinformatics pack-

ages [92] and covers the major fields of study in computational molecular biology,

such as sequence comparison, phylogenetic reconstruction, protein structure predic-

tion, and sequence homology & gene finding. The benchmark considered for simula-

tions represents the complete genome. The number of PEs are scaled according to the

lengths of the input biological sequences, randomly selected from the benchmark for

the evaluation of dynamic power consumption. However, sequences of lengths larger

than the maximum available PEs are aligned by partitioning the query sequences [30].

For each selected length, a variety of input sequences are considered for simulations

and the average dynamic power consumption is recorded. Power analyzer tool XPower

of Xilinx ISE 10.1 Design Suite is used for the power analysis, whereas the devices

used for implementations are Xilinx Virtex-II Pro (XC2VP30), Virtex-IV (XC4VFX12)

and Virtex-V (XC5VTX240T) FPGAs.

Table E.1 presents an evaluation of the dynamic power consumption for varying

number of PEs, considering XC2VP30 FPGA for implementation. The 1st column

represents the number of PEs. The 2nd column shows the power consumed by clock

transitions, which increases with the increasing number of PEs. The 3rd column gives

the power consumed by logic. Again, the power consumption increases with the in-

creasing number of PEs except for the 1st row, where more power is consumed than

for the succeeding higher number of PEs. The reason for this is that memories are

also implemented as logic by the Xilinx ISE tool and no BRAMs are instantiated. The

4th column provides the power consumed by the signals, i.e. the dynamic power con-

sumption due to the switching activity along the wires. The 5th column represents the

combined power consumed by IOs and BRAMs. The last column presents the total

dynamic power consumption, which is the sum of power consumed by clocks, logic,

signals, IOs and BRAMs, i.e.

PTotal = PClocks + PLogic + PS ignals + PIOs + PBRAMs (E.2)

Table E.1: Dynamic power consumption in milliwatts (XC2VP30)

PEs Clocks Logic Signals IOs + BRAMs Total

4 2.07 1.19 1.50 0.10 4.85

6 2.23 0.69 2.23 0.10 5.25

8 2.75 0.84 2.33 0.11 6.02

20 5.34 0.89 5.17 0.12 11.51

44 8.18 1.86 11.38 0.40 21.81

72 10.15 2.99 19.63 0.43 33.18

108 10.87 5.43 33.64 0.53 50.46

Tables E.2 and E.3 present dynamic power consumption results for implemen-

tations using XC4VFX12 and XC5VT X240T devices, where similar trends are ob-

E.2. Resource utilization 129

served, as for XC2VP30 device in Table E.1. The maximum number of PEs in Table

E.2 is limited due to the reduced amount of resources offered by XC4VFX12 device.

Table E.2: Dynamic power consumption in milliwatts (XC4VFX12)

PEs Clocks Logic Signals IOs + BRAMs Total

4 28.11 0.36 0.33 0.03 28.82

6 29.00 0.19 0.34 2.34 31.87

8 32.92 0.21 0.58 2.48 36.19

20 37.24 0.26 0.85 7.71 46.06

44 41.26 0.57 2.68 17.61 62.12

48 41.21 0.68 4.53 19.15 65.57

Table E.3: Dynamic power consumption in milliwatts (XC5VT X240T)

PEs Clocks Logic Signals IOs + BRAMs Total

4 9.32 0.15 0.16 0.03 9.66

6 11.10 0.10 0.21 0.78 12.19

8 12.03 0.12 0.23 1.02 13.39

20 22.05 0.19 0.47 2.42 25.12

44 37.82 0.41 1.38 5.25 44.85

72 81.93 0.63 2.39 8.84 93.79

108 118.22 1.14 4.51 13.04 136.90

E.2 Resource utilization

Table E.4 presents device utilization in terms of slices and BRAMs, considering XC2-

VP30 implementation. Further, it provides the maximum frequency in MHz and per-

formance in GCUPS for the S-W based sequence alignment. The 1st column in the

table represents the number of PEs. The 2nd column provides the number of slices

consumed for all given numbers of PEs. The 3rd column presents the BRAMs utiliza-

tion. The reason for having no BRAMs in the 1st row is that when a limited number

of memories needs to be instantiated then the Xilinx ISE synthesizer puts them in

Look Up Tables (LUTs) instead of BRAMs during the synthesis process, to avoid any

wastage of BRAM resources. The on-chip BRAM in FPGAs is a limited commod-

ity and this approach saves them for other applications. The fourth column gives the

maximum post place and route frequency in MHz. The last column presents the per-

formance in GCUPs, calculated as follows:

Performance = NPE × fop (E.3)

130 Appendix E

where NPE is the number of PEs and fop is the operating frequency.

