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ABSTRACT
Urban morphology is important in a broad range of investigations
across the fields of city planning, transportation, climate, energy,
and urban data science. Characterising buildings with a set of
numerical metrics is fundamental to studying the urban form.
Despite the rapid developments in 3D geoinformation science,
and the growing 3D data availability, most studies simplify build-
ings to their 2D footprint, and when taking their height into
account, they at most assume one height value per building, i.e.
simple 3D. We take the first step in elevating building metrics
into full/true 3D, uncovering the use of higher levels of detail,
and taking into account the detailed shape of a building. We set
the foundation of the new research line on 3D urban morphology
by providing a comprehensive set of 3D metrics, implementing
them in openly released software, generating an open dataset
containing 2D and 3D metrics for 823,000 buildings in the
Netherlands, and demonstrating a use case where clusters and
architectural patterns are analysed through time. Our experiments
suggest the added value of 3D metrics to complement existing
counterparts, reducing ambiguity, and providing advanced
insights. Furthermore, we provide a comparative analysis using
different levels of detail of 3D building models.
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1. Introduction

In the past years, research in 3D city modelling, as a means to model the built envir-
onment in three dimensions, has gained momentum. Its ecosystem, from acquisition
to data management and applications, is now relatively developed (Dukai et al. 2020,
Gil 2020, Vitalis et al. 2020, Lucks et al. 2021, Noardo et al. 2021, Nys and Billen 2021,
Santhanavanich and Coors 2021, Virtanen et al. 2021, Wysocki et al. 2021, Biljecki et al.
2021b), prompting us to investigate their application in characterising the urban form
and architecture. 3D city models can be acquired with airborne and satellite techni-
ques, and they are useful across many use cases, from understanding noise pollution
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to estimating the urban heat island effect to supporting urban farming (Chen et al.
2020, Beran et al. 2021, Palliwal et al. 2021, Park et al. 2021), and with this paper, we
aspire to add 3D urban morphology to the list.

Data on buildings is a key ingredient in studying the urban form. The most
common instance of geospatial data describing the location, shape, and size of
buildings are 2D footprints (Biljecki et al. 2021a). Thanks to recent advancements in
their acquisition (Xie et al. 2019, Sun et al. 2020), footprints have been increasingly
available worldwide (Brovelli and Zamboni 2018, Heris et al. 2020, Zhang et al.
2022), and they may contain associated attributes such as building type and num-
ber of storeys (Malhotra et al. 2022). Such footprint data has been instrumental in
the majority of studies that study the form of the built environment to establish
patterns with respect to its effects on energy, climate, transportation, and other
urban phenomena.

Urban morphology is a popular approach to the study of the characteristics of a
city. One component of urban morphology studies involves computing indicators that
encapsulate the urban form numerically, often by dissecting and aggregating the size,
shape, and spatial distribution of city features, fueling studies in city planning, trans-
portation, climate, energy, urban data science, and more (Boeing 2021, Fleischmann
et al. 2021, Luan and Fuller 2021, Mei and Yuan 2021, Tian and Yao 2021, Tong and
Kang 2021, Wang and Debbage 2021, Chen et al. 2021a, 2021b, Biljecki and Chow
2022, Coutrot et al. 2022). Much of the recent developments focuses on buildings,
being spurred by the large-scale availability of data, primarily 2D building footprints
(Huang and Wang 2020, Sarretta and Minghini 2021, Sirko et al. 2021, Wu and
Biljecki 2022).

Several cities around the world have openly released their 3D building data, such
as Berlin,1 Helsinki,2 and New York City.3 However, it appears that the multidisciplinary
community driving urban morphology has not yet fully embraced 3D city models, as
much of their potential is still not taken advantage of. That is, the detailed geometry
of buildings, offered by contemporary 3D building models, remains underused, as
related work continues to settle with basic descriptors of buildings such as a uniform
height, which from the perspective of GIScience, is considered 2.5D (2D feature with
an associated single height) rather than true 3D. The same goes for related develop-
ments in the geospatial community, such as point clouds and street view imagery,
which offer a more detailed insight into the building form, but have not been fully
exploited in the context of urban morphology and developments continue to utilise
basic concepts that have evolved little from their chiefly 2D/2.5D origins (Leng et al.
2020, Ito and Biljecki 2021).

In this paper, as we posit that 3D city models have not been made the most use of
in the realm of urban morphology, we take the first step towards true 3D. This topic is
important because 2D and 2.5D metrics, which we will outline in the next section
(Section Context and related work), may not fully capture the complexity of the real-
world urban form depending on a specific use case. Furthermore, some 2D and 2.5D
metrics entail ambiguity that may impair analyses (Figure 1). In this illustration, two
common 2D metrics (footprint area and convexity, which quantifies the deviation of a
polygon from its convex hull) have approximately the same values for three
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significantly different buildings. 2.5D metrics, e.g. including the height as a descriptor,
set apart the first building from the last two. However, the last two buildings have the
same height, and thus, the 3 metrics shown so far are approximately equal, even
though the architecture of the buildings is substantially different. Taking advantage of
more detailed 3D building models, by computing more advanced and descriptive 3D
metrics, alleviates the ambiguity and is more indicative in capturing the shape of
buildings. Higher level of detail (LoD) 3D models often enable semantically rich infor-
mation (also illustrated in Figure 1), such as the area of the roof, another potentially
useful descriptor that we seek to leverage in our work.

The work presented in this paper is timely given the increasing availability of open
3D datasets, as there are opportunities to extend traditional 2D metrics to a 3D per-
spective, not only in theory but also in practice and at a large scale. Therefore, we

Figure 1. Motivation for advancing the dimensionality of urban morphology: distinct buildings
may have the same values of traditionally used 2 D and 2.5 D metrics, thus, going fully 3 D is
required to reduce ambiguity and enhance the characterisation. Data courtesy of 3 D BAG11 and
Bing Maps.12
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have developed a set of 3D metrics to characterise buildings in a three-dimensional
manner (Section The metrics). These metrics give a considerably better insight into the
building form, which we demonstrate with experiments (Section Data analysis). It is
important to note that advanced metrics may also be applied to simple (block) 3D
models (third row in Figure 1), and thus, our work also provides value to the simpler
data that is already widely in use in the community, without requiring the less com-
mon datasets with a higher level of detail.

In this paper, we present our software package that ingests 3D city models and
computes their 2D and 3D metrics at the building level and stores them in a struc-
tured manner to enable data analyses, including those at the urban scale with aggre-
gated metrics (Section Implementation and Section Use cases). We release the tool as
open-source software. As detailed 3D models of buildings are more widely used and
there is an increase in availability worldwide, our tool is ready to make use of them
where available, as demonstrated by another result of the work—we generate a data-
set characterising 823,000 buildings in four cities in the Netherlands, which we release
openly (Section Implementation). We provide a detailed data analysis to understand
the benefits of the newly introduced metrics as well as difficulties and how to over-
come them, and we compare between 2D and 3D as well as between different levels
of detail (Section Data analysis). Two use cases demonstrating applications of the data-
set are also presented in the paper with A) principal components analysis was driven
clustering and B) examining the change of architectural patterns over time (Section
Use cases).

2. Context and related work

2.1. Data on buildings and 3D city models

3D city models support the representation of both geometry and semantics. For every
3D building, individual surfaces can be augmented with semantic information, such as
ground, roof, or wall. 3D city models can be modelled in many different ways based
primarily on the method to generate them. They can be described by their level of
detail (LoD). A commonly accepted general taxonomy of 3D city models consists of
three LoDs: block models (LoD1), simple 3D models with a generalised roof shape
(LoD2), and architecturally detailed datasets (LoD3). The last one is not common, thus,
in this work, we focus on the first two (i.e. LoD1 and LoD2), which are also illustrated
in Figure 1. In our work, as we capitalise on the availability of 3D data at multiple
LoDs, we investigate their relationship and include an analysis of how the LoD influen-
ces the metrics—an important consideration in this topic, given that different geogra-
phies have 3D datasets available in different LoDs.

2.2. 2D and 2.5D urban morphology, and a hint of 3D
Many urban morphology studies are confined to 2D. For example, Byahut et al. (2020)
compute metrics such as footprint area to establish the efficiency of land utilisation.
There is also a body of knowledge dedicated to studying 2D metrics. One of the key
papers in this domain, and the main inspiration for developing our method, is the
work by Basaraner and Cetinkaya (2017). They study 20 approaches to characterise 2D
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shapes in GIS, and based on experiments, they identify a substantial overlap among
several metrics and select a few distinct indicators. We take their work as a basis, and
design 3D counterparts by extending the dimensionality of 2D indicators. Not all 2D
indicators are straightforward in 3D and not all are meaningful; furthermore, many
new ones are necessary which we study in this paper.

