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ABSTRACT

Recently, Offshore Wind Turbines (OWT) have attracted great attention in an effort to make a shift from fossil-
based energy sources towards an enhanced sustainable and renewable energy production. In order to achieve
the renewables targets and reduce the cost of wind energy, OWTs are consistently increasing in size. Therefore,
research has targeted the optimization of OWT design. For many years, System Identification has played a
central role in obtaining the actual modal properties of existing structures. Operational Modal Analysis (OMA)
is a subset of these technique that applies on measurement data obtained from a structure loaded by ambient
excitation. In the case of an OWT, such methods would be highly important in validating and/or updating
the design and monitoring the structural health of the structure, which includes damage identification and
fatigue damage estimation and would potentially lead into lifetime extension.

In practice, however, using OMA techniques on operating OWT is not a straightforward procedure. In fact,
most of these techniques assume that the excitation is a white-noise process, which is not the case when
waves and operational loads (e.g. rotational sampling) are present. Apart from that, the system itself is con-
sidered to be Linear Time-Invariant. Unfortunately, the modal properties of the system are highly affected
by the varying rotational speed of the rotor and in general do violate the LTI assumptions. Given these chal-
lenges, the use-ability of existing methods need to be further investigated through application on OWTs under
different operational conditions. Also, it is vital to asses and if possible eliminate the impact of the limitations
related to loading on the identification.

Thus, a benchmark study of OMA algorithms has been performed on simulated data obtained from two
models. The first model is a simplified OWT numerical model in Matlab, which can be used to validate the
algorithms, and the second is the NREL 5-MW baseline offshore wind turbine in FAST that was used to simu-
late multiple different operational conditions. Using the simulated responses, at first, the Eigensystem Re-
alization Algorithm (ERA) and the Natural Excitation Technique (NExT) were applied. Secondly, the widely
used Stochastic Subspace Identification (SSI), has been included in this study. In Addition to these time
domain techniques, the frequency-domain algorithms, Frequency Domain Decomposition (FDD) and the
Least-Squares Complex Frequency-domain (LSCF) estimator were examined. In the end, Transmissibility-
based Operational Modal Analysis (TOMA) was developed aiming in removing the influence of the external
loading.

Through this study several parameters used in each algorithm as well as the robustness against harmonic
excitation and measurement noise were investigated, providing the user with guidelines for each method.
Then in the application on simulated data obtained from FAST, the results showed that all the algorithms
were able to derive several stable modes, even when theoretically fundamental assumptions are violated.
In general, the algorithms performed better for low wind speeds, while at high wind speeds the algorithms
leaded in poorer identification (unstable and smaller number of modes). The greatest deviation compared
to analytically obtained modal properties was observed in the damping ratios of the flapwise blade bending
modes, where none of the algorithms was able to obtain such large damping ratios (>30%). However, most
of them were still able to obtain two fore-aft tower modes and an accurate damping estimation. TOMA did
remove the influence of external loading from the identification, but faced difficulties in obtaining blade
modes. Finally, this benchmark study revealed the strengths and weaknesses of each technique when the
core assumptions are violated.
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1
INTRODUCTION

In recent years, there has been an inclination towards renewable energy resources, and wind power in particu-
lar. For the coming decades, wind industry aims at increasing the wind power production by developing more
and more offshore wind farms. In order to achieve this target, there is a great demand for new technologies
and techniques with respect to OWT structures. Operational Modal Analysis is the field that aims at deriving
the dynamic properties of an existing structure and has great potential in offshore wind turbines applications.
However, applying such techniques is not straightforward for offshore wind turbines, especially under opera-
tional conditions. In fact, fundamental theoretical assumptions which are made during the derivation of most
state of the art OMA algorithms are violated. This chapter, briefly mentions several identification methods, and
also describes the strategy that will be followed in order to investigate if existing system identification algo-
rithms can be adapted and used on OWTs, or the violated assumptions will result in loss of use-ability. After this
introduction, the desired applications as well as the main challenges are presented. The chapter is closed with
the problem statement and an chapter-wise overview of this thesis.

1.1. WIND POWER
In the coming decades, global energy needs are predicted to rise. This fact is mainly related to the growth of
the world population, but also to the increasing standards of living for people of the developing countries. In
order to meet this rising energy demand, more and more different energy resources need to be exploited.

To date, fossil fuels (e.g. oil, coal and gas) remain the dominant source and drive the global energy con-
sumption. However, investments in renewable energy resources are rising, since it is a very promising alter-
native source of energy. Replacing fossil fuels with renewable energy sources will reduce global warming by
mitigating the greenhouse gas emissions. Another reason to lean towards renewables is that they are clean en-
ergy sources with a positive impact on public health. Finally, renewables are inexhaustible sources of energy
and can contribute in creating a sustainable world that does not depend on the limited amount of resources.

Amongst all possible renewable energy resource, wind energy is the most abundant one. Technologies
to extract wind power have being investigated for decades, but it is a fact that attention is largely attracted in
recent years. It is not an exaggeration to say that wind power nowadays has become the fastest growing energy
source in the world. This has led to rapid growth of wind farm construction both onshore and offshore. It is
obvious that developing onshore wind farms is faster, cheaper and easier than offshore. However, wind power
industry aims at increasing the wind power production, and using bigger turbines, under higher and steadier
wind velocities is the answer. This is the reason why more and more wind farms have being developed deeper,
further offshore. As it is shown in Figure 1.1, offshore wind aims at exceeding a capacity of 500GW by 2050[1].

This target is a great challenge itself, since the development of offshore wind farms is not a straightforward
procedure. This relatively new field is often connected to problems that have never been encountered before.
Also, wind industry aims at driving down the cost of wind power in order to make it a fully competitive energy
source. Therefore, there is a great demand of technical knowledge, new technologies and techniques.

1.2. AN OVERVIEW OF IDENTIFICATION TECHNIQUES
For many years researchers have being investigating ways to process information that is present in measure-
ment data collected from civil (e.g. public buildings, bridges) and mechanical structures (e.g. wind turbines)

1
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Figure 1.1: Historical and projected total installed capacity of offshore wind, 2000-2050

in order to get a better understanding of the real physics and the actual structural behaviour.
One way to determine the actual dynamic properties of an existing structure is by applying Experimen-

tal Modal Analysis (EMA) techniques. More in detail, EMA is carried out by artificially exciting the structure
with known, measured forces (input), while measuring the structural response (output). These experiments
can be performed by using shakers, drop weights or impact hammers in laboratory, in order to derive mea-
surements of good quality. Then, the structure’s modal parameters (modal frequencies and damping ratios,
mode shapes and participation factors) can be determined by applying system identification techniques on
the input-output data. The identification most of the times is based on the Impulse Response Functions
(IRF), or on the Frequency Response Functions (FRF) for time-domain and frequency-domain techniques,
respectively. Some of the traditional time-domain system identification algorithms that were developed to
extract the modal parameters from the IRF are the Eigenvalue Realization Algorithm (ERA)[2][3], the Ibrahim
Time Domain (ITD)[4] and the Least-Square Complex Exponential method (LSCE)[5]. Due to the fact that
both input and output are measured, EMA methods many times are referred to as deterministic system iden-
tification techniques. The identification of a system using EMA techniques can be shown in Figure 1.2.

Figure 1.2: Deterministic Input-Output identification

Unfortunately, EMA approaches are inappropriate for large and complex structures like OWT. Laboratory con-
ditions can largely differ from the complicated real-operating conditions. Also, measuring the excitation
forces for the case of an OWT is not a trivial task. On the other hand, a different type of modal analysis, which
considers that the structure is under real operational conditions has been developed with great success and
a large number of applications. Such system identification techniques identify the modal parameters (modal
frequencies, damping ratios and mode shapes) of the structure using output-only response data, without
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measuring the excitation forces. Therefore, no equipment to excite a structure is needed. In that sense, Op-
erational Modal Analysis (OMA) techniques are faster and cheaper than EMA techniques. Another advantage
is that the structure of interest is tested under the complicated real-operating conditions, leading into more
realistic identified modal models.

When performing an OMA technique the applied forces are not known but they are assumed to behave
approximately as band-limited white noise. Ambient excitation due to wind, traffic and earthquakes are some
examples. Particularly for the case of an OWT, the turbine is loaded by wind and waves. Most of the OMA
methods implicitly assume that the dynamic content in the measured data is directly linked to the structural
properties and not the loading. This is directly linked to the assumption of white noise excitation.

The Natural Excitation Technique (NExT)[6][7] was the pioneering method that set the foundations for
OMA. By combining NExT with an IRF-based system identification algorithm, the modal parameters can be
identified using only output response time-histories. One of the most popular time-domain OMA techniques
is the Stochastic Subspace Identification technique (SSI)[8][9], which uses output-only measurements for a
system under random excitation. OMA techniques in frequency-domain have also been developed, apart from
time-domain. Peak Picking (PP) is the simplest frequency-domain technique, since the natural frequencies
are just manually selected from the peaks of the Power Spectral Density (PSD). Moreover, one of the most pop-
ular frequency-domain OMA techniques is the so-called Frequency Domain Decomposition (FDD)[10], which
has been used with great success in many applications. Finally, more advanced techniques have also been
developed, that aim in determining the modal parameters of the system by applying curve fitting techniques
on the measured response spectrum. Some of the most popular are the Least-Squares Complex Frequency-
domain (LSCF) estimator[11] and the poly-reference version of it (pLSCF)[12][13].

It needs to be mentioned that most of the OMA techniques work by also assuming that the structure be-
haves as a Linear Time-Invariant (LTI) system in the analysed time interval. However, structures with ro-
tating parts are most of the times described as Linear Time-Periodic (LTP) systems instead. Some OMA al-
gorithms have also been extended or developed from ground up for LTP systems[14][15] and for non-linear
systems[16]. The fundamental difference is related to the way the discrete-time state-space equation of mo-
tion is formulated. In LTP the so-called Floquet exponents of the system are identified instead of the the
typical modal parameters.

In most of the algorithms, which were briefly described before, the unmeasured input is assumed to be
a stochastic process. Therefore, the measured response will be a random signal. Such OMA identification
procedures are sometimes called stochastic (as illustrated in Figure 1.3).

Figure 1.3: Stochastic Output-only identification

For the reasons explained before, and also due to the fact that the determination of the actual loading on an
OWT is already a very difficult task, it can be concluded that OMA techniques are extremely attractive for the
identification of the dynamic properties of OWT structures.

Online monitoring of system parameters is also another field of identification techniques with a large
number of applications and increasingly high interest[17][18]. Some cases of OMA system identification tech-
niques have also been used in an automated way, directly on real-life measured responses, in order to monitor
the effect of unknown system parameters of interest on the dynamic characteristics of the structure. Apply-
ing online monitoring techniques on wind turbines is indeed a challenging topic, which attracts researchers’
attention.

Finally, system identification techniques can also be separated into parametric and non-parametric meth-
ods. In the first case, the target is to determine several parameters of the system of interest (e.g. natural fre-
quency, damping, stiffness, etc). On the other hand, non-parametric methods aim in modelling a system
directly with its responses (e.g. impulse response, step response, etc) [19].
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1.3. IMPORTANCE AND APPLICATIONS OF IDENTIFIED DYNAMIC PROPERTIES
Identifying a modal model of an OWT has great scientific, but also practical interest. Determining the modal
properties is motivated by the fact that it is an important, and often the only, input for many possible appli-
cations.

At first, it needs to be stressed out that the real dynamic behaviour of an OWT is usually different than in the
predicted response, which is simulated during the design process using (aero-elastic coupled) finite element
(FE) models. Errors can be introduced by assumptions made during modelling the structure. After all, every
model is more or less a simplification of reality. For instance, the support conditions can be modelled using
the simplest linear spring-dashpot model in order to represent the soil stiffness. However the response and
interaction of the soil with the turbine foundation in reality will probably be different than in the FE model.
Therefore, the identified modal parameters can be used to get a better understanding of the real dynamic
behaviour of the structure and to validate the design, or update the FE model, if needed.

Another potential field of application is Structural Health Monitoring (SHM) of OWTs, which includes dam-
age identification and fatigue damage estimation. The first aims at detecting and quantifying any damages
related to changes of the structural system, while the second is used to predict the accumulated fatigue dam-
age in order to assess the potential of lifetime extension of the turbine. Therefore, SHM is a promising strategy
that aims at assessing and predicting the structural health state of the turbine with the objective to reduce
maintenance cost and potentially extend the lifetime of a single, or a group of, offshore wind turbines. An
accurate identification of the modal parameter is fundamental for the applicability of many SHM methods,
which motivates to investigate the question of the applicability of OMA algorithms outside their theoretical
framework.

Finally, the actual dynamic properties of a structure may also reveal and clarify some unexplored aspects
of related, not completely understood physics behind the complex nature of an OWT system in a highly dy-
namic environment. This may help to create improved and new models and guide the design. Hence, there
is strong motivation to investigate the applicability of a variety of OMA system identification techniques, for
the case of OWT structures.

1.4. KEY CHALLENGES
Identification of modal parameters on a full-scale OWT is a very difficult and complex task. Researchers still
put a lot of effort into the development of suitable methods that will result in an accurate and reliable identi-
fication over the full range of operational conditions. OMA system identification algorithms are widely applied
when collecting input time-series is not possible. Therefore, from now on attention will be focused on such
techniques.

The best agreement between the theoretical assumptions made during deriving an OMA algorithm and
the dynamic behaviour of an OWT can be found when the turbine is not rotating (parked conditions). For
this particular case the environmental conditions do approach the assumption of white noise excitation to a
reasonable degree. Furthermore, the system properties remain unchanged with respect to the environmental
and operational conditions. However, current OMA techniques have serious limitations when applied to an
OWT under operating conditions and the identification is not a straightforward task anymore.

1.4.1. WHITE NOISE EXCITATION ASSUMPTION
The unmeasurable input loading is one of the limitations, since in practice it cannot be approximated by
Gaussian white noise process. In case where harmonic components are also present in the input, it is ex-
pected that classic OMA techniques will provide incorrect results in these frequency regions. Their influence
on the identification procedure should be eliminated before extracting the structural modes, since directly
applying current techniques without first dealing with the harmonic components may encounter several dif-
ficulties. At first, most OMA techniques will probably falsely associate the dynamics of the harmonic compo-
nents of the loading with system properties. This means that harmonic modes may be mistaken for being
structural modes. In OMA system identification it is a challenge to distinguish the real structural dynamic be-
haviour from noise and excitation contributions. A second problem is caused in case where the non-white
noise force contributions have larger energy than the ambient excitation, particularly at frequencies close
to any natural frequency of the system. This leads classical identification algorithms to fail in separating
harmonic modes from structural modes. Thus, false modes may be identified instead of the weakly excited
structural modes and the identification accuracy may be badly affected.

In reality, it is expected that an OWT will be loaded by wind and wave. In general, wind loads approximate
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such a flat, broadband frequency spectrum and therefore, white noise assumption is not largely violated. On
the other hand, in case where wave loading is dominant, coloured noise contributions are introduced and
may affect the identification. Moreover, due to the rotation of the rotor of an operating OWT, the input forces
are often more complex and sometimes significant harmonic components may be present in the measured
response. Hence, the spectra of the aerodynamic forces is expected not to be flat, but with multiple peaks at
frequencies proportional to the rotational frequency, as shown in Figure 1.4.

Figure 1.4: Schematic representation of Power Spectral Density (PSD) of input forcing with and without considering rotational sampling

As mentioned before, eliminating the influence of the harmonic components in the modal parameter ex-
traction process is an important and very challenging task. For many years efforts have been continuously
devoted in updating several OMA methods to tackle this problem. An interesting approach is proposed by P.
Mohanty and D.J. Rixen, where several classic modal identification methods have been modified, in order
to obtain the actual structural modes even in cases where harmonics components are close to the natural
frequencies of the system. Some of the algorithms that have been modified are the Least-Square Complex
Exponential (LSCE)[20], Eigenvalue Realization Algorithm (ERA)[21], Ibrahim Time Domain (ITD)[22] and the
Single-Station Time-Domain method (SSTD)[23]. The main concept behind the modification is to force the
algorithm to identify virtual modes with zero damping at frequencies equal to the frequencies of the har-
monic excitation. Despite the fact that these modified techniques help in differentiating between structural
modes and harmonic modes, one of the basic limitations is that the frequency of the harmonics must be ex-
actly known a priori. Apart from IRF-based OMA techniques, classical SSI algorithm has also been recently
modified in a similar way as explained before[24].

Another way to deal with the harmonic components in the frequency-domain is by filtering the response
spectrum[25][26][27]. This approach aims at filtering-out the harmonic components from the measured re-
sponse, so that it will explicitly include information related to the system. However, in case where the fre-
quencies of the harmonic components are close to structural frequencies of the system, this approach leads
in less reliable results. The main reason is that filtering will probably affect the measured response, causing
loss of useful modal information and leading to errors in the identified structural modes.

A different innovative approach is to perform a frequency-domain system identification technique named
Transmissibility based OMA (TOMA), as proposed by Devriendt et al.[28][29][30][31]. This type of OMA tech-
niques aim in deriving a function, which has all the information needed to identify the modal parameters,
but is also independent of the input loading. Therefore it seems that TOMA makes it possible to derive a modal
model, which is not influenced by the violation of the assumption of white noise inputs due to the presence
of coloured noise or harmonic components in the input. In case where the structure is loaded at different
locations with uncorrelated forces, the transmissibility function as described in TOMA cannot be independent
of the input’s spectral content. Therefore an alternative approach has been proposed for multiple-input and
multiple-output (MIMO) systems[32][33]. The main disadvantage of these methods is that they need at least
two sets of measurements that correspond to different spatial loading conditions. An attempt to apply TOMA
for one single set of measurements is also proposed by the same research team and is called time-varying
TOMA (Tv-TOMA)[34][35]. The concept of using transmissibility functions in OMA has also been investigated
by other researchers who have a different perspective. Power Spectrum Density Transmissibility based OMA
(PSDT-OMA)[36][37] is another technique that aims at determining the modal parameters from one single set
of measurements.

More approaches can be found in literature, along with related benefits and disadvantages. It is clear that
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the application of OMA techniques on wind turbines is not a straight forward procedure due to the non-white
noise nature of aerodynamic forcing. The performability of these methods needs to be further investigated
through application on real OWT.

1.4.2. LTI SYSTEM ASSUMPTION

In OMA techniques, it is a common assumption to consider that the system of interest is an LTI system. Sta-
tionarity of the process is another strict assumption used in certain algorithms (e.g. NExT). It is clear though
that an operating OWT violates this assumption. At first, when the wind velocity is larger than the rated (see
Figure 1.5) the blades of the rotor start pitching-off in order to maintain constant power production, equal to
the turbine’s capacity. Since wind velocity is not steady, the assumption of LTI system is probably violated.

Figure 1.5: Ideal wind turbine power curve

Apart from the pitching of the blades, the measured response may also include transients due to start-up
or shut-down. It is reasonable though to apply a system identification technique on a time range where the
process is almost stationary and neglect the transients. However, it is important to keep in mind that the
duration of the time-series should be long enough to ensure an accurate estimation of modal parameters.

Another parameter that is related to varying system properties is the yaw-motion of the nacelle. However,
this does not seriously affect the LTI assumption, since yaw speed is very slow in general. However, it needs
to be stressed out that in case where the identification is applied while the nacelle yaws, the measurements
obtained at the tower will correspond to a coordinate system that is different to the nacelle coordinate system.
Hence, the measurements will include components of the tower response parallel to the direction of the wind.
In that case, errors can be introduced in the identification. This can be solved by using a fixed coordinate
system for the measurement data.

Finally, the modal parameters of an OWT are also affected by the rotation of the rotor. More in detail, as it is
shown in Figure 1.6[38], the natural frequencies of the blades are related to the rotor speed. Additionally, the
rotor speed varies when shifting between operating zones. Therefore, in such a case the modal parameters
are not constant.

This means that the rotor rotation leads to a violation of the time-invariance assumption. However, for
the tower modes the effect of the rotor can be considered to be limited. The fact that the system is now time-
variant makes the application of OMA for operational cases in which the yaw angle, blade angle and rotational
speed of the rotor vary frequently questionable.

1.4.3. OTHER CHALLENGES

Apart from the violation of the basic assumptions behind OMA system identification algorithms, there are also
several challenges that need to be considered when a modal model is derived.

At first, it is expected that the response data is polluted by noise. Stochastic system identification algo-
rithms aim in limiting the effect of noise in the measurements. In case the data contains noise, the number of
the identified modes is increased and much larger than the number of the structural modes. The modes that
do not correspond to any structural modes are spurious modes and cause problems in the transparency of
the identification. Sometimes it is also quiet difficult to differentiate between physical and spurious modes.
In literature, the identified modes that correspond to the system modes are named as physical, or structural
modes, while the additional modes due to noise as noise, fake, non-structural, spurious modes.

Another challenge is related to the number of sensors that is distributed over the structure. Strain sen-
sors, accelerometers and inclinometers may be used to derive response time-series. However, most of the
algorithms don’t specify the type of the measurements and the question that arises is whether it is possible to
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Figure 1.6: Campbell diagram of the first 10 structural modes

combine different types of data, or not. In that way, more information about the dynamic behaviour of the
system may be derived from the identification procedure.

1.5. PROBLEM STATEMENT AND THESIS OBJECTIVE
Based on the aforementioned challenges and by also considering the violations of core assumptions in OMA
techniques, a question arises.

“Can the existing OMA system identification algorithms be adapted and used on structural response data
obtained from operating OWTs?”

In order to answer this question, it is important at first to assess and eliminate the impact of limitations re-
lated to loading on the identification. In other words, apply OMA techniques on OWT systems without being
influenced by the violation of the white noise assumption. Additionally, it is also vital to investigate the appli-
cability of OMA system identification techniques on measurements that correspond to different operational
conditions. Finally, it is always important to examine several ways to optimize the identification procedure
(e.g. derive clear stabilization diagrams). In order to do so, the possibilities of several existing OMA techniques
for the case of offshore wind turbines need to be examined.

Particular attention will be drawn to applying system identification on measurements of different na-
ture (e.g. strains and accelerations) and also using responses from different parts of the OWT (e.g. tower and
blades).

The main objective of this thesis is to investigate the applicability of several existing OMA system identifica-
tion algorithms on operating OWT structures, but also modify and update, if possible. Therefore, a comparative
benchmark study will be performed on different state-of-the-art identification techniques. As different OMA
algorithms identify a modal model in a different way, it is reasonable to expect that adopting these methods
would result in different numerical conditioning and stability. In that sense, this study may also be used as
a guideline for vibrating structures, since it will give advices on which algorithms performs best on operat-
ing OWT and it will reveal both pros and cons. Multiple different operational conditions will be considered in
order to examine the robustness of the algorithms.
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For the purpose of this study simulated data will be used. Two models have been considered: a simple
Matlab OWT model and NREL) offshore 5-MW baseline wind turbine. The first model will be used to check ini-
tially whether the algorithms are able to identify accurately the dynamic properties of an LTI system with
known dynamic properties. Once the algorithms are tested, the second model in FAST (Fatigue Aerodynam-
ics Structures and Turbulence), which is a certified numerical representation of an OWT, can be used to derive
simulated response signals as close as possible to a real set of data of a real turbine. The idea is to use a selec-
tion of controlled cases of measurements that correspond to different operating conditions. These selected
measurement sets will be used in a later stage for the benchmark study of the examined OMA algorithms.

1.6. THESIS OVERVIEW
The thesis is organized as follows. Initially, Chapter 2 presents a description of the benchmark study, the
assessment criteria of the algorithms that will be used, and the simulated cases that will be examined. Chap-
ter 3 provides a brief introduction into OWT structures, dynamic properties and modelling. Also, both the
model in Matlab and FAST are described in more detail. In this chapter the simulated measurements, which
will be used for the benchmark study will be presented in depth. The next five chapters contain the results
and analysis of different OMA algorithms that will be used. Chapter 4 and Chapter 5 are dedicated to time-
domain OMA algorithms. The first is related to ERA algorithm that will be used together with NExT, while the
second will present SSI algorithm, which is one of the most popular approaches. In the next two chapters,
frequency-domain OMA techniques will be examined. The results and analysis for the FDD and LSCF algorithm
will be presented in Chapter 6 and Chapter 7, respectively. Chapter 8 will present the results and analysis
for the TOMA method, which is the last approach of the system identification methods that will be examined.
Chapter 9 includes a discussion on using multiple and also different types of sensors. Finally, in Chapter 10
conclusions, recommendations and improvements will be discussed.



2
BENCHMARK DESCRIPTION

In this chapter, the algorithms that will be used for the benchmark study are summarized and an overview
is presented, including descriptions about certain criteria based on which the techniques will be evaluated.
Within the framework of this study, simulated data need to be generated. Section 2.2 will describe the loading
cases that need to be simulated and their role in the benchmark study.

2.1. BENCHMARK OBJECTIVE
For many years Operational Modal Analysis (OMA) techniques have attracted great attention in the field of sys-
tem identification. Existing techniques are constantly being improved and new approaches are introduced.
Many algorithms may implement common ideas, but still each different approach has its own strengths and
weaknesses. The main objective of this benchmark study is to identify the modal properties of an operat-
ing OWT, reveal these weaknesses and examine several ways to optimize the identification procedure. The
algorithms that will be examined are briefly as follows:

• Chapter 4: Eigensystem Realization Algorithm (ERA)

• Chapter 5: Stochastic Subspace Identification (SSI)

• Chapter 6: Frequency Domain Decomposition (FDD)

• Chapter 7: Least-Squares Complex Frequency-domain estimator (LSCF)

• Chapter 8: Transmissibility-based OperationalModal Analysis (TOMA)

These algorithms are governed by fundamental assumptions that are violated when applied on an operating
OWT. Particularly, all the algorithms make the assumption that the system is an LTI system. Also, the first
four algorithms assume that the ambient excitation can be approximated by a white noise process. Both of
these assumptions do not hold when the turbine operates. Therefore, their performance under such adverse
conditions need to be assessed. The criteria that will be used in order to evaluate and compare the examined
OMA techniques to each other are as follows:

• Deviation of identified modal properties from exact properties of the system (see Table 3.1 for model in
Matlab and Table 3.4 & 3.5 for model in FAST)

• Number of identified modes

• Stability of identified modes (using stabilization diagrams)

2.2. EXAMINED REFERENCE LOAD CONDITIONS
For the purpose of this benchmark study, two models have been employed. These models will be used to
generate data from several loading cases in order to apply and test the algorithms under controlled condi-
tions. Initially, it is important to validate the algorithms under ideal conditions. Therefore, it is important
to simulate data that satisfy the assumptions of the algorithms. Then, according to the main objective, the
algorithms will be applied on data from an OWT under different operational conditions. The following two
paragraphs will present the loading cases that need to be simulated from each model, and the purpose they
serve.

9
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Reference cases from Matlab model

The OWTmodel in Matlab that will be described in Section 3.2 is going to be used to simulate several sets of
data for different types of input. As mentioned before, validating the algorithms is a vital step. Given that most
of the OMA techniques mentioned before assume that system is loaded by white noise ambient excitation,
the first type of input will be a white noise process. However, as we will see in the coming chapters, data
simulated for the impulse load case will also be needed. Particularly, these data will be used as input for
the ERA algorithm, since it is the only one that applies on free decay responses. Apart from validating the
algorithms, the model in Matlab will be used to test the identification for a simplified wind, wave and current
input. Finally, data from white noise and harmonic loading will be used in order to check the robustnesss
of OMA techniques against the case where an harmonic excitation is included in the input. Table 2.1 shows a
summary of the cases that will be simulated in the model in Matlab with respect to the algorithms that will
be applied on them.

Input Type ERA SSI FDD LSCF TOMA
Impulse

p
- - - -

White noise
p p p p

-
Wind, Wave & Current

p p p p
-

White noise & Harmonics
p p p p

-
White noise & Amplified Regions - - - -

p

Table 2.1: Input types that will be used at each algorithm

As it will be explained in Chapter 8, TOMA algorithm is applied on two sets of measurements, which correspond
to sufficiently different loading conditions. Additionally, no assumption about the input is made for this
algorithm. Thus, two different, modified cases will be examined, where the input is a white noise process with
a smoothly increased amplitude around a frequency region. In that way, a coloured input will be generated.

The responses that will be used for the benchmark study are accelerations at four locations along the
tower (see Figure 3.9). However, the model is able to generate strain responses. Strain data will be used in
Chapter 9.2, where different types of sensors will be examined in the same identification.

Reference cases from FAST model

The second model that will be employed for this study is an existing OWT model developed by NREL, the
analysis of which is performed using FAST. This model will be explicitly described in Section 3.3. Given the
extended possibilities of the FAST model, a limited number of operating cases will be modelled. Table 2.2
includes a summary of all these cases, together with the mean wind speed at the location of the hub.

Case Operating Regions Wind speed (m/s) Wave
FC1 1½ ↔ 2 7 -
FC2 2 ↔ 2½ 9 -
FC3 2 ↔ 2½ ↔ 3 11 -
FC4 3 18 -
FC5 Standstill 18 -
FC6 3 18 on

Table 2.2: Simulated operational conditions in FAST model

The first four examined cases concern four different operating regions according to the controller (see Figure
3.17). It needs to mentioned that in the first three cases the turbine shifts between different operating regions,
while in the 4th case, it operates explicitly inside Region 3. In particular, FC1 corresponds to low wind condi-
tions, while FC2 and FC3 concerns intermediate wind speeds. Finally, FC4 refers to high wind speeds, above
the rated wind speed. In general, in the cases where the OWT operates in Region 3, the rotational speed of the
rotor has minor variations in time by regulating the blade pitch angle. Therefore, the time-invariance of the
system depends on the pitching of the blade and not the influence of the rotor speed on the blade modes.
Additionally, in all these cases, no wave has been considered in the analysis. The main reason is to purely
investigate the decomposed effect of the waves and the harmonic content that originates from the rotor.
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Then, in case FC5 the rotor is parked inside Region 3. Since the rotational speed in this case is zero, it is
expected that no harmonic component due to the rotation of the rotor will be present in the response data.
This conditions are not realistic, since the wind speed that was considered is below the cut-off, but the main
purpose of this simulation is to apply the algorithms on FAST model in case where the input includes no
harmonic components related to the rotation of the rotor.

Finally, FC6 is similar to FC4, but the structure is also loaded by waves. The main purpose of this simu-
lation is to examine the influence of waves. However, as it will be explained in Section 3.3, the presence of
waves in the response data was not significant. Therefore, wave was not included in the benchmark study.





3
SIMULATION OF DATA

Modelling offshore wind turbines aim at formulating a mathematical model that is able to capture all the
physics of interest. The system should be as detailed as needed in order to take into account all the important
parameters that are relevant to the purpose of the analysis. Hence, it is important to understand both the
system and the loading conditions. In this chapter two models will be introduced, which have been used for
the simulation of the measurement data. These data serve as input to the OMA algorithms. Before introducing
those models, a short introduction to the relevant modelling/simulation considerations is presented. In Section
3.2 a simplified OWT model implemented in Matlab will be presented. The data simulated with this model will
be used to verify the implemented OMA algorithms. Section 3.3 will introduce the implemented FAST model,
which is a more realistic representation of an OWT. The data simulated with this model will be used to simulate
different operational conditions that will be used in the benchmark study.

3.1. AN INTRODUCTION TO OFFSHORE WIND TURBINE STRUCTURES
Offshore wind turbines are structures with a high degree of complexity. Both loading conditions and foun-
dations have attracted great scientific interest. The main components of an OWT are similar to those of an
onshore wind turbine, but they are deigned to operate in the much harsher offshore environment. Moreover,
the power capacity of an OWT is most of the times much larger than the capacity of onshore, with a much
bigger and heavier rotor-nacelle assembly (RNA) as consequence. Additionally, one of the main challenges of
OWTs is the type of the foundation. Monopile support structures are used most of the times, but more complex
types also exist for larger depths.