Table E.4: Device utilization and performance results (XC2VP30)

PEs Slices BRAMs Frequency (MHz) Performance (GCUPS)

4 646 — 110.26 0.441

6 723 3 110.00 0.660

8 975 4 109.80 0.878

20 2307 10 109.00 2.180

44 4897 24 107.20 4.717

72 7762 38 105.50 7.596

108 11737 56 103.70 11.908

Similarly, Tables E.5 and E.6 present device utilization and performance results

for implementations with XC4VFX12 and XC5VT X240T devices. Tables E.4, E.5

and E.6 indicate an increase in performance for higher number of PEs. However, a

decreasing trend is observed for the maximum operating frequency due to the higher

latency for larger designs.

Table E.5: Device utilization and performance results (XC4VFX12)

PEs Slices BRAMs Frequency (MHz) Performance (GCUPS)

4 670 — 140.64 0.563

6 816 3 140.00 0.840

8 1072 4 139.44 1.115

20 2478 10 136.32 2.726

44 4943 24 129.79 5.711

48 5359 26 128.63 6.174

E.3 Performance optimization

Figure E.1 depicts the results of performance per unit Watt for various number of

PEs, considering different technologies, i.e. different FPGA platforms like XC2VP30,

XC4VFX12 and XC5VT X240T devices, for implementations.

The results in the figure demonstrate that the performance per unit Watt increases

with the increasing number of PEs initially. It stabilizes after increasing the num-

ber of PEs beyond a certain point and eventually starts to decrease. The curve for

XC4VFX12 is shorter than the other two curves due to a limited amount of resources

offered by the device. The results are influenced by the following two factors.

1. The sub-linear increase in performance with the increasing number of PEs. The

E.3. Performance optimization 131

Table E.6: Device utilization and performance results (XC5VT X240T)

PEs Slices BRAMs Frequency (MHz) Performance (GCUPS)

4 317 — 198.63 0.794

6 429 3 197.38 1.184

8 552 4 196.13 1.569

20 1461 10 192.31 3.846

44 3343 21 189.13 8.322

72 5479 35 186.42 13.422

108 8286 52 181.56 19.608

0 20 40 60 80 100 120
0

50

100

150

200

250

Number of PEs

P
e

rf
o

rm
a

n
c
e
 p

e
r

u
n

it
 W

a
tt

XC2VP30

XC4VFX12

XC5VTX240T

Figure E.1: Performance per unit Watt for S-W based sequence alignment

reason for this is that the maximum operating frequency decreases due to the

increasing latency for larger designs.

2. The slightly super-linear increase in dynamic power consumption with the in-

creasing number of PEs. The reason for this is that larger designs generate

higher switching activity and hence consume more dynamic power.

This analysis helps in approximating the number of PEs that gives an optimized

performance per unit Watt. It is observed from Figure E.1 that for achieving an op-

timized performance per unit Watt, the number of PEs can be approximated between

40 and 60 for XC4VFX12 and XC5VT X240T FPGA devices. Similarly, it can be

approximated between 70 and 80 for XC2VP30 device. Beyond these numbers, the

performance per unit Watt decreases with any further increase in the number of PEs.

For future work, we intend to use a larger Virtex-IV FPGA device with more resources

than the device under consideration to observe the behavior of the device beyond the

132 Appendix E

current limit and better approximate the number of PEs for an optimized performance

per unit Watt. Also, the XC5VT X240T implementation can be scaled up for align-

ing longer input biological sequences in one pass to observe an onward trend for the

performance per unit Watt curve based on Virtex-V FPGA.

The results are approximated by using the MATLAB Curve Fitting Tool and select-

ing a 4th degree polynomial for the curve fit, as it better resembles the experimental

curves and gives a minimum Root Mean Square Error (RMSE).

f (x) = c1 × x4 + c2 × x3 + c3 × x2 + c4 × x + c5 (E.4)

Equation E.4 gives an approximated model where, x = NPE , and the values of the

polynomial coefficients and RMSE for various FPGA platforms under consideration

are given in Table E.7.