An increasing number of studies in the past years have been advancing the meth-
odologies by taking into account the vertical extent of a building. In general, studies
use rough measures of volume, envelope area, and ground floor area of buildings
(Geis et al. 2019, Zhang et al. 2019, Milojevic-Dupont et al. 2020, Shirowzhan et al.
2020, Li et al. 2021, Santos et al. 2021, Wu et al. 2022). In certain cases, such indicators
are derived from LoD1 models, while in a large number of instances, they are com-
puted from attributes of semantically rich building footprints without any 3D/volumet-
ric data (e.g. footprint area multiplied by the number of storeys results in height of
the building, assuming a set height per storey). A substantial body of comparative
research, especially in microclimate studies, has demonstrated the advantages of 2.5D
metrics, such as the general volume and height of buildings over flat (2D) indicators
(Huang and Wang 2019, Tian et al. 2019, Cao et al. 2021, Liu et al. 2021, Lu et al.
2021), as we also hint at in Figure 1. For example, Liu et al. (2020) use the height of
buildings together with a series of 2D metrics, to establish different types of residen-
tial communities in the study area; and Hu et al. (2020) compute a series of 2D and
2.5D metrics, such as the ratio of building height to the footprint area and volume, to
understand the impact of the urban form on the urban heat island across different
seasons. These building-level metrics are often aggregated at a higher level, such as
cells of regular grids or administrative districts, using summary statistics such as mean
and standard deviation, e.g. the aforementioned work of Liu et al. (2020) which com-
putes the variation of heights in a district and Yang et al. (2022) which generate 3D
morphological zones based on building metrics.

Most of these analyses purport to be in 3D, which technically is not incorrect, but
we argue that the current ‘3D’ analysis is primitive (or pseudo-3D) and should rather
be considered as what is known in GIS as 2.5D because they rely on a single height
per footprint. Furthermore, the metrics that are used are simple, merely scratching the
surface of understanding the 3D urban form. Therefore, apart from the lack of more
detailed 3D models, we believe that even LoD1 models offer much more potential
beyond just being utilised for these simple indicators, and in our work, we demon-
strate that the more advanced 3D metrics we introduce can be applied to
LoD1 datasets.

Another issue with the work so far is that much of the large-scale work relies on
data that is often not accurate or it does not have a high resolution and/or quality,
e.g. no individual buildings or height at a coarse resolution or low accuracy, see
Touchaei and Wang (2015), Xu et al. (2017), Ren et al. (2020), Li et al. (2020), Fibaek
et al. (2021), Zhu et al. (2022). In our paper, we conduct an analysis that is advanced
both in scale (geographic coverage) and detail (individual buildings with pre-
cise geometry).

To the best of our knowledge, the only work that truly takes advantage of higher
3D data in the context of characterising the urban form is the one of Lindenthal
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(2020). The study uses 3D building models with generalised roof shapes (LoD2) to
compute the architectural similarity of buildings and relate it to data on real estate
transactions. It was found that homogeneous districts tend to command a price pre-
mium. Therefore, the gaps in the analysis of the building form in true 3D are clear. In
our work, we develop a comprehensive catalogue of 3D metrics for studying the
shapes of buildings, and software to implement them.

3. The metrics

We compute a number of metrics that are related to the 3D characteristics of the
buildings and their models (Table 1). We divide these metrics into four categories,
based on the methodological similarities of their computation:

Geometric properties These are mostly statistics that refer to the properties of the
model of a building.

Derived properties Metrics that require some form of analysis and calculations, but
whose meaning is mostly direct and deterministic. They represent generic notions related
to the size and proportions of a building.

Spatial distribution Metrics that focus on the relationship between a building and
its neighbours.

Space indices Complex metrics that highlight more details about the shape of the
building. These are mostly based on the work of Basaraner and Cetinkaya (2017). Their
computation relies on complex calculations and they are independent of the building’s
size (see Appendix Table 1).

One interesting metric to highlight here is the concept of volume. There are mul-
tiple approaches to calculating the volume of a building. Figure 2 summarises the four
approaches that we test for calculating volumes in this paper. There is the actual vol-
ume, the volume of the convex hull, the volume of the object-oriented bounding box
and the volume of the axis-aligned bounding box. They are all useful depending on

Table 1. Metrics are computed per building based on category.
Geometric properties Number of vertices, Number of surfaces, Number of vertices by

semantic type (i.e. ground, roof, wall), Number of surfaces by
semantic type (i.e. ground, roof, wall), Min/Max/Range/Mean/Median/
Std/Mode height

Derived properties Footprint perimeter, Volume, Volume of convex hull, Volume of Object-
Oriented Bounding Box, Volume of Axis-Oriented Bounding Box,
Volume of voxelised building, Length and width of the Object-
Oriented Bounding Box, Surface area, Surface area by semantic
surface, Horizontal elongation, Min/Max vertical elongation,
Form factor

Spatial distribution Shared walls, Nearest neighbour
Space indices (see Table 3) Circularity/Hemisphericality�, Convexity 2D/3D�, Fractality 2D/3D�,

Rectangularity/Cuboidness�, Squareness/Cubeness�, Cohesion 2D/
3D�, Proximity 2D/3Dþ, Exchange 2D/3Dþ, Spin 2D/3Dþ, Perimeter/
Circumference�, Depth 2D/3Dþ, Girth 2D/3Dþ, Dispersion 2D/3Dx,
Range 2D/3D�, Equivalent Rectangular/Cuboid�, Roughnessx

�Formula-based index, size-independent by definition.
þIndex based on interior grid points (discretised), normalised.
xIndex based on surface grid points (discretised), normalised.
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the use case but can have drastically different values depending on the building
shape which can impact an application significantly.

Finally, we compute differences to compare the different LoDs of a building.
Figure 3 demonstrates the various Boolean operations that we use to compare LoD1
(a simple block structure) and LoD2 (a more detailed model with variations including
the roof, dormers, and chimney) of the same building. These differences can impact
use cases such as calculating the energy consumption of a building.

Some metrics are more complicated than others to calculate, specifical metrics
in the spatial distribution and shape indices categories. Therefore, the following two
sections (Sections Spatial distribution and Shape indices—measures of shape com-
plexity in 2D and 3D) will describe those two in greater detail.

3.1. Spatial distribution

Calculating the nearest neighbour of a building is based on the minimum distance
between a building and its nearest neighbour. A spatial index is utilised to identify
neighbours of a building based on its bounding box. If there are no neighbours found
based on this, then a search for the 5 closest buildings is used. There is a maximum
search radius of 10 km for computational optimisation purposes.

We, also, compute the total surface area of shared walls between a building and all
its neighbours. We use a method that computes the intersection between surfaces in
3D: first we compute the plane parameters for every triangle and we use clustering to
group them per plane;4 then, we project the triangles on their common plane and
compute their respective 2D counterparts; finally, we dissolve the triangles to poly-
gons and compute their intersection in 2D, from which we compute the resulting

Figure 2. The different possible volume calculations for a building.
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area. This calculates the total surface area that is shared between the current building
and all of its neighbours.

3.2. Shape indices—measures of shape complexity in 2D and 3D

Shape indices are measures of shape complexity that derive from interpreting the 2D
measures in a 3D context from the respective 2D measures as outlined in Basaraner
and Cetinkaya (2017), with additions based on the Python library momepy based on
Fleischmann (2019). We focus on these indices given that the Basaraner and Cetinkaya
(2017) paper has a very comprehensive overview of indices for 2D building footprints
with a replicable methodology for us to test. We compute the indices by adopting the
respective formulas to 3D space (see Appendix Table 1). Therefore we replace a poly-
gon’s area and perimeter with a polyhedron’s volume and surface area, respectively.
To respect the analogy of the dimensions, we adjust any constants and factors so that
the resulting formulas in 3D represent similar measures to their 2D counterparts.

All shape indices are defined in a way that their values are expected to range
between 0 and 1, although not in a strict sense as some indices might sometimes
have a value slightly higher than 1 (but not too far from it). This is due to the method-
ology employing discretisation to approximate the actual value of the measures; in
order to practically compute measures such as, for example, the average distance of
points from the center we utilise a grid of interior points created from a voxelisation
of the building and a grid of surface points on its boundaries (Figure 4). In addition,
all indices are independent of a building’s size, therefore only expressing its shape. To
ensure this, the indices that are not by definition size-independent are normalised by
using the value of the equivalent area circle of the footprint’s polygon, in 2D.
Similarly, in 3D, we decided to use the notion of the equivalent volume sphere of the
building’s polyhedron.5 Therefore, an important aspect of 3dfying these metrics was to

Figure 3. Boolean operations for the same building with different LoD representations.
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discover the formula of the respective measure for a sphere and use this as the
denominator.

Some indices are more rudimentary, representing the resemblance of a shape with
the respective primitive; these are circularity, hemisphericality, rectangularity, cuboid-
ness, squareness, cubeness, equivalent rectangularity, and equivalent cuboidness. The rest
of the indices are mostly designed to represent characteristics of the shape, for
instance with respect to its compactness and thickness. Table 2 lists the definition of
every index, which provides its context and purpose.

4. Implementation

4.1. Software and engineering decisions

We implemented our methodology in a Python library ‘3DBM – 3D Building Metrics’,
and a set of command-line tools that computes the metrics of buildings in a CityJSON
file (Ledoux et al. 2019). For geometric processing, manipulation, and visualisation we
used PyVista (Sullivan and Kaszynski 2019) and PyMesh.6 We release our tool openly.7

In the implementation of the software, we needed to make certain engineering
decisions. Due to the nature of the definitions of the indices, and the non-determinis-
tic aspect of some elements used in them, the calculation of the indices can vary
based on the implementation. Many of them are based on calculations over interior or
surface grid points (Figure 4). Therefore, the density of the grid can impact the accur-
acy of the calculation.

