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Preface

This thesis report covers the work done in order to obtain my Master of Science (MSc) degree at the Faculty of
Aerospace Engineering of the Delft University of Technology. Out of interest in combining different research
field and exploring the many different applications of proven models, I chose to further the work in the re-
search collaboration between the department of Neuroscience of the Erasmus Medical Centre (EMC) and the
faculty of Aerospace Engineering of the Delft University of Technology in applying models to identify pilot
control behaviour to develop methods for aiding the diagnosis of neurological disorders. Part I contains a sci-
entific paper covering the main body of my thesis work. It presents the method, results and discussion for a
“proof-of-concept" of the development of a model than can detect changes in motor performance data related
to increasing Parkinson’s disease symptom severity. In Part II a preliminary graduation report is presented that
covers the literature study on Parkinson’s disease, the cybernetic approach and trend analysis methods. In Part
III, appendices are included that present further results for both the paper and literature review. For the final
thesis work related to AE5310 Parts I and III need to be considered, as Part II has previously been graded for
AE4020.

I would like to thank my excellent supervisors Daan and Johan for their continued support and feedback on
my work. Thank you Max for your interest and new insights during our meetings. Special thanks goes to the
secretaries and inhabitants of the group homes for the elderly of Woongroep Hilligersberg, Woongroep het
Vlinderhuis and Groepswonen van Ouderen Schiedam, who helped bring my participant group together, as
well as the participants who found the time to come to the EMC.

L. A. Lugtenborg
Rotterdam, August 2020
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Ĥp Estimated pilot dynamics []
j Imaginary number [−]
Kn Remnant gain [−]
Kp Pilot gain [−]
Kc Controlled element dynamics gain [−]
k Sinusoid index [−]
N ,n Sample size [−]
N f Number of excitation frequencies [−]
n Remnant signal [px]

Snn Power spectral density of remnant signal [ px2

r ad/s ]

Suu f t ,n Power spectral density of input signal [ px2

r ad/s ]
TI Controller lag time constant [s]
TL Controller lead time constant [s]
Tm Measurement time [s]
Tn Remnant lag time constant [s]
p P-value for statistical tests [s]
Pn Remnant power ratio []
t Time [s]
t Significance value for student’s t-test [−]
U ,u Human controller output signal [px]
usi m Simulated human controller output signal [px]
W Significance value for Wilcoxon’s test [−]
x System output signal [px]
X , xt Trend predictor variable [−]
y Control system output signal [px]
y Trend dependent variable vector of one estimated parameter for y1, ...., yt []
yt Trend dependent variable at time point t []
Yt Trend dependent variable matrix for all estimated parameters at time point t []

Greek
B ,β0,1 Trend intercept and slope [−]
δ Symptom severity sclaing factor [−]
E ,εt Trend error variable [px]
ζnms Neuromuscular damping ratio [−]

xiii



ηt Linear predictor [−]
θ Control parameter vector [−]
µt Data mean at time t [px]
ρ2

u Relative remnant [−]
σ2

n Remnant signal power [px2]
σ2

u Input signal power [px2]
σ2 Data variance [px2]
τ Time delay [s]
τc Crossover time delay [s]
φ f Phase [r ad ]
χ2 Significance value for Friedman’s ANOVA [−]
ω Frequency [r ad/s]
ωc Crossover frequency [r ad/s]
ω f Excitation frequency [r ad/s]
ωm Base frequency [r ad/s]
ωnms Neuromuscular frequency [r ad/s]

xiv



List of Abbreviations

BG Basal Ganglia
CE Controlled Element
D Dominant hand
DND combined Dominant and Non-dominant hand control
DUECA Delft University Environment for Communication and Activation
EMC Erasmus Medical Centre
FCM Fourier Coefficient Method
GLR General Linear Regression
GLiR Generalised Linear Regression
HC Human Controller
HRQOL Health-Related Quality Of Life
L-Dopa Levodopa
LMM Linear Mixed Models
LSE Least Squares Estimate
MAD Mean Absolute Deviation
MDS-UPDRS Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale
MEM Mixed Effect Model
MLE Maximum Likelihood Estimate
MMSE Mini Mental State Examination
MSc Master of Science
ND Non-Dominant hand
PD Parkinson’s Disease
PSD Power Spectral Density
RMS Root Mean Squared value
SISO Single-Input-Single-Output
SLR Simple Linear Regression
SN Substantia Nigra
SNR Signal to Noise Ratio
SOP Successive Organisation of Perspective
UPDRS Unified Parkinson’s Disease Rating Scale
VAF Variance Accounted For

xv





I
Scientific article

1





Identifying Behavioural Changes due to Parkinson’s
Disease Progression in Motor Performance Data

L.A. Lugtenborg (MSc Student)
Supervisors: dr. ir. D.M. Pool*, dr. ir. J.J.M. Pel**, Prof. dr. ir. M. Mulder*

*Control & Simulation, Department Control and Operations, Faculty of Aerospace Engineering, Delft University
of Technology, Delft, Netherlands

**Erasmus MC department of Neuroscience, Rotterdam, Netherlands

Abstract—Parkinson’s disease can severely affect motor per-
formance and impede in executing daily activities. Treatment
can greatly improve patients’ quality-of-life, however, disease
detection and monitoring is still performed subjectively. Quan-
tification of patients’ motor performance and its decline due to
increasing symptom severity using tracking tasks could provide
a solution and even help in early disease assessment. In order
to develop a proof-of-concept for a tool that can be used for the
detection of behavioural changes in motor performance data, the
longitudinal clinical data are approximated by a combined data-
set with experimental data of healthy participants and simulated
Parkinson’s disease control behaviour. 25 healthy participants in
the age range of 55-75 participated in a manual pursuit tracking
experiment to identify baseline control behaviour. PD data were
simulated by bootstrapping the experimental data and scaling
this value based on previous research. The resulting experimental
and PD data were combined and a general linear regression
model was used to see if a change in control behaviour due to
upcoming PD symptoms could be detected with trend analysis.
It was found that for the parameters related to a decline in
motor performance caused by the disease, for at least 50% of
the participants a simulated change in motor behaviour was
successfully detected. This means that the developed method is
able to detect a trend for half of the population and is a major
step forward in the development of a tool that can aid monitoring
of disease progression and treatment for Parkinson’s disease.

Index Terms—Manual tracking, Parkinson’s disease, cybernetic
approach, system identification, trend analysis, behavioural
changes

I. INTRODUCTION

As people age, everyday tasks that are fundamental for a good
quality of life become increasingly difficult to perform due to
the natural degeneration of the brain [1]. Moreover, ageing
presents an increasing risk of developing a neurodegenerative
disease, which can make the simplest daily activities a chal-
lenge [2]. Neurodegenerative diseases do not only influence
memory, as is the case with Alzheimer’s disease [3], they
can also seriously impair motor performance [4]. Parkinson’s

This research was made possible by the Control and Operations department
of the Delft University of Technology and and Neuroscience department of the
Erasmus MC by providing all the needed equipment for the experiments and
support in the research. Special thanks goes to the secretaries and inhabitants
of the group homes for the elderly of Woongroep Hilligersberg, Woongroep
het Vlinderhuis and Groepswonen van Ouderen Schiedam, who helped bring
the participant group together, as well as the participants who found the time
to come to the EMC.

disease (PD), is one of the disorders that affects motor perfor-
mance, caused by a decrease in dopamine-producing neurons
of the Basal Ganglia that hampers the communication in the
brain, especially in the motor control area [5]. This leads to
symptoms like slowness of movement (bradykinesia), postural
instability and involuntary tremors. PD can have an asymmet-
rical onset, which can make early diagnosis difficult [4]. The
disease is progressive and still incurable 200 years after the
first proper description of its symptoms, but early diagnosis
and correct treatment can greatly improve patients’ quality-
of-life [4]. As of this moment, diagnosis and monitoring the
effects of treatment are done by detecting the motor symptoms
related to Parkinson’s disease (especially bradykinesia) and
using questionnaires [6]. These results are translated in either
a low resolution Hoehn and Yahr scale [7] or the more detailed
Unified Parkinson’s Disease Rating Scale (UPDRS) analysis
[8].

A more objective way of determining the effects of PD is
to quantitatively measure the decline in motor performance,
especially for fine motor skills. The neural network required
for fine motor skills, the visuomotor-network, is present
throughout the brain and can be severely affected by neurode-
generation. Specific functional losses in this network caused
by neurodegeneration leads to loss in performance for eye-
hand tasks [9]. One method to analyse fine motor skill and its
degradation is with the use of tracking tasks. Much research
has been done in finding the influence of PD and its treatment
on motor skills by using simple tracking tasks [10–17].

A recent collaborative research project, between the depart-
ment of Neuroscience of the Erasmus Medical Centre (EMC)
and the faculty of Aerospace Engineering of the Delft Uni-
versity of Technology, focuses on developing methods, using
cybernetics, to analyse and quantify the effects of neurodegen-
erative disorders on motor performance. Manual control cyber-
netics is an approach to model human control behaviour [18].
In a manual tracking task, a dynamic system is perturbed by
forcing functions and controlled by a human controller (HC)
[19]. The data from these tasks can be used to define a model
describing the controller’s motor skills. One of the applications
of cybernetics is its use in analysing and comparing motor
skills of the human controller in order to detect deviating
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behaviour between groups or systems. Previous research using
this approach included testing a tracking task to quantify the
loss of motor skills related to Parkinson’s disease [20] and
cerebellar stroke [21], and the influence of age on eye-hand
coordination [22]. These experiments showed that changes
in behaviour due to neurological decay can be quantified in
isolated situations, such as comparing healthy controls with
patients. What is missing, is research in its possible application
for individual cases, for example in detection of a decline in
motor performance over a longer period of time due to disease
progression and increasing severity of symptoms.

Finding anomalies or (behavioural) changes in data, has
been the focus of research for quite some time [23–25].
Within Parkinson’s disease or medical research, the main
focus is again on finding differences between groups, such as
identifying Parkinsonism and Parkinson-related symptoms by
analysing activity outliers during sleep [26], or outliers in gait
monitoring data [27]. Furthermore, research is performed to
find clear outliers in hospital-wide data-sets in order to identify
people suffering from Parkinson’s disease [28] or with other
medical issues [29]. To identify more gradual behavioural
changes due to disease progression in individual motor perfor-
mance data, trend analysis is a more applicable method [23].
At this moment, trend analysis finds its main application in
financial forecasting and climate monitoring [30,31], however,
it is also increasingly used in analysis of longitudinal data
from clinical trials [32]. Application of these methods to detect
behavioural changes in individual patients’ clinical data for
early disease assessment and treatment monitoring is still fairly
limited. Several methods are being developed for monitoring
patients at home to gather data that can be used by clinicians
[33,34]. However, these systems and their applications are still
in an early stage of development.

Even though many methods are being investigated, so far no
objective procedure to evaluate loss in motor skills due to
neurological diseases is available, and with an increased focus
on providing personalised healthcare, a universally accepted
method to quantify decline due to increase in symptom severity
is essential. Tracking tasks have proven to be applicable
in comparing data-sets and finding differences in behaviour
between healthy controls and PD patients, however, its appli-
cation in analysing changes in motor performance of individual
data still needs to be explored. Moreover, detection of these
changes using trend analysis methods becomes increasingly
complex due to the multivariate nature of the tracking data,
where each of the estimated parameters is related to the
others. There is no information available on the day-to-day
variance in control performance when using tracking tasks.
By not knowing this variation bandwidth, and therefore, the
data variability, it is unsure how severe symptoms and disease
progression need to be before they can be detected by a trend
model.

The goal of this research is to develop a methodology for
identifying behavioural changes in individual motor perfor-

mance data due to Parkinson’s disease in a combined ex-
perimental and simulated data-set by using trend analysis
methods. This model could then be used to develop a tool that
supports current diagnostic and disease monitoring methods.
Time constraints for this study did not allow the longitudinal
clinical study (5 years) with Parkinson’s patients that would be
ideal for defining individual differences in motor performance
between healthy and PD affected data. Therefore, focus lay
on providing a “proof-of-concept” for the development of a
diagnostic tool that can be used in the disease assessment and
monitoring of Parkinson’s patients.

In order to approximate part of the longitudinal clinical data-
set and to analyse natural variability in motor performance,
a single-axis manual pursuit tracking task was used to gather
motor performance data, spread over five days. The experi-
mental set-up was portable for use in different applications,
with a touchscreen input device. The participants were 25
healthy people between the age of 55-75. Measurements were
done using both the dominant and non-dominant hand, since
PD can manifest itself asymmetrically [4]. With the Fourier
Coefficient Method [19] the different control parameters were
defined for each measurement and participant. After this, ini-
tial regression models were used to correct any learning trends
in the experimental data, since an increasing performance
related to learning effects may counteract any PD related
performance decline. PD data was simulated by bootstrapping
a participant’s corrected performance data and scaling this with
values based on previous research [20]. The experimental and
simulated data were combined to resemble motor performance
data with a change in control behaviour. Finally, the combined
data-set was analysed with a novel approach based on multi-
variate linear regression models to determine the accuracy with
which behavioural changes in the motor performance data can
be detected.

This paper is structured as follows. First, the cybernetic
method for analysing the experimental data and the hypotheses
related to the cybernetic analysis are explored in Section II.
This is followed by the methods used for the trend analysis
and related hypotheses in Section III. Section IV goes into
more detail on the experimental setup used. The results are
analysed in Section V and a discussion is provided in Section
VI. Finally, Section VII presents the main findings in the
conclusion.

II. CYBERNETIC METHOD

This section will cover the cybernetic approach used in the
analysis of the experimental data. With this method, the
final ‘healthy’ part of the combined data to be used in the
trend analysis is defined. Furthermore, analysis of control
performance parameters will give insight in the variation in
control performance for healthy participants and two hypothe-
ses related to this variation are defined at the end of this
section.
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Fig. 1: Pursuit display

A. Control task

Manual control cybernetics is a widely used approach to define
human control behaviour [18]. Analysis of how a human
controls a dynamic system provides insight in the limitations
and performance of the controller in such a way that it can be
used to detect ‘abnormal’ or deviating behaviour. In manual
tracking, a human controller is controlling a dynamic system
that is perturbed by forcing functions [19]. The data from these
tasks provide a detailed measurement of the HC’s motor skills.

The human motor performance data for this study were
gathered using a horizontal-axis pursuit tracking task, similar
to that used in previous research with PD patients [12,20,22].
In pursuit tracking the participant is asked to reduce the error e
between the system output y (blue dot) and the target signal ft
(black circle), as shown in Figure 1. This means the participant
had to control the blue dot so that it was positioned on the
black circle at all times. A pursuit task was chosen as the
display is thought to ensure the task is sufficiently intuitive
for elderly participants [20]. Previous research found that
even though preview tasks provide a deeper insight in control
behaviour, the task seemed too complex with an excessive
workload for cerebellar patients [21], therefore, it was deemed
inappropriate for the similarly vulnerable participant group
in this research and its future applications for Parkinson’s
patients. As mentioned in Section I, participants controlled
the dynamic system with both the dominant and non-dominant
hand as PD can manifest itself asymmetrically [4].

The control scheme used in this study is presented in Figure
2. Here, a quasi-linear human controller is combined with a
controlled element Hce in a closed-loop system, excited with
forcing function ft. It was found that when combining a pur-
suit tracking task with the appropriate controlled element (CE)
dynamics, the participant is expected to show compensatory
behaviour and the block diagram from Figure 2 was deemed
suitable for this task [35]. Based on previous research the
participants controlled single integrator CE dynamics in the
form of Equation (1). Single integrator dynamics may cause
problems with the data analysis due to loss-of-contact with
the touchscreen, as the participant is controlling the target
velocity, letting go of the screen can cause an abrupt halt to the
target. Nonetheless, using those dynamics ensures that enough
information is available on control behaviour in the higher
frequencies, such as the neuromuscular dynamics [21]. The
CE gain Kc was heuristically tuned such that the deflection
range of the hand in the control task was within reasonable

limits. It was found that a gain of Kc = 8 was effective for
this setup.

Hce =
Kc

s
(1)

B. Identification of human controller dynamics

Identification of human control behaviour from the experimen-
tal data, gathered in the tracking task described above, can be
done using system identification methods [19]. In general these
methods fit a model to the data, corresponding with a defined
set of parameters. The HC can be modelled as a quasi-linear
controller, a combination of a continuous linear pilot model
Hpe and the remnant n, which covers the nonlinear behaviour
and system noise [37], as shown in Figure 2. The continuous
linear mathematical model for the human controller is defined
by McRuer and Hex [37] as:

Hpe(jω) = Kp
TLjω + 1

TIjω + 1︸ ︷︷ ︸
pilot equalisation

e−jωτHnms(jω) (2)

Here, Kp is the controller gain. TL and TI describe the con-
troller lead and lag time constants, respectively. τ indicates the
time delay and Hnms(jω) indicates the neuromuscular system
dynamics, expanded in in Equation (3). The neuromuscular
frequency and damping ratio are indicated with ωnms and
ζnms, respectively.

Hnms(jω) =
ω2
nms

(jω)2 + 2ζnmsωnmsjω + ω2
nms

(3)

The crossover model defined by McRuer et al. states that,
generally, any open-loop control system converges to single
integrator dynamics [37]. This system is a combination of the
HC and CE dynamics. Since the controlled element dynamics
are single integrator dynamics, it is expected that the controller
will be a proportional controller and will not generate any lead
or lag. Therefore, Equation (2) can be simplified to (4).

Hpe(jω) = Kpe
−jωτHnms(jω) (4)

For the experimental data in this research, the parameters for
the controller model defined in Equation 4 were fitted using
four different methods, in order to find the most accurate

y(t)

fd(t)

ft(t) e(t)

Hpt

Hpe

Hpy

Hce

n(t)

Controller

+ ++ ++ + +
--

Fig. 2: Pursuit control block diagram, adapted from [36]
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control parameter values. One parameter set was defined using
a previously developed time-domain method [38], while the
other three were fitted in the frequency-domain. These three
models include its most basic form, one with a correction for
the higher frequencies and a model corrected for the signal
to noise ratio. The method for the frequency domain fits is
described in this section.

One of the most widely used frequency-domain methods in
this research field is the Fourier Coefficient Method (FCM)
[19]. A black box method that is applied to estimate the control
parameters in a dynamic closed-loop system. The system used
for this study is shown in Figure 2. If the the multisine forcing
function ft is designed in such a way that the signal-to-
noise ratio (SNR) at the excitation frequencies is high, the
contribution of the remnant at those points will be negligible
[19]. Human control dynamics at those excitation frequencies
can then be estimated with Equation (5). Here U (jωt) and
E (jωt) are the Fourier transformed HC output and error
signals, analysed at the excitation frequencies, respectively.

Ĥpe (jωt) =
U (jωt)

E (jωt)
(5)

The result of the estimated frequency response function (FRF)
is an indication of the HC dynamics in this system. The pa-
rameters related to human control behaviour, Kp, τ , ζnms and
ωnms, can be estimated by fitting Equation (4) to the estimated
FRF data from Equation (5) at the excitation frequencies for
each measurement. The model can be fitted by minimising the
cost-function defined by Equation (6).

CF (θ) =
∑∥∥∥Ĥpe (jωt)−Hpe (jωt; θ)

∥∥∥
2

,

θ = [Kp, τ, ζnms, ωnms]
(6)

This is a general version of the cost-function, used for the
first fit to the data. As mentioned, three different frequency-
domain fits were used to estimate the control parameters for
Equation (4). Moreover, a time-domain method was used to
determine the last set. From here on, these different fitting
methods and their results are indicated as M1-M4 and a more
detailed explanation of each approach is provided below.

M1 The first parameter set was defined by fitting the most
simple form of the cost-function as shown in Equation
(6). This method was a baseline for comparison of the
other approaches.

M2 For the second fit, the original cost-function was nor-
malised to emphasise the higher frequencies, in order
to get a more accurate estimate of the neuromuscular
dynamics, as shown in Equation (7).

M3 Due to the high noise levels in the experimental data,
which will be elaborated on in Section II-C, it was opted
to fit the model using a cost-function with weights related

to the signal-to-noise ratio (SNR). This ensured the model
was fitted to the most reliable data points.

M4 Finally, because of the relatively low average quality of
the three model fits for the frequency-domain method, a
last parameter set was estimated using previously devel-
oped time-domain methods [38].

CF (θ) =
∑

∥∥∥Ĥpe (jωt)−Hpe (jωt; θ)
∥∥∥
2

∥∥∥Ĥpe (jωt)
∥∥∥
2 (7)

An indication of goodness of fit can be determined with the
Variance Accounted For (VAF) [39]. This metric analyses the
difference between the actual and simulated input signals u,
as shown in Equation (8). The VAF can range from 0% to
100% where, 100% means a perfect fit to the measured data.

VAF =

(
1−

∑N
k=1 |u(k)− usim(k)|2
∑N
k=1 u(k)2

)
× 100% (8)

C. Signal-to-noise ratio

Visual inspection of the FRF estimates showed that the data
seemed relatively noisy and the quality of the model fits was
low when using the original model presented in Equation (6)
(M1) or the expanded normalised version (M2). Therefore, it
was opted to add a third fitting model with weights related to
the signal-to-noise ratio at each frequency.

The Power Spectral Density (PSD) for each trial was plotted
to visualise the amount of noise in the control signal. Figures
3a and 3b show examples of a good and bad tracking run,
respectively. Figure 3a shows that the spectrum of the control
signal u has clear peaks above the noise signal, while Figure
3b shows input components that are drowned in noise. This
means that the FRF mainly captures noise and the estimate is
not a good indication of the actual dynamics.

One metric for the SNR that can be used in weighing the
frequencies for the model fit is the relative remnant [40], as
shown in Equation (9). Here S̄uu,n indicates the noise power
and S̄uu the signal power at the input frequencies. The noise
power at each excitation frequency is estimated by averaging
the power of three data points before and after the excitation
frequency, the locations of the red and blue dots in Figure 3.
Generally, the relative remnant has a value between 0 and 1,
and a value of 1 indicates a perfectly linear response [40].
However, this value can also become negative when the peak
power of the input lies below the noise level. As the relative
remnant is used to weigh the frequencies for the model fit,
any negative values have been capped at zero.

ρ2u (jωt) = 1− S̄uu,n (jωt)

Suu (jωt)
(9)

6



10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

(a) Participant 2, D day 5, measurement 1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

(b) Participant 3, ND day 2, measurement 2

Fig. 3: Power Spectral Densities showing a high (a) and low (b) signal-to-noise ratio

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Fig. 4: Relative remnant averaged across participants

Figure 4 shows the relative remnant averaged across all partic-
ipants. It can be seen that the relative remnant is good in the
lower frequencies while for the higher frequencies the amount
of noise in the signal increases. This means the participants
have trouble following the higher frequencies of the input
signal, which could have an effect on the accuracy of the model
fit. As the neuromuscular dynamics are related to the higher
excitation frequencies, estimations of ζnms and ωnms might
become unreliable.

Determination of how well the frequency response function
estimators fit the data, the FRF confidence limits can be
calculated [41]. These limits say something about the expected
spread of the estimators and with that in mind, one can crit-
ically look at the estimated parameters and their VAF values.
Figure 5 shows the FRF confidence limits corresponding to

the PSD’s of Figure 3. It can be seen that for participants
with noisy data, the expected spread of the FRF estimators
is large in the higher excitation frequencies. This corresponds
to the higher relative remnant. Therefore, an estimate for the
neuromuscular dynamics, related to the higher frequencies,
might not be completely accurate for these participants.

D. Data analysis

From the data gathered in the experiments, time traces were
made and examples related to Figure 3 are shown in Figure
6. The dotted vertical line, at time point 9.06 s, indicates
the moment the actual measurements begin, the time before
that line is defined as the run-in time. Only the data after
the vertical line are taken into consideration for the further
analysis. In the figure, the blue line indicates the target position
ft and the red line the system output y, as previously defined
in Figure 1.