Table E.7: Modeling coefficients for various technologies

Coefficients XC2VP30 XC4VFX12 XC5VTX240T

c1 −1.87 × 10−005 −5.302 × 10−006 3.212 × 10−006

c2 0.004467 0.0005742 3.455 × 10−005

c3 -0.368 -0.04786 -0.09594

c4 12.73 3.376 6.668

c5 55.93 7.03 61.48

RMSE 11.78 0.8504 7.464

Bibliography

[1] A. M. Lesk, “Introduction to Bioinformatics”, Oxford University Press, Oxford,

New York, 2004.

[2] J. Cohen, “Bioinformatics: An Introduction for Computer Scientists”, ACM

Computing Surveys, vol. 36(2), pages 122–158, June 2004.

[3] L. R. Murphy, A. Wallqvist and R. M. Levy, “Simplified Amino Acid Alphabets

for Protein Fold Recognition and Implication for Folding”, Protein Engineering,

vol. 13(3), pages 149–152, 2000.

[4] C. M. Keet, “Conceptual Modeling for Applied Bioscience”, School of Comput-

ing, Napier University, Edinburgh, Scotland.

[5] Oscar Gruss BioTechnology Review, 13 March 2000.

[6] “http://www.insdc.org”, International Nucleotide Sequence Database Collabo-

ration, April 2010.

[7] http://www.ncbi.nlm.nih.gov.

[8] Boeckmann et al., “The SWISS-PROT Protein Knowledge Base and its Supple-

ment TrEMBL”, Nucleic Acids Research, vol. 31, pages 365–370, 2003.

[9] http://pir.georgetown.edu/.

[10] D. M. Mount, “Bioinformatics: Sequence and Genome Analysis”, Cold Spring

Harbor Laboratory Press, Cold Spring Harbor, NY, 2nd ed., 2004.

[11] L. Holm and C. Sander, “Protein Structure Comparison by Alignment of Dis-

tance Matrices”, Journal of Molecular Biology, vol. 233(1), pages 123-138,

1993.

[12] C. Chothia and A. M. Lesk, “The Relation Between the Divergence of Sequence

and Structure in Proteins”, The EMBO Journal, vol. 5(4), pages 823-826, April

1986.

133

134 BIBLIOGRAPHY

[13] S. M. Larson et al., “Using Distributed Computing to Tackle Previ-

ously Intractable Problems in Computational Biology”, Folding@Home and

Genome@Home.

[14] J. H. Havgaard, R. B. Lyngs, G. D. Stormo and J. Gorodkin, “Pairwise Lo-

cal Structural Alignment of RNA Sequences with Sequence Similarity less than

40%”, Bioinformatics, vol. 21(9), pages 1815-1824, 2005.

[15] A. Isaev, “Introduction to Mathematical Methods in Bioinformatics (Universi-

text)”, Springer, vol. 58(1), June 2004.

[16] S. Needleman and C. Wunsch, “A General Method Applicable to the Search for

Similarities in the Amino Acid Sequence of two Proteins”, Journal of Molecular

Biology, vol. 48(3), pages 443–453.

[17] T. F. Smith and M. S. Waterman, “Identification of Common Molecular Subse-

quences”, Journal of Molecular Biology, vol. 147, pages 195–197, 1981.

[18] “http://www.clustal.org”, Clustal: Multiple Sequence Alignment, April 2010.

[19] W. R. Pearson and D. J. Lipman, “Rapid and Sensitive Protein Similarity

Searches”, Science, vol. 227, pages 1435–1441, 1985.

[20] S. F. Altschul et al., “A Basic Local Alignment Search Tool”, Journal of Molec-

ular Biology, vol. 215, pages 403–410, 1990.

[21] S. Derrien and P. Quinton “Hardware Acceleration of HMMER on FPGAs”,

Journal of Signal Processing System, 58, pages 53–67, 2010.

[22] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition”, Proc. IEEE 77, vol. 2, pages 257–286, 1989.

[23] L. Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration of Sequence

Alignment Algorithms - An Overview”, International Conference on Design &

Technology of Integrated Systems in Nanoscale Era (DTIS’07), pages 96–101,

Rabat, Morocco, September 2–5, 2007.

