
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2018

MSc THESIS
Automated Multi-core Scheduling for an

Industrial-sized Mechatronic Motion Control
Platform
D.N.F. Brouwer

Faculty of Electrical Engineering, Mathematics and Computer Science

Abstract

M echatronic embedded control systems are becoming increasingly sophisticated and computation-
ally demanding. These systems typically consists of multiple controllers, which coordinate the

actuators and apply feedback based on data collected by sensors. Often the underlying control strategy
is entirely described in a software application, which allows for hardware independence and adds the
ability to conveniently change algorithms. In order to increase application throughput, a commonly
used approach is to divide the application into smaller units called tasks and execute them in parallel
using multi-core hardware. In this thesis an automated multi-core aware scheduling and assignation
approach is designed for an industrial-sized mechatronic control software platform, more specific the
Prodrive Motion Platform (PMP). PMP can be applied in a wide range of products, e.g. wafer scanners,
robots, elevators. A key feature of PMP is flexibility, which allows it to be utilized in combination with
a wide variety of both controllable hardware (actuators, sensors) as well as computational hardware. As
a direct consequence, PMP supports many different customers and corresponding requirements. Within
PMP, a customer typically defines the application, which is then translated into a set of tasks. This
task-set is then scheduled and assigned onto the available multi-core hardware resources. In order to
meet timing-constraints, the current scheduling approach relies on a time-consuming manual process,
which provides a limited amount of tuning options, and neither considers task workloads, nor inter-core
communication costs. Given these short-comings, this solution proved to be unsuited for upcoming PMP
products. To address the aforementioned issues, we first review state of the art scheduling solutions
and introduce an extensible task measurement framework. Subsequently, we evaluate various scheduling
approaches on current PMP applications and identify two algorithms, namely, Internalization using Load
Balancing and DCS , that are able to automatically find schedules, whilst still meeting application timing-
constraints. Besides enabling to schedule new applications within upcoming PMP products, performance
improvements of ∼ 3.3% and ∼ 2.0% were observed by Internalization using Load Balancing and DCS ,
respectively, compared to the original scheduling approach within the multi-core PMP product PPCx3.
Last but not least it is shown that within a relatively new product XEONx3, our approach provides
performance improvements of 34.30% up to 49.61%, depending on the utilized scheduling algorithm.

CE-MS-2018-28

Automated Multi-core Scheduling for an
Industrial-sized Mechatronic Motion Control

Platform

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

specialized in

COMPUTER ARCHITECTURE

by

D.N.F. Brouwer
born in Rotterdam, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

i

Automated Multi-core Scheduling for an
Industrial-sized Mechatronic Motion Control

Platform
by D.N.F. Brouwer

Abstract

M echatronic embedded control systems are becoming increasingly sophisticated and com-
putationally demanding. These systems typically consists of multiple controllers, which

coordinate the actuators and apply feedback based on data collected by sensors. Often the under-
lying control strategy is entirely described in a software application, which allows for hardware
independence and adds the ability to conveniently change algorithms. In order to increase applica-
tion throughput, a commonly used approach is to divide the application into smaller units called
tasks and execute them in parallel using multi-core hardware. In this thesis an automated multi-
core aware scheduling and assignation approach is designed for an industrial-sized mechatronic
control software platform, more specific the Prodrive Motion Platform (PMP). PMP can be
applied in a wide range of products, e.g. wafer scanners, robots, elevators. A key feature of PMP
is flexibility, which allows it to be utilized in combination with a wide variety of both controllable
hardware (actuators, sensors) as well as computational hardware. As a direct consequence, PMP
supports many different customers and corresponding requirements. Within PMP, a customer
typically defines the application, which is then translated into a set of tasks. This task-set is
then scheduled and assigned onto the available multi-core hardware resources. In order to meet
timing-constraints, the current scheduling approach relies on a time-consuming manual process,
which provides a limited amount of tuning options, and neither considers task workloads, nor
inter-core communication costs. Given these short-comings, this solution proved to be unsuited
for upcoming PMP products. To address the aforementioned issues, we first review state of the
art scheduling solutions and introduce an extensible task measurement framework. Subsequently,
we evaluate various scheduling approaches on current PMP applications and identify two algo-
rithms, namely, Internalization using Load Balancing and DCS , that are able to automatically
find schedules, whilst still meeting application timing-constraints. Besides enabling to schedule
new applications within upcoming PMP products, performance improvements of ∼ 3.3% and
∼ 2.0% were observed by Internalization using Load Balancing and DCS , respectively, compared
to the original scheduling approach within the multi-core PMP product PPCx3. Last but not least
it is shown that within a relatively new product XEONx3, our approach provides performance
improvements of 34.30% up to 49.61%, depending on the utilized scheduling algorithm.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-28
Committee Members :

Advisor: Dr. S.D. Cotofana, CE, TU Delft

Chairperson: Dr. S.D. Cotofana, CE, TU Delft

Member: Dr. T.G.R.M. van Leuken, CE, TU Delft

Member: J.J.A. Kuijsten M.Sc., PMP, Prodrive Technologies

i

ii

Dedicated to my family.

iii

iv

Contents

List of Figures x

List of Tables xi

List of Acronyms and Definitions xiii

Acknowledgements xv

1 Introduction 1
1.1 Problem Statement . 2
1.2 Requirements and Constraints . 4
1.3 Contributions . 4
1.4 Organization . 5

2 The Prodrive Motion Platform 7
2.1 The Master Controller . 8
2.2 Customer Application and Control Loop Components 9
2.3 From Customer Application to Dependency Graph(s) 9
2.4 Execution Cycle . 11
2.5 Consumer Producer Model . 11
2.6 Deadline and Real-time Specification . 12
2.7 Task Assignation . 13
2.8 Task Scheduling . 14
2.9 Conclusion . 16

3 Background and Preliminaries 17
3.1 Scheduling Terminology . 17

3.1.1 Tasks . 17
3.1.2 Directed Acyclic Graph . 18
3.1.3 Scheduling, Assignation, and Clustering 18
3.1.4 DS, CP, ST and PT . 19
3.1.5 Successors and Predecessors . 20
3.1.6 Top- and Bottom-levels . 20
3.1.7 List and Critical Path Scheduling 21

3.2 State of the Art Scheduling Algorithms 21
3.2.1 Communication Unaware Scheduling Algorithms 21
3.2.2 Communication Aware Scheduling Algorithms 23
3.2.3 Clustering Algorithms . 24
3.2.4 Duplication Algorithms . 27
3.2.5 Machine Learning Based Algorithms 28

v

3.2.6 Cache Aware Algorithms . 29
3.2.7 Online Algorithms . 31
3.2.8 Statistical Algorithms . 32

3.3 Conclusion . 32

4 Analysis of the Original Solution 33
4.1 PPCx3 . 33

4.1.1 Mapped . 34
4.1.2 Non-mapped . 34
4.1.3 Prepare Tasks . 35
4.1.4 Timing Variation . 38

4.2 XEONx3 . 39
4.2.1 Non-mapped . 39

4.3 Conclusion . 40

5 Automated Framework 41
5.1 Framework Overview . 41
5.2 Performance Measurement Framework . 42

5.2.1 Measurable Metrics . 43
5.2.2 Measuring Techniques . 46
5.2.3 Combining Methods and Metrics 49
5.2.4 Implemented Designs . 55

5.3 Scheduler Framework . 57
5.3.1 Load Balancing Processor Assignment 58
5.3.2 Dynamic Cluster Splitting . 59
5.3.3 Transitive Reduction . 62
5.3.4 Implemented Designs . 63

5.4 Conclusion . 63

6 Experimental Results 65
6.1 Dynamic Measurements . 65
6.2 Comparing Schedulers . 65
6.3 Highest Level First with Estimated Times 66
6.4 Internalization . 68

6.4.1 Sarkar’s Processor Assignment . 69
6.4.2 Load Balancing Processor Assignment 72

6.5 Insertion Scheduling Heuristic . 74
6.6 Dynamic Cluster Splitting . 78
6.7 Comparison . 79

6.7.1 Transitive Reduction Results . 82
6.8 Scalability Analysis . 82

6.8.1 Varying Graph Size and Edge Probability 82
6.8.2 Constant Edge Probability . 83
6.8.3 DCS Scalability . 85

6.9 Conclusion . 85

vi

7 Conclusions 87
7.1 Future Work . 88

Bibliography 92

Appendices 93

A Experimental Data 95
A.1 PPCx3 execution time table for the mapped scheduler 95
A.2 PPCx3 execution time table for the non-mapped scheduler 97
A.3 XEONx3 Assigned Calculate Directed Acyclic Graph (DAG) 98
A.4 Dynamic Measurements Results . 100
A.5 Dynamic Edge Measurements Results . 102
A.6 Internalization Results . 103

B Pseudo-code 105
B.1 Random Graph Creation Steps . 105

vii

viii

List of Figures

1.1 Controlling and managing a mechatronic control system. 1
1.2 An example task-set. 3

2.1 (simplified) Prodrive Motion Platform (PMP) hardware model. 7
2.2 Hardware and software model for the master controller. 8
2.3 Software representation of the controllable hardware. 9
2.4 Transforming the customer application into a dependency graph. 10
2.5 Splitting the dependency graph into a communication critical and non-

communication-critical part. 10
2.6 Time Criticality Classification of Tasks Within PMP. 10
2.7 Schematic overview of an execution cycle. 11
2.8 Insertion of producers and consumers. 11
2.9 The use of Producers and Consumers to resolve dependencies. 12
2.10 Sub-controller task assignation. 13
2.11 Execution path and execution group. 15
2.12 Execution path and execution Group including producers and consumers. 15

3.1 A Directed Acyclic Graph of a task-set. 18

4.1 Assigned calculate DAG and corresponding timing diagrams for the
mapped scheduler in PPCx3. 36

4.2 Assigned calculate DAG and corresponding timing diagrams for the non-
mapped scheduler in PPCx3. 37

4.3 Normalized histograms showing the distribution of execution times. . . . 38

5.1 From DAG to schedule. 41
5.2 Automated framework design. 42
5.3 Abstract model of the hardware resources. 43
5.4 Intrinsic task weight. 43
5.5 Sharing data between tasks. 44
5.6 Instruction cache re-usage. 45
5.7 Data cache re-usage for internal state data. 45
5.8 Example task DAG. 49
5.9 Portion of the example task graph. 52
5.10 Example task graph containing a “redundant” edge. 54
5.11 Split and merge nodes example. 60

6.1 CLC task execution timing diagrams for PPCx3 using HLFET 67
6.2 PPCx3 execution time comparison using HLFET 68
6.3 XEONx3 results. 68
6.4 Differences in measured average execution times found during dynamic

measurements and extracted after scheduling in the PPCx3 product. . . 70

ix

6.5 Task execution timing diagrams for PPCx3 with Internalization using
Sarkar PA . 71

6.6 PPCx3 execution time comparison with Internalization using Sarkar PA. 72
6.7 XEONx3 results . 72
6.8 Task execution timing diagrams for PPCx3 with Internalization using

Load Balancing PA. 73
6.9 PPCx3 execution time comparison with Internalization using Load Bal-

ancing PA. 74
6.10 XEONx3 results. 74
6.11 CLC task execution timing diagrams for PPCx3 using ISH 76
6.12 PPCx3 execution time comparison using ISH 76
6.13 XEONx3 results. 77
6.14 Task execution timing diagrams for PPCx3 using DCS 78
6.15 PPCx3 execution time comparison using DCS 79
6.16 PPCx3 execution time comparison per phase. 80
6.17 PPCx3 execution time comparison combined. 81
6.18 XEONx3 execution time comparison. 81
6.19 Scalability analysis for increasing edge probabilities and graph sizes. . . 83
6.20 Scalability analysis for increasing graph sizes and constant edge proba-

bility of 0.2. 84
6.21 Combined scalability analysis for increasing graph sizes and constant

edge probability of 0.2. 85

A.1 Assigned calculate DAG for the non-mapped (and mapped) scheduler in
XEONx3 . 99

A.2 PPCx3 Directed Acyclic Graph including node and edge weights found
during dynamic measurements . 100

A.3 XEONx3 Directed Acyclic Graph including node and edge weights found
during dynamic measurements . 101

A.4 Two isolated edge measurement iterations from PPCx3 used as example 102
A.5 Some Internalization iterations extracted from PPCx3 103

x

List of Tables

3.1 An example Chromosome. 28
3.2 Weights for nx given different preceding nodes ny. 30

4.1 PPCx3 and XEONx3 system properties. 34

5.1 Hardware support. 48
5.2 Example schedule. 49
5.3 Example single core schedule. 52
5.4 Example measuring schedule for (t4 → t8). 52
5.5 Example measuring schedule for (t5 → t9). 52
5.6 Example measuring schedule for (t6 → t9). 53
5.7 Example measuring schedule for (t8 → t11). 53
5.8 Example measuring schedule for (t9 → t11). 53
5.9 Example measuring schedule for (t11 → t13). 53

6.1 HLFET relative performance for PPCx3. 66
6.2 HLFET relative performance for XEONx3. 67
6.3 Internalization using Sarkar PA relative performance for PPCx3. 70
6.4 Internalization using Sarkar PA relative performance for XEONx3. . . . 70
6.5 Internalization using Load Balancing PA relative performance for PPCx3. 73
6.6 Internalization using Load Balancing PA relative performance for XEONx3. 73
6.7 ISH relative performance for PPCx3. 75
6.8 ISH relative performance for XEONx3. 75
6.9 DCS relative performance for PPCx3. 79
6.10 Performance Increase in Percentage for PPCx3. 80
6.11 Performance Increase in Percentage for XEONx3. 80

xi

xii

List of Acronyms

Acronyms
API Application Programming Interface.

BCET Best Case Execution Time.
BNP Bounded Number of Processors.

CLC Control Loop Component.
CP Critical Path.

DAG Directed Acyclic Graph.
DS Dominant Sequence.

EFT Earliest Finishing Time.
ESL Extendable Scheduler Library.
EST Earliest Start Time.

MMU Memory Management Unit.

NRTC Non Real-Time Controller.

PA Processor Assignment.
PMP Prodrive Motion Platform.
PT Parallel Time.

RTC Real-Time Controller.

ST Sequential Time.

UNP Unbounded Number of Processors.

WCC Worst Case Cycle.
WCET Worst Case Execution Time.
WSS Working Set Size.

XML Extensible Markup Language.

xiii

xiv

Acknowledgements

I would like to thank my family and friends, who have always supported and encouraged
me throughout my study and master’s research project. In addition, I want to thank all of
my colleagues and new friends at Prodrive, who have helped me finish my research project
and gave me all the freedom in finding a solution for their amazing motion platform.
Special thanks to my supervisor Jasper Kuijsten M.Sc. who devoted his time and effort
to support me whenever I required it. Last but not least, special thanks to Dr. Sorin
Cotofana for enabling me to do my research and supporting me all the way through.

D.N.F. Brouwer
Delft, The Netherlands
December 11, 2018

xv

xvi

Introduction 1
Industrial-sized mechatronic control systems are becoming increasingly sophisticated.
Many of these systems consist of multiple controllable components, which all need to be
managed and monitored for the entire system to function properly. Consider a robot
inside a factory. In order to assemble a product, such a robot requires a certain freedom
of movement. These movements are carried out by a collection of axes, each of them
allowing for an additional degree of freedom. All these axes require both individual and
combined coordination, in order to perform the desired movements.

In order for the robot to move along on of its axes, actuators are required. Example
actuators are: servos, linear motors, and solenoids. These actuators are typically hy-
draulic, pneumatic, or electric powered. Irrespective of the power source, most actuators
are controlled in the electrical domain by means of electric signals. In order to allow for
feedback, there is also a need for sensors. Example sensors are: encoders, strain gauges,
and accelerometers. Sensors come in many forms and applicable domains, though similar
to the actuators, most sensors eventually convert their signals to the electrical domain.
In order to coordinate the actuators and apply feedback using the signals supplied by
the sensors, a controller is required. Besides generating the required electric signals, a
controller typically implements a control algorithm (e.g. a PID controller). Often these
algorithms are described in software, which allows for hardware independence, moreover
adds the ability to conveniently change the applied algorithm.

Computing Hardware
and

Control Software
Actuators and

Sensors
PID

Control Application

Figure 1.1: Controlling and managing a mechatronic control system.

Typically an entire mechatronic system -like the robot example- consists of multiple
controllers and therefore multiple software descriptions of control algorithms. The com-
plete set of software descriptions, required to manage and control a mechatronic device, is
known as an application. Figure 1.1 presents a high-level overview of all the components
required for controlling a mechatronic system. In order for the robot to (safely) assemble
a product, a certain throughput is required for the application. In the motion control
domain, this throughput requirement is often expressed in terms of the desired control
frequency, which relates to the rate at which each control algorithm needs to be executed.

1

2 CHAPTER 1. INTRODUCTION

Due to time criticality, these systems are often classified as being real-time and depending
on the application and safety aspects they reside between soft and hard real-time.

In order to increase application throughput, a commonly used approach is to parallelize
the computations by dividing the application into smaller pieces called tasks, which can
then be executed onto multi-core hardware. This process typically involves: mapping
tasks onto hardware resources (assignation) and determining the proper task execution
order (scheduling), which both have to consider task dependencies and ordering, in
order to preserve the targeted application behaviour. Since manual task assignation
and scheduling is a complex and time consuming process, moreover industrial-sized
mechatronic applications are becoming increasingly sophisticated, mechatronic platform
providers are interested in migrating to automated solutions.

In this line of reasoning we investigate and introduce in this thesis an automated
multi-core aware scheduling and assignation approach for an industrial-sized mechatronic
embedded control platform called the Prodrive Motion Platform (PMP). More specifically
we seek a replacement for the current time-consuming approach, able to at least match
the performance of the current solution, without requiring any human guidance or manual
tweaking.

Multi-core scheduling in general is a well known NP Complete problem [1], with the
exception of a small sub-set of specific (theoretical) configurations [2], [3], [4]. These
exceptional cases rely on specific assumptions, e.g. communication-less tasks, strict bound
on the amount of cores, preemption, variation-less task timings, which unfortunately do
not hold in most practical systems, PMP included.

1.1 Problem Statement

PMP is a generic collection of real-time and non-real-time motion control software,
that can be used in a wide range of mechatronic products, e.g. wafer-scanners, robots,
elevators. A hardware product that implements PMP software, is known as a PMP
product. Besides the necessary software, Prodrive also supplies hardware, which includes
controllable hardware (drives, sensors, and actuators), and computing hardware. Due to
the wide variety in customers and corresponding requirements, both the controllable, as
well as the computing hardware (responsible for application scheduling and execution),
differs per product. To support the wide variety in mechanical and computation hardware,
the PMP software is designed in a generic fashion.

Within the PMP software, the customer’s application is translated into a task-set.
Due to the wide variety of available hardware resources and the possibility for customers
to implement their own control algorithms, there is a wide-variety in task-set structures.
Furthermore, the workload of each task is unpredictable in general.

Up to date, a certain line of actions has been taken to optimize the application
throughput, in order to meet the timing requirements for current PMP products. Multi-
core hardware support has been added and a multi-core aware assignation method has
been implemented in the PMP software. In Figure 1.2 an example task-set corresponding
to a customer’s application, is presented; in which tasks are represented by nodes and
dependencies are represented by edges.

1.1. PROBLEM STATEMENT 3

Figure 1.2: An example task-set.
Nodes within a rectangle represent tasks belonging to the same controller.

As portrayed in Figure 1.2, the amount of dependencies existing between tasks belong-
ing to a specific controller, is generally higher than the amount of dependencies between
controllers. In this context a controller is a collection of sensor, actuator, and control
algorithm tasks, required to perform control operations on some mechatronic sub-system
(e.g. control a single linear stage in a wafer-stepper).

The initial assignation approach (which is currently used as a fall-back method), is
based on a heuristic that tries to evenly spread the assignation of controllers to the
available cores. This approach relies on the reoccurring structures seen in past and
current PMP products (as portrayed in Figure 1.2), thereby trying to reduce the amount
of core-to-core communications. However, since the heuristic ignores the underlying
graph structure and does not take the computational weight of each task into account, it
fails to meet the application throughput requirements for most PMP products. In order
to solve this problem, a second assignation approach was implemented that relies on
manually optimized static configuration files, that specify controller to core mappings.

Using a manually optimized configuration, throughput constraints are met for current
products, however, the process of constructing a configuration is not in line with the
generic design philosophy of the platform. Each new or modified application, requires
manual (re-)tuning in order to meet the customer application throughput requirements.
Given that the manual tuning options are limited and the fact that execution time
measurements are performed on a complete application execution cycle, rather than at
task-level granularity, the manual tuning process is sub-optimal, time-consuming, and
mainly based on a trial-and-error approach. In addition, due to the increase in complexity
of PMP products, it is expected that the manual approach will not be practically feasible
anymore within the near future of the platform.

In order to solve the problems at hand and allow for future developments within the
platform, the following research question will be addressed within this thesis:

Which automated scheduling and assignation approach would be a worthy
replacement for the current time-consuming sub-optimal approach?

4 CHAPTER 1. INTRODUCTION

1.2 Requirements and Constraints

To address the main research question, it should first be defined what determines the
worthiness of a new approach as a replacement for the current approach. In addition to
eliminating the need for human intervention, the automated approach must adhere to
the following performance requirements:

• In terms of application execution time, the proposed scheduling and assignation
approach should:

– Outperform the current approach without applying any manual optimizations
(i.e. using the heuristic).

– Perform at least equally well whilst applying a configuration that has been
manually optimized in a time-consuming process.

• The additional initialization time of the system due to scheduling operations should,
on average, be less than a minute.

1.3 Contributions

In order to answer the research question, several analysis and design steps have been
taken. Since PMP is of substantial size, as a first step within the analysis, we created
an abstract model of the system that only contains the relevant parts with regards to
the scheduling and assignation of a customer’s application. Then the current approach
was analyzed in order to get more insight as to why this approach was chosen, moreover
find out the requirements for an automated alternative. With these requirements in
mind, state of the art multi-core scheduling algorithms were investigated that would be
applicable within PMP.

In order to set a baseline, the performance of typical control applications on two
multi-core based PMP products, namely PPCx3 and XEONx3, were analyzed whilst
using the current scheduling and assignation approach. The resulting performance was
used in combination with the system and state of the art analyses, to come up with a
design strategy.

PMP is a relatively large software platform that is actively maintained and extended
by a team of more than thirty engineers. In order to maintain stability, testing is of
great importance. In the search for an automated scheduling and assignation solution,
we opted for an iterative design strategy, which allowed for intermediate testing. The
design was divided into two main parts: a measuring, and a scheduling framework.
Based on intermediate test results, we decided upon the next iterative design step. In
the end, a measuring framework was implemented, which, using a number of different
measurement strategies, is able to determine the computational weight of each task
and the overhead during core-to-core communication. In addition, a generic scheduling
framework was implemented, which includes a library of scheduling algorithms able to
use the measurements from the measuring framework, in order to perform assignation
and scheduling in an automated way.

1.4. ORGANIZATION 5

In total five different scheduling and assignation implementations have been added to
the library, which includes three algorithms from the state-of-the-art analysis, i.e. HLFET
[5], ISH [6], and Internalization with Sarkar ’s Processor Assignment [7]. Since neither
of the algorithms could satisfy all performance requirements, a Load Balancing based
PA extension for the Internalization algorithm is presented, which in a typical control
application on the PowerPC (3x e500) based wafer-stepper product PPCx3, outperforms
the original scheduling approach whilst using a manually optimized schedule by ∼ 3.3%.
Without performing the manual optimization step, thus falling back to the heuristic, a
performance increase of ∼ 5.2% was observed.

Besides the Load Balancing PA extension, a clustering based, iterative scheduling
approach named DCS is proposed, which unlike the algorithms from the state-of-the-art,
takes into account independent sub-graph structures (which are common within PPCx3),
moreover uses the measuring framework to improve upon execution time estimations.
In PPCx3, the DCS algorithm is able to perform ∼ 2.0% better using the manually
optimized variant and ∼ 3.8% better than the heuristic.

Last but not least it is shown that for a typical control application within the relatively
new, Xeon based (3x D-1500) wafer-inspection machine XEONx3, in which the manual
optimization process is not possible (yet) and the fall-back heuristic is used as the
default scheduler, a performance improvement of 34.30% up to 49.61% can be observed,
depending on the scheduler that is chosen from the library.

1.4 Organization

In Chapter 2 a general overview of the Prodrive Motion Platform is presented, which
includes a description of the current assignation and scheduling solution, whilst also pre-
senting its shortcomings and advantages. Chapter 3 includes a presentation of all relevant
concepts concerning (multi-core) scheduling and assignation. In addition, an overview of
state-of-the-art scheduling and assignation literature is presented. Chapter 4 provides
an in-depth performance analysis of the scheduling and assignation solution, for current
multi-core PMP products. Chapter 5 includes the design of an automated scheduling
and assignation solution. In Chapter 6 all relevant steps regarding the implementation
are presented, including all intermediate results; the chapter ends with a comparison and
scalability analysis. Last but not least, in Chapter 7 the conclusions are formed, followed
by a discussion which includes a future work presentation.