Using the system identification method described in Section
II-B, the FRF estimation and four different methods of fitting
the data are defined for every measurement and participant.
Examples of the fits, corresponding to Figures 3 and 5 are
shown in Figure 7. As can be seen in Figure 7a, for a measure-
ment with a good SNR, the four methods have a very similar
fit, with only small deviations in the higher frequencies. These
similarities are also found when comparing the VAF values
for this trial, which are 75.5%, 76.2%, 76.1%, 76.6% for M1
to M4, respectively. Here, M1 to M4 indicate the previously
defined fitting methods. However, not all participants had a
sufficiently high control performance to get similarly stable
model fits. For several participants the data were relatively
noisy, resulting in very different model fits as shown in Figure
7b. The VAF values for the models defined by M1 to M4 were
24.7%, 7.4%, 19.2% and 36.9%, respectively. These values are
all relatively low and indicate that the fitted models for this
trial do not provide a good estimate of the data.
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Fig. 5: Confidence limits for FRF showing a small (a) and wide (b) expected spread
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Fig. 7: Fitted models and FRF estimate for a good (a) and bad (b) model fit
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methods

An overview of all calculated VAF values for the four different
fitting methods is given in Figure 8, where the box plots show
the quartiles and medians, and outliers are indicated with a red
asterisk. It can be seen that for the frequency domain models
M1-M3 the average VAF lies around 45%, while for the time-
domain model M4 the average is almost 60%. In general,
it can be concluded that the time-domain methods result in
a better fit. This can, however, be explained by the method
used, as the time-domain fitting method focuses on directly
optimising the VAF value [38], while the frequency-domain
functions optimise the cost value as defined in Equation (6).
However, the time-domain model was not able to converge
for all participant data-sets, therefore, for the final data-set,
the best fit was found for each measurement and participant,
using the approach of Section II-E.

E. Data selection

From the available model estimations for each participant and
each run the final data-sets that will be used as the basis for
the trend analysis must be selected. For every measurement
four different fitting methods were applied to the data, as
described in Section II-D. Figure 8 showed that in general the
time-domain model, M4, performed best. However, for some
participants M4 did not converge or did not present the best fit.
Therefore, the best model for each measurement was chosen
based on the highest available VAF value. The corresponding
parameters were then selected after visual inspection and only
when the criteria defined below were met.

First of all, it was checked if there were any outliers in
the control parameters, tracking performance, indicated as
RMSe and control activity, marked as RMSu, with MATLAB’s
function isoutlier. That function checks if there are any values
that are more than three scaled median absolute deviations
(MAD) away from the median. When an outlier is present, but
the model has a VAF higher than 60%, it indicates that the

TABLE I: Parameter range for data selection

Parameter Range
Kp 0 < x < 5
τ 0 < x < 1

ζnms 0 < x < 1
ωnms 0 < x < 25

model fit is expected to describe the data in a realistic manner
[20], so the outlier is considered to be a valid data point.
The second check determines if the parameters fall within a
realistic range, with values based on literature and previous
data [42]. These ranges are presented in Table I.

If any of the criteria were not met, the model with the second
best VAF was checked. When none of the models met the
criteria the measurement was defined as a missing value point.

Figure 9 gives an example of the final baseline data-set for
Participant 1 with non-dominant hand control. Here the model
number in Figure 9a indicates which of the four fitting methods
is selected, from the definition presented in Section II-D.

F. Post-analysis

Statistical tests can be used to determine if there is a significant
variation in human performance data, both for day-to-day
variance and in the case of dominant versus non-dominant
hand control. These tests allow an extension of the results to
the entire population with statistical models [43].

First the normality and sphericity assumptions of the data-sets
were checked. Normality was tested using the Shapiro-Wilk
model. The analysis was done for both the whole data-set
and each individual participant. It was found that the data did
not adhere to the normality assumption for the case of the
whole data-set, as well as for 56% of the individual cases.
Since the data are not normally distributed, the sphericity
assumption does not need to be checked. Since more than
half of participants have a non-normal data distribution, it
was decided to use Friedman’s ANOVA for the analysis of
day-to-day variation and the Wilcoxon Matched-Pairs test for
dominant and non-dominant analysis and likewise for the post-
hoc tests if the day-to-day variance was found to be significant
[43].

G. Hypotheses

For the experimental data in this research that was analysed
using the cybernetic approach, two hypotheses were defined.

H.I: It is expected that there will be a statistically significant
variation in day-to-day motor performance for all control
parameters.
Research has shown that elderly people have a higher variabil-
ity of movement and motor performance, especially regarding
reaction time and damping [3]. Additionally, when using
manual control tracking tasks it was noted that there is a
large group of variables that is ideally kept constant when
comparing data of experiments [36]. These so called operator-
centered variables, like motivation and fatigue, are, however,
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Fig. 9: Selected model for each measurement with corresponding model fit and parameter values, Participant1, ND
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extremely difficult to keep steady when measurements are
spread over multiple days. Moreover, as the elderly participant
group is more vulnerable to changes in these variables, it is
expected that there will be a statistically significant day-to-
day variation in motor performance, which is visible in all
control parameters, especially the time delay τ and damping
ratio ζnms.

H.II. It is expected that the control performance of the domi-
nant hand is better than for non-dominant hand control.
It has been found that regardless of age, the fine motor skill
performance of the dominant hand is significantly better that
of the non-dominant hand [44]. It is therefore expected to see
a difference between motor performance score between the
two hands. A better tracking performance, or lower RMSe,
typically comes with a higher gain Kp and smaller time delay
τ [40]. Furthermore, for the neuromuscular dynamics, it is
expected that a higher natural frequency and damping ratio
occur. As the fine motor skills in the non-dominant hand are
suspected to be less effective, more overshoot is expected.

III. TREND ANALYSIS

This section explains the trend analysis methods used in this
paper. Regression models are applied to the experimental data
to correct for any learning trends, in order to prepare the
‘healthy’ data-set. Furthermore, PD data are simulated by
bootstrapping the data for healthy participants and scaling
these values based on previous research [20]. The combined
data-set is then analysed using the same multivariate regression
models to see if there is a detectable change in control
behaviour for the simulated data.

A. Identification of changes in data

The goal of this research is to detect behavioural changes
in motor performance data due to Parkinson’s disease. As
mentioned in Section I, previous research has shown that
there is a significant difference in the motor performance of
PD patients and a healthy control group [10, 11, 16], as well
as in the specific control parameters defined in Section II
[20]. To identify these changes, longitudinal clinical data were
approximated by gathering data using the cybernetic method
described in Section II and adding matched simulated PD data,
which will be elaborated on in Section III-C2.

In order to detect changes in behaviour, anomalies in the
motor performance data-set need to be found. Many different
methods are available for finding changes in data-sets, with
the main two methods being outlier and trend analysis [45].
Methods for detecting outliers and trends have many simi-
larities and a close relationship in their utilisation in finding
behavioural changes [45], however, due to the nature of its
application the focus for this research lies on trend detection.
This is because even though an outlier may identify atypical
characteristics of a data-set, which can indicate progressing
PD symptoms [24], human controllers are not machines and
they may have a bad day where performance falls way below
the previous average. Trend analysis is defined as finding a

more consolidated change in a system over a longer period of
time [23]. Multiple anomalies in a row, and ultimately a trend
line, can give a more reliable indication that there are changes
in performance due to disease progression and not just a one-
off incident. Especially regarding a possible future application
where a gradual disease progression is expected.

Statistical trend analysis methods can be used to separate
underlying behavioural patterns from signal noise [23]. For the
application of this research, monotonic trends were expected:
gradual changes over time, consistent in direction [46], in
other words, a decline in motor performance due to disease
progression. Monotonic trends can be analysed using either
parametric regression models or non-parametric statistical
models [23]. The first are generally preferred as they are
more powerful, if the underlying assumptions are valid [23].
Moreover, many different applications of parametric regression
models are available to fit the data [31].

B. Regression models

Longitudinal and clinical data are most often analysed using
regression models, which estimate the dependency between
two variables [47]. Using the experimental motor performance
data combined with a simulated data-set, regression models
can be fitted to determine if there is a significant trend.

Due to the anticipated natural variance in day-to-day control
behaviour, which will lead to relatively noisy data, and the
fact that a monotonic decrease or increase was expected,
linear regression models were deemed appropriate. Since these
models indicate whether or not there is a general trend in the
data and give its relative direction, it can be checked if the
trend follows the decline in motor performance that is expected
from previous research [20].

The linear regression model generally takes the form described
by Equation (10). Here the response variable yt is the param-
eter measured at each time interval and predictor variable xt
signifies the moment in time. β0 and β1 indicate the intercept
and slope of the trend line and εt is the random error or
deviation from the trend fit [23,30,31]. A graphical illustration
is given in Figure 10.

yt = β0 + β1xt + εt (10)

In the case of multiple response variables, which in this paper
are the estimated parameters Kp, τ, ζnms, ωnms, tracking
performance RMSe and control activity RMSu, the model
is extended to its multivariable form in the general linear
regression model (GLR) of Equation (11) [23, 48]. Here the
variables indicate the set of related values, for example Y t

gives the set of the six response variables at time point t.
Using MATLAB’s mvregress function, the relation between
the response variables was defined using a correlation matrix.
For use of this model, any missing data points need to
be extrapolated in order to provide a sufficient amount of
‘healthy’ data.
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Fig. 10: Example of a simple linear regression model fitted on
a random data-set [30]

Y t = β0 + β1xt +Et (11)

The underlying assumptions of linear regression models are
related to the errors εt, also known as the model residuals.
One of the most important assumptions is a conditional normal
distribution of residuals. Moreover, residuals have to have a
zero mean to avoid bias, be unrelated to the predictor variable
and not autocorrelated [30].

Fitting the regression model was done using least squares
estimation (LSE) [23]. The model estimator for the intercept
and slope is defined in Equation (12) [31]. The vector variables
in this equation are defined in Equation (13). Here, y indicates
the vector of one of the response variable values for all points
in time y1, ...., yt.

β̂ =
(
XTX

)−1
XTy (12)

y =



y1
...
yn


 , β̂ =

[
β̂0
β̂1

]
, X =




1 t1
...

...
1 tn


 (13)

With the parameters of the regression model, a t-test can be
used to determine if there is a significant trend in the data.
The null hypothesis H0 : β1 = 0 is tested against the alternate
hypothesis H1 : β1 6= 0. This will determine if there is a
statistically significant slope in the data-set [23]. The t is
determined using Equation (14). If β1 = 0 Equation (14) has
a t-distribution with n-2 degrees of freedom [31]. where n
indicates the sample size. This can be tested using the student’s
t cumulative distribution function.

t =
β̂1√∑

(yi−β̂0−β̂1xi)
2

(n−2)

(14)
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Fig. 11: Residual check for learning curve trend analysis for
Kp, Participant 1

C. Data preparation

Before the trend analysis methods can be applied to the final
data-set to identify behavioural changes due to Parkinson’s
disease progression, the baseline data-set as defined in Section
II needs to be prepared. First of all, an initial trend check is
performed in order to correct for any learning effects in the
data as they can cancel out performance degradation due to
PD. Furthermore, the simulated PD data are added to complete
the data-set for the final analysis.

1) Learning curve: Even though it is hypothesised that there
will not be a significant learning curve in the experimental data
due to the simplicity of the task [20,21], the data are analysed
for trends. If is a learning trend is found, it can severely affect
the trend detection process for the full data-set. As a learning
curve is accompanied with increasing performance and disease
progression comes with decreasing performance, both trends
may cancel each other out.

Using the general linear regression model described in Section
III-B, by applying MATLAB’s mvregress function to the data,
any significant trends in the experimental data were detected.
The assumptions for the model residuals are checked. With
zero-mean correlation with t, no autocorrelation and a normal
distribution, the model is found to be valid. An example of
the residual check for Participant 1 is presented in Figure 11.
After checking if the model assumptions were valid, the data
were corrected for the significant trend and a second check
was performed so see if the correction was accurate.

2) Simulation of PD data: The data-set is completed by
adding data-points related to PD control behaviour. From
the original data (50 data points), which have already been
corrected for learning trends, 25 new related data points were
defined using bootstrapping methods [23] for each participant
and hand. These new data were then scaled as representative
for PD symptoms, by adding a δ to the bootstrapped value.
This δ is randomly selected from the predefined range shown
in Table II that is based on differences between PD patients
and healthy controls from real experimental data [20]. This
variation in scaling allows for differences in symptom severity
for good and bad control days and the changing influence of
treatment also known as on/off moments [4].
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Fig. 12: Estimated and simulated control parameters for Participant 25, D

TABLE II: Parameter Change Range for PD Symptom Simu-
lation

Mild Symptoms Severe Symptoms
Kp -0.5 < δ < 0 -0.9 < δ < 0
τ 0 < δ < 0.02 0 < δ < 0.07

ζnms 0 < δ < 0.2 0 < δ < 0.31
ωnms 0 < δ < 3 0 < δ < 5

The table shows ranges for mild and severe symptoms. The
main analysis is done with severe symptom data, to see if
the model is actually able to detect behavioural changes in
the data. The mild range will used for the sensitivity analysis
so determine the range of symptom severity the model can
handle. The PD values for the tracking performance, RMSe,
and control activity, RMSu, were obtained by running a
simulation model based on Figure 2 with the 4 new pilot
parameters in Equation (4). The available data only covered
the dominant hand, for this research it was assumed that
for the non-dominant hand PD patients experience a similar
decline and the same δ range could be used to simulate disease
progression. 25 PD related data points were simulated for
each participant and hand. This number was chosen to ensure
a sufficiently high number of data points for detection of
behavioural change, while keeping in mind that detection after
many data points might not provide an improvement on current
diagnostic methods.

Figure 12 gives an example of the combined experimental and
simulated dominant-hand control data-set for Participant 25.

Here, the blue dots before the vertical black line indicate the
estimated parameters and the yellow and red points are the
mild and severe simulated bootstrap data points, respectively.

3) Combined data: From the previous preparation steps, two
different data-sets are available for each participant and control
hand, the data for healthy participants, corrected for any
learning trends, and the simulated PD data related to the
previous data-set. These are combined to form the data that
will be used in the detection of behavioural changes in motor
performance data using the same regression models as for the
learning effect analysis.

D. Sensitivity

After the initial trend analysis is performed, the sensitivity of
the model needs to be checked. This is done with three tests.
First of all the number of data points used in the trend analysis
is varied to see how detection performance changes and how
many affected data points are required for detection. Second,
the severity of the discrepancies in the simulated PD data can
be altered to analyse the applicability of the model to different
symptom severity levels. Finally, a group of good participants
was selected in order to determine how detection performance
changes for different controllers.

1) Changing number of data points: Firstly, the number
of data points used in the trend analysis is changed. The
original model uses 50 ‘healthy’ and 25 simulated PD points.
As the disease progression is unique for each participant,
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the number of baseline data points preceding a behavioural
change due to increasing symptom severity is different in each
case. Moreover, a longer set of healthy data can balance out
any initial trends, needing a higher number of affected data
points before a trend is identified. The number of PD data
points required for detection of behavioural changes in motor
performance data is a good indication of the sensitivity of the
model.

The first change to the model was to gradually add data points
instead of using the full data-set from the start. The model
started off with 50 data points, as that is the amount in the
baseline data-set. During each iteration, one of the PD data
points is added and the new set is analysed for trends, so that
the minimum number of affected data points needed for trend
detection can be determined.

Secondly, use was made of a sliding window for the trend
detection iterations. In this case a fixed window size is chosen
that is shifted every iteration, as shown in Figure 13. This
allows for trend detection that is not weighed by a large
amount of baseline data, therefore it is expected that the initial
decline in performance is detected earlier. In order to pick
an appropriate window size, several options were analysed
to determine which performed best. Good performance is
defined as early trend detection. However, to avoid any false
positives, the detection should be stable, with values under the
significance threshold, for several consecutive data points.

2) Participant selection: Another aspect in defining the appli-
cability of the trend model to the whole population is to see
how the analysis differs for a selection of the participants with
a good performance, or in other words to define the percentage
of the population for which this model can successfully
be applied. The initial analysis is performed for the whole
participant group, which could lower the overall performance
of the trend detection model due to the difficulty of finding
trends in noisy data of participants with a lower motor perfor-
mance, such as PD patients. When making a selection of good
participants, it can be determined if the model only works for
high performing participants or if performance does not have

TABLE III: Participant inclusion criteria value range

Inclusion criterion Value range
RMSe [-] ≤ 1
MMSE [-] ≥ 26
Reaction time simple tap [s] ≤ 0.4
Reaction time screen touch [s] 0.8 ≤ δ ≤ 1.2
Reaction time space release [s] 0.2 ≤ δ ≤ 0.4
Taps per second [-] ≥ 4

a significant effect on the accuracy of detection of behavioural
changes. The inclusion criteria for the good participants are
defined as follows.

First of all, the number of missing data points, as defined
in Section II-E, cannot be higher than 10, for each control
hand. A higher number would mean that more than one-fifth
of the original data are missing. Moreover, missing data points
indicate noisy data with a bad system identification model
fit, which relates to a lower control performance. If more
than 20% of the data are missing, it generally means that the
participant did not have adequate control over the system.

Another measure of control performance was defined by the
tracking performance, or RMSe parameter. If a participant
would not give any input, the RMSe would be 1 for this
control task. The parameter indicates whether a participant
reduced the tracking error while controlling the system (≤1)
or actually increased the error by providing an input (≥ 1).
Therefore, a score of 1 or lower was defined as adequate
control performance.

The MMSE is a measure of the cognitive functioning of
the participants and a MMSE score ≥ 26 indicates that a
participant does not show cognitive decline [49]. Therefore,
this threshold is taken into account when selecting participants
with a sufficiently high tracking performance. However, it
must be noted that the all participants had a score of 26 or
higher. This threshold is, therefore, not a defining factor in
the participant selection, but should be taken into account for
future research.

Moreover, several baseline tests, developed by the neuro-
science department of the EMC [9], were performed before the
start of the experiment in order to tests if the participants were
able to perform basic motor tasks. These data were used in the
selection of the participants with a higher motor performance.
From these tests several motor performance parameters were
defined, and inclusion criteria thresholds were formed visually,
including the majority of participants while excluding obvious
outliers. The complete set of ranges for the performance
criteria are given in Table III.

The final selection of participants with an adequate control
performance included 15 of the original 25 participants, only
60% of the group. The age range of this new group was the
same, but the average age was almost three years younger than
the complete participant group, (µ = 64.07 years, σ = 6.74
years). This indicates that age is an important factor in the
analysis of the data and applicability of the model.
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3) Symptom severity: As already mentioned in Section III-C2,
two different severity ranges for the PD data were defined and
the general trend analysis was done using the severe symptom
range. In order to test the applicability of the model to different
ways of disease progression, trend analysis performance with
differing symptom severity was compared. It must be noted
that the differences between mild and severe symptoms are
subjective and taken as averages and extremes of the data from
previous research [20], respectively. As the patients in previous
research were early stage, the average values were deemed
appropriate for milder symptoms and the extremes for severe
symptoms. This was chosen so that the simulated data were
still based on actual values.

E. Hypotheses

For the trend analysis method, two further hypotheses are
defined.

H.III. It is expected that learning effects do not significantly
influence motor performance and its parameters.
Previous research indicates that a pursuit task has a lower
complexity and workload as compared to preview tasks [21].
Furthermore, patients were able to perform the task after a
short amount of practise [20]. Therefore, it is expected that
there will be no obvious learning trends in the data.

H.IV. It is expected that significant trends are found when
analysing each individual, combined experimental and sim-
ulated PD data-set for the gain Kp, damping ratio ζnms and
tracking performance RMSe, for 65% of the participants.
Previous research has shown that there is a significant differ-
ence in parameters related to motor performance of patients
and an age-matched control group [20]. These differences
are the baseline for the simulated PD data and as such it is
expected that there will be a visible trend in time, in other
words a behavioural change in motor performance, for the
combined healthy experimental and simulated PD data-set for
these parameters. However, it is unlikely that this will be the
case for all participants, due to the variability in performance
metrics. Taking into account the participants with a relatively
high RMSe, therefore, low performance, and a low relative
remnant, which means noisy data, it is expected that for 65%
of the participants a detectable change in motor behaviour due
to PD symptoms is found.

IV. EXPERIMENT

In this section the experimental set-up is discussed. With the
described experiment the data used in the cybernetic approach
is gathered and these data provide the base for the healthy
participant data part used in the detection of behavioural
changes in motor performance data.

A. Apparatus

The experiment was performed in several common rooms of
group homes for the elderly using a portable experimental
set-up. The main experiment ran on a HP laptop with a Linux
operating system (Ubuntu 18.04.3 LTS) on the Delft University

Fig. 14: Experiment test set-up.

Environment for Communication and Activation (DUECA)
[50]. A Dell P2341T touchscreen was used as input device
and was connected to the laptop, as shown in Figure 14.
Participants were asked to wear touchscreen gloves in order
to reduce friction between the finger and touchscreen. The
touchscreen was re-positioned for use with the dominant and
non-dominant hand to provide a more natural control position
for the hand.

Motor performance baseline measurements were done by
measuring reaction times and eye-hand coordination using a
portable setup from the EMC [9]. The Tobii X2-60 compact
eyetracker was positioned below the touchscreen and was
combined with the Tobii Pro Studio software to run tests
measuring reaction time and control precision. A separate
keyboard and the previously mentioned Dell touchscreen were
used as input devices for the tests.

B. Target forcing function

To analyse the data using the frequency domain identification
method described in Section II-B, a quasi-random multisine
forcing function was used as a target function in the pursuit
tracking task. The forcing function is defined as the sum of
eleven sinusoids with different frequencies, amplitudes and
phases, as shown in Equation (15). The frequencies ωf of
the multisine are all integer multiples of the base frequency
ωm, defined by Equation (16), where Tm indicates the mea-
surement time.

f(t) =

Nf∑

k=1

Af (k) sin (ωf (k)t+ φf (k)) (15)

ωm =
2π

Tm
(16)

This multisine described by the eleven sinusoids of Table IV
has been used in previous research [20–22]. This combination
of sines was found to be able to cover the whole region of
interest in human behaviour dynamics and was used in this
research for continuity reasons.
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TABLE IV: Target Signal Components, obtained from [20]

Nf ωf [rad/s] Af [deg] φf [rad]
4 0.614 1.079 7.239
7 1.074 0.776 0.506

13 1.994 0.391 7.860
19 2.915 0.225 8.184
29 4.449 0.117 9.012
37 5.676 0.082 6.141
43 6.596 0.066 6.776
53 8.130 0.051 6.265
79 12.118 0.035 4.672

109 16.720 0.028 2.672
157 24.084 0.024 8.009

Previous research used a signal length of 50 s, of which
the first 9.04 s where used as run-in time and the latter
40.96 s as measurement time Tm [20–22]. The sinusoid
amplitudes were determined using a second-order low pass
filter as described in Equation (17), where TA1

= 0.1 s and
TA2

= 0.8 s. Finally, the phases were selected ‘randomly’ to
achieve an average crest factor [20]. The input signal polarity
was switched for every second trial to mitigate learning effects
in the experiment.

HA(jω) =
(1 + TA1

jω)
2

(1 + TA2
jω)

2 (17)

C. Dependent measures

During each measurement run, the target signal ft, control
signal u and system output y, as previously defined in Figure
2, were recorded for use in the data analysis. From these
signals, the control parameters Kp, τ, ζnms and ωnms were
determined using the approach described in Section II. The
tracking performance metric, indicated as RMSe, is defined
as the root mean squared (rms) value of the error divided by
the rms of the target signal, or RMS(e)/RMS(ft). Control
activity, here defined as RMSu, is defined similarly to the
tracking performance as RMS(e)/RMS(u). A high value
indicates that the participant is actively controlling the system,
while a lower value signifies a more reserved control strategy.