[24] L. Hasan and Z. Al-Ars, “Accurate Profiling and Acceleration Evaluation of the

Smith-Waterman Algorithm using the MOLEN Platform”, International Confer-

ence on Applied Computing, pages 188–194, Algarve, Portugal, April 2008.

[25] L. Hasan, Y. M. Khawaja and A. Bais, “A Systolic Array Architecture for The

Smith-Waterman Algorithm with High Performance Cell Design”, IADIS Euro-

pean Conference on Data Mining, Amsterdam, The Netherlands, July 2008.

[26] L. Hasan, Z. Al-Ars, Z. Nawaz and K. L. M. Bertels, “Hardware Implementation

of the Smith-Waterman Algorithm Using Recursive Variable Expansion”, 3rd

International Design and Test Workshop IDT08, Monastir, Tunisia, December

2008.

BIBLIOGRAPHY 135

[27] L. Hasan and Z. Al-Ars, “An Efficient and High Performance Linear Recursive

Variable Expansion Implementation of the Smith-Waterman Algorithm”, 31st

Annual International Conference of the IEEE EMBS, pages 3845–3848, Min-

neapolis, Minnesota, USA, September 2009.

[28] L. Hasan, M. Kentie and Z. Al-Ars, “DOPA: GPU-based Protein Alignment Us-

ing Database and Memory Access Optimizations”, Submitted to BMC Bioinfor-

matics, ISSN 1471-2105, 2011.

[29] L. Hasan, Z. Al-Ars, M. Taouil and K. L. M. Bertels, “Performance and Band-

width Optimization for Biological Sequence Alignment”, 5th International De-

sign and Test Workshop (IDT’10), Abu Dhabi, UAE, December 14–15, 2010.

[30] L. Hasan, Z. Al-Ars and M. Taouil, “High Performance and Resource Efficient

Biological Sequence Alignment”, 32nd Annual International Conference of the

IEEE EMBS, Pages 1767–1770, Buenos Aires, Argentina, August 31–September

4, 2010.

[31] L. Hasan and Z. Al-Ars, “Power Consumption Evaluation for Biological Se-

quence Alignment”, 1st STW.ICT Conference, Pages 1–6, Veldhoven, The

Netherlands, November 18–19, 2010.

[32] Waterman and Michael, “Introduction to Computational Biology”, Chapman

and Hall, 1995.

[33] I. Eidhammer, I. Jonassen and W. R. Taylor, “Pairwise Global Alignment of

Sequences”, Protein Bioinformatics, 2004.

[34] C. A. Orengo and W. R. Taylor, “A Local Alignment Method for Protein Struc-

ture Motifs”, Journal of Molecular Biology, 233, pages 488-497, 1993.

[35] http://www.dbmi.columbia.edu/bioinformatics/.

[36] R. C. Edgar and S. Batzoglou, “Multiple Sequence Alignment”, Elsevier, 16,

pages 368–373, 2006.

[37] T. K. Attwood and D. J. P. Smith, “Introduction to Bioinformatics”, Cell and

Molecular Biology in Action Series.

[38] R. Giegerich, “A Systematic Approach to Dynamic Programming in Bioinfor-

matics”, Bioinformatics, vol. 16, pages 665–677, 2000.

[39] T. Ramdas and G. Egan, “A Survey of FPGA-based High Performance Com-

putation in Molecular Biology and other Domains”, Technical Report, MECSE,

2005.

[40] O. Gotoh, “An improved algorithm for matching biological sequences”, Journal

of Molecular Biology, vol. 162, pages 705–708, December 1982.

136 BIBLIOGRAPHY

[41] H. Y. Liao, M. L. Yin and Y. Cheng, “A Parallel Implementation of the Smith-

Waterman Algorithm for Massive Sequences Searching”, 26th Annual Interna-

tional Conference of the IEEE EMBS”, San Francisco, CA, USA, September

1–5, 2004.

[42] http://www.geocities.com/bioinformaticsweb/seqanalysis.html.

[43] S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: A New Generation of

Protein Database Search Programs”, Nucleic Acids Research, vol. 25(17), pages

3389–3402, 1997.

[44] NCBI - BLAST (http://www.ncbi.nlm.nih.gov/BLAST/).

[45] EMBL - EBI (http://www.ebi.ac.uk/blast2/index.html).

[46] S. R. Eddy., “Profile Hidden Markov Models”, Bioinformatics, 14(9), pages

755–763, 1998.