6 CHAPTER 1. INTRODUCTION

The Prodrive Motion Platform 2
In this chapter, a general overview of the Prodrive Motion Platform (PMP) is presented.
PMP is a generic collection of real-time and non-real-time motion control software,
that can be used in a wide range of mechatronic products, e.g. wafer-scanners, robots,
elevators. Typically a customer requires hardware and software for their mechatronic
product (e.g. a robotic arm). Such a product may consist of multiple servos (actuators)
and encoders (sensors). Besides the PMP software, Prodrive produces and provides all
necessary hardware, ranging from sensors and actuators, to power electronics, industrial
cabinets and high-end computing platforms. In addition to the hardware, a customer
requires an Application Programming Interface (API) in order to interface with the
hardware, and deploy their own application.

Whereas PMP refers to the complete collection of generic motion software, a PMP
product is defined as an entire system consisting of all necessary actuators, sensors,
cabinets, power electronics and computing hardware, in combination with all the required
software for the product to function.

Since not all hardware and software components within PMP are relevant with regards
to the scheduling and assignation problem, a simplified model representing a PMP
product, is presented. Figure 2.1 depicts an abstract model for the hardware within a
PMP product. Within this model a PMP product consists of: a master controller, drives,
sensors and actuators.

PMP drives are used as an interface for all the sensors and actuators within the
system. These drives consists of power electronics and may contain computing hardware
(FPGAs, DSPs, etc.), used for pre-processing and post-processing, sensor and actuator
values. The amount and type of drives, actuators, and sensors; is product specific. Figure
2.1 depicts an example robotic arm, consisting of multiple sensors and actors, which are
connected via the drives, to the master controller.

as
s

aa
s

as

as
s

Drive

Master
Controller

Drive

Drive

Drive

Figure 2.1: (simplified) PMP hardware model.

7

8 CHAPTER 2. THE PRODRIVE MOTION PLATFORM

2.1 The Master Controller

The master controller is the centerpiece of the motion platform. A master controller
consist of (multi-core) computing hardware in combination with PMP software. Among
other things, the master controller is used to process the customer application. Due to the
wide variety in customer requirements, the computing hardware varies per product, i.e.
the architecture and amount of available cores, is product specific. In order to support
this wide variety in hardware, the software executing on the master controller, is designed
in a generic fashion.

API

Hardware
Software

Non-real-time Real-time
Customer

Application

PID

P

Master Controller

Drive

Drive

Drive

Scheduler

Schedule

C
or

e
1

C
or

e
2

C
or

e
N

C0 C1 C2 CN

Figure 2.2: Hardware and software model for the master controller.
The red arrow shows the flow for scheduling a customer’s application onto the real-time

hardware resources.

In Figure 2.2 an abstract model is presented for the master controller, which includes
both the software and hardware. Within the master controller, one of the available cores
is reserved for all non-real-time computations which includes, scheduling, preparation
of the real-time system, and providing an interface with the customer. As presented
in Figure 2.2, a customer is able to upload their application description to the master
controller through the API. After uploading, a customer is able to request for real-time
execution of the supplied application, whereafter a schedule and assignation process
is initiated on the non-real-time part of the master controller. In this process, the
application description of the customer is transformed into a task-graph consisting of
tasks and dependencies, after which each task is assigned to one of the real-time cores.
In addition, a task execution order (schedule) is created. When both the assignation and
scheduling processes have finished, the real-time portion of the master controller starts
executing accordingly. During execution, a customer is unable to alter their application
description. If changes are required, a customer is able to halt execution of the current
application, after which the customer can run through the same process again, to upload
their updated application.

The software running on the non-real time core is referred to as the Non Real-Time
Controller (NRTC), in which -as the name implies- all non-real-time related computations
are performed. The remaining cores are used for all the real-time operations. The software
running on these cores is referred to as the Real-Time Controller (RTC).

2.2. CUSTOMER APPLICATION AND CONTROL LOOP COMPONENTS 9

2.2 Customer Application and Control Loop Components

As indicated previously, a customer creates their own application description. Within
the NRTC a software model of all controllable hardware (drives, sensors, and actuators)
is available and can be requested through the API. Figure 2.3 presents the software
model for the controllable hardware. Within this model, the software representation
of a hardware drive is called a sub-controller. As mentioned earlier, a drive provides
an interface to actuators and sensors within the system. The sub-controller software
model is mainly used to identify a drive, moreover acts as a container for the software
representations of the connected actuators and sensors, which are known as Control Loop
Components (CLCs). A customer is able to add control algorithms (e.g. a PID controller
implementation) to a specific sub-controller. Prodrive provides the customer a library
of generic algorithms, however, a customer may also create their own implementations.
These algorithms are also represented as CLCs. All CLCs have something in common,
that is, each CLC has either inputs, outputs, or both. After all CLCs are specified, a
customer is able to connect the inputs and outputs of each CLC within a sub-controller,
moreover across sub-controllers. Typically the amount of connections between CLCs in
a sub-controller is greater than the amount of connections between CLCs across sub-
controllers.

as
s

aa
s

as

as
s

Drive

Drive

Drive

Drive

Hardware Software Representation in the NRTC

sub-controller
CLC
CA

CLC
a

CLC
a

CLC
s

sub-controller
CLC
CA

CLC
a

CLC
s

CLC
s

sub-controller
CLC
CA

CLC
s

CLC
a

CLC
CA

sub-controller
CLC
a

CLC
s

CLC
s

Figure 2.3: Software representation of the controllable hardware.
The CA abbreviation stands for a software implementation of a Control Algorithm.

2.3 From Customer Application to Dependency Graph(s)

Within the NRTC, the customer application, which includes all CLCs and their connec-
tions, is transformed into a task-set consisting of elementary computations and operations.
In order to preserve application behaviour as intended by the customer, the task within
this set should be executed in a specific order. To represent dependencies between tasks,
a dependency graph for the task-set is created, consisting of nodes (tasks) and edges
(dependencies) as presented in Figure 2.4.

10 CHAPTER 2. THE PRODRIVE MOTION PLATFORM

S PID A

S

+

S P A+

Transformation

S

(Classified) Customer Application Dependency Graph

Figure 2.4: Transforming the customer application into a dependency graph.

After transforming the customer’s application into a dependency graph, the graph is
split into a communication critical and non-communication-critical part as depicted in
Figure 2.5.

Classification

Dependency Graph

Non-communication-critical graph

Communication-critical graph

Figure 2.5: Splitting the dependency graph into a communication critical and non-
communication-critical part.

The communication-critical task-set consists of tasks that directly act on data retrieved
from the hardware drives (e.g. sensor data), after which the processed data is send to
the hardware drives (e.g. actuator data) within the same execution cycle. The non-
communication-critical task-set consists of tasks that, either act on data received from
the drives which is not send to the drives within the same cycle, the other way around, or
when neither the data received; nor send to the drives is altered. All possible classifications
are presented in Figure 2.6.

TasksPeriodic Data
from Drives

Periodic Data
to Drives

Tasks Marked as Time-critical

Tasks

Tasks Marked as Non-time-critical

Tasks Periodic Data
to Drives

TasksPeriodic Data
from Drives

OR

OR

Figure 2.6: Time Criticality Classification of Tasks Within PMP.

2.4. EXECUTION CYCLE 11

2.4 Execution Cycle

The application specified by the customer, is meant to be executed in a periodic fashion.
The application description also includes a throughput requirement expressed in terms
of the required control frequency, which translates in the maximum period of time every
execution cycle of the entire application should be finished.

Customer Application TasksCore 0 (master)

Core 1 (helper)

Core 2 (helper)

Core N (helper)

Calculate Phase Prepare Phase

Customer Application Tasks

Customer Application Tasks

Customer Application Tasks

Customer Application Tasks

Customer Application Tasks

Customer Application Tasks

Customer Application Tasks

Figure 2.7: Schematic overview of an execution cycle.

Figure 2.7 depicts a schematic example of an application execution cycle within a
PMP system. Each execution cycle is divided into two phases, namely, calculate and
prepare. Within the calculate phase all communication-critical tasks are handled, in the
prepare phase all non-communication-critical tasks are handled. Within Figure 2.7, the
green bars relate to the customer’s application, whereas the blue bars relate to PMP
itself. The schedule and assignation of these PMP intrinsic tasks may not be altered and
are therefore left out of scope. The red coloured bars represents necessary (multi-core)
synchronization points on task-set level, i.e. the communication to the drives can only
be initiated when all tasks within the calculate task-set have been executed. In order to
resolve dependencies within the task-sets themselves, a more fine grained producer and
consumer model is used.

2.5 Consumer Producer Model

PMP includes a consumer and producer model to resolve core-to-core dependencies within
a task-graph. Consumer and producers are represented by tasks themselves, and inserted
into the task-graph when required (see Figure 2.8).

0

2

3

8

7

6
10

11

4

0

2

3

8

7

6
10

11

4
P

C

Figure 2.8: Insertion of producers and consumers.

12 CHAPTER 2. THE PRODRIVE MOTION PLATFORM

Figure 2.9 depicts an example where dependencies are resolved using producers and
consumers, during execution of the task-graph in Figure 2.8. Within the example, green
tasks are assigned to Core 0 and yellow tasks to Core 1.

Task 4 on Core 1 depends on Task 0 mapped to Core 0, because they share a
portion of data; therefore a producer task is added after Task 0, and a consumer task is
added before Task 4. The consumer is only allowed to continue when there is a token to
consume, which is produced by the producer task after Task 0. In this way, Task 0 is
always executed before Task 4, resolving the dependency.

0 2

4

Prod.

Consumer 7

time

Shared Interface:

Core 0:

Core 1:

Figure 2.9: The use of Producers and Consumers to resolve dependencies.

The main advantage of the producer and consumer method is its simplicity, i.e. a
consumer or producer is just another task. The downside however, is the fact that two
additional tasks need to be inserted, which causes execution overhead. In addition, the
producer and consumer model requires core-to-core communication, which is costly.

2.6 Deadline and Real-time Specification

Within the complete task-set there exists only one explicitly defined deadline, that is,
the desired cycle period of the customer’s application. Within this time period, all tasks
corresponding to the customer’s application, should be executed. All tasks within the
complete task-set share this deadline, e.g. there is no explicit deadline specification at
task-level.

PMP optimizes for average case execution efficiency and can be categorized as firm
real-time. Missing a deadline is not catastrophic, though, frequent -and subsequent
misses in particular- can not be tolerated due to customer guarantees and possible system
damage. In order to meet the throughput demands, it is necessary to exploit parallelism
in the task-sets by means of scheduling and assigning the tasks to the available multi-core
hardware resources, without violating any of the dependencies.

2.7. TASK ASSIGNATION 13

2.7 Task Assignation

Task assignation is the process of mapping tasks to hardware resources. Within PMP,
this assignation is based on a manual optimization process at sub-controller level. As
mentioned before, a sub-controller is the software representation of a hardware drive
in the NRTC, which includes sensors and actuators. Within a customer application,
sensors and actuators can be arbitrarily connected, moreover, control algorithms can be
inserted. All tasks corresponding to sensors, actuators, and control algorithms, belonging
to a specific sub-controller, can be assigned to a certain core in the system. Because
a customer is also able to connect actuators and sensors across drives, the task-sets
belonging to each sub-controller, can also be connected to each other. Figure 2.10 depicts
an example assignation of two task-sets (including dependencies) corresponding to two
different sub-controllers.

Sub-controller X

Sub-controller Y

C0 C1

C2 C3

Multi-core resources

Figure 2.10: Sub-controller task assignation.

The main idea behind this manual process is that, within a PMP application, the task-
set belonging to a sub-controller has a high dependency density when compared to the
complete task-set, thus providing interesting candidates for (manual) task parallelization.
The assignation is described in a product specific XML configuration file. When the
configuration is omitted a heuristic takes over, which tries to equally divide all sub-
controllers among the available hardware resources, in a round-robin fashion.

In order to distinguish the two methods, the manually optimized variant
will be referred to as mapped whereas the heuristic will be referred to as
non-mapped.

In order to manually optimize the assignation, a customer typically reveals parts of
the application, which includes the connections between CLCs. Using this information,
Prodrive engineers try to divide the tasks (on sub-controller level) as equal as possible
through trial and error procedures, using the resulting cycle execution time as a
guide. Besides the fact that this process is time-consuming, it may also result in poor
assignation if (parts of) the customer’s application is unavailable, or the application
is obfuscated too much, in which it does not resemble the “real” application anymore.
Moreover, a customer is allowed to change the entire application, which, if failing to
meet the throughput requirements, requires another trial-and-error iteration at Prodrive,
which is undesired. In addition to these problems, the manual assignation approach
provides limited tuning possibilities, e.g. even though the tasks within current products

14 CHAPTER 2. THE PRODRIVE MOTION PLATFORM

can be assigned reasonably well at sub-controller level, new products might not be evenly
assignable at sub-controller level. Given that the execution time is not measured at
task-level, in combination with that fact that a customer is able to implement her/his
own control algorithms, the performance as perceived by the customer, may be far from
optimal.

2.8 Task Scheduling

After the assignation process, a schedule is determined for each core. In the current imple-
mentation, a schedule is created on the NRTC solely based on the existing dependencies,
and executed on the RTC during run-time.

Depending on the sub-controller-to-core assignation, each set of connected nodes that
is assigned onto a single core, is called an execution path. All execution paths that are
connected together form an execution group. Figure 2.11 presents an example of an
execution path and an execution group. Nodes with the same colour, represent nodes
assigned to the same core. Since depended execution paths in a group can be assigned
onto different cores, producer and consumer nodes are inserted into the graph (see Figure
2.12).

For each execution group, the end-nodes of each execution path in the group, are
sorted; in which an end-node represents a node without having a successor assigned to the
same core, i.e. without having a successor within the same execution path. For the green
coloured execution path in Figure 2.12, the end-nodes are 12 and 10. After identifying
all end-nodes, the following scheme is used to schedule the nodes in each execution path:

• All end-nodes representing a producer node are scheduled first.

• Then end-nodes consisting of neither a producer or consumer.

• And last the end-nodes representing a consumer.

2.8. TASK SCHEDULING 15

0

2

3

5

1

8

7

6

10

11

4

9

Execution GroupExecution Path

Figure 2.11: Execution path and execution group.
Nodes having the same colour, represents nodes assigned to the same hardware resource.

0

2

3

5

1
8

7

6
10

11

4

9

Execution GroupExecution Path

12

13

14

15

Producer

Consumer

Figure 2.12: Execution path and execution Group including producers and consumers.
Nodes having the same colour, represents nodes assigned to the same hardware resource.

Using this scheme, only dependency information is used to determine a schedule on the
NRTC, metrics like computational load are not being accounted for.

After the schedule and assignation are determined for each task, this information is
communicated once to the RTC, where the schedule is followed every cycle using a simple
online scheduler. The advantage of having a simplistic online scheduler on the RTC, is
the minimal processing and memory overhead; the downside however is the inability to
change the execution order during run-time.

16 CHAPTER 2. THE PRODRIVE MOTION PLATFORM

2.9 Conclusion

In this chapter the original scheduling and assignation procedure was discussed. It was
shown that assignation was carried out at sub-controller level, in which a sub-controller
represents the software model of a connected hardware drive. Furthermore it was shown
that the assignation process is optimized by hand and is therefore time-consuming. With-
out specifying a manually optimized configuration, it was shown that a round-robin
heuristic is followed. Neither of the two methods take into account core-to-core commu-
nication costs or the computational intensity of each task. Our analysis clearly indicates
that the manual approach will fail to provide a practical and sustainable solution for
future PMP products, which are becoming increasingly sophisticated.

In the next chapter, the necessary terminology regarding (multi-core) scheduling is
discussed, whereafter an overview of state-of-the-art multi-core scheduling solutions, is
presented.

Background and Preliminaries 3
Multi-core scheduling and assignation algorithms have been a topic of research for many
years, moreover for many years to come. The increase in performance of single-core
architectures in their current form have reached both physical and practical limits. The
past twenty years, multi-core architectures have gained a dominant position in the use
of computing systems due to their advantages in both speed and power usage. As a
consequence, single-core processors for general-purpose computers are not even produced
anymore. This trend is also observable in the design of Embedded Systems. More
and more embedded solutions are designed using multi-core platforms. Designing of
(embedded) systems that can utilize a multi-core platform in an efficient way is a complex
problem, especially given real-time deadlines, execution dependencies, unpredictable
hardware, etc.

In this chapter, relevant concepts concerning (multi-core) scheduling, including nec-
essary terminology, are introduced. In addition, state of the art scheduling algorithms
are presented.

3.1 Scheduling Terminology

As mentioned in Chapter 1, mapping tasks onto hardware resources is called assignation,
moreover determining the execution order is known as scheduling. In this section, all
concepts concerning multi-core scheduling and assignation will be discussed. Furthermore
an overview is given of the terminology and conventions that will be used throughout
this thesis.

3.1.1 Tasks

Tasks are the units of computation that requires processing in order for the system to
operate correctly. A task is often described having a (possibly varying) computational
load (also called task length, or task weight). Tasks are often periodic, meaning the
task is to be processed on a regular interval. These tasks often have deadline and
period specifications. On the contrary a task can also be sporadic, meaning the task
requires processing on irregular intervals. Such tasks often have deadline and start-time
specifications. Tasks can also have additional properties such as a priority. If a task can
be interrupted during execution by another task, it is said to be preemptive. If a task
cannot be interrupted, it is called non-preemptive. A collection of tasks in a system is
called a task-set. Because dependencies may exist between tasks (e.g. because of data
exchange), a task-set is often modeled as a graph in which the nodes represent tasks, and
edges dependencies.

17

18 CHAPTER 3. BACKGROUND AND PRELIMINARIES

3.1.2 Directed Acyclic Graph

Figure 3.1 shows an example task-set modeled as a graph. Since the graph in Figure 3.1
does not contain any cycles, moreover all edges are unidirectional, it is better known as
a Directed Acyclic Graph (DAG).

0

1

2
6

3

4

5

Figure 3.1: A Directed Acyclic Graph of a task-set.

In this thesis a DAG will be defined as a tuple G = (N,E,WE ,WN) where:

• N is the set of all Nodes which represent tasks, where nx ∈ N represents a Node
with index x.

• E is the set of all Edges which represent dependencies, where E ⊆ N×N , in which
ex = (nu, nv) ∈ E represents an Edge with index x.

• WE : E → R≥0 is the edge weight mapping.

• WN : N → R≥0 is the node weight mapping.

The DAG defined above models processor-to-processor communication using edge
weights, which represent communication cost between two nodes, given they are executed
on different processors.

3.1.3 Scheduling, Assignation, and Clustering

A schedule specifies the order and resource assignment of each task from the task-set.
The process of assigning a hardware resource (e.g. a processor core) to a task is known
as Assignation. Determining the execution order of all tasks is known as scheduling.
Throughout this thesis, a scheduler is defined as an algorithm that performs both assig-
nation and scheduling operations.

Depending on the hardware platform and requirements, different assignation and
scheduling policies can be used. Assignation and scheduling of a task-set can be performed
during different stages of system operation, depending on the desired behaviour. In the
remainder of this thesis, the following operating stages will be used:

3.1. SCHEDULING TERMINOLOGY 19

Compile-time (offline) Schedules that are determined during compilation of the code
are called compile-time schedules.

Configuration-time (offline) Schedules that are determined after booting the system,
before entering the run-time phase, are called configuration-time schedules. The
advantage compared to compile-time is that configurations can be altered without
having to recompile the code.

Run-time (online) As the name implies, run-time schedules are determined at run-
time. The main advantage of a run-time scheduler is the ability to cope with
execution time variations.

If a schedule is fixed during run-time it is called static. Moreover if a schedule can change
during run-time it is called dynamic.

The set of available processors for scheduling is indicated using P , with px ∈ P a
single processor with x as identification number. Grouping nodes that are assigned to the
same core is known as clustering and the groups are called clusters. A cluster can either
be non-linear, when two (or more) independent nodes are mapped onto the same cluster,
or linear. Equation (3.1) shows the notation convention for all clusters at iteration i.
Given a graph g which includes a set of nodes N = {n0, n1, n2, n3, n4, n5} and given a
set of processors P = {p0, p1, p2} then the clusters for this graph Ci(P) at some iteration
i could for example look like: Ci(P) = {{n0, n3}, {n2}, {n5, n4}}, where ordering in each
cluster, indicates execution order on the corresponding processor. Equation (3.2) is used
to get the processor px for a clustered node nx.

Ci : P → ℘(N) (3.1)

CIDi : N → P (3.2)

As mentioned before, an ordered sequence of nodes is referred to as a schedule. In
multi-processor scheduling, a schedule Si(Ci(px)) is constructed for each cluster Ci(px).
A schedule Si(Ci(px)) contains the starting times tstart(nx) for each node nx within
a cluster Ci(px) on processor px at iteration i. Given a schedule s = Si(Ci(px)), the
schedule length LENi(s) at iteration i is defined as the node with the latest starting
time including node weight on processor px, which is found in Equation (3.3).

LENi(s) = max({tstart(nx) +WN (nx) : nx ∈ s}) (3.3)

3.1.4 DS, CP, ST and PT

DS The longest path in a scheduled DAG is better known as the Dominant Sequence
(DS).

CP A longest path in the clustered (not yet scheduled) DAG is referred to as a Critical
Path (CP).

ST The Sequential Time (ST) of a DAG equals the sum of all task weights without
including the edge weights, which depicts single processor execution.

20 CHAPTER 3. BACKGROUND AND PRELIMINARIES

PT The Parallel Time (PT) of a DAG is determined by the Dominant Sequence which
depicts the total execution weight given the required multi-processor resources.

3.1.5 Successors and Predecessors

For every node in the graph, successors and predecessors are defined by Equation (3.4)
and (3.5) respectively. The successors of a node nx, defined by SUCC(nx), consists of a
unique set of nodes, for which all nodes in this set, there exist an edge that originates from
nx. Likewise the predecessors of a node nx, defined by PRED(nx), consists of a unique
set of nodes, for which all nodes in this set, there exist an edge with destination nx. The
origin and destination of an edge ex is indicated with src(ex) and dst(ex) respectively.

SUCC(nx) = {N ′ : N ′ ⊆ N : ∀ny[ny ∈ N ′ : ∃ex[ex ∈ E : src(ex) = nx]]} (3.4)

PRED(nx) = {N ′ : N ′ ⊆ N : ∀ny[ny ∈ N ′ : ∃ex[ex ∈ E : dst(ex) = nx]]} (3.5)

The Ready List, Readyi, is defined as the list of all nodes that can be scheduled at
some iteration (or time-step) i. A node nx resides in the Ready List, Readyi, if it is not
already scheduled and all of its predecessors PRED(nx) have been scheduled.

3.1.6 Top- and Bottom-levels

Given a Directed Acyclic Graph g, then the top-level tl(nx) of a node nx in the graph
is defined as the length of the longest path from an entry node to nx without the node
cost of nx (see Equation (3.6)). The bottom-level bl(nx) is the inverse and depicts the
length of the longest path from nx to an exit node including the node weight WN (nx)
(see Equation (3.7)). The bottom-level of a bottom-node (i.e. a node without successors)
equals its weight and the top-level of a top-node (i.e. a node without predecessors) equals
zero. If node and edge weights are static parameters, the bottom- and top-levels for
each node do not change in between scheduling steps. In most literature, bottom- and
top-levels that do not change are identified as static. The top- and bottom-nodes of a
graph g are described using Equation 3.8 and 3.9. Using the bottom-levels of every node,
the Critical Path length in the graph can be calculated using Equation (3.10), which
seeks the highest occurring bottom-level for all nodes in the graph.

tl(nx) =
{

0 if nx ∈ T (g)
max{tl(ny) +WN (ny) +WE(ny, nx);ny ∈ PRED(nx)} otherwise

(3.6)

bl(nx) =
{
WN (nx) if nx ∈ B(g)
max{bl(ny) +WN (nx) +WE(nx, ny);ny ∈ SUCC(nx)} otherwise

(3.7)

T (g) = {nx ∈ N : PRED(nx) = ∅} (3.8)

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 21

B(g) = {nx ∈ N : SUCC(nx) = ∅} (3.9)

CP (g) = max{bl(nx) : nx ∈ N} (3.10)

3.1.7 List and Critical Path Scheduling

List scheduling is one of the most commonly used scheduling approaches for Directed
Acyclic Graphs. In a list scheduling algorithm, nodes are assigned priorities based on
some metric, and then ordered priority wise. During the creation of a schedule, the
highest priority unscheduled node is examined and scheduled if possible, after which the
next (lower priority) node is examined. The bottom levels for each node is an often used
metric within list scheduling. This method is based on the intuitive assumption that
nodes with higher bottom-levels, should in general be executed first. This method is
known as Critical Path scheduling.

3.2 State of the Art Scheduling Algorithms

In this section several multi-core aware scheduling algorithms are presented, which could
potentially be utilized in order to solve the problem stated in Section 1.1.

3.2.1 Communication Unaware Scheduling Algorithms

First some (early) multi-processor (list) scheduling algorithms are investigated which do
not take into account any communication cost. Even though communication costs are
not taken into account, the multi-processor scheduling problem remains NP-Complete,
thus some kind of heuristic is needed in order to generate (sub-optimal) schedules in
polynomial time. Scheduling without taking into account communications can be helpful
when communication timings are not (explicitly) known or known to be of unit size.

3.2.1.1 The Intuitive Approach

The most intuitive and simplistic approach is to calculate all static bottom-levels for
every node in the graph using Equation (3.7), without considering edge weights WE .
Then, given a Bounded Number of Processors (BNP), schedule all nodes in order of
decreasing bottom-levels, in round-robin style, to the first idle processor in the set of
available processors. The intuitive approach is described using the following steps:

S1 Calculate the (static) bottom-levels for every node using Equation (3.7), omitting
the edge weights WE .