D. Participants

The participant group consisted of 25 healthy people, with
an age range of 56-75 years (µ = 66.88 years, σ = 6.77
years), coinciding with the average age of symptom onset
for Parkinson’s disease [4]. An overview of the participant
information is given in Table V. Moreover, an elderly par-
ticipant group shows similar, though slightly better, control
performance compared to patients on Levodopa treatment [13],
which provides a good baseline for the approximated data.
Healthy participants included people who did not have any
neurological impairments. Minor deficits related to old age,
such as slight slowness of movement that did not severely
influence motor performance, were allowed as they show the
impact of natural neurological degeneration caused by the
ageing of the brain. All participants signed a consent form.
The experiment was approved by the Delft University of

TABLE V: Overview of participant information

Participant age sex Handedness
1 56 f r
2 58 m r
3 75 f r
4 75 f r
5 72 f r
6 74 m r
7 73 f r
8 74 f l
9 75 m r

10 58 m r
11 64 f r
12 64 f r
13 64 m r
14 61 f r
15 67 f r
16 70 f r
17 72 f r
18 62 m l
19 60 f r
20 58 f r
21 69 m r
22 75 f r
23 68 f r
24 72 f r
25 56 f r

Technology, Human Research Ethics Committee (HREC) with
application number 982. The performance variation and trend
analyses are performed for the whole participant group. This
is followed by the analysis for a selection of the participants
in the sensitivity analysis as mentioned in Section III-D.

E. Procedures

To approximate longitudinal clinical data, the experiment was
spread over 5 days. During the first day, an elaborate briefing
was given on the experiment. This was followed by mea-
surements for both dominant and non-dominant hand control
and debriefing. For the follow-up measurement sessions the
briefing was shortened and the baseline tests were skipped.

Before the start of the experiment, all participants were asked
to perform a Mini Mental State Examination (MMSE) to
assess cognitive functioning [49]. A baseline for the motor
performance is defined with two short tests, measuring reaction
time and eye-hand coordination, using tests developed by
the neuroscience department of the Erasmus MC [9], where
eye and hand movements are compared to estimate motor
performance of participants.

The measurements consisted of two blocks with five practice
trials, to re-acquaint themselves with the task and control hand,
and 10 measurement trials, with short breaks in between to
lessen fatigue of the hand and eyes. For the first day, the train-
ing blocks were expanded until the participant showed stable
control behaviour. In each block the participant controlled the
system with alternately the dominant and non-dominant hand.
Learning effects and fatigue were mitigated by changing the
order of starting with either D or ND control, per subject and
measurement set. 10 trails per hand per measurement day were
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chosen to ensure that enough data points for further analysis
with trend methods.

V. RESULTS

This section presents the results of this paper. First the
outcomes of experimental data analysis for variation in the
data are given. After this, the results for the trend analysis
are presented, for the learning curve, main trend detection and
sensitivity analysis.

A. Experiment

1) Day-to-day variation: To understand how control be-
haviour is influenced when the measurements are spread over
multiple days, the data were analysed for day-to-day variance.
Two different situations were defined for the complete exper-
imental data-set, namely separate data for dominant (D) and
non-dominant (ND) control. The analysis was performed for
all of the estimated parameters and performance and input
scores that were calculated in the manner described in Section
II. As mentioned, the data did not have a normal distribution,
therefore, Friedman’s ANOVA was used for the statistical
analysis to see if any significant differences were present.

An overview of daily variation in the dominant hand data-set is
presented in Figure 15, where a between-subject correction has
been applied. The box plots show the quartiles and medians,
and outliers are indicated with a red asterisk. Both the data in
this figure, as well as the ND set, were not normally distributed
in accordance with the Shapiro Wilk test for normality. Upon
visual inspection, it can be seen that for the gain, time delay
and damping ratio there seems to be a difference between the
daily performance. The variation is mainly in a monotonic
manner, which could indicate a learning curve; this will be
elaborated on in Section V-B1. The difference between days
is confirmed by Friedman’s ANOVA, where a significant effect
between the days was found for all parameters except ωnms,
as shown in Table VI.

Using Wilcoxon’s test for post hoc analysis, it was determined
that for the dominant hand data-set there is a highly significant
effect between the majority of days, as shown in Table VII. For
ωnms no analysis was performed as the results of Friedman’s
ANOVA were insignificant. The few relations where no signif-
icant effects were found for the estimated parameters Kp, τ
and ζnms generally centered on day 3 with day 2 or 4, or other
adjacent days. Similar results were found for the ND sets, with
a slightly higher number of significant relations, which means
there is a somewhat higher variation in control performance for
the non-dominant hand as compared to dominant hand control,
though it is very limited.

Individual values for the standard deviation in the data and
corresponding Coefficient of Variance (CV) are presented in
Table VIII. Here, the CV is defined as the percentage of the
mean, or σ/µ ∗ 100% and gives an indication of the relative
spread of the data. A higher percentage indicates a larger
variation. The individual statistical analysis demonstrated that

for the tracking performance and control activity, almost
all controllers showed a significant effect in the day-to-day
variance, see Table IX. The control parameters, however,
have lower percentages. Only for the control gain more than
half of the participants have significant differences in day-to-
day variance with 56% and 64% respectively. For all other
estimated parameters less than half of the participants show
a significant difference in the data. Nonetheless, the natural
frequency showed the lowest percentage, congruent with the
insignificant ANOVA results. Any differences between the two
analyses could be attributed to the significantly smaller data-
sets in the individual analysis.

2) Dominant and non-dominant hand control: The exper-
imental data were also analysed for differences between
dominant and non-dominant hand control motor performance.
While in the day-to-day variation no major differences were
found between the two control hands, there could still be a
difference in participants’ control performance. The data were
not normally distributed, therefore, the Wilcoxon’s matched
pairs test was used in the analysis.

Figure 16 shows the results of the analysis of dominant and
non-dominant hand control for the complete data-set and all
control performance parameters. The results of the statistical
test are given in Table X. Highly significant differences (p ≤
0.01) were found for all parameters but the time delay and
neuromuscular frequency. For the gain, tracking performance
and control activity the average for the non-dominant hand
was higher and for the damping the average was lower.

Individual analysis showed that there were considerable dif-
ferences in these results between participants. Table XI shows
the results for the individual statistical tests. An upward
trend means the average for ND is higher than for D. The
majority of participants with a significant result followed the
trend found in the main analysis for all parameters, except
the time delay. In the combined data-set the time delay did
not show any significant differences, while for the individual
analysis over half of the participants show major differences.
Moreover, several participants showed results which are highly
contrasting to the combined data-set. An example of such
constrasting results for the tracking performance is given in
Figure 17, where Participant 25 has a significantly higher
score, thus worse performance, for the non-dominant hand (W
= -4.71, p≤0.01), while for Participant 16 this was reversed
(W = 2.08, p≤0.05).

Further observations showed that participants generally had
a lower performance for the hand they started controlling
the system with on the first day. In other words, if the
first measurements were done using ND control, the final
performance for D control was generally higher, though this is
not statistically supported. This could be explained by learning
effects, as the participants had more time to understand the
system before controlling with the second hand, performance
way higher at the end of the measurement day.
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Fig. 15: Day-to-day variation in motor performance parameters, D

TABLE VI: Results of Friedman’s ANOVA for day-to-day variation for all data with either dominant (D), non-dominant (ND)
control, where ** is highly significant (p < 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Friedman’s ANOVA Dependent measures
Kp τ ζnms ωnms RMSe RMSu

Data set df χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig. χ2 Sig.
D 4 75.32 ** 31.91 ** 42.03 ** 2.40 - 344.23 ** 64.37 **

ND 4 119.43 ** 38.46 ** 48.85 ** 4.49 - 313.40 ** 61.30 **

TABLE VII: Results of post hoc Wilcoxon test for day-to-day variation for dominant hand control (D), where ** is highly
significant (p < 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Wilcoxon - D Dependent measures
Kp τ ζnms ωnms RMSe RMSu

Data set W Sig. W Sig. W Sig. W Sig. W Sig. W Sig.
Day 1 - Day 2 -3.04 ** 1.95 - -3.27 ** n/a n/a 8.82 ** 3.16 **
Day 1 - Day 3 -4.84 ** 1.14 - -3.12 ** n/a n/a 10.26 ** 4.87 **
Day 1 - Day 4 -5.14 ** 2.41 * -5.13 ** n/a n/a 10.94 ** 5.44 **
Day 1 - Day 5 -7.46 ** 5.33 ** -4.31 ** n/a n/a 12.41 ** 4.97 **
Day 2 - Day 3 -1.59 - 0.09 - 0.11 - n/a n/a 3.32 ** 0.51 -
Day 2 - Day 4 -1.79 - 1.47 - -2.58 ** n/a n/a 5.69 ** 2.94 **
Day 2 - Day 5 -4.98 ** 3.10 ** -1.42 - n/a n/a 8.96 ** 3.29 **
Day 3 - Day 4 -1.17 - 1.68 - -3.03 ** n/a n/a 3.41 ** 2.84 **
Day 3 - Day 5 -4.73 ** 3.51 ** -3.27 ** n/a n/a 8.19 ** 1.78 -
Day 4 - Day 5 -4.31 ** 2.17 * 0.39 - n/a n/a 5.11 ** 0.45 -
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TABLE VIII: Standard deviation and coefficient of variance of control parameters for all participants

Parameters
Kp τ ζnms ωnms

Participant D ND D ND D ND D ND
σ CV σ CV σ CV σ CV σ CV σ CV σ CV σ CV

1 0.20 23 0.24 24 0.13 39 0.12 36 0.17 52 0.20 50 3.68 57 2.45 35
2 0.26 19 0.18 12 0.08 25 0.06 19 0.10 41 0.08 36 3.14 28 3.40 25
3 0.10 84 0.19 47 0.22 62 0.25 40 0.08 108 0.08 73 7.50 70 5.15 70
4 0.16 68 0.21 68 0.31 63 0.25 62 0.09 105 0.18 135 6.78 79 7.35 63
5 0.31 32 0.32 35 0.19 42 0.22 43 0.21 68 0.18 73 4.32 62 4.04 55
6 0.30 49 0.28 39 0.18 46 0.14 38 0.21 42 0.26 74 4.98 61 4.86 52
7 0.25 33 0.34 37 0.15 33 0.12 38 0.25 61 0.25 47 7.15 66 5.86 65
8 0.37 39 0.55 42 0.16 36 0.09 28 0.20 62 0.25 70 3.44 38 3.98 39
9 0.28 24 0.25 19 0.07 21 0.08 25 0.20 67 0.13 56 3.29 31 4.17 39

10 0.24 21 0.24 18 0.06 24 0.05 19 0.20 30 0.18 30 2.66 26 2.98 27
11 0.54 61 0.35 37 0.14 46 0.18 57 0.31 61 0.22 44 4.95 59 4.68 71
12 0.24 51 0.26 58 0.23 52 0.18 55 0.31 75 0.31 81 6.04 73 6.16 65
13 0.17 16 0.28 24 0.07 23 0.14 52 0.17 34 0.21 43 2.00 32 3.07 47
14 0.34 67 0.22 47 0.29 54 0.22 37 0.12 80 0.05 68 5.36 79 4.49 68
15 0.23 32 0.18 39 0.09 33 0.23 51 0.21 51 0.10 72 4.62 45 4.42 51
16 0.36 48 0.39 47 0.14 41 0.17 56 0.31 57 0.25 54 5.75 63 4.27 61
17 0.22 50 0.33 75 0.28 51 0.22 53 0.14 68 0.12 84 6.07 92 6.35 62
18 0.22 16 0.35 25 0.12 51 0.11 42 0.16 35 0.17 37 3.71 45 3.85 42
19 0.22 18 0.21 17 0.08 26 0.06 22 0.13 38 0.07 26 2.87 34 1.54 22
20 0.14 13 0.17 16 0.11 41 0.10 29 0.15 38 0.19 51 3.20 43 3.23 34
21 0.37 27 0.38 39 0.06 20 0.08 23 0.20 33 0.20 53 2.76 30 4.44 36
22 0.34 37 0.37 33 0.13 32 0.08 27 0.25 57 0.25 44 3.73 36 4.18 38
23 0.49 37 0.37 27 0.12 36 0.12 30 0.22 49 0.20 51 3.50 42 3.74 39
24 0.47 38 0.44 39 0.14 37 0.15 32 0.13 48 0.09 51 2.71 50 3.10 40
25 0.25 20 0.16 16 0.07 24 0.09 29 0.22 39 0.23 44 3.69 31 2.90 28

Parameters
RMSe RMSu

Participant D ND D ND
σ CV σ CV σ CV σ CV

1 0.24 23 0.20 21 0.29 22 0.23 18
2 0.16 21 0.14 17 0.24 17 0.29 19
3 0.66 32 0.41 20 0.39 33 0.36 19
4 1.23 36 1.94 46 0.58 26 0.72 30
5 0.35 20 0.33 18 0.63 24 0.73 27
6 0.37 27 0.23 19 0.27 23 0.16 13
7 0.45 32 0.22 18 0.28 20 0.34 22
8 0.36 22 0.25 21 0.35 17 0.84 34
9 0.39 37 0.33 33 0.27 17 0.36 20

10 0.17 20 0.09 11 0.15 13 0.13 11
11 0.20 18 0.29 23 0.27 17 0.30 19
12 0.31 20 0.41 24 0.24 21 0.26 21
13 0.10 11 0.15 18 0.09 8 0.11 9
14 0.57 25 0.99 41 0.57 28 0.69 28
15 0.35 28 0.55 36 0.17 14 0.37 27
16 0.27 21 0.17 14 0.31 23 0.31 22
17 0.91 37 2.39 90 0.54 24 1.04 45
18 0.12 17 0.15 20 0.14 11 0.14 10
19 0.22 26 0.17 19 0.16 13 0.16 11
20 0.10 12 0.18 19 0.16 13 0.15 11
21 0.18 19 0.20 18 0.17 12 0.26 17
22 0.49 35 0.60 40 0.22 13 0.29 17
23 0.21 22 0.17 17 0.32 21 0.23 13
24 0.23 17 0.29 20 0.77 31 0.60 25
25 0.12 15 0.11 13 0.17 15 0.18 15
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Fig. 16: Dominant and non-dominant hand control performance parameters

TABLE IX: Percentage of participants with a significant
(p<0.05) result for Friedman’s ANOVA for day-to-day varia-
tion, all estimated parameters

data-set Dependent measures
Kp τ ζnms ωnms RMSe RMSu

D 52% 40% 36% 20% 92% 92%
ND 64% 40% 28% 24% 96% 88%

TABLE X: Results of Wilcoxon’s test for dominant and non-
dominant hand control analysis, where ** is highly significant
(p < 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not
significant (p ≥ 0.05)

Parameter W Sig
Kp −2.85 **
τ −0.73 -

ζnms 5.44 **
ωnms −1.72 -
RMSe −3.11 **
RMSu -10.50 **

.

TABLE XI: Percentage of participants with a significant trend
(p < 0.05) for dominant and non-dominant hand control
analysis, and their slope indication, all estimated parameters

Parameter upward downward not significant
Kp 32% 12% 56%
τ 32% 20% 48%

ζnms 16% 16% 68%
ωnms 16% 12% 72%
RMSe 32% 28% 40%
RMSu 44% 20% 36%
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Fig. 17: Comparison of difference in score parameters with D
and ND control for two participants

.
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Fig. 18: Learning curves and data correction Participant 23, ND

3) Ageing and performance: It would also be interesting to
see how performance can be influenced by increasing age and
to define confidence bins for healthy participants. If a future
participant would fall outside of these confidence intervals,
combined with an initial trend, it could indicate upcoming PD
symptoms.

Figure 18 presents all performance metrics values related to
the age of the participants. The red asterisks give the average
across participants with the same age and the blue fill indicates
95% confidence interval. It must be noted that the number
of participants per age group differs significantly. Any clear
outliers, such as at age 61, can be explained by a single
participant of that age with better or worse than average
performance. In general the trend is that the confidence limits
become slightly broader and performance, both visible in the
RMSe and related control parameters, worsens with age.

B. Trend analysis

1) Learning curve: To determine whether part of the variance
in the data found in Section V-A1 can be attributed to
learning effects, trend analysis is used. A monotonic upward or
downward trend, in combination with improving performance
scores, can indicate an learning curve spread over multiple
days, where the motor performance of a participant keeps
improving.

Table XII gives an overview of the percentage of the par-
ticipants with a significant trend (p<0.05) in the original

TABLE XII: Results of GLR learning curve analysis, percent-
age of participants with a significant learning curve (p<0.05)
in experimental data, all estimated parameters

Parameter Significance
Kp 64%
τ 48%

ζnms 54%
ωnms 28%
RMSe 84%
RMSu 68%

experimental data. For the tracking performance RMSe, 84%
of the participants showed a significant downward trend, so
higher performance, which indicates that, overall, there is
a learning curve present. Moreover, the 68% of participants
with a significant change in control activity shows that more
than half of the participants adapted their control behaviour
as they were learning and understanding the system over the
five measurement days. For the estimated control parameters
Kp, τ, ζnms and ωnms the percentages are lower, but still
indicate that control behaviour changed over time. For all
significant trends, the trend lines of RMSe, Kp, and ζnms
were increasing while τ and ωnms decreased, related to an
increase in motor performance. For the RMSu trend lines,
the slope direction changed between up and downward trends,
depending on the changing control strategy of the participant.

Figure 19 shows an example of the results for the learning
curve trend analysis for Participant 23, for non-dominant
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TABLE XIII: Results of one-sample t-test for learning curve
analysis for Participant 23, ND, where ** is highly significant
(p < 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not
significant (p ≥ 0.05)

Parameter df t Sig
Kp 48 21.21 **
τ 48 12.05 **

ζnms 48 7.63 **
ωnms 48 9.39 **
RMSe 48 23.91 **
RMSu 48 30.81 **

hand control. It can be seen that, for this participant, all
parameters had a significant trend (red line), with statistical
details presented in Table XIII.

For further analysis the significant learning curves have been
corrected and a second regression model was fit to the cor-
rected data to check if the correction was done properly. The
purple lines in Figure 19 indicate the regression fit for the
corrected data, showing no significant remaining trends.

2) Trend analysis: Aside from its application to the experi-
mental data when analysing for learning curves, the general
linear regression model as described in Section III was used
to determine if there are any detectable trends in the ap-
proximated longitudinal clinical data with a simulated disease
progression, i.e., the combined experimental (healthy) and
simulated (PD) data-sets. After fitting a regression line, a t-
test was used to see if the line had a significant slope, which
indicates a trend.

Table XIV provides an overview of the percentages of partici-
pants with a significant slope for the different metrics, both for
the combined data-set and the separate sets. Since the variance
had only minor differences in between D and ND control
and similar ranges were used for PD parameter simulation,
no major differences were expected, this is confirmed by the
data. As can be seen in Table XII, the values for the separate D
and ND data-sets generally correspond to that of the combined
set. Minor deviations, of one or two participants, are found for
Kp, ωnms, RMSe and RMSu.

Furthermore, it can be seen that for the gain, time delay,
damping ratio, tracking performance and control activity, at
least half of the participants have a significant slope in the
regression line fitted to the approximated longitudinal data.
Finally, as a change in Kp, ζnms and RMSe is expected from
previous research [20], the data were analysed to see how
many participants showed change in behaviour for all three
PD related control parameters. From the trend analysis it was
found that 34% of the participants showed such results.

Figure 20 presents an example of the regression models
fitted to the data-set of Participant 25 with dominant hand
control. The red lines indicate the model fitted to the esti-
mated and simulated parameters, defined by the blue dots,
the dashed purple line gives the regression line fitted to the

TABLE XIV: Results of GLR trend analysis, percentage of
participants with a significant trend (p<0.05), all estimated
parameters

Parameter Combined D ND
Kp 66% 60% 72%
τ 64% 64% 64%

ζnms 96% 96% 96%
ωnms 46% 44% 48%
RMSe 50% 48% 52%
RMSu 58% 56% 60%

TABLE XV: Results of one-sample t-test for GLR trend
analysis for Participant 25, D, where ** is highly significant
(p < 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not
significant (p ≥ 0.05)

Parameter df t Sig
Kp 73 -4.03 **
τ 73 1.12 -

ζnms 73 2.07 *
ωnms 73 -2.09 *
RMSe 73 2.74 **
RMSu 73 -3.66 **

healthy experimental data and the vertical black line separates
the experimental and simulated data. Table XV gives the
corresponding t-test results for the null hypothesis (i.e. no
significant slope). It can be seen that there is a significant trend
for all parameters except the time delay, which corresponds to
the results in Figure 20.

C. Sensitivity Analysis

The trend analysis showed that for the expected parameters
Kp, ζnms and RMSe a trend was found for over half of the
participants. The analysis might, however, be influenced by the
choices made in the method design, such as number of data
points in trend analysis, participant inclusion and symptom
severity. Therefore, a sensitivity analysis was performed, of
which the results are covered in this subsection.

1) Number of data points used: As mentioned in Section
III-D, it would be interesting to determine how many PD data
points are required before the model detects a trend in the
data. For this, two different versions of the trend model are
applied, one with an increasing number of data points and the
other with a sliding analysis window, as explained in Section
III-D. In order to determine which model provides the best
application to the whole data-set and future utilisation, the
p-values are averaged across all participants.

Figure 21 presents the p-values for the trend analysis when
changing the number of data points used in the analysis. The
horizontal axis signifies the number of iterations done by the
model, where each iteration adds or shifts to the following
simulated PD value. The dashed horizontal red line marks the
p-value threshold (p≤0.05), and any p-values below this line
indicate that a significant trend is detected. It can be seen
that only for the damping ratio, the model converges to a
significant trend, while for all other parameters no significant
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Fig. 19: Learning curves and data correction Participant 23, ND
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TABLE XVI: Comparison of GLR trend analysis results, per-
centage of participants with a significant behavioural change
in motor performance (p<0.05), all estimated parameters

Parameter All Selection
Kp 66% 77%
τ 64% 53%

ζnms 96% 97%
ωnms 46% 50%
RMSe 50% 53%
RMSu 58% 73%

trend is found in the averaged data for any of the methods.
Furthermore, only a stable trend detection, with multiple
adjacent significant values, is seen in Figures 21a and 21c.

Figure 21c shows how the significance of the trend evolves if
the number of data points increases per iteration, so that for the
final iteration the original trend model with 75 data points is
used. Only the damping ratio converges to a significant trend
after 10 iterations. The values for the gain, tracking perfor-
mance and control activity do stabilise around 10 iterations,
but do not cross the significance threshold.

Figures 21a, 21b, 21d and 21e show the models where a sliding
window is used in the analysis, with window sizes 50, 35, 25
and 15 trails, respectively. For all but window size 15, the
ζnms reaches a significant value, but for 25 data points this is
only briefly. Sizes 50 and 35 have more subsequent iterations
with a significant values, providing a more stable result.

2) Participant selection: All previous results were gathered
using the whole participant group. To analyse to what part of
the population the model can be applied and how motor per-
formance affect the detection accuracy of the model, the trend
analysis is again performed for a selection of the participants
with a high control performance. Table XVI gives an overview
of the percentage of the good performing participants with a
significant trend for each control parameter, as well as the
original percentages for comparison. In general, the values for
the select group are higher than those of the regular analysis.
The exception is for the neuromuscular natural frequency.

Analysing the selection of participants with a higher perfor-
mance also provides better results for the sliding window
analysis, as shown in Figure 22. For the analysis with an
increasing data-set, presented in Figure 22c, little is changed
compared to the full data-set. However, when using a sliding
window to detect the trend, the gain, damping ratio and
tracking performance reach significant values.

The smaller windows, 15 and 25, provide earlier detection for
Kp and RMSe, however, they move back above the threshold
after 1-3 iterations at the point where the majority of the data
used in the analysis is simulated PD data, which is not reliable
for detection. Windows with 50 and 35 data points provide a
more stable analysis. For size 50 the values stay continuously
below the threshold, while for 35 eight subsequent iterations
show a significant value for all three expected parameters

TABLE XVII: Comparison of GLR trend analysis results, per-
centage of participants with a significant behavioural change
in motor performance (p<0.05) for mild and severe symptom
simulation, all estimated parameters

Parameter Severe Mild
Kp 66% 58%
τ 64% 38%

ζnms 96% 78%
ωnms 44% 42%
RMSe 50% 44%
RMSu 58% 60%

Kp, ζnms and RMSe. The detection moment for these param-
eters with window size 50 lies between 6-10 iterations and for
35 it is at 6-11 iterations.