3.1.1. OWT SYSTEM COMPONENTS DESCRIPTION
In short, the main components of an OWT are the RNA and the tower. A substructure supports the tower and
connects it to the seabed via a transition piece. The substructure supports the tower and embeds it into
the seabed. The most common way of foundation is a monopile structure. Other types ranging from a jacket
structure to a floating support also exist and find application for larger water depths. The connection between
the tower and the monopile is typically referred to as the transition piece. The RNA is composed of the nacelle
and the rotor, where the first includes most of the electromechanical components and the latter is consisted
of the blades and the hub, and is attached on the nacelle. Figure 3.1 can be used to graphically display the
main components of an OWT[39]. In the remaining part of this section the individual components will be
described briefly.

Blades

Initially, wind excites the blades thanks to the lift aerodynamic forces. These forces drive the turbine,
as shown in Figure 3.2, [40]. The main target of the rotor is to capture the kinetic wind energy, maintain a
certain rotation and deliver torque on the main (low-speed) shaft. The blades are designed to be light and
long airfoils, commonly made of composite reinforced plastics material.

Furthermore, in order to optimize the behaviour of the blades and capture the kinetic wind energy in
the most efficient way, the blades are designed to have a varying, twisted cross-section along their length,
as shown in Figure 3.3, [40]. More in detail, this would change the apparent wind velocity over the length of

13
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the blade. Close to the hub the apparent wind direction of the air passing over the blade is very different to
the situation at the tip, since the apparent wind speed component introduced by the rotation is significantly
lower. The predominant configuration for OWTs is the three-bladed rotor.

Figure 3.1: General configuration of an OWT monopile system Figure 3.2: Wind aerodynamic lift and drag forces

Figure 3.3: Blade cross-sections along blade length

Hub

The blades are connected via the hub to the main shaft. This component is supposed to transfer the loads
from the blades to the drive train, and therefore it is expected to be highly stressed. The hub may also contain
blade-pitch brakes in order to control the rotation of the rotor, if needed. These brakes work by pitching on
and off the bladed such that the amount of generated lift and drag can be controlled. The reduction in the lift
aims either at regulating the power production for wind speeds above the rated wind speed, or at parking the
turbine for wind speeds above cut-off speed.

Drivetrain

Behind the blades and the hub, the low-speed (main) shaft (LSS) captures the wind energy in terms of
rotational energy. The main purpose of this component is to transfer the torque through the gearbox to
the high-speed shaft (HSS) (see Figure 3.4, [39]). The LSS is also a critical, highly loaded part, since it will
be excited by the torque, generated by the rotor. Next, a gearbox is used in order to amplify the rotational
speed of the LSS before converting the rotational mechanical energy into electrical power. This conversion
is carried out by a generator that is connected at the end of the HSS. This array of mechanical and electrical
parts forms the drivetrain. It should also be noted that this is one typical configuration. For the case of direct-
drive generators, the main shaft is directly connect to the generator, without the use of a gearbox. In the end,
the generator directs the generated power into the transformer.
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Nacelle

All these components of the drivetrain are protected inside the nacelle, as displayed in Figure 3.4. This
unit transfers all the aerodynamic loads from the rotor, but also the loads related to the generator and the
brake systems to the tower. Nacelles are large and heavy units that accommodate also, apart from the drive-
train, mechanical brakes and other equipment. This whole configuration is able to rotate around the vertical
axis thanks to the yaw control system that is located between the nacelle and the tower. This controls the
direction of the rotor so that the wind turbine always aligns with the wind.

Figure 3.4: Main electromechanical components constituting OWT systems.

Tower

The last component of an OWT that will be discussed here is the tower. This is most of the times a tubu-
lar steel structure with varying diameter and thickness along the tower length. The tower is based on the
substructure and transmits the loads applied on the nacelle to the foundation. The tower may also include
devices that are used to monitor the structure (e.g. strain gauges, accelerometers, etc). Power cables, ladders
and other equipment may also be present.

Substructure

As mentioned before, the whole RNA/tower assembly is based on the substructure. There are different
types of substructures, depending mainly on the water depth (see Figure 3.5, [39]). The grounded designs
include the gravity-based, monopile, tripod and jacket solutions. Monopiles are the most commonly used
supports and correspond to waterdepth less than ∼35m. Additionally, jackets are also very popular for inter-
mediate waters. As wind turbines get larger, and move in deeper water, it becomes inefficient in terms of cost
to choose a grounded support structure. Therefore, floating options like tension leg platforms or spar buoys
more attractive.

Figure 3.5: Types of substructure: (a) Gravity-based; (b) Monopile; (c) Monopile with guy wire; (d) Tripod; (e) Jacket; (f) Tension Leg
Platform; (g) SPAR buoy
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3.1.2. DESCRIPTION OF OWT LOADING CONDITIONS
In practice, OWTs are loaded mainly by wind, wave and current. Despite the fact that they are designed to
operate under large wind speeds, wave loading may also cause the greatest force on the structure and be
driving for the support structure design. In order to consider the loading due to the harsh environmental
conditions in the analysis, at first the environmental conditions need to be modelled so that the main features
of the wind and wave fields are accurately captured. By examining a short time interval (e.g. 10min), wind
seems to have a dominant mean component and a stochastic, turbulent part. As far as wave and current is
concerned, the first can be considered to have stochastic nature, while the second has minor fluctuations in
time and, therefore, almost deterministic nature. A graphical representation of the environmental conditions
can be displayed in Figure 3.6, [41]. Under these conditions, the structure will interact with the wind and
wave field and will be excited by the aerodynamic and hydrodynamic loading.

Figure 3.6: Modelling environmental conditions.

Wind loading

Modelling the wind field in a realistic and accurate way is vital for the simulation of the aerodynamic load-
ing. In general wind field has a mean component that varies along the height above the sea surface, following
an almost logarithmic trend. In many practical applications the short-term turbulent wind field is modelled
using the Kaimal spectrum. This spectrum will also be used within the framework of this thesis. As it is shown
in the Kaimal spectrum of Figure 3.7, wind velocity is described by a dominant mean component and by the
turbulent, stochastic components that are spread over a wide range of frequencies. Using this spectrum, a
stochastic spatial wind field can be generated. Once the wind velocities are specified, the loading on the
blades can be determined. Blade Element Theory (BET) and Blade Element/Momentum (BEM)[42][43] theory
are two popular methods that are able to determine the thrust wind force on the rotor. An in depth descrip-
tion of the derivation of the aerodynamic loading is out of the scope of this thesis. It is worth mentioning that
the structure will not be loaded only at the top, but also along the tower by distributed drag forces.

Wave & current loading

As already stated, offshore wind turbines may also be significantly loaded by wave loads, since the fre-
quency content of this excitation is in many designs closer to the first natural frequency of the structure. In
contrast to wind, wave has energy over a shorter frequency range. Moreover, both wave and current con-
tribute in the hydrodynamic loading. In general, a random wind-generated sea state is composed of a set of a
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Figure 3.7: Kaimal Spectrum
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Figure 3.8: JONSWAP Spectrum

large number of harmonic, sinusoidal waves of different frequencies, directions, amplitudes and phases. The
"JOint North Sea WAve Project" (JONSWAP) spectra[44] is an empirical way to model the energy distribution
of waves over frequencies (see Figure 3.8. This spectrum is many times selected for practical applications,
despite the fact that it is developed based on data derived from a large area over the North Sea. Additionally,
the Pierson-Moskowitz[45] spectrum is another option in order to model the spectral energy distribution of
the random ocean waves. Once these spectra are developed, then the waves can be modelled using wave the-
ories. Airy’s and Stokes theory are commonly used in practice to simulate the wave velocity and acceleration
field. The linear Airy’s theory is appropriate for small wave heights in deep waters (short waves with respect
to the water depth), while Stokes theory may be preferred in cases of steeper waves in shallower waters. Us-
ing a wave theory, the hydrodynamic field may be determined. Therefore, once the particle kinematics are
defined, the drag and inertia hydrodynamic forces can be calculated based on Morison equation. This is a
common strategy that is followed in practice in order to find the wave and current loading that is applied on
beam-like elements.

Harmonic loading from rotor

An OWT is not only under the wind and wave loading, but also under structural harmonic loads originated
from rotating parts. More in detail, during operation, the input includes some harmonic components at
frequencies that are related to the rotational frequency of the rotor. These periodic disturbances propagate
from the rotor, through the drivetrain to the tower. Of course, once the rotational frequency is known, these
harmonics have more or less known frequencies and can be recognized in the response spectrum.

There are multiple different sources that result in these periodic disturbances in an operating OWT. At first,
it is obvious that the wind field is not uniform. More specifically, the mean wind velocity varies with height
and, therefore, the blades close to the sea surface will be under smaller wind velocities than at larger heights.
This phenomenon is called wind shear. Apart from this factor, yawed inflow and rotor tilt are also sources of
disturbances, since the rotor plane in such cases is not perpendicular to the direction of the wind. Moreover,
the tower is an obstruction that drops locally the wind velocity. By extension, the blade will experience re-
duced forces whenever it passes through the tower due to tower shadow effect. The last and main source of
periodic disturbances that is related to the wind field has to do with the air turbulence. More in detail, while
rotating, the blades pass though moving turbulent pockets. This phenomenon is called rotational sampling
and leads into harmonic forces mainly at frequencies three times the rotational frequency (3P).

Except for the disturbances related to the wind field, the effect of gravity also results in loading that varies
along a complete a revolution. Finally, developing three blades of the same mass with same center of mass
and stiffness is almost impossible. Hence, such an imbalance of the blades will lead in a harmonic component
at the frequency equal to the rotational frequency (1P).

To conclude, the disturbances discussed before have frequencies related to the fundamental rotational
frequency of the rotor P. In particular, these harmonic components of the input will have energy at nP, where
n is related to the number of the blades. For the case of an OWT with three blades, the harmonic input will
include energy at 1P, 3P, 6P, etc. With regard to the above mentioned, during the design of an OWT, the funda-
mental natural frequency should be away from these harmonic components to avoid resonance. In general,
1P is close to the frequency band where the wave energy is gathered. A common practice is to design the
structure so that the first natural frequency will be between 1P and 3P.
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3.2. SIMULATED DATA USING MATLAB
The previous chapter described briefly an OWT structure, together with the loading that excites the system. In
order to simulate the response of an OWT, a simple numerical model was developed in Matlab. This model will
be used to simulate measurement data that will correspond to simplified physics. Afterwards, the selected
OMA techniques will be applied on these data. The dynamic characteristics of the model can be specified
exactly and, in that way, it will be possible to validate the applicability of the algorithms. Additionally, the
responses considering wind, wave and current input can be used to check the influence of wave loading for
this simple model.

3.2.1. SYSTEM DESCRIPTION

The numerical model developed in Matlab is a simple, 2D representation of an OWT and is able to generate dy-
namical responses in the fore-aft direction. The tower of this simplified OWT model is modelled as a clamped
Euler-Bernoulli cantilever beam with constant diameter and thickness. Therefore, no soil-structure interac-
tion is considered in the model. At the top of the tower, a concentrated mass equal to 350tn is added to
model the RNA. The hub height is 107.6m and is identical with the tower length. Moreover, the tower has a
diameter of 5m and thickness equal to 0.023m along its whole length. Finally, the blade length is 63m, leading
in a rotor diameter equal to 126m. A graphical representation of the model can be shown in Figure 3.9. As
far as the materials of the model is concerned, the tower is considered to be composed of steel with Young’s
modulus equal to 210GPa and density 8050kg/m3. It has to be mentioned that the blades of the rotor are not
physically considered in the model. However, the rotor diameter will be used in a later stage to derive directly
the resultant thrust on the rotor.

The equation of motion (EoM) for the case of a continuous Euler-Bernoulli beam has the form of Eq. 3.1.

ρAẅ +E I w ′′′′ = q (3.1)

where, ρ is the steel density, A is the cross-section area of the tower, E is the Young modulus, I is the cross-
section moment of inertia and w is the deflection of the tower. In order to solve the equation of motion
for random loading, a numerical model is derived by discretizing the continuous beam into 10 degrees of
freedom (DoF), as shown in Figure 3.9. Then, the EoM takes an equivalent, discrete form using the principles
of Finite Difference. The discrete form of the equation of motion can then be solved numerically in time-
domain by applying the numerical Runge-Kutta method.
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Figure 3.9: Graphical representation of the OWT model in Matlab

Once the discrete EoM is derived, the mass and stiffness matrices can be used to add Rayleigh damping in the
model (C =α0M+α1K). The values of α0 and α1 can be calculated in such a way, so that the modal damping
ratios related to the first and second natural frequencies are 4% and 2%, respectively (see Eq.3.2).
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α0 = 2ω1ω2 (ξ1ω2 −ξ2ω1)

ω2
2 −ω2

1

α1 = 2(ξ2ω2 −ξ1ω1)

ω2
2 −ω2

1

(3.2)

The natural frequencies and the related damping ratios can be determined by solving the poly-eigenvalue
problem in Matlab, using the mass, damping and stiffness matrices. Table 3.1 summarizes the resulting natu-
ral frequencies and the related damping ratios, while Figure 3.10 shows graphically the first four mode shapes
of the system.

Mode Nat. Freq Damped Damping Ratio
(-) (rad/s) (%)
1 1.155 4.000
2 12.303 2.000
3 37.305 5.089
4 73.332 9.832
5 116.923 15.623
6 163.976 21.891
7 210.156 28.051
8 251.261 33.539
9 283.578 37.857

10 304.205 40.614

Table 3.1: Modal properties of Matlab OWT model Figure 3.10: First four mode shapes of Matlab OWT model

Since the true modal characteristics of the system are known a priori, employing this Matlab OWT model will
be in a later stage beneficial for the validation the OMA techniques.

3.2.2. EXAMINED LOADING CASES
Once the system is defined, the dynamic response can be derived by solving the ordinary differential equa-
tion. Different types of output (e.g. accelerations and strains) can be derived by post processing the obtained
deflections. It needs to be mentioned that four nodes along the tower have been selected to be monitored.
The location of these nodes, together with the resulting displacements in time-domain and accelerations in
frequency-domain will be displayed for each of the four loading cases explained below.

Impulse loading

The first case corresponds to the special condition where all the nodes have the same initial velocity. In
other words, all the DoF are excited by an horizontal unit impulse. This case is a free decay test and can be
depicted in Figure 3.11. After approximately 100s, the deflection has almost been damped out. This can be
used to decide on the time that will be truncated from the time-series of the other loading cases that will be
examined in the coming paragraphs.
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(b): Response Time Series
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Figure 3.11: Response for Impulse loading case
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Wind, wave & current loading

The second case considers that the model is subjected to wind, wave and current excitation. The aerody-
namic loading is not considered in a detailed way in the model, but it is grossly simplified by a concentrated
force at the top of the structure. This force represents the drag load due to wind, applied on the turbine’s
blades and can be calculated based on Eq. 3.3.

Ftop = 1

2
ρai r Cd ,top Atop vtop |vtop | (3.3)

In this expression, ρai r is the air density, Cd ,top is the drag coefficient, Atop is the cross-sectional area of the
rotor perpendicular to the flow direction (=πD2

r ot /4), Dr ot is the rotor diameter and vtop is the wind velocity
at the top of the structure. The wind velocity is simulated at the hub height using a Kaimal spectrum as input.
In the simulations of the model, the average wind speed at the hub height is assumed to be 15m/s and the
turbulence intensity is considered equal to 20%. Finally, the drag coefficient is considered to be 0.05.

Apart from wind loading, hydrodynamic loading due to wave and current is also applied over the sub-
merged part of the tower. At first, the waterdepth is selected to be equal to 25m. A wave spectrum can be
generated by considering that the irregular sea state has a significant wave height of 7m and a peak period
equal of 12.4sec. In the next step, a JONSWAP wave spectrum can be developed using these two properties.
This spectrum is used as the base in order to simulate a sea state with the aforementioned statistical prop-
erties. This can be done by summing up a large number of harmonics with random phase that corresponds
to different frequency-amplitude sets derived from the spectrum. Then, the particle velocities and acceler-
ations below the sea surface can be then determined using Airy’s theory. Additionally, the particle velocity
that is defined using Airy’s theory will be superimposed to the current velocity. As far as the current velocity
is concerned, the profile described in Eq. 3.4 is used to consider the effect of the current.

vcur (z) = vcur,0

( z

d

)1/7
(3.4)

where vcur (z) is the current velocity at vertical location z and d is the waterdepth. The current velocity close
to the sea surface is considered to be vcur,0 = 0.5m/s. The resulting hydrodynamic loading is calculated as
the summation of the drag and inertia term, according to Morison equation (Eq. 3.5).

Fw = FI +FD = ρw (1+Ca)V aw + 1

2
ρwCd Avwc |vwc | (3.5)

where, ρw , aw and vwc are the water density, the acceleration due to wave and the total velocity due to wave
and current, respectively. The drag coefficient Cd and the added mass coefficient Ca are assumed to be 0.47
and 1, respectively. Finally, A is the cross-sectional area of the tower perpendicular to the flow direction and
V is the related volume.

The response of the system under wind, wave and current loading is obtained, assuming that Fw and
Ftop are applied on the structure. Figure 3.12 displays the nodes that are loaded due to wind and wave.
Also, the same figure shows the displacement in time-domain and the accelerations in frequency-domain.
This simulation is important to check the algorithms explained in the following for the case where an OWT is
loaded by wind and wave, in a simplified manner.
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Figure 3.12: Response for Wind, Wave & Current loading case
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Figure 3.13 is also exported in order to display clearly the range close to the first natural frequency, as both
Kaimal and JONSWAP spectrums contain energy at that range. As it can be shown, wave has a minor influence
in the response spectrum, as it has energy away from the first natural frequency of the system.
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Figure 3.13: Acceleration response for Wind, Wave & Current loading case, zoomed at first mode

White noise loading

The third case corresponds to pure white noise excitation. In this fictional case, the rotor will loaded by
a concentrated load on the top, based on Eq. 3.3. The flow velocity in this equation is modelled using a flat-
spectrum with no mean component. This white noise signal was developed by adding up a large number
of harmonics with same magnitude and random phase for a large number of frequencies below 200rad/s.
Additionally, the tower will be loaded by a distributed white noise drag loading as expressed in the Morison
equation (Eq. 3.5) using the same white noise flow velocity. In that way, the forces at the nodes along the
tower will have same amplitude at every time instant. Practically, this loading is expected to enhance the
excitation of modes at higher frequencies. In total, the top of the model receives larger loads than the nodes
along the tower. The response for this case can be shown in Figure 3.14. As it is shown, the structure has an
amplified response at the resonances.

-100 -50 0 50 100
0

20

40

60

80

100

120

140

160

180
(a): System & Input

White Noise

32.28 m

53.80 m

86.08 m

107.60 m

0 100 200 300 400 500 600

Time (s)

-15

-10

-5

0

5

10

15

D
e
fl
e
c
ti
o
n
 (

m
)

(b): Response Time Series

107.6m

86.08m

53.8m

32.28m

0 20 40 60 80 100

Omega (rad/s)

10-4

10-2

100

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

m
2
/s

/r
a
d
)

(c): Acceleration Response 

107.6m

86.08m

53.8m

32.28m

Nat. Freq

Input Spectrum

Figure 3.14: Response for White Noise loading case

White noise and harmonic loading

In the fourth case, the system is loaded by a force consisting of a random component, modelled as white
noise signal, as well as several harmonic components at the top. An example is displayed in Figure 3.15.
In this simulation, three harmonic components have been added at 10rad/s, 20rad/s and 30rad/s. The
frequency of the harmonic components may vary according to the needs of the problem.

It needs to be mentioned that in all the cases, the system starts from equilibrium. In other words, the
transient part is included in the response data. By looking into the free decay of Figure 3.11, one may notice
that removing the first 100s is sufficient.
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Figure 3.15: Response for White Noise with Harmonics loading case

3.3. SIMULATED DATA USING FAST
In this chapter, the "National Renewable Energy Laboratory (NREL) 5-MW baseline offshore wind turbine" will
be introduced in terms of the main parameters, which have been used for the different simulation cases, as
well as the corresponding simulation results. It will be shown that an operating turbine violates both the
white noise and the LTI system assumption of OMA techniques. The measurements will be used later on to
investigate the performance of the selected OMA algorithms for the case of operating OWTs.

This model was developed by NREL[46], as a composite from data obtained from different projects and
can be used as a baseline for research. The response data will be simulated using the FAST v7.02 (Fatigue,
Aerodynamics, Structures and Turbulence) aeroelastic and structural dynamics simulation code[47]. This
software is open source and is widely used in the wind research community.

3.3.1. SYSTEM DESCRIPTION
The NREL 5-MW offshore wind turbine is a conventional three bladed OWT with a drivetrain that includes both
LSS, a multiple-stage gearbox and a HSS series, as explained in Section 3.1.1. A feature of great importance
that is included in the model is the present of a variable-speed and a variable blade-pitch-to-feather control
system. More details about the model will be described below.

Structural geometry

Starting with the geometry of the structure, the blades have a length equal to 61.5m and are attached to
the hub that is located 90m above the mean sea level (MSL). Moreover, the hub diameter is 3m, resulting in
a total rotor diameter equal to 126m. It can be concluded that the hub is located 5m upwind of the tower
centerline and 2.4m above the top of the tower (elevation of the yaw bearing). Next, the hub is connected to
the drivetrain, which is modelled as one single equivalent shaft separating the hub and the generator. A more
detailed configuration of the whole RNA, together with the tower can be shown in Figure 3.16. The values of
each parameter displayed in Figure 3.16 are described and summarized in Table 3.2.

Parameter Value Description
TipRad 63.0 m Distance from the rotor apex to the blade tip

HubRad 1.5 m Distance from the rotor apex to the blade root
HubCM 0 m Distance from rotor apex to hub mass

OverHang -5.01910 m Distance from yaw axis to rotor apex
ShftTilt -5.0 deg Rotor shaft tilt angle

PreCone -2.5 deg Cone angle of Blades
TowerHt 87.6 m Height of tower above MSL
Twr2Shft 1.96256 m Vertical distance from the tower-top to the rotor shaft

Table 3.2: RNA and tower geometry data

Regarding the weighs of several parts of the structure, the rotor and the nacelle weight is 110tn and 240tn,
respectively. Also, the total tower mass is almost 347.46tn. It is worth mentioning that the RNA weighs as
much as the tower.
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Figure 3.16: RNA and tower layout

Both the blades and the tower are discretized. Each blade has varying structural properties along its length.
Edgewise and flapwise stiffness are defined for the discretized blade at each location along the pitch axis. In
the same way, the tower structural properties vary along the tower length. More in detail, the diameter and
thickness at the base are 6m and 27mm, respectively, while the related values at the top are 3.87m and 19mm.

Regarding the substructure of the turbine, the OC3 monopile foundation configuration has been selected
for the purpose of this thesis. The substructure has been modelled in a very simplified way by assuming that
the tower is fixed at the mudline, 20m below the MSL. This means that the total length of the tower and the
monopile will be 107.6m (87.6m+20m). Finally, no transition piece was included in the model.

Controller

While running a simulation, FAST is also able to control specific output features based on a controller.
The NREL 5-MW wind turbine controller that is included in the model is a variable-speed and variable blade-
pitch-to-feather control system. The variable-speed generator torque controller aims at optimizing the power
production for wind speeds below the rated value, while the collective blade-pitch-to-feather controller reg-
ulates the generator torque for wind speeds above the rated value by pitching off the blades, so that the power
production will be as high as the capacity of the turbine.

The variable-speed control is an already existing controller in FAST and takes into account five regions,
as shown in Figure 3.17. Region 1 is related to the case of idling rotor and very low wind speeds. The second
zone is named as Region 1½ and is an intermediate zone between idling and Region 2. In Region 2, the rotor
speed is regulated in such a way, so that the power production is optimum. In this zone, the generator torque
applied to the HSS follows an exponential relation with the generator speed. The fourth region is named
Region 2½ and describes a linear torque-speed transition between Region 2 and Region 3. Finally, in Region 3
the blade-pitch-to-feather controller takes over and the generator power is regulated to be constant for wind
speeds larger than the rated wind speed. This is achieved by pitching out the blades and maintaining the
rotational speed of the rotor.
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It is important to keep in mind that Region 1½ starts when the wind speed reaches the cut-in value (3m/s).
In the same way, Region 3 starts when the wind speed exceeds the rated wind speed (11.4m/s) and extends
until the cut-out wind speed (25m/s). The rotor rotational speed inside this region is regulated to be constant
and equal to 12.1rpm.

Figure 3.17: Generator Torque/Speed curve for variable-speed control

System DoFs

The model in FAST makes use of the modal properties of the flexible structural components and applies a
combined modal and multi-body dynamic analysis. The system will be composed in total from 16 DoF. More
in detail, FAST models the blades as beams, rigidly attached to the hub through a cantilever connection,
with varying distributed mass and stiffness properties in the flapwise and edgewise direction. Using this
information, the first two flap modes and the first edge mode can be defined. These modes are used to model
the dynamic behaviour of each blade. For each of these three modes, three combinations (1 collective and 2
asymmetric) are considered leading to 9 blade mode DoF. In a similar way, the tower is also modelled using
the first two modes in the fore-aft and the side-side direction. Hence, in total 4 tower bending-mode DoF
are considered in the system to account for the tower flexibility. The next DoF corresponds to the drivetrain
flexibility DoF that is associated with torsional motion between the generator and the hub. Another DoF that
accounts for any variations in generator speed will be referred as Generator DoF. Finally, the last DoF is related
to the yaw motion of the nacelle.

The tower and the blade modes are denoted with T and B, respectively. For the case of the tower, the fore-
aft and side-side modes are differentiated using FA and SS. Therefore, T-FA2 is the second fore-aft bend-
ing tower mode. Additionally, the blade modes are distinguished using B1, B2 and B3 for each of the three
blades. Finally, F1/F2 and E1 are used for the first/second flapwise and first edgewise bending blade modes,
respectively. Table 3.3 shows the description of the DoF that are considered in the system and the related
abbreviation.

Tower Blades
T-FA1 1st Tower fore-aft bending B1-F1 1st flapwise bending (collective)
T-SS1 1st Tower side-to-side bending B2-F1 1st flapwise bending (asymmetric)
T-FA2 2nd tower fore-aft bending B3-F1 1st flapwise bending (asymmetric)
T-SS2 2nd tower side-to-side bending B1-E1 1st edgewise bending (collective)

B2-E1 1st edgewise bending (asymmetric)
Other B3-E1 1st edgewise bending (asymmetric)
Yaw Nacelle yaw B1-F2 2nd flapwise bending (collective)
DrTr Drivetrain rotational-flexibility B2-F2 2nd flapwise bending (asymmetric)

B3-F2 2nd flapwise bending (asymmetric)

Table 3.3: Description and abbreviations of Modes

Dynamic properties

After having defined the geometry and the dynamic characteristics of the structural components, the full
system modes can be determined. The selected version of FAST includes a linearization functionality that
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can be used to obtain the natural frequencies. Using this option, the non-linear, time-varying aeroelastic
model is linearized around a periodic steady state operating point. More in detail, FAST uses the non-linear
aeroelastic equation of motion of Eq.3.6.

M
(
q,u, t

)
q̈qq + f

(
q, q̇qq ,u,ud , t

)= 0 (3.6)

where, M is the mass matrix, f is the non-linear vector of forces, q/q̇qq/q̈qq is the displacements/velocities/accelerations
vector of the DoFs, and t is time. In this equation, the damping has been modelled as part of the loading and
includes both structural and aerodynamic damping. Regarding the structural damping, a damping ratio of
0.47% has been used for the blade modes and 1.0% for the tower modes. As for the aerodynamic damping, it
refers to the applied aerodynamic forces that depend on structural velocities.

During the linarization procedure, FAST determines at first numerically a periodic steady state solution
by solving the equation of motion. Then, when the velocity and the displacement of the system converge
to a constant value, FAST applies the linearization of the full system around that operating point. This pro-
cedure leads into the system matrix A. This matrix includes the mass, stiffness and damping matrices of
the linearized system. It is expected that the damping matrix will be non-orthogonal. Therefore, the system
possesses complex modes instead of real normal modes. Besides, the modal parameters of the turbine can
be calculated by finding eigenvalues of the continuous-time state-matrix A with positive imaginary compo-
nents. Then damping ratio is calculated by dividing the real part with the imaginary part. Finally, the damped
natural frequencies can be directly obtained from the imaginary part of the eigenvalues.

Figure 3.18 shows a Campbell diagram, which can be used to illustrate possible resonances of the blade
natural frequencies and excitations during operation. In this figure, the coloured, almost horizontal lines are
the natural frequencies of the blades, and are plotted against the rotational speed of the rotor.
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Figure 3.18: Campbell diagram of the NREL 5-MW baseline offshore wind turbine

As it can be deduced from the Campbell diagram, the natural frequencies of the blades vary with wind speed.
This clearly indicates that the system is not an LTI system. For the examined 5-MW wind turbine, the flapwise
and edgewise blade modes occur in the frequency range 0.5–2.0Hz. Table 3.4 summarizes the natural fre-
quencies derived via the periodic linearization analysis for the different values of rotor rotational speed. This
table will be used as a basis of the true dynamic characteristics of the system.

Similarly, the related damping ratios are summarized in Table 3.5. As mentioned before, the damping
ratio includes both structural and aerodynamic damping. This can be deduced by looking into the increased
damping ratio of the blades in the flapwise direction.
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Rotor Speed 6 7 8 9 10 11 12 13 14 (rpm)
T-FA1 1.77 1.77 1.78 1.78 1.78 1.79 1.79 1.80 1.80 (rad/s)
T-SS1 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 (rad/s)
T-FA2 15.07 15.06 15.05 15.03 15.02 15.01 14.98 14.94 14.89 (rad/s)
T-SS2 14.95 14.95 14.95 14.95 14.95 14.95 14.95 14.95 14.95 (rad/s)
Yaw 38.29 38.34 38.37 38.33 38.33 38.36 38.36 38.35 38.36 (rad/s)
DrTr 24.65 24.58 24.53 24.61 24.63 24.60 24.62 24.64 24.67 (rad/s)

B1-F1 4.32 4.28 4.25 4.17 4.10 4.08 4.00 3.91 3.80 (rad/s)
B2-F1 4.71 4.79 4.90 4.90 4.94 5.04 5.07 5.09 5.10 (rad/s)
B3-F1 3.47 3.36 3.24 3.05 2.89 2.77 2.60 2.41 2.20 (rad/s)
B1-E1 10.38 10.42 10.44 10.42 10.42 10.45 10.45 10.46 10.46 (rad/s)
B2-E1 7.42 7.54 7.65 7.76 7.87 7.98 8.09 8.20 8.32 (rad/s)
B3-E1 6.16 6.06 5.96 5.86 5.76 5.66 5.56 5.46 5.37 (rad/s)
B1-F2 12.70 12.62 12.68 12.70 12.71 12.75 12.77 12.79 12.81 (rad/s)
B2-F2 11.48 11.39 11.30 11.22 11.14 11.07 10.99 10.90 10.82 (rad/s)
B3-F2 12.54 12.76 12.86 12.93 13.05 13.19 13.33 13.47 13.64 (rad/s)

Table 3.4: Natural frequencies per DoF for varying rotor speed values

Rotor Speed 6 7 8 9 10 11 12 13 14 (rpm)
T-FA1 4.7 5.2 5.8 6.5 7.1 7.5 8.0 8.5 9.0 (%)
T-SS1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 (%)
T-FA2 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.6 (%)
T-SS2 1.5 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 (%)
Yaw 4.1 4.2 4.2 4.3 4.3 4.3 4.4 4.4 4.4 (%)
DrTr 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.8 5.8 (%)

B1-F1 28.3 31.5 34.2 40.7 45.2 47.2 51.5 55.8 60.0 (%)
B2-F1 26.0 28.3 30.3 35.4 38.7 39.9 43.0 46.0 49.0 (%)
B3-F1 34.4 38.9 42.9 52.0 58.5 62.0 68.2 74.0 79.5 (%)
B1-E1 2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 (%)
B2-E1 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 (%)
B3-E1 1.0 1.0 1.1 1.1 1.2 1.2 1.3 1.3 1.4 (%)
B1-F2 7.5 7.4 8.5 10.0 11.1 11.9 13.0 14.1 15.2 (%)
B2-F2 8.0 8.9 9.9 11.7 13.2 14.0 15.4 16.9 18.3 (%)
B3-F2 6.9 8.2 8.4 9.7 10.4 10.5 11.2 11.9 12.5 (%)

Table 3.5: Damping ratio per DoF for varying rotor speed values

3.3.2. LOADING CONDITIONS
FAST v7.02 is used in order to run the analysis and simulate the response of the NREL 5-MW turbine under
wind and wave loading. As explained in Section 3.1.2, wind and wave have frequency over a broad frequency
region. However, most of the energy is mainly concentrated at frequencies below the first natural frequency.
Additionally, the input spectrum is expected to include some harmonic components that originate mainly
from rotational sampling. These harmonics have frequencies related to the rotational frequency of the rotor.