We decided to use a voxelisation of the building, with the voxels being aligned to
the axes of the space. The size of voxels we used for our experiments was 0.5m,
which through a process of experimentation provided the best balance between preci-
sion and computational complexity. The same reasoning applies to the surface grid
points. This distance, though, can be configured accordingly to use a more dense or
sparse grid.

The definition of the centroid is another non-deterministic aspect of the calcula-
tions. To begin with, there is no clear consensus on what a centroid is and what its

Figure 4. Example of the grid construction for a building. The two grids (interior and surface
points) are used for the calculation of certain indices (see Table 1). (A) is the original building, (B)
is the voxels whose centers are used as interior grid points, and (C) is the points created for the
surface grid.
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Table 2. Definitions of 2D and 3D measures of shape complexity.
2D 3D

Circularity/
Hemisphericality

It measures the area deviation between
a polygon and its equal-perimeter
circle. Circle is generally assumed as
the most compact shape.

It measures the volume deviation
between a polyhedron and its
equal-area hemisphere. A
hemisphere was selected to
represent the space above ground.

Convexity It measures the area deviation between
a polygon and its convex hull. Thus,
it reveals a polygon’s degree of
being curved inward or outward.

It measures the volume deviation
between a polyhedron and its
convex hull. Thus, it reveals a
building’s degree of being curved
inward or outward.

Fractality It measures the edge roughness or
smoothness. Based on Wentz (2010).

It measures the surface roughness
or smoothness.

Rectangularity/
Cuboidness

It measures the area deviation between
a polygon and its minimum area
bounding rectangle. Thus, it reveals
a polygon’s degree of being
curved inward.

It measures the volume deviation
between a polyhedron and its
minimum volume bounding box.
Thus, it reveals a polyhedral’s
degree of being curved inwards.

Squareness/
Cubeness

It measures the perimeter deviation
between a polygon and its equal-
area square.

It measures the surface area deviation
between a polyhedron and its
equal-volume cube.

Cohesion It is a measure of overall accessibility
from all points to others within
a polygon.

It is a measure of overall accessibility
from all points to others within
a polyhedron.

Proximity It is a measure of overall accessibility
from all inner points to the centre
of a polygon.

It is a measure of overall accessibility
from all inner points to the centre
of a polyhedron.

Exchange It measures how much of the area
inside a circle is exchanged with the
area outside it to create
the polygon.

It measures how much of the volume
inside a sphere is exchanged with
the volume outside it to create
the polyhedron.

Spin It is appropriate for measuring
compactness when focus is on
shape extremities.

It is appropriate for measuring
compactness when focus is on
shape extremities.

Perimeter/
Circumference

It focuses on the compactness of a
polygon’s boundary.

It focuses on the compactness of a
polyhedron’s boundary.

Depth It focuses on the irregular changes
along the boundary of a polygon.

It focuses on the irregular changes
along the boundary of
a polyhedron.

Girth It is a measure of the thickness of the
layer insulating its innermost core
from its periphery.

It is a measure of the thickness of the
layer insulating its innermost core
from its periphery.

Dispersion As a small variant of Boyce and Clark’s
approach, it indicates whether a
phenomenon is propagating from
an epicentre equally in all directions.

As a small variant of Boyce and Clark’s
approach adapted to 3D. It indicates
whether a phenomenon is
propagating from an epicentre
equally in all directions.

Range It focuses attention on the distance
between the furthest edges of a
given polygon, and is therefore
subject to the undue influence of
small patches that are part of the
polygon but far away from the rest
of the polygon.

It focuses attention on the distance
between the furthest faces of a
given polyhedron, and is therefore
subject to the undue influence of
small patches that are part of the
polyhedron but far away from the
rest of the polygon.

Equivalent rectangular/
cuboid index

This index aims to measure deviation
of a polygon from an equivalent
rectangle, improving a drawback of
rectangularity. Rectangularity is too
sensitive to the protrusions along
the boundary of a building
footprint. This can cause a
significant increase in the size of the

This index aims to measure deviation
of a building from an equivalent
cuboid. Rectangularity is too
sensitive to the protrusions along
the boundary of a building. This can
cause a significant increase in the
size of the object’s minimum
volume bounding box, and thus can

(continued)
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requirements are (e.g. if it always has to lie in the interior of an object or not); nor is
there a clear definition provided in the existing bibliography about the subject.
Therefore, for the calculation of the centroid of a building, we decided to use the
voxel-derived interior grid. As a result, the centroid is the ‘center of mass’ of the voxels
of a building (i.e. the mean of ordinates of the interior grid points). We chose this in
order to ensure a good approximation of a center point as, to our knowledge, there is
no robust algorithm to compute a 3D centroid without ensuring a valid and water-
tight volume. In theory, this does not ensure that the centroid of a volume lies at its
interior. Nevertheless, taking into consideration that buildings in the real world are of
relatively convex and compact shapes we believe that this approach provides a rea-
sonable approximation.

4.2. Generation of the open dataset

The second part of our implementation is the generation of a dataset containing the
metrics following the methodology and using the developed software. We used the
software on data describing the four largest cities in the Netherlands: Utrecht (161,545
buildings), The Hague (192,535 buildings), Rotterdam (260,414 buildings), and
Amsterdam (208,895 buildings). They are the largest cities in the country and they are
also different in their built environment which offers the opportunity for analysing

Table 2. Continued.
2D 3D

polygon’s minimum area bounding
rectangle, and thus can produce a
misleading value for the shape. This
index largely overcomes this
problem by scaling the minimum
area bounding rectangle until its
area equals to the polygon’s area.

produce a misleading value for the
shape. This index largely overcomes
this problem by scaling the
minimum volume bounding box
until its volume equals to the
polyhedron’s volume.

Roughness index This index was created as a measure of
compactness. It has two advantages
against the indices based on area-
perimeter ratio such as circularity:
(1) less sensitive to the elongation
(i.e. the aspect ratio of a polygon)
and (2) more responsive to the
roughness (i.e. intrusions and
protrusions along the boundary of
a polygon).

This index was created as a measure of
compactness. It has two advantages
against the indices based on volume
to surface area ratio such as
hemisphericality: (1) less sensitive to
the elongation (i.e. the aspect ratio
of a polyhedron) and (2) more
responsive to the roughness (i.e.
intrusions and protrusions along the
boundary of a polyhedron).

Elongation� Calculates elongation of a shape, seen
as the elongation of its minimum
bounding rectangle. Based on
Gil et al. (2009).

Calculates elongation of a polyhedron,
seen as the elongation of its
minimum bounding box towards
two different sets of axis; one is the
shortest side of the bounding box
against its height and the other one
is the longest side of the bounding
box against its height.

Form Factor� – A measure of the compactness of a 3D
object which attempts to remove
the bias introduced by the size of
an object. Adapted from
Bourdic et al. (2012).

2D definitions were acquired from Basaraner and Cetinkaya (2017).�Indicates metrics acquired from Fleischmann (2019).
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diverse building forms. As input data (3D city models), we used 3D BAG,8 an up-
to-date open dataset containing 3D building models of the whole of the Netherlands
(Peters et al. 2022). It contains 3D buildings at multiple LoDs, which are generated by
combining a point cloud with building footprints. The 3D BAG was selected to test
our implementation due to the open availability of the data, the vast geographic
scope that it covers, the various LoDs, and the relatively low level of geometric errors
in the data (as confirmed by Dukai et al. (2021) with the tool developed by
Ledoux (2018)).

The result is a series of 2D and 3D metrics for each of the 823,000 buildings in the
study area containing the four cities. We ran the full analysis with LoD1 and LoD2
data as well as the Boolean comparison between LoD1 and LoD2. We release our
work as open data under the licence CC BY 4.0. Our resulting dataset is available at
https://doi.org/10.7910/DVN/6QCRRF. The data is released as a set of CSV files, one for
each LoD.

The content of the dataset will be showcased in the subsequent sections in tabular
and visual ways, and also as part of two use cases in which we demonstrate the usability
of the metrics. Figure 5 gives insight into the generated dataset. The building-level metrics
(e.g. see the ones in Figure 1, which have been computed using our tool) have been
aggregated at the government administrative level (i.e. the generated dataset was associ-
ated with a government instance (neighbourhood area))—it shows two statistical measures
of an aggregation of one of the metrics, aiding in understanding the spatial distribution of
the building form of a city, i.e. central tendency and and dispersion in each area.

5. Data analysis

5.1. Errors

3D calculations are not trivial and errors can occur for two main reasons. First, the
input data can have geometric errors that were introduced during data creation.

Figure 5. The 3D urban form of a city. Aggregations of one of the 3D metrics (hemisphericality) at
the level of the administrative neighbourhoods (buurt) of the municipality of Amsterdam—mean
as a measure of central tendency (left); and another one (standard deviation) indicating its disper-
sion within each area (right). The maps highlight the difference between the historical city centre
with the well-known canal houses (ranking low on the hemisphericality index) and the newer
neighbourhoods. The administrative boundaries and the basemap are courtesy of Statistics
Netherlands, Stamen, and OpenStreetMap contributors.
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These are errors such as non-manifold edges or buildings that are non-watertight
(i.e. containing holes). Second, the shapes can be too small, as the data creation
method can introduce small artefacts that do not have a big enough volume to
provide a reliable result for many of the indices (especially with respect to the grid
density used).

