
Client-Level Unlearning in Decentralized Learning
Robust Decentralized Learning

Razvan Dinu
Supervisors: Bart Cox, Jérémie Decouchant

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to the EEMCS Faculty of Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Razvan Dinu
Final project course: CSE3000 Research Project
Thesis committee: Bart Cox, Jérémie Decouchant, Anna Lukina

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Client-Level Unlearning in Decentralized Learning
Razvan Dinu, Bart Cox, Jérémie Decouchant

Delft University of Technology

Abstract—Decentralized Learning is becoming increasingly
popular due to its ability to protect user privacy and scale across
large distributed systems. However, when clients leave the network,
either by choice or due to failure, their past contributions remain
in the model. This raises privacy concerns and may violate the
right to be forgotten. In some applications, it is also undesirable
to retain the outdated influence of clients that no longer reflect
the current state of the system. While Machine Unlearning
has seen significant progress in Federated Learning, similar
solutions for Decentralized Learning are limited because there is
no central server to orchestrate these operations. This work adapts
and extends a state-of-the-art Federated Unlearning algorithm,
QuickDrop, to operate in a decentralized setting. Our method
uses synthetic data to reverse the influence of dropped clients and
efficiently restore the model’s generalization performance. It also
supports unannounced client crashes and performs reliably in
sparse network topologies. We evaluate the algorithm on MNIST
and CIFAR-10 using different graph structures and show that it
remains competitive with oracle baselines that require access to
sensitive data. Finally, we discuss the limitations of our approach
and suggest directions for future work in Decentralized Unlearning.

I. INTRODUCTION

In traditional machine learning, models are trained in
centralized environments where data is aggregated in one
place [1]. While effective, this approach might raise significant
concerns related to privacy, communication bottlenecks, and
scalability. Distributed Learning offers a promising alternative,
in which multiple nodes collaboratively train a model without
the need to store all the data on a central server. Each node
uses its local data and communicates only with a limited set
of peer nodes.

A well-known subset of this field is Federated Learning
(FL) [2, 3], which uses a central node to coordinate model
updates. In contrast, Decentralized Learning (DL) (sometimes
referred to as Gossip Learning [4]) operates on a peer-to-peer
level without any central authority, which is what this research
focuses on. This setting can increase robustness [5, 6] and
privacy [7, 8], but it also introduces new obstacles such as
synchronization, security, and adaptability [9–12]. A shared
challenge is communication, where FL makes it more accessible
and auditable, while DL increases its complexity, but greatly
lowers cost for large systems.

DL also permits dynamic and non-permanent participation,
commonly referred to as churn [13]. A critical issue that
remains under-explored is how to handle clients that drop out
permanently. When a client departs, either due to failure or by
choice, its prior model contributions may continue to influence
other nodes indirectly, possibly without that client’s consent.

This persistent influence raises both privacy and adaptability
concerns.

Machine Unlearning (MU) [14, 15] has grown in interest
with the introduction of privacy-oriented regulations such as
the European Union’s General Data Protection Regulation
(GDPR) [16], which gives all users, and, in turn, clients of DL
systems, the right to be forgotten. Additionally, one might also
be interested in unlearning the influence of a client when it is
paramount that no old data is used to train the model.

While MU has recently gained traction in centralized
and federated contexts [17], few existing methods directly
tackle unlearning in decentralized systems [10], which rely on
impractical assumptions, such as restricting a client’s influence
to only its immediate neighbours. Moreover, the existing body
of work does not sufficiently address the intersection of client
crashes and unlearning. This research aims to bridge that gap by
proposing a decentralized mechanism to remove the influence
of dropped clients in a gossip-style learning framework.

This paper makes the following contributions:
1) We translate a current state-of-the-art (SOTA) machine

unlearning algorithm from Federated to Decentralized
Learning, overcoming the architectural differences be-
tween the two systems by fine-tuning its parameters. We
focus on unlearning the influence of a particular client
and report the generalization capabilities of the remaining
model.

2) We improve on the existing SOTA by considering crashed
clients and further tuning synthetic data generation.

3) We analyse the impact of the network topology, datasets
and disconnection frequency w.r.t. the unlearning effi-
ciency in DL.

4) We provide a complete implementation of our decen-
tralized unlearning algorithm with support for different
network topologies and crash recovery, evaluating its
practical effectiveness against established theoretical
benchmarks.