[47] A. Krogh, et al., “Hidden Markov Models in Computational Biology: Appli-

cations to Protein Modeling”, Journal of Molecular Biology, 235, pages 1501-

1531, 1994.

[48] “White Paper on CLC Bioinformatics Cell 2.1.2”, March 27, 2009.

[49] http://www.sanger.ac.uk/Software/Pfam/.

[50] Bateman et al., “The Pfam Protein Families Database”, Nucleic Acids Research,

32(Database issue), pages D138–D141, 2004.

[51] J. Lu, M. Perrone, K. Albayraktaroglu and M. Franklin, “HMMer-Cell: High

Performance Protein Profile Searching on the Cell/B.E. Processor”, IEEE Inter-

national Symposium on Performance Analysis of Systems and Software (ISPASS-

2008), pages 223–232, Austin, Texas, USA, April 20–22, 2008.

[52] J. D. Thompson, D. G. Higgins and T. J. Gibson, “ClustalW: Improving the Sen-

sitivity of Progressive Multiple Sequence Alignment through Sequence Weight-

ing, Position-Specific Gap Penalties and Weight Matrix Choice”, Nucleic Acids

Research, 22(22), pages 4673–4680, 1994.

[53] D. Feng and R. Doolittle, “Progressive Sequence Alignment as a Prerequisite

to Correct Phylogenetic Trees”, Journal of Molecular Evolution, vol. 25, pages

351–360, August 1987.

[54] Y. Liu, B. Schmidt and D. L. Maskell, “MSA-CUDA: Multiple Sequence

Alignment on Graphics Processing Units with CUDA”, 20th IEEE Interna-

tional Conference on Application-specific Systems, Architectures and Processors

(ASAP09), pages 121–128, Boston MA, USA, July 7-9, 2009.

BIBLIOGRAPHY 137

[55] Jonassen and Inge, “http://www.ii.uib.no/ inge/kb207/slides/tsld001.htm”, Mul-

tiple Sequence Alignment, 2007.

[56] J. Chiang et al., “Hardware Accelerator for Genomic Sequence Alignment”, 28th

IEEE EMBS Annual International Conference, New York City, USA, Aug 30–

Sept 3, 2006.

[57] Y. Yamaguchi, Y. Miyajima, T. Maruyama and A. Konagaya, “High Speed Ho-

mology Search Using Run-Time Reconfiguration”, FPL 2002.

[58] S. Margerm, Cray Inc, “Reconfigurable Computing in Real-World Applica-

tions”, FPGA and Structured ASIC Journal (www.fpgajournal.com), February

7, 2006.

[59] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, in: C.

Mead, L. Conway (eds.): Introduction to VLSI Systems; Addison-Wesley, 1979.

[60] P. Quinton and Y. Robert, “Systolic Algorithms and Architectures”, Prentice

Hall International, 1991.

[61] G. Pfeiffer, H. Kreft and M. Schimmler, “Hardware Enhanced Biosequence

Alignment”, International Conference on METMBS, 2005.

[62] M. Borah, R. S. Bajwa, S. Hannenhalli and M. J. Irwin, “A SIMD Solution to

the Sequence Comparison Problem on the MGAP”, International Conference on

Application Specific Array Processors, 1994.

[63] D. P. Lopresti, “Rapid Implementation of a Genetic Sequence Comparator Using

Field Programmable Logic Arrays”, Conference on Advanced Research in VLSI,

pages 138–152, 1991.

[64] A. D. Blas et al., “The UCSC Kestrel Parallel Processor”, IEEE Transactions on

Parallel and Distributed Systems, vol. 16(1), pages 80–92, 2005.

[65] A. Schroder et al., “Bio-Sequence Database Scanning on a GPU” HICOMB,

2006.

[66] M. Gok and C. Yilmaz, “Efficient Cell Designs for Systolic Smith-Waterman

Implementation”, FPL 2006.

[67] S. Vassiliadis et al., “The Molen Polymorphic Processor”, IEEE Transactions on

Computers, vol. 53(11), pages 1363–1375, November 2004.

[68] L. Hasan and Z. Al-Ars, “Performance Improvement of the Smith-Waterman Al-

gorithm”, Annual Workshop on Circuits, Systems and Signal Processing (ProR-

ISC 2007), Veldhoven, The Netherlands, November 29–30, 2007.