Wind loading

The aerodynamic loading in the Matlab model described in Section 3.2.2 has been largely simplified. On
the other hand, FAST is able to model the aerodynamic loading in a more elaborated way. Initially, TurbSim
is used for the generation of a stochastic, 3D turbulent wind field. This code creates a vertical rectangular grid
matrix each point of which is characterized by a three dimensional wind speed vector. The hub of the rotor is
located at the center of this rectangular grid frame. Once the grid is created, the wind velocities will be sim-
ulated based on International Electrotechnical Commission (IEC) 61400-x standards. The IEC Kaimal spec-
trum that is commonly used in practical applications is also used here as the wind spectral turbulence model.
Moreover, a power law wind profile has been selected to simulate the mean wind component. The value of the
mean wind speed for each simulation is different and was discussed in Section 2.2. In the next step, AeroDyn
calculates aerodynamic loads based on the wind field on both the blades and tower. The aerodynamic load-
ing is approximated by lift and drag forces concentrated at each node along the loaded element. Both blades
and tower will be loaded by wind. During the aerodynamic analysis the blades are meshed into segments with
varying aerodynamic properties. In total 17 blade nodes have been used. AeroDyn takes into account the in-
fluence of turbulence in an iterative way based on the quasi-steady Blade-Element/Momentum (BEM) theory.
While determining the aerodynamic forces on the blades, an unsteady airfoil aerodynamic (UA) model will be
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used to account for the effect of the dynamic stall in the lift and drag forces. As far as the aerodynamic loading
on the tower is concerned, this can be simply calculated as using the drag part of the Morison equation.

Wave loading

Apart from the wind drag loading, the tower will also be directly loaded by waves. In the analysis both
calm sea and irregular sea state can be simulated. In both cases, a water depth of 20m has been selected. At
first, the irregular sea state is defined using a JONSWAP or Pierson-Moskowitz spectrum for a significant wave
height equal to 5m and a spectral peak period equal to 12.4s. These values are default values, and would
correspond to a sea state with both high wave height and wave period. The waves are assumed to propagate
towards the rotor front. In other words, the direction of the waves is perpendicular to the rotor plane. Using
this spectrum, an irregular sea state can be generated, with spectral energy below 1.5rad/s. In the next
step, the full wave kinematics are generated using the linear Airy’s theory. This theory is able to determine
the kinematics only for the particles below the MSL. Therefore, the loading will be underestimated when a
wave passes through the monopile. Wheeler stretching has been used to model the kinematics above the
MSL by stretching the incident wave kinematics linearly to the instantaneous free surface. Finally, once the
hydrodynamic field is specified, the relative form of Morison’s equation can be used for the calculation of the
hydrodynamic loading. The diameter of the tower in Morison’s equation is considered to be 6m. Moreover,
both the drag (Cd ) and the added mass (Ca) coefficients are set to 1.

Harmonic loading from rotor

The effect of the rotating blades will also result in amplified responses around frequencies proportional
to the rotor rotational frequency. The rotor is considered to have three identical blades, and therefore, the
loading is not affected by any mass imbalances. Additionally, the wind direction is considered to be almost
vertical to the rotor plane. In that case, the rotor tilt does not play an important role. However, harmonic
excitation is expected to be amplified mainly due to wind shear and rotational sampling. Finally, the local
influence of the tower on the wind field is not considered in the analysis.

A simulated case (FC1, see Section 2.2), where the system operates under relatively low wind speeds is ex-
amined as an example here. Under such wind conditions, the rotor will have a time-varying rotational speed,
following the same trend as the wind speed, as shown in Figure 3.19(a). Furthermore, rotational sampling
induces harmonic loads on the blades at frequencies, 1P, 2P, etc. This can be shown in Figure 3.19(b), which
examines the spectrum of the normalized shear force applied at the root of the blade, perpendicular to the
rotor frame. These harmonics, when combined with the related loading of the other two blades will lead in
a total aerodynamic loading at the RNA with high harmonic content at frequencies 3P,6P, etc. Figure 3.19(c)
shows the spectrogram of the acceleration that corresponds to the sensor at 97.3m height and reveals that
there is indeed high energy close to 3P that follows the same trend with the rotor speed from Figure 3.19(a).
Moreover, this energy decays when going to higher frequencies. It is obvious though that 3P, 6P, 9P and 12P
has major contribution in the response spectrum. Finally, it is worth mentioning that the tower will not be
excited 1P, since no mass imbalance is considered in the model.
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Figure 3.19: Effect of rotational sampling on the tower response (see FC1 in Section 2.2)

It needs to be mentioned that a parked rotor can be simulated by deactivating the controller. In that way, no
harmonic excitation will be induced by the wind excitation.
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Description of simulated data

Aiming for a typical 10min simulation, the duration of each analysis is 800s considering a truncation of
the first 200s. This targets in removing any transient effect that is related to the fact that the system starts
vibrating from equilibrium. The time-step in the simulation is 0.0125s and it corresponds to 80Hz sampling
frequency. After running the analysis, FAST is able to provide the user with a variety of output results. The
structure is monitored in the fore-aft direction using four accelerometers along the tower height. The loca-
tion of these virtual gauges can be depicted in Figure 3.20. Accelerations are measured only in the direction
of the mean wind speed. In the next chapters, the responses will be plotted in frequency domain when a
stabilization diagram is used. In these diagrams, Node 1 refers to the sensor at 32.1m, Node 2 and Node 3
correspond to the accelerometers at 53.8m and 75.5m, respectively and Node 4 refers to the sensor at the top
of the tower.

Figure 3.20: Location of accelerometers in FAST model

The acceleration response spectrum for each of the cases that will be analysed are shown in Figure 3.21. Apart
from the response spectrum, these figures also include the tower modes (thick solid lines), the 1st flapwise
bending blade modes (dashed lines), the 1st edgewise bending blade modes (dotted lines), the 2nd flapwise
bending blade modes (dash-dot lines) and the 3P, 6P, 9P, etc. frequencies (red solid lines). When looking
into the first four cases, one may conclude that the presence of 3P, 6P and 9P are dominant. Also, it is clear
that the both the tower modes are excited. Similar high response is observed around the frequencies that
correspond to the 2nd flapwise bending blade modes. In FC1, the first tower mode and the 3P harmonic are
very close, but for higher wind speed (i.e. in FC4), this distance increases. The 1st flapwise and 2nd edgewise
bending blade modes are mainly between 3P and 9P. Therefore, in all the operating cases these modes are
more or less "covered" under the dominant harmonic part of the loading.

Figure 3.21: Acceleration response spectrum for each simulated case in FAST
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Regarding FC6 case, the spectrum is almost identical to the spectrum of FC4. In particular, the responses at
frequencies lower than the first fore-aft tower mode, where wave energy is concentrated, are quite identical
with and without wave loading. Therefore, it can be concluded that the structure is very stiff with respect to
wave loading. Keep in mind that the loading is applied close to the "node" of the first fore-aft mode, and in
terms of controllability, it is difficult to amplify the response at frequencies close to the first tower mode.





4
EIGENSYSTEM REALIZATION ALGORITHM

The Eigensystem Realization Algorithm (ERA) is a popular time-domain modal parameter identification tech-
nique that is applied mainly on impulse response outputs. This algorithm applied together with the Natural
Excitation Technique (NExT) is able to identify the modal properties of a system that operates under white noise
excitation. In the first two sections of this chapter the theory behind ERA and NExT will be briefly explained. In
the end of this chapter, this algorithm will be used to derive the natural frequencies and modal damping using
the simulated data derived from the models in both Matlab and FAST. This chapter will be concluded with
a chapter summary and concluding remarks on the usability of the ERA and NExT algorithm for operational
offshore wind turbines.

4.1. THEORY BEHIND ERA
The Eigensystem Realization Algorithm (ERA) was developed in 1985 by J.N Juang and R.S Pappa[2][3] and is
a time-domain system realization method. The mainn objective of ERA is to derive a realization of the system
of interest using only the output measured data. However, ERA is derived for the case of systems exhibiting
a free decay response. In other words, this technique aims at extracting the modal parameters of a system
excited by an impulse-like input. Therefore, it seems that it is suitable for laboratory impact tests, where
impact hammers or drop weights are used.

The unknown dynamical system is supposed to be an LTI system, described by the state-space expression
shown in Eq.4.1. The first equation is named as discrete-time state equation, while the second is named as
output (or observation) equation.

{
xk+1 = Axk +Bfk

yk = Cxk +Dfk
(4.1)

In this expression, x ∈Rnx1 is the state vector, y ∈Rmx1 is the system output vector (e.g. acceleration measure-
ment) and f ∈Rr x1 is the system inputs (or control) vector (e.g. forces). Also the index k is used to determine
the time step (tk = k∆t ) to which each vector refers, n is the order of the system (twice the number DoFs),
and m is the total number of sensors. Regarding the rest matrices, A ∈Rnxn is the state (or system) matrix that
expresses the dynamics of the system, B ∈Rnxr is the input (or control) matrix, C ∈Rmxn is the output matrix
and D ∈Rmxr is the feed-through matrix that relates the input directly to the measurements. The main target
of ERA is, given a set of measurements, to derive a realization of the system, or in other words the quadruple
of the system state-space matrices A, B, C and D). Then, based on matrix A and C, the modal properties of
the system will be derived.

Before describing the algorithm, it is vital to introduce the Markov parameters, as they are directly related
to the impulse response of a system. Let’s consider the case, where the system starts vibrating from zero initial
conditions, for an impulse loading at one location. This means that at t =0, x0 =0, f01 for the remaining time
steps, fk =0. In that way, the input vector is more or less defined for all the time steps. Substituting in Eq.4.2,
the following relation is derived.

31



32 4. EIGENSYSTEM REALIZATION ALGORITHM

x0 = 0 y0 = Cx0 +D f0 = D f0 = Y0 f0

x1 = Ax0 +B f0 = B f0 y1 = Cx1 +D f1 = CB f0 = Y1 f0

x2 = Ax1 +B f1 = AB f0 y2 = Cx2 +D f2 = CAB f0 = Y2 f0

x3 = Ax2 +B f2 = A2B f0 y3 = Cx3 +D f3 = CA2B f0 = Y3 f0 (4.2)

This is a direct relation of the measurements time series (vector y) to the fundamental system properties,
named as Markov parameters and the input. In a shorter expression, a matrix of Markov parameters can be
written as Y0 = D, and Yk = CA(k−1) for k >0. ERA takes advantage of this relation and aims at determining
these system matrices based on the measured time series of y. Amongst the four matrices of the system, only
ABC need to be determined, as D is directly related to the initial values of the measurements.

In upcoming part, the algorithm will be presented in a step wise fashion. The algorithm is broken down
in seven 7 steps, which will be explained having an actual implementation of the algorithm in mind.

Step 1 - Hankel Matrix

In the first step of ERA, two block-Hankel matrices will be formed. A general expression of this matrix
Hk−1 ∈ Rmpxr q is shown in Eq.4.3. In that expression, p ≥ n and q ≥ n denote the number of blocks in the
vertical and horizontal direction, respectively. This means that the bottom right block will refer to a time step
k +p +q−2.

Hk−1 =


Yk Yk+1 . . . Yk+q−1

Yk+1 Yk+2 . . . Yk+q
...

...
. . .

...
Yk+p−1 Yk+p . . . Yk+p+q−2

 (4.3)

In the expression above, Yk ∈ Rmxr is one block of the Hankel matrix. Each block is represented by the mea-
surement data of a given time step k, as shown in Eq.4.2. Therefore, the block-Hankel matrix can be directly
constructed based only on the free decay measurements that are available. It has to be noted that for mul-
tiple inputs r , each block in the Hankel matrix will have dimension mxr . These blocks can be calculated
as Yk = yk f+0 , where f0 is the impulse vector and (•)+ denotes the Moore-Penrose pseudo-inverse of a matrix.
Due to the fact that the impulse input is most of the times unknown, one may directly use a single vector yk to
express Yk . This case is similar to assuming that the system is loaded by a single input (scalar f0). Hence, the
identified matrix B will be a nx1 vector b. The latter case also matches to the conditions of a single impulse
at one location, which is very common in practice. In the extends of system identification, matrix B does not
play an important role and a single vector yk can be used to represent each block of the Hankel matrix.

Based on Eq.4.3, two expression of the block-Hankel matrix will be derived and used for the identification.
These will refer to two consecutive time steps. Thus, The first block-Hankel matrix H0 will be formed for
k =1, while the second H1 will be shifted one time step (k =2). These two matrices will be used as the basis
for obtaining a realization of the dynamical system. Unfortunately, the direct transmission matrix D is not
included in the Hankel matrix. This is a direct outcome from the fact that the input is considered to be an
impulse.

Step 2 - Observability and controllability matrices

An important observation is that the block-Hankel matrix H0 can be written as the product of the matrix
P ∈ Rpmxn and Q ∈ Rnxqr , which are the observability and controllability matrices, respectively. This simple
derivation can be briefly displayed in Eq.4.4.

H0 =


Y1 Y2 . . . Yq

Y2 Y3 . . . Yq+1
...

...
. . .

...
Yp Yp+1 . . . Yp+q−1

=


CB CAB . . . CAq−1B

CAB CA2B . . . CAq B
...

...
. . .

...
CAp−1B CAp B . . . CAp+q−2B

=

=


C

CA
...

CAp−1

[
B AB . . . Aq−1B

]= PQ

(4.4)
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In the same way, Eq.4.5 can be used in order to express also the shifted block-Hankel matrix H1 as a function
of P and Q.

H1 =


Y2 Y3 . . . Yq+1

Y3 Y4 . . . Yq+2
...

...
. . .

...
Yp+1 Yp+2 . . . Yp+q

=


CAB CA2B . . . CAq B

CA2B CA3B . . . CAq+1B
...

...
. . .

...
CAp B CAp+1B . . . CAp+q−1B

= PAQ (4.5)

At this step it needs to be highlighted that all the system states of interest xk need to be controllable (excited)
and observable. As described in [3], the system is observable and controllable if and only if matrix P and Q
have rank n, respectively. Practically, the state equation is considered to be non-controllable when a force is
applied at a node of a given mode. In other words, a force applied at a node of the mode cannot control the
related mode and reproduce the corresponding state. In a similar way, the output equation is considered to
be non-observable when a sensor is located at a node of a mode.

For the special case of noise-free output, the rank of H0 is n, and is also equal to the order of the system.
Unfortunately, the most common case is when measurement noise is present in the outputs. Therefore, ma-
trix H0 is commonly of full rank. More details about defining the true system order will be given in the next
step.

Step 3 - Singular Value Decomposition

In the second step, ERA factorizes the block-Hankel matrix H0 using singular value decomposition (SVD).
Using SVD is a possible way to decompose the Hankel matrix and obtain a new relation as shown in Eq.4.6. In
the last part of this equation it can be deduced that an expression of both the observability and the controlla-
bility matrices can be obtained.

H0 = USVT = (
US1/2)(S1/2VT )= PQ (4.6)

where, U ∈Rmpxmp is the matrix of the left-singular vectors, V ∈Rr pxr p is the matrix of the right-singular vec-
tors and S ∈Rmpxr p includes the singular values of H0. The non-zero singular values of matrix S characterize
the true system order (number of dynamic states in the system). Under ideal conditions, where no measure-
ment noise is present in the response data, the first n singular values will be the only non-zero elements of
the S matrix. However, these noise-free data are observed at extremely rare, perfect conditions.

In fact, when using real data, all the diagonal terms of S matrix are non-zero. This happens due to the
influence of noise and complicates the identification since the order of the system defines the dimension of
the resulting realization. In order to approximate the true order of the system, the smallest singular values
are truncated from S matrix. Unfortunately, most of the times there is no clear gap in the singular values
that will indicate the point of the truncation. Hence, instead of trying to find the true order of the system,
the algorithm is most of the times applied iteratively in order to build a stabilization diagram that relates
the identified modes to the order that has been considered in each iteration. The true order of the system is
important, but not the target of the identification and a stabilization diagram may overcome this barrier.

Step 4 - Truncation

Considering that the elements of matrix S are sorted in a descending order, then the first n singular values
will be the most important and will be retained, while the rest will be truncated. Therefore, Eq.4.6 does not
hold precisely, but approximately. Using the truncated matrices, the Hankel matrix H0 can be derived in a
same way, as shown in Eq.4.7.

H0 ≈ Un Sn VT
n = (

Un S1/2
n

)(
S1/2

n VT
n

)= Pn Qn (4.7)

where, Un ∈Rmpxn , Vn ∈Rr pxn and Sn ∈Rnxn are the truncated versions of the matrices obtained by applying
SVD on H0. As it is shown in the dimensions of these matrices, S is replaced by the diagonal Sn matrix, and
the two matrices that include the singular vectors have been constructed by retaining the first n columns.
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Step 5 - System realization matrices

In this step, the system realization matrices (A, B and C) will be calculated based on the expressions of
Eq.4.7 and Eq.4.5. Due to the fact that only a small part of the singular values was kept, the resulting realiza-
tion is referred to as the "minimum realization" that is used to express the system. At first matrix A can be
determined as presented in the Eq.4.8, below.

H1 = PAQ = Un S1/2AS1/2VT
n →

A = S−1/2UT
n H1Vn S−1/2

(4.8)

It should be noted that, A is one possible realization of the state matrix. In general, any unknown system has
infinite possible realizations that may be used to predict the output from a specific input. However, this does
not affect the identification, since the eigenvalues of A are preserved.

Then, the expressions of B and C can be determined in a very straightforward way, by just looking into the
observability and controllability matrices of Eq.4.4. As it can be deduced, both the matrices B and C are just
a part of the controllability and observability matrices, respectively. More in detail, the top mxn part of the
observability matrix P (first mxn block) is equal to C, and the first n columns of Q are equal to B (first nxr
block).

Step 6 - Eigenvalue problem

All the system properties are included in the realized state matrix A. In order to obtain the modal proper-
ties of the system, the eigenvalue problem is initially solved for matrix A (AAA =ΨΨΨdΛΛΛdΨΨΨ

−1
d ). Then two matrices

will be obtained that will include the eigenvalues (ΛΛΛd ∈ Cnxn) and the eigenvectors (ΨΨΨd ∈ Cnxn) as shown in
Eq.4.9.

ΛΛΛd = di ag (λ1,λ2, . . . ,λn)

ΨΨΨd = [
ψψψ1,ψψψ2, . . . ,ψψψn

] (4.9)

where, λ1,λ2, . . . ,λn are the eigenvalues that correspond to ψψψ1,ψψψ2, . . . ,ψψψn eigenvectors. After deriving the
eigenvalues, they will be converted from discrete-time to continuous time domain using the expression of
Eq.4.10.

ΛΛΛ= ln(ΛΛΛd )/∆t

ΨΨΨ=ΨΨΨd
(4.10)

The damped natural frequency and the modal damping ratios of the system can be determined from the real
and the imaginary part of each obtained complex pair of eigenvalues as shown in Eq.4.11 and Eq.4.12.

ωd ,i = Im (λi ) (4.11)

ζi =−Re (λi )

|λi |
(4.12)

The mode shapesΦΦΦ at the locations of the sensors can be obtained by multiplying the eigenvectors with the
output matrix C.

ΦΦΦ= CΨΨΨ (4.13)

Finally, the modal participation factor can also be derived using the mode shapesΨΨΨ and the realization of B,
but deriving this factor is out of this thesis scope.
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Step 7 - Filter the Stabilization diagram

WhenERAwas developed, several attempts were made to remove the influence of noise in the identification[48].
One suggested way to quantify the degree of modal purity of an identified mode and remove "noise" modes is
to use a Modal Amplitude Coherence (MAC) factor. This factor is a measure of how much a mode is excited by
a specific input. The expression of this factor is shown in Eq.4.14 and is the dot product (or coherence) of two
vectors. The first vector is composed from a number of modal amplitude time-steps related to the identified
mode, while the second is an ideal, extrapolated vector based on the impulse response data and the given
identified eigenvalue. More details about can be found in [48] and [3].

M AC =
∣∣q̃̃q̃q i qqq∗

i

∣∣√∣∣q̃̃q̃q i q̃̃q̃q∗
i

∣∣ ∣∣qi q∗
i

∣∣ (4.14)

Through the development of ERA, it is clear that the analyst needs to take several decisions. One of those is
the number of rows p and columns q that are used when forming the block-Hankel matrix. Additionally, it
is suggested to use a stabilization diagram for multiple iterations on the order of the system in order to avoid
taking decisions on the truncation of the singular values.

Other ERA-based algorithms found in literature

The strategy that was followed in the present thesis is to use ERA together with NExT. However, Juang[3]
proposed an alternative approach of ERA, known as Eigensystem Realization Algorithm with Data Correlation
(ERA/DC). As mentioned by Juang, ERA/DC forms two square data correlation matrices Rhh(0) = H(0)H(0)T

and Rhh(1) = H(1)H(0)T ∈ Rpmxpm . These are smaller matrices and thus it requires less computational time
than ERA. In general the identification procedure is the same, but the data correlation matrices are used in-
stead of the two block-Hankel matrices.

This classical identification algorithm was modified by Mohanty and Rixen[21], in order to be able and
obtain the modal parameters of a system for the case where a harmonic excitation component is present,
with known frequency that is close to the natural frequency of a mode. Thus, they focused on removing the
influence of harmonic excitation. However, the simulated data from the examined operational conditions
in the OWT model in FAST, has a broader frequency range over which harmonic excitation is present in the
response. Therefore, the modified version of ERA algorithm was not included in the benchmark study.

4.2. NATURAL EXCITATION TECHNIQUE
In the description of ERA, it is clear that the algorithm works for impulse input. However, in many practical
cases, the structures are tested under random ambient excitation. Therefore, ERA cannot be applied directly
on response data, which are caused by stochastic inputs. The solution to that problem came when G. James et
al.[6] suggested the so-called Natural Excitation Technique (NExT). This technique triggered the application
of IRF-based algorithms on white noise input. ERA is such an algorithm and therefore, ERA/NExT can be
considered to be the "OMA version" of ERA.

The underlying idea of NExT is that the cross-correlation function of the response will have the same prop-
erties as an impulse response, assuming that the input is a white noise stochastic process. The correlation
function Ri j (t ) between the outputs i and j can be expressed by Eq.4.15. The theoretical derivation of this
equation can be found in [6].

Ri j (t ) =
n∑

l=1

ψi l G j ,l

mlωd ,l
exp

(−ζlωn,l t
)

sin
(
ωd ,l t +θl

)
(4.15)

In this equation, ψi l is the i th element of eigenmode l , G j ,l is a constant multiplier related to the input, ml

is the l th modal mass, ωd ,l is the l th damped natural frequency, ωn,l and ζl are the l th undamped natural fre-
quency and modal damping ratio, respectively. Finally, θl is a random phase. By looking into this expression,
it can be concluded that this summation of decaying sinusoids is similar to the response of the system at out-
put i , when it is excited by an impulse at node j . In other words, Ri j (t ) describes the free decay of an output
i of a single-input-multiple-output (SIMO) multiple degree of freedom (MDoF) system loaded by an impulse at
input j .

Practically, once the measurement data (e.g. strains, accelerations, etc) have been collected, the auto and
cross-correlation functions of the responses using a reference response are first derived. An example can be
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shown in Figure 4.1, where the responses of a system loaded by white noise are converted into the related
correlation functions using a single reference signal.
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Figure 4.1: White noise and related auto/cross-correlation functions for a single reference signal (from 4 sensors of model in Matlab

In the next step, ERA will be applied on the correlation functions, by considering a minor modification. As
described in Eq.4.16, the Markov parameters can be derived directly from the responses of the system. Here,
multiple reference signals will be used, and in particular all the responses will be taken into account. There-
fore, for each response signal, a set of m correlation functions will be derived. The Markov parameters for the
time step k can be derived as explained in Eq.4.2.

[
y1

k y2
k . . . ym

k

]= Yk
[
f1

0 f2
0 . . . fm

0

]= Yk I = Yk (4.16)

where, y i
k the correlation function for reference signal i , and f i

0 is the input vector that has all elements equal

to zero, apart from the i th, which is equal to one.
It needs to be mentioned that when applying NExT, it is important to use data with long time series to

improve the accuracy of the correlation function. However, it is important to keep in mind that the first part
of the correlation function will already include most of the modal content.

4.3. NUMERICAL RESULTS
In this section, the theory explained in the previous two sections will be applied on simulated data obtained
from the OWT Matlab model described in Section 4.3.2. At first, the algorithm of ERA will be applied on the
special case of impulse loading to validate the applicability on IRFs. The identified modal parameters can
be verified with the known values of Table 3.1. Then, ERA/NExT will be applied and validated on the case
where the system is loaded by white noise. Additionally, the influence of several inputs defined by the user
in the algorithm (e.g. number blocks that will be arrayed in the Hankel matrix) will be investigated. Also, the
robustness against harmonic excitation will be checked for the case of combined white noise and harmonic
excitation. In the end, the identification on the OWT simulated in Matlab, under wind, wave and current ex-
citation will be attempted. In the Section 3.3, the algorithm will be applied on responses simulated from
the NREL offshore 5-MW baseline wind turbine. The main target is to investigate the applicability of the algo-
rithm on different operating regimes as explained in Section 2.2. Table 3.4 and Table 3.5 can be used for the
validation of the identified natural frequency and the related damping ratio.

4.3.1. SIMULATED RESPONSES USING MATLAB MODEL

ERA for impulse input

Initially, ERA algorithm is be applied on simulated responses that correspond to the case where all the
DoF of the system are excited by impulse loading. More details about this simulated case can be found in
Section 3.2.2. In this example, the accelerations at the four selected nodes will be fed into the algorithm after
including some random measurement noise. This can be done by using a Signal-to-Noise Ratio (SNR) equal
to 50. Also, the sampling frequency is 63.7Hz and the duration of the signal is 10min.
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At first, a number of p =400 row blocks and q =1400 column blocks will be used. The time-series of
each signal has 39086 discrete samples, which means that the bottom right block of the Hankel matrix H(0)
corresponds to the element k +p + q−2=1+400+1400-2=1799 of the time vector. Therefore, only a part of
the whole response signal will be used (almost 4.6%). However, by looking into the time-series one may
realize that this part contains all the modal content of the response, while in the rest part the response is
almost damped out. In addition, using a larger part of the response will result in a very slow identification
with minor improvements on the resulting modal properties. Another input to the algorithm is the order of
the system n. Instead of selecting a specific number of n, the algorithm will be applied in an iterative way to
visualize the influence of the order in the identified modal properties.

As it can be shown in Figure 4.2, the first 4 modes are identified in a stable way, while the fifth mode is
relatively shifted from the actual natural frequency. Different scales of black and colors are used for each
node as an indicator of the modal damping. More in detail, red denotes damping ratio larger than 75%, green
corresponds to damping larger than 50%, and cyan is used for values larger than 25%. Below 25%, scales of
black have been used with white used for damping ratio equal to 0%. Apart from the identified modes, Figure
4.2 also displays the output spectrum at the location of the sensors. Node 10 is the location of the RNA, while
the rest nodes can be found in Section 3.2.2. Finally, it needs to be mentioned that a MAC factor of 90% is used
to filter the non-structural modes and result in a clear stabilization diagram.
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Figure 4.2: Stabilization diagram – ERA on impulse response

The results of the identification are summarized in Table 4.1 together with the natural frequencies and the
damping ratio derived analytically.

ERA/NExT for white noise input

The algorithm of ERA will now be applied on the auto/cross correlation functions as proposed by NExT in
Section 4.2. Therefore, the correlation function c(t ) ∈ Rmxm will be used for the identification, instead of the
output vector y(t ) ∈ Rmx1. Here, it was implicitly said that a square matrix c(t ) will be employed and not a
vector of correlations. This happens since all the responses will be used as reference signals. For instance, the
first column will be determined by using the first response signal as reference signal, the second column will
correspond to using the second response signal as reference signal, and so on.

The time-series have the same sampling properties as described in the aforementioned case of impulse
input. However, the first 100s will be truncated from the response time-series before calculating the correla-
tion functions, in order to remove the transient part and keep only the steady state part of the response. In
the same way as before, a MAC factor equal to 90% has been selected, the maximum order of the stabilization
diagram will be n =30 and the number of rows and column blocks will be p =400 and q =1400, respectively.
Finally, measurement noise is added to corrupt the response time-series with an SNR equal to 50.
As it can be shown, the first three modes were identified using ERA/NExT. Also, the algorithm resulted in
an almost stable mode close to the fourth natural frequency. However, the damping ratio related to this
mode is too high, and therefore be considered as an acceptable mode. The results of the identification are
summarized in Table 4.1 together with the exact values of the modal properties.

Investigate the influence of p and q

When applying ERA, one has to decide the number of blocks Yk that will be used to build the block-Hankel
matrix of Eq.4.3. In this paragraph, the influence of the way the blocks are arrayed in Hankel matrix will be
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Figure 4.3: Stabilization diagram – ERA/NExT for white noise input

Mode
Exact ERA (impulse) ERA/NExT (white noise)

ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%) MAC (%) ωdωdωd (rad/s) ζζζ (%) MAC (%)
1 1.155 4.00 1.156 4.01 100.00 1.149 2.99 100.0
2 12.303 2.00 12.304 2.00 100.00 12.299 1.94 98.9
3 37.305 5.09 37.316 5.09 99.99 37.363 4.87 97.3
4 73.332 9.83 73.526 10.22 99.95 - - -

Table 4.1: Identified and exact modal properties for ERA and ERA/NExT (for nmax = 30)

investigated. Measurement noise is deactivated, since the task is to check thoroughly only into the influ-
ence of the blocks on the identification. Also, as it is displayed in Figure 4.3, an order equal to 30 is already
much larger than the actual order of the system and thus, such an order may be used for the purpose of this
investigation.