S2 Schedule an unscheduled node with the highest bottom-level to the first processor
that is idle, if a tie occurs, solve it at random.

S3 Repeat step S2 as long as there are unscheduled nodes left, otherwise terminate.

22 CHAPTER 3. BACKGROUND AND PRELIMINARIES

The intuitive approach has a time complexity of O(N). In the first step the bottom-
levels are calculated which takes N steps, afterwards all nodes are scheduled one after
the other, which also takes N steps. Bear in mind that this is a rather coarse indication
of the total complexity since the ordering of bottom-levels (which is a general sorting
problem) already has a worst-case time complexity of at least O(N logN), depending on
the algorithm that is used.

3.2.1.2 Highest Level First with Estimated Times

The Highest Level First with Estimated Times (HLFET)[5] uses the Earliest Start Time
(EST) metric to produce a schedule. HLFET assumes a bounded number of processors
(BNP). The algorithm can be described by the following steps:

S1 Calculate the (static) bottom-levels for every node using Equation (3.7).

S2 Schedule an unscheduled node with the highest bottom-level to the processor
that allows the Earliest Start Time(EST) using Equation (3.11).

S3 Repeat step S2 as long as there are unscheduled nodes left, otherwise terminate.

Every iteration, the HLFET algorithm performs an assignation and scheduling op-
eration at the same time, because the order of assigning a node nx to a processor px,
determines the final execution order on this particular processor. The clustering notation
from 3.1 can be used to represent the schedules for every processor px ∈ P at iteration i.

The Earliest Start Time(EST) for a node nx scheduled to a processor px in iteration
i (which is used in step S2), is calculated using Equation (3.11), which basically says
that the Earliest Start Time is, either the maximum over all ESTs for predecessor nodes
PRED(nx) including the node weightWN (ny) of the predecessors, or the current schedule
length LEN(S(Ci(px)) on processor px. The EST can be seen as a top-level calculation
that takes into account the already scheduled nodes. Equation (3.12) shows the EST
equation, if a node is to be scheduled to a particular processor. This equation is used in
Equation (3.11), to find the processor allowing the lowest EST.

ESTi(nx) = MIN({ESTi(nx, px) : px ∈ P}) (3.11)

ESTi(nx, px) = max(maxpred, LEN(S(Ci(px))))
where :

maxpred =
{
max({ESTi(ny) +WN (ny) : ny ∈ PRED(nx)}) ifPRED(nx) 6= ∅
tl(nx) otherwise

(3.12)
The worst-case time complexity of HLFET is O(N2).

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 23

3.2.2 Communication Aware Scheduling Algorithms

Often task dependencies occur between tasks that exchange data. When two tasks share
data and are scheduled to the same processor, this data is (immediately) available due to
local data caches. However, when two tasks that share data, are scheduled onto different
processors, this data has to be transfered in some way to the other processor before
the other processor can start executing. This communication is often carried out via a
relatively slow shared interface, therefore introducing communication overhead.

The following section gives an overview of multi-processor scheduling algorithms that
take into account this communication overhead, by representing these overheads with
edge weights WE . The basic principal that is used in communication aware scheduling
algorithms, is that, edge weights are zeroed out when two tasks are scheduled onto the
same processor.

3.2.2.1 The Intuitive Approach

Much like the approach described in Section 3.2.1.1, the intuitive approach is to sort all
nodes using the bottom-levels and schedule each node to the first idle processor that is
available. However the definition of a bottom-level in Equation (3.7) does not consider
any edge-zeroing when two tasks are scheduled onto the same processor, so performance
ought to be poor.

3.2.2.2 Insertion Scheduling Heuristic

The Insertion Scheduling Heuristic [6] by Kruatrachue is a list-scheduling algorithm that
uses an insertion approach. This means that in every iteration the algorithm tries to fill
the idle time slots (if there exist any) in the schedule. The ISH algorithm uses Equation
(3.7) to calculate the static bottom-levels (omitting the edge weights WE). The algorithm
schedules each node in order of decreasing bottom-levels to the processor that allows the
EST. In order to take into account communication costs, Equation (3.11) is adapted
with edge weights, which forms Equation (3.13). Furthermore the EST equation for a
node nx, that is to be scheduled onto a processor px, is redefined using Equation (3.14).
The algorithm consists of the following steps:

S1 Calculate the (static) bottom-levels for every node using Equation (3.7), omitting
the edge weights WE .

S2 Construct a Ready List, Readyi, by adding all top nodes T (g) in the graph g.

S3 Sort all nodes in the Ready List, Readyi, in decreasing order of the bottom-levels
calculated in S1, if a tie occurs, solve it at random.

S4 Schedule the first node in Readyi to the processor that allows the Earliest Start
Time using Equation (3.13).

S5 If a gap / idle period is introduced on the processor px to which the node in S4
is scheduled, traverse the Ready List, Readyi, and schedule as many nodes as

24 CHAPTER 3. BACKGROUND AND PRELIMINARIES

possible within the idle time slot that cannot be scheduled earlier on any other
processor.

S6 Update the Ready List, Readyi, for the next iteration i = i+ 1. Goto S3.

ESTi(nx) = MIN({ESTi(nx, px) : px ∈ P}) (3.13)

ESTi(nx, px) = max(maxpred, LEN(S(Ci(px))))
where :

maxpred =

max({ESTi(ny) +WN (ny) : ny ∈ PRED(nx)}) if PRED(nx) 6= ∅
and ny ∈ Ci(px)

max({ESTi(ny) +WN (ny) +WE(e(ny, nx)) : ny ∈ PRED(nx)}) if PRED(nx) 6= ∅
and ny /∈ Ci(px)

tl(nx) otherwise
(3.14)

The ISH algorithm has a time complexity of O(N2).

3.2.3 Clustering Algorithms

Algorithms that try to group nodes in so called clusters, are know as clustering algorithms.
At the beginning, every node is assigned a unique cluster. Then iteratively, clusters are
merged based on some metric or function that is optimized for. During each merge, nodes
in the clusters may require reordering depending on the clustering method. Most of these
algorithms assume unlimited resources and are categorized as Unbounded Number of
Processors (UNP) algorithms. Because of this, each clustering algorithm requires an
additional step where clusters are mapped to the available processors. Section 3.2.3.4
provides an overview of algorithms that can be used to assign a clustered graph to a
BNP (Bounded Number of Processors).

Clustering algorithms use a slightly extended version of the bottom and top-levels
defined earlier. When two nodes nx and ny reside in the same cluster (C(nx) = C(ny)),
the weight of the edge between these nodes is set to zero, because of this, the bottom-
and top-level values are now “dynamic” since they may change due to clustering. The
corresponding equations can be found in Equation (3.15) and (3.16).

bl(nx) =

WN (nx) if nx ∈ B(g)
max{bl(ny) +WN (nx) +WE(nx, ny);ny ∈ SUCC(nx)} if CID(nx) 6= CID(ny)

and nx /∈ B(g)
max{bl(ny) +WN (nx);ny ∈ SUCC(nx)} otherwise

(3.15)

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 25

tl(nx) =

0 if nx ∈ T (g)
max{tl(ny) +WN (nx) +WE(ny, nx);ny ∈ PRED(nx)} if CID(nx) 6= CID(ny)

and nx /∈ T (g)
max{tl(ny) +WN (nx);ny ∈ PRED(nx)} otherwise

(3.16)

3.2.3.1 Internalization

Sarkar’s Internalization algorithm[7] merges clusters based on the edge weights in the
graph. Each iteration the edge with the largest weight is considered and the attached
clusters are merged if the Parallel Time (PT) does not increase. After clustering, the
nodes residing in the newly formed cluster(s) are order based on the bottom levels before
clustering. If necessary, additional zero-weighted edges are added to resemble node
ordering in the clusters, such that new bottom and top-levels can be calculated. The
(simplified) clustering algorithm is described by the following steps:

S1 Sort all edges in descending order of edge weights.

S2 Calculate bottom and top-levels for each node.

S3 Examine the unexamined edge with the highest edge weight, terminate when
there is none.

S4 Merge clusters connected by the edge and order nodes by bottom-levels (adding
virtual edges if necessary).

S5 Calculate new bottom and top-levels including PT (which change due to the
added virtual edges and clustering) .

S6 If PT not increased, goto step S3.
Else, un-merge clusters and restore PT, bottom and top-levels, goto step S3.

The time complexity of Internalization as described in [7], is O(E(E + V)).

3.2.3.2 Linear Clustering

The Linear Clustering (LC) algorithm from Kim and Browne [8] tries to decrease the
Parallel Time by grouping all nodes belonging to a longest path, into a single cluster.
The algorithm is described by the following steps:

S1 Construct an unexamined list, containing all edges.

S2 Select a longest path in the graph containing only unexamined edges.

S3 Cluster the nodes in the longest path if the PT does not increase.

S4 Remove all edges in the path from the unexamined list.

26 CHAPTER 3. BACKGROUND AND PRELIMINARIES

S5 When all edges are examined, terminate, else goto step S2.

Because the LC algorithm only forms linear clusters, that is, there is never a cluster
containing two independent tasks, no reordering is necessary like in the internalization
algorithm described in Section 3.2.3.1.

3.2.3.3 Dominant Sequence Clustering

Another clustering method, is to iteratively zero out a particular edge of the current
longest path in the graph (better known as the Dominant Sequence). Several ways
exist to select the particular edge, moreover multiple variants of the DSC heuristic
exists. Gerasoulis and Yang performed a comparative study [9] which also includes the
aforementioned clustering algorithms, furthermore elaborates upon their own DSC based
clustering heuristic [10].

According to this study, their DSC clustering algorithm outperforms the methods
mentioned above, without adding to the computational complexity. DSC introduces two
types of clusters: unexamined and examined. Examined clusters represent clusters that
can only increase in size. On the other hand, the unexamined clusters represent clusters
with a single node, that can only be merged into an examined cluster.

A node nx is said to be free if all predecessors reside in an examined cluster, fur-
thermore a node nx is said to be partially free if at least one predecessor resides in an
examined cluster and at least one predecessor reside in an unexamined cluster.

For a free node, the priority is defines as the sum of its bottom and top-level, calculated
using Equation (3.15). The priority of a partially free node is defined as the sum of its
bottom and examined top-level, where the examined top-level only considers predecessor
nodes that reside in an examined cluster, instead of all predecessors (which is the usual
way of calculating a top-level).

Just like the other clustering algorithms, each node is assigned a unique cluster at
the start of the heuristic, only now these clusters are marked as unexamined. Their DSC
algorithm is described by the following steps:

S1 Mark all clusters, containing a top node nx ∈ T (g), examined.

S2 Determine the free node nx with the highest priority P (nx) and the partially free
node ny with the highest priority P (ny).

S3 If P (nx) ≥ P (ny):

(a) Loop over all the predecessors np ∈ PRED(nx) of nx.
(b) If adding nx as the last node in the (examined) cluster CID(np) where np

resides, improves the top-level of nx, then insert nx into CID(np), otherwise
mark the cluster CID(nx) where nx resides as examined.

S4 If P (nx) < P (ny):

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 27

(a) Loop over all the predecessors np ∈ PRED(ny) of ny for which it holds that
np resides inside an examined cluster.

(b) If adding ny as the last node in the (examined) cluster CID(np) where np

resides, improves the examined top-level of ny, then “lock” this cluster until
nx becomes free. Now perform the same steps as in S3 with the added
constraint that the cluster CID(np) where np resides, is not a candidate
anymore.

Yang and Gerasoulis reported a time complexity for the algorithm of O((N + E)logN).

3.2.3.4 Unbounded Number of Clusters to Bounded Number of Processors

So far all the clustering methods described above assume an unlimited amount of pro-
cessing resources, which is not the case in a practical system. Therefore each of these
methods requires an additional step where clusters are mapped onto physical processors.
Note that some of these methods actually belong to a clustering algorithm described
above, however they can be used interchangeably, thus making it relevant to consider
them independently.

The Internalization algorithm described in [7], also describes a way of assigning
clusters to physical processors. This method is based on a list scheduler where all nodes
N , are ordered using the bottom-levels. The algorithm can be described using the
following steps:

S1 Order all nodes by the bottom-levels and put it into a list L.

S2 Decide which processor px allows the lowest PT when scheduling nx ∈ L, if a tie
occurs, use the lowest EST.

S3 Schedule the node nx, including all other nodes Nc belonging to the same cluster,
to px.

S4 Remove Nc including nx from L. If L = ∅ terminate else goto S2.

In [11] Wu and Gajski described a processor assignment method that tries to minimize
the total amount of communication, given an arbitrary connected multi-processor model.
The algorithm is based on traffic scheduling, which is described in [12]. In [13] Liou
and Palis show the benefits of a two-step clustering and processor assignment method.
In their study three different UNC to BNP approaches are presented: Communication
Traffic Minimizing (CTM), Load Balancing (LB) and a randomized algorithm. According
to their study, clustering in combination with Load Balancing is a simple but effective
method for scheduling task graphs onto multi-core architectures.

3.2.4 Duplication Algorithms

Duplication based algorithms deliberately allocate tasks to multiple processors in oder
to reduce communication overhead. Since PMP does not allow any duplication of tasks,
these algorithms are left out of scope. Curious readers are referred to the following
comparison study [14] performed by Kwok and Ahmad, in which six different duplication
based algorithms are compared.

28 CHAPTER 3. BACKGROUND AND PRELIMINARIES

3.2.5 Machine Learning Based Algorithms

Machine Learning based algorithms are algorithms that have the ability to learn from
experience which computer scientist T. Mitchell formally describes as ”A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves
with experience E.”[15], which happens to be a quite popular definition in the machine
learning field of study. Machine learning can be used to tackle complex (search) problems
like the multi-core scheduling problem. In this section, some scheduling algorithms that
use different machine learning strategies, are discussed.

Genetic algorithms(GA) are a type of Machine Learning algorithms that are often
used in optimization problems that involve large search spaces. GA’s are inspired by
natural selection and uses concepts like cross-overs and mutations to find a (local optimal)
solution. The solution candidates are called individuals and a set of individuals is known
as a population. Each individual contains a set of properties which is stored inside of
chromosomes. In order to distinguish each solution, a fitness function is defined (for the
metric that is optimized for), that evaluates the performance of an individual.

Every iteration (or generation) a new population is formed by recombining and
(randomly) mutating the chromosomes of a sub-set of individuals from the previous
population. These individuals are picked at random in most of the algorithms, though
individuals with a higher fitness have a higher change to be chosen, therefore steering
the solution to a (local) optimum.

3.2.5.1 Genetic Scheduling and Allocation

The Genetic Scheduling and Allocation [16] algorithm proposed by Ali et al. is an
example of a genetic based algorithm. In GSA each chromosome consists of ordered
triplets containing a node identification number, time step, and processor assignment,
which are referred to as the genes. The values assigned to these genes are called allels.
The Time Steps form the schedule and indicate the scheduled time for each node. Table
3.1 presents an example chromosome.

Table 3.1: An example Chromosome.

node: n2 n3 n1 n4

time-step: 2 4 1 3
PA: p1 p3 p1 p2

The algorithm starts by generating an initial population. To increase the chances
of success, GSA uses a diverse initial population generated using four basic scheduling
schemes. The algorithm uses a two-parent, ordered crossover mechanism where two
individuals (called parents) produce a new individual (called the offspring). The cross-
over mechanism selects a random splitting point in the chromosome of the first parent A,
where the left part is copied directly to the offspring. The other parent B is scanned from
left to right, and all missing nodes are added in this order. Whilst adding the missing
nodes from parent B, a violation check is performed by observing the corresponding

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 29

time-steps of each node. If a violation would occur, the time-step from parent A is taken
instead. For a visual example the reader is referred to Figure 4 in [16]

During construction of the offspring’s chromosome, the processor assignment is taken
from the same parent that adds the corresponding node. Because this could lead to con-
current assignment of the same processor, violating processor assignments are reassigned.

The algorithm uses several types of mutations. The most relevant are, the time-step
value mutation and the processor reassignment mutation. In both cases the mutation is
only carried out if it does not introduce any violations.

Since GSA is meant for high-level hardware synthesis, the fitness function is defined
to minimize execution time, whilst minimizing hardware resources like ALU’s, registers,
buses. Therefore, this algorithm is not directly applicable in the multi-core scheduling
problem presented in this thesis. However, the fitness function can be altered to optimize
for other metrics, like reducing the communication overhead, without changing the main
concept of the algorithm.

3.2.6 Cache Aware Algorithms

There exist an abundance of scheduling and assignation methods, though, almost none of
them considers the effect of cache on the total schedule length, in a direct way. Which is
probably due to the fact that modeling cache behaviour is either complex or impossible
due to unpredictability. Since most (multi-processor) scheduling algorithms consider the
Worst Case task timings (which is necessary for safety critical hard real-time systems),
the safest approach is to always assume a cache miss. However, this might drastically
reduce the average case performance. The following section gives an overview of some of
the few cache-aware algorithms that exist.

3.2.6.1 Cache-Conscious List Scheduling

Cache-Conscious List Scheduling[17] is a cache aware offline multi-processor scheduling
algorithm, recently proposed by Nguyen et al. The algorithm takes (private) caches into
account by using variable node weights instead of single valued ones. Each node has a
collection of weights, where each of these weights depends on the node that has been
scheduled previously on the same processor (i.e. the node weight depends on the context).
The algorithm focuses both on instruction and data cache re-usage from a high-level
point of view, that is, the concept of cache is taken into account without focusing on a
specific hardware implementation.

Since CLS uses a set of weights for each node, the weight mapping function WN is
redefined in Equation (3.17). The mapping function takes an additional argument, that
is, the node ny that precedes the current node nx.

WN : N×N → R≥0 (3.17)

Table 3.2 presents an example of node weights with different preceding nodes, where
diagonal values represents weights under the condition of no cache re-usage.

Note that the weights in the table presumes that these tasks are executed on the
same core. Any execution time advantage found in the table would therefore be related

30 CHAPTER 3. BACKGROUND AND PRELIMINARIES

Table 3.2: Weights for nx given different preceding nodes ny.

ny

nx n1 n2 n3 n4 n5

n1 10
n2 15 20
n3 20 15 25 25
n4 15 20 20 20
n5 15 10 10 10 15

This table is a modified version from Figure 3 in [17].

to either, instruction cache re-usage between two tasks sharing some functionality, or
data cache re-usage due to shared information between a pair of tasks. The latter would
imply that there is an edge in between the tasks, also having a weight.

The algorithm uses a list scheduling heuristic similar to HLFET, which is described
in Section 3.2.1.2. The only difference is that CLS uses the Earliest Finishing Time
(EFT) instead of the EST, to assign nodes to cores. The EFT is defined in Equation
(3.18) and (3.19), where LAST (px) denotes the last scheduled node on processor px and
WN (nx, LAST (px)) denotes the weight of nx, if scheduled onto processor px. Moreover
maxpred seeks the EFT for predecessors of nX , which may be scheduled to another
processor. The maxclus seeks the previous EFT of the processor, which is the EFT of
the last scheduled node in the cluster.

EFTi(nx) = MIN({EFTi(nx, px) : px ∈ P}) (3.18)

EFTi(nx, px) = max(maxpred,maxclus)
where :

maxpred ={
max({EFTi(ny) : ny ∈ PRED(nx)}) +WN (nx, LAST (px)) ifPRED(nx) 6= ∅
tl(nx) +WN (nx, nx) otherwise

maxclus ={
max({EFTi(ny) ∈ Ci(px)}) +WN (nx, LAST (px)) ifCi(px) 6= ∅
tl(nx) +WN (nx, nx) otherwise

(3.19)
Figure 3 in [17] portrays a visual example for a small DAG. Although the algorithm

as described in [17] focuses on Worst Case Timings, it can be applied to the Average
Case as well.

3.2.6.2 Other Cache Aware Algorithms

In [18] a cache-aware assignation algorithm is proposed that considers the Working Set
Size (WSS) of tasks. The algorithm tries to evenly distribute the WSSs (or memory

3.2. STATE OF THE ART SCHEDULING ALGORITHMS 31

footprint) over the available hardware resources, furthermore tries to assign tasks that
share the same WSS, to the same hardware resource in order to reduce cache misses. This
algorithm is suited for tasks on thread level that communicated with each-other, without
having explicit dependencies (as in a DAG), therefore this algorithm is not suited in this
research. In [19] another cache-aware scheduling algorithm is proposed which focuses on
schedulability for Worst Case Execution. The algorithm uses Cache Space Isolation to
ensure that the WSS of a task is guaranteed to fit into the cache, in order to guarantee
the Worst Case Execution time. Since this algorithm specifically focuses on Worst Case
schedulability, it is not suitable within this research.

3.2.7 Online Algorithms

Unlike offline schedulers, online schedulers have the ability to deal with variations in
execution timings. One of the major disadvantages of an online scheduler is the additional
overhead required. This is one of the main reasons why there is not a lot of literature
available that concerns with online multi-processor scheduling for (hard) real-time em-
bedded systems. In most cases the additional overhead outweighs the gains of online
timing knowledge.

Most of the algorithms mentioned above can be adapted for use in an online scheduler,
however most of them introduce significant overheads, which makes them unsuitable in
online usage. This section provides an overview of some (low-overhead) schedulers that
are specifically designed for online usage.

3.2.7.1 The Intuitive Approach

The most intuitive and simplistic approach is to create a Ready List, Readyi, of nodes
that are schedulable (i.e. nodes for which it holds that all predecessors are scheduled)
at each iteration of the scheduler. Each time a processor becomes ”Idle”, because it
has finished execution of some node nx, all of its direct successors SUCC(nx) for which
it holds that all predecessors PRED(nx) are already scheduled, can be added to the
Ready List. Furthermore a node from the Ready List should be immediately assigned to
the ”Idle” processor and removed from the Ready List. In order to take into account a
certain metric (for example communication overhead), the nodes in the Ready List can
be assigned some priority based on this metric in exchange for more scheduler overhead.

3.2.7.2 Dynamic Task Graph Scheduling

In [20] Choudhury et al. describe an online approach which is similar to the intuitive
approach. They use a metric called Static Urgency to priorities tasks, which is similar to
the definition of a static bottom-level, which is calculated using Equation (3.7). The major
difference with the intuitive approach is the fact that their algorithm has an additional
routine where communication edges are scheduled onto channels. The channels model
inter-processor communication with a bound on the number of available channels in order
to simulate contentions.

32 CHAPTER 3. BACKGROUND AND PRELIMINARIES

3.2.8 Statistical Algorithms

Another way to deal with variable task execution times without resorting to an online
scheduler, is the use of a statistically based algorithm. Unfortunately “task execution
times are often not normally or even continuously distributed and are not easily amenable
to analytical analysis”[21] which, according to the analysis described in Chapter 4, also
applies to PMP.

In [21] Satish et al. describe a statistically based algorithm that tries to capture
both variations due to cache behaviour and different execution traces within tasks. The
algorithm stores timing values in a probability distribution table. Each entry in the table
consist of an execution time range, including the probability that a particular task will
have an execution time within this range. Moreover, the joint probability distribution of
task execution times that are dependent, are stored in separate tables.

Using all these (measured) timing values, the scheduler tries to optimize the makespan
of the schedule. In the multi-processor case, the makespan is the same as the Parallel
Time (PT). Due to the statistical timing values, the makespan is no longer a single
valued metric, but a statistical distribution. The scheduler tries to find the smallest
makespan that guarantees that at least η% of the executions will not exceed it. The
value η is better known as a percentile. Depending on the desired “guarantees”, a larger
percentile can be chosen. Note that actual guarantees (as in Worst Case Execution Time
(WCET) scheduling) strongly depend on the accuracy of the task timing measurements.
The algorithm proposes several methods to tackle the search problem, a list scheduling
based heuristic and a simulated annealing approach. However most of the heuristics de-
scribed in this chapter are applicable. The method described in [21] specifically mentions
applicability for heterogeneous systems, however, it is also applicable for homogeneous
architectures, which are used in PMP.

3.3 Conclusion

In this chapter, necessary scheduling and assignation terminology was introduced, more-
over an overview was given of state of the art (multi-core) scheduling algorithms. In the
following chapter, the original PMP scheduling and assignation algorithm is analyzed
using two different multi-core PMP products.

Analysis of the Original
Solution 4
In order to understand the limitations of the original solution, the behaviour of the system
was analyzed. PMP is a generic platform that can be used in countless products and
configurations. Since it is impossible to analyze every configuration, it had been decided
to do the analysis on typical, already existing PMP products. The results can be used
to get a feel of typical execution behaviour in PMP products. This information will
eventually be used to form a basis for a possible design.

The idea is to extract dependency and timing information from the system, in order to
portray execution behaviour. Since the platform did not contain any timing mechanism
for individual tasks, the implementation was extended.

For every product the amount and type of connected hardware drives, is known,
however as indicated in Chapter 2, the customer application is typically unknown. The
customer decides for example how all Control Loop Components (CLCs) are connected,
moreover, decides upon the applied control algorithms. Given that numerous use-cases
are possible, it is impossible to analyze them all.

In order to still retrieve valuable information, the software and control engineers at
Prodrive have created applications for each product, which are based on typical customer
use-cases. These applications are used within this analysis.

For each test-run, data from at least 10000 cycles are gathered in order to retrieve
reliable timing information. Afterwards the average, minimum and maximum execution
time for every task is calculated. Last but not least the Worst Case Cycle (WCC), i.e.
the cycle resulting in the highest total execution time, is analyzed.