3) Mild and severe symptoms: Finally, it is tested how the
trend analysis detection performance is changed for mild and
severe symptom simulation. As mentioned in Section III-C2,
two different ranges were defined for the PD simulation
data and all previous results were obtained with the ‘severe’
symptom data-set.

Figure 23 shows the comparison of trend significance for the
severe and mild data-sets for all data and participants. The
dashed horizontal red line marks the threshold for a significant
trend (p≤0.05). Using Wilxocon’s matched pairs test, as the
data are not normally distributed, is can be seen that for
the gain, time delay, damping ratio and natural frequency,
there is a significant difference in the results for the severe
and mild data-sets, while the control activity and tracking
performance do not show any significant effects. Generally the
trend analysis has a better performance for the severe symptom
simulation. Moreover, from Figure 23 it can be seen that the
spread in results for the trend significance is generally higher
for the mild symptoms, as expected.

These results are confirmed when looking and the percentages
of participants with a significant trend for the different param-
eters, as presented in Table XVII. In general, the percentages
for the mild symptom data-set is lower, except for the RMSu.

An example of the regression models for the two different
data-sets is presented in Figure 24. This figure shows the
same severe symptom control gain values as in Figure 20a
and the mild symptom data-set is added. Furthermore, the two
regression lines are shown, from which it can be seen that for
the severe set the regression has a steeper slope.

4) Dominant and non-dominant hand control: The majority
of the results for the trend analysis part presented in this
section focused on the analysis of the combined dominant
and non-dominant hand data-set, as no major differences were
found in the analysis for D and ND related to the trend
results. In general, the trend analysis of the dominant and
non-dominant hand data-sets exhibit similar outcomes as the
presented results. Minor deviations can occur but the important
observations are equivalent.
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Fig. 21: Sensitivity analysis with changing window size, population averages across all participants
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Fig. 22: Sensitivity analysis with changing window size, population averages across good participants
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Fig. 23: Trend analysis pValues for mild and severe PD symptom simulation cases, full window size

TABLE XVIII: Results of Wilcoxon’s test for mild and severe
symptom trend analysis, where ** is highly significant (p <
0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not significant
(p ≥ 0.05)

Parameter W Sig
Kp -3.14 **
τ -3.11 **

ζnms -4.62 **
ωnms -3.46 **
RMSe -1.12 -
RMSu 1.14 -
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Fig. 24: Example of mild vs severe symptom trend analysis
for the control gain, Participant 25, D

D. Detection performance

All in all, it was found that for the complete participant
group, the model was able to detect a motor behaviour
change for at least 50% of the participants when looking at
the individual control parameters of interest, Kp, ζnms and
RMSe. When combining these three parameters, however, only
34% showed a significant behavioural change related to PD.
Detection performance increases for high control performance
and changing the number of data points used in the trend
analysis. Furthermore, to ensure a high detection performance,
the PD symptoms need to be highly deviating from the healthy
participant data.

VI. DISCUSSION

The aim of this paper was to provide a proof-of-concept
for a method that can detect behavioural changes in motor
performance data due to Parkinson’s disease progression. The
data for this study comprised a combination of healthy ex-
perimental and simulated PD data to approximate longitudinal
clinical data. Separate analyses, e.g. tests for variation in day-
to-day and handedness performance, were performed for the
experimental data-set and trend analysis methods were used
to detect behavioural changes in the combined data-set.

Hypothesis I expected participants to show a variation in
day-to-day motor performance. The data presented in Section
V-A1 suggest this was true for all analysed parameters ex-
cept the neuromuscular natural frequency. Highly significant
differences were found between the five measurement days,
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mainly related to an higher control performance, and post-
hoc tests showed that most pairwise comparisons between the
days were significant. Part of the variation in the data can
be explained by a learning curve, which will be elaborated
on later in the discussion. Nonetheless, since the data do not
exhibit a monotonic trend, it can be concluded that there is a
natural variation in the day-to-day control performance. The
fact that this significant variation is not present for ωnms,
might be explained by the low quality of model fit for the
higher frequencies. Even though they are not directly visible
from the figures due to a between-subject correction, the many
estimated values above 24 rad/s are dubious as they are
higher than the highest excitation frequency, see Table IV.
Furthermore, Section II-C showed the low relative remnant
and wide confidence limits for the higher frequencies related to
the neuromuscular dynamics. The FRF estimate and, therefore,
the fitted model might not be an accurate representation of the
neuromuscular dynamics.

Parkinson’s disease can manifest itself asymmetrically [4],
therefore, tracking data of both control hands were anal-
ysed. Hypothesis II expected participants to have a worse
performance with ND hand control, this was, however, not
confirmed by the results. The tracking performance showed
better values for ND control and for the individual analysis
32% of participants had a significantly lower ND score, as
compared to 28% with a higher score. In line with the better
tracking performance [40], ND control showed increased gain
values. However, the damping ratio was found to be lower
for the non-dominant hand, which indicates more overshoot
when controlling the system and thus a lower performance.
When looking at the data for the individual participants, the
same trend was found as described above, however, some cases
strongly contradicted the overall results. When considering
that each controller is unique, this spread in the data and
the inconsistent results might be explained. All in all, the
hypothesis could not be confirmed.

Hypothesis III expected that there would be no significant
learning effects in the data, which was disproved by the
data analysis. When looking at the data presented in Figure
15, it can be seen that, even though not fully monotonic,
the values generally increases or decreases over the multiple
measurement days. Using general linear regression models, it
was found that for over half of the participants, RMSe and
Kp, had a significant slope, corresponding with increasing
performance. Furthermore, 48% exhibited a trend with de-
creasing time delay. The percentages for the neuromuscular
dynamics were relatively low with 32% and 28% for ζnms and
ωnms, this might again be attributed to the difficulty of fitting
the higher frequencies accurately. Feedback from participants
included that controlling the target velocity while positioning
their finger on a touchscreen was not very intuitive and for
some it took many practise trials to understand and control the
system. When comparing this setup to previous research with
the same block-diagram, but with a joystick as input device
[20], the unexpected learning effect could be explained. All

in all, the hypothesis is disproved. This means that for future
applications of this model, a longer training period is needed
before the data are useful.

Finally, Hypothesis IV expected a significant trend for the
control gain Kp, damping ratio ζnms and tracking performance
RMSe, in the combined experimental and simulated data-set
and for 65% of the participants. Results show that over half
of the participants exhibit a trend in the data, with 66% for
Kp, 96% for ζnms and 50% for RMSe. This was, however, as
expected and can be explained by the fact that the simulated
data are based on previous research [20]. However, when
looking at participants who showed a change in behaviour for
all three expected parameters, only 34% of the participants had
significant results. While for all three PD related parameters
combined, a low number of successful trend detections is
found, the results for the single parameter analysis could
already provide a doctor with information on changing control
behaviour as a support for the current diagnostic methods.
With Kp and ζnms showing a detection success rate above
65%, the hypothesis can partly be confirmed as the expected
accuracy was not met for all parameters.

Three different tests were applied to see how the applicability
of these trend models adjusts when changing analysis methods.
Firstly, the number of data points used in the analysis was
changed, both by increasing the data-set for each iteration,
as well as using sliding windows with different sizes. When
averaging the results across all participants, only the damping
ratio reached a significant value consistently, since 96% of
the participants had a significant trend for the damping ratio.
The insignificant averages for the other parameters could be
attributed to participants with a lower control performance,
since the results averaged across high performing participants
did reach significant values for the expected parameters, see
Figure 22. When taking all participants into account, the
method with the earliest detection of behavioural changes is
obtained with an increasing window size, while for the good
participants window sizes of 50 or 35 also show significant
values for Kp and RMSe. A window size of 50 provides
earlier trend detection. This difference is, however, minimal
and might be a result of this particular simulated data-set for
the selected 15 well performing participants, since the detec-
tion limits differ one iteration. Future analysis with a more
elaborate data-set could work on optimising the window range
for analysis. Moreover, in order to try and avoid any false
positives, stable trend detection is preferred, where multiple
consecutive iterations show a results below the significance
threshold. A window size of 50 data points provides the most
stable detection.

The current selection criteria indicated 60% of the participants
had a sufficient control performance. In general the trend
detection performance was increased when focusing on the
selected participants, nevertheless, excluding almost half of the
participants is a harsh measure. This number could, however,
possibly be lowered for future applications. In this research,
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a significant learning curve was found in the original data
that were used for participant selection. When following
participants for a longer period of time, the score might still
improve and enable the selection of many more participants.

Finally, the analysis for severe and mild symptom simulation
showed that for the expected control parameters, Kp, ζnms
and RMSe, still more than half of the participants showed
a significant trend with milder symptoms, even though trend
detection performance was less than for the severe data-set.
This suggests that the trend detection method is applicable for
a wider range of symptom severity. It must be noted that the
mild and severe symptoms are subjective, as it is unknown
what parameter values actually correspond to those symptom
levels. Generally, the simulated PD data-set was highly in-
fluential to the performance of the trend methods, considering
that the simulated parameters were based on previous research
[20]. However, those results are limited in the number of
participants used and any individual effects are not taken into
account as they are a comparison of healthy controls and
Parkinson’s disease patients. How the values for the control
parameters change over time due to disease progression is
unique for each patient and, without experimental data, still
unknown.

As a proof-of-concept this study shows that trend analysis
methods can be used to determine changes in control be-
haviour, related to Parkinson’s disease. However, further re-
search should be done to develop more accurate models. Many
of the previously mentioned limitations of this research centre
around the used data-set and for future research, gathering
actual clinical data on individual Parkinson’s disease progres-
sion is desirable. Moreover, allowing for more subsequent
measurement days and performing the analysis only after a
relatively stable score is achieved, could provide more insight
in the natural variation of control performance that is not
related to a learning curve. This information can then be used
to adapt the trend detection methods for the expected noise
levels in the data. Finally, for this research linear regression
models were used for trend detection. The influence of model
type on detection performance should be researched, non-
linear models might present a better fit to continuously de-
creasing control performance. Furthermore, the current method
focuses on combining individual metrics, while taking into
account the correlation between the different control parame-
ters. Further development could focus on analysing combined
metrics. Moreover, the differences between parametric and
non-parametric models on trend detection performance could
be explored. The assumptions for regression models might be
too strict for actual clinical data, so different methods might
be needed for the analysis.

VII. CONCLUSION

This paper presents a proof-of-concept for the application of
trend analysis models to identify changes in control behaviour
in clinical motor performance data due to Parkinson’s dis-
ease progression. The data were approximated by combining

healthy experimental and simulated PD data. The experimental
data were gathered using a single-axis manual pursuit tracking
task, conducted by 25 healthy participants in the age range
of 55-75. Using system identification methods, four different
cybernetic control parameters were estimated (Kp, τ, ζnms
and ωnms) and combined with results for tracking performance
and control activity. PD values for these six parameters were
simulated based on previous research and combined into a
final data-set. Linear regression models were used to detect
behavioural trends in the combined data-set and were tested
for their capacity for PD symptom detection when altering
the number of data points used in the analysis, having a
select group of participants or differing levels of PD symptom
severity.

In general it was found that the general linear regression
models were able to detect behavioural changes in the motor
performance data. For the parameters related to Parkinson’s
disease progression, the control gain Kp, damping ratio ζnms
and tracking performance RMSe, at least 50% of the partici-
pants showed a significant trend and a higher detection accu-
racy was found for participants with a better performance. The
model was able to detect different levels of symptom severity
and using a sliding window with 50 data points increased
overall detection performance and on average, between 6 and
10 iterations with PD data were required before a trend was
detected.

Overall, the regression models detected behavioural changes
in motor performance for al least half of the population,
which shows the potential of the proposed approach within
this research field. This study provides exploratory research
in the development of a tool that can aid in the objective
disease assessment and monitoring of symptom progression
for patients with PD to provide optimised treatment.
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1
Introduction

When people get older, performing daily tasks such as walking or eating might become a real challenge due
to the natural degeneration of the brain [1]. However, the effects of ageing are not solely limited to this. The
risk of developing a neurodegenerative disease significantly increases with age. Neurodegenerative diseases
do not only influence memory, as is the case with Alzheimer’s disease [2], they can also severely impair mo-
tor performance [3]. The neural network required for fine motor skills, the visuomotor-network, is present
throughout the brain and can be severely affected by neurodegeneration [4]. This MSc research focuses on a
specific neurodegenerative disease that affects motor performance, Parkinson’s disease (PD).

Parkinson’s disease leads to a decrease in dopamine-producing neurons of the Basal Ganglia that hampers the
communication in the brain, especially in the motor control area [5]. This leads to symptoms like slowness
of movement (bradykinesia), postural instability and involuntary tremors, which can occur in asymmetrical
onset. The disease is progressive and still incurable 200 years after the first proper description of its symptoms,
but early diagnosis and correct treatment can greatly improve patients’ quality-of-life [3].

As of this moment, diagnosis and monitoring the effects of treatment are done by identifying the motor symp-
toms related to Parkinson’s disease (especially bradykinesia) and using questionnaires [6]. These results are
translated in either a low resolution Hoehn and Yahr scale or the more detailed UPDRS (Unified Parkinson’s
Disease Rating Scale) analysis [7, 8]. Currently, treatment is provided by restoring dopamine levels in the brain,
which mainly leads to improved motor function. Non-motor symptoms are, however, barely suppressed and
a high dose or long term medication can lead to severe side effects such as hallucinations [3]. Treatment mon-
itoring is subjectively done by neurologists. Thus far, no objective method to evaluate loss in motor skills
due to neurological diseases is available, and a universally accepted method to quantify improvement due to
medication, or decline due to increase in symptom severity, is desirable.

One method to analyse fine motor skill and its degradation is with the use of tracking tasks. A lot of research has
been done in finding the influence of PD and its treatment on motor skills by using simple tracking tasks [9–
16]. A recent collaborative research project, between the department of Neuroscience of the Erasmus Medical
Centre (EMC) and the faculty of Aerospace Engineering of the Delft University of Technology, focuses on de-
veloping methods to analyse and quantify the effects of neurodegenerative disorders. Previous steps included
testing a tracking task to quantify the loss of motor skills related to Parkinson’s disease and cerebellar stroke,
respectively [17, 18] and the influence of age on eye-hand coordination [19]. These experiments proved that
changes in behaviour due to neurological decay can be quantified in isolated situations, when comparing two
sets of data. The next step is to investigate the possible application for individual treatment monitoring, for
example in identifying a decline in motor performance over a longer period of time due to disease progression
and increasing severity of symptoms.

However, there is a lack of available information on the natural variability of human performance over time
and the visibility of gradual change due to neurological symptoms. Furthermore, due to not knowing this vari-
ation bandwidth, it is unknown how severe the symptoms need to be to be detectable. Identifying a change
in behaviour from the motor performance data with trend analysis is an extremely complex task in this appli-
cation due to its multivariate nature. Moreover, time constraints for this study do not allow the longitudinal
clinical study with Parkinson’s patients that would be ideal for the analysis. Therefore, this research will focus
on providing a "proof-of-concept" for the development of a diagnostic tool that can be used in the monitoring
of Parkinson’s patients.
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The objective of this thesis is to:

‘Identify behavioural changes in motor performance due to Parkinson’s disease in a combined
experimental and simulated data-set by using trend analysis methods.’

In order to approximate the longitudinal clinical data-set and to quantify natural variability in motor perfor-
mance, a manual tracking experiment with an elderly control group will be performed. These data will be
combined with simulated PD control behaviour, based on previous research [17], to resemble a motor perfor-
mance data-set including a change in control behaviour.

This report is a preliminary literature study, covering the background and current research on the topic. First,
information on Parkinson’s disease is provided in Chapter 2. This is followed by an analysis of the influence
of ageing on neurodegeneration and its relation to PD in Chapter 3. Chapter 4 will cover the basics of man-
ual tracking tasks and Chapter 5 will discuss the different models that are available for analysing trends in
data-sets. Finally, an experiment and data analysis proposal is defined in Chapter 6 and a conclusion on this
literature study is given in Chapter 7.
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2
Parkinson’s Disease

This chapter will cover the different aspects related to Parkinson’s disease (PD) that are of interest in the re-
search scope discussed in Chapter 1. First, a short introduction to PD is given in Section 2.1 and its influence
on the brain is discussed in Section 2.2. Section 2.3 covers the current diagnosis and treatment methods and
their shortcomings. Finally, an overview is given on how PD affects motor control and how this has been de-
termined thus far in Section 2.4. Finally the key takeaways for this chapter are presented in Section 2.5.

2.1. Introduction to Parkinson’s Disease
Over 200 years ago, the first proper description of disorders related to Parkinson’s disease was given by J. Parkin-
son, but, at this point, there is still a lot unknown about the disease and its causes [20]. What is known, is that
PD is a progressive, age-related, neurodegenerative disorder and second most common after Alzheimer’s dis-
ease [5].

PD occurs predominantly in middle and older aged people and the incidence rises with age. For people aged
between 50 and 59 years, the incidence lies at 17.4 patients per 100.000. This increases to 93.1 in 100.000
for ages between 70 and 79 [3]. It is still generally unknown what causes PD, therefore, the disease is often
labelled as idiopathic. The only consistently found risk factors in many studies are related to age and smoking.
Research has been focusing on finding genetic risk factors, however this still needs to mature. Thus far, it is
thought genetics play a role in only 10% of PD cases, this means the cause is exceedingly unknown [5].

The disease typically presents itself with loss of motor control, mainly in the form of bradykinesia (unusually
slow movements), rigidity, tremor and impaired balance. The onset of the disease usually starts at one side of
the body and affects the other side in a later stage [21]. However, depending on the patient and stage of the
disease, non-motor symptoms can also occur in the form of loss of smell and taste, mood changes and sleep
problems [22]. At this moment, a diagnosis is generally made by using rating scales, and the most common
treatment is the use of the dopaminergic medication Levodopa [3]. Even though treatment is generally done
with Levodopa, it can result in severe side motor- and non-motor complications, this will be elaborated on in
Section 2.3.

There is a significant difference found in symptoms and disease progression when comparing the age of onset.
In early onset PD (people aged 45-50) the main symptom that occurs is tremor. Furthermore, the disease has a
slow progression rate, but Levodopa-induced side effects develop faster. Late onset PD (age 70+) defines itself
with more severe motor symptoms, a faster progression of the disease and less pronounced Levodopa-related
side effects [23]. One thing both early and late onset PD have in common is that the symptoms are caused by
the degeneration of brain cells.

2.2. Neurodegeneration and Parkinson’s Disease: Effect on the Brain
The brain has three primary parts, the cerebrum, cerebellum and brain stem, as shown in Figure 2.1a. Within
the cerebrum, the basal ganglia (BG) are found, which communicate with the cerebellum to complete some
crucial functions. These include action selection, action gating, reward based learning, preparation and timing
of (fine) motor actions, as well as non-motor aspects like emotion control [24].

For this study the main focus lies on the basal ganglia’s ability to control voluntary movement and develop fine
motor skills [26]. The substantia nigra (SN) is part of the BG as shown in Figure 2.1b. The neurotransmitter

35



(a) Main parts of the brain (b) Basal Ganglia structures

Figure 2.1: Overview of the brain and functions related to PD [25]

dopamine is produced in the SN nerve cells. Neurotransmitters are used to relay messages in the brain that
plan and control body movement. A simplified scheme of the neural pathways used for eye-hand coordination
are shown in Figure 2.2. It is shown that for cognitive motor decisions, needed for (fine) motor skills, the
information has to pass through the BG.

Figure 2.2: Simplified scheme of the neural pathways involved in generation of eye-and hand movements [4]

Parkinson’s disease causes the death of the dopamine producing nerve cells in the SN for unknown reasons.
While initial motor symptoms become evident with 30-70% cell loss [27], from a loss of more than 80% real
communication problems in the brain occur in the form of all aforementioned PD symptoms [25, 26]. The
neurological communication paths related to eye-hand coordination are highly dependent on the basal gan-
glia [4], a dysfunctional BG is therefore very likely to influence eye-hand coordination.
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2.3. Diagnosis and Treatment
Parkinson’s disease is a progressive non-curable disease. After diagnosis, symptoms can only be repressed,
not slowed down. The most widely used treatment for PD significantly increases quality of life for the first
stages of the disease, but can also induce a broad range of complications. This section will focus on each of the
aspects related to disease progression. Subsection 2.3.1 will give an overview of how PD is diagnosed, while
Subsection 2.3.2 covers the current treatment methods and complications. Finally the available clinical rating
scales is discussed in Subsection 2.3.3.

2.3.1. Diagnosis
At this moment, there are no definitive tests to positively identify idiopathic PD in a patient. Detection of the
disease is mostly done through various methods and observation of early symptoms by doctors. This includes
an extensive medical history, rating scales, which will be discussed in Subsection 2.3.3, and multiple motor
tests. The disease cannot be diagnosed without clear presence of bradykinesia [3, 6].

Bradykinesia is decidedly most commonly caused by Parkinsonian symptoms [3], however, care must be taken
to avoid confusion of PD and Parkinsonism. PD is one of many neurological disorders that are described by
the term Parkinsonism. An early stage diagnosis for Idiopathic PD can be difficult to distinguish from other
Parkinsonian disorders due to similarities in the form of loss of dopamine and the resulting bradykinesia. The
distinction is important as PD is a progressive non-curable disease while some forms of Parkinsonism can be
cured. Distinction between the two can be made since Parkinsonian syndromes tend to have a more rapid
progression and additional symptoms. Moreover, most syndromes do not have the same positive response to
the most common PD treatment available [28].

Idiopathic Parkinson’s disease is therefore the appropriate diagnosis if a patient displays a slow progression
of bradykinesia, no symptoms related to other neurodegenerative diseased related with Parkinsonism and
several other supportive criteria defined in the ’UK Parkinson’s Disease Society Brain Bank’s clinical criteria for
the diagnosis of probable Parkinson’s disease" [29].

Currently, a lot of research is done to improve the early diagnosis of Parkinson’s disease as this is key to ensuring
patients’ quality of life. A wide variety of methods is explored in order to objectively diagnose PD. One of
these is identification of biomarkers related to PD [30]. Moreover, focus is laid on home monitoring using
smartphones and online access [31, 32]. More applicable to this research is the analysis of fine motor skills,
for example with line drawing skills [33]. Finally a manual pursuit tracking task was proposed for detection
of early stage PD [17], this last method could possibly be used for objective monitoring of treatment effects
and will be elaborated on, later in this research study. It must be noted that all methods mentioned in this
paragraph are still being developed and not part of routine clinical applications.

2.3.2. Treatment
As mentioned, idiopathic Parkinson’s disease is still incurable, therefore, treatment focuses on the improve-
ment of patients’ quality of life and functional capacity. This part describes the main treatment method that is
currently used, its results and the complications related to the medicine.

Dopaminergic Medications
First introduced over half a century ago, Levodopa (L-Dopa) is still the go-to drug for the treatment of Parkin-
son’s disease symptoms [34]. The drug is the standard treatment for most patients with PD and even for some
other forms of Parkinsonism. Dopamine agonists can be introduced if a patient shows early complications
with L-Dopa, this is especially the case for early-onset PD. However, most patients using dopamine agonists
will need to switch to Levodopa within the first five years of treatment [3, 27].

Levodopa treatment focuses mainly on the suppression of classical motor symptoms related with Parkinson’s
disease, namely bradykinesia and rigidity. While the response to the drug is different in each patient, motor
symptoms are suppressed and skill improvement of 20-70% is found after initial treatment and this keeps
improving over time with prolonged treatment [3].

Levodopa Complications
Even though Levodopa can be seen as the most effective drug to counter PD related motor symptoms, several
complications occur during long-term treatment. As the disease progresses and becomes steadily worse, the
dosage of L-Dopa needs to be increased, bringing several complications.
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The initial complication is related with the wearing-off of the positive effects of the drug, also known as ON
and OFF phases. This results in re-emerging motor symptoms between the scheduled drug doses. This can be
as extreme as initially being able to move freely, while a minute later assistance is needed to rise from a chair
[27, 35].