In order to ensure that erroneous values do not skew our analysis, we filtered the
data to exclude such cases, which was 36% of our input dataset. The filtering is based
on the following rules:

1. Is a building a closed 2-manifold object based on val3dity?9 val3dity is an open-
source tool for the validation of 3D primitives according to the international
standard ISO19107 (Ledoux 2018). Our main concern is that the validity of a build-
ing affects the calculation of its volume and its voxelisation. Not all geometric
errors affect these calculations equally; for example, errors such as duplicate
points are not an issue, while non-manifold objects are a major issue. Figure 6
shows an example of a non-watertight building with holes, for which no reliable
volume or voxelisation can be computed.

2. Does the building have holes after reconstruction of the data by our implementa-
tion? This is because there can be issues with open edges introduced during the
parsing of data (for example, issue related to the triangulation which is necessary
for PyVista to process the data or because of float precision limitations of the soft-
ware implementation).

3. What is the number of interior and surface grid points in 2D and 3D? See
Figure 4. If an object is too small in relation to the provided grid density, then
there will not be enough grid points generated to calculate some indices.

Figure 6. Example of a building with holes (i.e. not watertight) that impact calculations.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



4. Is the actual volume bigger than the convex hull volume or is the difference
between the two absurdly large in general? The convex hull calculation is more
reliable than the actual volume calculation which is more sensitive to errors. The
actual volume should never be significantly larger than the convex hull and there-
fore extreme difference are a good indicator of some implementation error in the
underlying libraries used for this analysis.

5. What is the volume? Sometimes there are small fragments that are a result of the
reconstruction method or smaller structures that do not constitute a building that
are present in the original data. Therefore, we filter out volumes that are smaller
than an average one-car garage, i.e. 40m3.

5.2. Summary of the metric results

Table 3 summarises all of the metrics that we computed across the four cities. An
overview of the indices across the four cities is summarised in Figure 7. The specific
indices values for buildings of different shapes and complexities in 2D and 3D (see
Figure 8) are summarised in Table 4.

Examining Table 3 we can see some interesting patterns emerge. We can see that the
cities examined are quite dense as is demonstrated by a median value of 0 for the clos-
est distance to the nearest neighbour. This is likely driven by the high level of terraced
houses that are present in large Dutch cities. There are also variations in the volume cal-
culations as is expected but it is especially stark in the axis-aligned bounding box. This is
often the default setting for calculating the bounding box of a feature given that it is
the easiest to compute, but it can be heavily influenced by the orientation of the build-
ing and therefore the object-oriented bounding box is a better approximation. We can
also observe that while the majority of buildings in the study area are relatively small,
there is a median range of 3.51m in the range of roof values which indicates relatively
large roof structures. Finally, it is interesting to observe that while the ground of a build-
ing is always one surface, the median for the number of wall surfaces is 25 while the
roof modelling is typically simpler with a median value of 3.

5.2.1. Differences between 2D and 3D indices
The analysis in this section is based on the shapes of a sample of buildings as shown
in Figure 8 and the values as summarised in Table 4. These buildings represent a mix
of simple shapes of common building types (B1, B2, B3, and B4) as well as examples
of unique and more complex buildings such as churches (B13), stadiums (B4 and B5),
rounded buildings (B5, B6, B7, and B8), skyscrapers (B9, B11, and B12), and buildings
with courtyards (B4 and B14).

When comparing 2D and 3D indices, B1 and B2 have very similar values (i.e. a difference
of maximum 0.1) in all respective pairs, while no other building shows the same pattern.
Coincidentally, they also portray very similar horizontal and maximum elongations; mean-
ing that the horizontal and vertical profiles have very similar aspect ratios.

The relationship between the indices can also be studied. Figure 9 summarises the
correlations between the 2D and 3D metrics. There are strong positive correlations
between many of the metrics especially because many of the indices may be
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Table 3. Summary statistics for the 3D urban morphology metrics for LoD2 for the four Dutch cities.
Minimum 1st Quartile Median Mean Third quartile Maximum

Stats
Vertex count 18.00 92.00 156.00 206.07 250.00 13545.00
Unique vertex count 6.00 31.00 52.00 67.99 82.00 4485.00
Surface count 5.00 17.00 29.00 37.59 45.00 2404.00
Ground vertex count 3.00 14.00 20.00 23.85 29.00 1860.00
Wall vertex count 12.00 60.00 102.00 135.18 164.00 9140.00
Roof vertex count 3.00 20.00 33.00 46.97 57.00 4140.00
Ground surface count 1.00 1.00 1.00 1.00 1.00 1.00
Wall surface count 3.00 15.00 25.00 33.33 40.00 2251.00
Roof surface count 1.00 2.00 3.00 3.26 4.00 187.00
Max roof z (m) �4.08 5.57 8.74 8.99 11.72 175.82
Min roof z (m) �6.51 2.24 4.27 4.90 6.94 98.98
Height range (m) 0.00 1.07 3.51 4.10 6.08 140.63
Mean roof z (m) �4.57 4.14 6.59 7.06 9.44 137.37
Median roof z (m) �4.60 4.05 6.53 7.11 9.80 175.81
STD roof z (m) 0.00 0.43 1.42 1.49 2.16 63.21
Mode roof z (m) �5.39 4.37 7.59 7.84 10.74 175.81
Ground min z (m) �11.55 �1.38 0.11 �0.25 1.11 22.72

Properties
Actual volume (m3) 40.00 314.41 438.76 1363.35 826.02 1000985.64
Convex hull volume (m3) 40.01 330.32 480.19 1681.57 919.68 1187713.12
OBB volume (m3) 40.07 392.26 603.39 2151.23 1140.39 1905213.43
AABB volume (m3) 40.49 616.44 1038.07 3515.02 1878.86 2504540.69
Footprint perimeter (m) 4.13 29.35 34.46 43.08 43.66 2233.79
Surface area (m2) 65.96 295.19 386.54 732.66 614.20 373242.85
Ground area (m2) 0.85 48.29 60.38 154.42 91.94 125476.63
Wall area (m2) 11.95 180.57 239.89 368.37 391.21 46158.81
Roof area (m2) 0.85 53.82 70.48 165.24 105.90 125476.63
Horizontal elongation 0.00 0.29 0.44 0.42 0.54 0.98
Min vertical elongation 0.00 0.15 0.30 0.35 0.52 1.20
Max vertical elongation 0.00 0.21 0.38 0.38 0.53 1.20

Relationships
Shared walls area (m2) 0.00 53.79 117.49 130.99 172.13 113763.06
Closest distance (m) 0.00 0.00 0.00 1.46 0.00 10000.00

Indices
Circularity (2D) 0.03 0.60 0.68 0.65 0.73 1.00
Hemisphericality (3D) 0.03 0.42 0.46 0.45 0.49 0.60
Convexity (2D) 0.11 0.94 0.99 0.96 1.00 1.00
Convexity (3D) 0.07 0.88 0.95 0.92 1.00 1.00
Fractality (2D) 0.20 0.40 0.42 0.42 0.43 1.05
Fractality (3D) 0.19 0.30 0.31 0.32 0.33 0.56
Rectangularity (2D) 0.07 0.87 0.97 0.92 1.00 1.00
Cuboidness (3D) 0.04 0.68 0.80 0.78 0.90 1.00
Squareness (2D) 0.18 0.88 0.93 0.91 0.97 1.13
Cubeness (3D) 0.15 0.88 0.93 0.91 0.97 1.11
Equivalent rectangularity (2D) 0.18 0.94 0.99 0.96 1.00 1.13
Equivalent cuboidness (3D) 0.23 0.95 0.98 0.97 1.00 1.18
Proximity (2d) 0.17 0.87 0.92 0.90 0.95 1.19
Proximity (3D) 0.11 0.82 0.87 0.84 0.89 1.08
Spin (2D) 0.02 0.71 0.80 0.78 0.88 1.20
Spin (3D) 0.01 0.64 0.72 0.69 0.78 1.14
Perimeter (2D) 0.16 0.78 0.83 0.81 0.86 1.00
Circumference (3D) 0.12 0.71 0.75 0.73 0.78 0.90
Depth (2D) 0.15 0.73 0.79 0.78 0.84 1.19
Depth (3D) 0.08 0.60 0.65 0.64 0.69 1.01
Girth (2D) 0.11 0.59 0.65 0.65 0.72 1.00
Girth (3D) 0.02 0.51 0.57 0.56 0.63 0.87
Dispersion (2D) 0.23 0.74 0.79 0.78 0.84 1.00
Dispersion (3D) 0.13 0.76 0.81 0.79 0.84 0.93
Range (2D) 0.13 0.67 0.72 0.70 0.76 1.00
Range (3D) 0.00 0.59 0.64 0.62 0.67 0.84
Roughness (2D) 0.04 0.73 0.80 0.77 0.83 1.19
Roughness (3D) 0.26 0.83 0.87 0.88 0.92 1.20
Form factor (3D) 0.00 0.04 0.05 0.06 0.07 1.00
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influenced by similar variables and specifically elongation. Nevertheless, there are
important nuances between the indices that can contribute independently to an ana-
lysis, such as the principal components analysis conducted in Section Clustering dem-
onstrates. An interesting observation here is that range has a strong negative
correlation with many of the indices, which is perhaps due to the fact that range
focuses on the distance between the furthest faces of a given object and does not
care about how regular a shape is.