To show the impact of predefined sub-controller to core mappings, the performance in
terms of total average execution time is analyzed for both the mapped scheduler, as well
as the non-mapped scheduler. In order to determined the execution time, the Parallel
Time is extracted from the system, that is, the highest occurring execution time among
all available cores in the system.

4.1 PPCx3

PPCx3 is one of the many products which is implemented using the Prodrive Motion
Platform and one of the few products that has a multi-core architecture. PPCx3 is
an example of a typical industrial-sized mechatronic system: a wafer scanner. Within
PPCx3, three PowerPC e500 cores are available for handling tasks (RTC). The cores
are clocked at 1.5GHz and the cycle frequency is set to 8kHz. Within PPCx3, there is
one available system timer to time task, which is clocked at 1

64 of the clock frequency.
Since a delta measurement is performed by subtracting the measured start time from
the measured end time, the maximum achievable precision equals twice the period of

33

34 CHAPTER 4. ANALYSIS OF THE ORIGINAL SOLUTION

the timer (∼ 85.3ns). A summary of all properties is found in Table 4.1. In this section
several characteristics of this product are presented.

Table 4.1: PPCx3 and XEONx3 system properties.

Products: PPCx3 XEONx3

Platform: PowerPC e500 Xeon D-1500
RTC cores: 3 3
Cycle Frequency: 8 kHz 10 kHz
Timer Precision: 85.3 ns 25.0 ps

4.1.1 Mapped

The first analysis is performed on the PPCx3 system using an XML configuration that
is also used in the real system. This XML configuration has been manually tuned such
that the system meets all timing requirements.

Figure 4.1a depicts the calculate DAG after the assignation phase. This figure shows
that the predefined sub-controller to core assignation is manually optimized in such a
way that core-to-core dependencies do not occur.

In Appendix A.1 a table can be found that presents the execution order of all calculate
tasks, which in turn portrays the offline assigned schedule that has been constructed by
the system. Observing the order it is shown that the current schedule heuristic tries to
place sensors up front and actuators at the back, which make sense for typical controller
topologies, where the control algorithms depend on sensor input, and actuators depend
on the output of a control algorithm. Note that the timing results differ only a single
order of magnitude compared to the precision of the system timer that was used (see
Section 4.1). Since the precision ought to be enough for the analysis, is was decided
not to change the timer implementation during this phase. However to get the best
results during scheduling, it may be necessary to change the implementation in order to
(temporarily) increase the precision.

Figures 4.1b and 4.1c include the timing diagram for the worst case and average case
cycle, using the mapped scheduler. The figure shows that the mapped variant works well
for the average case, because the workload is spread evenly. As indicated in Section 1.1,
the automated solution should perform equally well.

4.1.2 Non-mapped

The second analysis is performed on the PPCx3 system, without the use of a manual
XML configuration. Figure 4.2a depicts the DAG after the assignation phase, for the
non-mapped variant. Comparing Figure 4.2a with Figure 4.1a, one can observe that the
non-mapped variant introduces (undesired) core-to-core dependencies. Note that the
placement of nodes may differ due to the automated generation process, however the
underlying structure is identical.

In Appendix A.2 a table can be found that presents the execution order of all calculate
tasks for the non-mapped case. As mentioned in Chapter 2, in the non-mapped case,

4.1. PPCX3 35

the assignation algorithm tries to equally divide all sub-controllers over the available
cores. However the algorithm does not take into account the amount of tasks (or CLCs)
per sub-controller. Therefore the amount of tasks per core, may not be evenly divided.
Furthermore, as already indicated in Chapter 2, the computational load of a task is
not being accounted for. Last but not least the overhead of the dependency resolving
mechanism (better known as the producer and consumer model), is not taken into account.

Figures 4.2b and 4.2c include the timing diagram for the worst case and average case
cycle using the non-mapped scheduler. Because core-to-core dependencies exist now,
additional producer and consumer tasks are present in the timing diagram. It is shown
that, due to poor scheduling, Core 1 immediately starts off with a consumer and therefore
has to wait till the producer on Core 0 produces a token. Furthermore it is shown that
when Core 0 has produced the token, it takes some time for the consumer to continue.
This is due to core-to-core communication penalties, i.e. the producer has to load and
increment a value stored in the shared memory interface and the consumer (on the other
core) has to retrieve this value. By comparing Figure 4.1c with Figure 4.2c it is clear
that, on average, the mapped variant does a better job in spreading the workload over
the cores.

4.1.3 Prepare Tasks

Note that in the previous sections, only the calculate phase of tasks is described. However,
as indicated in Section 2.4, there is also a prepare phase. The prepare phase contains a
lot more tasks than the calculate phase, however, there are not a lot of dependencies in
between tasks. Within PPCx3, there exists 310 prepare tasks in which there exist only
two dependencies. Since the visual representation just shows an extensive list of nodes,
it has not been included in this analysis. However it does show that both phases may
require different scheduling approaches in order to get optimal results.

36 CHAPTER 4. ANALYSIS OF THE ORIGINAL SOLUTION

7

3

11

1

0 2

5

6

10

4

8 9

141312

210

543

171615

210

876

11109

141312

543

13

9

8 14

6

16

7

10

11

12

15

17

171615

201918

(a) DAG assigned to the available cores1.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time[ns]

0

1

2

Co
re

Nu
m

(b) WCC timing diagram2.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time[ns]

0

1

2

Co
re

Nu
m

(c) Average timing diagram2.

Figure 4.1: Assigned calculate DAG and corresponding timing diagrams for the mapped
scheduler in PPCx3.
1Circles represent Sensor Tasks, squares: Actuator Tasks, rectangles: Control Algorithm Related
Tasks and squares with rectangular edges: Filtering Tasks. The numbers within nodes represent
the execution order on a particular core. Nodes having the same colour are assigned to the same
core.
2Tasks are represented by bars coloured in the same fashion as the assigned graph shown to the
left.

4.1. PPCX3 37

012

345

678

91011

121314

151617

181920

212223

242526

27

28

30 41

33

38

39

35

43

37

40

42

444546

474849

50

52

63

53

56 57

60

58

64

62

66 65

(a) DAG assigned to the available cores1.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time[ns]

0

1

2

Co
re

Nu
m

(b) WCC timing diagram2.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time[ns]

0

1

2

Co
re

Nu
m

(c) Average timing diagram2.

Figure 4.2: Assigned calculate DAG and corresponding timing diagrams for the non-
mapped scheduler in PPCx3.
1See Figure 4.1 for an explanation of the attributes. Note that consumers and producers -which
are tasks themselves- are not explicitly drawn. Thus it seems as if some ordering numbers are
missing, whilst in fact these ordering numbers are assigned to the consumer and producer tasks.
2See Figure 4.1 for an explanation of the attributes. The lines show the time between the start
of a producer and start of the corresponding consumer.

38 CHAPTER 4. ANALYSIS OF THE ORIGINAL SOLUTION

4.1.4 Timing Variation

Within PPCx3, there is a variation in task execution times. In order to visualize this,
normalized histograms showing the probability of a particular task timing were made for
all sub-controller tasks. Figure 4.3 presents some of these histograms that were made.
Note that the histograms only show the most significant timing variations in which the
variation is higher than the timer precision.

(a) Normalized execution time his-
togram from one of the actuator tasks
in PPCx3.

(b) Normalized execution time his-
togram from one of the sensor tasks
in PPCx3.

(c) Normalized execution time his-
togram from one of the control tasks
in PPCx3.

(d) Normalized execution time his-
togram from one of the control tasks
in PPCx3.

Figure 4.3: Normalized histograms showing the distribution of execution times.

The histograms show that the execution time variations within the system do not
follow a typical distribution. There is however a pattern that can be recognized, when
comparing different tasks of the same type (like the control algorithm tasks in Figure
4.3) a similar pattern in execution time variation can be observed. After analyzing the
code, it was found that some tasks share the same implementation, thus showing similar
timing behaviour. For the variation in execution time, the following hypothetical causes
were found:

• Conditional statements inside tasks, which depend on the given commands and
configuration which can:

4.2. XEONX3 39

– potentially stall a pipeline due to branch miss predictions.
– cause additional execution time due to different functional behaviour.

• Data Cache misses

4.2 XEONx3

XEONx3 is one of the latest multi-core products. Just like PPCx3, XEONx3 is an
example of a typical industrial-sized mechatronic system: a wafer inspection machine.
Since XEONx3 is still in an early development phase, the available hardware is not fully
decided upon yet. Development is currently carried out using an Intel Xeon D-1500, which
has three available RTC cores clocked at 4.0GHz. The XEONx3 platform was made
available at a late stage during this research. Since this system is interesting nonetheless,
it has been added as an additional testing platform. Unlike PPCx3, XEONx3 has no
predefined mapping yet. Within XEONx3, there is one available system timer to time
task, which is clocked at the core frequency. This means that the timer has a precision
of 25.0ps, which is more precise than the PPCx3 target. In Table 4.1 a summary of all
properties can be found. In this section several characteristics will be presented of this
system.

4.2.1 Non-mapped

Unlike PPCx3, XEONx3 is more orientated towards a model-based design, which means
that a customer has more freedom in altering control algorithm related implementations;
thus making XEONx3 more unpredictable compared to PPCx3 in terms of complexity,
amount of tasks and graph structure. Within this analysis, a typical application is used
in combination with the original schedulers. Since XEONx3 does not have any physical
drives yet, both the mapped as well as the non-mapped schedulers, schedule all task to
the first core within the system. Due to the relatively large size, the (assigned) graph of
XEONx3 can be found in Appendix A.3. Since XEONx3 currently only uses one core,
there is no difference between the original graph and the assigned one. Unlike PPCx3, the
graph of XEONx3 is much larger with significantly more dependencies. Furthermore all
merge / join nodes (i.e. nodes with more than one incoming edge) carry a lot more edges,
which makes it more difficult to parallelize; because all preceding nodes (which may be
executed on different cores) need to be finished before the merge node can be executed.
Another interesting observation is that the XEONx3 graph contains far less disjoint
subgraphs than PPCx3, which again makes XEONx3 more difficult to parallelize in
contrast to PPCx3. Last but not least, the graph shows some “redundant” dependencies.
Take for example the edge between node 30 and 93. Even though this dependencies does
exist (node 93 depends on the output of node 30), the dependency is unnecessary since
there exists other paths from node 30 to 93 that are longer.

As mentioned above, XEONx3 has no physical drives yet and thus only a single core
is utilized within the non-mapped assignation heuristic. Because of this, the average
execution timing diagram for XEONx3 has not been included. The single core schedule
resulted in an execution time of 7180.24ns.

40 CHAPTER 4. ANALYSIS OF THE ORIGINAL SOLUTION

4.3 Conclusion

In this chapter two different multi-core PMP products were analyzed. The performance of
the original scheduling solutions were presented, as well as the short-comings with respects
to new products like XEONx3. In the next chapter the design of a new, automated
solution is presented, which, as indicated in Chapter 1, should perform at least equally
well compared to the original Mapped solution, for both multi-core enabled products.

Automated Framework 5
The achievable performance of the scheduler depends on the accuracy and relevancy of the
timing information extracted from the system. However the achievable performance also
strongly depends on the way a scheduler makes use of this timing information. Having
lots of relevant and accurate timing information in combination with a scheduler that is
not able to use it effectively, is just as bad as having an intelligent scheduler that is fed
inaccurate information.

Given this insight and the fact that the motion platform is subjected to an ever ongoing
development process, it was decided to follow an iterative design and implementation
flow. As a first step in the iterative design flow, the scheduling and measuring processes
have been decoupled by designing and implementing separate scheduling and measuring
frameworks. For both frameworks, an extensive design exploration was performed.

The iterative approach allows for intermediate testing and evaluation. Based on the
intermediate results, it was decided if time should be spend in optimizing the measuring
framework, or the scheduler framework. In this chapter the design for both frameworks
is presented, moreover an overview of all implemented designs is given.

5.1 Framework Overview

In Chapter 2 an overview of the current solution was given. It was shown that there exists
two DAGs which require scheduling and assignation, one consisting of communication-
critical calculate tasks and the other consisting of non-communication-critical prepare
tasks. Currently the assignation and scheduling process for both DAGs, is based on a
manual process. The idea is to design a generic framework which replaces the original
scheduling and assignation solution. Thus a framework has to be designed, which, given
a DAG and some abstract model of the hardware, produces a valid multi-core schedule,
in an automated way. Figure 5.1 depicts an abstract visual representation of the process.

Automated
Framework

C0

C1

C2

C0

C1

C2

C0

C1

C2

Figure 5.1: From DAG to schedule.

Figure 5.2 presents the design for the automated framework. The red arrow shows
the main flow from DAGs to schedules. As indicated in Chapter 2, both calculate and
prepare task DAGs are represented using execution paths and execution groups. Since this

41

42 CHAPTER 5. AUTOMATED FRAMEWORK

representation does not fit within a generic scheduling approach, moreover, unnecessarily
complicates the scheduling procedure, it was decided to improve the implementation by
using predecessor and successor list in conjunction with nodes and edges.

The first step within the automated flow is the measuring framework. Within the
measuring framework, the unweighted DAGs should be transformed into weighted DAGs.
The weighted DAGs can then be scheduled using any scheduler within the scheduling
framework. Due to the chosen measuring technique (which is explained in the upcoming
sections), the online scheduler on the RTC required a partial redesign.

To support the iterative design, moreover make the approach generic, each scheduling
implementation is made available in a library, more specific the Extendable Scheduler
Library (ESL). The ESL allows to schedule the prepare and calculate DAGs using
different scheduling algorithms, moreover allows to easily compare each solution. In
order to keep the original scheduling and assignation solution intact, the Mapped and
Non-mapped solutions have also been made available through the ESL.

Measuring
Framework

Scheduling
Framework

DAGs

Online
Scheduler

ESL
HLFET
ISH
.
.
.
.

20

24

15
11

5

20

14 2

39 42

22 12

C0

C1

C2

C0

C1

C2

Requires (Partial) Redesign

Requires New Design

NRTC RTC

Figure 5.2: Automated framework design.

5.2 Performance Measurement Framework

In this section the design of the performance measurement framework is described. The
framework should provide accurate and relevant timing information about all tasks and
dependencies within the DAG that has to be processed. An ideal framework would be
able to capture all causes of timing variations, such that the exact execution time can
be predicted for a certain schedule. However measuring every cause of timing variation
is impossible, moreover requires an intelligent scheduler in order to use all the timing
information effectively. Thus a selection of the most significant metrics has to be made
which influence the total execution time of a particular schedule.

As explained in Chapter 2, the computing hardware, responsible for handling the
DAGs of tasks (which constitute the customer’s application), typically varies per product.
Because of this, an abstract model of the hardware is required, which is depicted in
Figure 5.3.

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 43

Local Cache

Shared Interface

C0
Local Cache

C1
Local Cache

C0

Figure 5.3: Abstract model of the hardware resources.

In the figure the hardware inside the master controller (see Chapter 2), is modelled
as a multi-core architecture consisting of a certain amount of cores. Moreover, each core
contains a local data and instruction cache, in which the size, caching policy, and amount
of layers, is product specific. To allow for core-to-core communication, a shared interface
is available within every product. This shared interface may consist of shared caches,
shared memory, or any other core-to-core communication enabling concept.

5.2.1 Measurable Metrics

Based on the observations from Chapter 4 and the scheduling literature presented in
Chapter 3, a selection of the most significant causes which influence the total execution
time, is presented together with the corresponding metric that has to be measured. The
abstract model of Figure 5.3 is used in combination with two cores, in order to create all
graphical examples.

M1. Intrinsic Task Weight: The first and most obvious cause is the computational
demand of each task, which will be referred to as the intrinsic task weight (see Figure 5.4).
Within PMP, tasks may differ significantly with respects to computational demand (e.g.
a control algorithm task requires in general more computations than a sensor task), thus
the intrinsic task weight differs per task. Within a PMP task, conditional statements
can be found, which makes the intrinsic weight, a multi-valued metric.

Figure 5.4: Intrinsic task weight.

44 CHAPTER 5. AUTOMATED FRAMEWORK

M2. Core-to-core Overhead for Shared Data: The second cause of execution time
variations are due to core-to-core communications, for data shared by dependent tasks
assigned to different cores. Figure 5.5 depicts a situation in which the assignation leads
to a guaranteed cache miss for the shared data, within the local cache of C1. If the yellow
task in Figure 5.5, was scheduled on C0, a cache hit would be expected. In this situation,
it is in theory still possible that a cache miss occurs for the shared data, if the shared data
is kicked out of the cache due to the tasks executed in between the dependent tasks, or
due to the task switching mechanism itself. Though, given that the multi-core platforms
within PMP contain an abundance of cache compared to the size of data that is shared
between dependent tasks, it is safe to assume a cache hit is guaranteed in the majority
of these cases. Since the shared interface may consist of multiple layers and protocols,
the additional execution time due to dependent tasks assigned to different cores, is, like
the intrinsic task weight, a multi-valued metric. Next to the overhead of communicating
the shared task data, there is also a penalty to be paid for the dependency resolving
mechanism. This penalty should also be taken into account.

Local CacheLocal Cache

Shared Interface

C0 C1

Figure 5.5: Sharing data between tasks.

M3. Instruction Cache Penalty: Another cause for execution time variation are
instruction cache misses. As indicated in Chapter 4, within PMP there is quite some
implementation duplication across tasks (e.g. tasks calling the same functions). If these
tasks are scheduled within a relatively short time period onto the same core, the chances
of an instruction cache hit might increase, thus increasing the change of an execution time
advantage (see Figure 5.6). As in the previous case of data-cache, the chances of such
a hit depends on the caching policy, amount of instruction cache, and all instructions
that are executed in between calling the same function. Due to the wide variety in
implementations and compiler optimizations, it is expected that identifying instruction
re-usage across tasks, is difficult, moreover it is expected that predicting a hit is more
difficult compared to the previous case.

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 45

1
2

Shared Interface

C1

add $
lw $t0
bne $t0
...

C0

time

1 2

2

Figure 5.6: Instruction cache re-usage.

M4. Data Cache Penalty for Non-shared Data: Besides a potential data cache
hit due to dependent tasks assigned to the same core, a data cache hit for the internal
state data of a particular task can also occur. As shown in Chapter 2, the DAGs of
tasks which constitute the customer’s application, are handled in a periodic fashion, at
a certain control frequency. Since the assignation does not change during run-time, a
cache hit may occur across cycles. Figure 5.7 visually portrays the potential advantage.
The chance of a data cache-hit for the internal state of a particular task tx, depends on
the tasks that follow in between the current and next cycle, after which this task tx, is
executed again. Furthermore the chance of such a data cache-hit strongly depends on
cache sizes and caching policies. Because of this, it is expected that measuring, let alone
taking into account this potential cause of execution time variation, is both the most
difficult, moreover expected to have the least amount of effect on the resulting execution
time.

1

Shared Interface

C0 C1

time

1 1

1

1

Figure 5.7: Data cache re-usage for internal state data.

46 CHAPTER 5. AUTOMATED FRAMEWORK

5.2.2 Measuring Techniques

In the following sections, some performance measuring techniques will be discussed which
can be used to measure the metrics presented in the previous section.

5.2.2.1 Static Measurements

The software implementations of the sensors, actuators, control algorithms, could be
analyzed offline, i.e. without actual execution. If Worst Case Execution Timing (WCET)
is to be guaranteed, static measurements are well suited since (unlike dynamic measure-
ments), the prediction is never lower than the actual WCET, if carried out correctly. In
order to provide the same guarantees using dynamic measurements, either every possible
input combination has to be analyzed or the Worst Case input combination has to be
known beforehand, which is only possible if Static analysis has been performed.

Assuming that recursion is non-existent and all loops are bounded, moreover
presuming that the source code of every task is available (including customer code
blocks), all tasks could be compiled to assembly for every hardware platform that is
available in PMP. Then all possible branches need to be considered in order to find the
branch that determines the Worst Case Execution. If the Worst Case Execution flow
is found, the amount of required cycles can be calculated using known values for the
cycle count of each instruction, for a specific hardware target. Note that this assumes
no instruction cache misses, which may occur in the Worst Case. However assuming
an instruction cache miss for every instruction is too stringent. For data read and
write instructions, the cycle counts can be used assuming a data cache miss, which
again, is quite rigorous, even for the Worst Case. These cases immediately portray the
difficulty of determining a tight bound on the Worst Case Execution time of each task,
especially given that pipelines, bus contention, branch prediction, etc. are not even
considered yet. However, given that all these factors are accounted for, guarantees can
be given for the Worst Case Execution time, which is a necessity in hard real-time systems.

Advantages

• Best solution to find bounds for the WCET (or BCET).

• No additional run-time overhead (the measurements can be performed at compile
time).

Disadvantages

• Accurate static measurements are generally a lot more difficult than dynamic mea-
surements. However if Worst Case Timing is to be guaranteed (hard real-time
systems), static measurements are a must.

• If recursion or loops occur without a bound on the amount of iterations, static
measurements are not suitable. (Though these should of course be avoided if a
system is hard-real time).

• Approach is not universal, new hardware requires a new framework (different in-
struction set, different cycle count etc.).

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 47

• New implementations or updated implementations require new measurements.

• Either the source code or compiled assembly code of customer blocks need to be
available.

• Not really suitable for Average Case Timing Analysis.
Is is expected that static measurements will not be a viable solution to measure task

durations within PMP, since PMP focuses on Average Case Execution efficiency rather
than Worst Case Execution guarantees. Static timing analysis is ideal for finding (tight)
bounds for the Worst Case and even Best Case (e.g. taking the shortest branch). However
it is not suited for Average Case timing analysis. For example, static analysis for the
Average Case immediately brings some additional difficulties:

• Which branch determines the average case?

• What will the hardware do in the average case? (cache behaviour, branch prediction,
pipeline stalls, etc.)

Furthermore generating tight WCET bounds using static analysis is a difficult and
widely studied topic, it requires an extensive research and possibly partial system redesign
in order to do it properly. Furthermore this research mainly focuses on average case
scheduling, thus WCET bounds are not necessary.

Even though the static timing analysis ought to be of no use for determining the
average task weights, it could be useful in determining the average edge weights. Since
edge weights represent the overhead introduced when two dependent tasks are mapped
to different cores (which is some kind of worst case, since there is a guaranteed cache
miss), static analysis is applicable. If the amount of shared data is known, it is expected
that the overhead can be predicted quite accurately.

5.2.2.2 Dynamic Measurements

Another option is to do dynamic measurements, that is, timing measurements when the
system is executing some kind of schedule. The main advantage compared to the static
measurements is its lower complexity.

A possible design would be a framework that allows to repeatedly run (completely)
different schedules. In order to achieve this, the motion platform should be extended
with a low-overhead schedule switching mechanism. Furthermore system timers should
be used to measure the execution times of each individual task.

Advantages
• Less complex than the static measurements.

• Different execution orders can be measured.

• Cache influences can be measured to some extend.

• Approach is universal (new hardware does not require a new framework).

48 CHAPTER 5. AUTOMATED FRAMEWORK

Disadvantages

• Not suitable for Worst Case Timing (at least not without combining static mea-
surements).

5.2.2.3 Hardware Performance Monitors

It is possible to use hardware performance monitors to measure for example cache influ-
ences. Since performance monitoring using hardware performance counters is strongly
hardware dependent, support for the hardware targets whereupon PPCx3 and XEONx3
are based, should be verified. In Table 5.1 the support for the hardware targets, where-
upon PPCx3 and XEONx3 are based, is shown.

Table 5.1: Hardware support.

Metric: Freescale E500mc Intel D-1500

DCache miss-count: L1 + L21 L2 + L3
ICache miss-count: L1 + L21 L2 + L3
DCache miss-penalty n/a2 n/a
ICache miss-penalty n/a2 n/a

1 Using a combination of registers. See table 9-46 in the e500mc reference manual [22].
2 The E500mc does have some cycle counters for data misses in the Memory Management Unit (MMU)
(memory management unit) however it is not clear what misses are exactly counted nor is it clear in
which layer. Furthermore there are no performance monitors to measure a specific layer (L1 / L2).

In short, the performance monitors are excellent for measuring cache miss counts,
however it is not possible (or straightforward) to measure the penalties that occur purely
based on the information that is available in the performance registers.

Advantages

• Best way (and probably the only way) to measure the amount of misses that
occurred.

Disadvantages

• Hardware dependent implementation.

• Cache-miss penalties not (directly) measurable.

5.2.2.4 Cache Invalidation

In order to make cache behaviour more predictive, it might be possible to perform cache
invalidations on different cache levels. Unfortunately, like the hardware performance
monitors, cache invalidation is strongly architecture specific. Moreover cannot be
generalized, since each architecture may use different amounts of cache layers, as well as
different caching policies. The only meaningful abstraction would be a differentiation
between local and shared cache invalidations, and instruction or data cache invalidations,

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 49

without considering a cache layer in specific.

Advantages
• Cache misses for every task can be forced which might improve the measurements.

Disadvantages
• Hardware dependent implementation.

5.2.3 Combining Methods and Metrics

In this section the following task DAG (see Figure 5.8) will be used within each example.

Figure 5.8: Example task DAG.
Nodes with the same shape and colour represents nodes sharing the same

implementation.