The strategy that was followed is to obtain the natural frequencies and damping ratios factor for q and p
that take values in the range 100-1900 with step 200. In Figure 4.4, the difference between the identified and
the exact 1st natural frequency is displayed with respect to the values of p and q .
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Figure 4.4: Difference of identified with exact fundamental natural frequency with respect to p and q values

It was found out that increasing the total number of both p and q does not strictly mean that the resulting
identified modal parameters will get closer to the exact values. Also, all the figures from the rest identified
natural frequencies showed similar behaviour to Figure 4.4. More specifically, a region was observed where
the difference was minimum. A possible set of p and q close to that region is p =900 and q =1300. Keep
in mind that selecting large values of p and q might lead into very large H(0) and H(1) matrices, which also
leads to slow identification procedure. Therefore, a set of p =400 and q =1400 is a balanced option between
accuracy and speed.

Investigate the influence of the reference signals

The selection of one single signal for the calculation of the correlation functions might be tempting as
it will lead to faster calculations. Additionally, selecting different reference signals will probably affect the
identification. This is the reason why the influence of using a poly-reference version of ERA/NExT needs
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to be investigated. At first, the number of the row and column blocks has been chosen to be p =400 and
q =1400, respectively. Also, measurement noise is deactivated in order to remove any random influence
on the results. Based on that settings, all the possible combinations of the four signals were used and the
identification was held for a system orders n =30. Considering four output responses, the total number of
possible combinations of reference signals is 15. For each combination of reference signals, the related values
of the identified natural frequencies and modal damping were obtained. It was found out that the selection
of the reference signal affects the identification. Figure 4.5 shows an example for the case of the 2nd identified
natural frequency.
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Figure 4.5: Influence of the reference signals on the 2nd identified natural frequency

Particularly, the parameters that were identified using a single reference signal, or couple of reference
signals were quite different with respect to each other. This difference was smoothed out when three signals
were used, instead. Finally, the option of using all the reference signals resulted in a solution that follows the
general tendency observed in all other combinations.

Additionally, the identification was also applied by iterating over the system order until the value of n =30
was reached. It was found out that the option of poly-reference ERA/NExT leaded into more stable identifica-
tion.

It needs to be mentioned here that no combination of reference signals resulted in an identification, in
which all the modal parameters were simultaneously closer to the related exact values.

Investigate the influence of SNR

ERA/NExT was be able to identify the first three modes of the system loaded by white noise for an SNR
equal to 50. The value of SNR is defined as the standard deviation of a signal over the standard deviation of
noise. Therefore, by reducing this value noise becomes more and more dominant. It was found out that for an
SNR=0.1, the natural frequencies were stably identified, but the damping ratio were largely deviating. In ad-
dition, even lower SNR would lead into problems in identifying the second and the third natural frequencies.
Such values of SNR are very extreme cases of noise, though. Table 4.2 shows the resulting modal properties for
several values of SNR. As it can be shown, the even for low values of SNR, the identified modes are not largely
affected.

SNR ωωω1 (rad/s) ζζζ1 (%) ωωω2 (rad/s) ζζζ2 (%) ωωω3 (rad/s) ζζζ3 (%)
1 1.149 2.87 12.340 2.19 37.194 6.44

10 1.149 2.97 12.305 1.93 37.309 4.71
50 1.149 2.97 12.301 1.94 37.319 5.03

100 1.149 2.99 12.307 1.90 37.377 4.91
500 1.149 3.00 12.307 1.89 37.335 4.98

1000 1.149 2.99 12.306 1.92 37.370 4.90
Not incl. 1.149 2.99 12.307 1.90 37.377 4.93

Table 4.2: Identified modal properties for varying SNR (for n = 30)

ERA/NExT for white noise and harmonic input

An important parameter that needs to be investigated is the presence of harmonic components in the
input. The theory behind ERA/NExT makes the assumption of white noise excitation. It is expected that in
case where the loading includes harmonic components, the algorithm will be tricked and will not be able to
differentiate between a structural mode and a fake mode that corresponds to the harmonic excitation.
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In this section, three identifications were applied on simulated data derived from white noise excitation,
combined with an harmonic component at a specific frequency. The first analysis corresponds to an har-
monic excitation of 1.31rad/s, the second to 1.45rad/s and the third 1.76rad/s. Also, the amplitude of this
harmonic was selected to be as high as needed, so that the response at the excitation frequency would be
similar to the response at the resonance frequency. The target is to add an harmonic component close to the
first natural frequency of the system and see whether the identified mode is affected. Figure 4.6 shows the
stabilization diagrams for the three cases.

Figure 4.6: Stabilization diagram, zoomed at the fundamental natural frequency for three different harmonic components

As it can be shown, the harmonic is identified as a mode with almost zero damping (almost white marker).
That makes sense, since the response at that given frequency is too high with respect to the neighbouring
frequencies and an almost infinite response corresponds to a mode with zero damping.

Another point to mention is that the identified first mode was slightly affected for low system orders (close
to n =20), but for larger orders the mode was nicely identified. This showed a robustness of ERA/NExT against
the case where an harmonic component is close to a structural mode.

ERA/NExT for wind, wave and current excitation

The OWT model in Matlab was developed to derive responses data which is simulated using more realistic
load conditions. Here, an attempt will be made to identify the system loaded by non-white noise input. More
in detail, the model in Matlab is excited by hydrodynamic loads due to wave and current and also by wind
forces at the top of the OWT. Hence, the hydrodynamic loading cannot be considered as a broadband white
noise excitation. The same inputs to ERA/NExT algorithm as in the identification for white noise excitation
were also used here. The only difference is that the stabilization diagram was generated for a maximum order
of 50, instead of 30. By looking into the resulting stabilization diagram of Figure 4.7, one may see that the first
three modes were nicely identified.

Figure 4.7: Stabilization diagram – ERA/NExT for wind, wave and current excitation over full frequency range (left) and zoomed in first
natural frequency (right)

Given that the biggest part of the wave energy is concentrated at frequencies close to ∼0.5rad/s, it can be
deduced from the response spectra that the simulated OWT in Matlab is mainly dominated by wind loading, as
the wave loads do not result in significant amplification. For a short range of system order, between 40∼45,
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Mode
Exact ERA/NExT (env.cond.)

ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%) MAC (%)
1 1.155 4.00 1.145 3.91 99.95
2 12.303 2.00 12.288 1.67 99.70
3 37.305 5.09 37.278 5.67 93.86

Table 4.3: Identified and exact modal properties – ERA/NExT for wind, wave and current excitation (for nmax = 30)

the first mode got unstable, but it cannot be attributed to the presence of wave. The identified modes can be
shown in Table 4.3, together with the related exact values.
As it can be shown, the first identified mode has a natural frequency quite smaller than the exact value. How-
ever, this deviation is similar to the difference observed for the case of white noise excitation. In other words,
there is no clear shifting of the identified natural frequency due the presence of wave loading.

4.3.2. SIMULATED RESPONSES USING MODEL IN FAST
In this section ERA/NExT algorithm will be applied on responses obtained from the model in FAST, where at
the same time both the white noise loading and the LTI assumptions are violated. The load cases that will be
examined are summarized in Table 2.2.

Four acceleration time-series have been used for the identification based on the sensors located as shown
in Figure 3.20 in Section 3.3.2. Node 4 corresponds to the sensor located at the highest point amongst the
other accelerometers. The time vector that corresponds to the response time-series consists of 38199 data
points and has a duration of 10min. Keep in mind that the first 200s were already truncated from the ini-
tial 800s time-series by FAST to remove any transients related to the initial conditions. Additionally, the
responses have been corrupted by adding measurement noise of SNR equal to 50.

Regarding the input variables to ERA/NExT, the value of row and column blocks have been selected to be
p =400 and q =1400, respectively. Moreover, for each case, a stabilization diagram up until an order of 80
was constructed. Finally, the MAC factor was selected to be 80%, which is quite small in order to allow more
modes to be present in the stabilization diagram, even if they are non-structural modes. In the subsequent
parts the results for the load cases presented in Table 2.2 will be presented.

Case FC1

The first load case examined here is FC1, which corresponds to low wind speeds and low wind and rotor
speed. In that case, the harmonic content at 3P gets closer to the first fore-aft tower bending mode. However,
as it can be shown in Figure 4.8, the first tower mode could be identified in a stable way. Another observation
is that all the external harmonic excitations 3P and 6P were identified as modes, which can cause problems
in identifying the blade modes around that region. Besides that, two blade modes (B2-F1 and B3-E1) were
identified in an unstable way around the 6P region. The related damping was much smaller for all the flapwise
bending modes. Then, close to the region dominated by the second flapwise bending modes, the algorithm
resulted in two lines of identified modes, which may refer to B2-F2 and B3-F2. Still, one may observe that the
values of damping are much smaller than the values from the linearisation procedure. In the end, the second
tower mode was identified in a stable way and both damping and natural frequencies were very close to the
exact values.

Figure 4.8: ERA - Stabilization diagram for FC1

Mode
Exact (8.5rpm) ERA/NExT (FC1)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.78 6.15 1.79 4.84 99.2
B2-F1 4.90 32.85 4.87 2.97 97.7
B3-E1 5.91 1.10 5.92 3.44 95.1
B2-E1 7.71 0.85 7.59 0.61 80.7
B2-F2 11.26 10.80 11.34 3.34 94.0
B3-F2 12.90 9.05 12.88 3.17 91.7
T-FA2 15.04 2.85 15.14 2.30 98.3

Table 4.4: ERA - Identified modal properties for FC1
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Case FC2

In FC2, the 3P and 6P harmonic components of the excitation start moving away from the first tower
mode, since the rotor rotational speed increases. Similar to the loading case FC1, both tower modes were
identified with an acceptable difference from the exact values, while the damping from the flapwise bending
modes deviate largely from the related exact values. One may observe that all the identified blade modes are
not stable, and in many cases the MAC factor drops below the threshold of 80%.

Figure 4.9: ERA - Stabilization diagram for FC2

Mode
Exact (10.5rpm) ERA/NExT (FC2)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.79 7.30 1.82 5.05 98.9
B3-E1 5.71 1.20 5.95 6.67 95.1
B1-E1 10.44 2.20 10.54 0.47 91.1
B2-F2 11.11 13.60 11.08 1.40 83.6
B1-F2 12.73 11.50 12.38 2.11 95.8
B3-F2 13.12 10.45 12.94 2.84 98.9
T-FA2 15.02 3.45 15.19 1.41 98.0

Table 4.5: ERA - Identified modal properties for FC2

Case FC3

In the third case, the first tower mode was identified, but the difference of the related damping seems to be
larger than in the previous examined cases. Also, the second tower mode was identified, even though many
non-structural modes are in parallel present around it. The first flapwise bending modes are highly affected
by the presence of 3P loading, and no stable mode was found. Same happened for the edgewise modes, which
are affected by 6P loading. Finally, in larger frequencies, where the influence of nP has significantly decayed,
two blade modes were identified, but with poor damping estimation.

Figure 4.10: ERA - Stabilization diagram for FC3

Mode
Exact (11.5rpm) ERA/NExT (FC3)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.79 7.75 1.79 2.91 99.4
B2-F2 11.03 14.70 11.22 5.40 92.2
B3-F2 13.26 10.85 13.23 6.21 89.4
T-FA2 15.00 3.75 15.04 1.56 99.8

Table 4.6: ERA - Identified modal properties for FC3

Case FC4

This is the fourth and last case where the turbine is considered to be under operating conditions. Here,
the turbine does not shift between different operating regimes, and therefore, the rotational speed of the rotor
is varying only slightly around a constant rotational speed. In that case, one can see that the 3P, 6P and 9P
loading were all identified as structural modes. Apart from that, one edgewise and one flapwise mode were
identified. This is the first case where the first tower mode is identified in a very high accuracy. This may be
attributed to the fact that it coincides with the first flapwise blade bending mode.



4.4. CONCLUSIONS 43

Figure 4.11: ERA - Stabilization diagram for FC4

Mode
Exact (12.1rpm) ERA/NExT (FC4)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.80 10.20
1.84 11.04 95.0

B3-F1 1.60 90.83
B2-E1 8.42 0.90 8.13 1.06 94.8
B3-F2 13.80 15.36 13.60 5.02 93.5
T-FA2 14.76 4.34 15.06 2.25 98.0

Table 4.7: ERA - Identified modal properties for FC4

Case FC5

In the end, the case of a parked turbine is examined. In FC5 no harmonic component excites the system.
This results in much more stable identification and also in the largest number of identified modes amongst
the other cases. It needs to be highlighted here that the damping of the blades is still much different than the
real values only for the three flapwise bending modes (B3-F1, B2-F1 and B1-F1), which are almost coinci-
dent. The rest five blade modes have relatively small deviations from the actual damping ratios.

Figure 4.12: ERA - Stabilization diagram for FC5

Mode
Exact (0rpm) ERA/NExT (FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.76 0.28 1.75 2.54 99.8
B3-F1 4.19 0.67 4.01 4.04 96.4
B2-F1 4.35 0.69 4.20 0.25 92.4
B1-F1 4.16 0.66 4.56 9.91 86.9
B2-E1 6.85 1.09 6.83 1.37 99.2
B3-E1 6.78 1.08 6.88 0.69 94.2
B2-F2 11.84 1.88 11.90 2.17 98.9
B1-F2 12.68 2.02 12.62 1.07 81.4
T-FA2 15.05 2.40 15.07 1.60 99.4

Table 4.8: ERA - Identified modal properties for FC5

4.4. CONCLUSIONS
In short, ERA/NExT was applied on the simulated results from the OWT model in Matlab for white noise exci-
tation and resulted in a stable identification with modal properties close to the actual properties. The largest
difference was between the actual and the identified damping ration related to the fundamental natural fre-
quency (1% lower). Apart from that a discussion about several input parameters was held and in the end the
algorithm was checked against SNR and harmonic excitation (not extreme amplitude). It was found out that
ERA/NExT is quite robust.

Regarding the application using data from FAST, it was found out that ERA/NExT was able to identify the
tower modes in a stable way even for the cases where the turbine is operating. In addition, the damping
ratios related to the T-FA1 tower mode in FC3 was highly underestimated. However, the main attention was
attracted by the inability of the algorithm to capture the extremely high (À10%) damping ratios of all the
flapwise blade modes of the cases where the rotor was rotating.

The estimation of large damping ratios using ERA is possible, but when the natural frequency is also high,
then such a mode is damped out very fast, showing a very small number of cycles in the impulse response.
Therefore, in such cases, ERA would deal serious problems in obtaining a stable mode with high precision.
However, in the present case ERA did identify modes but failed in obtaining the related damping ratio. One
possible explanation could be that the impulse response is probably affected by the presence of the closely
spaced nP external excitation, which will show more cycles in the free decay, and will be related to lower
damping ratios.
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As for the stability of the identification, the stable blade modes in FC5 indicate that the unstable blade
modes of the rest cases are directly linked to the rotation of the rotor. This observation has two folds, since the
modes could be either affected by the harmonic excitation or by the fact that they change with the rotational
speed, which is not constant. Besides this, several modes were present in the stabilization diagrams.



5
STOCHASTIC SUBSPACE IDENTIFICATION

Stochastic Subspace Identification (SSI) is a widely used and powerful time-domain system identification
method, with multiple applications on real structures under operating conditions. The basics features behind
the mathematically complex algorithm of this technique will be presented in the next paragraphs. In the end
of this chapter, the algorithm will be tested on simulated responses from the model in Matlab, and also on
measurements from the OWT in FAST, under multiple operating conditions.

5.1. THEORY BEHIND SSI
In this chapter, Stochastic Subspace Identification (SSI) technique will be presented, aiming at making the
main features behind the algorithm clear to the reader. It is an undoubted fact that SSI is the most pop-
ular time-domain OMA system identification technique. This can be explained by the robustness and the
good numerical conditioning of the algorithm for OMA applications. The real break-through of SSI happened
when the pioneering work of P. Van Overschee et al. [8] was publishing back in 1996. Since then, SSI has
been effectively applied widely on various types of real and simulated structures under operational condi-
tions [49][50][51][52]. Unfortunately, due to its mathematical complexity, most of engineers with classical
structural background have difficulties in understand the basic concepts behind SSI. Hence, in the present
chapter, an attempt will also be made to relate the steps of SSIwith several steps of ERA, described in Chapter
5. It needs to be noted that SSI will be presented in a more user-friendly way. A more detailed, in-depth de-
scription of the theory behind SSI can be found in the book of Van Overschee[8], which is also accompanied
by already existing, detailed and user-friendly Matlab files.

Before explaining SSI method, it needs to be clarified that several different approaches are available in
literature, which might be confusing for the reader. SSI techniques can be classified into Covariance-Driven
Stochastic Subspace Identification (Cov-SSI) and Data-Driven Stochastic Subspace Identification (DD-SSI).
The approaches described by of Van Overschee[8][9] can be treated as the first DD-SSI method. Both types of
algorithms have several pros and cons. In this chapter, DD-SSImethod will be presented even though it is not
as fast as Cov-SSI due to the use of QR factorization. The main idea behind DD-SSI, as it will be explained
later on, is to project the row space of "future" into "past". Due to that, the algorithm may also be referred to
as projection-driven SSI method. Many variants of DD-SSI can be found in literature. Three major methods
according to the weighting matrices that are applied on Hankel matrix exist[53][50], which are namely the
Principal Component (PC) method, the Canonical Variant Analysis (CVA) method and the Unweighted Princi-
pal Component (UPC) method. Here, no weighting will be used, since the identified properties are not largely
affected by it.

To start with, the aim of SSI is to identify the modal parameters of a vibrating structure, which is consid-
ered to be excited by unknown stochastic forces. The algorithm is based on the assumption that this external
excitation can be simplified as a zero-mean, Gaussian white noise process. Based on this assumption, SSI is
applied directly on measured stochastic response of the system of interest. Therefore, the discrete-time state-
space formulation of an LTI vibrating structure described by Eq.4.1 may also be employed for this technique,
after making some minor modifications. At first, modelling and sensor uncertainties will be included in the
state-space equation of motion by means of two unmeasurable vectors that are assumed to be zero-mean,
Gaussian white noise processes. Considering these two vectors, Eq.4.1 will be changed into the expression of

45
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Eq.5.1. {
xk+1 = Axk +Bfk +wk

yk = Cxk +Dfk +vk
(5.1)

where, wk ∈ Rnx1 is the process noise and vk ∈ Rmx1 is the measurement noise. The description and the
dimensions of the rest matrices can be found together with Eq.4.1. A more compact way to describe the
dynamics of the system under unknown stochastic input, considering the presence of process and measure-
ment noise, is possible by combining the unknown input with the unknown noise. The final expression of the
state-space equation, which reflects the state of the dynamic system under consideration, is given in Eq.5.2.{

xk+1 = Axk +wk

yk = Cxk +vk
(5.2)

where, wk is now an excitation vector including both process noise and the impact of the input on the state
vector and vk expresses the direct transition of the input to the output, including measurement noise. The
statistical properties of these vectors remain the same, since both the input and noise is assumed to be a
Gaussian white noise process. This is the final form of the discrete state-space equation that will be used
in SSI. Next, the procedure of the SSI method will be explained in a step-by-step manner. It needs to be
mentioned beforehand that this algorithm uses robust numerical techniques (e.g. QR-factorization, SVD and
least squares) from linear algebra. Extended explanation of these techniques are out of this thesis scope.

Step 1 - Hankel Matrix

The algorithm starts by constructing the block-Hankel matrix. This matrix can be formed by arranging
the measured response vector at time k into blocks Yk ∈ Rmx1, where m is the number of measurement sta-
tions. The block-Hankel matrix will be created by using 2i rows and j columns of blocks Yk (q and p in ERA,
respectively). Eq.5.3 shows the expression of the whole block-Hankel matrix H0|2i –1 ∈R2mi x j .

H0|2i−1 = 1√
j



Y0 Y1 Y2 . . . Y j−1

Y1 Y2 Y3 . . . Y j
...

...
...

. . .
...

Yi−1 Yi Yi+1 . . . Yi+ j−2

Yi Yi+1 Yi+2 . . . Y1+ j−1

Yi+1 Yi+2 Yi+3 . . . Y1+ j
...

...
...

. . .
...

Y2i−1 Y2i Y2i+1 . . . Y2i+ j−2


=

[
H0|i−1

Hi |2i−1

]
=

[
Hp

H f

]
(5.3)

where,
√

j is a scale factor used for statistical reasons. Additionally, in this expression one may notice that
the matrix is divided into two parts. The top matrix H0|i –1 ∈ Rmi x j includes the first i block rows and is
named shortly as Hp , while the bottom matrix Hi |2i –1 ∈ Rmi x j includes the rest i block rows of H0|2i –1 and is
denoted by H f . Each new block row can be interpreted as a time shift. To underline this, the subscripts p
and f of these two sub-matrices have been used to represent "past" and "future", respectively. Given that,
the maximum number of block columns is nt +2−2i , where nt is the total number of time samples.

Step 2 - Projection of "future" onto "past" row space

Once the two matrices have been formed, a projection (or subspace) matrix Oi ∈Rmi x j will be defined as
the orthogonal projection of the row space of future outputs H f on the row space of past outputs Hp . This
step is the reason why this technique is named as subspace identification method. This matrix Oi can be
computed as shown in Eq.5.4 from these two row space matrices.

Oi = E
(
H f |Hp

)= H f HT
p

(
Hp HT

p

)+
Hp (5.4)

where (•)+ denotes the Moore-Penrose pseudo-inverse of a matrix. This definition holds for semi-infinite
matrices. Therefore, the number of column blocks need to be quite large ( j → ∞). In practice instead of
using the above formula, an alternative expression of the projection matrix Oi is adopted. The main reason
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is to avoid inverting matrix Hp HT
p , as Hp is usually very large matrix. This alternative derivation is based on

QR-decomposition of the whole block-Hankel matrix H0|2i –1 as shown in Eq.5.5.

H0|2i−1 = RQT =
[

R11 0
R21 R22

][
QT

1
QT

2

]
(5.5)

In this expression, R ∈ R2mi x2mi is a lower triangular matrix and Q ∈ R j x2mi is an orthogonal matrix. These
two matrices are divided into the submatrices Q1/Q2 ∈ R j xmi and R11/R21/R22 ∈ Rmi xmi , respectively. Then
the projection matrix Oi can be calculated using two submatrices, as described in Eq.5.6.

Oi = E
(
H f |Hp

)= R21QT
1 (5.6)

It needs to be noticed that the projection matrix Oi has dimensions mi x j , while the block-Hankel matrix
H0|2i –1 is 2mi x j . Therefore, this step results in a significant reduction of the data that will be used in the
identification. The concept of matrix projection is considered to be the most complex part of SSI method in
terms physical understanding. Looking into the matrices of the projection, matrix H f HT

p can be interpreted
as a correlation matrix. In that sense, the projection matrix is related to covariances and therefore, it leads
into responses that represent impulse responses of the system, as described by NExT. Mathematically, this
projection is also named as conditional expectation or conditional mean of H f on Hp . Finally, a more geo-
metrical interpretation of the projection is given by Van Overschee. According to this, the projection aims at
finding the principal components of the two row spaces, which are related to the main harmonics that are
present in the signal. In that way, the random effect of noise is removed, while the harmonic components
match and reveal the presence of a specific mode.

Step 3 – Observability Matrix & Kalman States

Next, based on the main theorem of SSI, the projection matrix Oi can be factorized into the product of
the observability matrix Pi and a matrix X̂̂X̂X i . This matrix includes a series of vectors, which is the Kalman filter
state sequence. This factorization of matrix Oi , together with the expression of the observability matrix are
shown in Eq.5.7.

Oi = Pi X̂̂X̂X i =


CCC

C AC AC A
C AC AC A2

...
C AC AC Ai−1


[

x̂̂x̂xi x̂̂x̂xi+1 . . . x̂̂x̂xi+ j−1
]

(5.7)

where Pi ∈ Rmi xn , X̂̂X̂X i ∈ Rnx j , and n is the order of the system. The above expression shows that the observ-
ability matrix is formed using Markov parameters. Each column of Pi can be also interpreted as a free decay
of the system under unknown initial conditions. This equation is the first indicator that the system state-
space matrices can be derived from the measurement data. Unfortunately, since only Oi is known amongst
the three matrices, the observability matrix cannot be directly calculated.

Step 4 – Singular Value Decomposition

In this step, the projection matrix Oi will be decomposed by a SVD process. This is a trick that aims at
estimating the observability matrix and the Kalman states mentioned in the previous step (see Eq.5.8). It is
obvious that matrix Oi will be initially of full rank and, therefore, the number of singular values will be equal
to the minimum dimension of Oi .

Oi = USVT = (
U1 U2

)( S1 0
0 S2 ≈ 0

)(
VT

1
VT

2

)
≈ U1S1VT

1 (5.8)

where U ∈ Rmi xmi and V ∈ R j xmi are the left and right singular vectors and S ∈ Rmi xmi is a diagonal matrix
containing singular values in descending order. As it is shown in Eq.5.8, the number of the singular values
can be reduced after truncating part of the small singular values. The remaining singular values are gathered
in S1 ∈ Rnxn , where n is the order of the system and also the rank of the observability matrix (it is assumed
that n ≤ mi ). This truncation leads in the reduced matrices U1 ∈ Rmi xn , V1 ∈ R j xn and S1 ∈ Rnxn . It needs to
be mentioned that the true order of the system remains still unknown. In practice, this problem is avoided
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by applying SSI in an iterative way for several orders in order to build a stabilization diagrams. Moreover,
the truncation of the lowest part of singular values does not affect the identification, since it removes only
singular values that are related to noise.

Based on the approximation of the projection matrix Oi ,the following expressions can be used for Pi and
X̂̂X̂X i .

Pi = U1S1/2
1

X̂̂X̂X i = S1/2
1 VT

1

(5.9)

The above estimated matrices are not unique. Any different way to express them will affect the individual
matrices, but not the estimated modal parameters of the system.

Step 5 – System matrices & Eigenvalue problem

In the fifth step, the desired system matrices will be calculated from the observability matrix. There are
several ways that can be utilized to obtain A and C matrices. Here, the derivation will be explicitly based on
matrix Pi . At first, state matrix A can be calculated in a least squares sense by using Pi and P̄̄P̄P i , which are the
first i −1 and last i −1 blocks of observability matrix, respectively. The derivation can be shown in Eq.5.10.

CCC
C AC AC A

...
C AC AC Ai−2

A =


C AC AC A

C AC AC A2

...
C AC AC Ai−1

→ Pi A = P̄̄P̄P i → A = P+
i P̄̄P̄P i (5.10)

Then, the output matrix C can be determined in a very straightforward way, as it is equal to the first block (m
rows) of the Pi .

Once the discrete system matrices have been identified, then the modal parameters can be calculated fol-
lowing the same procedure described in Step 5 of ERA algorithm. In short, eigenvalues and eigenvectors can
be calculated by solving the eigenvalue problem, while also consulting Eq.4.9 & Eq.4.10. Using the eigenval-
ues, the natural damped frequencies and the related damping ratio can be obtained from Eq.4.11 and Eq.4.12,
respectively. Finally the mode shapes are calculated by Eq.4.13.

Other SSI-related algorithms found in literature

The approach SSI that was described here is one of the most commonly found in many applications.
However, one may find multiple alternatives of the way SSI is applied. One alternative is presented by P. Van
Overschee et al. back in 1993 [9]. The algorithm is nicely presented in a step-by-step manner at the related
paper. In short, this approach applies twice a generalized SVD on parts of the R matrix. This matrix has been
divided into parts in a way that can be related to the shift in ERA (using H(0) and H(1)) or to the shift of the
observability matrix of Eq.5.10.

Apart from the classical SSI method, several authors have proposed techniques to modify SSI in order to
be able and identify modes in cases where the input includes also harmonic components[54][24]. However,
such modification is not able to remove the influence of the nP input from FAST, since the excitation extends
over a wider region.

5.2. NUMERICAL RESULTS
In the previous Section 5.1, the steps of the algorithm behind SSI were discussed. This algorithm will be
referred to in this section as SSI-a. Apart from that algorithm, the proposed approach of P. Van Overschee
et al. [9] will also be used. This will be named here as SSI-b. The last algorithm that will be applied on the
data is the already existing algorithm that accompanies the book of P. Van Overschee et al. [8]. The acronym
SSI-Ov will be used for this third algorithm. All these three SSI algorithms will be used in the present section
on measurements derived from both the OWT model Matlab and in FAST for the purpose of the benchmark
study. To summarize, the SSI algorithms that will be used in this section are:

• SSI-a: Algorithm explained in Section 5.1

• SSI-b: Algorithm from paper [9]

• SSI-Ov: Existing algorithm from P. Van Overschee [8]
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5.2.1. SIMULATED RESPONSES USING MATLAB MODEL

SSI for white noise input

The algorithm of SSI is in general applied on cases where the input to the system is a white noise process.
Here, given that this condition is met, the three employed algorithms will be compared to each other. Before
using the response signals for the identification, the first 100s of the time-series are truncated and the rest is
corrupted using an SNR equal to 50. It was found out that most of the non-structural modes that were iden-
tified by SSI are highly affected by the randomness of the measurement noise. In other words, running the
same analysis twice will result in spurious modes that are different. An explanation could be that these modes
are present due to exceeding the actual order of the structure. Therefore, several relatively low singular values
will be included and not truncated. These singular values are probably affected by the additional noise and
minor variations would lead into jumps in the identified non-structural modes. On the other hand, a stable
mode is probably related to the largest singular values, which are not influenced by noise. This observation
was exploited in order to filter out these modes by running the identification twice and by matching the sta-
ble modes from the two stabilization diagrams. This would slow down the identification, but in parallel will
result in a clear stabilization diagram.

Regarding the input parameters to SSI algorithms, a total number of i =100 row blocks have been selected
due to the fact that, according to the theory of SSI, the number of column blocks j should be infinite. Given
that the total number of data is 32720, this leads into j = nt+2−2i =32522. Finally, as it can be shown in
Figure 5.1, the maximum system order was selected to be 30.
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(a) Stabilization diagram for SSI-a
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(b) Stabilization diagram for SSI-b
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(c) Stabilization diagram for SSI-Ov

Figure 5.1: Stabilization diagram - SSI for white noise input

By looking into these stabilization diagrams one may observe that SSI-b resulted into the identification of
four modes, while SSI-a was able to identify only the first three modes. Additionally, it seems that SSI-Ov
also identified the fourth mode, but only for a couple of orders. For the rest orders the fourth mode was fil-
tered out due to excessive instability (>1rad/s). Table 5.1 shows a summary of the identified modes together
with the exact values. As it can be shown, the identified modes for an order n =30 are very close to the actual
modal properties of the system.

Mode
Exact SSI-a SSI-b SSI-Ov

ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%)
1 1.155 4.00 1.149 4.15 1.142 5.25 1.150 4.10
2 12.303 2.00 12.322 1.88 12.309 1.89 12.314 1.88
3 37.305 5.09 37.322 4.68 37.233 4.96 37.354 5.07
4 73.332 9.83 - - 73.644 10.55 75.316 12.96

Table 5.1: Identified and exact modal properties for SSI-a, SSI-b and SSI-Ov (for nmax = 30)

Investigate the influence of number of block rows i

As explained in the theory of SSI, the algorithm starts by forming a semi-infinite block-Hankel matrix. In
this matrix the number of the column blocks j is supposed to tend asymptotically to infinity. Therefore, once
the number of row blocks are defined, then the number of blocks j is automatically determined after filling
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all the data in the Hankel matrix. Here, several options of the number of rows i will be investigated. Table 5.2
shows that for i =50 the first mode was not accurately identified in all the SSI algorithms. For larger values,
it was found out that the differences in the identified modal were not significantly different to each other and
also there was no clear tendency towards the real values.

i
SSI-a SSI-b SSI-Ov

ωωω1
(rad/s)

ωωω2
(rad/s)

ωωω3
(rad/s)

ωωω1
(rad/s)

ωωω2
(rad/s)

ωωω3
(rad/s)

ωωω1
(rad/s)

ωωω2
(rad/s)

ωωω3
(rad/s)

50 1.178 12.311 37.471 - 12.314 37.284 1.012 12.319 37.306
100 1.153 12.316 37.508 1.156 12.312 37.271 1.153 12.315 37.407
200 1.154 12.318 37.188 1.155 12.303 37.298 1.153 12.318 37.481
300 1.155 12.320 37.197 1.153 12.307 37.314 1.154 12.315 37.398
400 1.156 12.319 37.219 1.153 12.304 37.292 1.153 12.315 37.377

Table 5.2: First three identified modes using SSI-a, SSI-b and SSI-Ov for varying row number i (nmax = 30)

In SSI-a and SSI-b algorithms, exceeding the value of i =400 resulted in too slow identification process due
to the computational demanding calculation of the projection matrix Oi . Therefore, a value of i =100 seems
to result in both fast and and accurate enough identification.