5.2.2. Differences between buildings
Intuitively, we can consider B1, B2, B3, and B10 as archetypal residential buildings for
the Netherlands, based on the fact that: a) they have a slanted roof (with one or two
peaks); b) they are of relatively average size and proportions; and c) they have no big
spikes or protrusions. For these four buildings, some of their 2D indices vary signifi-
cantly, while their 3D indices are very similar (Figure 10). This is despite them having

Figure 7. Index values for the measures of shape complexity across the study area by LoD.

16 A. LABETSKI ET AL.



very different values on vertical elongation (which, from Section Differences between
2D and 3D indices, seems to contribute to some extent).

We believe this highlights an important finding: 3D indices are more reliable than
2D for identifying the real shape of a building. If we were to observe just their foot-
prints, we would not be able to know that these four buildings have such similar char-
acteristics. Nevertheless, we can intuitively consider them quite similar, to a certain
degree, by taking into account their 3D shape.

5.3. Comparison between LoDs

A comparison between different LoDs can be useful to determine the appropriate LoD
for an application, for example, energy consumption. A higher level of detail does not
mean a better level of detail and is instead use case dependent. Table 5 examines the
Boolean difference between all LoD1 and LoD2 buildings as based on Figure 3. By
examining Figure 7, we can also observe that there are differences in the distribution
of the index values between LoD1 and LoD2. LoD1 tends to have more normal distri-
butions for indices such as equivalent cuboidness and convexity, which makes sense

Table 4. Urban morphology metrics for several building examples visualised in Figure 8.
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

2D
Circularity 0.52 0.51 0.76 0.83 0.48 0.28 0.91 0.29 0.46 0.72 0.64 0.51 0.39 0.20
Convexity 0.92 0.90 0.99 0.98 0.94 0.86 0.98 0.73 0.84 0.98 0.94 0.80 0.86 0.68
Fractality 0.43 0.45 0.36 0.21 0.24 0.32 0.32 0.32 0.28 0.40 0.31 0.30 0.30 0.32
Rectangularity 0.85 0.81 0.99 0.92 0.74 0.69 0.79 0.58 0.83 0.96 0.89 0.61 0.72 0.58
Squareness 0.81 0.81 0.98 1.03 0.78 0.60 1.08 0.61 0.76 0.96 0.90 0.80 0.70 0.50
Equivalent rectangularity 0.92 0.90 0.99 1.03 0.78 0.60 1.08 0.61 0.77 0.98 0.90 0.82 0.73 0.54
Proximity 0.82 0.83 0.98 0.99 0.99 0.98 1.00 0.84 0.91 0.95 0.98 0.85 0.92 0.67
Exchange 0.68 0.68 0.90 0.92 0.93 0.90 0.98 0.75 0.81 0.83 0.92 0.74 0.78 0.53
Spin 0.61 0.61 0.94 0.97 0.97 0.94 1.00 0.71 0.81 0.88 0.95 0.69 0.80 0.43
Perimeter 0.72 0.71 0.87 0.91 0.69 0.53 0.96 0.54 0.68 0.85 0.80 0.71 0.62 0.45
Depth 0.67 0.67 0.88 0.91 0.88 0.84 0.97 0.52 0.67 0.83 0.85 0.64 0.74 0.41
Girth 0.56 0.60 0.82 0.84 0.83 0.92 0.90 0.51 0.58 0.70 0.79 0.52 0.67 0.44
Dispersion 0.70 0.70 0.90 0.93 0.93 0.91 0.98 0.75 0.79 0.84 0.91 0.74 0.79 0.56
Range 0.59 0.59 0.79 0.87 0.87 0.85 0.97 0.73 0.73 0.75 0.78 0.63 0.71 0.54
Roughness 0.70 0.69 0.82 0.85 0.49 0.29 0.93 0.29 0.50 0.80 0.67 0.57 0.43 0.21

3D
Hemisphericality 0.42 0.43 0.41 0.15 0.17 0.29 0.52 0.28 0.20 0.44 0.21 0.30 0.25 0.14
Convexity 0.88 0.89 0.91 0.23 0.67 0.85 0.94 0.58 0.59 0.87 0.85 0.74 0.55 0.49
Fractality 0.32 0.33 0.31 0.25 0.21 0.23 0.24 0.23 0.22 0.30 0.24 0.21 0.23 0.27
Cuboidness 0.62 0.60 0.83 0.17 0.43 0.64 0.70 0.42 0.52 0.70 0.73 0.48 0.27 0.30
Cubeness 0.88 0.90 0.87 0.44 0.49 0.68 1.00 0.66 0.54 0.90 0.56 0.71 0.62 0.42
Equivalent cuboidness 0.96 0.97 0.96 0.61 0.57 0.90 1.01 0.69 0.57 0.93 0.64 0.76 0.64 0.66
Proximity 0.83 0.83 0.78 0.32 0.68 0.76 0.96 0.76 0.73 0.89 0.69 0.75 0.78 0.41
Exchange 0.71 – 0.57 0 – 0.48 0.89 – – 0.78 – 0.52 – 0.14
Spin 0.65 0.66 0.58 0.10 0.46 0.55 0.91 0.56 0.51 0.78 0.43 0.51 0.56 0.15
Circumference 0.71 0.72 0.70 0.36 0.39 0.55 0.81 0.53 0.44 0.73 0.45 0.57 0.5 0.34
Depth 0.59 0.59 0.55 0.32 0.40 0.55 0.79 0.5 0.43 0.63 0.32 0.51 0.49 0.30
Girth 0.55 0.55 0.43 0.40 0.37 0.34 0.80 0.47 0.44 0.64 0.30 0.36 0.44 0.30
Dispersion 0.79 0.79 0.74 0.40 0.73 0.71 0.93 0.75 0.69 0.85 0.63 0.69 0.71 0.47
Range 0.57 0.60 0.60 0.32 0.57 0.58 0.80 0.59 0.54 0.65 0.47 0.50 0.51 0.28
Roughness 0.87 0.87 0.91 3.54 0.43 0.84 0.79 0.63 0.47 0.77 0.58 0.79 0.65 1.03
Form factor 1.11 1.04 2.04 8.87 2.75 2.55 1.04 1.55 0.83 0.98 0.49 0.58 1.84 4.65

Elongations
Horizontal elongation 0.64 0.62 0.16 0.12 0.00 0.12 0.01 0.02 0.14 0.35 0.05 0.31 0.42 0.54
Minimum vertical elongation 0.19 0.11 0.46 0.83 0.70 0.78 0.24 0.44 0.44 0.14 0.71 0.46 0.31 0.90
Maximum vertical elongation 0.56 0.57 0.36 0.81 0.69 0.75 0.24 0.42 0.52 0.24 0.72 0.63 0.16 0.78
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given that LoD1 buildings are mainly simple block structures. Based on Table 5, it can
be observed that the intersection values tend to be higher for LoD2 buildings, which
might be due to the fact that the regular shapes of LoD1 models tend to be larger.
Median values for differences between LoDs range between 8% and 14%, which will
have a significant influence based on the application in question. While differences
can be observed, and are expected, it is also important to note that these differences
vary building by building, so the metrics can be utilised to check for cases where a
higher level of detail does not add any additional benefits, and also cases where 2D
or 2.5D is sufficient.

6. Use cases

6.1. Clustering

To verify the usefulness of 3D indices in identifying different building forms, we con-
ducted a hierarchical clustering and evaluated the uniformity and distinctiveness of
the resulting clusters on a random sample of 200,000 buildings (due to computational
constraints we could not run the analysis on the full dataset). We ran an
Agglomerative clustering algorithm10 using 11 features created based on a principal

Figure 8. Metric values for buildings of different complexities for the 2D footprint and the 3 D
building shape. B1, B2, … , B14 are used to name the individual buildings from the sample we
specifically selected as representative of the diversity of 3 D BAG.
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component analysis (PCA) of the 3D indices. Furthermore, the PCA also demonstrated
higher variability in the 3D indices than the 2D indices, see Figure 11. The clustering
was conducted based on the average linkage method with a fixed number of
30 clusters.

The resulting clusters were of varying size, with three clusters dominating the vast
majority of buildings (Figure 12). The rest of the clusters were relatively small (mostly
ranging in size from 1 to 1000 buildings), with some clusters demonstrating very unique
and distinct features. Figure 13 shows four such clusters which are particularly interest-
ing. Figure 13(a) demonstrates a cluster of 166 buildings, all with “thin” and “wide” build-
ings (i.e. short buildings with large footprints). Figure 13(b) shows a cluster of 10
buildings with a distinct “L” shape or a perpendicular protrusion. Figure 13(c) shows a
cluster of 58 buildings, which highlight “spikes” or long protrusions. Finally, Figure 13(d)
shows a cluster of 322 buildings with mostly circular and cylindrical shapes.