In the context of dynamic measurements, a certain “test” schedule is represented in the
following way:

Table 5.2: Example schedule.

c0 t1 t2 t3 t6 t9 t10 t11 t13 D
c1 t4 t5 t7 t8 I t12

The gaps indicate dependencies (e.g. t3 should finish before t7), however start times and
stall times are not shown. Furthermore the “I” indicates an instruction cache invalidation
and “D” indicates a data cache invalidation. Note an invalidation can be performed either
before or after a task. Furthermore note that the level that is to be invalidated, will be
indicated in each explanation.

50 CHAPTER 5. AUTOMATED FRAMEWORK

5.2.3.1 M1 (Intrinsic Task Weight)

Static Measurements Based on the conclusions drawn in Section 5.2.2.1, it was
decided to leave out the static measurements for metric M1.

Dynamic Measurements Dynamic measurements can be used to measure metric
M1. Preferably the measurements should be done in such a way that they capture the
intrinsic execution variation due to different branches within tasks, without: capturing
the variations, due to the used schedule, the dynamic behaviour of the cache, or core-to-
core overhead. It is tricky to take all factors into account, however, there may be some
possibilities to minimize the effects of the aforementioned influences.

• Using a single-core schedule

• Flushing the cache in between tasks

• Randomization

The first possibility eliminates any core-to-core overhead, which is desired. The only
downside is the additional load added to the system. However, during dynamic mea-
surements, it is possible to temporarily reduce the cycle period if necessary. The second
possibility is more drastic. It will increase the load significantly (especially in combination
with a single core schedule), moreover, it will give an overestimate of the average task
execution time. Though, if the total cache penalty for a task can be measured in some
way, the averages can be updated by subtracting the expected penalty, if for example a
cache hit is to be expected (which can be part of the scheduling algorithm). The main
advantage is that, after a cache flush, it is quite certain that a cache miss will occur.
Better would be to measure the tasks, having the certainty a cache hit occurs. One could
use task duplication to achieve this, however task duplication is not possible within PMP,
since it would affect the internal states of each control algorithm.

Instead of flushing the cache, another option is to interpret timing variations due to
dynamic cache behaviour in the same way as the variations due to branches within a
task. To reduce the chance a particular task has an advantage due to more cache hits
compared to other tasks due to its placement within the schedule, a solution would be
to create a predefined amount of randomized schedules in order to measure the average
task execution times. Furthermore it reduces the chance a task would benefit from other
influences like branch miss-predictions, cache snooping, etc.

Given the advantages and disadvantages portrayed above, it was decided that the
dynamic measurements for M1 are best performed using single-core randomized schedules.
Previous internal research performed at Prodrive showed that cache misses for tasks in
between cycles do not occur often (at least not on PPCx3), thus forcing a cache miss will
definitely result in over-estimations for the average task execution times. Furthermore
support for cache flushes varies per platform, moreover requires hardware-dependent
implementations. Therefore it was decided to perform the measurements without cache
flushes in between.

An example of a randomized scheduler for the dynamic measurements can be made
using the following steps:

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 51

1. Make a list L of schedulable nodes which consists of all top nodes

2. At random, pick one of the schedulable nodes nx ∈ L

3. Remove nx from L and get all successors SUCC(nx)

4. For all successors ny ∈ SUCC(nx)

(a) If all predecessors nz ∈ PRED(ny) are already scheduled, add ny to the
schedulable list of nodes L = L ∪ ny

5. Repeat from step 1 until L is empty L = ∅

Advantages
• Several repetitions are possible, which (in general) improves the accuracy.

Disadvantages
• Due to all unpredictable influences, the averages found during dynamic measure-

ments could be inaccurate.

5.2.3.2 M2 (Core-to-core Overhead for Shared Data)

Static Measurements Within a PMP product, configurations can be applied by the
customer that specify connections between CLCs. These connections are represented
by shared signals. The amount of connections, and the size of each input, is known
during run-time. If the penalty per unit shared data can be measured once, the expected
overhead can be estimated for each edge.

All shared signals have been memory aligned, meaning that any data-type which fits
within the cache-line width of the processor would (in theory) require the same amount
of time to be fetched. Therefore the cache-line width ought to be a representative base
unit for estimating the overhead. Depending on the desired accuracy, a choice can be
made to use an average input size for every edge, or to make the overhead input size
(and thus edge) dependent.

Apart from the shared data, core-to-core overhead also depends on the efficiency of
the dependency resolving mechanism, which is currently a producer and consumer model.
The functionality and expected overhead of a producer and consumer does not depend on
the configuration, therefore a single estimation or measurement should be enough. The
”real” running time of a consumer depends of course on the placement in the schedule,
e.g. if a consumer is executed before the producer the waiting time can be quite long.
However the waiting time is not part of the core-to-core overhead, it is actually a hole
in the schedule, which (if it occurs), ideally, is a deliberate choice of the scheduler which
already took this idle time into account.

Dynamic Measurements In order to measure the core-to-core overhead, the
dynamic timing framework can be used in the following way:

Use a (random) single core schedule (see Table 5.3), or use the measurements from metric
M1.

52 CHAPTER 5. AUTOMATED FRAMEWORK

Table 5.3: Example single core schedule.

c0 t1 t2 t3 t7 t10 t12 t4 t8 t5 t6 t9 t11 t13
c1

And in the second measurement follow the following steps:

1. Make a list of available Edges Le

2. For each edge ex ∈ Le

(a) Put the node from which the edge originates src(ex) including all its prede-
cessors PRED(src(ex)) on core p0

(b) Put all other nodes on p1

In order to demonstrate the flow, a portion of the example graph will be used (see Figure
5.9).

Figure 5.9: Portion of the example task graph.
Nodes with the same shape and colour represents nodes sharing (parts of) their

instructions.

First a list is constructed of all available edges: [(t4 → t8), (t5 → t9), (t6 → t9), (t8 →
t11), (t9 → t11), (t11 → t13)]. The next step is to create a schedule for each edge that
allows to measure the overhead induced, which is presented in Tables 5.4 up till and
including 5.9.

Table 5.4: Example measuring schedule for (t4 → t8).

c0 t4
c1 t8 t5 t6 t9 t11 t13

Table 5.5: Example measuring schedule for (t5 → t9).

c0 t5
c1 t6 t9 t4 t8 t11 t13

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 53

Table 5.6: Example measuring schedule for (t6 → t9).

c0 t6
c1 t5 t9 t4 t8 t11 t13

Table 5.7: Example measuring schedule for (t8 → t11).

c0 t4 t8
c1 t5 t6 t9 t11 t13

Table 5.8: Example measuring schedule for (t9 → t11).

c0 t5 t6 t9
c1 t4 t8 t11 t13

Table 5.9: Example measuring schedule for (t11 → t13).

c0 t4 t8 t5 t6 t9 t11
c1 t13

Based on the desired accuracy and complexity of the scheduling algorithm, either the
average values can be measured or a distribution.

The idea behind the measurements is as follows: If for example t13 and t11 were
to share data, the execution time of t11 for the (t11 → t13) measurement, should on
average be higher than the single core measurement, because the shared data has to
either be communicated (e.g. via cache snooping), or retrieved all the way from the
shared memory interface. The same holds for all other core-to-core edges. By repeating
the measurements, moreover averaging all the values an indication of the core-to-core
overhead can be extracted.

The aforementioned method does not take into account that, tasks sharing the same
code implementation could in theory have an additional disadvantage when scheduled
onto different cores. In order to prevent this, instruction cache invalidations could be
performed between tasks for all schedules depicted above. Furthermore the data cache
could be invalidated at the start of each cycle, in order to exclude any benefits for non-
shared data re-usage (e.g. internal state data). The data cache should only be invalidated
at the start, because the advantage of executing two dependent tasks, say t3 and t7, on
the same core lies in the fact that the shared portion of the data is already in cache. If
during these measurements the data cache would have been invalidated, the single core
dependency advantage would disappear. Moreover a single data cache invalidation at the
start of each cycle should already introduce data cache misses for all non-shared data of
each task.

Since these invalidations can be performed on both the single and multi-core mea-
surements, the timing difference between these values should in theory more accurately
depict the real core-to-core overhead compared to the “invalidation-less” case, because the
metric to be measured, is better isolated. Unfortunately the hardware support for cache

54 CHAPTER 5. AUTOMATED FRAMEWORK

invalidations differs between architectures, thus a solution including cache invalidations,
would not be applicable in a generic way.

There are also corner cases in which the method described above cannot properly
isolate the overhead measurement of a particular edge. One of the cases is when there
exist a “redundant dependency” in the graph, which actually occurs in one of the products
(see Section 4.2). Given the example graph in Figure 5.10, if edge (t9 → t11) is to be
measured using the method described above, nodes t5, t6, and t9 will be placed on core A
and all other nodes on core B. However, this means that during the edge measurement of
(t9 → t11), edge (t6 → t11) also has influence on the measurement. A solution would be
to add all predecessors of the source node from which the edge originates (t9), that also
happens to be a direct predecessor of the destination node (t11), to core B. This however
makes the measurement method a bit more complicated, since (depending on the amount
of redundant edges) multiple dependency resolving guards have to be inserted.

t4 t8

t11t5 t9

t6

t13

Figure 5.10: Example task graph containing a “redundant” edge.

Since the schedule is to be executed using the dynamic measurements, producer and
consumers should be added to make sure the dependencies are met. These producers and
consumers can be timed with a separate timer. The idea is to extract the average overhead
introduced by a producer and consumer model in the best-case, that is, the overhead
given that the consumer can pass immediately, and add it to each edge weight. Measuring
the producer and consumer overhead can be done offline and has to be performed only
once, since it is not affected by the configuration.
Advantages

• The measurements are simple and expected to be quite representative.
Disadvantages

• Cache invalidation is not possible on all available hardware targets.

5.2.3.3 M3 (Instruction Cache Penalty)

Dynamic Measurements To measure the average penalty induced by an instruction
cache miss using dynamic measurements, an option is to: both execute a schedule
with instruction cache invalidations in between and the same schedule without these
invalidations, repeat the measurements for several iterations, and calculate the execution

5.2. PERFORMANCE MEASUREMENT FRAMEWORK 55

time difference. Assuming data cache behaviour is left unaffected by the instruction
cache invalidations, any execution time advantage ought to be caused by instruction
cache re-usage for the majority of cases.

In order to minimize any potential data cache influences, a possible optimization would
be to introduce data cache misses in between each task for both measured schedules.

Note that these measurements are not possible on all available hardware targets,
moreover it has to be specified in which layer a cache miss should occur. Furthermore,
these measurements are only useful if, after a cycle, there is a significant chance that an
instruction cache miss occurs, meaning that within the cycle, it is beneficial to schedule
tasks having the same implementation onto the same core. If after a complete cycle,
instruction cache misses do not occur often, the benefits of scheduling tasks onto the
same core with respects to instruction cache re-usage diminishes.

Advantages
• Additional information (if accurate) generally means more scheduling possibilities.

Disadvantages
• Does not work for all available hardware platforms.

• Requires a cache-aware scheduling algorithm in order to take advantage of the
measurements.

5.2.3.4 M4 (Data Cache Penalty for Non-shared Data)

As mentioned in section 5.2.1, M4 is both the most complex and the least relevant of all
metrics. Therefore it was decided to leave it out of scope.

5.2.4 Implemented Designs

During the iterative implementation approach, the Dynamic Measurement design was
implemented. As described in Section 5.2, Dynamic Measurements allow to repeatedly
run (completely) different schedules and measure the individual task execution times. In
order to support this measurement technique, the existing online scheduler (depicted in
Figure 5.2) was extended such that schedules could be changed during run-time, moreover,
execution times could be measured per task.

5.2.4.1 Dynamic Node Weight Measurements

In order to leave out core-to-core dependency influences, task time measuring is performed
using a single core schedule. In order to create a single core schedule a scheduler solution
was added to the ESL which follows the following steps:

1. Create a list of schedulable nodes LS and a list of schedulable candidates LC .

2. Retrieve all top nodes from the DAG and add them to the list of schedulable nodes
LS = Tg.

3. While LS 6= ∅

56 CHAPTER 5. AUTOMATED FRAMEWORK

(a) Pop the first node n1 in LS and add it to the first core in the schedule S[c1].

(b) Add all successors of this node SUCC(n1) to the schedulable candidates list
LC = LC ∪ SUCC(n1).

(c) For all nodes nx in LC

i. Get all direct predecessors PRED(nx)
ii. For all nodes ny in PRED(nx)

• If all direct predecessors are already scheduled (ny ∈ S), add ny to
the schedulable nodes LS = LS ∪ ny

• Remove ny from LC

Using these steps, a single core schedule is created that does not violate any depen-
dencies. After the single core schedule is created, the schedule is dynamically updated
in the RTC. After the schedule update has been performed, the sampling process starts
with a user defined amount of iterations. Note that the randomized schedule design has
not been utilized, since it would have increased the amount of measurement iterations
and thus increase the total scheduling time.

5.2.4.2 Dynamic Edge Weight Measurements

In order to measure edge weights, the design described in Section 5.2.3.2 was implemented.
Within the Dynamic Edge Measurements, all edges are retrieved from the DAG. Then,
for each edge, an isolated schedule is created and the execution time of the destination
node is compared against the result found during the Dynamic Node Measurements. The
steps of the Dynamic Edge Measurements routine are shown below:

1. Input: edge to isolate ex.

2. Create a list of unscheduled nodes Lu.

3. Get all (direct and indirect) predecessors of the source node Ps =
ALLPRED(src(ex)).

4. Repeat for the destination node Pd = ALLPRED(dst(ex)).

5. Remove the source src(ex) and destination dst(ex) nodes from both predecessor
lists (Ps and Pd).

6. Store the symmetric difference of Ps and Pd. Diffsd = Ps 4 Pd.

7. Create a single core schedule S[c0] for Ps on core c0, using the single core scheduler
described earlier.

8. Add the source node src(ex) to the end of this schedule S[c0].

9. Reserve a guard pair (producer and consumer).

10. Schedule the producer to the end of the schedule S[c0] on core c0.

11. Schedule the consumer to the schedule S[c1] of core c1.

5.3. SCHEDULER FRAMEWORK 57

12. Create a single core schedule S[c1] for Diffsd on core c1. This makes sure that
any predecessor of dst(ex) that is not a predecessor of src(ex) is scheduled before
dst(ex), in order not to violate any dependencies.

13. Add the destination node dst(ex) to the end of this schedule S[c1].

14. Update the unscheduled list Lu by removing the scheduled nodes .

15. Create a single core schedule S[c1] for the remaining unscheduled nodes Lu on core
c1.

Figure A.4 in Appendix A.5 presents two examples of isolated edge measurement
iterations in PPCx3.

5.2.4.3 Dynamic Producer Consumer Measurements

Apart from the (dynamic) edge measurement results found using the method described
above, also a static part has to be added to each edge weight, due to the static overhead
generated by the producer and consumer pairs. As described in Section 5.2.3.2 the idle
period within the consumer and producer model, caused when a producer precedes the
consumer, should not occur in the measurement, since this idle period can only be caused
by holes in the schedule. Therefore, to measure only the static overhead of a producer
consumer pair, a guard isolating scheduler has been implemented and added to the ESL
which follows the following steps:

1. Reserve a guard pair GP0.

2. Reserve another guard pair GP1.

3. Schedule the producer prod(GP0) of GP0 on the first core S[C0].

4. Schedule the producer prod(GP1) of GP1 to S[C0].

5. Schedule the consumer cons(GP1) of GP1 on the second core S[C1].

6. Schedule the consumer cons(GP0) of GP0 to S[C1].

In this way, it is assured that the execution of consumer cons(GP0) will precede the
execution of the corresponding producer prod(GP0) assigned to the other core, preventing
any idle period. The combination of the execution time measurements of both consumer
cons(GP0) and producer prod(GP0) is used as the static part of the edge weights and is
added to all the edge weights found using the edge isolating measurement method.

5.3 Scheduler Framework

It was decided to make a modular design for the scheduler framework. Many assignation
and scheduling concepts presented in Chapter (3.2) can be classified as improvements that
can (in theory) be used by any of the schedulers. In combination with the Extendable
Scheduler Library as described in Section 5.1, a modular design would allow to combine
different schedulers and improvements, which may lead to better solutions. Furthermore,

58 CHAPTER 5. AUTOMATED FRAMEWORK

many schedulers share the same concepts, for example the calculation of bottom and
top-levels, which can be reused within the modular design.

Besides some of the algorithms presented in Chapter 3, during the iterative imple-
mentation phase, a Load Balancing Processor Assignment extension for Sarkar’s Inter-
nalization algorithm was designed and implemented, based on the experimental results
found during the iterative approach. In addition to this extension, an iterative approach
was designed, which specifically targets disjoint sub-graph structures, which, as presented
in Chapter 4, can be found in the DAG of PPCx3. In this section, the designs of both
methods are described.

5.3.1 Load Balancing Processor Assignment

Since Sarkar’s processor assignment, as described in Section 3.2, appeared to perform
worse than expected, a more simplistic processor assignment approach was designed. The
Load Balancing PA algorithm uses Round Robin / Simple Load Balancing to equally
divide the clusters created by a clustering algorithm, over the available hardware resources.
In order to take into account edge weights, the algorithm first sorts all nodes by their
(dynamic) bottom-level, which is determined in the same way as the Internalization
clustering algorithm described in Section 3.2.3.1. For each node in the sorted list, the
cluster weight of the cluster in which this node resides, is determined; after which all
nodes within this cluster are scheduled to the processor having the lowest accumulated
cluster weight. The Load Balancing PA algorithm is explained using the following steps:

1. For each virtual cluster cx ∈ Cvirt, accumulate the weight of all nodes inside the
cluster, and store its value Wcx =

∑
Wnx∀nx ∈ cx.

2. Next to the virtual cluster mapping, create a mapping from physical clusters Cphy

to weight value. Zero initialize all entries.
3. Create an unscheduled list of nodes sorted by bottom-level Lunscheduled.
4. While Lunscheduled 6= ∅:

(a) Pop the first node from the unscheduled list n0 = Lunscheduled[0], which is the
currently unscheduled node having the highest bottom-level.

(b) Find the virtual cluster ccid(n0) in which n0 resides.
(c) Initialize a variable called load and assign it its maximum value.
(d) For each physical cluster cy ∈ Cphy:

i. Add the virtual cluster weight to the physical cluster weight weight =
Wccid(n0) +Wcy .

ii. if weight < load:
A. Update the (winning) cluster cwinner = cy.

(e) Move all nodes from the virtual cluster cy to the winning physical cluster
cwinner.

(f) Remove all nodes inside cwinner from the unscheduled list.
(g) Update the weight value of the winning cluster Wcy = Wcy +Wccid(n0) .

5.3. SCHEDULER FRAMEWORK 59

5. For each physical cluster cy ∈ Cphy:

(a) Order nodes in the cluster using the same steps as in the Internalization
algorithm.

(b) Schedule the nodes inside the cluster to the corresponding hardware resources.

5.3.2 Dynamic Cluster Splitting

In Section 4.1 it was demonstrated that PPCx3 contains a lot of independent sub-graphs
within the complete calculate DAG. Since these sub-graphs are independent, each of these
sub-graphs is an ideal candidate to be parallelized. All the aforementioned schedulers
however, do not explicitly take these sub-graphs into account and often (unnecessary)
break up these sub-graphs. Therefore a new implementation is proposed called Dynamic
Cluster Splitting, which, instead of merging clusters, breaks up clusters if the parallel
time decreases. The main idea of DCS , is to create clusters or Super Nodes of each
sub-graph, then try and schedule this so called Super Graph. After the parallel time
is measured, using some strategy, these Super Nodes can be split up after which the
parallel time is measured again. This splitting process can be repeated as long as the
measured parallel time keeps decreasing. The main idea behind this algorithm is that, if
these “ideal” parallelizable sub-graphs happen to divide well over the available hardware
resources, why bother try and splitting them up. If these parallelizable sub-graphs do
not divide well, the DCS algorithm will split some of the nodes as longs as the parallel
time decreases.

5.3.2.1 Measuring Instead of Computing

Using dynamic measurements, it is possible to do a parallel time measurement in between
each iteration of the DCS scheduler. Measuring the parallel time instead of calculating
it using node weights, is more accurate, since the measured node weights do not always
represent the execution time in a specific schedule and assignation.

5.3.2.2 Sequential Splitting

The first proposed splitting strategy is Sequential Splitting in which a Super Node is split
“Sequentially”, that is, in each iteration, split the bottom-nodes from the other nodes in
the Super Node’s graph, and keep continuing until the accumulated weight difference
between both sub-sets of nodes is as small as possible. After the split point, and thus
two sub-sets of nodes are determined, created two Super Node’s (s0 and s1) having a
single edge in between such that no dependencies are violated. Note that this dependency
may be quite coarse compared to the underlying dependencies, however, this could be
advantageous cause now only a single producer and consumer is required to resolve the
dependency (if scheduled to different cores). This method is called sequential splitting
because dividing the newly created Super Nodes (s0 and s1) over two cores, will always be
slower than sequential execution on a single core, since execution of s1 cannot commence
before all nodes in s0 have been executed. However, because of the sequential split, there

60 CHAPTER 5. AUTOMATED FRAMEWORK

is more freedom in placement on a single core. It is for example possible to execute s0,
another Super Node in between, followed by s1.

5.3.2.3 Parallel Splitting

The second proposed strategy is Parallel splitting in which a Super Node is split in a
parallel fashion. The idea is to identify all split/fork and merge/join nodes in the graph.
Each disjoint path between a split and merge node, or split and end node, should in
theory parallelize well given that the paths are of similar weight. A split node is defined
as a node with two or more outgoing edges, a merge node is a node having two or
more incoming edges. A node can also be both a split and a merge node at the same
time. Figure 5.11 depicts an example graph were all split (S) and merge (M) nodes are
identified.

0

S

1

2

3

4

M 6

M5

Figure 5.11: Split and merge nodes example.

Using the parallel split method, the Super Node graph example found in Figure 5.11
can be split in several ways. For example a possible split would be nodes (n0, n1, n2, n4)
and (n3, n5, n6). In which it is also possible to include n0 in the other node set or n6
vice versa. Or split between split node n0 and merge node n4 instead of n0 and n6.
Within the split routine, the combination of parallel paths should be found in which the
weight difference between the paths is as small as possible. Note that in contrast to the
Sequential Splitting method, the Parallel Splitting method may split a Super Node in
more than two new Super Nodes, which depends on the amount of parallel paths that
can be found.

5.3.2.4 Exposing Super Nodes

Another strategy is the more simplistic approach, that is, exposing all nodes within a
Super Node, thus basically destroying the Super Node itself. Using this strategy, the
“top-level” scheduler (which schedules the Super Graph) itself is given scheduling freedom
of all nodes in the exposed Super Node.

5.3.2.5 Algorithm Steps

The DCS scheduler follows the following steps:

5.3. SCHEDULER FRAMEWORK 61

1. Construct a Super Graph by identifying each sub-graph in the main DAG and
creating Super Nodes of these sub-graphs.

2. Use the internal scheduler to construct a schedule.

3. Use the performance measurement framework to extract the initial Parallel Time
ptcurrent.

4. Order all nodes in the Super Graph by node weight and put them into a list Ln.

5. For all nodes in this list nx ∈ Ln:

(a) If the node is a Super Node and the amount of nodes is higher than 1:

i. Use on of theSuper Node splitting techniques.
ii. Using the internal scheduler, schedule the Super Graph again which inter-

nally calls each single core scheduler contained within each Super Node.
iii. Perform a Dynamic Custom Measurement to extract the new Parallel

Time ptnew, furthermore update the weights of each Super Node.
iv. If ptnew < ptcurrent then update the value ptcurrent = ptnew.
v. Else Terminate.

To identify each subgraph and create a Super Graph, a fill-based graph traversing algo-
rithm was applied. The steps are shown below:

1. Get a list of undiscovered nodes containing all bottom nodes Lundiscovered.

2. Initialize a list of subgraph nodes lists Lsubgraphs.

3. While Lundiscovered 6= ∅:

(a) Pop the first node in the list nx = Lundiscovered[0].
(b) Get a list of all direct and indirectly connected nodes Lconn =

GetConnected(nx) and add this list to to the list of sub-graph node lists
Lsubgraphs.

(c) Remove all nodes that resides in both the undiscovered and connected list
from the undiscovered list, i.e. remove the intersection Lundiscovered ∩ Lconn

from Lundiscovered. This is mandatory since a sub-graph might include several
bottom nodes.

4. For all subgraph node lists Lsub in the list of subgraph nodes list: Lsub ∈ Lsubgraphs

(a) Create a subgraph of the complete graph using the nodes in Lsub thereby
adding all the required edges from the complete graph to the subgraph.

(b) Create a Super Node and add the newly created subgraph.
(c) Add the new Super Node to the Super Graph.

In order to find all direct and indirectly connected nodes of a node nx the following steps
are performed:

1. Input: nx.

62 CHAPTER 5. AUTOMATED FRAMEWORK

2. Create an empty node list Lconnected.
3. Call the method GetAllConnected(Lconnected, nx) whilst supplying the empty list

and nx.
4. Output: Lconnected.

The GetAllConnected() method follows the following steps:
1. Input: nx, Lconnected.
2. Add nx to Lconnected.
3. Get all direct neighbors of nx, that is, all direct predecessors and successors
GetDirectNeighbors(nx).

4. For all direct neighbors ny ∈ GetDirectNeighbors(nx):

(a) If not already processed ny /∈ Lconnected:

i. Do a recursive call to find the connected nodes to which ny connects
GetAllConnected(Lconnected, ny).