Investigate the influence of SNR

SSI is popular for its resistance against noise and its numerical stability. In this paragraph, the influence of
SNR will be investigated. Table 5.3 shows the resulting identified modal properties using SSI-a for multiple
values of SNR and a given order n =30. As it can be shown, there is no big difference between the results for
an SNR equal to 50 and 1000. Therefore, inside that physically meaningful range of noise, it can be concluded
that the presence of measurement noise does not affect the identification. For values lower than 0.1, it was
found out that the modal parameters were in general influenced by the dominant presence of measurement
noise.

SNR
SSI-a

ωωω1 (rad/s) ζζζ1 (%) ωωω2 (rad/s) ζζζ2 (%) ωωω3 (rad/s) ζζζ3 (%)
0.1 1.128 9.01 12.427 2.49 37.573 4.30
1 1.142 4.39 12.322 1.83 37.107 4.73

10 1.149 5.74 12.319 1.88 37.263 5.45
50 1.153 4.09 12.319 1.86 37.165 5.00

100 1.145 4.49 12.319 1.86 37.180 4.83
500 1.143 4.94 12.319 1.89 37.167 4.92

1000 1.153 3.61 12.314 1.90 37.190 5.18
Not incl. 1.153 3.95 12.316 1.90 37.208 4.15

Table 5.3: Identified modal properties for varying SNR (for nmax = 30)

SSI for white noise and harmonic input

Another factor that is going to be investigated in the present section is the case where the input is not
pure white noise, but it includes an harmonic component at frequency that is close to a natural frequency
of the system. Additionally, it is considered that the response at the frequency of the harmonic excitation is
comparable with the response at the natural frequency. The first harmonic has a frequency of 1.31rad/s,
while the second is 1.45rad/s and is quite further away from the fundamental natural frequency.Figure 5.2
shows the stabilization diagrams for the two different harmonics, considering the three different algorithms
of SSI.

As it can be shown, the algorithm of SSI-a is the only one that resulted in a stable mode. Still, for the
case where the harmonic is very close to the natural frequency, the identified mode is shifted. In the rest
two SSI algorithms no stable algorithm was identified. This leads to the conclusion that, despite the fact that
SSI-b and SSI-Ov are able to identify modes hardly excited (e.g. fourth mode), they struggle in differentiating
between closely spaced modes. As it is displayed in Figure 5.2, SSI-b attempted to obtain two sets of modes,
but still the mode related to resonance is way unstable.



5.2. NUMERICAL RESULTS 51

Figure 5.2: Stabilization diagram using SSI, zoomed at the fundamental natural frequency for two different harmonic components

SSI for wind, wave and current excitation

The simulated results that correspond to the OWT model in Matlab under environmental conditions will
be also used for the identification of the modal parameters. All the inputs to the SSI algorithms are the same
as described in the case of white noise input. The excitation input in this case is not a white noise process any
more. Figure 5.3 shows the stabilization diagram for the algorithm of SSI-a.
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Figure 5.3: Stabilization diagram – SSI-a for wind, wave and current excitation

As it can be shown, all the first four modes are identified regardless the fact that the input was not white
noise. Additionally, no mode was identified close to the region where wave energy is present. This can be
mainly attributed to the fact that the system is relatively stiff with respect to the wave loading. The total
results from all the three SSI algorithms can be shown in Table 5.4. An interesting observation is that SSI-a
was also able to identify the fourth mode, while for the case of white noise input it was not. Finally, the
fundamental natural frequency was in all the cases shifted towards lower frequencies and the related damping
ratio was overestimated. The shift of the identified frequency may be attributed to the presence of wave, but
it is unclear whether the larger values of damping are also related to the coloured input.

Mode
Exact SSI-a SSI-b SSI-Ov

ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%)
1 1.155 4.00 1.138 5.96 1.120 7.18 1.139 5.26
2 12.303 2.00 12.293 2.12 12.318 2.06 12.301 2.07
3 37.305 5.09 37.408 5.38 37.404 5.47 37.383 5.43
4 73.332 9.83 73.411 9.76 73.152 9.96

Table 5.4: Identified and exact modal properties – SSI for wind, wave and current excitation (for nmax = 30)
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5.2.2. SIMULATED RESPONSES USING MODEL IN FAST

In Section 5.2.1, three different SSI algorithms were applied on data derived from the OWT model in Matlab.
It was found out that SSI is a pretty powerful technique, able to obtain stabilization diagrams that include
the modes of mildly excited modes. Here, all these three algorithms will be applied on simulated data derived
from the NREL offshore 5-MW baseline wind turbine. More information about the simulated cases can be
found in Table 2.2.

The obtained data are accelerations at four points along the tower as shown in Figure 3.20 in Section 3.3.2.
Time-series with 10min duration, and already truncated by FAST transient parts have been used for the iden-
tification. Additionally, measurement noise with SNR equal to 50 has been used to account for uncertainties
and imperfections related to the data.

As far as the input variables to SSI algorithms is concerned, the value of row blocks has been selected to
be i =100. Considering that and also the total number of data in each time-series is 38199, which leads in
j =38199-2∗100+2=38001 column blocks. The second important input to the SSI algorithms is the order of
the system n. The problem of selecting a specific order has been tackled by generating stabilization diagrams
of maximum order mmax =80. Finally, the sampling frequency was selected to be 63.66Hz.

Case FC1

FC1 is the first case, and corresponds to relatively small wind velocities, leading also into low rotor rota-
tional speeds. Table 5.5 shows that the algorithms were able to identify almost all the flapwise blade bending
modes, with a corresponding high value of damping, but still relatively smaller than the actual values. Apart
from that, close to the regions where response is dominated by the harmonic excitation of 3P and 6P, no
mode was able to be identified. This is attributed to the presence of the harmonic excitation. Regarding the
tower modes, only the second was identified with also a good damping ratio. Unfortunately, the first mode
was not identified.

Figure 5.4: SSI-Ov - Stabilization diagram for FC1

Mode
Exact (8.5rpm) SSI (FC1)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
Alg.

B2-F2 11.260 10.80
11.308 0.95 SSI-b
11.345 1.384 SSI-Ov

B1-F2 12.690 9.25
12.784 5.10 SSI-a
12.778 7.57 SSI-b
12.911 5.37 SSI-Ov

B3-F2 12.895 9.05
12.933 8.14 SSI-a
12.895 5.26 SSI-b
13.066 5.57 SSI-Ov

T-FA2 15.040 2.85
15.162 1.96 SSI-a
15.153 2.73 SSI-b
15.168 2.48 SSI-Ov

Table 5.5: SSI - Identified modal properties for FC1

Case FC2

In the second operating case, one may see several similarities to FC1. However, the harmonic excitation
becomes stronger and the sensitive to mildly excited modes algorithms of SSI resulted in an almost stable
mode at the region where 18P is present. This means that even the second bending tower mode might be
affected by the presence of the neighbouring 15P excitation. As it can be shown, B1-F2 and B1-F3 are both
quite shifted towards higher frequencies, probably due to 12P. Apparently, the related damping ratios are also
in this case lower than the exact damping.



5.2. NUMERICAL RESULTS 53

Figure 5.5: SSI-Ov - Stabilization diagram for FC2

Mode
Exact (10.5rpm) SSI (FC2)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
Alg.

B2-F2 11.105 13.60
10.839 8.33 SSI-a
10.756 9.01 SSI-b
10.910 8.41 SSI-Ov

B1-F2 12.730 11.50
13.048 3.90 SSI-a
13.100 5.08 SSI-b
13.032 4.43 SSI-Ov

B3-F2 13.120 10.45
13.360 3.34 SSI-a
13.397 3.45 SSI-b
13.359 3.14 SSI-Ov

T-FA2 15.015 3.45
15.138 2.07 SSI-a
15.195 1.95 SSI-b
15.132 1.23 SSI-Ov

Table 5.6: SSI - Identified modal properties for FC2

Case FC3

In FC3 the external excitation seems to dominate over the full frequency band of the identification. This
can be concluded due to the fact that modes were identified only around nP regions. An attempt was made
by SSI-b to find double stable modes around 3P, but it is unclear whether it is related to mode B1-F1, or not.
Another questionable mode is the flapwise blade bending mode B2-F2 which coincides with 9P. Therefore,
in under these operating conditions, the only mode that was identified is the second fore-aft tower bending
mode.

Figure 5.6: SSI-Ov - Stabilization diagram for FC3

Mode
Exact (11.5rpm) SSI (FC3)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
Alg.

B1-F1 4.040 49.35 3.912 5.48 SSI-b

B2-F2
(& 9P)

11.030 14.70
11.028 4.30 SSI-a
11.016 7.87 SSI-b
10.954 4.99 SSI-Ov

T-FA2 14.995 3.75
15.140 1.89 SSI-a
15.031 1.90 SSI-b
15.117 1.88 SSI-Ov

Table 5.7: SSI - Identified modal properties for FC3

Case FC4

In the last operating loading case, only the second bending mode of the tower has been identified. Here,
the external harmonic excitation is considerably larger than before, and as it can be shown in Figure 5.7 non-
structural forcing modes have been identified from 3P up until 21P. The region close to 9P seems to have
gathered several modes, since several semi-stable modes have been identified. In case they are related to
blade modes, they are highly shifted due to the external loading.

Figure 5.7: SSI-Ov - Stabilization diagram for FC4

Mode
Exact (12.1rpm) SSI (FC4)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
Alg.

T-FA2 14.758 4.34
15.12 2.73 SSI-a
15.08 2.81 SSI-b
15.23 2.73 SSI-Ov

Table 5.8: SSI - Identified modal properties for FC4
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Case FC5

Finally, FC5 corresponds to a parked turbine, without any external harmonic excitation. As it can be
shown in Figure 5.8, the number of modes that have been identified is way larger than in previous cases.
Both the tower modes have been identified, together with several blade modes. Starting with the flawpise
first blade bending modes, it is shown that they are very close to each other and this is probably the reason
behind the excessively large values of damping ratios. Then, the flapwise bending modes are coincident and
the identification leaded into a single mode with good damping values, regardless of the algorithm that was
used. Finally, one collective flawpise second blade bending mode (B1-F2) and one asymmetric (B2-F2) were
nicely identified with minor differences in the damping ratios.

Figure 5.8: SSI-Ov - Stabilization diagram for FC5

Mode
Exact (0rpm) SSI (FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
Alg.

T-FA1 1.760 0.28
1.79 4.11 SSI-a
1.76 4.60 SSI-b
1.76 4.16 SSI-Ov

B3-F1 4.187 0.67
4.19 7.37 SSI-b
4.21 8.65 SSI-Ov

B2-F1 4.350 0.69 4.37 10.11 SSI-a

B2-E1 6.847 1.09
6.83 1.09 SSI-a
6.83 1.10 SSI-b
6.83 1.01 SSI-Ov

B2-F2 11.836 1.88
11.89 2.02 SSI-a
11.89 2.33 SSI-b
11.87 2.25 SSI-Ov

B1-F2 12.680 2.02
12.90 2.38 SSI-a
12.90 2.82 SSI-b
12.91 2.76 SSI-Ov

T-FA2 15.055 2.40
15.06 1.84 SSI-a
15.06 1.54 SSI-b
15.07 1.54 SSI-Ov

Table 5.9: SSI - Identified modal properties for FC5

5.3. CONCLUSIONS
In the end of this chapter, three different approaches of SSI method were used for the identification of sim-
ulated data using the OWT model in Matlab. Initially, several inputs to SSI algorithms were investigated, and
then they were used for the identification considering white noise excitation with or without a harmonic com-
ponents and also considering the simplified environmental conditions used in the model in Matlab. It was
found out that SSI is quite stronger that ERA in identifying not highly excited modes, but it is less powerful
when it comes to closely spaced modes and modes. In general, it resulted in acceptable damping ratios when
applied to white noise input.

Then, in 5.2.2, the algorithms were applied on simulated data obtained from the OWT model in FAST,
which accounted for the complex influence of more accurate environmental conditions. It was found out
that SSI obtained more stable modes, but was able to identify less modes. A possible reason could be the fact
that the projection matrix Oi is derived from a multiplication of Hankel matrices that include shifted data.
This results in some kind of covariance matrix, which has removed the influence of the stochastic white noise
input. A similar idea was presented in Section 4.2, when the theory behind NExT was explained. However, the
difference is that in ERA/NExT, only the first part of the correlation function is considered for the identification
(almost 5%), while in SSI the whole time-series will be used. Therefore, several transient parts related to the
input, or/and the time-invariant behaviour of the system might result in a less impulse-like signal and affect
the identification of stable modes. This could be the reason why SSI was largely affected by the violation of
the OMA assumptions.

Another observation that is in agreement with the results of ERA/NExT is that the high damping ratios
related to the flapwise blade bending modes were also largely underestimated. Finally, all the SSI algorithms
run twice for each identification, to filter out the unstable modes. In that step, the first fore-aft tower bending
mode was also removed due to unstable damping.



6
FREQUENCY DOMAIN DECOMPOSITION

Frequency Domain Decomposition (FDD) is an OMA technique, able to derive the modal properties of an un-
known system by working with the auto/cross - Power Density Spectra of the responses in frequency domain. In
this chapter the theory behind both FDD and also Enhanced FDD will be explained and in the end the algorithm
will be applied on simulated data.

6.1. THEORY BEHIND FDD
Frequency Domain Decomposition (FDD) is probably the most popular OMA system identification technique
that operates in frequency-domain instead of time-domain. The main reason of being so widely used is the
high speed and the ease of implementation compared to other OMA techniques. This user-friendly method
was initially introduced by Brincker et al.[55] in 2000, aiming at the determination of the natural frequencies
and the mode shapes of the system of interest. However, as it will be explained later on, the accuracy of the
natural frequencies obtained by FDD is largely affected by the frequency resolution of the output cross power
spectral densities. An expansion to FDD was introduced one year later by Brincker et al.[56], which in liter-
ature may be referred to as Enhanced Frequency Domain Decomposition (EFDD). This approach allows also
the estimation of damping, while in parallel it leads into a more precise estimate of the natural frequencies by
tackling the aforementioned resolution problem. As we will see later on, FDD does not need to make assump-
tions about the order of the system as in time-domain techniques, due to the fact that the modes are simply
selected by the user via visual inspection. This implies that FDD is not as automated as the methods described
in the past chapters, even though several studies have been made to apply FDD in an automated way[57]. In
presence of harmonic excitation, FDD method may be affected in case where the harmonic has a frequency
close to a mode. In that way, the estimate will probably be biased. Therefore, harmonic components should
be relatively far from the structural modes. In 2006, Jacobsen et al. proposed a way to remove the influence
of with closely spaced harmonics based on the statistical properties of the random and harmonic signals.

Similar to most of OMA frequency-domain methods, FDD starts by assuming that the system is an LTI
system. Therefore, the output spectrum X ∈ Cmx1 will be just the product of the input spectrum F ∈ Cr x1

and the system’s frequency response function H ∈ Cmx1. The number of sensors is denoted by m, and the
(unknown) number of forces by r .

X (ω) = H (ω)F (ω) (6.1)

The relationship between the input and output auto/cross-PSD matrices for stochastic process can be ob-
tained by post-multiplying Eq.6.2 by its Hemitian matrix (conjugate transpose).

X (ω)XH (ω) = H (ω)F (ω)FH (ω)HH (ω) →
Sxx (ω) = H (ω)S f f (ω)HH (ω)

(6.2)

where, Sxx ∈Cmxm and S f f ∈Cr xr are output and input auto/cross-PSD matrix, respectively.
The second assumption in FDD is that the input is supposed to be approximated by a broadband white

noise stochastic process. By definition, a zero-mean white noise process has autocorrelation function that
satisfies the Eq.6.3.

55
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C f f (τ) = E (f (t +τ) f (t )) = Cδ (τ) (6.3)

where, C ∈Cr xr is a constant matrix proportional to the identity matrix. This means that the auto-correlation
function of the input is similar to an impulse at time equals to τ. The auto-PSD of the input can be deter-
mined by apply Fourier transform on the autocorrelation function. The resulting spectrum will be constant,
as shown in Eq.6.4.

S f f (ω) = C (6.4)

Here, one may better understand the theory of NExT, by looking into the problem in frequency-domain. From
that perspective, S f f is directly related to impulse response. Therefore, by inverting S f f , the cross-correlation
functions that will be obtained are directly linked to the free response.

By substituting Eq.6.4 into Eq.6.2, the following expression can be derived.

Sxx (ω) = H (ω)CHH (ω) ∝ H (ω)HH (ω) (6.5)

Eq.6.5 is of great importance, since it shows that the output holds the modal characteristics of the system.
This equation is the starting point of most of frequency-domain OMA techniques. Finally, the structure is
assumed to be excited at multiple locations, so that all the modes of interest are excited (controllable), by
uncorrelated white noise forces (off-diagonal terms of the C are zero).

Before describing the steps of FDD, two approaches will be presented to explain the modal decomposition
of the output PSD matrix.

1st Approach

In the first approach, the FRF will be expressed using the partial fraction expansion form (poles and
residues) of Eq.6.6.

H (ω) =
n∑

k=1

Rk

iω−λk
+ R̄̄R̄Rk

iω− λ̄k
(6.6)

where, in this equation n is the total number of DoF, λk , λ̄k are the poles (pair of complex conjugate roots of
the denominator), and Rk ∈ Cmxr is the residue matrix. Also, when using this formulation of H, the residue
can be calculated as Rk =φφφkγγγ

T
k , where φφφk ∈ Cmx1 is the mode shape vector of mode k and γγγk ∈ Cr x1 is the

related modal participation factor vector. By substituting 6.6 in the first part of 6.5, and after several mathe-
matical manipulations, the output PSD matrix can be also written in its pole/residue form.

Sxx (ω) =
n∑

k=1

Ak

iω−λk
+ Ā̄ĀAk

iω− λ̄k
+ AAAT

k

−iω−λk
+ AAAH

k

−iω− λ̄k
(6.7)

where, Ak ∈Cmxm is the residue matrix and can be determined by considering the influence of all n modes of
the system as shown in Eq.6.8.

Ak =
n∑

s=1

(
Rs

−λk −λs
+ R̄̄R̄R s

−λk − λ̄s

)
CRT

k (6.8)

Since for s = k, the denominator in Eq.6.8 tends to zero, it can be concluded that the residue of Sxx close to
mode k is dominated by the presence of modeφφφk . In other words, the rest modes apart from mode k have a
minor influence on Ak . Additionally, for sub-critically damped systems it can be proved that Ak ≈ dkφφφkφφφ

T
k . By

substituting this approximation of the residue into Eq.6.7, in the vicinity of a natural frequency k, the output
PSD matrix can be expressed by the following equation.

Sxx (ω) ≈
n∑

kESub(ω)

(
dkφφφkφφφ

T
k

iω−λk
+ dkφ̄̄φ̄φkφ̄̄φ̄φ

T
k

−iω− λ̄k

)
=ΦΦΦ di ag

(
Re

(
2 dk

iω−λk

))
ΦΦΦH (6.9)

This expression describes the modal decomposition of the output PSD matrix and implies that close to a
specific frequencyω, only a small number of modes will play an important role in the PSD. The full derivation
is explained by Brincker et al.[55] and also in [58].
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2nd Approach

An easier way to understand the modal decomposition of the output PSD matrix can also be illustrated by
starting from the main principle of modal analysis. In that way, the response x ∈ Rmx1 of the system can be
written as the superposition of the modal coordinates, considering also the related mode vectors.

x (t ) =
n∑

k=1
φφφkqqqk (t ) =ΦΦΦq (t ) (6.10)

Then, the correlation matrix Cxx , which includes all the correlation functions of the responses, can be calcu-
lated as follows.

Cxx (t ) = E
[
x (t )x(t )T ]= E

[
ΦΦΦq (t )q(t )TΦΦΦT ]=ΦΦΦE

[
qqT ]

ΦΦΦT =ΦΦΦCqqΦΦΦ
T (6.11)

An equivalent relation in frequency-domain can be derived after applying Fourier transform.

Sxx (ω) =ΦΦΦSqq (ω)ΦΦΦH (6.12)

In case where the modal coordinates are uncorrelated, then Sqq will be diagonal. Also, for orthogonal mode
shapesΦΦΦ, this expression is equivalent to Eq.6.9.

Step - 1 Auto/cross-PSD matrix

As shown before, the theory of FDD is ends at an expression which includes the auto/cross-PSD matrix
Sxx ∈ Rmxm . Therefore, the first step of this algorithm is the determination of this matrix. In practice, this is
most of the times done by using already existing Matlab functions (e.g. cpsd) for all possible combinations of
the response time series.

Step - 2 Singular Value Decommission

Once the PSD matrix is computed at discrete frequency lines, then it is decomposed into three matrices
by performing SVD.

Sxx (ω) = USVH (6.13)

where U and V ∈ Cmxm are orthogonal matrices that hold the singular vectors and S ∈ Cmxm is the diagonal
matrix that includes the singular values of Sxx . In case where all the outputs are used as references in the
PSD matrix, then U and V are identical. As explained before by the theory behind of FDD, at a given frequency
range a small number of modes will be dominant. Assuming that inside a given frequency region only the kth

mode is dominating, then the PSD matrix at that given frequency range will have rank equal to one. In other
words, one singular value will be non-zero compared to the others and the PSD matrix will be approximated
by the following equating.

Sxx
ω→ωk

(ω) ≈ u1k s1k uH
1k (6.14)

Hence, for given frequency lines, the related first singular vector of matrix U can be directly related to mode
shape k as shown in Eq.6.15.

φφφk = u1k (6.15)

For the case of multiple closely spaced modes, or even overlapping modes, the rank of PSD matrix will be
equal to the number the modes that dominate that given frequency region. Therefore, displaying graphically
the singular values along the frequency range is a common practice to indicate the locations where resonance
occurs. The natural frequency of the relative mode can be directly obtained by the frequency line of the peak.
Additionally, multiple peaks with more than one singular values non-zero will indicate that multiple modes
are present at that region. Another advantage of FDD is that instead of using a bunch of output PSDs, the iden-
tification is based on a smaller number of singular value functions in frequency domain, which summarize
all the modal information of the output PSDs.

It need to be mentioned that for the case where the system is excited also by an harmonic component,
almost all the modes will be excited significantly and this will lead in almost full-rank PSD matrix at the fre-
quency region around the frequency of the harmonic.
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FDD, as explained by Brincker et all.[55], stops at that step. This means that this technique is incapable of
obtaining the modal damping ratios of the system modes. From now on the so-called EFDD comes into play
and aims at obtaining a more elaborated estimate of the natural frequency and of course modal damping.

Step - 3 Modal Assurance Criterion

In this step, EFDD suggests a way to obtain a Single-Degree-Of-Freedom (SDoF) bell function around an
identified mode. The main idea is that, due to resonance, a whole range will be dominated by the given mode.
Inside this range, the system may be assumed to behave as a SDoF, decomposed from the rest modes of the
system. In that range, the PSD matrix will have singular vectors that are largely close to the mode shape. The
limits of that region can be defined by calculating a Modal Assurance Criterion (MAC) between the singular
vector of the frequency line that corresponds to a peak of the singular values u1k ∈ Cmx1 (reference vector)
and the singular vectors of the neighbouring frequency lines u1i ∈Cmx1 .

M AC =
∣∣uH

1k u1i
∣∣2(

uH
1k u1k

)(
uH

1i u1i
) (6.16)

The singular values that correspond to a MAC factor larger than a user-specified MAC threshold level will be
included in the frequency region, while the rest will be neglected. A small threshold will lead into larger
number of singular values, but with less intense presence of the corresponding mode.

Step - 4 Auto-PSD of SDoF

Once the limits of the frequency range around a mode k have been determined according to the MAC
factor, a SDoF spectral bell is defined as the part of the singular values around the selected peak with large
MAC factor. Outside the limits of the frequency range the values of the SDoF spectral bell is set to zero. This
part of the singular values can be interpreted as the auto-PSD of the modal coordinates (Sqq (ω), forω close to
the kth peak) and can be used for the determination of the modal damping ratio and the natural frequency.
Therefore, the estimates might be biased in case where the bell expands over a frequency range with harmonic
input components.

One way to obtain an averaged mode shape is to calculate the mode shape as a weighted average of the
mode shapes along the SDoF bell, using as weights frequency of the correspondent frequency line.

Step - 5 Derive modal parameters from free decay

In the last step, all the auto-PSD functions, which have been collected from each pick of the singular value
plot, will be inverted from frequency-domain into time-domain using the inverse discrete Fourier transform
(IDFT). As it can be deduced, by inverting the auto-PSD functions, the related cross-correlation functions will
be obtained. These functions are more or less the free decay response of each SDoF system. Hence, for each
peak, both the corresponding natural frequency and damping ratio can then calculated by the logarithmic
decrement technique. Therefore, EFDD identifies the modal parameters from time-series and can be charac-
terized as a combined frequency-time-domain method.

At first, the natural frequency is determined by looking into the zero-crossing times of the free decay. Then
by applying linear regression (y =α+βx) on time moments of each crossing (y) and the relative crossing times
(x), the natural frequency may be calculated as ωk = 2π/T , for T = α+2β. In that way, the accuracy on the
estimated natural frequency increases and is not affected by the frequency resolution as much as in FDD.

Finally, damping can be obtained from the logarithmic decrement. The extremes r j of each peak and
trough j of the free decay time-series are at first collected. Then the logarithmic decrement δ is governed by
expression Eq.6.17 and can be calculated via linear regression (y =α+βx) for y = l n

(∣∣r j
∣∣) and x =− j /2.

δ= 2

j
ln

(
r0∣∣r j

∣∣
)
→ δ j

2
= ln(r0)− ln

(∣∣r j
∣∣)→ ln

(∣∣r j
∣∣)= ln(r0)− j

2
δ (6.17)

Then, after determining the logarithmic decrement δ, the damping ratio of the SDoF can be calculated based
on Eq.6.18.

ζ= δp
δ2 +4π2

(6.18)

In that way, both natural frequencies and damping ratio can be obtained, at the selected peaks of the singular
value diagram.
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6.2. NUMERICAL RESULTS
FDD and EFDD will be applied in the current section on simulated data. As described in Section 6.1, FDD is
applied in a non-automated way, by selecting manually peaks from the singular value diagram. This is the first
user-made decision. Once the peak has been selected and the SDoF auto-PSD has been determined and re-
inverted back to time-domain, then the user needs to select the part of the time-domain impulse response in
order to obtain the modal properties. Aiming at increasing the accuracy of the algorithm, the selection of the
free decay is performed multiple times, and based on the resulting modal properties, a pseudo-stabilization
diagram is built. In that diagram, the model order is replaced by the number of the iterations. In the end, the
identified modal properties are obtained as the mean values of all the iterations. Despite the fact that when
damping is also identified the algorithm is named as EFDD, from now on the algorithm that will be applied to
the responses will be referred to as FDD.

6.2.1. SIMULATED RESPONSES USING MATLAB MODEL

FDD for white noise input

At first, FDDwill be applied on simulated responses from the OWTmodel in Matlab, loaded by a white noise
input. More details about the loading cases can be found in Section 3.2.2. In the first step, the auto/cross PSDs
are calculated based on the response time-series. Before deriving these spectra, the time-series are corrupted
by measurement noise of SNR equal to 50 and are divided into two blocks to obtain an averaged estimation
of the PSDs and limit the influence of noise. Keep in mind that the first 100s of the time-series are truncated
from the responses to remove the transient part. Using these PSD matrices, the spectrum of singular values
can be obtained via SVD. Then three peaks can be selected as shown in Figure 6.1(a). These parts of the
spectrum represent the auto-PSDs of each SDoF and are isolated from the rest singular values according to
the selected value of MAC factor (here =80%). In the next step, these spectra and inverted into time-domain
in order to derive the impulse response of each of the three modes. The related free decay for the first mode
can be displayed in Figure 6.1(b). In the end this impulse response is used to derive the modal properties.
This whole procedure is very fast and can be applied in an iterative manner to derive a pseudo-stabilization
diagram. Figure 6.1(c) shows this diagram for 20 iterations.
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(c) Stabilization diagram for FDD
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Figure 6.1: Stabilization diagram - FDD for white noise input

The average value of all these 20 iterations can be shown in Table 6.1. The derived modal properties are close
to the exact values. However, the singular values did not show any amplification close to the fourth mode,
and therefore, this mode was not able to be identified.

Mode
Exact FDD (white noise)

ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%)
1 1.155 4.00 1.155 3.94
2 12.303 2.00 12.407 2.15
3 37.305 5.09 37.692 5.12

Table 6.1: Identified and exact modal properties - FDD for white noise input

FDD for white noise and harmonic input

In this paragraph, the influence of a harmonic component on the identification is investigated. This can
be done by adding an harmonic component in the white noise excitation. Three cases have been considered
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for harmonics at frequencies 1.31rad/s, 1.45rad/s and 1.76rad/s. Hence, it is clear that attention will be
focused on the first mode. Measurement noise has been deactivated for the purpose of this given task. The
rest settings are the same as described in application for white noise input. Figure 6.2 shows the stabilization
diagrams for 20 iterations. As it can be shown, for the case where the harmonic is very close to the funda-
mental natural frequency, the identified mode is very unstable. However, when the harmonic starts moving
away from the mode, the identification becomes more and more stable.
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(a) Stabilization Diagram for 1.31rad/s (MAC=80)
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(b) Stabilization Diagram for 1.45rad/s (MAC=80)
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(c) Stabilization Diagram for 1.76rad/s (MAC=80)
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Figure 6.2: Stabilization diagram, zoomed at the fundamental natural frequency - FDD for white noise and harmonic input

An alternative attempt was made to reduce the MAC factor from 80% to 95% so that the harmonic will outside
the SDoF bell, but still the identification was unstable for 1.31rad/s.

FDD for wind, wave and current excitation

Similar to the past two algorithms, the algorithm will be tested also for the case where the OWT model is
loaded by wind, wave and current. The settings of FDD are the same as described in the case of white noise
input. What changes is that for a MAC equal to 80%, the SDoF of the third mode was too small and this leaded in
an underestimation of the modal damping. Therefore, a MAC factor of 75% has been selected to derive a wider
SDoF bell. According to Figure 6.3, the three first modes have been stably identified. An attempt was made
also to identify the fourth mode, but even for small MAC factors, no SDoF bell curve was able to be determined.
In other words, there is no dominant mode at that frequency region.
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Figure 6.3: Stabilization diagram - FDD for wind, wave and current input

The results of the identification can be shown in Table 6.2. Similar to ERA/NExT and SSI, the first mode is
slightly shifted towards smaller frequencies. It is still unclear whether this shift is related to the presence of
wave, or this small difference is a typical deviation from the exact values.