What we established by observing the results of the clustering is that 3D indices
seem to successfully identify similar shapes and group them together. Nevertheless,
given that all three dimensions contribute equally to the calculation of an index, there
is no guarantee that the clusters will identify “similar buildings” similar to how a

Figure 9. Correlation matrix between the indices of shape complexity.
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person might group them; in other words, the indices do not differentiate between
the horizontal and vertical profile. For example, in Figure 13(c), while most buildings
show a vertical spike, there is one building whose protrusion is expanding horizontally.
Clustering would be more meaningful when based on application-specific needs, in
which case the clustering parameters would need to be adjusted accordingly.

6.2. Change of patterns over time

The second demonstration of a use case is understanding architectural patterns
through time (Figure 14). The 3D BAG dataset contains the year of construction of
each building, following which we aggregated buildings by decade and century. The
left part of the figure illustrates the distribution of one of the 3D indicators (cubeness)
in one of the cities (Den Haag) by century. There is a notable pattern change in both

Figure 10. Comparison of indices between buildings B1, B2, B3, and B10 from Figure 8. (a) 2D
indices. (b) 3D indices.

Table 5. Summary statistics for the Boolean intersections and differences between LoD 1 (Source)
and LoD 2 (Destination) in terms of volume.

Minimum 1st Quartile Median Mean Third quartile Maximum

Amsterdam
Source intersection 16% 88% 93% 92% 99% 100%
Destination intersection 20% 98% 100% 99% 100% 100%
Source difference 0% 2% 8% 9% 14% 405%
Destination difference 0% 2% 11% 13% 20% 235%

The Hague
Source intersection 30% 85% 91% 90% 99% 100%
Destination intersection 5% 98% 100% 99% 100% 100%
Source difference 0% 2% 10% 11% 17% 1817%
Destination difference 0% 2% 8% 11% 16% 531%

Rotterdam
Source intersection 24% 86% 92% 91% 98% 100%
Destination intersection 16% 98% 99% 99% 100% 100%
Source difference 0% 2% 10% 11% 16% 542%
Destination difference 0% 2% 10% 12% 19% 323%

Utrecht
Source intersection 31% 82% 89% 88% 95% 100%
Destination intersection 45% 97% 99% 98% 100% 100%
Source difference 0% 6% 13% 13% 20% 123%
Destination difference 0% 6% 14% 16% 24% 224%
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the median value and dispersion of this morphological aspect over time. Next, the
right part of the example shows the evolution of the relationship of two metrics (dis-
persion index together with the convexity of the footprint) in the last hundred years.
There is a pattern in the increase of both metrics until the 1950s, after which the rela-
tionship takes a departure (distinguished in different colours for convenience). This
example also doubles as a demonstration of an analysis that combines the 2D and 3D,
and affirms our stance that the two families of metrics may be complementary.

7. Discussion

The availability of open 3D tools such as PyVista and PyMesh offers the ability to create
software for studying 3D urban morphology. The 3D metrics we developed are, in

Figure 11. PCA comparison between 2 D and 3D indices. (a) 2D indices. (b) 3D indices.

Figure 12. The three largest clusters of the hierarchical clustering analysis conducted on a sample
of 200,000 buildings based on the 3D indices. The clustering input was eleven features based on
principal components that represented the original 3 D indices. We used the average linkage
method to classify buildings in 30 clusters. These three clusters represent 86%, 7% and 4% of the
sample, respectively. Clusters (a) and (b) are very similar, although on average objects in the latter
seem to be slightly more complex. Cluster (c) portrays more elongated objects, mostly with
protrusions.
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general, applicable to any type of 3D geometries and therefore can be used to conduct a
large variety of urban analysis from any 3D dataset, e.g. bridges, bus stops, etc. At the
same time, we identified an additional benefit from using 3D city models as our source
data, given that they support the storage of semantic data, such as roof and wall surfaces,
which allowed us to compute more properties that can be useful in a range of different
analyses (i.e. vertex and surface counts and areas based on semantics).

When “3dfying” the originally 2D indices, we needed to slightly deviate from the
original methodology in Basaraner and Cetinkaya (2017) in order to look for a more
meaningful output in the real world. For example, instead of extending from circularity
to sphericality, we chose to compute the hemisphericality as any resemblance of a
building shape to a sphere would not be realistic. It remains an open question,

Figure 13. Examples of classes with distinct characteristics from the hierarchical clustering analysis
based on the 3 D indices. The clustering input was eleven features based on principal components
that represented the original 3 D indices. We used the average linkage method to classify buildings
in 30 clusters (the number of clusters was selected after empirical experimentation with different
parameters, with the goal to form meaningful clusters).
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though, if this needs to be further extended to other shapes as well. For example, one
might want to experiment with the idea of using a cylinder or cone as a reference
shape that can turn one index into many.

Some metrics/indices are more closely related to each other than others, e.g. cube-
ness and cuboidness. We do not know to which extent this is due to the peculiarities
of the dataset used in this paper. Therefore, it would be interesting to compare the
relationship between the indices in various geographic contexts. In addition, we can-
not infer to which extent some metrics might be more important than others.
Nevertheless, when running a comparison analysis it is important to be cognisant of
the relationship between indices. Depending on the use case, PCA can be a useful
tool for working with multiple indices at the same time. Furthermore, the 3D indices
are not sensitive to the orientation of a polyhedron, therefore combining them with
2D measures can solve issues around the orientation of a building if it is important to
a specific use case.

Intuitively, the purpose of metrics is to quantify the characteristics of geometries
that a person can cognitively perceive when they observe them. Nevertheless, many
times a person can decompose a geometry into more primitive components, which is
something that our metrics are incapable of. For example, in Figure 8 building B8
would intuitively be considered to have around half the 2D roughness value of B10,
the latter being a very smooth object as it can be perceived as a slightly rough half
circle; interestingly, though, it has a very low roughness value of 0.29. Such a case can
highlight how even though there is a primitive “normal” shape that contributes to the
overall shape of geometry, the metrics cannot expose this. We expect this to be even
more dominant in the 3D metrics.

One of the problems when computing 3D metrics is the increased processing time
needed in order to compute them. This is because many of the indices are based on
computing values for a number of grid points, which in 3D are exponentially more

Figure 14. Associating the dataset with cadastral and other records enables a series of spatio-tem-
poral analyses of urban morphology. In this case, the 3D morphological patterns through time
have been dissected by era.
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than in 2D. In particular, we decided to exclude the calculation of the cohesion index,
as its complexity was of Oðn2Þ with respect to the number of grid points (n), which
would render the computational needs excessive for our resources.

Some shape indices require a discretisation to be computed, using either interior
points formed from a grid or surface grid points. As mentioned in Section Software
and engineering decisions, for our implementation we chose to use voxels of size
0.5m aligned to the axes. Based on empirical experiments we ran on sample build-
ings with different grid densities we concluded that the grid of 0.5m cells is a good
balance between accuracy and performance. This is because we observed that
increasing the density to produce more cells did not change the values of the indices
significantly. In addition, we believe that assuming a grid dense enough to provide an
accurate value for the indices, would not be influenced enough by the axes over which
it is built as its resolution is high enough to be representative of the shape despite the
outcome. To ensure this, we also applied the post-processing steps described in Section
Errors, so that only volumes with enough grid points are included in our analysis.
Nevertheless, we do believe that further investigation on the subject can be conducted
on the details of how the grid can be created and what its exact influence on the final
indices is. This is especially true with respect to how the grid creation can be affected
by the specific application for which the metrics are computed.

Another problematic aspect of working with 3D is the fundamental complexity of
3D geometric representation and its immediate complications. In this paper, we are
working with boundary representation of 3D geometries, where a building is repre-
sented by its bounding polygons. This kind of representation, though, is very suscep-
tible to validity issues, especially when it is used for representing solids (i.e. closed
volumes). While this is similar in 2D, there are more comprehensive and robust meth-
ods to fix validity issues for 2D geometries than in 3D. Therefore, in many cases, we
had to settle for checking the validity of 3D geometries and exclude those that are
not valid, as described in Section Errors. In addition, some metrics are more sensitive
to validity issues and water-tightness. This is especially true for the exchange index in
3D, which requires a Boolean operation to be computed; such operations can only be
computed for valid and watertight objects, which is a requirement that is hard to
meet in 3D. In our dataset, roughly 10% of volumes are not watertight, and therefore
the exchange index could not be computed for those buildings.

A topic for further study is if the metrics are influenced by the modelling choices of
the datasets and the reconstruction method to create the geometries. For example, it
can be that a reconstruction method does not allow for consecutive surfaces of small
angles between them and, therefore, this would have a big influence on metrics such
as the roughness index. Therefore, we believe that one of the use cases for these met-
rics is to evaluate the influence of methodologies in an automatic reconstruction pro-
cess. This would be beneficial when comparing different reconstruction methods in the
same city, but at the same time, it also makes comparing cities with different recon-
struction methods more difficult. On a similar topic, these metrics could be used to
identify problematic unrealistic geometries, even if they are geometrically valid. Some of
the examples from our clustering experiment (Section Clustering) demonstrate how the
indices can be used to extract geometries with “spikes” or irregular shapes, in general.