5. Output: Lconnected.

5.3.3 Transitive Reduction

During the pre-analysis phase it was observed that redundant edges may be introduced
within the task graph (see Section 4.2). These redundant edges makes the scheduling
process more difficult, furthermore adds up to the total time it takes to produce a
schedule. A possible solution is to remove these redundant edges, which is better known
as transitive reduction. However it could also worsen the performance of the schedule
because, even though the edge is redundant, there is still data to be shared between the
tasks connected to this edge, which is likely to introduce an additional penalty if these
tasks are mapped to different processing units. Transitive reduction is applied using the
following steps:

1. For all edges in the graph ex ∈ E:

(a) Get the predecessors of the destination node PRED(dst(ex)).
(b) For all predecessors nx ∈ PRED(dst(ex)):

i. If nx is a descendant of the source node src(ex), remove the edge ex from
the graph.

To check if a node nx is a descendant of another node ny the following steps are followed:
1. Input: nx and ny.
2. If nx = ny return true and terminate.
3. Else get all direct and indirect predecessors of nx.
4. If ny appears in this predecessor list return true and terminate.
5. Return false and terminate.

5.4. CONCLUSION 63

5.3.4 Implemented Designs

Besides the transitive reduction implementation, during the iterative implementation
phase, the following schedulers were implemented and added to the ESL:

• Original Mapped and Non-mapped schedulers

• Single Core (used within Dynamic Measurements)

• Edge Isolated (used within Dynamic Measurements)

• Guard Isolated (used within Dynamic Measurements)

• HLFET

• ISH

• Internalization using Sarkar’s PA

• Internalization using Load Balancing PA

• DAC

5.4 Conclusion

In this chapter the design for the automated framework was presented. An overview of the
complete design was given, as well as the designs for both the scheduling and performance
measuring frameworks. In addition an overview was given of all designs that were
eventually implemented. In the next chapter, the results are presented for the measuring
framework, furthermore all implemented schedulers within the ESL are compared against
each other, which includes the original Mapped and Non-mapped algorithms.

64 CHAPTER 5. AUTOMATED FRAMEWORK

Experimental Results 6
In this chapter, a brief overview is given of the implemented solutions that were described
in the previous chapter. In between implementation steps, intermediate results are
presented which (among other things) have been used to decided upon the next step in
the iterative implementation process. Last but not least, a complete overview is given in
which all results are compared against each other.

6.1 Dynamic Measurements

Figure A.2 in Appendix A.4 presents the weights found using all dynamic measurement
methods combined for PPCx3 and Figure A.3 in Appendix A.4 presents the graph for
XEONx3. It is shown that the core-to-core penalty is quite significant compared to the
weight of each node in the graph. Moreover it is shown that sensors require the least
amount of computational time, however, are often paired with relatively high connected
edge weights. As already indicated in Section 5.2.2.2, the method of dynamic edge weight
measuring is not able to isolate cache influences, which is expected to be reflected by the
edge weights that are found.

It is expected that edges between similar components should have a similar edge
weight (e.g. sensor to control network, or sensor to matrix). Analyzing the figures, it is
clear that the expectation holds for the bulk part of both graphs. All edges that ought
to have a similar weight, are within the same order of magnitude. There do exists some
outliers though, which can either be explained due to the aforementioned shortcomings
of the edge measurement method or simply because there is more data to share on that
edge. After analyzing the implementation, it was shown that the latter was not the
case. Because of this, a more simplistic static edge measurement method, might do a
similar or even better job at determining relevant edge weights. Another option would
be to average out the results found during the dynamic edge measurements for each of
these similar edges, however, this requires a method that can (accurately) identify these
“similar edges” in such a way that it also applies to any future PMP products, which may
or may not contain these edges.

6.2 Comparing Schedulers

In order to compare each implementation against the original scheduler, the average
task execution time for both phases (calculate and prepare) is measured using the same
methodology as described in the analysis (Chapter 4). The analysis was performed at
an early stage of research, since then, the measurement methodology has been improved.
Moreover as mentioned in Chapter 5, PMP itself is an ever ongoing development process.

65

66 CHAPTER 6. EXPERIMENTAL RESULTS

Because of this, the results presented in this chapter for the original solution, differs from
the results found during the analysis. In order to allow for a fair comparison between
all algorithms (which includes the original solution), all results presented in this chapter
have been gather whilst using the exact same state of development. As presented in
Chapter 4, the prepare and calculate task-sets can be seen as two individual sets, divided
by a multi-core synchronization point. In order to measure performance, first the parallel
time of both task-sets is calculated (which is determined by the highest occurring total
execution time amongst all cores), then the sum of both parallel times found, is used as
the main performance metric.

6.3 Highest Level First with Estimated Times

The HLFET algorithm has been implemented according to the steps described in Section
3.2.1.2. After finishing the HLFET implementation it was compared against the original
scheduling algorithm. The timing results for the calculate and prepare DAGs are pre-
sented in Figure 6.1. As expected, the HLFET algorithm does not perform well for the
calculate tasks, because it does not take into account the edge weights. As a consequence,
many core-to-core dependencies are introduced, which are resolved using the producer
and consumer execution guard model. The graph clearly shows a significant amount of
red bars, which indicate long idle periods caused by the introduced execution guards.

For the prepare tasks it was expected that HLFET would probably perform well,
since the prepare DAG is almost free of any dependencies. Unfortunately, the HLFET
algorithm still manages to introduce a core-to-core dependency, which introduces unnec-
essary idle times. Interestingly the Non-mapped scheduler seems to outperform in both
phases, thus it seems that the Non-mapped scheduler is better than the HLFET sched-
uler for scheduling the prepare tasks. However, the Non-mapped round-robin scheduler
has a major disadvantage compared to HLFET . Coincidentally the division of tasks
by sub-controller, assuming static data re-usage moreover assuming each sub-controller
task-set requires an equal amount of computation time, works well for the PPCx3 product.
However, this may not be the case for other (new) products. If for example the task-sets
belonging to the sub-controllers have significant differences in terms of computational
complexity, it is expected that the HLFET scheduler -which does take into account the
computational load- will do a better job scheduling all tasks.

As mentioned earlier the execution time of both the prepare and calculate phases were
added for the Non-mapped (∼ 21.63µs) and Mapped variant (∼ 21.21µs) and compared
against HLFET (∼ 22.84µs). Using this metric it is shown that HLFET performs ∼ 7.7%
worse than the mapped variant and ∼ 5.6% worse than the non-mapped variant. The
results can also be found in table form (see Table 6.1).

Table 6.1: HLFET relative performance for PPCx3.

Non-mapped Mapped

HLFET −5.64% −7.70%

The HLFET scheduler has also been tested on the XEONx3 platform (see Figure

6.3. HIGHEST LEVEL FIRST WITH ESTIMATED TIMES 67

6.3). The XEONx3 platform contains a lot more tasks, and a completely different graph
structure compared to PPCx3. Unfortunately XEONx3 has no hardware drives connected,
thus the original scheduler maps all the tasks to the first core in the system. The Mapped
variant has been left out of the comparison since it produces the same results as the
Non-mapped variant, because no configuration file has been created for XEONx3 yet,
besides, a configuration file cannot be created anyway, since there are no drives (and thus
no sub-controllers), that can be assigned. Because of this, it is less interesting to compare
the performance of the original schedulers to HLFET . It does however clearly show the
shortcomings of the original scheduling implementations. The results are presented in
Figure 6.3a and 6.3b. Furthermore, in Table 6.2, the relative percentages can be found.

Table 6.2: HLFET relative performance for XEONx3.

Non-mapped

HLFET 34.30%

Last but not least, the total time for each scheduler to produce a schedule has been
measured. On average, HLFET takes less than a second to schedule both graphs on
PPCx3. On XEONx3, HLFET requires 39 seconds to produce a valid schedule. Both
well beneath the one minute requirement.

0 2000 4000 6000 8000 10000
Time[ns]

0

1

2

Co
re

Nu
m

HLFET

HLFET

HLFET

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task execution timing
diagram.

0 2000 4000 6000 8000 10000 12000
Time[ns]

0

1

2

Co
re

Nu
m

HLFET

HLFET

HLFET

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_prep.dot

(b) Average Prepare task execution timing
diagram.

Figure 6.1: CLC task execution timing diagrams for PPCx3 using HLFET
Light-green bars represent Sensor tasks, blue: Actuator tasks, green: Other tasks, purple:

Producers, light-red: Consumers, dark-red: preceding tasks.

68 CHAPTER 6. EXPERIMENTAL RESULTS

calc_input_container_time prep_input_container_time
0

5

10

15

20
Ex

ec
ut

io
n

Ti
m

e
[u

s]

10.29
12.52

8.28

1.16

11.00 10.08

Core 0
HLFET
Mapped
Non-mapped

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

9.89
11.27

7.00

11.85

7.70
5.85

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

9.21

12.55

5.30

12.93

4.30

10.62

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

10.29
12.55

8.28

12.93
11.00 10.62

Max

Figure 6.2: PPCx3 execution time comparison using HLFET .
The bottom subgraph labeled “max” shows the maximum execution time value over all cores

which indicates the total time it takes to finish the execution of the schedules.

0 1000 2000 3000 4000 5000 6000 7000
Time[ns]

0

1

2

Co
re

Nu
m

HLFET

HLFET

HLFET

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task execution timing
diagram.

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.06

7.18

Core 0
HLFET
Non-mapped

calc_input_container_time
0

1

2

3

4

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

2.84

0.00

Core 1

calc_input_container_time
0

2

4

6

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

0.00

Core 2

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

7.18

Max

(b) XEONx3 execution time compari-
son using HLFET .

Figure 6.3: XEONx3 results.
See Figures 6.1 and 6.2 for the colour descriptions.

6.4 Internalization

The Internalization clustering algorithm is the first clustering algorithm that has been
implemented. The algorithm has been implemented according to the steps presented in
Section 3.2.3.1.

Figure A.5 in Appendix A.6 show some clustering iterations of the Internalization
clustering algorithm in PPCx3. The figure depicts that, as expected, Internalization
clustering starts of by creating clusters for each node in the graph and ends with a

6.4. INTERNALIZATION 69

clustered graph assuming an unlimited amount of processing resources.

6.4.1 Sarkar’s Processor Assignment

The clustering algorithm described above creates a clustered graph assuming an un-
bounded number of processing resources. To map the clusters to the available physical
resources, a so called Processor Assignment algorithm is required. The first Processor
Assignment (PA) algorithm that was implemented is Sarkar’s Processor Assignment
algorithm.

Figure 6.5 and 6.6 present the performance compared to the original scheduler, us-
ing Internalization including Sarkar’s Processor Assignment algorithm. Compared to
HLFET , Internalization using Sarkar PA introduces far less core-to-core dependencies
and thus fewer guards are added to the schedule. Unfortunately on PPCx3, some of
these core-to-core dependencies are placed in an unfortunate position, which introduces
significant idle times on both cores c1 and c2. However, since core c0 still finished last, it
does not affect the parallel time.

The introduced idle periods can either have been deliberately introduced by the
scheduler, or the execution times show significant deviations from the measured values,
in which the scheduler could not have made the right decisions. In order to find out,
the measured node weights during scheduling were compared against the measured node
execution time during system operation. The results are presented in Figure 6.4.

Given the relatively low timer precision of PPCx3 (∼ 85.3ns), the bulk of all dif-
ferences found in the prepare phase are negligible, since the absolute value of these
differences are lower than the precision of the timer. There do exist some outliers though,
where the final average execution time is higher than was measured during dynamic
measurements, however, these variations are expected since changing a schedule can have
a significant impact on cache (re)-usage, which in turn affects the execution time. Within
the calculate phase, the differences are on average a bit higher compared to the prepare
phase. Furthermore two large peaks can be observed in which the expected execution
time does not at all reflect the execution time within the schedule. Fortunately these large
peaks do not occur often, unfortunately it is difficult to take these peaks into account.
Significant execution time differences can occur when sub-controller tasks sharing some
static data with non-sub-controller related tasks, which are scheduled onto different cores.
However, as indicated in Chapter 4, the non-sub-controller related tasks are static and
cannot be dynamically scheduled or assigned.

70 CHAPTER 6. EXPERIMENTAL RESULTS

0 10 20 30 40
TaskId

1000

750

500

250

0

250

500

750

1000

Ti
m

e
di

ffe
re

nc
e

(b
ef

or
e

- a
fte

r)[
ns

]

Measurement differences

(a) Differences in the calculate phase.

0 50 100 150 200 250 300 350
TaskId

300

200

100

0

100

Ti
m

e
di

ffe
re

nc
e

(b
ef

or
e

- a
fte

r)[
ns

]

Measurement differences

(b) Differences in the preparation phase.

Figure 6.4: Differences in measured average execution times found during dynamic
measurements and extracted after scheduling in the PPCx3 product.

In contrast to PPCx3, Internalization using Sarkar PA performs quite well in the
XEONx3 product. Observing Figure 6.7a it is shown that, even though XEONx3 contains
a lot more edges, Internalization using Sarkar PA introduces relatively short amounts of
idle periods.

Compared to HLFET , Internalization using Sarkar PA performs slightly better for
both DAGs. Adding up both the execution time of the prepare and calculate phases,
Internalization using Sarkar PA performs ∼ 4.3% better than HLFET , ∼ 3.1% worse
than the Mapped variant and ∼ 1.1% worse than the Non-mapped variant for PPCx3. In
XEONx3, Internalization using Sarkar PA performs ∼ 23% better compared to HLFET ,
which is a significant improvement.

Table 6.3: Internalization using Sarkar PA relative performance for PPCx3.

Non-mapped Mapped HLFET

Internalization using Sarkar PA −1.11% −3.08% 4.29%

Table 6.4: Internalization using Sarkar PA relative performance for XEONx3.

Non-mapped HLFET

Internalization using Sarkar PA 49.61% 23.31%

On average Internalization using Sarkar PA takes less than a second to schedule
and assign the calculate DAG, and 7 seconds to schedule the prepare DAG on PPCx3.
On XEONx3, Internalization using Sarkar PA requires 200 seconds to produce a valid
schedule, which is above the 1 minute requirement.

Internalization using Sarkar PA shows a lot of variation in producing a valid schedule,
values twice as high as the average value, moreover ten times as low as the average value,
are no exception. After timing analysis, it was shown that the major bottleneck of the
algorithm is the introduction of many virtual edges after clusters are merged, especially

6.4. INTERNALIZATION 71

at the end of the algorithm where clusters are of significant sizes. Merging these relatively
large clusters, introduces many virtual edges to represent ordering. Re-calculation of the
bottom-levels therefore takes up a lot of time.

The current implementation completely re-orders a cluster Cm after merging two
clusters (C1 and C2). A possible optimization would be to improve the bottom-level
calculation such that it can skip parts of the graph that did not change after merging.
Furthermore the merging process itself can be improved by keeping the virtual edges
in C1 and C2, and remap (and add were needed) virtual edges instead of merging the
clusters, removing all virtual edges, and re-ordering the new cluster Cm again, which is
the current implemented strategy.

Since Internalization using Sarkar PA is unable to finish with a minute on XEONx3,
it fails to comply with one of the performance requirements.

0 2000 4000 6000 8000 10000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

0 2000 4000 6000 8000 10000 12000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_prep.dot

(b) Average Prepare task timing diagram.

Figure 6.5: Task execution timing diagrams for PPCx3 with Internalization using Sarkar
PA

See Figure 6.1 for a description of all attributes.

72 CHAPTER 6. EXPERIMENTAL RESULTS

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

8.28

1.16

11.00 10.089.69
11.47

Core 0
Mapped
Non-mapped
Sarkar_PA_Sarkar

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

7.00

11.85

7.70
5.85

8.94
10.39

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

5.30

12.93

4.30

10.62
8.64

12.17

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

8.28

12.93
11.00 10.629.69

12.17

Max

Figure 6.6: PPCx3 execution time comparison with Internalization using Sarkar PA.
See Figure 6.2 for a description of all attributes.

0 1000 2000 3000 4000 5000 6000 7000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Internalization_PA_Sarkar

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.18

2.85

Core 0
Non-mapped
Interlalization_PA_Sarkar

calc_input_container_time
0

2

4

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

0.00

3.62

Core 1

calc_input_container_time
0

2

4

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

0.00

3.23

Core 2

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.18

3.62

Max

(b) XEONx3 execution time compari-
son with Internalization using Sarkar
PA.

Figure 6.7: XEONx3 results
See Figures 6.1 and 6.2 for the colour descriptions.

6.4.2 Load Balancing Processor Assignment

In the previous section, the Internalization using Sarkar PA algorithm was described.
It was shown that the algorithm introduces long idle periods in the calculate schedule
of PPCx3. It was shown that a potential cause could be the inaccuracy of the node
measurements. It could however also be the case that the clusters are poorly chosen by
the Internalization algorithm or the Sarkar Processor Assignment algorithm does not
work well in general for PPCx3. In order to clarify this, a second PA algorithm was
implemented that uses a more simplistic cluster merging tactic, which in addition, is

6.4. INTERNALIZATION 73

also expected to reduce the scheduling run-time. The Load Balancing PA algorithm
uses Round Robin / Simple Load Balancing to equally divide the clusters created by the
Internalization clustering algorithm, over the available hardware resources.

Surprisingly, despite having a relatively simplistic design, Internalization using Load
Balancing PA performs∼ 10.25% better than HLFET , ∼ 6.2% better than Internalization
using Sarkar PA, ∼ 3.3% better than the Mapped variant and ∼ 5.2% better than the
Non-mapped variant for PPCx3.

In XEONx3 Internalization using Load Balancing PA performs ∼ 12.3% better com-
pared to HLFET and ∼ 14.4% worse than Internalization using Sarkar PA. The latter
shows that schedulers may perform better or worse depending on the graph structure.

Table 6.5: Internalization using Load Balancing PA relative performance for PPCx3.

Non-mapped Mapped HLFET Internalization using Sarkar PA

Internalization using Load Balancing PA 5.19% 3.35% 10.25% 6.23%

Table 6.6: Internalization using Load Balancing PA relative performance for XEONx3.

Non-mapped HLFET Internalization using Sarkar PA

Internalization using Load Balancing PA 42.38% 12.31% −14.34%

On average Internalization using Load Balancing PA takes less than a second to
schedule and assign both task graphs on PPCx3. On XEONx3, the algorithm requires
5 seconds to produce a valid schedule, which is far less than the Sarkar PA algorithm.
Internalization using Load Balancing PA is the first algorithm, able to produce schedules
within the 1 minute mark for all products, whilst meeting the performance requirements.

0 2000 4000 6000 8000 10000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

0 2000 4000 6000 8000 10000 12000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_prep.dot

(b) Average Prepare task timing diagram.

Figure 6.8: Task execution timing diagrams for PPCx3 with Internalization using Load
Balancing PA.

See Figure 6.1 for a description of all attributes.

74 CHAPTER 6. EXPERIMENTAL RESULTS

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

8.28

1.16

11.00 10.08
8.56

11.32

Core 0
Mapped
Non-mapped
Sarkar_PA_Load_Balancing

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

7.00

11.85

7.70
5.85

7.78

11.04

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

5.30

12.93

4.30

10.62
8.65

11.85

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

8.28

12.93
11.00 10.62

8.65

11.85

Max

Figure 6.9: PPCx3 execution time comparison with Internalization using Load Balancing
PA.

See Figure 6.2 for a description of all attributes.

0 1000 2000 3000 4000 5000 6000 7000
Time[ns]

0

1

2

Co
re

Nu
m

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Internalization_PA_Load_Balancing

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.18

4.05

Core 0
Non-mapped
Internalization_PA_Load_Balancing

calc_input_container_time
0

2

4

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

0.00

3.28

Core 1

calc_input_container_time
0

2

4

6

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

0.00

4.14

Core 2

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.18

4.14

Max

(b) XEONx3 execution time compar-
ison with Internalization using Load
Balancing PA.

Figure 6.10: XEONx3 results.
See Figures 6.1 and 6.2 for the color descriptions.

6.5 Insertion Scheduling Heuristic

ISH is based on the same metric as HLFET , that is, the Earliest Start Time. The ISH
algorithm uses the insertion approach to fill in idle gaps of the schedule. Since ISH and
HLFET share the same metric, parts of the HLFET implementation have been reused.
The ISH algorithm has been implemented according to the steps described in Section
3.2.2.2. In Figure 6.11 and 6.12 the performance graphs of ISH are presented for PPCx3.
In contrast to HLFET , ISH introduces far less core-to-core dependencies, because it
takes into account edge weights. Furthermore it is shown that the idle times introduced

6.5. INSERTION SCHEDULING HEURISTIC 75

within the schedule have a relatively short duration compared to the results found in
Internalization using Sarkar PA for example. In the schedule produced by ISH , each
producer proceeds the corresponding consumer, which is desired when guards are inserted.
Performance wise, the ISH algorithm is comparable with Internalization using Sarkar PA
in PPCx3. The calculate phase is marginally faster than Sarkar, and the inverse holds for
the prepare phase, leaving a negligible net difference. For XEONx3 however, the story is
different. Within XEONx3, the performance of ISH is comparable with Internalization
using Load Balancing PA, however, Internalization using Sarkar PA outperforms both by
a significant amount. Compared to HLFET , ISH definitely introduces less idle periods
within the schedule of XEONx3, however, Internalization using Sarkar PA introduces
even less.

ISH performs ∼ 4.1% better than HLFET , equal compared to Internalization using
Sarkar PA, ∼ 6.9% worse than Internalization using Load Balancing PA, ∼ 3.3% worse
than the Mapped variant and ∼ 1.3% worse than the Non-mapped variant for PPCx3.

On XEONx3, ISH performs ∼ 11.8% better than HLFET , ∼ 15.0% worse than
Internalization using Sarkar PA and is evenly matched with Internalization using Load
Balancing PA.

Table 6.7: ISH relative performance for PPCx3.

Non-mapped Mapped HLFET Internalization using Sarkar PA Internalization using Load Balancing PA

ISH −1.32% −3.29% 4.09% −0.21% −6.87%

Table 6.8: ISH relative performance for XEONx3.

Non-mapped HLFET Internalization using Sarkar PA Internalization using Load Balancing PA

ISH 42.04% 11.79% −15.01% −0.59%

ISH requires less than a second to schedule both graphs on PPCx3. On XEONx3
however, ISH requires 475 seconds to produce a valid schedule, which is far beyond the
one minute limit. As will be explained in the upcoming scalability analysis, the EST
based algorithms do not seem to scale up very well. The implementation could probably
be optimized (especially the EST calculation, which showed to be the main bottleneck
during timing analysis), however, since both HLFET and ISH are overshadowed by the
clustering based algorithms, there has been no effort put into optimizing the EST based
schedulers.

76 CHAPTER 6. EXPERIMENTAL RESULTS

0 2000 4000 6000 8000 10000
Time[ns]

0

1

2

Co
re

Nu
m

ISH

ISH

ISH

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task execution timing
diagram.

0 2000 4000 6000 8000 10000 12000
Time[ns]

0

1

2

Co
re

Nu
m

ISH

ISH

ISH

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_prep.dot

(b) Average Prepare task execution timing
diagram.

Figure 6.11: CLC task execution timing diagrams for PPCx3 using ISH .
See Figure 6.1 for a description of all attributes.

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

6.93

12.54

8.28

1.16

11.00 10.08

Core 0
ISH
Mapped
Non-mapped

calc_input_container_time prep_input_container_time
0

5

10

15

Ex
ec

ut
io

n
Ti

m
e

[u
s]

7.86
10.49

7.00

11.85

7.70
5.85

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

9.37
11.10

5.30

12.93

4.30

10.62

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

[u
s]

9.37

12.54

8.28

12.93
11.00 10.62

Max

Figure 6.12: PPCx3 execution time comparison using ISH .
See Figure 6.2 for a description of all attributes.

6.5. INSERTION SCHEDULING HEURISTIC 77

0 1000 2000 3000 4000 5000 6000 7000
Time[ns]

0

1

2

Co
re

Nu
m

ISH

ISH

ISH

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.06

7.18

Core 0
HLFET
Non-mapped

calc_input_container_time
0

1

2

3

4

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

2.84

0.00

Core 1

calc_input_container_time
0

2

4

6

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

0.00

Core 2

calc_input_container_time
0.0

2.5

5.0

7.5

10.0

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

7.18

Max

(b) XEONx3 execution time compari-
son using ISH .

Figure 6.13: XEONx3 results.
See Figures 6.1 and 6.2 for the color descriptions.

78 CHAPTER 6. EXPERIMENTAL RESULTS

6.6 Dynamic Cluster Splitting

The last implemented scheduling algorithm, is the DCS method from Section 5.3.2. Each
of the described splitting methods have been implemented, however, not all methods
showed promising initial results. Furthermore, due to the limited amount of development
time, a proper analysis of the methods was not possible. Not all implementations could be
verified in time, furthermore no further improvements were possible. Therefore only the
method will be discussed which showed the most promising performance results, in which
the results can be used for future developments of the scheduling framework. The split
strategy showing the most promising results was the the Super Node “Exposure” strategy
in combination with Internalization using Load Balancing PA as internal scheduler.

Figure 6.14 and 6.15 show the performance of the DCS scheduler for PPCx3. It is
shown that the DCS scheduler does not introduce any core to core dependency. According
to the DCS scheduler, all subgraphs found within PPCx3 map quite well over the available
cores, without requiring lots of splitting. The total run-time of DCS within PPCx3 is
therefore relatively low, whilst it is still able to perform well.