[69] E. M. Panainte, “The Molen Compiler for Reconfigurable Architectures”, Ph.D.

Thesis, Computer Engineering Laboratory, Technical University Delft, The

Netherlands, 2007.

138 BIBLIOGRAPHY

[70] T. Oliver, B. Schmidt and D. Maskell, “Hyper Customized Processors for Bio-

Sequence Database Scanning on FPGAs”, FPGA’05, Monterey, California,

USA, February 20–22, 2005.

[71] Z. Nawaz et al., “Recursive Variable Expansion: A Loop Transformation for Re-

configurable Systems”, International Conference on Field-Programmable Tech-

nology 2007, Kokurakita, Kitakyushu, JAPAN, December 2007.

[72] Z. Nawaz, M. Shabbir, Z. Al-Ars and K. L. M. Bertels, “Acceleration of Smith-

Waterman Using Recursive Variable Expansion”, 11th Euromicro Conference on

Digital System Design 2008, Parma, Italy, September 2008.

[73] Fermi™ “NVIDIA’s Next Generation CUDA™ Compute Architecture”, White

paper NVIDIA Corporation, 2009.

[74] http://www.khronos.org/opencl.

[75] http://www.nvidia.com/object/cuda directcompute.html.

[76] Y. Liu, W. Huang, J. Johnson and S. Vaidya, “GPU Accelerated Smith-

Waterman”, International Conference on Computational Science, ICCS 2006,

University of Reading, UK, May 28–31 2006.

[77] S. A. Manavski and G. Valle, “CUDA Compatible GPU Cards as Efficient Hard-

ware Accelerators for Smith-Waterman Sequence Alignment”, BMC Bioinfor-

matics, vol. 9, Suppl 2:S10, 2008.

[78] A. Akoglu and G. M. Striemer, “Scalable and Highly Parallel Implementation of

Smith-Waterman on Graphics Processing Unit using CUDA”, Cluster Comput-

ing, vol. 12(3), pages 341–352, 2009.

[79] Y. Liu, D. Maskell and B. Schmidt, “CUDASW++: Optimizing Smith-

Waterman Sequence Database Searches for CUDA-enabled Graphics Processing

Units”, BMC Research Notes, vol. 2(1):73, 2009.

[80] Y. Liu, B. Schmidt and D. Maskell, “CUDASW++2.0: Enhanced Smith-

Waterman Protein Database Search on CUDA-enabled GPUs based on SIMT

and Virtualized SIMD Abstractions”, BMC Research Notes, vol. 3(1):93, 2010.

[81] “http://www.uniprot.org”, Universal Protein Resource, April 2010.

[82] M.A. Kentie, “Biological Sequence Alignment Using Graphics Processing

Units”, M.Sc. Thesis CE-MS-2010-35, Computer Engineering Laboratory, Tech-

nical University Delft, The Netherlands, 2010.

[83] “UVa Fasta Server”, http://fasta.bioch.virginia.edu, February 2011.

[84] M. Farrar, “Striped Smith-Waterman Speeds Database Searches Six Times over

other SIMD Implementations”, Bioinformatics, vol. 23(2), pages 156–161, 2007.

BIBLIOGRAPHY 139

[85] “NVIDIA”, Nvidia cuda best practices guide 3.0, 2010.

[86] http://www.yourgenome.org.

[87] http://en.wikipedia.org/wiki/.

[88] A. J. Gibbs and G. A. McIntyre, “The Diagram, a Method for Comparing Se-

quences, Its Use with Amino Acid and Nucleotide Sequences”, European Jour-

nal of Biochemistry, vol. 16, pages 1–11, 1970.

[89] L. Shang, A. S. Kaviani and K. Bathala, “Dynamic Power Consumption in

VirtexT M-II FPGA Family”, FPGA’02, Monterey, California, USA, February

24–26, 2002.

[90] G. Yeap, “Practical Low Power Digital VLSI Design”, Kluwer Academic Pub-

lishers, 1998.

[91] http://www.bioperf.org/.

[92] Y. Yu, L. A. Santat and S. Choi, “Bioinformatics Packages for Sequence Analy-

sis”, Bioinformatics, vol. 6, pages 143–160, 2006.

140

Publications

Book chapter:

1. L. Hasan and Z. Al-Ars, “An Overview of Hardware-based Acceleration of Bi-

ological Sequence Alignment”, Accepted for publication as a book chapter in

Bioinformatics, 2011, ISBN 978-953-307-269-2.