Moreover, chronic or high-dose L-Dopa treatment leads to a high chance of developing dyskinesias (unwanted
and intrusive repetitive movements) and motor fluctuations (unexpected deviations in motor response). 40-
50% of the patients develop these drug-related symptoms within the first five years of chronic treatment, this
increases to 70-80% after 10 years. Many patients do prefer to live with these symptoms as the PD-related
motor symptoms are perceived to have a more negative effect on the quality of life [27].

Levodopa treatment also causes several non-motor complications. Early-stage treatment can cause nausea,
faintness and anorexia, however, this is rare in most patients as initial drug toleration is relatively high. Chronic
or high-dose treatment can have more extreme symptoms. These include insomnia, depression, psychosis and
hallucinations, urinary complications and pain. Such symptoms severely affect patients’ quality of life [3].

Finally, after long years of treatment, the major causes of morbidity and mortality are found in the non-motor
symptoms related to advanced PD, autonomic failure, loss of balance and most critically, dementia. These
symptoms are unaffected by Levodopa treatment and often end up being more disabling to patients than
dyskinesia and other motor symptoms [36].

2.3.3. Treatment Monitoring
The progression of Parkinson’s disease is unique in each patient and there are no fully standardised and objec-
tive treatment methods. Even though a lot of research is being done to improve the monitoring of PD patients,
the treatment planning and clinical information are still determined with the use of subjective rating scales
and diaries [27]. This section will discuss the currently used clinical rating scales and the monitoring methods
that are being researched.

Clinical Rating Scales
As mentioned, the most commonly used method to assess PD progression in patients and derive treatment
plans is with the use of clinical rating scales. Many of these scales are available and the most common methods
are discussed in this part.

The Hoehn and Yahr Rating Scale is to this moment the most widely known and used rating scale in the assess-
ment of PD and monitoring of treatment. First described in 1967, its simplicity, universal acceptance and ease
of use are the reason its still predominantly used so many years later. This simplicity also has its disadvantages,
because of its non-linearity and the mixing of impairment and disability. It does not fully cover all motor re-
lated symptoms of PD, and does not include non-motor symptoms at all [7, 35]. Even though the latter is less
relevant to this research, it does have a significant effect on patients’ quality of life. An adapted scale with half
scores was proposed to increase applicability [35]. The gradations are:

Gradation 0.0 No indication of the disease
Gradation 1.0 Unilateral involvement only
Gradation 1.5 Unilateral and axial involvement
Gradation 2.0 Bilateral involvement without impairment of balance
Gradation 2.5 Mild bilateral disease with recovery on pull test
Gradation 3.0 Mild to moderate bilateral disease; some postural instability; physically independent
Gradation 4.0 Severe disability; still able to walk or stand unassisted
Gradation 5.0 Wheelchair bound or bedridden unless aided

The (MDS-)UPDRS or (Movement Disorder Society-sponsored revision of the) Unified Parkinson Disease Rat-
ing Scale is widely accepted as a tool to monitor patients and evaluate interventions. This scale is more ex-
tensive and covers many different aspects of PD. The first version was presented in 1987 by Fahn and Elton
[37] and Goetz et al. proposed an update in 2007. This scale was ultimately released in 2009 and includes the
non-motor symptoms of PD and daily living aspects, as well as complications related to treatment [8]. The
main parts of the MDS-UPDRS are presented below.

Furthermore there are several health-related quality of life (HRQOL) scales, as this is considered one of the
most important aspects for patients [38]. Since these scales indicate treatment effects on patients’ daily life
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Part I Non-motor experiences of daily living
Part II Motor experiences of daily living
Part III Motor examination
Part IV Motor Complications

and activities, such as mobility and social activity, disease progression is assessed from their point of view and
is therefore extremely subjective [38].

There is no one best scale, each has its advantages and disadvantages. For each patient and assessment goal,
the most appropriate test must be selected. There are, however, quite some general disadvantages to these
methods. First of all, rating scales are subjective and do not always provide a correct view of all symptoms.
Moreover, Levodopa treatment predominantly influences the motor skills, and as discussed in Subsection 2.3.2
can have severe complications, from dyskinesias to ON-OFF moments. These symptoms are variable through
the day and the moment of the test can greatly influence the outcome.

Home-Based Monitoring Systems
A lot of research done at this moment focuses on the development of home-based monitoring systems in order
to overcome the main limitations of the rating scales [39]. The progress of technology these days allows for the
use of wearables that monitor physical performance in daily life. However, there are still a lot of uncertainties
and problems regarding the efficiency, reliability and specific application of these devices [39]. This research
field is still in early stages and many obstacles have to be overcome to allow application of home-based moni-
toring systems.

Monitoring using Tracking Tasks
One of the measures to monitor treatment effects in patients with a neurodegenerative disorder is by analysing
motor performance and the decline in fine motor skills over time. The current clinically accepted rating scales
and tests are, however, not objective and sensitive enough. Assessment of motor performance in patients has
been a research field in itself for many years and will be explored in Section 2.4.

Previous research has shown that manual tracking methods are able to differentiate between PD patients and
healthy participants by objectively quantifying motor performance. The first results of this study (n=6) show
significant differences in performance, control gain and neuromuscular damping [17]. Further possible ap-
plications of tracking tasks could be long-term performance monitoring. This study focuses on providing a
proof-of-concept for its application to monitoring gradual disease progression by analysing the motor perfor-
mance over a longer period of time.

2.4. Parkinson’s disease and Motor Performance
In order to properly monitor gradual disease progression in PD, it needs to be known how symptoms affect
fine motor skills. A lot of research has been done previously to analyse motor performance and the influence
of Levodopa medication in patients. Much of the research done uses manual tracking methods similar to
the set-up used in the TU Delft-EMC research collaboration, only with simpler input signals. Details on how
tracking tasks are designed are discussed in Chapter 4.

Flowers [10] found that patients had difficulties in controlling continuous movements and timing in simple
sinusoid pursuit tracking tasks. Furthermore, when using multisine signals, patients were visibly slower than
the age-matched control group [10]. Other experiments also showed a significant decrease in peak movement
velocities and gains [40]. In preview tasks it was shown that patients have reduced prediction capabilities and
do not use the preview information as much as the control group [9, 15].

Levodopa and other dopaminergic drugs are used to suppress motor symptoms in Parkinson’s patients. The
effects on measurable motor skills do differ significantly. An aspect found Parkinson’s patients during motor
experiments, is the tendency to reduce the amplitude of the movements and even restrict them to a limited
range, even while on Levodopa treatment [12]. On the other hand, overshooting, or a reduced damping ratio, is
found to be significantly reduced when patients are using dopaminergic medicines [14]. For both the damping
ratio and natural frequency, it was found that the value range became more similar to that of controls after
medication. Another significant effect of L-dopa treatment is that patients on medication were able to perform
better after practice, while patients off medication did not show significant learning effects [13].
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Finally, the Erasmus MC has been working on methods of measuring motor performance caused by neurode-
generation in the brain. A set-up developed at the department of Neuroscience uses fine motor tapping tasks
to measure the reaction time and accuracy of participants. In these tests PD patients have again shown the
slower limb movements [4].

Aside from that, the joint research collaboration between the EMC and TU Delft has also given insight in the
quantification of the loss of motor skill in PD patients. Using a pursuit manual tracking task with system
identification methods, it was shown that patients have a significantly worse performance and higher control
variability than age matched controls. Furthermore, an increased control gain and higher damping was found
in patients [17].

2.5. Conclusion
This chapter explored the workings of Parkinson’s disease, its treatment, the current disease monitoring meth-
ods and its severe influence on human motor performance. It is clear that, even though, the disease has been
around for a long time, there is still no commonly accepted, objective, clinical method to diagnose and mon-
itor PD. Furthermore, PD progresses uniquely for each patient and the available rating scales are not ideal in
defining appropriate medical dosage or for application in treatment monitoring.

Furthermore, this chapter has provided information on how PD affects motor performance and the wide range
of research already done to define the influence of the disease on motor skills. However, at this point there is
still no official method that objectively quantifies degeneration in motor skills due to PD. This MSc research
focuses on the proof-of-concept of a method to objectively identify changes in motor performance for ap-
plication in disease progression monitoring, for now focused on Parkinson’s disease. Simulation of motor
performance influenced by PD, which includes increased neuromuscular damping, decreased control gain
and higher control variability, will be used to test how trend analysis methods can detect changes in control
behaviour.
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3
Ageing and Neurodegeneration

In Chapter 2, the difficulties related to PD and neurodegenerative diseases have been covered as well as their
influence on motor performance. However, as discussed in Chapter 1, due to the nature of this MSc research
and corresponding time constraint, it is opted to approximate the longitudinal motor performance data with
elderly participants. It is not just diseases that affect the brain and human motor performance, ageing brings
its own complications when the brain suffers from natural degeneration. This chapter will briefly discuss the
influence of ageing on the brain in Section 3.1. This is followed by an analysis of the relation between ageing
and Parkinson’s disease in Section 3.2 and a short conclusion of this chapter is given in Section 3.3

3.1. Effects of the Natural Ageing Process on the Brain
This section discusses the effects of natural neurodegeneration related to ageing of the brain. First the physical
changes are briefly discussed in Subsection 3.1.1. This is followed by the cognitive changes related to ageing,
amongst which its influence on motor performance, in Subsection 3.1.2.

3.1.1. Physical Changes
After the age of 40, it is found that brain volume steadily reduces at a rate of about 5% per decade. This decline
is often attributed to neuronal cell death, however, whether it is the only and main cause is still unsure [2, 41].
The reductions are mostly found in the grey matter and prefrontal cortex. The neurodegeneration due to
ageing typically follows a distinct course, where cholinergic and dopaminergic neural systems are thought to
be more significantly affected as compared to other neurotransmitters [41].

3.1.2. Cognitive Changes
The brain consists of many neural networks. While the brainstem stores information of reflexive and simple
motor programs, the higher order cortical processes are related to decision-making processes and they form
the networks for amongst other, language and memory [2]. The gradual reduction of the brain volume affects
neurological processes, such as changes in cognitive behaviour. The symptom most widely known and com-
monly associated with age is loss of memory. Memory can be divided into four sections, working, procedural,
episodic and semantic memory. Ageing affects two of those, namely episodic memory, related to the location
and method of information gathering and semantic memory, which is defined as the meaning and relation
between things. Similarities in ageing and neurodegenerative orders can be seen as the most common neu-
rodegenerative disorder, Alzheimer’s disease, also influences episodic memory. This loss in memory may also
be partly due to lower attention levels, slower processing speeds and impairment in sensory or perceptual
functions [2].

Aside from memory loss, another significant change in the ageing brain is found in the dopamine levels. It
is believed that ageing causes a weakening in the neurons and often influences the dopamine and serotonin
neurotransmitters [42]. Dopamine levels are found to be declining with approximately 10% per decade [2].
This results in the appearance of classical motor symptoms often related to dopamine level decline, such as
difficulties with coordination, raised variability in motor skills, slowing of movement velocities and problems
with balance and gait. Levodopa is, therefore, a drug that in some cases can be used to counteract ageing
symptoms in the elderly [43].

Research has shown that when comparing to a young control group, elderly people have an increased neuro-
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muscular damping ratio [19]. Aside from this, one of the most common motor symptoms related to ageing
is slower reaction times to inputs [2, 44, 45]. Fine motor performance and movement speed significantly de-
crease with increasing age, though, in some cases this can be attributed to the fact that elderly people tend to
focus on accuracy instead of speed [43]. However, regardless of age, fine motor performance is significantly
better in the dominant hand [45]. Aside from movement speed, elderly people are also found to suffer from
lower attention levels, increasing error, and increasing variability of movement [2, 43].

The effect of ageing in the brain is often not noticed at a younger age. This is because the brain is able to adapt
its internal process to overcome ageing symptoms. For example it is able to recruit a larger neural substrate to
solve problems [41].

3.2. Ageing and its Relation to Parkinson’s Disease
As evident from Chapter 2 and Subsection 3.1.2, there are some similarities found between ageing and neu-
rodegenerative disorders. Since the focus of this study is on PD, this section will discuss the likeness and
relation of ageing and PD.

First of all, it was found that age is the main and sole definite risk factor of Parkinson’s disease [6]. Even though
there are some rare early onset cases, PD is predominantly a mid-to-late-onset disease [3]. Generally the age
of onset is thought to define the disease progression, which indicates a relation between ageing and PD.

Both processes include a decay of the dopaminergic system, resulting in a loss of dopamine levels. However,
the rate of decline for ageing at 10% per decade, does not reach the same levels as in Parkinson’s disease. It is
found that initial motor symptoms become evident with 30-70% decline in levels, while some PD symptoms
are only visible with more than 80% cell loss [26, 27]. It is clear that the average decline due to ageing will not
reach the levels associated with PD.

Some literature defines ageing as a vulnerable pre-PD state [23]. It is thought that because of natural ageing
effects, the neurons in the substantia nigra are weakened and lose the ability to compensate for further degra-
dation. This means any degradation in brain cells is worsened when influenced by age [42]. Therefore, the
aged brain is more susceptible to PD.

To some extent, ageing and PD show similar motor symptoms. It is even found that natural ageing is the cause
of mild Parkinsonian symptoms distinguished by an absence of rest tremor, symmetrical onset and lack of re-
sponse to other dopaminergic therapy [1]. Furthermore, it was observed that elderly people have an increased
neuromuscular damping ratio, similar to PD patients [19]. On the other hand, there are also aspects found to
be uniquely related to PD bradykinesia instead of physiological bradykinesia of old age. These include move-
ment range and velocities [12].

Even though the exact pathological connections between PD and ageing are still unknown, many similarities
between the two are found with regards to brain decline and symptoms. Increasing age does not necessarily
mean the development of Parkinson’s disease, but age is thought to have a large influence on the disease onset
and progression.

3.3. Conclusion
In this chapter the influence of natural ageing on motor performance and its similarities and differences with
Parkinson’s disease are discussed. This is of interest due to the time constraint related to this MSc research, that
does not allow for a longitudinal study with patients, resulting in the need to approximate the data with age-
matched participants for a proof-of-concept. This chapter gives insight in how motor performance is affected
by natural ageing of the brain, leading to slower reaction times, increased neuromuscular damping ratio and
increasing variability of movement. Information that will be used when defining hypotheses for the manual
tracking experiment. Furthermore, the differences between motor skills of elderly people and PD patients will
be taken into account when simulating the PD motor performance data, as described in Chapter 1.
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4
Manual Control Tracking Tasks

Analysing motor performance in human controllers has been a focus of research for a long time. One of the
available methods is using the cybernetics approach, a widely applied method using manual control tracking
tasks. These applications range from analysing a pilots behaviour during flight or determining a change in
motor performance due to neurological disorders. This chapter will discuss the basics of manual tracking
tasks in Section 4.1. The human controller and its control behaviour are elaborated on in Sections 4.2 and 4.3,
respectively. An explanation of the different aspects that relate to designing a tracking task is given in Section
4.4. Lastly, Section 4.5 covers the methods used to identify the control dynamics and a short conclusion is
given in Section 4.6.

4.1. Introduction to Manual Tracking
In manual tracking, a human controller (HC) is controlling a dynamic system which is perturbed by forcing
functions [46]. The ultimate goal of the tracking tasks is to minimise the error between the target signal and
the system to be controlled. A commonly used example of such a task is following a curving road in a car or
rejecting disturbances in an airplane. In a much simpler form, the task can also be following a moving target
on a touchscreen or with a joystick.

Analysing HC behaviour can give great insight in how humans approach a task. It can help in the development
of interfaces that aid humans in controlling complex dynamic systems. Moreover, it can be used to detect
’abnormal’ or deviating behaviour, for example in motor control affecting neurodegenerative diseases like
Parkinson’s disease. McRuer et al. were the first to present a comprehensive overview and method to describe
HC dynamics [47]. This material is still widely used to support research on human controller behaviour.

4.2. Human Controller
Investigation of HC behaviour would be much more streamlined if every human acts identical to others. Fur-
thermore, ideally one model could describe HC behaviour over a range of tasks. However, a HC is a multimode,
adaptive, learning controller [48]. HCs learn new skills and adapt their behaviour to the controlled system. De-
pending on the presented task, human controllers use a variety of control strategies. If designed carefully, a
specific manual tracking task can be used to assess and compare human behaviour.

Figure 4.1: Compensatory control block diagram , adapted from [49]

An example of a simple compensatory tracking task is given in the closed-loop block diagram of Figure 4.1.
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The human controller is indicated as controller in the grey box of Figure 4.1 and its behaviour is defined as a
continuous linear mathematical model, Hpe , in combination with a remnant signal n [46]. This latter signal
is included to cover the non-linear behaviour and noise in the system [48]. The HC output u is fed into the
controlled system, Hce . Finally the error signal e is defined as the difference between the target ft and system
output y .

Figure 4.2 presents a more general overview of the manual tracking task and the variables that influence control
behaviour. It shows the four main task variables which define the manual control tracking task. The forcing
functions define the task input and allow for closed loop identification of HC behaviour [46]. The signals can
take many forms, but the most common set-up is to have a multisine target and a disturbance signal, this will
be further elaborated on in Subsection 4.4.1. The display type also highly influences behaviour and will be
discussed in detail in Subsection 4.3.2. The manipulator dynamics present the dynamics of the hardware used
to provide HC input and the controlled element describes the system that needs to be controlled, it has a direct
influence on the strategy of the HC [48].

The three other variable sets define the setting of the experiment and should be kept as constant as possi-
ble. The presented environmental variables in Figure 4.2 are defined for aerospace related experiments, but
can be applied in a certain extent to this research. Temperature and the test environment should be rela-
tively constant. However, in future applications of this research, that might be difficult as an ideal hand-held
set-up should be usable in many different surroundings, such as doctor waiting rooms. Though, as long as
these variables are kept as constant as possible for individual patients the longitudinal data should be usable.
Procedural variables include training and instructions. These should be identical amongst all participants to
improve comparability of the results. This is, however, less important than the other factors as focus is on
variability within participants, not between participants.

Finally, operator-centered variables are the most difficult to keep constant, while being especially important
for this research scope. Aside from obvious factors related to ageing and PD, mentioned in Chapters 2 and
3, motivation and fatigue are also likely to play an important role in deviations between participant groups.
Young people are prone to be more motivated to perform at their best while older people and PD patients are
more susceptible to fatigue and stress. Furthermore, in a longitudinal study, human performance variability is
highly influenced by these factors as they cannot be kept fully constant over a longer period of time, which is
expected to result in natural variability in motor skills.

Figure 4.2: Variables affecting human control behaviour [48]
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4.3. Tracking Behaviour
This section will cover the control behaviour of the HC and how this behaviour is influenced by selecting the
appropriate experimental set-up. First, Subsection 4.3.1 will discuss the three main control classifications for
the HC. This is followed by an explanation of how displays influence control strategies in Subsection 4.3.2 and
the pursuit display is elaborated on in Subsection 4.3.3

4.3.1. Successive Organisation of Perception
As mentioned, HC behaviour can be analysed for specific manual control tasks, since humans show different
control behaviour in certain tasks. These were first discussed by Krendel and McRuer [50]. The Successive
Organisation of Perspective (SOP) is a hierarchical scheme that describes three different control classifications;
compensatory, pursuit and precognitive control [50].

In compensatory tracking tasks, only the error between the system target and output e(t ) = ft (t )−x(t ) is shown
to the controller. The goal is to keep the error as close to the zero-reference as possible, so the target and output
signals are similar. This can be related to disturbance rejection in aircraft.

The pursuit tracking task shows the systems target and output, the human controllers can therefore derive the
error themselves. Any knowledge about and predictability of the target signal will be used by the HC to try and
improve performance.

Finally, in the highest hierarchical level, precognitive control the human controller has full knowledge about
the target and necessary input. For this reason the error signal is not required and it is effectively open-loop
control. This indicates the highest skill level of the controller.

4.3.2. Displays
Section 4.3.1 defines three main control strategies a human controller can use. The selection of the control
strategy is highly dependent on the used display. The three typically used displays are the compensatory,
pursuit and preview displays and are shown in Figure 4.3.

Figure 4.3: Compensatory, pursuit and preview displays [49]

First, the compensatory display is shown in Figure 4.3a. This display provides information on the error be-
tween the target and controlled element. The HC is expected to display compensatory tracking behaviour.
However, if the target signal is sufficiently predictable, pursuit behaviour can be achieved [51].

Figure 4.3b shows a pursuit tracking display. In this display the target and system output are presented and
since e(t ) = ft (t )− x(t ), the HC can derive the error. The increase in information can be an advantage for the
HC. An example is the increase in predictability and understanding of the dynamics as the controlled element
output is shown explicitly. Furthermore, mistakes are easier to identify for the HC. However, a pursuit display
does not necessarily induce pursuit behaviour. In certain settings, the HC was found to display compensatory
behaviour.

Finally, a preview display is shown in Figure 4.3c. The pursuit display is extended to show a future path of
the target signal. The HC can decrease his delay by using the preview information. Similar to the pursuit
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display, a preview display does not necessarily invoke the same behaviour in all controllers. The HC may
invoke compensatory or pursuit behaviour depending on the signals used in information processing and the
available amount of preview [51].

In previous research it was shown that both pursuit and preview displays can be used to identify and quantify
neurological impairment based on the control behaviour [17, 18]. Depending on the participant pool and
required information, the appropriate display needs to be selected. It was found that when using pursuit
instead of preview display, the task is easier, however the diagnostic capacity is lower as some deeper insight
in manual tracking behaviour is lost [18]. This research focuses on elderly people and future applications in
monitoring Parkinson’s disease, therefore, the pursuit display is deemed more appropriate due to its lower
complexity and workload.

4.3.3. Pursuit Tracking
As mentioned above, the pursuit display introduces three information sources to the HC, indicated in Figure
4.3b. The resulting closed-loop system is shown in the block diagram of Figure 4.4. In this set-up the HC is
tasked to align the target with a combination of the controlled element output and a disturbance signal.

Figure 4.4: Pursuit control block diagram displays, adapted from [49]

Similar to the system in Figure 4.1, the human controller is indicated as controller in the grey box of Figure
4.4. However in this case, the control behaviour is influenced by the remnant signal n and three information
sources, the controlled element, target and due to the signal dependency, the error. This relation results in
an overdetermined system, which can be reduced to a two channel model. The reduced pursuit model is
most often described without the Hpz channel, in other words, the HC is expected to use the error and target
signals. Another simplification of the model can be made since the HC does not use the target input function
with single integrator controlled element dynamics Hce [51]. This means the model can be reduced to a SISO
(single-input-single-output) system, as shown in Figure 4.1, which is effectively a compensatory tracking task.
Because the model is reduced to a single channel model, the disturbance forcing function is not needed for
identifying the controller dynamics.

4.4. Tracking Task Design
In order to evoke the required human controller behaviour, more than just the proper display selection needs
to be considered. Figure 4.2 shows the different aspects that need to be taken into account when designing
manual tracking experiments. Display selection has already been covered in Subsection 4.3.2. This section will
cover the other task variables. Subsection 4.4.1 will cover the design of the forcing functions of the system. The
manipulator and controlled element dynamics are briefly discussed in Subsection 4.4.2. Finally the remnant,
as part of the human controller, is considered in Subsection 4.4.3.

4.4.1. Forcing Functions
As mentioned in Section 4.2, the forcing functions define the input of the experiment and when properly de-
fined, they can be used to identify HC behaviour. To ensure the desired behaviour in the controller and avoid
target anticipation, the signal must appear to be random [52]. This is achieved with the use of quasi-random
multisine signals, a combination of multiple sines with frequencies in the range of interest.
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f (t ) =
N f∑

k=1
A f (k)sin

(
ω f (k)t +φ f (k)

)
(4.1)

Equation (4.1) describes the general form of such a multisine forcing function. The target signal is the sum of
N f sines with a defined amplitude A f , frequency ω f and phase φ f . The frequencies are an integer multiple of
the base frequency, preferably a prime multiple to avoid harmonics. The starting phase is chosen randomly,
but the final signal needs to be checked for unfortunate disturbing peaks [46].

4.4.2. Manipulator and Controlled Element Dynamics
The manipulator and neuromuscular dynamics are often combined in a single, lumped, low-order model,
usually as an underdamped second- or third-order low-pass transfer function [52]. This means that when
identifying human controller behaviour, the manipulator dynamics are included.