0 2000 4000 6000 8000 10000
Time[ns]

0

1

2

Co
re

Nu
m

DAC

DAC

DAC

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_calc.dot

(a) Average Calculate task timing diagram.

0 2000 4000 6000 8000 10000 12000
Time[ns]

0

1

2

Co
re

Nu
m

DAC

DAC

DAC

Mapped

Mapped

Mapped

Non-mapped

Non-mapped

Non-mapped

cod_prep.dot

(b) Average Prepare task timing diagram.

Figure 6.14: Task execution timing diagrams for PPCx3 using DCS .
See Figure 6.1 for a description of all attributes.

6.7. COMPARISON 79

calc_input_container_time prep_input_container_time
0

5

10

15

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

8.89

11.91

8.28

1.16

11.00
10.08

Core 0
DCS
Mapped
Non-mapped

calc_input_container_time prep_input_container_time
0

5

10

15

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.86

11.13

7.00

11.85

7.70
5.85

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

5.74

11.45

5.30

12.93

4.30

10.62

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

8.89

11.91

8.28

12.93
11.00 10.62

Max

Figure 6.15: PPCx3 execution time comparison using DCS .
See Figure 6.2 for a description of all attributes.

In contrast to PPCx3, XEONx3 does not have many disjoint sub-graphs within its
complete Directed Acyclic Graph. Therefore the use of the DCS scheduler is not beneficial
using the super node exposure method, since it will expose all super nodes immediately,
therefore constructing the initial graph again. Because of this, the internal scheduler
(Sarkar with Load Balancing PA in this case) determines the complete scheduling process,
thus showing no difference to the performance achieved using Sarkar with Load Balancing
PA as stand-alone scheduling method.

All in all, DCS performs ∼ 9.0% better than HLFET , ∼ 4.9% better than Internal-
ization using Sarkar PA, ∼ 1.4% worse than Internalization using Load Balancing PA,
∼ 2.0% better than the Mapped variant and ∼ 3.8% better than the Non-mapped variant
for PPCx3. Given that the performance of XEONx3 is equal to the performance of the
internal scheduler, DCS is -like Internalization using Load Balancing PA- able to comply
with all requirements. The total run-time for both products remains beneath a minute
however scalability might be an issue, which is explained in Section 6.8.3.

Table 6.9: DCS relative performance for PPCx3.

Non-mapped Mapped HLFET Internalization using Sarkar PA Internalization using Load Balancing PA ISH

DCS 3.83% 1.96% 8.97% 4.89% −1.43% 5.09%

6.7 Comparison

Figure 6.16 and 6.17 present the performance results for PPCx3 and Figure 6.18 presents
the performance results for XEONx3. Combining both phases, Internalization using
Load Balancing PA performs best within PPCx3, followed by the DCS scheduler. Within
XEONx3, Internalization using Sarkar PA outperforms all other implementations. DCS

80 CHAPTER 6. EXPERIMENTAL RESULTS

is left out of the graph in Figure 6.18 since XEONx3 does not contain many disjoint
sub-graphs. Because of this, the node exposure technique, which is currently used,
immediately exposes all nodes in the graph, meaning that the performance is equal to
the internal scheduler that is used. In Table 6.10 and 6.11 the performance increase in
percentage is presented for each scheduler compared to each other.

calc_input_container_time prep_input_container_time
0

5

10

15

20

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

8.89

11.91
10.29

12.52

6.93

12.54

8.28

1.16

11.00
10.08

8.56

11.32
9.69

11.47

Core 0
DCS
HLFET
ISH
Mapping
Non-mapped
Internalization_PA_LB
Internalization_PA_Sarkar

calc_input_container_time prep_input_container_time
0

5

10

15

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

7.86

11.13
9.89

11.27

7.86

10.49

7.00

11.85

7.70
5.85

7.78

11.04

8.94
10.39

Core 1

calc_input_container_time prep_input_container_time
0

5

10

15

20

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

5.74

11.45

9.21

12.55

9.37
11.10

5.30

12.93

4.30

10.62
8.65

11.85

8.64

12.17

Core 2

calc_input_container_time prep_input_container_time
0

5

10

15

20

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

8.89

11.91
10.29

12.55

9.37

12.54

8.28

12.93
11.00 10.62

8.65

11.85
9.69

12.17

Max

Figure 6.16: PPCx3 execution time comparison per phase.

Table 6.10: Performance Increase in Percentage for PPCx3.

Scheduler: Non-mapped Mapped HLFET Internalization PA Sarkar Internalization PA LB ISH DAC

Non-mapped 0.00% 1.91% -5.64% -1.11% 5.19% -1.32% 3.83%
Mapped 0.00% -7.70% -3.08% 3.35% -3.29% 1.96%
HLFET 0.00% 4.29% 10.25% 4.09% 8.97%
Internalization PA Sarkar 0.00% 6.23% -0.21% 4.89%
Internalization PA LB 0.00% -6.87% -1.43%
ISH 0.00% 5.09%
DAC 0.00%

Table 6.11: Performance Increase in Percentage for XEONx3.

Scheduler: Non-mapped HLFET Internalization PA Sarkar Internalization PA LB ISH

Non-mapped 0.00% 34.30% 49.61% 42.38% 42.04%
HLFET 0.00% 23.31% 12.31% 11.79%
Internalization PA Sarkar 0.00% -14.34% -15.01%
Internalization PA LB 0.00% -0.59%
ISH 0.00%

6.7. COMPARISON 81

combined_input_container_time
0

10

20

30

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

20.79
22.81

19.46

9.44

21.08 19.87 21.17

Core 0
DCS
HLFET
ISH
Mapping
Non-mapped
Internalization_PA_LB
Internalization_PA_Sarkar

combined_input_container_time
0

10

20

30

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

19.00
21.16

18.35 18.85

13.54

18.82 19.33

Core 1

combined_input_container_time
0

10

20

30

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

17.18

21.76 20.48
18.24

14.92

20.50 20.80

Core 2

combined_input_container_time
0

10

20

30

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

20.79
22.84 21.91 21.21 21.62 20.50 21.86

Max

Figure 6.17: PPCx3 execution time comparison combined.

calc_input_container_time prep_input_container_time
0

2

4

6

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

2.84

0.0

3.47

0.0

4.16

0.0

3.31

0.00.0 0.00.0 0.0

3.28

0.0

3.74 3.62
4.18

Core 1calc_input_container_time prep_input_container_time
0

2

4

6

8

10

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.06

0.0

4.18

0.0

3.23

0.0

4.31

0.0

7.18

0.0

7.11

0.0

4.05

0.0

3.96

2.85
3.37

Core 0

calc_input_container_time prep_input_container_time
0

2

4

6

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

0.0

4.55

0.0

3.80

0.0

2.83

0.00.0 0.00.0 0.0

4.14

0.0

4.40

3.23
3.89

Core 2

calc_input_container_time prep_input_container_time
0

2

4

6

8

10

E
xe

cu
ti
o
n
 T

im
e
 [

u
s]

4.72

0.0

4.55

0.0

4.16

0.0

4.31

0.0

7.18

0.0

7.11

0.0

4.14

0.0

4.40
3.62

4.18

Max

HLFET
HLFET_transitive_reduction
ISH
ISH_transitive_reduction
Non-mapped
Non-mapped_transitive_reduction
Internalization_PA_LB
Internalization_PA_LB_transitive_reduction
Internalization_PA_Sarkar
Internalization_PA_Sarkar_transitive_reduction

2.84

3.47

4.16

3.31

0.0 0.0

3.28
3.74 3.62

4.18

Figure 6.18: XEONx3 execution time comparison.

82 CHAPTER 6. EXPERIMENTAL RESULTS

6.7.1 Transitive Reduction Results

Transitive reduction is only applicable in the XEONx3 product. Within XEONx3, 19 re-
dundant edges could be removed from the graph. Using transitive reduction, as expected,
the average scheduler run-time reduces for all implementations. However transitive reduc-
tion itself also costs time, making the net gain negligible within XEONx3. In Figure 6.18
the performance differences are presented for each scheduling implementation, with, and
without transitive reduction. Unfortunately, in almost every case, transitive reduction
worsens the schedule performance. Only HLFET seems to improve slightly, though the
difference is too small in order to draw any conclusions. In Section 5.3.3 it was already
mentioned that the performance might decrease, since, even though these dependencies
are redundant, there is still a penalty to be paid when nodes connected through this
redundant dependency are scheduled onto different cores.

6.8 Scalability Analysis

Even though most scheduler implementations are able to produce schedules for each
product within a minute, it is important to analyze the scalability of each algorithm,
because future products might contain more complex graphs. To check scalability, random
graphs with varying sizes and edge probabilities were generated. To produce a random
DAG, the steps presented in Appendix B.1 are followed. The graphs created using this
method do not contain any cycles, however, these graphs may contain many redundant
dependencies. To remove these, transitive reduction was applied.

Note that increasing the amount of nodes for a randomly generated graph using a
constant edge probability, also increases the amount of edges in the graph. The edge
probability metric can therefore be interpreted as a unit-less quantity that indicates the
level of complexity for each graph. Furthermore note that around 0.5 to 0.6, the most
complex graphs are generated due to the transitive reduction step that is applied. When
the edge probability exceeds this range, the graphs decrease in complexity because most
edges are redundant and therefore terminated.

Comparing the randomly generated graphs to the graphs in PPCx3 and XEONx3,
using probability ranges [0.05, 0.10] and [0.10, 0.20] respectively, the random graph gen-
erator produces the most similar graphs when comparing the amount of nodes per edge.

6.8.1 Varying Graph Size and Edge Probability

Figure 6.19 depicts the scalability results for graph sizes between 1 and 30 for ISH and
HLFET , and 1 and 50 for the clustering algorithms. The scheduler run-time seem to
increase exponentially with every scheduler, though for ISH and HLFET , the rate of
growth is significantly larger compared to the clustering algorithms, which makes analysis
difficult for graphs sizes exceeding 30 nodes, in combination with 0.6 edge probability.
In the figures it is shown that the graphs for ISH and HLFET are similar, which is
expected, since both algorithms use the same metric and base implementation. For
Internalization using Sarkar PA and Internalization using Load Balancing PA a similar
conclusion can be drawn. Both graphs appear to be identical, though Internalization

6.8. SCALABILITY ANALYSIS 83

using Load Balancing PA has a lower overall run-time, which was also observed earlier
during the implementation phase. Though the difference in run-time between the two
clustering algorithms, observed within XEONx3 during the implementation phase, was
much more significant than is presented in Figure 6.19d, in order to clarify this, a second
analysis was performed.

Edge Chance Percentage

10 20 30 40 50 60
Node Count

10.0
12.5

15.017.520.022.525.027.5
Ex

ec
ut

io
n

Ti
m

e
[s

]

500
1000
1500
2000
2500
3000

 hlfet

(a) HLFET

Edge Chance Percentage

10 20 30 40 50 60
Node Count

10.0
12.5

15.017.520.022.525.027.5

Ex
ec

ut
io

n
Ti

m
e

[s
]

500
1000
1500
2000
2500
3000
3500
4000

 ish

(b) ISH

Edge Chance Percentage

10 20 30 40 50 60
Node Count

101520253035404550

Ex
ec

ut
io

n
Ti

m
e

[s
]

2

4

6

8

 sarkar_sarkar

(c) Internalization using Sarkar PA

Edge Chance Percentage

10 20 30 40 50 60
Node Count

101520253035404550

Ex
ec

ut
io

n
Ti

m
e

[s
]

1

2

3

4

5

 sarkar_load_balancing

(d) Internalization using Load Balancing PA

Figure 6.19: Scalability analysis for increasing edge probabilities and graph sizes.
The scalability analysis has been performed on the slowest multi-core platform: PPCx3.

6.8.2 Constant Edge Probability

Given that the most complex graph in PMP (belonging to XEONx3), is at most as
difficult as the randomly generated graphs using an edge probability of 0.2, a second
analysis was performed using a constant edge probability of 0.2, though with a larger
amount of nodes. The results are presented in Figure 6.20 and 6.21. Observing the
results in Figure 6.19 it seemed as if Internalization using Sarkar PA (in contrary to
the observations in the previous section) scales up at a similar rate as Internalization
using Load Balancing PA. Furthermore Internalization using Sarkar PA seemed to scale
up better than HLFET . However, using larger input graphs, it is shown that HLFET
actually scales better than Internalization using Sarkar PA. Last but not least, the

84 CHAPTER 6. EXPERIMENTAL RESULTS

run-time of Internalization using Load Balancing PA seems to increase at a significantly
lower rate compared to all the other implementations.

0 20 40 60 80 100 120 140 160
Node Count

0

5000

10000

15000

20000

25000

30000

35000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Edge Probability 0.2
 hlfet

(a) HLFET

0 20 40 60 80 100 120 140 160
Node Count

0

50000

100000

150000

200000

250000

300000

350000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Edge Probability 0.2
 ish

(b) ISH

0 20 40 60 80 100 120 140 160
Node Count

0

10000

20000

30000

40000

50000

60000

70000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Edge Probability 0.2
 sarkar_sarkar

(c) Internalization using Sarkar PA

0 20 40 60 80 100 120 140 160
Node Count

0

250

500

750

1000

1250

1500

1750

Ex
ec

ut
io

n
Ti

m
e

[s
]

Edge Probability 0.2
 sarkar_load_balancing

(d) Internalization using Load Balancing PA

Figure 6.20: Scalability analysis for increasing graph sizes and constant edge probability
of 0.2.

The scalability analysis has been performed on the slowest multi-core platform: PPCx3.

6.9. CONCLUSION 85

0 20 40 60 80 100 120 140 160
Node Count

0

50000

100000

150000

200000

250000

300000

350000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Edge Probability 0.2
 hlfet
 ish
 sarkar_sarkar
 sarkar_load_balancing

Figure 6.21: Combined scalability analysis for increasing graph sizes and constant edge
probability of 0.2.

The scalability analysis has been performed on the slowest multi-core platform: PPCx3.

6.8.3 DCS Scalability

The scalability of DCS is mainly determined by the internal scheduler. Furthermore
the scheduler run-time strongly depends on the graph. If the initial Super Graph maps
well onto the available resources, the scheduling process is relatively short compared to
all other scheduling implementations. However if the Parallel Time keeps decreasing
with node splitting, the total run-time can grow significantly, which shows that the DCS
scheduler in its current form should be improved, in order for it to be a reliable solution
that can also be applied to any future products within PMP. Since the iterative approach
cannot be used with a “dummy graph”, the scalability analysis (as performed on all other
methods) cannot be applied.

6.9 Conclusion

In this chapter an overview was given of all intermediate results that have been used to
steer the iterative design and implementation approach. In addition, each scheduler imple-
mentation was compared against each-other, both in terms of resulting parallel time and
overall scalability. It was shown that two of the implementations namely, Internalization
using Load Balancing PA and DCS , in combination with Dynamic Measurements, were
able to produce automated schedules whilst meeting all requirements. In the next chapter
the conclusions are presented, as well as a discussion, and a future work presentation.

86 CHAPTER 6. EXPERIMENTAL RESULTS

Conclusions 7
In this thesis an automated solution was proposed as alternative to the manual scheduling
and assignation procedure within the Prodrive Motion Platform (PMP). The platform
consists of generic mechatronic motion control software, that can be used in combination
with a wide variety of products; ranging from elevators, to wafer-scanners. Due to
the wide variety in products, there is also a wide variety in customer requirements.
Therefore the hardware whereupon PMP operates, typically varies per product. Besides
a wide variety in controllable hardware (drives, sensors, and actuators), the computing
hardware, responsible for scheduling and assigning a customer’s application, also varies
on a product-to-product basis. Prior to this work, the scheduling and assignation of a
customer’s application to the available multi-core hardware, was based on time-consuming,
manual procedures which cannot be efficiently utilized for future PMP products. In
Chapter 2 and 4, the consequences of this problem were revealed by analyzing a recent
PMP product called XEONx3. XEONx3 is orientated towards a model-based design
flowed, which means that a customer is able to created their own control algorithm
implementations, with unknown computational complexities, resulting in unpredictable
task workloads. Given the fact that the original solution is based on a non-generic, time-
consuming, manual scheduling flow with a limited amount of optimization possibilities,
new applications like XEONx3, could not be scheduled directly.

In order to solve the problem at hand, a design for an automated framework was pre-
sented. The design consisted of two main parts, a scheduling and assignation framework,
and a dynamic performance measuring framework. The measuring framework is used
to discover the computational task load and estimate the penalty during core-to-core
communication between two dependent tasks. Besides the dynamic measuring framework,
a total of five different automated scheduling and assignation solutions were implemented,
evaluated, and compared against each other in terms of schedule outcome and execution
time.

In combination with the dynamic measurement framework, it was shown that two of
the scheduling and assignation solutions, namely, Internalization using Load Balancing
PA and Dynamic Cluster Splitting, are able to find schedules in an automated way, whilst
still meeting the timing-constraints within current PMP applications. In contrast to the
original solution, the new scheduling and assignation solution(s) allows to schedule and
assign graphs with unknown structures and computational complexities, which, given
the generic nature of PMP and the increasing demand for computational throughput, is
a major advantage.

When comparing the average application execution time for typical control applica-
tions within existing PMP products, Internalization using Load Balancing PA provides
performance improvements of ∼ 3.3% and ∼ 5.2% when compared to the mapped and
non-mapped original scheduling solutions in , respectively. In terms of overall perfor-

87

88 CHAPTER 7. CONCLUSIONS

mance, Internalization using Load Balancing PA is followed by DCS , which showed
performance improvements of ∼ 2.0% and ∼ 3.8%, respectively. Last but not least, it is
shown that for XEONx3, in which both the mapped and non-mapped approaches resulted
into a single core schedule, a performance improvement of 34.30% up to 49.61% can
be observed, depending on the scheduling and assignation algorithm that is used. As
additional requirement, the average schedule run-time should be kept below a minute
for pre-existing products. Both Internalization using Load Balancing PA and DCS were
able to meet this requirement for the considered applications.

Even though most scheduler implementations were able to produce schedules for each
product within the one minute run-time requirement, a scalability analysis was performed
with the future of PMP in mind. It was shown that Internalization using Load Balancing
PA scales up relatively well compared to ISH , HLFET and Internalization using Sarkar
PA. The scalability of the DCS algorithm depends on the internal scheduler and could
not be analyzed in a straightforward way. Though in the worst case, DCS (in its current
form) requires M iterations, in which M denotes the amount of disjoint sub-graphs in
the initial graph. This means that, in the worst case, the internal scheduler is executed
M times, in which the graph complexity increases at each iteration.

7.1 Future Work

In the end two automated scheduling methods were found which solve the main problem
whilst meeting the performance criteria. However, as in most cases, the solution(s) can
always be improved upon.

Static Edge Weight Measurements It was shown in Chapter 6 that the dynamic
edge weight measurements showed some unexpected outliers. Moreover, the mea-
sured execution time of a tasks during the dynamic node weight measurements,
may not always correspond with the resulting execution time within a specific
schedule. As mentioned in Chapter 6, the latter is difficult to take into account,
though the former might be solvable when the dynamic edge weight measurements
are combined with static measurements. Given that the performance of the sched-
ulers strongly depend on the accuracy of the measurements, an updated edge
measurements routine may enable more scheduling implementations to meet the
performance requirements, which may lead to different conclusions.

Increasing Timer Precision on PPCx3 As shown in the analysis phase, the preci-
sion of the system timer used within PPCx3 is quite low compared to the duration
of some small tasks within the system (for example the sensor tasks). This means
that differences in computational time between tasks that are smaller than the
timer precision, will never be available to the scheduler. Increasing the precision of
the measurements is expected to improve scheduling decisions, thus improving the
performance. However the hardware whereupon PPCx3 is based does not support
more accurate timers than was already available. Thus the only way to support
higher precision timers within PPCx3, is to change the hardware.

7.1. FUTURE WORK 89

Inclusion of all Tasks Within this research, only the sub-controller DAG (which con-
stitutes the customer’s application), is taken into account, since the platform in
its current state, does not allow for dynamic (re)scheduling of non-customer re-
lated tasks. Even though this particular task set is the most complex to schedule,
including the complete-task set would be beneficial for the overall system perfor-
mance. For example the coarse grained synchronization points (see Section 2.4),
could be represented by fine grained edge dependencies in order to broaden the
parallelization possibilities.

Improving the DCS Scheduler The DCS scheduler showed promising initial results
and can be used to schedule graphs containing many disjoint sub-graphs. Since
disjoint sub-graph structures are likely to reoccur in future PMP products, it is
worthwhile to seek design solutions able to alleviate its scalability issue. The main
bottleneck is the internal scheduler, which reschedules the complete graph at every
iteration. A possible improvement would be to perform a partial rescheduling,
in which only the newly created Super Nodes are fitted within the Super Graph
schedule, determined in the previous iteration. Last but not least, the different
node splitting techniques could be combined and optimized, to further improve the
performance.

Statistical Scheduling Another interesting yet unimplemented design step is statisti-
cal measurements. As discussed in Chapter 4 and 5, the computational demand
(or weight) of a task, is a multi-valued metric due to the conditional execution
behaviour. With the use of statistical measurements, the robustness of the sched-
ule and assignation, can be improved in order to make it more resilient against
execution time fluctuations.

90 CHAPTER 7. CONCLUSIONS

Bibliography

[1] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer and System
sciences, vol. 10, no. 3, pp. 384–393, 1975.

[2] M. Fujii, T. Kasami, and K. Ninomiya, “Optimal sequencing of two equivalent
processors,” SIAM Journal on Applied Mathematics, vol. 17, no. 4, pp. 784–789,
1969.

[3] E. G. Coffman and R. L. Graham, “Optimal scheduling for two-processor systems,”
Acta informatica, vol. 1, no. 3, pp. 200–213, 1972.

[4] M. R. Garey and D. S. Johnson, “Two-processor scheduling with start-times and
deadlines,” SIAM Journal on Computing, vol. 6, no. 3, pp. 416–426, 1977.

[5] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list schedules for
parallel processing systems,” Commun. ACM, vol. 17, no. 12, pp. 685–690, Dec.
1974. [Online]. Available: http://doi.acm.org/10.1145/361604.361619

[6] B. Kruatrachue, “Static task scheduling and grain packing in parallel processing
systems,” Ph.D. dissertation, Corvallis, OR, USA, 1987, aAI8806917.

[7] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Cam-
bridge, MA, USA: MIT Press, 1989.

[8] S. J. Kim and J. C. Browne, “A general approach to mapping of parallel computa-
tions upon multiprocessor architectures,” Proceedings of the International Conference
on Parallel Processing, vol. 3, pp. 1–8, 12 1988.

[9] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors,” Journal of Parallel and Distributed
Computing, vol. 16, no. 4, pp. 276 – 291, 1992.

[10] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an unbounded number
of processors,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 9,
pp. 951–967, 1994.

[11] M. Y. Wu and D. D. Gajski, “Hypertool: a programming aid for message-passing
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 3, pp.
330–343, Jul 1990.

[12] R. P. Bianchini, Jr and J. P. Shen, “Interprocessor traffic scheduling algorithm for
multiple-processor networks,” IEEE Trans. Comput., vol. 36, no. 4, pp. 396–409,
Apr. 1987. [Online]. Available: http://dx.doi.org/10.1109/TC.1987.1676922

[13] J.-C. Liou and M. A. Palis, “A comparison of general approaches to multiprocessor
scheduling,” in Parallel Processing Symposium, 1997. Proceedings., 11th Interna-
tional. IEEE, 1997, pp. 152–156.

91

http://doi.acm.org/10.1145/361604.361619
http://dx.doi.org/10.1109/TC.1987.1676922

92 BIBLIOGRAPHY

[14] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406–471,
Dec. 1999. [Online]. Available: http://doi.acm.org/10.1145/344588.344618

[15] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,
Inc., 1997.

[16] A. Shahid, M. S. Benten, and S. M. Sait, “Gsa: Scheduling and allocation using
genetic algorithm,” in Proceedings of the Conference on European Design Automation,
ser. EURO-DAC ’94. Los Alamitos, CA, USA: IEEE Computer Society Press, 1994,
pp. 84–89. [Online]. Available: http://dl.acm.org/citation.cfm?id=198174.198218

[17] V. A. Nguyen, D. Hardy, and I. Puaut, “Cache-conscious offline real-time
task scheduling for multi-core processors,” in 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017), ser. Leibniz International Proceedings in
Informatics (LIPIcs), M. Bertogna, Ed., vol. 76. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 14:1–14:22. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2017/7164

[18] A. Lindsay and B. Ravindran, “On cache-aware task partitioning for multicore
embedded real-time systems,” in High Performance Computing and Communications,
2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl
Conf on Embedded Software and Syst (HPCC, CSS, ICESS), IEEE. IEEE, 2014,
pp. 677–684.

[19] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis
for multicores,” in Proceedings of the seventh ACM international conference on
Embedded software. ACM, 2009, pp. 245–254.

[20] P. Choudhury, P. P. Chakrabarti, and R. Kumar, “Online scheduling of dynamic task
graphs with communication and contention for multiprocessors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 1, pp. 126–133, Jan 2012.

[21] N. R. Satish, K. Ravindran, and K. Keutzer, “Scheduling task dependence graphs
with variable task execution times onto heterogeneous multiprocessors,” in Proceed-
ings of the 8th ACM international conference on Embedded software. ACM, 2008,
pp. 149–158.