Journal:

1. L. Hasan, M. Kentie and Z. Al-Ars, “DOPA: GPU-based Protein Alignment

Using Database and Memory Access Optimizations”, Submitted to BMC Bioin-

formatics, 2011, ISSN 1471-2105.

International conferences/workshops:

1. L. Hasan, M. Kentie and Z. Al-Ars, “GPU-Accelerated Protein Sequence Align-

ment”, Submitted to 33rd Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC ’11), Boston, USA, August

30–September 03, 2011.

2. L. Hasan, Z. Al-Ars, M. Taouil and K. L. M. Bertels, “Performance and Band-

width Optimization for Biological Sequence Alignment”, 5th International De-

sign and Test Workshop (IDT’10), Pages 155–160, Abu Dhabi, UAE, December

14–15, 2010.

3. L. Hasan, Z. Al-Ars and M. Taouil, “High Performance and Resource Effi-

cient Biological Sequence Alignment”, 32nd Annual International Conference

of the IEEE EMBS, Pages 1767–1770, Buenos Aires, Argentina, August 31–

September 4, 2010.

4. L. Hasan and Z. Al-Ars, “An Efficient and High Performance Linear Recursive

Variable Expansion Implementation of the Smith-Waterman Algorithm”, 31st

Annual International Conference of the IEEE EMBS, Pages 3845–3848, Min-

neapolis, Minnesota, USA, September 2009.

141

142 BIBLIOGRAPHY

5. L Hasan, Z. Al-Ars, Z. Nawaz and K.L.M. Bertels, “Hardware Implementa-

tion of the Smith-Waterman Algorithm Using Recursive Variable Expansion”,

3rd International Design and Test Workshop IDT08, Pages 135–140, Monastir,

Tunisia, December 2008.

6. L Hasan, Y.M. Khawaja and A. Bais, “A Systolic Array Architecture for The

Smith-Waterman Algorithm With High Performance Cell Design”, IADIS Euro-

pean Conference on Data Mining, Pages 35–42, Amsterdam, The Netherlands,

July 2008.

7. L Hasan and Z. Al-Ars, “Accurate Profiling and Acceleration Evaluation of the

Smith-Waterman Algorithm using the MOLEN Platform”, International Con-

ference on Applied Computing, Pages 188–194, Algarve, Portugal, April 2008.

8. L Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration of Sequence

Alignment Algorithms – An Overview”, International Conference on Design

and Technology of Integrated Systems in Nanoscale Era, Pages 92–97, Rabat,

Morocco, September 2007.

Local conferences/workshops:

1. L. Hasan and Z. Al-Ars, “Power Consumption Evaluation for Biological Se-

quence Alignment”, 1st STW.ICT Conference, Pages 1–6, Veldhoven, The Nether-

lands, November 18–19, 2010.

2. L. Hasan and Z. Al-Ars, “Performance Comparison between Linear RVE and

Linear Systolic Array Implementations of the Smith-Waterman Algorithm”, An-

nual Workshop on Circuits, Systems and Signal Processing (ProRISC 2009),

Pages 451–456, Veldhoven, The Netherlands, November 2009.

3. L Hasan, Z. Al-Ars and Z. Nawaz, “A Novel Approach for Accelerating the

Smith-Waterman Algorithm using Recursive Variable Expansion”, Annual Work-

shop on Circuits, Systems and Signal Processing (ProRISC 2008), Pages 40–45,

Veldhoven, The Netherlands, November 2008.

4. L Hasan and Z. Al-Ars, “Performance Improvement of the Smith-Waterman Al-

gorithm”, Annual Workshop on Circuits, Systems and Signal Processing (ProR-

ISC 2007), Pages 211–214, Veldhoven, The Netherlands, November 2007.

Curriculum Vitae

Laiq Hasan was born on the 11th of April, 1976 in Karnal Sher

Killi, Swabi, Pakistan. He completed all his education, prior

to his PhD, in Pakistan. For his primary and high schooling,

he attended the Govt. Primary School Karnal Sher Killi 1981

- 1986, and Govt. High School Karnal Sher Killi 1986 - 1992.