Mode
Exact FDD (env.cond.)

ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%)
1 1.155 4.00 1.146 5.18
2 12.303 2.00 12.307 2.29
3 37.305 5.09 37.240 4.25

Table 6.2: Identified and exact modal properties - FDD for wind, wave and current excitation



6.2. NUMERICAL RESULTS 61

6.2.2. SIMULATED RESPONSES USING MODEL IN FAST
In the present section FDD algorithm will be applied on the simulated cases from the model in FAST described
in Section 2.2. These data correspond to input loading and system that violate both white noise and LTI
assumption. In addition, FDD assumes that the system is lightly damped. In case where this condition is
violated, the expression of Eq.6.9 is not valid any longer. Still, Eq.6.12 holds and the singular values can be
used as an indicator of the auto-PSD of the modal coordinates.

Regarding the algorithm of FDD, the user is asked to determine the peaks that might correspond to modes.
Therefore, the identification is not an automated procedure like ERA/NExT and SSI. Additionally, one shall
be critical about the SDoF bell curve that is determined using a given MAC factor, since, as showed in the
application on the data from the model in Matlab for wind, wave and current input, the bell curve might be
too narrow. This will probably result in an underestimation of the damping ratio. On the other hand, using
a highly decreased MAC factor will result in a SDoF where the presence of the given mode is less dominant.
Hence, the MAC factor that will be used is up to the engineer’s judgement.

Before going into details, the response time-series derived from FAST are initially corrupted with mea-
surement noise, and then divided into blocks. This aims at obtaining averaged PSDs and smoothing out the
influence of measurement noise. The sampling frequency is selected to be 63.66Hz, so that the maximum
energy inside the spectrum would be 200rad/s. This takes into account the Nyquist frequency, and ensures
that no aliasing would affect the response spectra. In fact, most of the energy of the response spectra is gath-
ered below 20rad/s. Then, the singular value spectrum can be derived by applying SVD on the auto/cross
PSD. This spectrum for the first loading case FC1 can be shown in Figure 6.4.
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Figure 6.4: Singular value spectrum, including selected peaks for FC1 and MAC = 95%

As described in theory, the singular values are an indicator of the number of modes that contribute signif-
icantly in the PSD at a given frequency range. In case where the second mode shows also a peak at a given
frequency range, then there might be a second mode close to the first one. However, the case where all the
singular values are amplified, can be explained by the presence of external loading. An important observa-
tion is that the peaks at the region of the tower bending modes are not repeated at the second singular value
plot. This is not the case for the nP and the region where blade modes are dominant. Therefore, probably the
blade modes are interpreted as external loading and not a mode.

In Figure 6.4 one may see that in total 7 peaks have been selected. The SDoF bell curves have been deter-
mined using a MAC factor of 95%. Initially, a value of 75 was used, but the 5th peak resulted in a SDoF bell curve
that covered a very wide range, including the second tower bending mode. When the mac factor was educed
to 85%, the range of the SDoF bell reduced, but still included the 6th peak. In order to obtain a mode that
corresponded only to the 5th peak, the MAC had to increase to 95%. The same procedure has been followed for
all the peaks so that the identified mode corresponds to the selected peak (do not shift) and also have as wide
as possible SDoF bell curve for better damping ratio estimation.

Case FC1

As it can be shown in Figure 6.5, four modes were identified using FDD. However, the first fore-aft tower
bending mode needed an extremely higher value of MAC in order to derive a SDoF that does not expand at
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frequencies close to 3P. Additionally, two flapwise blade bending modes have been identified with relatively
high damping ratio, but still lower than the corresponding exact values. Further than that, the second tower
bending mode was identified with also a good estimate of damping. The rest region at lower frequencies was
dominated by the presence of the input harmonic components and no mode was able to be identified.
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Figure 6.5: FDD - Stabilization diagram for FC1 and MAC = 95%

Mode
Exact (8.5rpm) FDD (FC1)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.780 6.15 1.8232 3.71 99.2
B2-F2 11.260 10.80 11.932 7.12 95
B3-F2 12.895 9.05 13.044 6.75 90
T-FA2 15.040 2.85 15.041 3.39 90

Table 6.3: FDD - Identified modal properties for FC1

Case FC2

The stabilization diagram of Figure 6.6 corresponds to 7 peaks for MAC factor equal to 95%. As it can be
shown, only one mode was identified in a stable way (B2-F2). The second bending mode of the tower was
unstable due to the influence of the neighbouring flapwise blade modes. However, using larger MAC factors
isolated the SDoF bell curves from the rest singular values for both the tower modes and resulted in stable
identification. Unfortunately, the region close to 12rad/s seemed to include a mode, but even for very large
MAC values it was not able to differentiate from tower mode. Finally, the rest modes shown in the figure are
nP.
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Figure 6.6: FDD - Stabilization diagram for FC2 and MAC = 95%

Mode
Exact (10.5rpm) FDD (FC2)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.785 7.30 1.823 5.01 96
B2-F2 11.105 13.60 11.249 4.95 90
T-FA2 15.015 3.45 15.24 3.44 99

Table 6.4: FDD - Identified modal properties for FC2

Case FC3

As it can be shown from Figure 6.7, the identification using a MAC factor equal to 95% resulted in several
non-structural modes (at 3P and 3P), two shifted modes (T-FA1 and a blade mode) and a stable tower mode
T-FA2. Then, higher values ofMAC factor stabilized the tower mode T-FA1 and also leaded in the blade mode
B3-F2. Unfortunately, the rest flapwise blade bending modes could not be isolated from the influence of the
tower mode T-FA2.
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Figure 6.7: FDD - Stabilization diagram for FC3 and MAC = 95%

Mode
Exact (11.5rpm) FDD (FC3)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.790 7.75 1.779 3.93 96
B3-F2 13.260 10.85 13.504 2.86 98.5
T-FA2 14.995 3.75 15.076 2.52 90

Table 6.5: FDD - Identified modal properties for FC3

Case FC4

In FC4 the wind speed is very high and the turbine operates inside the third region with constant rotational
speed. The influence of the thrust force seems to be much larger than in the previous cases. This is deduced
by looking in the stabilization diagram of Figure 6.8, where all the 6 selected peaks are gathered closed to
nP regions. Still, the tower T-FA2 mode was stably identified, but the corresponding damping was relatively
decreased compared to the exact values. A possible reason could be that the 12P coincides with the mode
and could make the SDoF bell curve peakier. Additionally, the tower mode T-FA1 was identified by increasing
the related MAC factor to 96%. Finally, all the blade modes around 9P are dominated by the harmonic.
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Figure 6.8: FDD - Stabilization diagram for FC4 and MAC = 95%

Mode
Exact (12.1rpm) FDD (FC4)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.805 10.20 1.873 8.33 96
T-FA2 14.758 4.34 15.078 2.84 95

Table 6.6: FDD - Identified modal properties for FC4

Case FC5

FC5 is the last examined case of simulated data in FAST. In contrast to the previous identifications, here
most of the modes were able to be identified in a stable way without changing the MAC factor. As it can be
shown in Table 6.7, apart from the tower mode T-FA1, all the rest natural frequencies and the corresponding
damping ratios are close to the exact values derived from FAST.
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Figure 6.9: FDD - Stabilization diagram for FC5 and MAC = 95%

Mode
Exact (0rpm) FDD (FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
MAC
(%)

T-FA1 1.760 0.28 1.778 3.28 95
B2-F1 4.350 0.69 4.213 0.68 95
B2-E1 6.847 1.09 6.823 1.13 95
B2-F2 11.836 1.88 11.982 1.62 95
B1-F2 12.680 2.02 12.516 1.82 96
T-FA2 15.055 2.40 15.054 2.53 95

Table 6.7: FDD - Identified modal properties for FC5

6.3. CONCLUSIONS
In this chapter, FDD was applied in an iterative way on data derived from the examined simulated cases of the
OWT in Matlab and FAST. Initially, the algorithm of FDD was applied on the ideal white noise input. The algo-
rithm was able to derive good estimates of both the natural frequencies and the damping ratios. Additionally,
the influence of an harmonic component close to a mode was examined, and it was concluded that the iden-
tification can become unstable for very closely spaced modes, or also shifted for an intermediate distance.
Finally, an the same system was identified using simulated results considering environmental conditions. In
that case, where the input spectra are a Kaimal and a JONSWAP spectrum for wind and wave, respectively, the
first three modes were identified. Therefore, the influence of wave in the identification was rather minor.

As far as the identification of the operating OWT in FAST is concerned, FDD was able to derive the first
tower bending mode by increasing the MAC factor. However, this option would also decrease the width of
the SDoF bell curve and might affect the identification. Still, the derived damping values of mode T-FA1 are
comparable with related identified values using ERA/NExT. Regarding the blade modes, FDD resulted in a very
small number of stable blade modes. The main reason is that the influence of nP harmonics was dominant in
a big part of the spectrum, and no clear peaks could be obtained. Moreover, most of the flapwise F2 bending
modes were dominated by the presence of the second tower mode.



7
LEAST-SQUARES COMPLEX

FREQUENCY-DOMAIN ESTIMATOR

The Least-Squares Complex Frequency-domain (LSCF) estimator is a curve-fitting technique that aims at iden-
tifying the modal properties of a system by fitting a rational fraction of two polynomials on each response
auto/cross-Power Density Spectrum PSD. In this chapter, the theory behind LSCF will be presented and then
the related algorithm will be applied on simulated data obtained from the OWT models in Matlab and FAST

7.1. THEORY BEHIND LSCF
The algorithm that will be presented in this chapter is the Least-Squares Complex Frequency-domain (LSCF)
estimator, which is a simple and well-known frequency-domain estimator. This technique was introduced by
P. Guillaume et al.[59] in 2001 and is more-or-less a curve fitting procedure that aims at obtaining the modal
parameters of the system based only on the PSD of the output measurement data. As it will be shown later
on, LSCF uses the discrete-time common-denominator model in order to extract the poles of the LTI system.
Next, the natural frequencies and the damping ratios can be obtained from the real and the imaginary part of
these poles.

It has to be mentioned that LSCF has been employed in many cases as the starting point of the Maximum
Likelihood Estimation (MLE) method, which is an iterative frequency-domain estimator[60]. In that scheme,
the main purpose of LSCF is to obtain initial values for MLE. The iterative nature of MLE is a way to deal with
noise that is present in the measurement data, when the identification is done using output-only spectra.

However, several studies revealed that these initial values derived by LSCF already provided dynamic char-
acteristics of high precision and minimal computational demand[61]. Therefore, one of the main advantages
of this technique is that it is able to determine the modal properties with a low computational intensity, which
allows to assess a large range of model orders efficiently. In that way, LSCF is able to obtain stabilization dia-
grams, even when applied to a large number of response data. Unfortunately, LSCF is referred not to be able
to identify closely spaced modes. Instead, in such case LSCF leads into one single erroneous mode. Besides
this disadvantage, in this chapter an attempt is made to apply LSCF on noisy output data.

Before explaining the algorithm behind this method, it is important to mention that in practice one may
find the poly-reference version of LSCF method (pLSCF), which is also commercially known as PolyMAX
method[12][61][13]. This technique is based on the so-called right matrix-fraction model instead of the
common-denominator model and aims at dealing with the problem of closely spaced modes.

LSCF starts with the assumptions that the structure of interest can be approximated by an LTI system,
and that the ambient excitation is supposed to be a broadband white noise stochastic process. Under these
conditions, as explained in Section 6.1, Eq.7.1 is valid.

Sxx (ω) = H (ω)CHH (ω) ∝ H (ω)HH (ω) (7.1)

where, Sxx ∈ Cmxm is a matrix that contains auto/cross-PSD of the measured output responses, H ∈ Cmxr is
the FRF, (•)H denotes the Hemitian (conjugate transpose) of a matrix and C is a constant matrix proportional
to the identity matrix, representing the PSD of the broadband white noise stochastic system input. In this
algorithm, the FRF will be expressed using a common-denominator model. In that case, each element of the

65
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FRF matrix is represented by a rational fraction of two polynomials a(ω) and bi j (ω). This formulation can be
obtained by reformulating the definition of the FRF function. Eq.7.2 shows this definition together with the
polynomial expression of the FRF.

H (ω) =
n∑

k=1

Rk

ω−λk
+ R̄̄R̄Rk

ω− λ̄k
=

 b11 (ω) · · · b1r (ω)
...

. . .
...

bm1 (ω) · · · bmr (ω)


d (ω)

= B (ω)

d (ω)
(7.2)

According to that expression the poles of the FRF will also be the roots of the denominator polynomial d(ω).
By substituting Eq.7.2 into Eq.7.1, it can be shown that the auto/cross-PSD matrix has similar modal decom-
position as the FRF matrix (see Eq.6.7). Therefore, it is reasonable to expect that the roots of polynomial d(ω)
will be the poles of the system.

Sxx (ω) =

 N11 (ω) · · · N1m (ω)
...

. . .
...

Nm1 (ω) · · · Nmm (ω)


d (ω)

= N (ω)

d (ω)
(7.3)

Starting from this expression, LSCF estimator will determine these polynomials that will represent Sxx by
fitting curves in a least squares sense. In the following part, the mathematical procedure that is followed in
order to calculate these unknown polynomial functions will be described.

Determination of the unknown polynomial functions

The curve-fitting procedure will be applied on each separate element of Sxx matrix regardless of the way
they are sorted[59][12][62]. The common-denominator mathematical model that will be used here is named
as Sk ∈ C and models each element of matrix Sxx , for k = 1, . . . ,mm. Therefore, each element k from the PSD
matrix can be expressed based on Eq.7.4.

Sk (ω) = Nk (ω)

d (ω)
(7.4)

where the numerator and the common-denominator polynomials will be expressed by following two rela-
tions.

Nk (ω) =
n∑

j=0
Ω j (ω)Bk j

d (ω) =
n∑

j=0
Ω j (ω) A j

(7.5)

In this equation, the first term Ω j ∈ C is the polynomial basis function and terms Bk j and A j ∈ R are the
unknown real parameters that need to be estimated. Also, j = 0, . . . ,n are the exponents of the polynomial that
will be used, starting from zero for the constant term of the polynomial and n is the order of the polynomial.
It is assumed here that both the nominator and the denominator have the same order.

Since both the numerator and the denominator polynomials are expressed in the z-domain, selecting a
discrete-time (or z-domain) polynomial basis function Ω j will have several advantages over a continuous
time model. More in detail, in discrete-time dynamic problems a common choice is to use the exponential
expression of Eq.7.6. This expression will yield a better numerical conditioned estimation problem due to
the fact that the exponential can be expressed by Sin and Cos functions, which at different frequencies are
mathematically orthogonal.

Ω j (ω) = e(−iω∆t ) j (7.6)

where ∆t is the sampling time. The main target of this curve-fitting procedure is to identify the unknown
parameters A j that correspond to all the exponents. The common denominator terms A j and the nominator
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terms for each component k of the PSD approximation Bk j will be collected into a single unknown column
vector θθθ.

θθθ =



βββ1

βββ2
...

βββmm

ααα


, βββk =


Bk0

Bk1
...

Bkn

 , aaa =


A0

A1
...

An

 (7.7)

where θθθ ∈ R(n+1)(mm+1)x1. Then, the identification problem is solved by minimizing the cost function for a
discrete frequency vector ω f ( f = 1, . . . , N f ), which is shown in Eq.7.8.

lLS
(
θθθ
)= mm∑

k=1

N f∑
f =1

∣∣εk
(
ω f ,θθθ

)∣∣2 (7.8)

where the least squares (LS) equation error, εk
(
ω f ,θθθ

)
is defined as described by Eq.7.9. This error can be

interpreted as the difference between the PSD element k multiplied with the unknown modelled denomina-
tor, and the unknown modelled nominator of this PSD element k. In that sense, by minimizing this error, the
measured and the modelled kth element of the PSD will coincide.

εk
(
ω f ,θθθ

)= Sk
(
ω f

)
d

(
ω f ,θθθ

)−Nk
(
ω f ,θθθ

)
(7.9)

As referred in [59][12][62], due to the fact that this error equation is linear in the parameters and also because
a common-denominator model is used, the error can be formulated in matrix notations as expressed by
Eq.7.10.

εk
(
ω f ,θθθ

)= [
Xk Yk

][
βββk

ααα

]
(7.10)

Hence, the minimization of the error is equivalent to the expression of Eq.7.11.


ε1

(
ω f ,θ

)
ε2

(
ω f ,θ

)
...

εk
(
ω f ,θ

)

=


X1 0 · · · 0 Y1

0 X2 0 Y2
...

. . .
...

0 0 Xmm Ymm





βββ1

βββ2
...

βββmm

ααα


= JθJθJθ ≈ 0 (7.11)

where, each block Xk and Yk ∈ CN f x(n+1) and J ∈ C(mmN f )x((mm+1)(n+1) is the Jacobian matrix of this least-
squares problem. These vectors Xk and Yk can be calculated using the known PSD data Sk and also the poly-
nomial basis functionΩ j as described in Eq.7.12.

Xk =


Ω0 (ω1) · · · Ωn (ω1)

...
...

Ω0

(
ωN f

)
· · · Ωn

(
ωN f

)


Yk =


−Ω0 (ω1)Sk (ω1) · · · −Ωn (ω1)Sk (ω1)

...
...

−Ω0

(
ωN f

)
Sk

(
ωN f

)
· · · −Ωn

(
ωN f

)
Sk

(
ωN f

)


(7.12)

By pre-multiplying Eq.7.11 with the Hermitian transpose of the Jacobean matrix, JH , the minimization of the
equation error, εεε

(
ω f ,θθθ

)
is equivalent to the expression of Eq.7.13. As described in [59], this step leads to a

better conditioned problem and speeds up the method.

J H JθJ H JθJ H Jθ =


R1 0 · · · S̄1

0 R2 S̄2
...

. . .
...

S̄H
1 S̄H

2 · · ·
mm∑
k=1

Tk





βββ1

βββ2
...

βββmm

ααα


≈ 0 (7.13)
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with Rk = Re
(
XH

k Xk
)
, S̄k = Re

(
XH

k Yk
)

and Tk = Re
(
YH

k Yk
)

real, square (n+1)x(n+1) matrices. Solving Eq.7.13
for the unknown parameter vector results in the two expressions of Eq.7.14.

βββk =−R−1
k S̄kααα

mm∑
k=1

(
Tk − S̄H

k R−1
k S̄k

)
ααα= Mααα≈ 0

(7.14)

where, M ∈R(n+1)x(n+1). In order to solve forααα and avoid the trivial solutionααα= 0, the last element ofααα, An is
assumed to be constant and equal to 1. Using this constraint, the rest n elements ofααα can be calculated in a
least-squares sense.

αααLS =
{ −M(1 : n,1 : n)−1M (1 : n,1+n)

1

}
(7.15)

Apart from the solving Eq.7.15 using least squares, several other approaches are also available in literature[63]
[64][65][66]. Solvers like Total Least Squares (TLS), Bootstrapped Total Least Squares (BTLS) and Weighted
Generalized Total Least-Squares implementation (GTLS) are some of the most popular frequency domain
estimators. In short, the procedure behind LSCF follows the steps below.

To conclude, this procedure resulted in the real unknown parameters of the k nominator polynomials
and the common-denominator polynomial. Using these values, the PSD matrix can be modelled and based
on the theoretical expression of Eq.4.1, the modal properties of the system can be obtained from the roots of
the denominator.

Step - 1 PSD matrices

In the first step, the auto/cross-PSD matrix Sxx ∈ Cmxm is determined from the discrete-time output re-
sponse time-series using the Welch’s averaged, modified periodogram method[67]. This method is one of
the most widely used approaches in the calculation of PSD functions, and is an already incorporated Matlab
function (e.g. pwelch).

In this approach, the time-series are divide into overlapping segments of a certain length using a given
overlapping percentage ∈(0%,100%). In the second step, a window is applied in time-domain at each sub-
record, considering a Hamming window of length equal to the length of the segments. Other types of windows
can also be used, but Hamming window combines both good resolution and small amplitude of side-lobes
when inverted into frequency domain. Then Fast Fourier Transform (FFT) is used to convert the windowed
sub-records into frequency domain. In the end the response spectra that correspond to the kth sections from
two different response data i and j , i.e. Xi ,k (ω) and X j ,k (ω) will be used to obtain the PSDs as shown in
Eq.7.16.

Sxi x j (ω) = 1

n f

n∑
k=1

Xi ,k (ω) X H
j ,k (ω) (7.16)

where, n f is the length of the time-series, and n is the number of sections. One may observe that PSDs ob-
tained from Eq.7.16 provide an averaged estimate. In case of noisy time-series, this would lead into smoother
spectra.

Step - 2 Determine polynomial basis functionΩ j (ω)

The next step is to determine the polynomial basis functionΩ j (ω) that will be used. As mentioned before,
for discrete-time dynamic problems the exponential expression of Eq.7.6 can be used. This function will be
calculated for each exponent j = 0, . . . ,n, where n is the order of the polynomial of both the nominator and
the denominator.

Step - 3 Determine matrices Xk , Yk , Rk , S̄k and Tk

After the calculation of Ω j (ω), the vectors Xk and Yk can be calculated as a function of the polynomial
basis function and the PSD matrices (Eq.7.12). After the matrices Xk and Yk are calculated, the reduced real
matrices Rk = Re

(
XH

k Xk
)
, S̄k = Re

(
XH

k Yk
)

and Tk = Re
(
YH

k Yk
)

are obtained.
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Step - 4 Find the unknown parameters θθθ

In the last step, matrix M is calculated using the three aforementioned matrices (see Eq.7.14). Then, the
least squares solution of the unknown common-denominator coefficients can be calculated from Eq.7.15.

Finally, unknown nominator polynomials can be obtained by calculating βββk as explained in Eq.7.14,
where ααα = αααLS . These polynomials are the main output from this curve-fitting procedure. Finally, for vi-
sualization, these coefficient θθθ can be used together with the polynomial basis function Ω j (ω) to derive the
fitted curves as described by Eq.7.5.

Step - 5 Modal properties

Finally, the roots of the common-denominator are the polesλi of the system and may be used to calculate
the natural frequencies and damping ratio of the system as explained in Eq.4.11 and Eq.4.12.

This whole procedure is very fast and can be applied in an iterative way for n = 1, . . . ,nmax . Therefore, by
plotting the identified natural frequencies with respect to the order of the polynomial, a stabilization diagram
is calculated to visualize the stable modes.

7.2. NUMERICAL RESULTS
The LSCF algorithm will be applied on the response data obtained from the numerical models introduced in
Chapter 3. In the upcoming part, first, the modal properties of the OWT in Matlab will be derived for white
noise input and then for ambient excitation. This is done in order to validate the algorithm and describe how
LSCF will be applied. After this, the first mode of the system will be identified based on responses that corre-
spond to white noise combined with harmonic input. In that way, the robustness against external harmonics
will be checked. In the end, LSCF will be used to estimate the dynamic characteristics of the operating OWT in
FAST. This is actually the greatest challenge, since both the white noise and the LTI assumptions are violated.

7.2.1. SIMULATED RESPONSES USING MATLAB MODEL

LSCF for white noise input

As described by the theory presented in Section 7.1, LSCF is a curve-fitting technique aims at identifying
the poles of noisy auto/cross PSDs by fitting a common-denominator model. In order to deal with the noise,
the Welch’s method will be employed to smooth out the high frequent part of the noise that is present in the
spectra. Once these fluctuations are removed, the main trend of the spectra will be highlighted. A Hamming
window of length equal to 1/10 the length of the spectra with 50% overlapping will be used. Keep in mind that
the time-series have been also corrupted using measurement noise with SNR equal to 50. Figure 7.1 shows
the amplitudes of three elements from the smoothed matrix Sxx ∈Cmxm . As it can be shown, the fitted curve
for the highest order (50) is very close to the power spectra, but tries to fit and model also the noise that still
remains in the spectra.
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Figure 7.1: Original and fitted PSDs using LSCF

The poles of the fitted spectra will result in the modal properties of the system, and by iterating over the poly-
nomial order, a stabilization diagram can be generated. One of the main problems that came out in the LSCF
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algorithm is the large amount of non-structural modes in the stabilization diagrams. Given the low com-
putational time of constructing one stabilization diagram using LSCF, the procedure that has been followed
here, in order to remove as many as possible non-structural modes, suggests the construction of multiple
diagrams. The resulting final diagram will include only the modes that are present in all the diagrams (stable
modes). The modes that were kept in the final stabilization diagram are those that have a difference of natural
frequency and damping ratio lower than 1rad/s and 2%, respectively. It was found out that applying LSCF
on the full frequency band of the auto/cross PSD resulted in modes spread over the whole frequency range
(200rad/s). In case where part of the PSDs at high frequencies is truncated, these non-structural modes that
are related to the presence of noise shift. Therefore, by truncating different part from the high frequencies, the
non-structural modes will be different, but the structural modes will remain the same. Figure 7.2 was gener-
ated after comparing the identified modes between two stabilization diagrams for a truncation at 100rad/s
and 110rad/s. Then, the modes between the two spectra that have a difference of frequencies and damp-
ing ratio lower than 1rad/s and 2%, respectively are kept in the final stabilization diagram, while the rest are
filtered out.

−−−→

Figure 7.2: Stabilization diagram of initial identification (left) and merged modes from multiple identifications (right) – LSCF on white
noise input

As it can be shown, this simple procedure resulted in a quite more clear stabilization diagram, but still too
noisy with respect to the related diagrams of the aforementioned OMA algorithms. One may recognize the
modes of the system by relating the identified modes with the peaks of the response PSDs. The main reason
of these non-structural modes is that the curve for larger orders becomes less smooth and tries to model also
the noisy parts of the PSDs. This cannot be avoided by more intense smoothing (smaller window length),
since after a point, the smoothing procedure will affect the shape of the PSDs by moving and storing energy
from a peak to neighbouring frequencies. This might lead in shifting and/or widening the peak.

Based on the stabilization diagram, the modes that corresponded to the peaks of the response PSDs can be
shown in Table 7.1. The identified modes are very close to the exact values and verify the algorithm. Unfortu-
nately, the first mode was identified when the order of the polynomial increased over 110. Still, this approach
seems promising in the system identification thanks to the small deviations from the exact modal properties.

Mode
Exact LSCF (white noise)

ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%)
1 1.155 4.00 1.155 4.00
2 12.303 2.00 12.325 1.91
3 37.305 5.09 37.315 5.15

Table 7.1: Identified and exact modal properties - LSCF for white noise input

LSCF for white noise and harmonic input

In this paragraph the LSCF algorithm will be used on data, which has been generated with white noise
input, together with harmonic components at frequencies close to the first natural frequency. The considered
frequencies of the harmonic input loading are 1.31rad/s, 1.45rad/s and 1.76rad/s. Figure 7.3 shows the
stabilization diagram for these three cases. As it can be shown, the harmonic influences the identification
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results. The identified natural frequency shifts towards the frequency of the input load. Particularly, when the
harmonic moves away from the natural frequency, this shift is larger until the influence of the harmonic is not
significant. This has to do probably with the fact that the PSDs are smoothed, and this peak is not that sharp
in the PSDs. However, this energy is still saved at the neighbouring frequencies, and leads to this shift of the
identified modes. In case where the external harmonic component is far away from the natural frequency, it
can be shown that the mode becomes stable after several iterations, which still correspond to order (∼180)
larger than the order (∼110) for the case of pure white noise input.

Figure 7.3: Stabilization diagram, zoomed at the fundamental natural frequency – LSCF for white noise and harmonic input

LSCF for wind, wave and current excitation

The case where the system is also loaded by wind, wave and current will be examined here. The algorithm
of LSCFwill be applied in the same way as in the case of white noise input. As it can be shown in Figure 7.4, the
identification is not affected by the presence of wave loading. Actually, no mode was identified at frequencies
lower than the first natural frequency of the system, where all wave energy lies.

Figure 7.4: Stabilization diagram – LSCF for wind, wave and current input

The resulting modal properties can be shown in Table 7.2. The identification leads us to the conclusion that
the external loading did not result in stable non-structural identified mode. It is unclear whether the first
mode is influenced by the presence of the wave. The same observation as in all the previous algorithms hold
also here, since the natural frequency of the first mode is shifted towards lower frequencies, and the modal
damping ratio is overestimated.

Mode
Exact LSCF (env.cond.)

ωωωd (rad/s) ζζζ (%) ωωωd (rad/s) ζζζ (%)
1 1.155 4.00 1.140 6.07
2 12.303 2.00 12.312 2.37
3 37.305 5.09 37.517 5.70

Table 7.2: Identified and exact modal properties - LSCF for wind, wave and current excitation
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7.2.2. SIMULATED RESPONSES USING MODEL IN FAST
In the previous section, the LSCF algorithm was applied on the OWT model in Matlab, loaded by white noise
input. Due to the increased number of identified modes, differentiating between the structural and the non-
structural modes is based on the engineers judgement. Here, this algorithm will be applied on the response
PSD matrix from the accelerations obtained from the model in FAST.

More in detail, the time-series obtained from each of the loading cases of Section 2.2 are initially corrupted
with measurement noise of SNR equal to 50. For all the simulated data from FAST, the whole modal content
is present at frequencies lower than 25rad/s. However, the maximum frequency of the response PSDs is
200rad/s, which means that the PSDs are much wider than they need to be for the identification. Hence,
this range above 25rad/s does not contain any modal information and could be truncated. The approach
described in Section 7.2.1 will also be used here to derive quite clearer stabilization diagrams. In particular,
the first identification will be applied on PSDs truncated at 30rad/s and the second at 40rad/s. The stable
modes will be present at both these diagrams, while the part of the non-structural will be shifted. Then, by
keeping only the modes that have a difference of natural frequencies lower than 1rad/s and a difference of
damping ratio lower than 2%, a filtered stabilization diagram can be obtained.

Case FC1

LSCF was initially applied on the accelerations derived from FC1. The first observation is that the stabi-
lization diagram is still very noisy. However, one may recognize an identified mode at first by the peaks in the
response spectra and then by the identified modes at low polynomial orders, which stabilize for larger orders.
All the identified stable modes were collected in Table 7.3. As it can be shown, both the two tower modes
were identified. However, the related damping ratio was quite lower than the exact values. Additionally, LSCF
resulted in six blade modes. When looking in the flapwise modes one may observe that the damping ratios
are largely underestimated. One possible reason is that they are close to 3P and 6P. Therefore, the presence of
the harmonic excitation will change the shape of the response spectra close to the blade mode and will make
it peakier. Apart from that, the damping ratios of the rest edgewise modes were identified in a better accuracy.

Figure 7.5: LSCF - Stabilization diagram for FC1

Mode
Exact (8.5rpm) LSCF (FC1)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
T-FA1 1.780 6.15 1.779 5.21
B3-F1 3.145 47.45 3.224 4.94
B2-F1 4.900 32.85 4.885 0.56
B3-E1 5.910 1.10 5.971 1.43
B2-E1 7.705 0.85 7.553 0.61
B2-F2 11.260 10.80 11.298 2.90
B3-F2 12.895 9.05 13.019 0.97
T-FA2 15.040 2.85 15.080 1.82

Table 7.3: LSCF - Identified modal properties for FC1

Case FC2

Figure 7.6 shows the results from the identification of FC2 examined case. The number of the non-
structural modes is very high and can be attributed to minor peaks that the fitted curve makes at specific
locations due to noise. Keep in mind that LSCF tries to find a curve that describes the noisy data as good as
possible. Other techniques may fit smoother curves, without including noise when modelling (e.g MLE). Still,
for the present case with the noisy stabilization diagrams, several modes have been stably identified. At first,
both tower modes were identified with a corresponding good estimation of damping ratio. Additionally, three
blade modes have been identified with poor damping precision.
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Figure 7.6: LSCF - Stabilization diagram for FC2

Mode
Exact (10.5rpm) LSCF (FC2)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
T-FA1 1.785 7.30 1.812 7.22
B3-E1 5.710 1.20 5.725 4.55
B2-F2 11.105 13.60 10.998 0.75
B3-F2 13.120 10.45 13.107 2.03
T-FA2 15.015 3.45 15.285 1.27

Table 7.4: LSCF - Identified modal properties for FC2

Case FC3

Applying LSCF on the responses of the third operating load case resulted in a decreased number of modes.
Additionally, most of the modes are attracted by the presence of nP. The only blade mode that was identified
was also close to a very noisy region, which increases the possibilities of obtaining erroneous damping.