II. BACKGROUND

A. Machine Unlearning

We define the dataset Df ⊂ D, where D is the entire
available training dataset, as the forget dataset (F-set), meaning
the subset of data points that we wish to unlearn from the
global model θ. The rest of the data D \Df can be referred
to as the retain set (R-set) [18]. The goal of efficient MU is to
remove the influence of Df on the model parameters θ, while
retaining a high accuracy using just D \Df . In other words,

1

after unlearning Df , θ should maintain its global generalization
accuracy while performing poorly on Df .

MU can be classified into two main categories: exact [19]
and approximate [20] unlearning. Exact unlearning implies
that the influence of a client is fully unlearned, while in
approximate unlearning, this influence is only minimized.
The optimal degree of unlearning is achieved by retraining
from scratch (resetting the model to its initial state), but this
can lead to unnecessary increases in training time. Since in
decentralized learning one node can affect all others in the
network, directly or indirectly, exact unlearning is considered
difficult to achieve [21], unless specific assumptions are made.

Unlearning can also be split depending on the contents of
Df :

1) Class-level unlearning [22]: The goal is to erase a
specific class c, for example all instances of 0 for a digit
dataset like MNIST. It follows that Df :=

⋃
i∈N Dc

i , i.e.
all instances of class c for each client i ∈ N , where N
is the pool of clients.

2) Sample-level unlearning [23]: We unlearn a particular
set of samples. Here, there is no formal definition of Df ,
as it can contain any arbitrary samples from the original
dataset D.

3) Client-level unlearning: This is specific to systems with
more than one client, and Df := Di for some client
i ∈ N .

Our research focuses on client-level unlearning, as it is most
applicable in practice to a DL environment. Because each
client can only access a pre-established partition of the dataset
D, when mentioning D or D \ Df we refer to the training
partitions of each client. The test set is global and fixed, being
created before clients receive their training data [24].

B. Decentralized Learning

One of the main differences between FL and DL is the way
nodes communicate. In FL all nodes send direct updates to a
central server, which tells the nodes what workflow to follow.
This makes any communication between two nodes require
at most two data transfers. However, in DL a node can only
contact its direct neighbours, which increases the amount of
data that needs to be sent through the network in order for two
arbitrary clients to communicate. We consider the unlearning
process successful if the global model has a lower testing
accuracy on the dropped node’s test set, comparable with the
one of retraining from scratch. It should also be comparable
in unlearning speed with the proposed baselines.

III. RELATED WORK

In current research, Federated Unlearning (FU) has been
widely studied, while Decentralized Unlearning (DU) remains
largely unexplored. However, not all FU algorithms can be
directly translated to a decentralized setting due to the systems’
design differences, especially in communication between nodes.
This section surveys the SOTA algorithms for FU and DU.
Table I gives a visual overview of what each presented
algorithm lacks with respect to the problem at hand.

A. Federated Unlearning

Dhasade et al. [17] propose QUICKDROP, a method for
efficiently unlearning a client’s influence without full retraining.
Each node maintains a synthetic dataset [28], generated during
each round alongside regular training, which enables fast
gradient approximation. Unlearning is performed using client-
level Stochastic Gradient Ascent (SGA) on the synthetic data
of the dropped client, followed by recovery rounds using the
one’s personal synthetic dataset to partially restore its previous
knowledge.

Since training typically uses Stochastic Gradient Descent
(SGD), it seems straightforward to apply SGA for unlearning.
However, the direct approach by Wu et al. [25] has two key
limitations. First, it requires access to the full remaining dataset,
which may be large and inefficient to process. Second, client-
level unlearning is not directly supported and must be adapted
using Elastic Weight Consolidation (EWC), which assigns
importance weights to parameters and defines an unlearning
loss for SGA. Moreover, applying SGA to another client’s
data is not feasible in DL, where data sharing is restricted.
FL avoids this by performing the ascent steps on the central
server.

Halimi et al. [26] present a related method using Projected
Gradient Descent (PGD), where unlearning is approximated
by maximizing local empirical loss within an l2-norm ball
around a reference model, computed as the average of other
clients’ models. This constrains updates to prevent divergence
and applies early stopping based on distance from the original
model. The method achieves approximate unlearning based
on empirical metrics such as efficacy, fidelity, and efficiency.
However, since it requires centralized coordination and access
to the global model and previous updates, it does not translate
to decentralized learning.

Wu et al. [27] also propose a method using Knowledge
Distillation (KD), in which the server tracks parameter updates.
When a client requests unlearning, its updates are subtracted
from the model, and the skew is corrected via distillation. This
method is efficient since all operations are server-side, but it is
incompatible with decentralized settings where updates cannot
be stored centrally and communication costs would be high.