As for the controlled element dynamics, they directly influence HC behaviour and are therefore chosen to try to
evoke the preferred control behaviour, which is influenced by a combination of the level of task difficulty and
behaviour in high and low frequencies. The crossover model states that the whole system generally converges
to single integrator dynamics, as presented in Equation (4.2) [48] and the system dynamics are often in the
form of a gain, single or double integrator.

Hp ( jω)Hce ( jω) = ωc

jω
e− jωτc (4.2)

4.4.3. Remnant
To complete the diagram shown in Figure 4.1 the remnant signal needs to be defined. It is used to cover any
non-linear aspects of human control behaviour and in order to have a correct model to simulate PD behaviour
in a manual tracking task, the remnant signal needs to be taken into account.

The signal is usually modelled as coloured noise by passing white noise trough a filter. The model described
by Levison [53] is widely used to approximate the remnant signal and is described by Equation (4.3). This
function, originally designed for compensatory tasks, was also found to be applicable for pursuit tracking tasks
[54].

Hn( jω) = Kn
1

1+Tn jω
(4.3)

In this equation, Tn is a lag time constant. The value for the gain Kn can be tuned to obtain the desired noise
power ratio, as shown in Equation (4.4), which is related to the power-spectral densities of the control output
and the noise signal, defined in Equation (4.5).

Pn = σ2
n

σ2
u
≈ 0.25 (4.4)

σ2
n

σ2
u
=

∫ ∞
0 Snn( jω)dω∫ ∞
0 Suu( jω)dω

=
∫ ∞

0 Snn( jω)dω∫ ∞
0

(
Suu f t ( jω)+Suun ( jω)

)
dω

(4.5)

4.5. System Identification and Parameter Estimation
To identify the human control dynamics, system identification methods can be used. The Fourier Coefficient
Method (FCM) is a widely used black box method, which analyses the data in the frequency domain [46]. The
multisine forcing function described in Subsection 4.4.1 is designed such that the signal-to-noise ratio at the
excitation frequencies is high. As the contribution of the remnant is small at those frequencies, it can be ne-
glected and the human control dynamics, Ĥpe , can be estimated with Equation (4.6). Here U

(
jωt

)
and E

(
jωt

)
are the Fourier transformed HC output and error signals, analysed at the excitation frequencies, respectively.
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Ĥpe

(
jωt

)= U
(

jωt
)

E
(

jωt
) (4.6)

The HC dynamics are dependent on the pilot, or controller, model. The HC model has been defined by McRuer
and Hex [48], as a combination of a linear model and the nonlinear remnant. This relation can be seen in Figure
4.1, and the controller equivalent dynamics are described in Equation (4.7). Here Kp is the controller gain. TL

and TI describe the controller lead and lag time constants, respectively. τ indicates the time delay and the
neuromuscular frequency and damping ratio are indicated with ωnms and ζnms , respectively.

Hp ( jω) = Kp
TL jω+1

TI jω+1︸ ︷︷ ︸
pilot equalisation

e− jωτ ω2
nms

( jω)2 +2ζnmsωnms jω+ω2
nms︸ ︷︷ ︸

neuromuscular dynamics

(4.7)

To estimate the pilot parameters corresponding to a measured data-set, the cost function defined in Equation
(4.8) will be minimised. This function will find parameters so that the pilot estimation of Equation (4.7) is the
most optimal fit to the data defined in Equation (4.6). The function is normalised to allow a better fit in the
higher frequencies. Estimation is done by providing different initial solutions and selecting the optimal fit.

C F (θ) =∑ ∥∥Ĥp
(

jωt
)−Hp

(
jωt ;θ

)∥∥2∥∥Ĥp
(

jωt
)∥∥2 , θ = [Kp ,τ,ζnms ,ωnms ] (4.8)

Finally, for an indication of how well the model fits to the data, the Variance Accounted For (VAF) can be
used [55]. This method analyses the difference between the actual and simulated input signals u, as shown in
Equation (4.9). The VAF can range from 0% to 100% where, 100% means a perfect fit to the measured data.

VAF =
(
1−

∑ |u −usi m |2∑
u2

)
×100% (4.9)

4.6. Conclusion
This chapter reviewed the cybernetic approach to modelling human control behaviour. A pursuit tracking task
is chosen to analyse HC performance because of the method’s use for elderly participants and possible future
use for patients. Even though a pursuit display lacks deeper insight in control behaviour compared to preview
displays, the lower complexity of the task is deemed more appropriate. Moreover, it was found that when
applying single integrator control dynamics in a pursuit tracking task, the HC shows compensatory tracking
behaviour, which simplifies the system identification process. The Fourier Coefficient Method will be used to
analyse the data in the frequency domain and parameters will be estimated by minimising a cost function.
Day-to-day variation in control performance is expected as operator-centered variables, such as motivation,
fatigue and stress, cannot be kept fully constant.
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5
Trend Analysis

As mentioned in Chapter 2, one of the measures to monitor treatment effects in patients with a neurodegen-
erative disorder is motor performance. A decline in fine motor skills can indicate disease progression and an
increase in severity of fine motor skills, while improving performance might indicate proper suppression of
the symptoms with medication. This chapter will explore statistical methods that are able to find and possi-
bly even predict such changes in the data, trend analysis. In Section 5.1 an introduction to trend analysis is
given. This is followed by an explanation of two main aspects of the data-set in Section 5.2. An overview of the
different models that are available is given in Section 5.3. Lastly, a short conclusion is presented in Section 5.4.

5.1. Introduction to Trend Analysis
Trend analysis is defined as finding a change in a system over a longer period of time [56]. It is a widely used
statistical method to identify patterns in time-series or longitudinal data-sets. Trends are characterised as
long-term increasing or decreasing data, which are not necessarily linear [57]. These methods are often used
to determine if the changing behaviour differs from random behaviour from a statistical point of view.

Trend analysis methods are often used in economic problems where trends are defined in order to try and
estimate future outcomes, this is a special branch of statistics that uses the idea that the past acts as an in-
dication of the future [57]. It also finds many applications in the analysis of clinical data, usually gathered in
longitudinal studies [58].

When using trend analysis methods, care must be taken to avoid their weaknesses. Data are very likely to
be influenced by measurement errors, which can be confused with a trend. It is generally assumed when
analysing time-series, that the data consist of the systematic pattern and noise, therefore, it is often required
to apply some sort of filter before searching for trends [59]. Moreover, a lot of time-series data have some form
of autocorrelation where errors transfer from one period to the other, there are several statistical tests available
to test for autocorrelation in the data [56].

Furthermore, even in the most random data, short-term trends can be found if the data-set is small. On the
other hand, when no trend is found, it is not necessarily the case that there is no trend. It could be that the
data-set used is incomplete and unable to show the existing trend [60].

Another aspect to take into account is the effect of other variables on the measured data. Applying the latter
to the scope of this research requires thinking about possible learning or fatigue effects in the data. If this
happens, it might be necessary to correct the data before analysis [56].

5.2. The Data-set
This section will cover two different aspects of the data-set that are important to consider when selecting a
trend analysis method. First the sample size is discussed in Subsection 5.2.1. After this, the difference between
time-series and longitudinal data is explained in Subsection 5.2.2.

5.2.1. Sample Size
In trend analysis, the sample size is an extremely important factor. When using a small data-set, the regression
result can lead to overfitting and an inaccurate trend model [57]. There is no clear rule of thumb regarding the
data-set size that the majority of literature can agree on, it ranges from 10 observations for each estimation
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term, to having a sample size of at least 50, plus 8 observations per predictor variable [56, 61]. In general it
depends on the number of predictor variables and the noise level in the data, and simpler trend models are
advised when the data-set is small [57].

One way of counteracting the negative effects that come with a small sample size is the use of bootstrapping
methods. This group of methods creates new artificial data-sets resampled from the experiment data or fitted
models, by sampling with replacement [56]. Bootstrapping allows for the simulation of many instances of one
data-set and provides an estimate of the p-value as well as providing confidence intervals for small data-sets
[62]. One difficulty arising with bootstrapping methods is its application to time-series data. More often than
not, it is important to take into account the autocorrelation generally present in time-series, which means
the resampling cannot be done in a fully randomised way. There are, however, different bootstrap methods
available for these kind of problems [63].

5.2.2. Time-series and Longitudinal Data
Trend analysis finds its application in the analysis of longitudinal or time-series data. Even though both define
data gathered over a longer time, there is a difference between the two, both in definition and in the models
required to analyse the data.

Time-series data are defined as anything that is observed sequentially over time [57], an example being the
measured temperature in one city on the first day of each year. This can either be in a regular (i.e., monthly) or
irregular time frame. Most methods used in trend analysis, assume regularly spaced data, while data gathered
in clinical experiments are usually irregularly spaced and dependent on the patient’s availability. This results
in the need for models that can be applied to unevenly spaced data [64].

Longitudinal data or panel data are a specific subset of time-series data, also known as cross-sectional time-
series data. Longitudinal data combine time-series and cross-sectional data, where the latter indicate a col-
lection of observations for multiple participants or entities at a single point in time, for example, a one time
measurement of temperatures in multiple cities. In longitudinal data analysis the relation between the partic-
ipants is taken into account when finding trends in the data, therefore complicating the analysis [58].

5.3. Available Models
There are many different models available to find trends in data, each with its own applications, advantages
and disadvantages. Most models used in defining trends make use of regression analysis, which estimates the
relationship between dependent and independent variables [56]. This section covers the different models that
have a potential application in this research and are often applied to longitudinal or time-series data of clinical
nature. In Subsection 5.3.1 the simplest form of regression analysis is discussed and Subsection 5.3.2 explores
the application to a multivariate data-set. Models that are commonly applied to longitudinal data are explored
in Subsection 5.3.3 and the difficulties of working with irregularly spaced observation data are considered
in Subsection 5.3.4. Finally, Subsection 5.3.5 shortly names two possible extensions of the aforementioned
models in case their underlying assumptions are invalid.

5.3.1. Simple Linear Regression
One of the most basic forms of trend analysis is simple linear regression (SLR). SLR finds its application in
simple experiments or observations where the observed variables do not depend on each other and can be
analysed separately from the rest. In a SLR model, there is only one response variable yt and one parameter, or
predictor variable xt as shown in equation (5.1). Here β0 and β1 indicate the intercept and slope of the trend
and εt is the random error or deviation from the trend fit [56, 57].

yt =β0 +β1xt +εt (5.1)

The main assumptions made when using linear regression models are related to the errors εt . First of all they
have a zero mean to avoid bias. Furthermore, they are unrelated to the predictor variables and not autocor-
related. If these assumptions are not met, there would be more information available in the data-set which
should be included in the model [57].

Model fitting is generally done using least squared estimation (LSE) due to its intuitive and easy application.
There are two other models that are also widely applied in statistics, namely, Bayesian analysis and maximum
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Figure 5.1: Example of a simple linear regression model fitted on a data-set [57]

likelihood estimation (MLE) [56]. However, the LSE is still the most common and easily applied method [56].

When the errors have a normal distribution and the data-set is sufficiently large, a t test can be done on the
LSE model to test a null hypothesis H0 :β1 = 0. This will determine if there is a statistically significant slope in
the data-set [56].

It is important to note that only when the trend parameters in the regression equation are in a linear form like
in Equation (5.1), the regression model can be considered to be linear. This should not be confused with a
linear trend, which refers to the time variation and not the equation parameters [56].

5.3.2. Multivariate and Multivariable Linear Regression
An extension of SLR comes in the form of analysing multiple, possibly related predictor and response variables,
and a distinction is made between multivariable and multivariate analysis. The former indicates a system
where multiple predictor variables xn,t are related to a single response variable yt as shown in Equation (5.2)
[57, 65].

yt =β0 +β1x1,t +β2x2,t +·· ·+βk xk,t +εt (5.2)

However, for this research it is more interesting to look into multivariate analysis, or the general linear regres-
sion model (GLR). This allows for analysing common trends in related parameters of time-series data, such as
the different estimated parameters of the pilot model. The GLR model is given in Equation (5.3). This model
analyses the relationship between the multiple response variables Y and their related predictor variables X
and errors E for time-series data with multiple parameters related to one observation.

Yn×p,t = Xn×n+1,t ,β(k+1)×p +Et (5.3)

One of the most important assumptions for using this model is a conditional normal distribution of residuals.
If this assumption is too strict for the data-set, a different, related model can be used which will be shortly
considered in Subsection 5.3.5, the generalised linear regression model (GLiR) [56, 66].

GLR analysis is a more elaborate version of SLR, in that the parameter estimation is most commonly done
using LSE [56] and the corresponding statistical tests can be done either as independent univariate tests, which
is effectively simple linear analysis, or as combined multivariate tests. Testing for trends can be done in a
similar way as described in Subsection 5.3.1. The slope parameter can be tested for significance using a null
hypothesis where H0 :β1 = 0 andβ1 is a vector containing trend slope parameters for each response-predictor
couple [66].
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It must be noted that GLR is only applicable to analysis of time-series data where an individual instance is ob-
served over time, or for the individual analysis of instances or participants gathered with longitudinal studies.
To analyse possible relations between instances, the mixed effect model (MEM) is more appropriate [56]. This
will be elaborated on in the next subsection.

5.3.3. Mixed Effect Models
As already mentioned in Subsection 5.3.2 mixed effect models or linear mixed models (LMM) are generally
used when analysing longitudinal data, since GLR models are only applicable in analysing long-term data of
a single participant. Even though the ultimate goal of the research collaboration is to design a tool that aids
treatment monitoring in individuals, as PD progression is unique for each patient. It might be interesting to
learn from other patients and to see if there are general trends in age groups and onset types. Furthermore, in
longitudinal studies the participant group is chosen such that they represent a specific part of the population
that is to be analysed. Analysing individual data, especially in a proof-of-concept set-up like this study, might
therefore not present the full picture related to the population and thus the most interesting information.

Mixed effect models are used to incorporate both global level information as well as individual information
and a general model is given in Equation (5.4). Here the individual observations are given by Yi , j , where j
indicates the measurement number and i the participant. Xi , j gives the predictor variables, β0 and β1 present
the regression parameters and εi j the error, just like in SLR and GLR. The terms bi ,0 and bi ,1 represent deviation
from the population average in the form of bi ,0 =

(
βi ,0 −β0

)
and bi ,1 =

(
βi ,1 −β1

)
[67].

Yi j =β0 +β1 ·Xi j +bi ,0 +bi ,1 ·Xi j︸ ︷︷ ︸
between-subject

+ εi j︸︷︷︸
within-subject

(5.4)

The parameters of LMM are generally estimated using maximum likelihood estimation instead of LSE in or-
der to minimise bias [56]. In this method, the parameter estimates are determined by maximising the joint
probability or density of the observations. It can also be simplified to maximising the log-likelihood function.
An advantage of using MLE is its application to incomplete data-sets. Even if the longitudinal data have some
missing or faulty data-points, MLE can still be used to find an estimate to the regression model [56, 67].

5.3.4. Models for Irregularly Spaced Data
Thus far, all described models can be used under the assumption of evenly spaced data on the time axis, with-
out inter-dependencies. In irregular spaced (clinical) data, there is typically a dependence between succes-
sive observations that varies with the separation in time, for example, the day-to-day variance between sets
of motor performance data, which are influenced by the moment the measurements are taken. This inter-
dependency is not easily applied in a model such as Equation (5.4) and research is done to develop methods
that can be applied to these data-sets [56]. Most clinical observations and longitudinal studies, participants
are observed at irregular intervals and the different participants are often measured on different days.

The most commonly used method for analysis of unevenly spaced data is to transform it to equally spaced
data, often using linear interpolation methods [56]. With this new data-set the models discussed above can be
easily applied. However, there are several disadvantages that come with the interpolation. The estimates of
covariances and autocorrelation can be influenced by a bias which is hard to quantify. Furthermore, there is
often a causal relationship between parameters in multivariate time series, that can get lost when interpolating
data. Moreover, the information available in the data-set can get diluted with added points for far spaced
observations or removed points for closely timed observations [64].

Current research focuses on finding methods that are directly applicable to unevenly spaced data, however,
these methods are still in their early stages and do not cover estimation methods for trend analysis [64]. For
the scope of this project, any unevenly spaced data will therefore be interpolated if necessary, while keeping
the disadvantages in mind for further statistical analysis. This will be tested with simulation data.

5.3.5. Other Models
Depending on the final data-set, its distribution and underlying parameter relations, it might be that the afore-
mentioned models are not appropriate for trend analysis. In this subsection some possible extensions of SLR
and GLR that can overcome these problems are briefly noted.
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Polynomial and Nonlinear Regression and Trends
In special cases, non-linear trends can be properly analysed using linear regression models. Depending on the
definition used, polynomials are actually linear regression models even though the trend they may describe is
not. Regression models are categorised as linear if the parameters β0, ...,βn are linearly entered into the model
[56]. Due to the combination of the possible natural variance in the estimated control parameters and the fact
that for this application the data-set is simulated to show increasing symptom severity, it is expected that that
a linear model will be sufficient to analyse for trends.

There are, however, cases where linear models cannot appropriately describe a trend in the data. One example
can be a very aggressive disease progression with exponentially increasing severity of symptoms. In general,
the regression analysis can be done similar to linear models by using LSE, as long as the underlying assump-
tions hold. The difficulty lies in the large sample set required, and often there is no one optimal solution to
the estimation problem [56]. Other solutions include approximating the model with a linear version, by trans-
forming the data with the logarithm or making the function piecewise linear [57].

Generalised Linear Regression
The models discussed in the previous subsections are only valid under the assumption that the residuals have a
normal distribution. This assumption can, however, be relaxed when using generalised linear regression mod-
els (GLiM). It uses a more general notation of the regression function based on the distribution of the response
variable, as shown in Equation (5.5), which allows for a non-normal distribution and nonlinear relationship
between the linear predictor ηt and mean µt . The only limitation in these models, is that the distribution must
be one of the exponential family [56].

Yt ∼ N
(
µt ,σ2) , where µt =β0 +

p∑
i=1

βi xi t = ηt (5.5)

5.4. Conclusion
In this chapter the general concept of trend analysis methods, as well as the different available models are
explored. The most widely used method of trend analysis is regression analysis, which estimates the depen-
dencies between two variables. Regression analysis has many applications and this MSc research focuses on
how those methods can be applied to analyse changes in manual control behaviour due to the progression of
neurological disorders like PD.

Ideally, the data for this research would be in the form of longitudinal clinical data of Parkinson’s patients,
however for this proof of concept the longitudinal data are approximated by analysing motor performance of
age-matched controls, as will be further elaborated on in Section 6.2. The use of (approximated) longitudinal
data does not allow for application of the simplest forms of regression analysis. For finding individual trends,
such as possible learning effects, the GLR model is applicable. However, when looking for a widely applicable
method to analyse changes in motor control behaviour due to PD, the global effects of the whole participant
group need to be taken into account and mixed effect models are more appropriate.
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6
Experiment Proposal and Data Analysis

In this chapter, a proposal is presented for the manual pursuit tracking experiment and the subsequent data
analysis steps to be taken in this MSc research project. First, in Section 6.1 the main research questions and
hypotheses are defined. This is followed by a detailed explanation of all aspects related to the design of the
proposed experiment in Section 6.2. A short overview of the approach to the data analysis is given in Section
6.3. Finally, a brief conclusion is given in Section 6.4.

6.1. Research Question and Hypotheses
As already mentioned in Chapter 1, one of the focus areas of the research collaboration between the TU Delft
and EMC is the development of a tool that aids treatment monitoring of Parkinson’s patients. Ideally the gath-
ered motor performance data for this research are from a longitudinal clinical study following Parkinson’s pa-
tients on a set time interval. However, these data would only be complete, and usable in this study, if both the
suppression by medication and the gradual increase in symptom severity can be captured. Due to time con-
straints for this MSc research this cannot realistically be achieved. However, to approximate these kinds of data
and to be able to prepare key data analysis steps, measurements can be done with healthy participants, dis-
tributed over several days. Patient data can be simulated to generate data that approaches motor degradation
due to disease progression, for a proof-of-concept of the methods. With that in mind, the research question is
defined as:

‘How can a change in motor behaviour due to Parkinson’s disease
symptoms be identified in naturally varying human controller data?’

This research question can be split into two main questions stated below. The first, with two related subques-
tions, is connected to the gathering and analysis of data with the experiment that will be discussed in Section
6.2, the last question concerns the use of simulated data based on previous research [17] and the application
of trend analysis methods, which will be briefly mentioned in Section 6.3.

1. Is there a significant natural variation in day-to-day motor performance of healthy elderly people?

1.1. Do learning effects, induced by repeating the measurements over multiple days, influence motor per-
formance and its variability?

1.2. Is there a difference in motor performance and its variation bandwidth between dominant and non-
dominant hand control input?

2. Is it possible to detect trends in combined experimental and simulated motor performance data?

From literature, the following hypotheses are defined related to these questions:

1. It is expected that there will be variation in day-to-day motor performance. Research has shown that
elderly people have a higher variability of movement and motor performance [2]. Additionally, in Section
4.2 it was noted that there is a large group of variables that is ideally kept constant when comparing data
of experiments. These operator-centered variables, like motivation and fatigue, are however extremely
difficult to keep steady when measurements are spread over multiple days. Moreover, as the elderly
participant group is more vulnerable to changes in these variables, it is expected that there will be a
day-to-day variation in motor performance.
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1.1. It is expected that learning effects do not significantly influence motor performance. Previous research
indicates that a pursuit task has a lower complexity and workload as compared to preview [18]. Further-
more, patients were able to perform the task after a short amount of practise [17].

1.2. It has been found that regardless of age, the fine motor skill performance of the dominant hand is signif-
icantly better that of the non-dominant hand [45]. It is therefore expected to see a difference between
motor performance score and variation.

2. Previous research has shown that there is a significant difference in parameters related to motor perfor-
mance of patients and an age-matched control group [17]. It is therefore expected that there will be a
visible trend in time for the combined healthy experimental and simulated PD data-set.

6.2. Experiment Design
In this section the different aspects related to the design of a manual pursuit tracking experiment are discussed.
First, participant selection is explained in Subsection 6.2.1. This is followed by a detailed description of the
control task in Subsection 6.2.2 and the apparatus in Subsection 6.2.3. Lastly, Subsection 6.2.4 describes the
experiment procedures.

6.2.1. Participants
Ideally, the experiment follows Parkinson’s patients during their regular check-ups to be able to use accurate
data in the development of a diagnostic tool. However, due to time constraints related to this research project,
it was opted to approximate the patient data for a proof-of-concept.

It is proposed to have a participant group of 25 healthy elderly people, with an age range of 55-75 years. This
age range is deemed appropriate as it is the average age of symptom onset for Parkinson’s disease [3]. Fur-
thermore, elderly people are expected to show control behaviour closer to that of PD patients, as compared to
younger participants. The results are expected provide information on the natural variation bandwidth of mo-
tor performance, before symptoms are present, but including any natural neurological degeneration caused
by the ageing of the brain. This allows for comparison with simulated and real PD data in following stages of
this research.

Healthy participants include people who do not have any neurological impairments. Furthermore, no major
visual impairment is allowed due to the nature of the tracking task, where information is provided using a
visual stimulant. Preferably, the age and genders are equally distributed, however, this is not a strict require-
ment for this experiment. In order to find enough participants, a collaboration with group homes for elderly is
proposed. Measurements can take place in the common room in order to reduce the burden for participating.

6.2.2. Control Task
In this subsection the different aspects relating to the design of the control task will be elaborated on. First the
methods used to define a cognitive and motor baseline for each participant are presented. This is followed by
an elaboration on the task description of the main experiment and the display. After this, the input signal the
controlled element are described.

Baseline Determination
Before the start of the experiment, all participants are asked to perform a Mini Mental State Examination
(MMSE) to assess cognitive functioning [68]. A baseline for the motor performance is defined with two short
test, measuring reaction time and eye-hand coordination, using tests developed by the neuroscience depart-
ment of the Erasmus MC, where eye and hand movements are compared to estimate motor performance of
participants.

Task Description
The task to be performed by the participants is a simple horizontal-axis pursuit-tracking task. The goal is to
keep the system output as close as possible to the target signal.