Figure 7.7: LSCF - Stabilization diagram for FC3

Mode
Exact (10.5rpm) LSCF (FC3)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
T-FA1 1.790 7.75 1.787 4.93
B1-F2 12.760 12.45 12.900 0.28
T-FA2 14.995 3.75 15.150 1.48

Table 7.5: LSCF - Identified modal properties for FC3

Case FC4

FC4 corresponds to very high wind speeds and strong harmonic excitation that dominate most of the
response spectrum. This can be observed from Figure 7.8 and by the fact that most of the identified modes are
gathered around the nP regions. As shown in Table 7.6, all the estimated damping ratios are underestimated
both for the tower modes and the blade modes.

Figure 7.8: LSCF - Stabilization diagram for FC4

Mode
Exact (12.1rpm) LSCF (FC4)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
T-FA1 1.805 10.20 1.792 4.72
B2-E1 8.416 0.90 8.597 1.27
B1-F2 12.681 17.47 12.647 2.70
B3-F2 13.798 15.36 13.735 0.12
T-FA2 14.758 4.34 14.942 2.21

Table 7.6: LSCF - Identified modal properties for FC4
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Case FC5

FC5 corresponds to parked turbine and no nP are present in the responses. This identification resulted in
the highest number of modes, with also very good damping estimations except for the mode close to the first
flapwise modes (Bx-F1), which was largely increased.

Figure 7.9: LSCF - Stabilization diagram for FC5

Mode
Exact (0rpm) LSCF (FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
T-FA1 1.760 0.28 1.764 3.47
B1-F1 4.164 0.66

4.061 6.55B3-F1 4.187 0.67
B2-F1 4.350 0.69
B2-E1 6.847 1.09 6.830 1.14
B2-F2 11.836 1.88 11.882 1.99
B3-F2 12.134 1.93 12.011 1.72
B1-F2 12.680 2.02 12.516 1.82
T-FA2 15.055 2.40 15.094 2.23

Table 7.7: LSCF - Identified modal properties for FC5

7.3. CONCLUSIONS
LSCF was applied for the identification of the two OWT models giving very dense stabilization diagrams, able
to derive a large number of stable modes. In the application on the model in Matlab, it was figured out that in
order to identify the first mode, a very large number of polynomial order was needed (>110). This happens
due to the resolution of the spectrum. More in detail, when LSCF fits a curve on a relatively sharp peak with
low resolution (e.g. first mode of model in Matlab), the fitted curve will initially (low orders) put a single peak
that resembles a mode of almost zero damping (very rapid amplification at resonance). This is the reason
why LSCF was applied at such high orders. It was found out that this technique is able to obtain an accurate
estimation of the modal properties of the OWT system in Matlab. Briefly, LSCF was affected by the external
harmonic component, especially when it was close to the natural frequency. The influence of the harmonic
was mitigated by the smoothing procedure and no mode was identified at the frequencies of the harmonics.

In the second part of the numerical application, the data from FAST were used as inputs to the code. In all
the cases the algorithm was able to identify both the tower modes. Additionally, the large values of damping
ratio for the first fore-aft tower bending mode and the blades seem to be highly underestimated for most of
the operating cases. In general the damping estimation was better for the edgewise modes which is limited
at values lower than 10%. Finally, several identified modes were engaged to damping ratios much lower than
0.5%. For these cases damping may be affected by the aforementioned behaviour of the LSCF algorithm,
where a peak is modelled by a very small number of spectral values.



8
TRANSMISSIBILITY-BASED OPERATIONAL

MODAL ANALYSIS

Transmissibility-based Operational Modal Analysis (TOMA) introduced an innovative idea in OMA system iden-
tification. This technique aims at raising the influence of the type of the input in the identification of the modal
parameters. In that way, non-structural modes related to the input spectrum are no more present in the iden-
tification. Still, several assumptions have been made. In this chapter the basic idea behind TOMA is initially
presented and then the algorithm will be applied on simulated responses from the OWT models in Matlab and
FAST

8.1. THEORY BEHIND TOMA
The idea of using a transmissibility function as a way to describe a relation between FRFs of a dynamic sys-
tem has been investigated for decades in both numerical[68] and experimental[69] studies. Back in 1998, A.
Ribeiro proposed a generalization of the concept of transmissibility matrix and introduced some important
properties of it[70][71]. As stated in his works, both the FRFs and the transmissibility matrix are properties of
the system. Despite this fact, it is important to keep in mind that the latter is also related to the location and
the number of the applied external forces. Additionally, A. Ribeiro showed that the transmissibility matrix
derived from a set of harmonic and a set of random excitation applied at the same locations, are identical
to each other. In that way, he concluded that the transmissibility matrix is independent of the type of the
applied forces. In short, as the FRF connects the input forces to the output responses, the transmissibility
matrix relates the known /input responses to unknown/output responses.

This property has found many applications in the field of damage detection. However, the real break-
through in applying transmissibilities in the field of OMA system identification came later in 2006, when De-
vriendt et al. proposed a scheme that included transmissibilities for the identification of modal parameters
[72]. This was the first step towards the Transmissibility-based Operational Modal Analysis (TOMA)[73][29][30]
[74][75], which aims at identifying a system without making any assumption about the type of the input. In
that way, this method reduces the danger of identifying non-structural modes, when the input includes signif-
icant harmonic components. Since then, Devriendt et al. did quiet extensive research on obtaining transmis-
sibilities from outputs, which are totally independent of the input spectral content. In that sense, they focused
on deriving transmissibilities of deterministic (non-stochastic) nature. This was essential in the identification
of a system loaded by any type of external loads. Two other techniques that where proposed by Devriendt et
al. are referred to as Poly-reference Transmissibility-based Operational Modal Analysis (pTOMA)[32][33][76]
and Time Varying Transmissibility-based Operational Modal Analysis (Tv-TOMA)[34][35][77]. These two ap-
proaches aim at raising several shortcomings of TOMA, but also aim at automating the identification. More
details will be explained while explaining TOMA.

At first, TOMA starts by obtaining the transmissibilities based on the response data X (ω). This implies the
assumption that the structure of interest is an LTI system, as the expression X (ω) = H (ω)F (ω) will be em-
ployed. The first goal when applying TOMA is to obtain transmissibilities that are independent of the external
loading spectra. The scalar transmissibility is calculated by taking the ratio of two response spectra i and j ,
as shown in Eq.8.1.

75
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Ti j (ω) = Xi (ω)

X j (ω)
=

∑r
k=1 Hi k (ω)Fk (ω)∑r
k=1 H j k (ω)Fk (ω)

(8.1)

where, Xi , X j ∈C are two output response spectra, Fk ∈C is the spectrum of external forces at DoF k = 1, . . . ,r
and Hi k , H j k ∈ C are the related elements of the FRF that connects the input applied at the DoF k to a given
response spectrum i , j .

As it can be deduced, in cases where the input consist of more than one uncorrelated forces, applied at
different locations along the system, then the input spectrum is not simplified and, thus, scalar transmissi-
bility is not deterministic anymore. Keep in mind that pTOMA has been developed to tackle that issue. This is
done by using the multivariable transmissibility matrix instead of the scalar expression of Eq.8.1, and by also
considering as many output reference spectra as the number of the uncorrelated external forces[33]. Coming
back to TOMA, for the ideal cases where the external loading is consisted of a single input, or multiple fully cor-
related inputs, the scalar transmissibility will be deterministic. In other words, under these two conditions
the spectrum of the eternal loading will be simplified. Hence, for a single input the transmissibility will be

Ti j (ω) = Xi (ω)

X j (ω)
= Hi k (ω)Fk (ω)

H j k (ω)Fk (ω)
= Hi k (ω)

H j k (ω)
(8.2)

and for multiple, fully correlated inputs Fk (ω) = fkµ (ω)

Ti j (ω) = Xi (ω)

X j (ω)
=

∑r
k=1 Hi k (ω) fkµ (ω)∑r
k=1 H j k (ω) fkµ (ω)

=
∑r

k=1 Hi k (ω) fk∑r
k=1 H j k (ω) fk

(8.3)

In practice, a purely deterministic nature of T (ω) hardly occurs due to noise and spectral leakage. Thus,
transmissibilities will be calculated using H1 estimator of Eq.8.4, as suggested by Leclere et. al[78]. In that
way, the PSDs can be obtained by Welch’s method and lead into smoother data.

H1 (ω) = Si j (ω)

S j j (ω)
(8.4)

Due to the fact that the transmissibilities are ratios of FRF elements, by looking in the description of H (see
Eq.6.6) one may realize that the poles of the FRF are wiped out. Therefore, the poles of Ti j for a single input
(see Eq.8.2) are the zeros of H j k , which leads to the conclusion that, when visualizing the transmissibility
functions, the peaks of do not correspond at all to any resonance of the system. This for many years made the
application of transmissibility measurements in system identification questionable.

However, one of the greatest properties of Ti j is that close to resonance it becomes constant and totally
independent of the external loading (spectra µk (ω), location k and magnitude fk ). This property applies
regardless of whether the input spectrum has been simplified from Ti j , or not[73].

lim
ω→ωn

Ti j (ω) = ϕi n

ϕ j n
(8.5)

Eq.8.5 shows that Ti j tends to a ratio between the elements ϕi n and ϕ j n of the mode shape ϕn of mode
n. This property of the scalar transmissibility function triggered the development of TOMA. The fundamen-
tal idea is that by using two sets of response spectra, which correspond to different loading conditions, the
transmissibilities of both the cases will have the same value close to the natural frequencies of the system. In
other words, by considering two loading cases K and L, the following equation holds.

lim
ω→ωn

∆T K−L
i j (ω) = lim

ω→ωn
T K

i j (ω)− lim
ω→ωn

T L
i j (ω) = ϕi n

ϕ j n
− ϕi n

ϕ j n
= 0 (8.6)

This means that the function ∆T K−L
i j ∈C becomes zero at the natural frequencies of the system and non-zero

at the rest frequency range. Then, by definition, the zeros of ∆T K−L
i j will be the poles of ∆−1T K L

i j = 1/∆T K−L
i j

and for this specific problem will include the poles of the system. In that way, the identification is possible
once the poles of the so-called base function ∆−1T K L

i j are calculated. By considering all the outputs and a

reference response spectra j , the following ∆−1T K L matrix can be formed.

∆∆∆−1TK L =


∆−1T K L

1 j
...

∆−1T K L
(m−1) j

 (8.7)
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This matrix∆∆∆−1TK L ∈C(m−1)x1 is structured by arraying all the combinations of outputs without considering
the case where i = j .

In Chapter 7, LSCF was introduced as a technique able to derive mathematical models which will rep-
resent the elements of the output auto/cross PSD matrix. As described in that chapter, each element of this
matrix can be modelled as a rational fraction of two polynomials. In addition, all the elements of the PSD
matrix will have the same polynomial expression.

This curve-fitting technique will also be used here in order to derive an expression of the denominator
of ∆∆∆−1TK L , the roots of which coincide with the poles of the FRF. The main advantage here is that ∆∆∆−1TK L

is deterministic and independent of the input spectra. Eq.8.8 shows how matrix ∆∆∆−1TK L is represented us-
ing the common-denominator description with nominator polynomial N . The reason why this curve-fitting
technique is used is to obtain an expression of the polynomial d (ω).

∆∆∆−1TK L (ω) =

 N1 j (ω)
...

N(m−1) j (ω)


d (ω)

= N (ω)

d (ω)
(8.8)

In practice, any frequency-domain estimator can lend itself for the determination of the common-denominator
model of Eq.8.8.

Once the roots of the denominator d are calculated, then natural frequencies and the related damping
ratio of each mode can be obtained. This identification can be executed in an iterative way for increasing
polynomial order in order to generate a stabilization diagram.

In this stabilization diagram one may notice that apart from the resonance frequencies, there are more
non-structural modes. These are mathematical modes and can be attributed to the fact that the transmissi-
bilities may cross each-other at frequencies between two natural frequencies. In other words, the poles of the
FRF are a subset of the total number of the roots of the common-denominator d . This fact is a minor problem,
as one may differentiate between structural modes and mathematical modes by looking into the PSDs of the
response. Several approaches have been proposed to remove these mathematical modes by using responses
of a third set of loading[32][73]. The idea is that these non-structural modes correspond to a given combi-
nation of two loading sets. Hence, a different set of loading will reveal the structural modes. However, using
three sets of different loading conditions is not so practical, as the loading in most cases does not change
significantly.

Finally, a good estimate of the mode shape can be determined directly from the transmissibilities by taking
the frequency line of each natural frequency as described by the limit of Eq.8.5. The whole mode shape can
be calculated by using all the m −1 transmissibilities. The last mth location can be set to 1. Scaling the mode
shape is a decision of the user. A more extensive study about determining the mode shape using TOMA can be
found in[74].

8.2. NUMERICAL RESULTS
The approach of TOMA described before will be used in the present section to identify the modal properties
of a system loaded by non-white noise input processes. The main shortcoming of this technique is that two
sets of responses, which correspond to different loading conditions, need to be used instead of one. This is
easier when testing experimentally a system, but in real OWT structures the loading is more-or-less applied at
the rotor. In Section 8.2.1 the algorithm will be used on responses derived from the OWT model in Matlab and
then in Section 8.2.2, it will be applied on responses derived from the model in FAST.

8.2.1. SIMULATED RESPONSES USING MATLAB MODEL

TOMA for white noise and harmonic input

All the four methods described in the past chapters were based upon the white noise input assumption. In
this case two different sets of input will be considered, with non-white noise spectra. In the first simulation,
the system is loaded by a concentrated load applied at 53.8m hight with amplified spectral energy between
45rad/s and 55rad/s. The second simulation is similar to the first, but the loaded node is located at 86.08m,
while the amplified region extends between 25rad/s and 35rad/s. Figure 8.1 shows the location of the loads
together with the related responses.
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Figure 8.1: Additional simulated cases for the demonstration of TOMA on the OWT model in Matlab

The identification procedure using TOMA is based on the transmissibilities and not directly on the data. There-
fore, using these two sets of data, the transmissibilities and the base function ∆T K−L

i j can be calculated. In

practice, H1 estimator is used for the calculation of T K
i j instead of Eq.8.1. This will deal with the presence

of noise and spectral leakage, so that the transmissibilities have a deterministic nature. For the calculation
of T K

i j , the response signal at sensor of Node 8 (86.08m) is used as a reference signal j . As it can be shown,

the transmissibilities for different sets of inputs cross each other at resonance. Apart from that case, several
crossings can be also observed between natural frequencies.
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(b) Base functions ∆T K−L
i j

Figure 8.3 shows the stabilization diagram of the identification using LSCF estimator on ∆T K−L
i j base func-

tions. As it can be shown, four modes where identified. Moreover, due to the additional crossings of the
transmissibilities between the natural frequencies, several non-structural modes have been also identified.
These modes can be neglected by looking at the response spectra.

Figure 8.3: Stabilization diagram – TOMA for random, non-white noise exci-
tations

Mode
Exact TOMA

ωωωd
(rad/s)

ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)
1 1.155 4.00 1.159 3.27
2 12.303 2.00 12.304 2.00
3 37.305 5.09 37.305 5.09
4 73.332 9.83 73.296 9.98

Table 8.1: Identified and exact modal properties - TOMA
for OWT in Matlab
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One may observe that no mode has been identified between the range of 25rad/s and 35rad/s. The two
modes identified at frequencies 45.9rad/s and 51.14rad/s are not due to the input, but due to the ad-
ditional crossings of the transmissibilities. In case where the location of the load changes (excite different
node), these non-structural modes will shift. On the other hand, in case where both the nodes were loaded
by the same input, (e.g. amplified between 25 and 35rad/s), then the identification would be absolutely the
same.

8.2.2. SIMULATED RESPONSES USING MODEL IN FAST
In this Section, TOMA will be used to obtain the modal properties of the OWT model in FAST. The simulated
cases that are presented in Table 2.2 correspond to different operating conditions and, thus, TOMA will be
performed on different couples of these cases. At first, the time-series corrupted by adding measurement
noise of SNR equal to 50. Then, LSCF is applied on the base function ∆−1T K L

i j , instead of the PSDs and the

procedure is as described in Section 7.2.

Case FC1-FC4

Using TOMA algorithm for the case of an operating OWT is itself a great challenge, since it is almost impos-
sible to obtain in practice responses that correspond to such different inputs as explained in the previous
section. More in detail, the system is mainly loaded at the top of the tower and not in between. Therefore,
the location of the tower does not change almost at all. Figure 8.4 shows an example of the transmissibilities
using load set FC1(1) and FC4(2).

Figure 8.4: Transmissibilities from FC1 and FC4

It is clear that the transmissibilities almost match to each other. Therefore, the identification is not possible
using these loading sets. Instead, an alternative option is to use the parked loading case of FC5 as one base set.
Then the second set will be one of the four operational cases. However, this algorithm leads into one single
identification of the modal properties, and as discussed in Section 3.3.1, the OWT itself will probably have
different properties under different operational and parked conditions, leading to errors in the identification.

Case FC1-FC5

The transmissibilities of FC1 and FC5 were different to each other, probably due to the fact that the OWT in
case where it is parked is also highly loaded due to the drag forces applied along the tower. Therefore, these
two cases correspond to spatially different loading conditions, and applying TOMA was possible.

In the first couple of loading sets FC1 and FC5, three modes have been identified as shown in Table 8.2. As
it can be shown, the identification needed lower polynomial order thanks to the deterministic nature of the
transmissibilities. Additionally, another observation is that no structural mode was identified between the
two tower modes apart from a mode close to B2-F2. TOMA will identify a mode only in case where the ratios
of the modal shapes between the locations of the sensors are the same in both the loading sets (see Eq.8.5).
However, due to the high difference between the modal properties of the OWT examined in operating and
parked conditions, most of the blade modes were not identified. Therefore, in this application the presence
of most of the blade modes together with the external loading were removed.
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Figure 8.5: TOMA - Stabilization diagram for FC1-FC5

Mode
Exact (8.5rpm)/

Exact (0rpm)
TOMA

(FC1-FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)

T-FA1
1.780/
1.760

6.15/
0.28

1.735 3.82

B2-F2
11.260/
11.836

10.80/
1.88

11.854 3.03

T-FA2
15.040/
15.055

2.85/
2.40

15.089 1.01

Table 8.2: TOMA - Identified modal properties for FC1 & FC5

Case FC2-FC5

As already described before, the modes of the blades are largely affected by the fact that the properties of
the system change under different loading conditions. Table 8.3 shows that a mode was identified between
the two tower modes. This mode was attributed to the blade mode B2-F2, but for this specific couple of
measurement sets, it is unclear whether this mode can be related to the blade mode. Still, it is close to the
blade mode of FC5, but it deviates slightly from the blade mode of FC2.

Figure 8.6: TOMA - Stabilization diagram for FC2-FC5

Mode
Exact (10.5rpm)/

Exact (0rpm)
TOMA

(FC2-FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)

T-FA1
1.785/
1.760

7.30/
0.28

1.754 2.85

B2-F2
11.105/
11.836

13.60/
1.88

11.936 3.71

T-FA2
15.015/
15.055

3.45/
2.40

15.038 1.52

Table 8.3: TOMA - Identified modal properties for FC2 & FC5

Case FC3-FC5

When FC3 is used together with FC5 in TOMA, the identified modes do not change much. However, the
blade mode B2-F2 seems to start deviate more and more from the exact values from FC3. Keep in mind that
the tower damping is also not close to the exact values from FAST. The damping ratio of T-FA1 seems to
be in between the damping obtained from FAST via linearization, while in T-FA2 it is lower than both the
analytically determined damping ratios.

Figure 8.7: TOMA - Stabilization diagram for FC3-FC5

Mode
Exact (11.5rpm)/

Exact (0rpm)
TOMA

(FC3-FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)

T-FA1
1.790/
1.760

7.75/
0.28

1.705 3.32

B2-F2
11.030/
11.836

14.70/
1.88

11.950 2.97

T-FA2
14.995/
15.055

3.75/
2.40

15.069 1.43

Table 8.4: TOMA - Identified modal properties for FC3 & FC5
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Case FC4-FC5

The last examined sets of measurement data correspond to the parked FC5 and the operating FC4 loading
cases. As it can be shown, the identified natural frequency of the blade mode B2-F2 has almost 10% difference
with the related exact values of FC4. Hence, this mode might also be a so-called mathematical mode due to
additional crossings of the transmissibility functions.

Figure 8.8: TOMA - Stabilization diagram for FC4-FC5

Mode
Exact (12.1rpm) /

Exact (0rpm)
TOMA

(FC4-FC5)
ωωωd

(rad/s)
ζζζ

(%)
ωωωd

(rad/s)
ζζζ

(%)

T-FA1
1.805/
1.760

10.20/
0.28

1.738 3.39

B2-F2
10.652/
11.836

22.01/
1.88

11.961 2.64

T-FA2
14.758/
15.055

4.34/
2.40

15.115 1.16

Table 8.5: TOMA - Identified modal properties for FC4 & FC5

8.3. CONCLUSIONS
TOMA was initially applied on the OWT model in Matlab using two newly simulated sets of responses. Each set
corresponds to non-white noise concentrated forces at two different nodes. The identification using TOMA
resulted in four identified modes, while many of the previously mentioned algorithms were able to identify
up to three. This could be due to the fact that the loading is located at nodes closer to the middle of the tower,
which leads in higher excitation of the fourth mode.

In the application of the algorithm on FAST, it can be concluded that TOMA resulted in similar modal
properties in all the four couples of loading cases. This is reasonable, since all the operating load cases FC1,
FC2, FC3 and FC4 have almost the same location of input. In other words, they consider more-or-less that the
tower is loaded on top, which results in a later stage in similar transmissibility functions. Therefore, in case
where only operating conditions were available, and the spatial distribution of the applied forces is not much
different between the two sets of data, TOMA would be very sensitive and probably lead to serious troubles in
obtaining the modes of the tower.

Another conclusion is that the identification was not affected by the nP loading of the first loading set
FC1, FC2, FC3 and FC4. In parallel, the presence of almost all the blade modes has also been removed. Thanks
to that, the transmissibility functions had an almost deterministic nature and, thus, compared to LSCF, TOMA
was able to lead into very stable modes already at very lower polynomial orders.

On the contrary to the removal of the blade modes, a mode that could resemble blade mode B2-F2 of
FC5 was stably identified in all the cases that were examined. Also, TOMA method was able to identify the
modal properties of the tower. However, keep in mind that the identified parameters (e.g. damping ratio)
are values in between the modal properties of the two examined sets of responses. Finally, by looking in the
identification using the set FC4 & FC5, it seems that mode B2-F2 deviates from the related exact value of FC4,
which leaves open the possibility of having an non-structural mode that accidentally coincides the blade
mode of FC5. This might be attributed to the additional crossings of the transmissibility functions between
two modes.





9
SENSORS AND MONITORING FOR OPTIMAL

SYSTEM IDENTIFICATION

An offshore wind turbine includes most of the times a specific number of sensors that aims at deriving time-
series of several outputs. In the present chapter, at first the number of the sensors will be investigated using
the fourth operational case FC4 of the OWT model in FAST. The target is to check whether the results from an
OMA algorithm improve by increasing, or worsen by decreasing the number of sensors. In addition, the option
of including accelerations data at the tip of a blade will be discussed. The second topic that will be briefly
investigated is the case were different types of measurement are confused in the same OMA technique. For the
present study, ERA has been selected to be used, thanks to its better and clearer understanding.

9.1. NUMBER AND LOCATION OF SENSORS

Number of sensors along the tower

Given that the data used in the algorithm are selected by the user, it is possible to add and include in
the OMA method more sensors placed along the tower. FAST v7.02 gives the possibility of using up to nine
accelerometers. These sensors have been placed per 10.325m along the full length of the tower. Then, eight
different configurations will be considered when applying ERA/NExT, as displayed in Figure 9.1. At first, all
the nine sensors will be used. Then the bottom two will be removed. In each of the last three configurations,
one sensor will be removed, until only one sensor is left at the top of the tower. It needs to be mentioned that
the fifth configuration includes the same sensors as in FC4.

Figure 9.1: Configurations of accelerometers along the tower of OWT model in FAST
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For the purpose of this study, ERA/NExT was applied on the data, without considering measurement noise, so
that any randomness is removed. Also, the results correspond to system order equal to 80. At first, by looking
into Table 9.1 one may notice that the differences between configuration 1 and 2 are minor. Therefore, it
was found out that the sensors located at the bottom did not affect the identification. Then, by removing
sensors from higher locations, the identified modal properties were slightly affected. The largest difference
was observed when Sensor #6 was removed. Still, the differences in the last three configurations are relatively
small, and there is no clear tendency towards higher accuracy of the identification. However, when only two
sensors are left, as in the last two configurations, one may observe that all the natural frequencies and the
related damping ratios have been affected.

Natural Frequencies (rad/s)
Mode Exact Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6 Conf. 7 Conf. 8
T-FA1 1.805 1.857 1.856 1.839 1.839 1.842 1.843 1.859 1.863
B2-E1 8.416 8.132 8.132 8.128 8.127 8.125 8.122 8.131 -
B3-F2 13.798 13.703 13.694 13.562 13.589 13.608 13.627 13.894 13.165
T-FA2 14.758 15.122 15.119 15.026 15.040 15.062 15.062 15.134 15.232

Damping Ratio (%)
Mode Exact Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6 Conf. 7 Conf. 8
T-FA1 10.20 11.34 11.31 10.90 11.11 11.22 11.39 11.65 10.31
B2-E1 0.90 0.93 0.94 1.05 1.06 1.07 1.09 1.13 -
B3-F2 15.36 5.19 5.20 5.04 4.91 5.00 4.86 4.51 6.99
T-FA2 4.34 1.93 1.97 2.32 2.29 2.26 2.21 1.06 1.74

Table 9.1: Identified and exact modal properties - ERA for FC4 and multiple sensor configurations

The initial target was to obtain more modes by increasing the number of sensors, but as it can be concluded,
four accelerometers (or even three) were enough to monitor the tower and capture four modes with an accu-
racy close to more "dense" setups. In general, the main idea when locating a sensor is highly connected to
observability. More in details, when a sensor is located at a node of a sensor, it is impossible to be able mea-
sure this mode. In other words, it is preferred to place a sensor at the antinodes of the mode shape, and not at
the nodes. This is actually the main reason why removing Sensor #1 and #2 did not affect the identification.
Both these sensors are located close to the support, which is a node for all the tower modes. It needs to be
mentioned that using more sensors would also lead in more detailed identified mode shapes.

Monitoring blades

In this paragraph, another setup will be discussed. In the benchmark study that was presented in the
previous chapters, the measurement data were obtained only from several locations along the tower. This,
in combination to the fact that the algorithms were not able to capture the large values of damping related
to aerodynamics, could make the option of adding accelerometers on one or more blades very attractive.
Therefore, the 5th configuration of sensors shown in Figure 9.1 (FC4) will be examined in case where one blade
is also monitored. The additional time-series derived from FAST correspond to the absolute accelerations of
the blade tip. Only one blade was included in the monitored parts of the OWT, since the behaviour of the rest
two blades was almost the same.

As it can be shown in Figure 9.2, the blade tip (Sensor #10) has much larger accelerations than the sensors
along the tower. That is reasonable, since that element is much more flexible than the tower, and also con-
nected to the top of the tower. In addition, one may observe that the blade is excited at nP, where n = 1,2, . . . ,
etc. Due to that fact, the presence of the harmonics is more intense at lower frequencies and affect the first
tower mode. Apart from that, one can figure out that the modal content of the blade accelerations is not con-
sistent to the modal content of the accelerations along the tower and, therefore, no structural mode was able
to be identified.

The difference of the modal content of the blade tip and the tower needs to be investigated further. It
is expected that the modal content of the acceleration at the top of the tower should also be present at the
acceleration of the blade, since these two elements are connected to each other. However, this is not the
case. In order to see the deviation of the spectral content along a tower, Figure 9.4 can be used to display the
acceleration spectra at three locations along the blade. The first is at the middle of the blade and the other
two close to the root and at the tip. One may observe that indeed the acceleration close to the root has peaks
at the modes of the tower and also at several blade modes. However, the tip acceleration is dominated by nP
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Figure 9.2: Stabilization diagram of sensor configuration #5, considering an accelerometer at blade tip

(n = 1,2, . . . , etc), and at higher frequencies it shows two peaks that are broader than closer to the root. These
figures include also the tower (thick solid lines) and blade modes (dashed,dotted and dash-dot lines) and the
nP frequencies (red solid lines).
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Figure 9.3: Acceleration spectra along the blade

Despite the fact that in the present study the confusion of blade and tower responses was not able to obtain
any tower or blade mode, monitoring also all the blades could potentially improve the results of the identifi-
cation procedure and provide with valuable information. Hence, it is important to investigate several options
of sensor positioning in order to improve the identification. Keep in mind that the tower modes are coupled
to collective and asymmetric blade modes that are probably not the same to the modes of a single blade. In
parallel, the blades are connected to the tower, which means that the absolute acceleration of the whole blade
would probably be coupled to the tower top acceleration. Looking more into the responses of a singe blade
and combining it with the responses of the tower would probably help in applying OMA techniques on data
from different elements of the structure.

9.2. TYPE OF SENSORS
An OWT includes most of the times several types of sensors at multiple locations. Accelerometers, inclinome-
ters and strain sensors are some possible options of gauges that can be used to monitor main parts of wind
turbines (e.g. tower, blades, etc). The algorithms that were used in this thesis were applied explicitly on accel-
eration data. However, most of the algorithms do not specify the type of the measurements. In this section,
different types of sensors placed along the tower will be used to combined acceleration and strain time-series
in the same identification. The OWT model in Matlab that was described in Section 3.2 is able to simulate
strain, displacement, velocity and acceleration responses along the tower of the structure. Unfortunately,
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this option is not possible for the model in FAST, since version v7.02 generates only accelerations.
The three different setups will be used. The first one includes explicitly strain sensors, the second only

accelerometers and the last one a combination of strain and acceleration gauges. The plan is to apply ERA on
the two sets of data that correspond to the same type of gauges and then see the influence in case where two
types are combined.

Figure 9.4: Configurations and types of gauges along the tower of OWT model in Matlab

One may notice that when using only strains ERA was able to obtain less modes, and particularly it derived
modes with lower natural frequencies. This is possibly related to the fact that the accelerations in frequency
domain are a function of the displacement spectra multiplied by ω2, while the strains in terms of harmonic
content are more or less related to the displacements. In that way, in a strain response spectrum higher
frequencies are related to smaller values with respect to an acceleration response spectrum. The combination
of both strains and accelerations leaded into slightly better results for the first mode compared to the case
where only accelerations were used. In addition the case of Gauges 3 was able to obtain the third mode. The
performance of ERA was in general quite better when using only accelerations. However, it seems that adding
strains did not make the identification worse.