For his higher secondary school studies, he attended the presti-

gious Islamia College Peshawar 1992 - 1994. He did his B.Sc.

in Electrical Engineering from N-W.F.P. University of Engineer-

ing and Technology Peshawar (UET Peshawar) 1995 - 2000 and

subsequently his M.Sc. in Computer Information Systems Engineering from the same

university in the period 2001 - 2003. While doing his M.Sc., he was working as a

junior lecturer in UET Peshawar, 1st in the Electrical Engineering Department and

then in the Department of Computer Systems Engineering (DCSE). He was appointed

as an Assistant Professor in DCSE in the year 2003. In the year 2005, he was awarded

a scholarship by the Higher Education Commission of Pakistan for pursuing his PhD

studies in The Netherlands. Since September 16, 2005, he has been in the Nether-

lands, pursuing his PhD studies in Computer Engineering Laboratory, at the Technical

University Delft.

During his PhD, he worked on accelerating bioinformatics applications, designed

FPGA and GPU based hardware accelerators for biological sequence alignment and

carried out a comprehensive and elaborate theoretical analysis of crucial parameters

like performance, computational resources, power and bandwidth limitations. He has

presented various scientific papers in local and international conferences related to

computer engineering and/or bioinformatics. Additionally, he published a journal pa-

per and a book chapter in the same field and supervised two master thesis projects.

This thesis is mainly based on the published papers relevant to the thesis topic.

He takes part in a variety of sports like cricket, volleyball, tennis and swimming.

He enjoys expeditions like sailing, hiking and trekking. He also likes walking and

riding his bike for hours. Reading newspapers, watching news and sports TV channels,

and learning about different societies, cultures and languages are his main hobbies.

Tourism and exploring new places are his passions. Making good friends, talking to

diversified people and enjoying a variety of food and drinks are his additional interests.

143

	Summary
	Samenvatting
	Acknowledgments
	Abbreviations and Symbols
	Introduction
	Molecular biology - an overview
	Cells, amino acids and proteins
	Chromosomes and DNA
	RNA and transcription

	Bioinformatics
	Fields of bioinformatics
	Sequence alignment and its types
	Applications of sequence alignment

	Acceleration of sequence alignment
	Methods of acceleration
	Thesis contribution

	Thesis outline
	Summary

	Sequence Alignment Methods
	Classification of sequence alignment methods
	Global methods
	Dot plot method
	Needleman-Wunsch algorithm

	Local methods
	Smith-Waterman algorithm
	FASTA algorithm
	BLAST: Basic Local Alignment Search Tool

	Mutiple alignment methods
	HMMER
	ClustalW

	Comparison of sequence alignment methods
	Summary

	Hardware Acceleration
	Classification of acceleration methods
	FPGAs
	SIMD solutions

	Accurate acceleration evaluation approach
	MOLEN platform
	S-W implementation on MOLEN

	Rectangular (2D) systolic implementation
	Cell design
	System design

	Linear (1D) systolic implementation
	Cell design
	System design
	Extended design with DDR RAM

	Summary

	RVE-based FPGA Acceleration
	Introduction
	The RVE approach
	Sequence alignment using RVE approach

	Rectangular (2D) RVE implementation
	Building block description
	System design
	Discussion of results

	Linear (1D) RVE implementation
	Building block description
	System design
	Discussion of results

	RVE performance evaluation
	Summary

	GPU Acceleration
	GPU as a computational platform
	CUDA framework
	Coalescing
	Previous implementations

	Optimized GPU implementation
	General design
	Database conversion
	Temporary data reads and writes
	Substitution matrix accesses

	Discussion of results
	Experimental setup
	Performance comparison

	Performance limits
	Limits/bottlenecks
	Scalability/future prospects

	Summary

	Performance Analysis
	Theoretical performance boundaries
	Performance limitations
	Performance limited by the computational resources
	Performance limited by the bandwidth

	Performance and bandwidth optimization
	Hardware partitioning
	Theoretical concept
	Example of the process

	Generalizing the hardware partitioning method
	Summary

	Conclusions and Future Research Directions
	Conclusions
	Future research directions

	Important Terms in Bioinformatics
	Dot Plot Implementation
	N-W Examples
	Example 1
	Example 2

	S-W Examples
	Flow chart
	Example 1
	Example 2

	Power Consumption Evaluation
	Evaluation of dynamic power consumption
	Resource utilization
	Performance optimization

	Publications
	Curriculum Vitae