Finally, the appropriate unit of analysis for the metrics is very important and heavily
depends on the application for which the analysis will be conducted. This is mostly
with respect to the subdivision of the urban space. For example, from an architectural
perspective, it can be more useful to compute the metrics at the building level. On
the other hand, for applications such as urban design, where a neighbourhood-level
analysis is more interesting, the input should be dissolved so that adjacent buildings
are merged together and treated as one geometry.

8. Conclusion

In this paper, we endeavoured to augment the multifaceted research line of urban
morphology by bringing it into full 3D with a focus on buildings specifically. We put
forward a robust set of metrics that is consistent with widely used existing lower-
dimensional (2D) metrics, implement them in a software package that we release
openly, generate a comprehensive dataset characterising more than 800,000 buildings
that we share publicly, and explore use cases that may benefit from understanding
the detailed three-dimensional urban fabric. In addition, by conducting a comprehen-
sive data analysis and discussing a variety of aspects such as data, challenges, and
engineering decisions, we believe that with this paper we set a solid foundation for
this new research direction. Our work, besides building-level characterisation, supports
urban scale and multi-city comparative analyses, as suggested by many examples in
the paper (e.g. Figures 5, 7, 13 and 14).

The newly introduced metrics are not necessarily intended to replace the existing
widely-used metrics. However, as demonstrated by this paper, they are beneficial in
supplementing the metrics used so far as they reduce ambiguities and do more justice
in parametrising the growing complexity of cities. We hope that our work will also be
useful for the computer graphics community, which deals with 3D models of a diverse
variety of features beyond buildings, to characterise 3D shape complexity.

Impediments to going fully 3D are the paucity of data and the complexity of imple-
menting the 3D metrics. First, in comparison to building footprints, 3D city models are
still not widely available around the world, and less so at higher levels of detail.
However, recent developments in 3D reconstruction indicate a trend of the increase in
both coverage and detail of 3D building models (Gui and Qin 2021, Zhang et al. 2021,
Esch et al. 2022, Klimkowska et al. 2022, Pang and Biljecki 2022, Peters et al. 2022),
potentially alleviating this issue. Our work establishes the value of data at various
LoDs, and it demonstrates that even LoD1 (block) models, which are simple and
increasingly available, provide benefits when they are used to compute advanced 3D
metrics, rather than being used for only simple indices as in research so far. Second,
urban morphology in 2D and 2.5D is nowadays fairly straightforward thanks to its
established history, available datasets, defined metrics, and growing software support
(Jhaldiyal et al. 2018, Fleischmann 2019, Jochem and Tatem 2021, Biljecki and Chow
2022, Yap et al. 2022), going 3D, for now, entails some complexity and requires cap-
acity building, e.g. more complex formulas, intricate implementations, an increased
likelihood of errors, and handling less established data formats.
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For future work, we aspire to investigate the application of the work to other urban
features, such as roads, vegetation, underground spaces, etc. in order to have a true
3D urban morphology analysis. Furthermore, the aggregation of different urban scales
will be an important aspect of a true urban morphology analysis in our future work.
Scalability is an important consideration as well. In this work, we focused on the
Netherlands due to the rich availability of open data and the ability to compare differ-
ent geographical areas that are reconstructed with the same methodology. We hope
that our freely available software development will contribute towards computing the
metrics in further geographies where data such as point clouds are available.

Finally, the set of 3D metrics we propose in this work may spur a variety of use
cases, of which we suggest a few examples in the paper. Other possible use cases
may be understanding the patterns of morphological indicators with various socio-
economic aspects, e.g. average income by administrative neighbourhood (c.f. Figure
5), for which data may be available in some geographies.

Notes

1. https://www.businesslocationcenter.de/en/economic-atlas/download-portal
2. http://kartta.hel.fi/3d
3. http://www1.nyc.gov/site/doitt/initiatives/3d-building.page
4. Clustering is used to compensate for precision issues between similar planes. We use

Agglomerative clustering, where we compute the distances between the vectors of plane
parameters and we cluster them with an average linkage method using a threshold of 0.1.
The distance matrix is computed so that triangles with opposite normals will still have a
close distance and, therefore, end up in the same cluster.

5. Table 1 highlights which indices require such normalisation.
6. https://pymesh.readthedocs.io/
7. https://github.com/tudelft3d/3d-building-metrics
8. https://3dbag.nl/
9. http://geovalidation.bk.tudelft.nl/val3dity/

10. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html

11. https://3dbag.nl
12. https://bing.com/maps
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on applications, data and technologies. Remote Sensing, 14 (11), 2579.

Ledoux, H., 2018. val3dity: validation of 3D GIS primitives according to the international stand-
ards. Open Geospatial Data, Software and Standards, 3 (1), 1.

Ledoux, H., et al., 2019. CityJSON: a compact and easy-to-use encoding of the CityGML data
model. Open Geospatial Data, Software and Standards, 4 (1), 4.

Leng, H., et al., 2020. Urban morphology and building heating energy consumption: evidence
from Harbin, a severe cold region city. Energy and Buildings, 224, 110143.

Li, H., et al., 2021. Quantifying 3D building form effects on urban land surface temperature and
modeling seasonal correlation patterns. Building and Environment, 204, 108132.

Li, M., et al., 2020. Continental-scale mapping and analysis of 3D building structure. Remote
Sensing of Environment, 245, 111859.

Lindenthal, T., 2020. Beauty in the eye of the home-owner: aesthetic zoning and residential
property values. Real Estate Economics, 48 (2), 530–555.

Liu, Y., et al., 2020. Characterizing three dimensional (3-d) morphology of residential buildings
by landscape metrics. Landscape Ecology, 35 (11), 2587–2599.

Liu, Y., et al., 2021. Complexity of relationship between 2d/3d urban morphology and land sur-
face temperature: a multi-scale perspective. Environmental Science and Pollution Research
International, 28 (47), 66804–66818.

Lu, H., et al., 2021. Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal
environment of Hangzhou. International Journal of Applied Earth Observation and
Geoinformation, 104, 102558.

Luan, H., and Fuller, D., 2021. Urban form in Canada at a small-area level: quantifying
“compactness” and “sprawl” with Bayesian multi variate spatial factor analysis. Environment
and Planning B: Urban Analytics and City Science, 49 (4), 1300–1313.

Lucks, L., et al., 2021. Improving trajectory estimation using 3D city models and kinematic point
clouds. Transactions in GIS, 25 (1), 238–260.

Malhotra, A., et al., 2022. Information modelling for urban building energy simulation—a taxo-
nomic review. Building and Environment, 208, 108552.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 29



Mei, S.-J., and Yuan, C., 2021. Analytical and numerical study on transient urban street air warm-
ing induced by anthropogenic heat emission. Energy and Buildings, 231, 110613.

Milojevic-Dupont, N., et al., 2020. Learning from urban form to predict building heights. PLOS
One, 15 (12), e0242010.

Noardo, F., et al., 2021. Reference study of CityGML software support: the GeoBIM benchmark
2019—Part II. Transactions in GIS, 25 (2), 842–868.

Nys, G., and Billen, R., 2021. From consistency to flexibility: a simplified database schema for the
management of CityJSON 3D city models. Transactions in GIS, 25 (6), 3048–3066.

Palliwal, A., et al., 2021. 3D city models for urban farming site identification in buildings.
Computers, Environment and Urban Systems, 86, 101584.

Pang, H.E., and Biljecki, F., 2022. 3D building reconstruction from single street view images using
deep learning. International Journal of Applied Earth Observation and Geoinformation, 112,
102859.

Park, Y., Guldmann, J.-M., and Liu, D., 2021. Impacts of tree and building shades on the urban
heat island: combining remote sensing, 3D digital city and spatial regression approaches.
Computers, Environment and Urban Systems, 88, 101655.

Peters, R., et al., 2022. Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million
buildings of the Netherlands. Photogrammetric Engineering & Remote Sensing, 88 (3), 165–170.

Ren, C., et al., 2020. Developing a rapid method for 3-dimensional urban morphology extraction
using open-source data. Sustainable Cities and Society, 53, 101962.

Santhanavanich, T., and Coors, V., 2021. CityThings: an integration of the dynamic sensor data to
the 3D city model. Environment and Planning B: Urban Analytics and City Science, 48 (3),
417–432.

Santos, T., et al., 2021. Assessing sustainable urban development trends in a dynamic tourist
coastal area using 3D spatial indicators. Energies, 14 (16), 5044.

Sarretta, A., and Minghini, M., 2021. Towards the integration of authoritative and
OpenStreetMap geospatial datasets in support of the European strategy for data. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLVI-4/W2-2021, 159–166.

Shirowzhan, S., et al., 2020. Data mining for recognition of spatial distribution patterns of build-
ing heights using airborne lidar data. Advanced Engineering Informatics, 43, 101033.

Sirko, W., et al., 2021. Continental-scale building detection from high resolution satellite imagery.
arXiv preprint arXiv:2107.12283.

Sullivan, C.B., and Kaszynski, A., 2019. PyVista: 3D plotting and mesh analysis through a stream-
lined interface for the visualization toolkit (VTK). Journal of Open Source Software, 4 (37), 1450.