Mode
Exact Gauges 1 Gauges 2 Gauges 3

ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%) ωdωdωd (rad/s) ζζζ (%)
1 1.155 4.00 1.155 3.23 1.149 3.17 1.151 3.69
2 12.303 2.00 12.321 1.72 12.307 1.98 12.316 1.75
3 37.305 5.09 - - 37.296 4.76 36.931 4.05

Table 9.2: Identified and exact modal properties - ERA for OWT model in Matlab, white noise loading and different types sensor

It was found out that ERA leaded into reasonable results even when both strains and accelerations where
considered. This could be due to the fact that ERA relates the output measurements to the state-space via
matrix C (see Eq.4.1). Therefore, one may expect that the system matrix A is independent of the inputs signals.
The same concept also holds for SSI. Finally, FDD and LSCF based the identification on the expression of PSDs.
Regardless of the type of the signal used (strains, velocities or accelerations), these functions will still have the
same poles. The reason is that in frequency domain, they are connected by multiplying or dividing withω (or
ω2).

Different units between different signals probably would lead in using time-series with magnitudes or-
ders larger or smaller to each other. For this particular example, strains were 100 times smaller than the
accelerations. Scaling the response signals did not lead into any big difference. Since accelerations showed
better behaviour in the identification, it would be interesting to look for approaches to obtain acceleration
time-series from strain time-series. One approach was proposed by Chan-gi Pak[79] in order to obtain accel-
eration and velocity responses from measured strains.
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The option of using alternative system identification approaches, where also input time-series are avail-
able is really promising and attractive. The scope of this thesis is limited to OMA algorithms that consider an
unknown and unmeasurable input. However, in ideal conditions, where more parameters could be moni-
tored, it would be very interesting to collect also time-series of input-related parameters.





10
CONCLUSIONS AND RECOMMENDATIONS

The scope of this thesis presented in the introduction highlighted two main objectives. The first stated that
it is important to assess and eliminate the impact of limitations related to loading on the identification and
according to the second, the applicability of OMA system identification techniques on measurements of different
operational conditions need to be investigated. These would answer the questions of whether existing OMA
system identification algorithms are able to be adapted and used on operating OWTs. In parallel, it was suggested
to examine several ways to optimize the identification procedure by directly interfering in the code (e.g. filtering
stabilization diagrams, etc.) or by investigating different sensor locations and also confusing different types of
sensors

10.1. CONCLUSIONS

Robustness against non white noise excitation

Initially, once the algorithm behind each OMA method was developed, the OWT model in Matlab was used
for validation. In that way, the strategy behind each algorithm was presented, and the behaviour of each al-
gorithm in the identification of this simple LTI model was explained. The robustness against closely spaced
harmonics was also investigated for each algorithms, apart from TOMA. It was found out that the algorithms
that were affected the most are SSI-b and SSI-Ov. On the other hand, TOMA was able to identify the modal
properties even for loading that includes coloured noise, without leading into fake modes at these frequen-
cies.

Suggested optimizations for the identification procedure

While presenting the algorithms, several techniques were described to derive clear stabilization diagrams.
In SSI, it was found out that the non-structural modes were highly affected by the randomness of the mea-
surement noise that was added on the data. Therefore, these modes can be removed by running the identifi-
cation twice and comparing the identified modes between the two diagrams.

Also, in FDD, a pseudo-stabilization diagram was used, which could reveal the unstable modes. In case
where a selected peak was corrupted by neighbouring harmonics, then the length of the free decay that was
used for the identification affected the identified modes. Each iteration corresponds to a different manually
selected range of the free decay.

Finally, in LSCF and TOMA, the modelled curves could be fitted over a smaller frequency range, particularly
when the sampling frequency is larger than the region where the modal content is concentrated. Then by
truncating different parts of the PSD, a big part of the spurious non-structural modes will shift. This can be
used to remove several unstable modes that are not related to modes.

Conclusions of the Benchmark study

Based on the results of the algorithms that were examined in the benchmark study, a summary of their
performance against the assessment criteria is presented in Table 10.1.
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Technique
Number
of modes

Stability
of modes

Deviation from
exact values

ERA ++++ +++ +++
SSI ++ ++++ ++++

FDD ++ ++ +++
LSCF ++++ +++ +++

TOMA ++ ++++ +

Table 10.1: Performance of OMA techniques per assessment criteria

At first, regarding the application of ERA/NExT on data from FAST, this technique resulted in a large num-
ber of identified modes with respect to the other algorithms. However, by looking into the stabilization dia-
grams that corresponded to an operating turbine, the blade modes were quite unstable. Additionally, when
ERA/NExT was applied on data from a parked turbine, it resulted explicitly in stable modes. Therefore, the
unstable blade modes of the rest cases can be directly linked to the rotation of the rotor. This observation has
two possible explanations, since the modes could be either affected by the harmonic excitation or by the fact
that they change with the time-varying rotational speed.

Regarding SSI, it was found out that this algorithm obtained more stable modes, but was able to identify
less modes than ERA/NExT. A possible reason could be the fact that the projection matrix Oi is derived from
a multiplication of Hankel matrices that include shifted data. This results in some kind of covariance matrix,
which has removed the influence of the stochastic white noise input. A similar idea was presented in Section
4.2, when the theory behind NExT was explained. However, the difference is that in ERA/NExT, only the first
part of the correlation function is considered for the identification (almost 5%), while in SSI the whole time-
series will be used. Therefore, several transient parts related to the input, or/and the time-invariant behaviour
of the system might result in a less impulse-like signal and affect the identification of stable modes. This
could be the reason why SSI was largely affected by the violation of the OMA assumptions. Finally, all the SSI
algorithms run twice for each identification, to filter out the unstable modes. In that step, the first fore-aft
tower bending mode was also removed due to unstable damping.

FDD was able to derive both the tower bending modes, even though the first tower bending mode was
affected by the presence of 3P. Regarding the blade modes, FDD resulted in a very small number of stable blade
modes. The main reason is that the influence of nP harmonics was dominant between the tower modes, and
no clear peaks could be obtained. Moreover, most of the 2nd flapwise bending modes were dominated by the
presence of the second tower mode.

Apart from ERA/NExT, LSCF was also able to lead into dense stabilization diagrams. In all the examined
cases the algorithm identified both the tower modes and a big number of blade modes. In general, LSCF
resulted also in a big number of non-structural modes, and this would probably lead into problems when
selecting the structural modes. In some cases, the identified damping was found to be extremely low (<1%).
This can be explained by the low frequency resolution together with the presence of noise. In other words, this
happens because LSCF fits initially a single peak at a mode and this corresponds to almost zero damping. In
such a case, a larger order could be used to obtain a modal damping, but it would probably be very sensitive.

Finally, TOMA was able to identify both the tower modes. In parallel, it also resulted into a third mode
that could resemble blade mode B2-F2 of FC5 for all the cases that were examined. However, in TOMA the
identified parameters (e.g. damping ratio) are values in between the modal properties of the two examined
sets of responses. It needs to be mentioned that by looking in the identification using the set FC4 & FC5, it
seems that mode B2-F2 deviates from the related exact value of FC4, which leaves open the possibility of
having an non-structural mode that accidentally coincides the blade mode of FC5. Compared to LSCF, the
almost deterministic nature of TOMA leaded in very stable modes already at much lower polynomial orders.

Conclusions on identified damping ratio of flapwise blade bending modes

The main attention was attracted by the inability of the algorithm to capture the extremely high (À10%)
damping ratios of the flapwise blade bending modes. In general the damping estimation was better for the
edgewise modes which is limited at values lower than 10%. Apart from TOMA, which resulted mainly in tower
modes, the flapwise blade modes identified by the rest algorithms showed in several cases increased damping
ratios, larger than the edgewise modes. However, as mentioned before, large damping ratios were underesti-
mated. One possible reason is the fact that in many cases the flapwise modes were close to nP excitation. In
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parallel, such large damping ratios would have in time-domain very short free decay responses, and in fre-
quency domain very a broad and short peak response spectrum. In that way, the neighbouring nP excitation
could confuse the algorithms and underestimate the actual damping ratios.

The influence of the loading for different operational cases

Compared to parked conditions, it is clear that the identified modal parameters that correspond to op-
erating conditions are much more unstable and difficult to obtain. At first, ERA/NExT, SSI, FDD and LSCF
identified most of the nP components of the wind loading. As the wind speed increases, SSI was more-and-
more affected by the external loading. The same happened to ERA/NExT and LSCF. The main reason is that
the influence of the nP becomes more severe in two ways. At first the excitation is amplified, but also by
increasing the rotational speeds, the range over which the excitation is dominant becomes broader. In that
way, in FC4, the second tower mode and the 9P loading were almost coincident, while in FC1 the second tower
mode was between 12P and 15P that were attenuated.

Another conclusion is that by using TOMA, the identification of the tower modes was not affected by the
nP loading of the first loading set FC1,FC2,FC3 or FC4. In parallel, the presence of almost all the blade modes
has also been removed.

Regarding the wave loading, both the models showed a very stiff behaviour with respect to wave loading.
The algorithms were applied on the mode in Matlab under wind, wave and current excitation, but they did
not show to be significantly influenced.

The influence of violating the LTI assumption

The violation of the LTI assumption in the model in FAST has a direct influence in the performance of
TOMA, where two sets of data that correspond to different conditions need to be used. More in detail, the
modal properties of an OWT are highly affected by the loading conditions and therefore, TOMA results in modal
properties that are between the modal properties of the two examined sets.

Additionally, as mentioned before, the violation of the LTI assumption would affect the stationarity of
the response time-series and could be a reason of obtaining unstable blade modes using ERA/NExT and a
small number of blade modes using SSI. Additionally, regarding the frequency-domain techniques, inverting
a signal from time-domain into frequency-domain will lead in a loss of the time resolution. Then, this wild
affect the shape of spectral peaks and therefore affect damping estimation.

Sensors: Types and Locations

Regarding the number of the accelerometers that were located along the tower, it was found out that by
applying ERA/NExT on more than 4 sensors in operational case FC4, the results of the identification did not
improve much. Four accelerometers (or even three) were enough to monitor the tower and capture four
modes with an accuracy close to more "dense" setups. In order a mode to be observable, the sensor should
be away from the nodes of the mode, and the best locations would be close to the antinodes.

Another setup considered also the case where one blade was monitored. It was found out that the tip
acceleration is dominated by nP (n = 1,2, . . . , etc), and the modal content of the blade tip accelerations is not
consistent to the modal content of the accelerations along the tower. Due to that fact, no structural mode was
able to be identified.

Finally, when both strains and acceleration data were confused in the same identification, the algorithm
was able to obtain the modal properties of the examined system using ERA/NExT. However, the identification
based explicitly on strain data resulted in less modes than using accelerations. The reason could be that in
frequency-domain, accelerations are connected to displacements by multiplyingω2, while strains are related
to the spatial derivative of the displacement. Therefore, using accelerations is more efficient in identifying
modes at higher frequencies.

10.2. RECOMMENDATIONS

Guidelines: OMA algorithms that deal with harmonic input

Several approaches can be found in literature that aim at eliminating the influence of the harmonic com-
ponents in the modal parameter extraction process. P. Mohanty and D.J. Rixen, modified several classic modal
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identification methods, in order to obtain the actual structural modes even in cases where harmonics com-
ponents are close to the natural frequencies of the system[20][21][22][23]. In addition, classical SSI algorithm
has also been [24]. However, the present study showed that the harmonic excitation introduced by rotational
sampling are not single harmonic components with frequencies nP. Instead rotational sampling will lead into
a wider range of amplified excitation around nP frequencies. Therefore, these modified algorithms will not
be able to deal with the violation of the white noise input assumption.

Future work: Promising OMA techniques for dealing with non-white noise of operating OWTs

Based on the gained experience, it is clear that all the algorithms have pros and cons. But the most promis-
ing approach in removing the influence of the external loading would be transmissibility based techniques.
Several existing approaches have been investigated by different researchers, which do not use different sets
of loadings in the identification procedure. In that way, the identified modes will correspond to the modal
properties of the system, while operating. PSDT and Tv-TOMA are two of such techniques. PSDT has been
developed in a different way and leads into non deterministic transmissiblities. Therefore, it wound be sug-
gested to investigate such algorithm, together with a stochastic frequency domain estimator (e.g. BTLS or
MLE) for the case of operating OWT.

Future work: Loading conditions of data sets in TOMA

In this study, TOMA was performed on two sets of data that corresponded to loading conditions that are
essentially different. In particular, one set was referring to operating and one to parked turbine. Investigat-
ing data sets that correspond to different couples of loading conditions could make transmissibility-based
algorithms perform better and would contribute significantly in determining the modal properties of an op-
erating OWT (e.g. wind-wave misalignment, wind misalignment, etc.).

Future work: Wave loading

Wave loading does violate the white noise excitation assumption, but in the models that were used for the
present study the influence of wave loading was not significant and did not affect the identification of the OWT
system in Matlab. However, the presence of wave loading is significant and due to the fact that it is close to
the first tower mode, investigating further their effect on the OMA algorithms would be of great importance.

Future work: Additional sensors on blades

Despite the fact that in the present study the confusion of blade and tower responses directly in ERA/NExT
algorithm was not able to obtain any tower or blade mode, monitoring also all the blades could potentially
improve the results of the identification procedure and provide with valuable information. Hence, it is impor-
tant to investigate several options of sensor positioning on the blades in order to improve the identification.

It needs to be mentioned that the tower modes are coupled to collective and asymmetric blade modes
that are probably not the same to the modes of a single blade. In parallel, the blades are connected to the
tower, which means that the absolute acceleration of the whole blade would probably be coupled to the
acceleration at the top of the tower. Looking more into the modal content of a singe blade responses and
combining it with the modal content of the tower responses would probably help in applying OMA techniques
on data from different elements of the structure.

Future work: Converting output time-series into accelerations

Since accelerations showed better behaviour in the identification, it would be interesting to look for ap-
proaches to obtain acceleration time-series from strain time-series. One approach was proposed by Chan-gi
Pak[79] in order to obtain acceleration and velocity responses from measured strains.

Future work: System identification considering both input and output time-series

The system identification algorithms that consider both output and input data are sometimes referred in
literature as deterministic system identification. The option of using such approaches, where also input time-
series are available is really promising and attractive. The scope of this thesis is limited to OMA algorithms that
consider an unknown and unmeasurable input. However, in ideal conditions, where more parameters could
be monitored, it would be very interesting to collect also time-series of input-related parameters (e.g. wind
speed, forcing at the RNA base, etc.).



BIBLIOGRAPHY

[1] IRENA(2018), Offshore innovation widens renewable energy options: Opportunities, challenges and the
vital role of international co-operation to spur the global energy transformation, (Brief to G7 policy mak-
ers), in International Renewable Energy Agency, Abu Dhabi (2018).

[2] J.-N. Juang and R. S. Pappa, An eigensystem realization algorithm for modal parameter identification and
model reduction, Journal of guidance, control, and dynamics 8, 620 (1985).

[3] J.-N. Juang, Applied system identification (Prentice Hall, 1994).

[4] I. IBRAHIM and E. Mikulcik, Shock and Vibration Bulletin 43, 21-37, A time domain vibration test tech-
nique 4 (1973).

[5] D. L. Brown, R. J. Allemang, R. Zimmerman, and M. Mergeay, Parameter estimation techniques for modal
analysis, SAE transactions , 828 (1979).

[6] G. James, T. G. Carne, J. P. Lauffer, et al., The natural excitation technique (NExT) for modal parameter
extraction from operating structures, Modal Analysis-the International Journal of Analytical and Experi-
mental Modal Analysis 10, 260 (1995).

[7] G. James, T. Carne, and P. Veers, Damping measurements using operational data, Journal of solar energy
engineering 118, 190 (1996).

[8] P. Van Overschee and B. De Moor, Subspace identification for linear systems: theory-implementations-
applications, (1996).

[9] P. Van Overschee and B. De Moor, Subspace algorithms for the stochastic identification problem, Auto-
matica 29, 649 (1993).

[10] R. Brincker, L. Zhang, and P. Andersen, Modal identification of output-only systems using frequency do-
main decomposition, Smart materials and structures 10, 441 (2001).

[11] P. Guillaume, P. Verboven, and S. Vanlanduit, Frequency-domain maximum likelihood identification of
modal parameters with confidence intervals, in Proceedings of the international seminar on modal anal-
ysis, Vol. 1 (Katholieke Universiteit Leuven, 1998) pp. 359–366.

[12] P. Guillaume, P. Verboven, S. Vanlanduit, H. Van Der Auweraer, and B. Peeters, A poly-reference imple-
mentation of the least-squares complex frequency-domain estimator, in Proceedings of IMAC, Vol. 21 (A
Conference & Exposition on Structural Dynamics, Society for Experimental . . . , 2003) pp. 183–192.

[13] B. Peeters, H. Van der Auweraer, et al., PolyMAX: a revolution in operational modal analysis, in 1st Inter-
national Operational Modal Analysis Conference, Copenhagen, Denmark, Apr (2005) pp. 26–27.

[14] A. Jhinaoui, L. Mevel, J. Morlier, and W. Zhou, Generalized subspace identification for rotating systems:
application to a wind turbine, in Leuven Conference on Noise and Vibration Engineering (2012).

[15] M. S. Allen, S. Chauhan, and M. H. Hansen, Advanced operational modal analysis methods for linear
time periodic system identification, in Civil Engineering Topics, Volume 4 (Springer, 2011) pp. 31–44.

[16] E. N. Chatzi and A. W. Smyth, Nonlinear system identification: Particle-based methods, Encyclopedia of
Earthquake Engineering , 1 (2014).

[17] F. Naets, J. Croes, and W. Desmet, An online coupled state/input/parameter estimation approach for struc-
tural dynamics, Computer Methods in Applied Mechanics and Engineering 283, 1167 (2015).

[18] D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models,
SIAM Journal on Scientific Computing 33, 2169 (2011).

93



94 BIBLIOGRAPHY

[19] P. E. Wellstead, Non-parametric methods of system identification, Automatica 17, 55 (1981).

[20] P. Mohanty and D. J. Rixen, Operational modal analysis in the presence of harmonic excitation, Journal of
sound and vibration 270, 93 (2004).

[21] P. Mohanty and D. J. Rixen, Modified ERA method for operational modal analysis in the presence of har-
monic excitations, Mechanical Systems and Signal Processing 20, 114 (2006).

[22] P. Mohanty and D. Rixen, A modified (ibrahim) time domain algorithm for operational modal analysis
including harmonic excitation, Journal of Sound and Vibration 275, 375 (2004).

[23] P. Mohanty and D. J. Rixen, Modified SSTD method to account for harmonic excitations during opera-
tional modal analysis, Mechanism and Machine theory 39, 1247 (2004).

[24] K. Dai, Y. Wang, Y. Huang, W. Zhu, and Y. Xu, Development of a modified stochastic subspace identifica-
tion method for rapid structural assessment of in-service utility-scale wind turbine towers, Wind Energy
20, 1687 (2017).

[25] N.-J. Jacobsen, Separating structural modes and harmonic components in operational modal analysis, in
Proceedings IMAC XXIV Conference (2006).

[26] N.-J. Jacobsen, P. Andersen, and R. Brincker, Using enhanced frequency domain decomposition as a ro-
bust technique to harmonic excitation in operational modal analysis, in Proceedings of ISMA2006: inter-
national conference on noise & vibration engineering (Belgium Leuven, 2006) pp. 18–20.

[27] N.-J. Jacobsen, P. Andersen, and R. Brincker, Eliminating the influence of harmonic components in op-
erational modal analysis, in Proceedings of The 25th International Modal Analysis Conference (IMAC),
Orlando, Florida (2007).

[28] P. Guillaume, C. Devriendt, and G. De Sitter, Identification of modal parameters from transmissibility
measurements, in Proceedings of the 1st international operational modal analysis conference, Copen-
hagen (2005) pp. 26–27.

[29] C. Devriendt and P. Guillaume, The use of transmissibility measurements in output-only modal analysis,
Mechanical Systems and Signal Processing 21, 2689 (2007).

[30] C. Devriendt, G. De Sitter, S. Vanlanduit, and P. Guillaume, Operational modal analysis in the presence
of harmonic excitations by the use of transmissibility measurements, Mechanical systems and signal pro-
cessing 23, 621 (2009).

[31] C. Devriendt, W. Weijtjens, G. De Sitter, and P. Guillaume, Combining multiple single-reference transmis-
sibility functions in a unique matrix formulation for operational modal analysis, Mechanical Systems
and Signal Processing 40, 278 (2013).

[32] C. Devriendt, G. De Sitter, and P. Guillaume, An operational modal analysis approach based on paramet-
rically identified multivariable transmissibilities, Mechanical Systems and Signal Processing 24, 1250
(2010).

[33] W. Weijtjens, G. De Sitter, C. Devriendt, and P. Guillaume, Operational modal parameter estimation of
MIMO systems using transmissibility functions, Automatica 50, 559 (2014).

[34] W. Weijtjens, J. Lataire, C. Devriendt, and P. Guillaume, Dealing with periodical loads and harmonics
in operational modal analysis using time-varying transmissibility functions, Mechanical Systems and
Signal Processing 49, 154 (2014).

[35] W. Weijtjens, J. Lataire, C. Devriendt, and P. Guillaume, Transmissibility based OMA for time-varying
loading conditions, (2014).

[36] W.-J. Yan and W.-X. Ren, Operational modal parameter identification from power spectrum density trans-
missibility, Computer-Aided Civil and Infrastructure Engineering 27, 202 (2012).



BIBLIOGRAPHY 95

[37] W.-J. Yan and W.-X. Ren, An Enhanced Power Spectral Density Transmissibility (EPSDT) approach for op-
erational modal analysis: theoretical and experimental investigation, Engineering Structures 102, 108
(2015).

[38] M. H. Hansen, Aeroelastic instability problems for wind turbines, Wind Energy: An International Journal
for Progress and Applications in Wind Power Conversion Technology 10, 551 (2007).

[39] M. Arshad and B. C. O’Kelly, Offshore wind-turbine structures: a review, Proceedings of the Institution of
Civil Engineers-Energy 166, 139 (2013).

[40] A. Group et al., Technical application papers No. 13 wind power plants, Tech. Rep. (Bergamo, Italy, 2011).

[41] F. Petrini, H. Li, and F. Bontempi, Basis of design and numerical modeling of offshore wind turbines,
Structural engineering & mechanics 36, 599 (2010).

[42] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, Wind energy handbook (John Wiley & Sons, 2011).

[43] E. Kulunk, Aerodynamics of wind turbines, in Fundamental and Advanced Topics in Wind Power (InTech,
2011).

[44] K. Hasselmann, T. Barnett, E. Bouws, H. Carlson, D. Cartwright, K. Enke, J. Ewing, H. Gienapp, D. Has-
selmann, P. Kruseman, et al., Measurements of wind-wave growth and swell decay during the Joint North
Sea Wave Project (JONSWAP), Ergänzungsheft 8-12 (1973).

[45] W. J. Pierson Jr and L. Moskowitz, A proposed spectral form for fully developed wind seas based on the
similarity theory of SA Kitaigorodskii, Journal of geophysical research 69, 5181 (1964).

[46] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW reference wind turbine for off-
shore system development, National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060 (2009).

[47] J. M. Jonkman and M. Buhl Jr, FAST user’s guide, national renewable energy laboratory, No. NREL/EL-
500-38230, Golden, CO (2005).

[48] J.-N. Juang and R. S. Pappa, Effects of noise on modal parameters identified by the eigensystem realization
algorithm, Journal of Guidance, Control, and Dynamics 9, 294 (1986).

[49] W. Yang, H. Li, S.-L. J. Hu, and Y. Teng, Stochastic modal identification in the presence of harmonic exci-
tations, .

[50] G. Zhang, B. Tang, and G. Tang, An improved stochastic subspace identification for operational modal
analysis, Measurement 45, 1246 (2012).

[51] M. W. Häckell and R. Rolfes, Monitoring a 5-MW offshore wind energy converter — Condition parameters
and triangulation based extraction of modal parameters, Mechanical Systems and Signal Processing 40,
322 (2013).

[52] R. Brincker and P. Andersen, Understanding stochastic subspace identification, Proceedings of the 24th
IMAC, St. Louis 126 (2006).

[53] W. Favoreel, B. De Moor, and P. Van Overschee, Subspace state space system identification for industrial
processes, Journal of process control 10, 149 (2000).

[54] X. Dong, J. Lian, M. Yang, and H. Wang, Operational modal identification of offshore wind turbine
structure based on modified stochastic subspace identification method considering harmonic interference,
Journal of Renewable and Sustainable Energy 6, 033128 (2014).

[55] R. Brincker, L. Zhang, and P. Andersen, Modal identification from ambient responses using frequency
domain decomposition, in Proc. Proc. of the 18*‘International Modal Analysis Conference (IMAC), San
Antonio, Texas (2000).

[56] R. Brincker, C. Ventura, and P. Andersen, Damping estimation by frequency domain decomposition, in
19th International Modal Analysis Conference (2001) pp. 698–703.



96 BIBLIOGRAPHY

[57] P. Andersen, R. Brincker, M. Goursat, and L. Mevel, Automated modal parameter estimation for opera-
tional modal analysis of large systems, in Proceedings of the 2nd international operational modal analysis
conference, Vol. 1 (2007) pp. 299–308.

[58] A. Hasan, M. Danial, Z. Ahmad, M. Salman Leong, and L. Hee, Enhanced frequency domain decom-
position algorithm: a review of a recent development for unbiased damping ratio estimates, Journal of
Vibroengineering 20, 1919 (2018).

[59] H. Van Der Auweraer, P. Guillaume, P. Verboven, and S. Vanlanduit, Application of a fast-stabilizing fre-
quency domain parameter estimation method, Journal of dynamic systems, measurement, and control
123, 651 (2001).

[60] M. El-Kafafy, P. Guillaume, B. Peeters, F. Marra, and G. Coppotelli, Advanced frequency-domain modal
analysis for dealing with measurement noise and parameter uncertainty, in Topics in Modal Analysis I,
Volume 5 (Springer, 2012) pp. 179–199.

[61] B. Peeters, H. Van der Auweraer, P. Guillaume, and J. Leuridan, The PolyMAX frequency-domain method:
a new standard for modal parameter estimation? Shock and Vibration 11, 395 (2004).

[62] B. Cauberghe, P. Guillaume, P. Verboven, E. Parloo, and S. Vanlanduit, The secret behind clear stabiliza-
tion diagrams: the influence of the parameter constraint on the stability of the poles, in Proceedings of the
10th SEM international congress & exposition on experimental and applied mechanics (2004) pp. 7–10.

[63] R. Pintelon, P. Guillaume, Y. Rolain, J. Schoukens, and H. Van Hamme, Parametric identification of trans-
fer functions in the frequency domain-a survey, IEEE transactions on automatic control 39, 2245 (1994).

[64] R. Pintelon, P. Guillaume, G. Vandersteen, and Y. Rolain, Analyses, development, and applications of TLS
algorithms in frequency domain system identification, SIAM journal on matrix analysis and applications
19, 983 (1998).

[65] G. Vandersteen, K. Barbé, R. Pintelon, and J. Schoukens, Bootstrapped total least squares estimator using
(circular) overlap for errors-in-variables identification, IFAC Proceedings Volumes 42, 1568 (2009).

[66] R. Pintelon and J. Schoukens, System identification: a frequency domain approach (John Wiley & Sons,
2012).

[67] P. Welch, The use of fast fourier transform for the estimation of power spectra: a method based on time
averaging over short, modified periodograms, IEEE Transactions on audio and electroacoustics 15, 70
(1967).

[68] W. Liu and D. Ewins, Transmissibility properties of MDoF systems, in Proceedings-Spie The International
Society For Optical Engineering, Vol. 2 (SPIE INTERNATIONAL SOCIETY FOR OPTICAL, 1998) pp. 847–
854.

[69] P. S. Varoto and K. G. McConnell, Single point vs. multi point acceleration transmissibility concepts in
vibration testing, in Society for Experimental Mechanics, Inc, 16 th International Modal Analysis Confer-
ence., Vol. 1 (1998) pp. 83–90.

[70] A. Ribeiro, J. Silva, and N. Maia, On the generalisation of the transmissibility concept, Mechanical Systems
and Signal Processing 14, 29 (2000).

[71] N. M. Maia, J. M. Silva, and A. M. Ribeiro, The transmissibility concept in multi-degree-of-freedom sys-
tems, Mechanical Systems and Signal Processing 15, 129 (2001).

[72] M. Fontul, A. Ribeiro, J. Silva, and N. Maia, Transmissibility matrix in harmonic and random processes,
Shock and Vibration 11, 563 (2004).

[73] C. Devriendt and P. Guillaume, Identification of modal parameters from transmissibility measurements,
Journal of Sound and Vibration 314, 343 (2008).

[74] C. Devriendt, G. Steenackers, G. De Sitter, and P. Guillaume, From operating deflection shapes towards
mode shapes using transmissibility measurements, Mechanical Systems and Signal Processing 24, 665
(2010).



BIBLIOGRAPHY 97

[75] G. De Sitter, C. Devriendt, and P. Guillaume, Transmissibility-based operational modal analysis: En-
hanced stabilisation diagrams, Shock and Vibration 19, 1085 (2012).

[76] W. Weijtjens, G. de Sitter, C. Devriendt, and P. Guillaume, Operational modal analysis based on mul-
tivariable transmissibility functions: Revisited, in Topics in Dynamics of Civil Structures, Volume 4
(Springer, 2013) pp. 317–326.

[77] W. Weijtjens, G. De Sitter, C. Devriendt, and P. Guillaume, Automated transmissibility based operational
modal analysis for continuous monitoring in the presence of harmonics, in Proceedings of the 9th Inter-
national Conference on Structural Dynamics (EURODYN), Porto, Portugal (2014) pp. 2231–2238.

[78] Q. Leclere, N. Roozen, and C. Sandier, On the use of the Hs estimator for the experimental assessment of
transmissibility matrices, Mechanical Systems and Signal Processing 43, 237 (2014).

[79] C.-g. Pak and R. A. Truax, Acceleration and velocity sensing from measured strain, in AIAA Infotech@
Aerospace (2016) p. 1229.


	List of Figures
	List of Tables
	List of Abbreviation
	Introduction
	Wind power
	An overview of identification techniques
	Importance and applications of identified dynamic properties
	Key challenges
	White noise excitation assumption
	LTI system assumption
	Other challenges

	Problem Statement and Thesis Objective
	Thesis Overview

	Benchmark Description
	Benchmark objective
	Examined reference load conditions

	Simulation of Data
	An introduction to offshore wind turbine structures
	OWT system components description
	Description of OWT loading conditions

	Simulated data using Matlab
	System description
	Examined loading cases

	Simulated data using FAST
	System description
	Loading conditions


	Eigensystem Realization Algorithm
	Theory behind ERA
	Natural Excitation Technique
	Numerical results
	Simulated responses using Matlab model
	Simulated responses using model in FAST

	Conclusions

	Stochastic Subspace Identification
	Theory behind SSI
	Numerical results
	Simulated responses using Matlab model
	Simulated responses using model in FAST

	Conclusions

	Frequency Domain Decomposition 
	Theory behind FDD
	Numerical results
	Simulated responses using Matlab model
	Simulated responses using model in FAST

	Conclusions

	Least-Squares Complex Frequency-domain estimator
	Theory behind LSCF
	Numerical results
	Simulated responses using Matlab model
	Simulated responses using model in FAST

	Conclusions

	Transmissibility-based Operational Modal Analysis
	Theory behind TOMA
	Numerical results
	Simulated responses using Matlab model
	Simulated responses using model in FAST

	Conclusions

	Sensors and monitoring for optimal system identification
	Number and location of sensors
	Type of sensors

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Bibliography