In order to approximate longitudinal tracking data and allow for natural variations in performance, the mea-
surements are spread over 5 days. Ideally the time division between measurement sets is equal for all partici-
pants, however, this is not a strict requirement as the focus lies on individual day-to-day variation and not the
influence of specific time intervals between measurements.

The task consists of two conditions where the participant is asked to follow a target on a touchscreen, using
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both the dominant and non-dominant hand as control input. This set-up is chosen as PD can manifest itself
asymmetrically [21]. It is expected that this set-up will provide information on motor performance and any
possible differences in the variation bandwidth between controlling with the dominant and non-dominant
hand. This can give insight in the possibility of requiring more severe PD symptoms before they can be identi-
fied with trend analysis models if a higher variation is present in the non-dominant hand.

Display
For this research purpose, it is opted to select a pursuit display. This display is more intuitive for participants,
therefore, it is easier to use. Furthermore, Haartsen observed that a preview task might not be suitable in appli-
cations with participants suffering from neurodegeneration due to the higher complexity and workload [18].
Even though more extensive information on manual performance and tracking behaviour could be available
when using a preview display, care must be taken to develop a method that is suitable for monitoring PD in
vulnerable participants.

The display that will be used is an adaptation of that presented in Figure 4.3b and that used in research by De
Vries [17] and is shown in Figure 6.1. The left half shows the controls for the experimenter and the right half
the display visible for the participant. The black circle indicates the target signal position, while the blue dot
shows the controlled element output. The black box indicates the area where the control input may be applied
to prevent blocking the visual stimulus with the hand.

Figure 6.1: Display to be used in experiments

Input signal
As was already discussed in Section 4.3.3, when using a simplified version of the pursuit tracking task, com-
pensatory control behaviour is achieved. This means that only a target forcing function is required and the
disturbance forcing function is not necessary for the system identification process.

Previous research in the department made use of the multisine described by the 11 sinusoids of Table 6.1 for
manual tracking tasks [17–19]. This combination of sines was able to cover the whole region of interest in
human behaviour dynamics and, for continuity reasons, will be used in this research.

Table 6.1: Target signal components, obtained from [17]

N f ω f [r ad/s] A f [deg ] φ f [r ad ]
4 0.614 1.079 7.239
7 1.074 0.776 0.506

13 1.994 0.391 7.860
19 2.915 0.225 8.184
29 4.449 0.117 9.012
37 5.676 0.082 6.141
43 6.596 0.066 6.776
53 8.130 0.051 6.265
79 12.118 0.035 4.672

109 16.720 0.028 2.672
157 24.084 0.024 8.009
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The frequencies ω f of the multisine are all a multiple of the base frequency. The base frequency ωm is defined
by Equation (6.1), where Tm indicates the measurement time. Previous research incorporated a signal length of
50 s, of which the first 9.04 s where used as run-in time and the latter 40.96 s as Tm . The sinusoid amplitudes
were determined using a second-order low pass filter as described in Equation (6.2), where TA1 = 0.1 and
TA2 = 0.8. Finally the phases were selected ’randomly’ to achieve an average crest factor [17].

ωm = 2π

Tm
(6.1)

HA( jω) =
(
1+TA1 jω

)2(
1+TA2 jω

)2 (6.2)

In order to reduce learning effects in the experiments, the input signal is flipped for every second trial.

Controlled Element Dynamics
The controlled element dynamics need to be chosen such that the participant shows the preferred tracking
behaviour. As mentioned in Section 4.3.3, the HC will display compensatory behaviour if single integrator
controlled element dynamics are chosen during pursuit tracking [51], which simplifies data analysis. Further-
more, even though using those dynamics with a touchscreen application might result in the rise of compli-
cations with data analysis resulting from loss-of-contact with the screen, it is opted to have single integrator
dynamics to ensure enough information on control behaviour in the higher frequencies, (i.e. neuromuscular
dynamics) for proper data analysis [18].

6.2.3. Apparatus
As mentioned in Section 6.2.1, in order to find enough participants who are willing to perform the experiment
spread over 5 days, it would be easier to operate from the common rooms of group homes for the elderly. For
this, the experiment setup is required to be portable.

The experiment will run on a HP laptop with a Linux operating system (Ubuntu 18.04.3 LTS) on the Delft
University Environment for Communication and Activation (DUECA). A Dell P2341T touchscreen will be used
as input device and will be connected to the laptop. Participants are asked to wear touchscreen gloves in order
to reduce friction between the finger and touchscreen. The touchscreen will be re-positioned for use with the
dominant and non-dominant hand to provide a more natural control position for the hand.

For the motor performance baseline measurements, a portable setup from the EMC is used. The Tobii X2-60
compact eyetracker is used, in combination with tests running on Tobii Pro Studio software, to measure reac-
tion times and eye-hand coordination. A separate keyboard and the previously mentioned Dell touchscreen
are input devices.

6.2.4. Experimental Procedures
The experiment is spread over 5 days, where the first day differs slightly from the others in experimental pro-
cedures. The procedures for the first session are shown in Figure 6.2 and include the briefing, baseline tests,
measurements for both dominant and non-dominant hand control and debriefing. For the follow-up mea-
surement sessions, the briefing is shortened significantly and the baseline tests are skipped.

Figure 6.2: Experiment procedures

58



The initial briefing includes discussion of the information document presented in Appendix B and signing
of the consent form, shown in Appendix C. During the baseline tests the participants cognitive and motor
performance baseline is determined using the tests described in Subsection 6.2.2.

During the measurements, five practise trails are performed in order to get familiar with the task and control
hand. This is followed by 10 measurement trails for the first condition, with a short break halfway to relax
the hand and eyes. After another short break, the practice and measurements are repeated for the second
condition. Here the conditions define the hand used for the control input, so dominant (D) or non-dominant
(ND). Since the participants are elderly and it is expected they tire faster that a young participant group, extra
breaks are possible upon request.

In order to mitigate any possible influences of fatigue and/or learning, the order of starting with the dominant
or non-dominant hand is changed per subject and measurement set. This is shown in Table 6.2.

Table 6.2: Testing order, D = dominant hand, ND = non-dominant hand

Participant Set 1 Set 2 Set 3 Set 4 Set 5
1-13 D ND D ND D ND D ND D ND

14-25 ND D ND D ND D ND D ND D

6.3. Data Analysis
Analysis of trends in time-series and longitudinal data allows for the identification of gradual changes. In ap-
plying trend analysis to motor performance data, it might be possible to detect changes in HC behaviour due
to PD progression. A trend can indicate if the general direction of the data is increasing or decreasing. Further-
more, analysis can identify changes in trend direction, where a patient initially might have been improving due
to treatment, symptoms can resurface and change the direction of the trend. After the experiment is finished
there are several steps to be taken before a statistical trend analysis can be done. This section will present a
short overview of these steps.

1) Measurement Data Analysis and Preparation
After the experiments are concluded, the raw data will be visualised in order to find corrupt data points and
outliers. Furthermore, a parameter estimation will be performed for all participants to estimate the control
parameters. The method presented in Section 4.5 will be used. First the FCM is applied to estimate the human
control dynamics. After this, the parameters are estimated by minimising Equation (4.8) where a modified
version of Equation (4.7) is implemented. As described in Subsection 4.4.2, the controller generally adapts its
behaviour to allow for single integrator system dynamics. Keeping this in mind, combined with the selected
single integrator controlled element dynamics, the HC is expected to show only a gain in the pilot equalisation
equation. Therefore Equation (4.7) can be simplified to Equation (6.3). The estimated control parameters
(Kp , τ, ζnms , ωnms ) and performance score will ultimately be used as indicators for a trend in the data.

Hp ( jω f ) = Kp e− jω f τ
ω2

nms

( jω f )2 +2ζnmsωnms jω+ω2
nms

(6.3)

Furthermore, the measurement data should be analysed for any initial trends. Even though it is hypothesised
that there will not be a learning curve due to the task simplicity [17, 18], there might be a visible increase in
motor performance. If the residuals are normally distributed, the general linear regression model, described in
Subsection 5.3.2, can be applied to test for trends in the data for each individual participant. When a significant
trend is present, the data should be corrected.

Finally, in order to test the applicability of the trend analysis models to the whole population group, the proof-
of-concept for this method, the healthy data should be bootstrapped to create multiple ’estimates’ of the orig-
inal data-set. This allows for the generation of a more complete data range that more closely represents the
whole population group of interest.

2) Simulation of PD Data
The next step is to simulate data from Parkinson’s patients, with human control parameters and performance
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scores based on previous research [17]. The range can be varied to simulate mild or severe symptoms in order
to test the sensitivity of the trend analysis model.

3) Preparation of Combined Data-set
Subsequently, the experimental and simulation data will be combined to form the final data-set. This set
will be tested to see which trend analysis model is applicable, using autocorrelation test and validation of the
assumptions. If the data-set is found to be too small, further bootstrapping can be used in order to provide
confidence intervals and an estimation of the p-value.

4) Trend Analysis
Finally, trend analysis will be performed on the prepared and combined data-set. A mixed effect regression
model can be used, either the standard or the generalised version, depending on the residual distribution. The
mixed effect model allows for individual participant analysis, while taking into account the global information
of all participants. This results in a general trend analysis that determines if there is a significant trend in the
individual data-sets, as well as the determination of the general applicability of trend analysis for monitoring
disease progression in PD.

The performance of the trend algorithm is usually defined as the number of times a trend is properly detected
and how many times the the shape is correctly determined, upon visual inspection [69]. Due to the expected
natural variance in the data and simulated decrease in performance due to PD symptoms, a linear trend model
is used, so the shape parameter is not of interest. By using the bootstrapped data, it can be tested how often
the trend is correctly detected for a large number of data-sets. Furthermore, sensitivity of the model can be
tested by changing the ’severity’ of the simulated PD data, number of simulated data points and the natural
variance in motor performance.

6.4. Conclusion
In this chapter proposals are presented for an experiment and the subsequent data analysis. A pursuit tracking
task is suggested for gathering data on natural variation of motor performance of elderly participants, spread
over 5 days. These data will be combined with simulated PD control behaviour in order to approximate lon-
gitudinal clinical data of increasing PD severity. Trend analysis methods will be applied to indicate how those
methods can be used to identify changes in motor performance due to disease progression.
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7
Conclusion

Neurodegenerative disorders can have a significant effect on the quality of live for patients. In spite of the huge
amount of research done, there is still no single, universally applied method to objectively quantify the impact
of brain degeneration on motor performance and measure the effect of treatment methods.

Previous research has shown that a decline in motor performance due to neurodegenerative diseases can be
determined with the use of manual tracking tasks when comparing patients to a control group. However,
there is little information available on how individual motor performance changes due to increasing symptom
severity, which would be interesting for treatment monitoring. This study will focus on quantifying the natural
variation in human motor performance and identifying changes in control behaviour related to neurodegen-
eration caused by Parkinson’s disease using manual tracking tasks and trend analysis methods.

With a manual control tracking task, the natural motor performance variation for 25 elderly participants will
be determined, spread over five days. A pursuit tracking task with single integrator dynamics is chosen in
order to ensure sufficient information on neuromuscular dynamics, while keeping the task simple enough for
elderly participants and possible further use with PD patients. Human control parameters will be estimated
from the data, using the Fourier coefficient method, and will be combined with simulated data for Parkinson’s
patients. This combined data-set will then be analysed using statistical trend analysis methods to see if there
is a significant change in behaviour from healthy to PD data and how this would be best detected.

Results from the experiment, simulation and data analysis will indicate how trend analysis methods can be
used to identify behavioural changes in motor performance data. This will be a next step in the development
of a treatment monitoring tool for neurodegenerative diseases.
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Paper appendices
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A
Method flowchart

Figure A.1: Method flowchart
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B
Briefing Document

This appendix includes the briefing document provided to and discussed with the participants before the start
of the experiments. The document is in Dutch, as all participants were Dutch. It has been based on the stan-
dard information package and is adapted for this particular experiment.
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INFORMATIE VOOR DEELNAME AAN HET ONDERZOEK: 

Kwantificeren van natuurlijke variatie in motorische vaardigheden 
 

Geachte heer/mevrouw, 

 

Wij vragen u vriendelijk om mee te doen aan een onderzoek (zie titel). U beslist zelf of u wilt 

meedoen. Voordat u de beslissing neemt, is het belangrijk om meer te weten over het 

onderzoek. Lees deze informatiebrief rustig door. Bespreek het met partner, vrienden of 

familie.  

 

Hebt u na het lezen van de informatie nog vragen? Dan kunt u terecht bij de onderzoeker, 

achteraan dit document zijn de contactgegevens te vinden. 

 

1.  KORTE SAMENVATTING EN DOEL VAN HET ONDERZOEK 

Ouderdom komt met gebreken is een bekend gezegde. Dit kan onder meer leiden tot teruggang 

in motorische vaardigheden, wat doorgaans een grote invloed heeft op de kwaliteit van leven. 

Dezelfde motorische beperkingen kunnen al eerder ontstaan bij mensen met een 

neurologische aandoening. Met medicatie kunnen deze vaardigheden onder controle 

gehouden worden, maar voor een effectief behandelplan is een gedetailleerde bepaling van de 

motorische vaardigheden nodig. Om geleidelijke achteruitgang in deze vaardigheden aan te 

kunnen tonen is de eerste stap om bij een grote groep gezonde mensen de natuurlijke variatie 

in stuurprestaties te meten. Het doel van dit project is om deze data te verzamelen.  

 

In een gezamenlijk onderzoeksproject tussen de TU Delft (Faculteit Luchtvaart- en 

Ruimtevaarttechniek) en het Erasmus Medisch Centrum (afdeling Neurowetenschappen) is een 

effectieve methode bedacht voor het gedetailleerd meten van de motorische vaardigheden. 

De methode gebruikt een eenvoudige stuurtaak in combinatie met een wiskundig model om 

de motorische vaardigheden daarin te kwantificeren. Deze aanpak is afgeleid van, een methode 

die aan de TU Delft succesvol is toegepast voor het meten van de stuurprestaties van piloten. 

De eerste bevindingen van deze unieke samenwerking zijn veelbelovend en het gedetailleerd 

meten van motorische vaardigheden kan een doorbraak betekenen voor het volgen van de 

ontwikkeling daarvan in ouderen en patiënten en het opstellen van een passend individueel 

behandelplan. 

 

  



                                                                                                                  

2.  HOE HET ONDERZOEK WORDT UITGEVOERD 

Het experiment bestaat uit het meten van stuurgedrag bij 

deelnemers aan de hand van een simpele stuurtaak (zie cartoon). 

Deze metingen worden voor elke deelnemer over 5 (niet 

noodzakelijk opeenvolgende) dagen verspreid om de natuurlijke 

variatie in sturen vast te kunnen leggen. Elke sessie zal bestaan 

uit 25 metingen, wat in totaal ongeveer een uur zal kosten.  

Verder zal tijdens de eerste meetdag een aantal standaard testjes 

worden uitgevoerd om een referentie punt voor de prestaties te 

bepalen. Dit zal bestaan uit een “tapping-taak” voor een 

motorisch referentie punt. De mini-mental-state-Exam voor het 

cognitief functioneren en met een Snellenkaart wordt de 

gezichtsscherpte bepaald. 

 

De benodigde materialen (computer en touchscreen voor uitvoeren van de stuurtaak) zullen 

door ons worden meegenomen naar de gemeenschappelijke ruimte of andere geschikte 

locatie, zodat u in uw woonomgeving of tijdens de dagbesteding kan deelnemen aan het 

project.  
 

3.  WAT WORDT ER VAN U VERWACHT 

Van u wordt verwacht dat u zo goed mogelijk uw best doet tijdens de testen en zo goed mogelijk 

de aanwijzingen van de onderzoeker opvolgt. Ook verwachten wij dat u de gemaakte afspraken 

nakomt en aanwezig bent op de besproken tijd en locatie. 
 

4.  MOGELIJKE VOOR- EN NADELEN 

Er zijn voor u geen directe voordelen van dit onderzoek te verwachten. U helpt wel mee in de 

ontwikkeling van een methode om in de toekomst een beter behandelplan op te kunnen zetten 

voor mensen met een motorische beperkingen door neurologische aandoeningen. Meedoen 

aan het onderzoek brengt géén risico voor uw gezondheid met zich mee. 

 

Een nadeel van het onderzoek is dat er van u een kleine tijdsinvestering wordt verwacht. Het 

onderzoek duurt ongeveer vijf uur per persoon, verspreid in blokken van een uur per dag. Om 

de belasting voor u zo minimaal mogelijk te houden streven wij ernaar om het onderzoek in uw 

directe omgeving uit te voeren zoals bij uw aanleunwoning of dagbesteding locatie. 
 

5.  ALS U NIET WIL MEEDOEN OF WILT STOPPEN MET HET ONDERZOEK 

U beslist zelf of u meedoet aan het onderzoek. Deelname is vrijwillig. Als u besluit niet mee te 

doen, hoeft u verder niets te doen. U hoeft niets te tekenen. U hoeft ook niet te zeggen waarom 

u niet wilt meedoen. Als u wel meedoet, kunt u zich altijd bedenken en toch stoppen. Ook 

tijdens het onderzoek. Hiervoor hoef u ook geen reden op te geven.  
 



                                                                                                                  

6.  EINDE VAN HET ONDERZOEK 

Uw deelname aan het onderzoek stopt als 

• de onderzoeken zijn afgerond 

• u zelf kiest om te stoppen 

 

Het hele onderzoek is afgelopen als alle deelnemers klaar zijn. 

 

7.  GEBRUIK VAN UW GEGEVENS 

De meetgegevens die verzameld worden voor dit onderzoek zijn volledig anoniem en zullen 

vertrouwelijk worden behandeld. Dit betekent dat de onderzoeker de gegevens mogen 

gebruiken voor dit onderzoek, maar zij mogen deze gegevens alleen bekend maken zonder 

daarbij uw naam of andere persoonlijke gegevens te vermelden. Uw identiteit blijft dus altijd 

geheim. De onderzoeker bewaart de gegevens met een code. Dit betekent dat op de studie- 

documenten in plaats van uw naam enkel een letter-cijfercode staat. Alleen de onderzoeker 

houdt een lijst bij waarop staat welke letter- cijfercode bij welke naam hoort. 

 

8.  EXTRA KOSTEN / VERGOEDING VOOR DEELNAME 

De testen voor het onderzoek kosten u niets. Wij streven ernaar om het onderzoek plaats te 

laten vinden in uw directe omgeving waardoor u geen (extra) reiskosten hoeft te maken.  U 

wordt niet betaald voor het meedoen aan dit onderzoek. 

 

9.  HEEFT U VRAGEN? 

Bij vragen kunt u contact opnemen met het onderzoeksteam met onderstaande informatie. Bij 

klachten kunt u het beste terecht bij de ethische commissie van de Technische Universiteit Delft 

(HREC), deze kunt u bereiken door te mailen naar hrec@tudelft.nl. 
 

Contact informatie onderzoeker: Contact informatie onderzoeksbegeleiders: 
Lieke Lugtenborg 

L.A.Lugtenborg@student.tudelft.nl 
06 43714371 

dr. ir. Daan Pool 

d.m.pool@tudelft.nl 
015  2789611 

TU Delft 

dr.ir. Johan Pel 

j.pel@erasmusmc.nl 
010 7043385 

Erasmus MC 
 

 
 

 
 



C
Participant Consent Form

This appendix includes the consent form which is to be signed by the participants before the start of the exper-
iments. The document is in Dutch, as all participants were Dutch. It has been based on the standard consent
forms and is adapted for this particular experiment.
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TOESTEMMINGSFORMULIER VOOR DEELNAME AAN HET ONDERZOEK: 

Kwantificeren van natuurlijke variatie in motorische vaardigheden 
  
 

Hierbij bevestig ik, door middel van het aanvinken van de boxen, dat:  

Ik als vrijwilliger mee doe in het experiment opgezet door de onderzoeker (Lieke Lugtenborg) 
onder toezicht van dr.ir. Daan Pool van de Technische Universiteit Delft, faculteit Luchtvaart- 
en Ruimtevaarttechniek en dr.ir. Johan Pel van het Erasmus Medisch Centrum, afdeling 
neurowetenschappen. 

 

Ik de informatiebrief voor de proefpersoon heb gelezen. Ik kon aanvullende vragen stellen. 
Mijn vragen zijn genoeg beantwoord. Ik had genoeg tijd om te beslissen of ik meedoe.  

 

Ik weet dat meedoen helemaal vrijwillig is. Ik weet dat ik op ieder moment kan beslissen om 

toch niet mee te doen. Daarvoor hoef ik geen reden te geven. 
 

Ik begrijp dat het deelnemen aan het onderzoek inhoudt dat ik een simpele stuurtaak uitvoer 

op een touchscreen.  
 

Ik begrijp dat de onderzoeker alle data zal anonimiseren en mij niet bij naam zal noemen in 
verslagen en/of publicaties die uit dit onderzoek kunnen voortkomen.  

 

Ik toestemming geef om de data die verzameld wordt te gebruiken voor de doelen die in de 

informatiebrief staan.  
 

Ik begrijp dat dit experiment is beoordeeld en goedgekeurd door de TU Delft Human Research 
Ethics Committee (HREC). Als ik problemen betreffende mijn deelname aan dit experiment wil 

melden, weet ik dat ik de onderzoekers met onderstaande informatie kan benaderen, of indien 

nodig het HREC (hrec@tudelft.nl).  

 

Naam proefpersoon:  

 
Handtekening:                     Datum: __ / __ / __ 

                            

 

Ik verklaar hierbij dat ik deze proefpersoon volledig heb geïnformeerd over het genoemde 
onderzoek. Als er tijdens het onderzoek informatie bekend wordt die de toestemming van de 

proefpersoon zou kunnen beïnvloeden, dan breng ik hem/haar daarvan tijdig op de hoogte. 

 

Naam onderzoeker:  

 
Handtekening:                    Datum: __ / __ / __ 

 

 

Contact informatie onderzoeker: Contact informatie onderzoeksbegeleiders: 

Lieke Lugtenborg 
L.A.Lugtenborg@student.tudelft.nl 

06 43714371 

dr. ir. Daan Pool 
d.m.pool@tudelft.nl 

015  2789611 
TU Delft 

dr.ir. Johan Pel 
j.pel@erasmusmc.nl 

010 7043385 
Erasmus MC 

 

 



D
Participant information

Table D.1 provides an overview of the parameters and their handedness and scores. The maximum MMSE
score is 30 and a score lower than 26 is related to cognitive decline [68]. The Baseline pass parameter indicates
whether the participant passed all criteria related to the EMC baseline tests, as defined in Table E.1. Best RMSe
gives the score for the best tracking performance and Best hand indicates with which hand this score was
obtained. Good participants indicates whether a participant has a sufficiently high performance for the select
group in the sensitivity analysis.