[22] e500mc Core Reference Manual, Freescale Semiconductor.

http://doi.acm.org/10.1145/344588.344618
http://dl.acm.org/citation.cfm?id=198174.198218
http://drops.dagstuhl.de/opus/volltexte/2017/7164

Appendices

93

94

Experimental Data A

A.1 PPCx3 execution time table for the mapped scheduler

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

0 0 4 Sensor 347.181 256 682 31.359 384
0 1 3 ControlNetwork 1453.33 1237 3499 131.164 1365
0 2 7 ControlNetwork 826.803 768 1366 22.4699 811
0 3 1 Matrix 411.13 341 726 31.2309 426
0 4 11 Sensor 257.36 213 299 10.2178 256
0 5 9 Matrix 312.154 298 640 20.2219 342
0 6 8 Sensor 580.263 469 1408 54.6748 597
0 7 0 Actuator 694.845 597 1450 33.7815 640
0 8 14 ControlNetwork 883.025 853 1450 28.9396 853
0 9 13 Actuator 557.59 512 768 23.5535 512
0 10 16 Sensor 381.605 341 427 13.1189 384
0 11 15 Actuator 535.935 512 683 21.3923 555
0 12 19 Sensor 256.892 213 299 9.22784 256
0 13 18 ControlNetwork 820.712 768 1493 22.3449 811
0 14 17 Actuator 554.324 512 725 12.9487 554
0 15 28 Sensor 257.865 213 469 11.1736 256
0 16 27 ControlNetwork 855.511 810 1536 33.0015 811
0 17 26 Actuator 540.317 512 726 20.5957 512

95

96 APPENDIX A. EXPERIMENTAL DATA

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

1 0 22 Sensor 224.989 170 512 26.7299 341
1 1 21 ControlNetwork 1237.14 1109 4821 117.66 4821
1 2 20 Actuator 276.142 170 598 29.5594 426
1 3 25 Sensor 168.986 128 256 9.04383 171
1 4 24 ControlNetwork 949.964 896 1750 33.4085 1152
1 5 23 Actuator 736.076 554 2176 58.5107 2176
1 6 34 Sensor 167.402 128 342 12.4979 256
1 7 33 ControlNetwork 896.871 853 2218 42.99 939
1 8 32 Actuator 480.4 426 726 22.1202 512
1 9 37 Sensor 164.528 128 299 15.0528 170
1 10 36 ControlNetwork 858.765 810 4096 46.3869 1024
1 11 35 Actuator 217.96 170 512 26.3614 213
1 12 40 Sensor 163.156 128 256 16.2947 128
1 13 39 ControlNetwork 860.59 810 1536 27.9345 1066
1 14 38 Actuator 191.606 170 342 22.2471 171
1 15 63 Sensor 170.341 128 298 7.45826 170
1 16 62 ControlNetwork 911.138 853 1578 24.9533 982
1 17 61 Actuator 472.209 426 598 14.1115 597
1 18 66 Sensor 163.452 128 469 16.3037 171
1 19 65 ControlNetwork 880.32 853 1536 25.3983 896
1 20 64 Actuator 465.336 426 640 15.6992 469

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

2 0 31 Sensor 244.101 213 512 20.0022 256
2 1 30 ControlNetwork 1263.53 1109 4736 79.4866 1238
2 2 29 Actuator 824.522 725 2304 53.5687 810
2 3 43 Sensor 257.945 213 512 12.5133 256
2 4 42 ControlNetwork 870.028 810 2134 30.2153 939
2 5 41 Actuator 579.331 469 853 40.1579 554
2 6 48 Sensor 161.693 128 171 17.3879 171
2 7 50 Sensor 163.066 128 342 16.8838 171
2 8 46 Matrix 353.44 341 854 20.5769 384
2 9 45 Sensor 445.703 426 853 23.8738 427
2 10 55 ControlNetwork 874.259 810 1707 31.2159 853
2 11 56 ControlNetwork 862.369 810 1664 27.7712 810
2 12 53 Matrix 368.261 298 683 25.8796 384
2 13 44 Actuator 479.146 426 768 22.8482 469
2 14 58 Sensor 470.157 426 640 10.288 469
2 15 57 Actuator 466.311 426 768 16.9522 470
2 16 60 ControlNetwork 888.298 853 1750 24.1136 896
2 17 59 Actuator 500.929 469 683 18.8634 512

A.2. PPCX3 EXECUTION TIME TABLE FOR THE NON-MAPPED SCHEDULER
97

A.2 PPCx3 execution time table for the non-mapped
scheduler

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

0 0 2 Sensor 286.564 213 640 34.9248 299
0 1 1 ControlNetwork 1502.59 1280 3029 99.8816 1664
0 2 0 Actuator 911.929 725 1579 61.1002 938
0 3 20 Sensor 169.263 128 469 19.1412 171
0 4 19 ControlNetwork 831.399 768 1750 35.1384 896
0 5 18 Actuator 455.648 426 725 20.2704 469

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

1 0 n/a Consumer 1073.54 640 5931 201.064 1024
1 1 57 ControlNetwork 1222.52 1109 4864 109.347 1280
1 2 n/a Producer 141.67 128 171 19.9093 171
1 3 8 Sensor 179.181 128 342 17.4017 171
1 4 7 ControlNetwork 871.087 810 1878 39.6825 896
1 5 6 Actuator 256.127 170 512 33.3748 256
1 6 14 Sensor 160.116 128 171 18.4103 170
1 7 13 ControlNetwork 837.964 768 1707 30.5065 854
1 8 12 Actuator 182.049 170 299 19.0121 170
1 9 31 Sensor 184.476 128 512 25.5417 171
1 10 34 Sensor 156.436 128 298 20.2056 171
1 11 29 Matrix 362.634 298 810 38.7846 341
1 12 28 Sensor 544.058 427 1536 38.9228 555
1 13 38 ControlNetwork 852.303 810 1536 26.1173 853
1 14 39 ControlNetwork 850.125 810 1664 28.4495 896
1 15 36 Matrix 392.502 298 683 38.6752 427
1 16 27 Actuator 605.744 469 1195 37.9984 640
1 17 41 Sensor 383.845 341 427 13.1362 384
1 18 40 Actuator 462.205 426 683 17.4572 469
1 19 43 ControlNetwork 849.718 810 1750 26.4372 853
1 20 42 Actuator 465.44 426 640 16.4179 469
1 21 n/a Consumer 213.343 170 256 11.9592 214
1 22 66 ControlNetwork 899.763 853 1834 20.5863 896
1 23 65 Actuator 467.763 426 598 13.3875 469

98 APPENDIX A. EXPERIMENTAL DATA

Core Order TaskID Type Avg[ns] Min[ns] Max[ns] Std WCC

2 0 54 Sensor 238.379 170 725 25.2981 213
2 1 n/a Producer 157.121 128 384 20.6195 171
2 2 61 Sensor 254.546 213 299 10.9048 256
2 3 n/a Producer 142.67 128 171 20.2688 171
2 4 5 Sensor 172.332 128 427 9.74228 170
2 5 4 ControlNetwork 1310.98 1110 4822 121.106 1280
2 6 3 Actuator 670.35 554 2091 54.8781 598
2 7 11 Sensor 161.897 128 299 17.3787 170
2 8 10 ControlNetwork 903.683 853 2475 44.0695 939
2 9 9 Actuator 480.299 426 811 25.0763 469
2 10 17 Sensor 173.914 170 214 11.3138 171
2 11 16 ControlNetwork 882.121 810 1707 34.1939 896
2 12 15 Actuator 254.197 170 640 30.1317 256
2 13 23 Sensor 165.741 128 256 13.7813 171
2 14 22 ControlNetwork 868.908 810 1621 28.8463 896
2 15 21 Actuator 470.006 426 768 25.2293 469
2 16 26 Sensor 172.944 128 469 18.9136 128
2 17 25 ControlNetwork 862.72 810 1579 30.1434 853
2 18 24 Actuator 501.695 426 810 23.4956 512
2 19 46 Sensor 166.718 128 171 12.3653 171
2 20 45 ControlNetwork 1005.47 896 1835 30.9374 1024
2 21 44 Actuator 468.283 426 768 23.5718 469
2 22 49 Sensor 176.226 128 512 20.3326 171
2 23 48 ControlNetwork 957.521 896 1664 31.0409 981
2 24 47 Actuator 472.296 426 683 19.7172 512
2 25 53 ControlNetwork 905.158 853 1664 23.0596 896
2 26 n/a Consumer 248.509 213 554 29.0218 299
2 27 51 Matrix 516.776 384 768 39.4178 512
2 28 59 Matrix 401.756 298 683 32.2309 426
2 29 58 Sensor 460.463 384 1024 30.8076 427
2 30 50 Actuator 476.471 426 768 19.1579 469
2 31 64 Sensor 389.62 341 512 15.0947 384
2 32 63 Actuator 569.418 512 768 23.2308 555

A.3 XEONx3 Assigned Calculate DAG

A.3. XEONX3 ASSIGNED CALCULATE DAG 99

36

41

1

93 941

50

52

1

8 91 101

45

1

96

53

1

31

32

1

86

1

90

1

87
1

88

1

99

77

78
1

58 591

1

4

1

7
1

6
1

95 1

100

1

104

1

1031

62 631

82
1

39

1

14

19

1

68

74
1

92

1

105 1061

18

1

65

1

70

1

72
1

66

1

13
1

26

1

5

1

55 561

42

1

1

49

1

48

1
47

1

51

1

73

1

75

1

34 1

44
1

69

1

1

81

1

76
1

27

1

1

1

83

1

30

1

1

1

1

107

22

1

1

1

1

1

1

1

1

1

1

33

1

1

1

20

1

12 1

1

60 611

571

102

1

84

1

1

91

1

98 1

1

67

1

1

1

1

1

79

1

801

97

1

112

1

1

109

11 1

40 1

24 1

1

1

1

1

29

1

1

1

1

1

21

1

3
1

1

54 1

1

1

1

1

1

1

110 111
1

1

71

1

1

1

1

1

16

1

0
1

101 1

28
1

1

1

1

1

64

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

108

1

1

1

35
1

2

1

1

37

1

1

43

1

1

1

1

1

1

1

23

1

25

1

46

1

15

1

17

1

38

1

1

1

85

1

1

1

1 89
1

Figure A.1: Assigned calculate DAG for the non-mapped (and mapped) scheduler in
XEONx3

See Figure 4.1 for a description of the colours.

100 APPENDIX A. EXPERIMENTAL DATA

A.4 Dynamic Measurements Results

In the following figures, the Dynamic Measurements results are shown for PPCx3 and
XEONx3.

[12][2][178]

[10][0][12] [11][0][219]185 [23][0][60]32

[3][2][197] 32

[0][2][27]
184

[2][2][96]

32

[15][0][68]
[20][0][118]32

[17][2][101]

32

[8][0][28] [9][0][199]182

[0][0][12]

[1][1][526]

32
[7][0][189]184

32

[20][1][27]

[13][2][72] 33

32

32

[13][1][200] 32

32

[4][2][192]

32

[6][2][19] [8][2][224]157 [14][2][106]36

32

[15][2][101][9][2][225] 46

[9][1][197] [17][1][102]46

[12][1][13] 187

[11][1][38] [14][1][190]182

[8][1][26] 193

[19][1][29]32

[6][0][206] [12][0][33]39

[6][1][50] [18][0][79]32

[10][1][90]

32

[3][1][13] 32

[4][1][196]184

[3][0][18]
194

32

[5][0][209]184

[18][1][97]50

[22][0][93]
51

[21][0][103]32

[16][1][101]

47
40

41

48

[10][2][26] [11][2][200]191 [18][2][94]50

[7][2][19] 174

Figure A.2: PPCx3 Directed Acyclic Graph including node and edge weights found during
dynamic measurements
The last [] entry in the node labels indicate the node weight, the edge labels represents the edge

weights. The weights in the graph correspond to the average amount of execution cylces
upscaled by a factor of 10. As already mentioned the precision of the PPCx3 timer is relatively

low compared to the computational load of some of the tasks.

A.4. DYNAMIC MEASUREMENTS RESULTS 101

[39][0][4499]

[64][2][4867]

822

[61][2][5776] 1584

[7][0][1387]

[29][0][3674]
4555

[12][0][4442]

4430

[13][0][5980]

1353

[9][0][4009]
4722

[6][1][243]

[17][1][3689]

3476

[8][0][237]

[41][0][4067]

3887

[36][0][5250]

1910

4211

[51][0][3511]

4872

[44][0][2927]
[63][1][4545]1807

[50][1][4462]

[56][2][4168]2034

[56][1][1905]

[59][1][3863]

835

[6][0][625]

4541

1507

5631

6001

[47][0][3972]

2731

[58][1][4060] [60][1][3819]4453

[65][2][3736]5150

[73][2][252]

[28][0][2589]

[35][0][4164]

2774

[24][1][4006] 4563

[33][1][3314]

3194

[44][2][7791]2560

[48][1][5214]4499

[33][0][6792]1895

[31][2][5800]

2812

[46][1][4602]

3837

[26][0][5938]

3110

[19][0][6905]

1368

[35][2][4291]

4134

[39][2][6317]

822

[49][2][5123]

4231

[48][0][3822]
2190

[60][0][252]

2011

[67][2][1316] [71][2][855]822

2066

4073

3396

[11][0][240]

4078

2559

4879

4151

2726

[27][1][2070]

3809

4722

3696

2698

4439

1130

[74][1][1210] [78][1][238]854

[46][0][2099]
984

[9][1][878]

4099

[45][2][1836]

6666

[10][0][253]

4070

2871

2358

4434

2612

[72][2][774]

[75][2][245]

[0][1][242]

2611

822

[13][1][3854]

3953

5247

[50][2][6134]

6406

4176

1140

[61][0][259]822

[63][0][252]

827

[58][0][252]

1237

[8][2][258] [12][2][3752]3247

4199

[41][1][2385]
3773

2033

4068

2479

3952

[53][0][2783] [64][0][247]839

[57][2][3759]
5669

[39][1][3601]

2905

3976

[73][1][1220] [76][1][258]833

[74][2][251]

[69][2][1239] 822

5397

[70][2][942]

[4][2][255]

2787

[7][1][247]
3854

[7][2][605]

2937

3014

1356

2047

4534

1038

[77][1][252]

[6][2][259]
2914

2610

[55][0][1194] [59][0][924]822

4294

[0][0][244]

2697

1397

4148

5437

[5][2][242]

2820

[10][2][258]

4417

[16][1][247] 4884

[55][1][4970] 2254

2108

[61][1][3993]

2166

3908

3917

3339

5234

4574

4176

[57][0][1203]

4432

[75][1][1144]

4754

[0][2][247] 2693

1101

4048

4342

[71][1][2540]

1340

[62][0][259]

[3][0][254]

2543

975

3382

3705

[8][1][252]

4027

834

920

830

822

[69][1][3159] 2229

[52][2][1880]

3066

[4][1][803]

3282

[5][1][254]

3364

2872

2716

4422

3408

2857

4790

4025

3931

1284

822

[53][1][1852]

[54][1][5578]

3906

2843

[72][1][2169]3463

[19][2][4085]

[20][2][3878]

4739

[24][2][3638]

4790

[9][2][240]

2984

822

822

[17][2][265]

4910

[11][2][366] 3255

4214

[70][1][1785]

2362

4768

4200

4730

3436

4826

2173

[15][2][252] 3527

[42][0][5479]

822

[14][2][262] 3518

[52][1][297]
822

2372

3328

[18][2][242] 5499

1539

[16][2][6371]

3191

3604

2910

4595

4379

3461

5498

1075

2815

3110

[79][1][232]856

Figure A.3: XEONx3 Directed Acyclic Graph including node and edge weights found
during dynamic measurements
The last [] entry in the node labels indicate the node weight, the edge labels represents the edge

weights. The weights in the graph correspond to the average amount of execution cylces
upscaled by a factor of 10.

102 APPENDIX A. EXPERIMENTAL DATA

A.5 Dynamic Edge Measurements Results

In the following figure, two example iterations of edge measurements in PPCx3 are shown.

[3][1][1] [21][1][1]1

[43][1][1]

[28][1][1] 1

[45][1][1]

1[4][1][1]

[14][1][1]

1

[15][1][1]

1
[24][1][1]1

1

[29][1][1]

1

[30][1][1]

1

[37][1][1]
1

[5][1][1]

1

[19][1][1]
1

[16][1][1] [35][1][1]1

[17][1][1] [38][1][1]1

[31][1][1][18][1][1] 1

[6][1][1] 1

[32][1][1]

[33][1][1]

[44][1][1]

[34][1][1]
1

[36][1][1]

[46][1][1]
1

[7][1][1]
[26][1][1]1

[27][1][1]

1

1

1

[8][1][1] 1

[9][1][1] 1

[20][1][1] 1

[10][1][1] [25][1][1]1

[2][1][1] 1

1

[1][0][1]
1

[1][1][1]

1

[0][0][1]
1

1

1

[11][1][1] 1

[39][1][1]1

[40][1][1][22][1][1] 1

[41][1][1][23][1][1] 1

1

[12][1][1] 1

[13][1][1] 1

1

[42][1][1]1

1

1

(a) Isolated edge measurement example 1

[2][1][1] [24][1][1]1

[44][1][1]

[30][1][1] 1

[45][1][1]

1[3][1][1]

[16][1][1]

1

[17][1][1]

1
[27][1][1]1

1

[31][1][1]

1

[32][1][1]

1

[38][1][1]
1

[4][1][1]

1

[21][1][1]
1

[18][1][1] [37][1][1]1

[19][1][1] [39][1][1]1

[33][1][1][20][1][1] 1

[5][1][1] 1

[34][1][1]

[35][1][1]

[36][1][1]

[6][1][1]
1

[1][1][1]

[40][1][1]
1

[0][0][1]
[15][1][1]1

[2][0][1]

1

1

1

[7][1][1] 1

[8][1][1] 1

[22][1][1] 1

[9][1][1] [28][1][1]1

[23][1][1] 1

1

[10][1][1]
1

[11][1][1]

1

[1][0][1]
1

1

1

[12][1][1] 1

[41][1][1]1

[42][1][1][25][1][1] 1

[43][1][1][26][1][1] 1

1

[13][1][1] 1

[14][1][1] 1

1

[29][1][1]1

1

1

(b) Isolated edge measurement example 2

Figure A.4: Two isolated edge measurement iterations from PPCx3 used as example
The edge in red depicts the edge under measurement. The node labels are specified as [ordering
number][core number][n/a], note that, since the producer and consumer tasks are not explicitly
drawn, the [ordering number] of the destination core starts at [1] (since there is a consumer that
proceeds execution), furthermore the [ordering number] of the source core skips a number which

is assigned to the producer. The edge labels should be ignored.

A.6. INTERNALIZATION RESULTS 103

A.6 Internalization Results

cluster_0

cluster_1

cluster_2

cluster_3

cluster_4

cluster_5

cluster_6

cluster_7

cluster_8

cluster_9cluster_10

cluster_11

cluster_12

cluster_13

cluster_14

cluster_15

cluster_16

cluster_17

cluster_18

cluster_19

cluster_20

cluster_21

cluster_22

cluster_23

cluster_24

cluster_25

cluster_26

cluster_27

cluster_28

cluster_29

cluster_30

cluster_31

cluster_32

cluster_33

cluster_34

cluster_36

cluster_37

cluster_38

cluster_39 cluster_40

cluster_41

cluster_42

cluster_43

cluster_44

cluster_45

cluster_46

cluster_47

[25] [26]

[1]

[2]

[5]

[4]

[18] [19]

[21] [22]

[8]

[3]

[11]

[42]

[23]

[14]

[44][43]

[47]

[35] [36]

[41]

[33]

[37] [39]

[20]

[0]

[10]

[29]

[40]

[9]

[46]

[7]

[24]

[31] [32]

[12] [13]

[27] [28]

[45]

[6]

[30]

[16] [17]

[34] [38]

[15]

(a) Iteration 0 (start)

cluster_1

cluster_2

cluster_3

cluster_4

cluster_5

cluster_7

cluster_8

cluster_11

cluster_12

cluster_13

cluster_14

cluster_15

cluster_16

cluster_17

cluster_18

cluster_19

cluster_23

cluster_24

cluster_25

cluster_27

cluster_28

cluster_29

cluster_30

cluster_33

cluster_37

cluster_39

cluster_41

cluster_42cluster_44

[1] [5]

[4]

[2]

[6]

[7]

[9]

[18] [19]

[21] [22] [23]

[8]

[3]

[11]

[14]

[47]

[35] [41]

[36]

[42]

[33] [43] [44]

[37]

[39]

[20]

[0] [10]

[29]

[40]

[24] [25] [26]

[12] [13]

[27] [28]

[45] [46]

[30] [31] [32]

[34] [38]

[17][15] [16]

(b) Iteration 20

cluster_1

cluster_2

cluster_3

cluster_4

cluster_13

cluster_16

cluster_18

cluster_25

cluster_27

cluster_28

cluster_29

cluster_37

cluster_39

cluster_44

[1] [5]

[4]

[2]

[6] [9]

[7]

[18] [19] [20]

[21] [22] [23]

[8]
[3]

[33]
[35]

[43]

[41]

[36]

[44]

[42]

[0] [10] [11]

[40]

[24] [25] [26]

[12] [13] [14]

[27] [28] [29]

[45] [46] [47]

[30] [31] [32]

[34]

[38]

[37] [39]

[15] [16] [17]

(c) Iteration 41 (end)

Figure A.5: Some Internalization iterations extracted from PPCx3

104 APPENDIX A. EXPERIMENTAL DATA

Pseudo-code B
B.1 Random Graph Creation Steps

A random graph is created using the following steps:

1. Input: edge chance percentage Pedge and the graph size / amount of nodes N .

2. Create a list of N “dummy” nodes Ln.

3. Create another list of nodes Lunprocessed initialized with the same nodes as Ln.

4. For all nodes nx ∈ Ln:

(a) Remove nx from the unprocessed list Lunprocessed.
(b) Assign a random weight to nx.
(c) For all unprocessed nodes ny ∈ Lunprocessed:

i. Create an edge between nx and ny with edge creation chance Pedge.

105

	List of Figures
	List of Tables
	List of Acronyms and Definitions
	Acknowledgements
	1 Introduction
	1.1 Problem Statement
	1.2 Requirements and Constraints
	1.3 Contributions
	1.4 Organization

	2 The Prodrive Motion Platform
	2.1 The Master Controller
	2.2 Customer Application and Control Loop Components
	2.3 From Customer Application to Dependency Graph(s)
	2.4 Execution Cycle
	2.5 Consumer Producer Model
	2.6 Deadline and Real-time Specification
	2.7 Task Assignation
	2.8 Task Scheduling
	2.9 Conclusion

	3 Background and Preliminaries
	3.1 Scheduling Terminology
	3.1.1 Tasks
	3.1.2 Directed Acyclic Graph
	3.1.3 Scheduling, Assignation, and Clustering
	3.1.4 DS, CP, ST and PT
	3.1.5 Successors and Predecessors
	3.1.6 Top- and Bottom-levels
	3.1.7 List and Critical Path Scheduling

	3.2 State of the Art Scheduling Algorithms
	3.2.1 Communication Unaware Scheduling Algorithms
	3.2.2 Communication Aware Scheduling Algorithms
	3.2.3 Clustering Algorithms
	3.2.4 Duplication Algorithms
	3.2.5 Machine Learning Based Algorithms
	3.2.6 Cache Aware Algorithms
	3.2.7 Online Algorithms
	3.2.8 Statistical Algorithms

	3.3 Conclusion

	4 Analysis of the Original Solution
	4.1 PPCx3
	4.1.1 Mapped
	4.1.2 Non-mapped
	4.1.3 Prepare Tasks
	4.1.4 Timing Variation

	4.2 XEONx3
	4.2.1 Non-mapped

	4.3 Conclusion

	5 Automated Framework
	5.1 Framework Overview
	5.2 Performance Measurement Framework
	5.2.1 Measurable Metrics
	5.2.2 Measuring Techniques
	5.2.3 Combining Methods and Metrics
	5.2.4 Implemented Designs

	5.3 Scheduler Framework
	5.3.1 Load Balancing Processor Assignment
	5.3.2 Dynamic Cluster Splitting
	5.3.3 Transitive Reduction
	5.3.4 Implemented Designs

	5.4 Conclusion

	6 Experimental Results
	6.1 Dynamic Measurements
	6.2 Comparing Schedulers
	6.3 Highest Level First with Estimated Times
	6.4 Internalization
	6.4.1 Sarkar's Processor Assignment
	6.4.2 Load Balancing Processor Assignment

	6.5 Insertion Scheduling Heuristic
	6.6 Dynamic Cluster Splitting
	6.7 Comparison
	6.7.1 Transitive Reduction Results

	6.8 Scalability Analysis
	6.8.1 Varying Graph Size and Edge Probability
	6.8.2 Constant Edge Probability
	6.8.3 DCS Scalability

	6.9 Conclusion

	7 Conclusions
	7.1 Future Work

	Bibliography
	Appendices
	A Experimental Data
	A.1 PPCx3 execution time table for the mapped scheduler
	A.2 PPCx3 execution time table for the non-mapped scheduler
	A.3 XEONx3 Assigned Calculate DAG
	A.4 Dynamic Measurements Results
	A.5 Dynamic Edge Measurements Results
	A.6 Internalization Results

	B Pseudo-code
	B.1 Random Graph Creation Steps