Sun, Y., et al., 2020. Automatic registration of a single SAR image and GIS building footprints in
a large-scale urban area. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 1–14.

Tian, Y., and Yao, X., 2021. Urban form, traffic volume, and air quality: a spatiotemporal stratified
approach. Environment and Planning B: Urban Analytics and City Science, 49 (1), 92–113.

Tian, Y., et al., 2019. The effect of urban 2D and 3D morphology on air temperature in residen-
tial neighborhoods. Landscape Ecology, 34 (5), 1161–1178.

Tong, H., and Kang, J., 2021. Characteristics of noise complaints and the associations with urban
morphology: a comparison across densities. Environmental Research, 197, 111045.

Touchaei, A., and Wang, Y., 2015. Characterizing urban heat island in Montreal (Canada)—effect
of urban morphology. Sustainable Cities and Society, 19, 395–402.

Virtanen, J.-P., et al., 2021. Near real-time semantic view analysis of 3D city models in web
browser. ISPRS International Journal of Geo-Information, 10 (3), 138.

Vitalis, S., Arroyo Ohori, K., and Stoter, J., 2020. CityJSON in QGIS: development of an open-
source plugin. Transactions in GIS, 24 (5), 1147–1164. ):

Wang, M., and Debbage, N., 2021. Urban morphology and traffic congestion: longitudinal evi-
dence from US cities. Computers, Environment and Urban Systems, 89, 101676.

Wentz, E.A., 2010. A shape definition for geographic applications based on edge, elongation,
and perforation. Geographical Analysis, 32 (2), 95–112.

30 A. LABETSKI ET AL.



Wu, A.N., and Biljecki, F., 2022. GANmapper: geographical data translation. International Journal
of Geographical Information Science, 36 (7), 1394–1422.

Wu, J., et al., 2022. Cultivating historical heritage area vitality using urban morphology approach
based on big data and machine learning. Computers, Environment and Urban Systems, 91,
101716.

Wysocki, O., et al., 2021. Plastic surgery for 3D city models: a pipeline for automatic geometry
refinement and semantic enrichment. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, V-4-2021, 17–24.

Xie, Y., et al., 2019. A locally-constrained YOLO framework for detecting small and densely-dis-
tributed building footprints. International Journal of Geographical Information Science, 34 (4),
1–25.

Xu, Y., et al., 2017. Urban morphology detection and computation for urban climate research.
Landscape and Urban Planning, 167, 212–224.

Yang, L., et al., 2022. Urban morphological regionalization based on 3d building blocks-a case in
the central area of Chengdu, China. Computers, Environment and Urban Systems, 94, 101800.

Yap, W., Janssen, P., and Biljecki, F., 2022. Free and open source urbanism: software for urban
planning practice. Computers, Environment and Urban Planning, 96(W1-2020):101825.

Zhang, C., Fan, H., and Kong, G., 2021. VGI3D: an interactive and low-cost solution for 3D build-
ing modelling from street-level VGI images. Journal of Geovisualization and Spatial Analysis, 5
(2), 18.

Zhang, J., et al., 2019. Impact of urban block typology on building solar potential and energy
use efficiency in tropical high-density city. Applied Energy, 240, 513–533.

Zhang, Z., et al., 2022. Vectorized rooftop area data for 90 cities in China. Scientific Data, 9 (1),
66.

Zhu, X.X., et al., 2022. The urban morphology on our planet – global perspectives from space.
Remote Sensing of Environment, 269, 112794.

Appendix

The following notations are used in 2D:

� Ax ¼ Area of x
� Px ¼ Perimeter of x
� PN¼ Polygon
� CH¼Convex Hull of the polygon
� EAC¼ Equal Area Circle of the polygon
� MABR¼Minimum Area Bounding Rectangle of the polygon
� PN \ EAC ¼ Intersection of a polygon and its Equal Area Circle
� LIC¼ Largest Inscribed Circle of the polygon (where rLIC is its radius)
� ADC¼Average Distance Circle of the polygon (where rADC is its radius)
� SCC¼ Smallest Circumscribing Circle of the polygon (where rSCC is its radius)
� digpij ¼ Distance between two internal grid points, i and j
� lrigp ¼ Average distance of internal grid points to the center
� lribp ¼ Average distance of surface points to the center
� lrdev ¼ Average distance between surface points and the Average Distance Circle along

its radius

The following notations are used in 3D:

� Vx ¼ Volume of x
� Ax ¼ Total surface area of x
� MS¼Mesh
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� CH¼Convex Hull of the mesh
� EVS¼ Equal Volume Sphere of the mesh
� OOBB¼Object-Oriented Bounding Box of the mesh
� MS \ EVS ¼ Intersection of a mesh and its Equal volume Sphere
� LIS¼ Largest Inscribed Sphere of the mesh (where rLIS is its radius)
� ADS¼Average Distance Sphere of the mesh (where rADS is its radius)
� SCS¼ Smallest Circumscribing Sphere of the mesh (where rSCS is its radius)
� digpij ¼ Distance between two internal grid points, i and j
� lrigp ¼ Average distance of internal grid points to the center
� lribp ¼ Average distance of surface points to the center
� lrdev ¼ Average distance between surface points and the Average Distance Sphere along

its radius

Appendix Table 1. Calculating shape indices in 2D and 3D.
Index 2D 3D

Circularity/Hemisphericality CI ¼ APN
AEPC

¼ 4pAPN
P2PN

HEM ¼ 3
ffiffiffiffi
2p

p
V

A
3
2
MS

Convexity CNV2 ¼ APN
ACH

CNV3 ¼ VMS
VCH

Fractality FR2 ¼ 1� log ðAPNÞ
2� log ðPPNÞ FR3 ¼ 1� log ðVMSÞ

3
2� log ðAMSÞ

Rectangularity/Cuboidness REC ¼ APN
AMABR

CBD ¼ VMS
VOOBB

Squareness/Cubeness SQN ¼ PEAC
PPN

¼ 4
ffiffiffiffiffi
APN

p
PPN

CBN ¼ AEVS
AMS

¼ 6
ffiffiffiffiffi
VMS3p 2

AMS

Cohesion nCI2 ¼ 0:9054�
ffiffiffiffiffi
APN
p

p
1

nðn�1Þ
Pn

i¼1

Pn

j¼1
digpij

nCI3 ¼
36
35�

ffiffiffiffiffiffi
3
4
VMS
p

3
p

1
nðn�1Þ

Pn

i¼1

Pn

j¼1
digpij

Proximity nPxI2 ¼
2
3�rEAC
lrigp

¼
2
3�

ffiffiffiffiffi
APN
p

p
lrigp

nPxI3 ¼
3
4�rEVS
lrigp

¼
3
4�

ffiffiffiffiffiffi
3
4
VMS
p

3
p
lrigp

Exchange nEI2 ¼ AðPN\EACÞ
APN

nEI3 ¼ VðMS\EVSÞ
VMS

Spin nSI2 ¼ 0:5�APN
p

lr2
igp

nSI3 ¼
3
5�

ffiffiffiffiffiffiffiffi
3�VMS
4�p

3
p 2

lr2
igp

Perimeter/Circumference nPmI2 ¼ PEAC
PPN

¼ 2
ffiffiffiffiffiffiffi
pAPN

p
PPN

nPmI3 ¼ 4p�
ffiffiffiffiffiffiffiffi
3�VMS
4�p

3
p 2

AMS

Depth nDpI2 ¼
lPNdigp, b
lEACdigp, b

¼
3lPNdigp, bffiffiffiffiffi

APN
p

p nDpI3 ¼
4�lMSdidgp, bffiffiffiffiffiffiffiffi

3�VMS
4�p

3
p

Girth nGI2 ¼ rLIC
rEAC

¼ rLICffiffiffiffiffi
APN
p

p nGI3 ¼ rLISffiffiffiffiffiffiffiffi
3�VMS
4�p

3
p

Dispersion nDsI2 ¼ 1� lrdev
rADC

¼ 1� lrdev
lribp

nDsI3 ¼ 1� lrdev
rADS

¼ 1� lrdev
lribp

Range nRI2 ¼ rEAC
rSCC

¼
ffiffiffiffiffi
APN
p

p
rSCC

nRI3 ¼
ffiffiffiffiffiffiffiffi
3�VMS
4�p

3
p

rSCS

Equivalent rectangular/
cuboid index

(1) k ¼
ffiffiffiffiffiffiffiffi
APN
AMABR

q
ðk � 1Þ

(2) PEAR ¼ k � PMABR

(3) ERI ¼ PEAR
PPN

¼
ffiffiffiffiffiffiffiffi
APN
AMABR

q
� PMABR

PPN

ECI ¼
ffiffiffiffiffiffiffiffi
VMS
VOOBB

3
q 2

� AOOBB
AMS

Roughness index� RI2 ¼
l2ribp

APNþP2PN
� 42:62 RI3 ¼

l3ribp
VMSþ

ffiffiffiffiffi
AMS

p 3 � 48:735

Elongation 1� S
L (Computed for the three axes respectively)

Form factor – A

V
2
3

�For roughness index the constants 42.62 and 48.735 are used because without them the resulting values for a circle
or a sphere would be RI2 ¼ 1=42:62 and RI3 ¼ 1=48:735, respectively.
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