Table D.1: Overview of participant information

Participant age sex Handedness MMSE Baseline pass Best RMSe Best hand Good participant
1 56 f r 30 ∗ 0.66 ND ∗
2 58 m r 30 ∗ 0.58 D ∗
3 75 f r 30 1.27 D
4 75 f r 30 ∗ 1.59 ND
5 72 f r 28 1.17 D
6 74 m r 27 ∗ 0.82 ND ∗
7 73 f r 30 ∗ 0.87 ND ∗
8 74 f l 30 0.95 ND
9 75 m r 28 ∗ 0.69 ND ∗

10 58 m r 30 ∗ 0.61 D ∗
11 64 f r 30 0.80 D
12 64 f r 30 ∗ 1.01 ND
13 64 m r 30 ∗ 0.67 ND ∗
14 61 f r 30 ∗ 1.36 ND
15 67 f r 30 ∗ 0.75 D ∗
16 70 f r 30 0.91 D
17 72 f r 30 1.37 ND
18 62 m l 26 ∗ 0.53 ND ∗
19 60 f r 30 ∗ 0.64 D ∗
20 58 f r 30 ∗ 0.68 D ∗
21 69 m r 29 ∗ 0.74 D ∗
22 75 f r 29 ∗ 0.86 ND
23 68 f r 30 ∗ 0.69 ND ∗
24 72 f r 28 ∗ 0.99 D ∗
25 56 f r 30 ∗ 0.65 D ∗

temp
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E
EMC baseline test results
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(a) Reaction time simple tap
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(b) Taps per second
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(c) Reaction time protap touch
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(d) Reaction time protap space

Figure E.1: EMC baseline test performance

Table E.1: Participant inclusion criteria value range related to EMC baseline tests

Inclusion criterion Value range
Reaction time simple tap [s] Figure E.1a ≤ 0.4
Taps per second [-] Figure E.1b ≥ 4
Reaction time screen touch [s] Figure E.1c 0.8 ≤ δ≤ 1.2
Reaction time space release [s] Figure E.1d 0.2 ≤ δ≤ 0.4
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F
Supporting results experimental data

analysis of scientific paper

F.1. Shapiro-Wilk normality test results
Table F.1: Results of Shapiro-Wilk normality test complete data-sets, where ** is highly significant (p < 0.01), * is significant (0.01 ≤ p ≤
0.05), and - is not significant (p ≥ 0.05)

Shapiro-Wilk Dependent measures
Kp τ ζnms ωnms RMSe RMSu

Data set W Sig. W Sig. W Sig. W Sig. W Sig. W Sig.
D 0.99 ** 0.92 ** 0.96 ** 0.94 ** 0.75 ** 0.85 **

ND 0.99 ** 0.94 ** 0.94 ** 0.94 ** 0.56 ** 0.83 **
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Table F.2: Results of Shapiro-Wilk normality test for individual analysis, where * indicates the data was not normally distributed for that
parameter and control hand

Shapiro-Wilk Dependent measures
Kp τ ζnms ωnms RMSe RMSu

participant D ND D ND D ND D ND D ND D ND
all 56% 60% 56% 56% 56% 60% 76% 60% 72% 56% 64% 56%

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

10 ∗ ∗ ∗ ∗ ∗
11 ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
14 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
15 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
16 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
18 ∗ ∗ ∗ ∗ ∗ ∗
19 ∗ ∗ ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗
22 ∗ ∗ ∗ ∗ ∗
23 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
24 ∗ ∗ ∗ ∗ ∗
25 ∗ ∗ ∗ ∗ ∗ ∗

..
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F.2. Day-to-day variation, non-dominant hand
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Figure F.1: Day-to-day variation in motor performance parameters, ND

Table F.3: Results of post hoc Wilcoxon test for day-to-day variation for non-dominant hand control (ND), where ** is highly significant (p
< 0.01), * is significant (0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Wilcoxon - ND Dependent measures
Kp τ ζnms ωnms RMSe RMSu

Data set W Sig. W Sig. W Sig. W Sig. W Sig. W Sig.
Day 1 - Day 2 -2.68 ** 1.98 - -3.74 ** n/a n/a 7.54 ** 5.09 **
Day 1 - Day 3 -5.76 ** 2.41 * -2.70 ** n/a n/a 9.77 ** 2.91 **
Day 1 - Day 4 -4.93 ** 4.64 ** -4.15 ** n/a n/a 10.39 ** 5.78 **
Day 1 - Day 5 -8.64 ** 4.16 ** -5.69 ** n/a n/a 12.67 ** 4.32 **
Day 2 - Day 3 -4.07 ** 1.39 - 1.46 - n/a n/a 2.23 * -2.71 **
Day 2 - Day 4 -3.80 ** 3.58 ** -1.62 - n/a n/a 5.89 ** 1.34 -
Day 2 - Day 5 -6.92 ** 4.07 ** -2.46 * n/a n/a 8.40 ** -0.64 -
Day 3 - Day 4 -0.29 - 2.52 * -2.19 * n/a n/a 3.98 ** 4.89 **
Day 3 - Day 5 -4.73 ** 2.98 ** -3.04 ** n/a n/a 8.45 ** 2.45 *
Day 4 - Day 5 -5.09 ** 1.53 - -0.94 - n/a n/a 4.14 ** -2.43 *

F.3. Standard deviation and Coefficient of Variance Corrected data
The table below gives the Standard deviation and Coefficient of Variance for the data which have been cor-
rected for the learning curve.



Table F.4: Standard deviation and Coefficient of Variance of control parameters for all participants, data corrected for learning effects

Parameters
Kp τ ζnms ωnms

Participant D ND D ND D ND D ND
σ CV σ CV σ CV σ CV σ CV σ CV σ CV σ CV

1 0.20 23 0.24 24 0.12 35 0.10 32 0.15 47 0.20 50 3.68 57 2.32 33
2 0.26 19 0.18 12 0.06 19 0.05 16 0.10 38 0.08 36 3.14 28 3.40 28
3 0.10 84 0.16 42 0.22 62 0.25 40 0.08 108 0.08 73 7.5 70 4.94 64
4 0.16 68 0.21 68 0.31 63 0.25 62 0.09 105 0.18 135 6.78 79 7.35 63
5 0.31 32 0.32 35 0.19 42 0.22 43 0.20 64 0.18 73 4.32 62 4.04 55
6 0.25 40 0.27 37 0.17 44 0.13 37 0.21 42 0.25 69 4.98 61 4.86 52
7 0.24 32 0.31 33 0.15 33 0.12 38 0.24 58 0.23 44 7.15 66 5.86 65
8 0.33 35 0.45 34 0.16 36 0.09 28 0.20 62 0.25 70 3.32 37 3.49 34
9 0.27 22 0.23 17 0.07 21 0.07 22 0.20 67 0.13 56 3.29 31 3.99 37

10 0.24 21 0.24 18 0.06 24 0.05 19 0.20 30 0.18 30 2.66 26 2.98 27
11 0.54 61 0.35 37 0.14 46 0.17 52 0.31 61 0.22 44 4.95 59 4.35 64
12 0.24 51 0.25 55 0.22 51 0.18 55 0.31 75 0.26 71 6.04 73 6.16 65
13 0.17 16 0.24 21 0.07 23 0.14 52 0.17 34 0.21 43 1.87 30 3.07 47
14 0.34 67 0.21 44 0.29 54 0.22 37 0.12 80 0.05 68 5.36 79 4.49 68
15 0.23 32 0.18 39 0.09 32 0.23 51 0.21 51 0.10 72 4.62 45 4.42 51
16 0.36 48 0.39 47 0.14 41 0.17 54 0.28 54 0.25 54 5.75 63 4.27 61
17 0.22 50 0.30 65 0.28 51 0.22 53 0.14 68 0.12 84 6.07 92 6.35 62
18 0.16 12 0.27 20 0.11 46 0.11 42 0.16 35 0.17 37 3.71 45 3.85 42
19 0.18 15 0.18 14 0.07 23 0.06 20 0.13 38 0.07 26 2.87 34 1.54 22
20 0.14 13 0.16 15 0.11 40 0.09 26 0.15 37 0.19 51 3.20 43 3.23 34
21 0.31 23 0.28 28 0.06 20 0.08 23 0.20 33 0.20 51 2.76 30 4.44 36
22 0.27 29 0.31 28 0.13 32 0.08 27 0.25 57 0.25 44 3.73 36 4.18 38
23 0.32 24 0.23 16 0.12 35 0.11 29 0.22 49 0.19 48 3.50 42 3.74 39
24 0.39 32 0.29 26 0.14 36 0.13 28 0.13 48 0.08 46 2.71 50 2.92 37
25 0.24 19 0.16 16 0.06 21 0.09 28 0.19 34 0.20 37 3.69 31 2.90 28

Parameters
RMSe RMSu

Participant D ND D ND
σ CV σ CV σ CV σ CV

1 0.20 20 0.13 14 0.26 19 0.19 14
2 0.13 16 0.10 12 0.18 13 0.19 13
3 0.57 28 0.34 16 0.38 32 0.35 19
4 1.23 36 1.94 46 0.56 25 0.72 30
5 0.29 17 0.29 16 0.50 19 0.70 26
6 0.30 22 0.22 19 0.25 22 0.16 13
7 0.38 27 0.22 18 0.20 14 0.31 21
8 0.34 22 0.25 21 0.22 11 0.73 30
9 0.34 32 0.27 27 0.24 15 0.28 15

10 0.13 15 0.06 8 0.12 10 0.11 9
11 0.16 14 0.21 17 0.19 12 0.25 16
12 0.29 19 0.39 23 0.21 18 0.26 21
13 0.10 11 0.11 13 0.09 8 0.11 9
14 0.48 22 0.95 39 0.57 28 0.69 28
15 0.19 15 0.48 31 0.13 11 0.30 22
16 0.22 17 0.17 14 0.28 21 0.31 22
17 0.84 34 2.22 84 0.44 20 0.78 34
18 0.08 12 0.11 14 0.14 11 0.13 10
19 0.20 23 0.15 17 0.16 13 0.16 11
20 0.07 8 0.12 12 0.12 10 0.11 8
21 0.14 15 0.18 15 0.15 10 0.18 11
22 0.36 26 0.47 32 0.20 12 0.29 17
23 0.16 17 0.15 15 0.23 15 0.19 11
24 0.23 17 0.24 16 0.69 27 0.50 21
25 0.09 12 0.10 11 0.15 13 0.15 13



F.4. Dominant vs non-dominant hand slope, participant overview
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Figure F.2: Dominant versus non-dominant hand control participant means and slope direction



G
Correlation matrix of motor performance

metrics for use in GLR trend analysis

80



F
ig

u
re

G
.1

:C
o

rr
el

at
io

n
m

at
ri

x
fo

r
m

o
to

r
p

er
fo

rm
an

ce
m

et
ri

cs

81



H
Individual trend analysis results
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H.1 Participant 1
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Figure H.1: Results of GLR trend analysis, Participant 1, Dominant hand
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Figure H.2: Results of GLR trend analysis, Participant 1, Non-dominant hand

Table H.1: Results of one-sample t-test for GLR trend analysis for Participant 1, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -5.71 ** -2.00 *
τ 73 -0.07 - 1.50 -

ζnms 73 2.60 ** 4.03 **
ωnms 73 -4.23 ** -4.31 **

RMSe 73 -1.14 - 1.96 *
RMSu 73 -9.88 ** -2.24 **
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H.2 Participant 2
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Figure H.3: Results of GLR trend analysis, Participant 2, Dominant hand
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Figure H.4: Results of GLR trend analysis, Participant 2, Non-dominant hand

Table H.2: Results of one-sample t-test for GLR trend analysis for Participant 2, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -4.29 ** -7.17 **
τ 73 2.09 * 2.55 **

ζnms 73 5.11 ** 6.34 **
ωnms 73 -3.21 ** -0.73 -

RMSe 73 0.99 - 0.70 -
RMSu 73 -7.49 ** -9.78 **
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H.3 Participant 3
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Figure H.5: Results of GLR trend analysis, Participant 3, Dominant hand
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Figure H.6: Results of GLR trend analysis, Participant 3, Non-dominant hand

Table H.3: Results of one-sample t-test for GLR trend analysis for Participant 3, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 3.97 ** 2.33 *
τ 73 4.17 ** 1.93 *

ζnms 73 4.85 ** 3.63 **
ωnms 73 3.83 ** 1.59 -

RMSe 73 -1.14 - -0.21 -
RMSu 73 0.73 - -0.45 -
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H.4 Participant 4
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Figure H.7: Results of GLR trend analysis, Participant 4, Dominant hand
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Figure H.8: Results of GLR trend analysis, Participant 4, Non-dominant hand

Table H.4: Results of one-sample t-test for GLR trend analysis for Participant 4, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 4.21 ** 3.04 **
τ 73 2.31 * 0.70 -

ζnms 73 5.61 ** 5.03 **
ωnms 73 1.61 - 1.79 *

RMSe 73 -2.09 * -4.64 **
RMSu 73 -0.06 - -1.88 *
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H.5 Participant 5
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Figure H.9: Results of GLR trend analysis, Participant 5, Dominant hand

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70
0

1

2

3

4

5

6

Estimated parameter

Regression line PD

Regression line healthy

10 20 30 40 50 60 70

Sim Nr

0

0.5

1

1.5

2

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Sim Nr

0

5

10

15

20

25

30

Figure H.10: Results of GLR trend analysis, Participant 5, Non-dominant hand

Table H.5: Results of one-sample t-test for GLR trend analysis for Participant 5, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.96 - -3.47 **
τ 73 1.80 * 0.42 -

ζnms 73 3.24 ** 3.73 **
ωnms 73 -0.43 - 0.18 -

RMSe 73 -0.67 - -10.45 **
RMSu 73 -5.51 ** -9.82 **
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H.6 Participant 6
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Figure H.11: Results of GLR trend analysis, Participant 6, Dominant hand
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Figure H.12: Results of GLR trend analysis, Participant 6, Non-dominant hand

Table H.6: Results of one-sample t-test for GLR trend analysis for Participant 6, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 1.06 - -1.61 -
τ 73 3.47 ** 3.37 **

ζnms 73 3.54 ** 1.81 *
ωnms 73 0.47 - -0.20 -

RMSe 73 1.24 - 0.99 -
RMSu 73 0.84 - -1.87 *
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H.7 Participant 7
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Figure H.13: Results of GLR trend analysis, Participant 7, Dominant hand
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Figure H.14: Results of GLR trend analysis, Participant 7, Non-dominant hand

Table H.7: Results of one-sample t-test for GLR trend analysis for Participant 7, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.96 ** 0.42 -
τ 73 1.80 ** 2.11 **

ζnms 73 3.24 * 1.80 *
ωnms 73 -0.43 - 2.00 *

RMSe 73 -0.67 * 1.57 -
RMSu 73 -5.51 ** -0.95 -
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H.8 Participant 8
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Figure H.15: Results of GLR trend analysis, Participant 8, Dominant hand
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Figure H.16: Results of GLR trend analysis, Participant 8, Non-dominant hand

Table H.8: Results of one-sample t-test for GLR trend analysis for Participant 8, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.80 - -1.94 *
τ 73 2.04 * 2.28 *

ζnms 73 1.98 * 4.03 **
ωnms 73 0.66 - -0.75 -

RMSe 73 -0.41 - 2.11 *
RMSu 73 -1.50 - -1.16 -
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H.9 Participant 9
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Figure H.17: Results of GLR trend analysis, Participant 9, Dominant hand
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Figure H.18: Results of GLR trend analysis, Participant 9, Non-dominant hand

Table H.9: Results of one-sample t-test for GLR trend analysis for Participant 9, where ** is highly significant (p < 0.01), * is significant (0.01
≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -3.98 ** -6.31 **
τ 73 2.18 * 1.12 -

ζnms 73 3.70 ** 4.78 **
ωnms 73 -1.94 * -2.81 **

RMSe 73 -0.16 - -2.37 *
RMSu 73 -3.28 ** -11.08 **
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H.10 Participant 10

10 20 30 40 50 60 70
0

1

2

3

4

5

6

10 20 30 40 50 60 70
0

1

2

3

4

5

6

Estimated parameter

Regression line PD

Regression line healthy

10 20 30 40 50 60 70

Sim Nr

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Sim Nr

0

5

10

15

20

25

30

Figure H.19: Results of GLR trend analysis, Participant 10, Dominant hand
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Figure H.20: Results of GLR trend analysis, Participant 10, Non-dominant hand

Table H.10: Results of one-sample t-test for GLR trend analysis for Participant 10, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.30 - -6.53 **
τ 73 2.06 * 1.80 *

ζnms 73 3.30 ** 4.22 **
ωnms 73 -2.39 ** -0.55 -

RMSe 73 3.01 ** 2.59 **
RMSu 73 1.40 - -5.45 **
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H.11 Participant 11
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Figure H.21: Results of GLR trend analysis, Participant 11, Dominant hand
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Figure H.22: Results of GLR trend analysis, Participant 11, Non-dominant hand

Table H.11: Results of one-sample t-test for GLR trend analysis for Participant 11, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.32 - 1.44 -
τ 73 3.35 ** 2.94 **

ζnms 73 3.18 ** 4.96 **
ωnms 73 1.67 * 2.73 **

RMSe 73 1.36 - 1.54 -
RMSu 73 -1.75 * 0.16 -
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H.12 Participant 12
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Figure H.23: Results of GLR trend analysis, Participant 12, Dominant hand
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Figure H.24: Results of GLR trend analysis, Participant 12, Non-dominant hand

Table H.12: Results of one-sample t-test for GLR trend analysis for Participant 12, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 2.18 * 3.48 **
τ 73 1.88 * 3.42 **

ζnms 73 2.82 ** 3.59 **
ωnms 73 0.88 - 2.72 **

RMSe 73 0.69 - 1.28 -
RMSu 73 0.40 - 2.31 *
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H.13 Participant 13
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Figure H.25: Results of GLR trend analysis, Participant 13, Dominant hand
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Figure H.26: Results of GLR trend analysis, Participant 13, Non-dominant hand

Table H.13: Results of one-sample t-test for GLR trend analysis for Participant 13, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -3.23 ** -6.64 **
τ 73 1.00 - -0.05 -

ζnms 73 2.18 * 1.61 -
ωnms 73 -4.36 ** -1.86 *

RMSe 73 3.60 ** 2.97 **
RMSu 73 -0.24 - -6.22 **
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H.14 Participant 14
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Figure H.27: Results of GLR trend analysis, Participant 14, Dominant hand
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Figure H.28: Results of GLR trend analysis, Participant 14, Non-dominant hand

Table H.14: Results of one-sample t-test for GLR trend analysis for Participant 14, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.06 - 2.16 *
τ 73 1.10 - 2.12 *

ζnms 73 5.42 ** 5.17 **
ωnms 73 1.61 - 1.91 *

RMSe 73 -6.68 ** -0.76 -
RMSu 73 -6.93 ** -1.50 -
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H.15 Participant 15
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Figure H.29: Results of GLR trend analysis, Participant 15, Dominant hand
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Figure H.30: Results of GLR trend analysis, Participant 15, Non-dominant hand

Table H.15: Results of one-sample t-test for GLR trend analysis for Participant 15, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -5.48 ** -1.37 -
τ 73 1.83 * 0.58 -

ζnms 73 2.26 * 5.37 **
ωnms 73 -1.32 * 0.77 -

RMSe 73 -6.46 ** -3.28 **
RMSu 73 -15.15 ** -6.62 **
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H.16 Participant 16
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Figure H.31: Results of GLR trend analysis, Participant 16, Dominant hand
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Figure H.32: Results of GLR trend analysis, Participant 16, Non-dominant hand

Table H.16: Results of one-sample t-test for GLR trend analysis for Participant 16, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 0.92 - 0.94 -
τ 73 1.92 * 2.92 **

ζnms 73 1.51 - 2.38 **
ωnms 73 2.11 * 3.48 **

RMSe 73 0.75 - 1.86 *
RMSu 73 -0.12 - 0.23 -
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H.17 Participant 17
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Figure H.33: Results of GLR trend analysis, Participant 17, Dominant hand
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Figure H.34: Results of GLR trend analysis, Participant 17, Non-dominant hand

Table H.17: Results of one-sample t-test for GLR trend analysis for Participant 17, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -1.00 - 3.92 **
τ 73 0.63 - 2.34 *

ζnms 73 4.08 ** 3.55 **
ωnms 73 0.40 - 1.19 -

RMSe 73 -6.28 ** -0.75 -
RMSu 73 -9.64 ** -0.84 -
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H.18 Participant 18
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Figure H.35: Results of GLR trend analysis, Participant 18, Dominant hand
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Figure H.36: Results of GLR trend analysis, Participant 18, Non-dominant hand

Table H.18: Results of one-sample t-test for GLR trend analysis for Participant 18, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -5.33 ** -2.73 **
τ 73 1.60 - 2.19 *

ζnms 73 3.66 ** 3.96 **
ωnms 73 -1.36 - -0.90 -

RMSe 73 4.38 ** 2.44 **
RMSu 73 -4.60 ** -0.51 -
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H.19 Participant 19
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Figure H.37: Results of GLR trend analysis, Participant 19, Dominant hand
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Figure H.38: Results of GLR trend analysis, Participant 19, Non-dominant hand

Table H.19: Results of one-sample t-test for GLR trend analysis for Participant 19, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -6.33 ** -7.61 **
τ 73 1.05 - 1.47 -

ζnms 73 5.31 ** 7.37 **
ωnms 73 -1.47 - -4.79 **

RMSe 73 1.69 * 2.27 *
RMSu 73 -4.64 ** -6.14 **
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H.20 Participant 20
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Figure H.39: Results of GLR trend analysis, Participant 20, Dominant hand
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Figure H.40: Results of GLR trend analysis, Participant 20, Non-dominant hand

Table H.20: Results of one-sample t-test for GLR trend analysis for Participant 20, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -8.19 ** -8.15 **
τ 73 0.53 - 0.49 -

ζnms 73 3.79 ** 4.18 **
ωnms 73 -2.81 ** -2.35 *

RMSe 73 3.16 ** -1.26 -
RMSu 73 -11.52 ** -12.09 **
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H.21 Participant 21
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Figure H.41: Results of GLR trend analysis, Participant 21, Dominant hand
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Figure H.42: Results of GLR trend analysis, Participant 21, Non-dominant hand

Table H.21: Results of one-sample t-test for GLR trend analysis for Participant 21, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.50 - 0.56 -
τ 73 2.75 ** 3.44 **

ζnms 73 4.21 ** 3.86 **
ωnms 73 0.19 - 1.08 -

RMSe 73 2.36 * 2.41 **
RMSu 73 0.89 - 1.05 -
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H.22 Participant 22
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Figure H.43: Results of GLR trend analysis, Participant 22, Dominant hand
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Figure H.44: Results of GLR trend analysis, Participant 22, Non-dominant hand

Table H.22: Results of one-sample t-test for GLR trend analysis for Participant 22, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -0.21 - 1.18 -
τ 73 3.71 ** 3.33 **

ζnms 73 3.06 ** 3.18 **
ωnms 73 0.32 - -0.12 -

RMSe 73 -0.28 - 1.23 -
RMSu 73 -1.61 - 0.91 -
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H.23 Participant 23
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Figure H.45: Results of GLR trend analysis, Participant 23, Dominant hand
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Figure H.46: Results of GLR trend analysis, Participant 23, Non-dominant hand

Table H.23: Results of one-sample t-test for GLR trend analysis for Participant 23, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -3.66 ** -6.35 **
τ 73 1.08 - 1.57 -

ζnms 73 3.38 ** 3.49 **
ωnms 73 -3.40 ** -3.21 **

RMSe 73 0.80 - 0.80 -
RMSu 73 -0.49 - -3.97 **
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H.24 Participant 24

10 20 30 40 50 60 70
0

1

2

3

4

5

6

10 20 30 40 50 60 70
0

1

2

3

4

5

6

Estimated parameter

Regression line PD

Regression line healthy

10 20 30 40 50 60 70

Sim Nr

0

0.5

1

1.5

2

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

10 20 30 40 50 60 70

Sim Nr

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Sim Nr

0

5

10

15

Figure H.47: Results of GLR trend analysis, Participant 24, Dominant hand
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Figure H.48: Results of GLR trend analysis, Participant 24, Non-dominant hand

Table H.24: Results of one-sample t-test for GLR trend analysis for Participant 24, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -3.72 ** -4.99 **
τ 73 0.44 - 2.03 *

ζnms 73 5.04 ** 6.37 **
ωnms 73 -0.44 - -1.64 -

RMSe 73 -0.21 - -7.66 **
RMSu 73 -2.47 ** -5.02 **
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H.25 Participant 25
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Figure H.49: Results of GLR trend analysis, Participant 25, Dominant hand
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Figure H.50: Results of GLR trend analysis, Participant25, Non-dominant hand

Table H.25: Results of one-sample t-test for GLR trend analysis for Participant 25, where ** is highly significant (p < 0.01), * is significant
(0.01 ≤ p ≤ 0.05), and - is not significant (p ≥ 0.05)

Dominant Non-dominant
Parameter df t Sig t Sig

Kp 73 -6.38 ** -2.29 *
τ 73 2.71 ** 2.25 *

ζnms 73 2.78 ** 2.92 **
ωnms 73 -1.67 - 0.91 -

RMSe 73 3.31 ** 1.18 -
RMSu 73 -7.59 ** -2.45 **
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