B. Decentralized Unlearning

To the best of our knowledge, the only successful attempt
at DU is HDUS [10]. HDUS’s approach is to use seed
models without sensitive information, which are smaller models
distilled from the model of a client and its neighbours,
mimicking behaviour of the main model. The global model is
trained via ensemble learning [29] based on the aforementioned
seed models, which has the potential of improving robustness
and reducing overfitting [30]. Unlearning the influence of a
particular client is then equivalent to removing the seed model
from the ensemble. This approach assumes that one node
can only influence its direct neighbours, and that a client has
sufficient non-sensitive data to efficiently train its neighbours’
seed models. However, it does provide a promising framework
for exact unlearning.

2

TABLE I: Comparison of related work highlighting the limitations in a decentralized setting. Columns refer to the unlearning
algorithm itself, excluding the training process.

Algorithm Decentralized Extends to Scalable to Storage Computation Adaptable to
Learning Entire Network Large Networks Efficient Efficient Client Crashes

QUICKDROP [17] ✗ ✓ ✓ ✓ ✓ ✗
SGA [25] ✗ ✓ ✗ ✓ ✗ ✗
PGD [26] ✗ ✓ ✗ ✓ ✗ ✗
KD [27] ✗ ✓ ✗ ✗ ✗ ✗
HDUS [10] ✓ ✗ ✓ ✗ ✗ ✗

This Work ✓ ✓ ✓ ✓ ✓ ✓

IV. SYSTEM MODEL

A. Nodes and Topologies

In DL, each node is an independent participant that holds a
private portion of the training data and maintains a local copy
of the model. During each training round, a node first performs
local training on its data using techniques like SGD [11], then
exchanges model weights with its direct neighbours in the
network. After receiving updates, it averages its model with
those of its peers to improve generalization. This process is
repeated over many rounds. The main purpose of each node is
to contribute to the collective learning process without sharing
raw data, enabling privacy-preserving and scalable training
across a distributed system. When defining the network of a
DL experiment, we consider undirected graphs (Appendix A),
where each client is a node in the graph. If client i sends its
weights to client j during sharing, so does client j to client i,
for any i, j in the network N . This simplifies the complexity
of the algorithm, while aligning with other DL works [11, 24,
31, 32].

B. General Assumptions

When a client disconnects, we assume for simplicity that
they do not leave any nodes isolated or cause deadlocks. While
this assumption helps simplify the analysis, it is not a strict
limitation in practice. In real-world decentralized systems,
mechanisms such as peer sampling [24, 33] can be used to
dynamically reconnect nodes and maintain network connectivity.
Moreover, we assume that the network topology is static and
does not change over time, with the exception of the chosen
clients leaving the network for unlearning. We do not de-
synchronize clients during learning because weight updates are
done after each global round during regular DL training. We
also assume that the global dataset is split into a global test
set, shared between all clients, and a trainset which is split
between the clients according to a known distribution. Because
in practice not all clients hold the same distribution of data,
we consider our system’s clients’ data to be non-IID (also
referred to as heterogeneous [10, 30]), and assume a Dirichlet
distribution (α = 0.1) of data among clients [34]. Due to GPU
memory constraints, we reduced the batch size from the default
256 [17, 28] to 128, 64 or even 8 in some experiments, which
could marginally affect results.

V. METHODOLOGY

As Dhasade et al. [17] showed QUICKDROP to currently be
the most efficient unlearning algorithm for FL, and since it
can be translated to DL, this work closely follow theirs, but
attempts to move it to a decentralized setting, with a stronger
focus on client-level unlearning.

A. Synthetic Data Generation

The core of this algorithm stems from the ability of each
client to condense their dataset into a smaller, synthetic dataset,
that accurately represents their original data with minimal
storage overhead. This is also known as Dataset Distillation
(DD) [35]. To achieve this, the chosen method was inspired
by QUICKDROP [17], which in turn took inspiration from the
gradient matching algorithm of Zhao et al. [28]. This uses a
distance function between the gradients of each layer of the
neural network as its loss function:

Si ← opt-algSi

(
d
(
∇θLSi(θik,t),∇θLDi(θik,t)

)
, ςS , ηS

)
(1)

where ςS and ηS are the number of steps and learning rate,
LD(θ) is the loss of model θ on dataset D, and d(., .) is the
distance function proposed by Zhao et al. in their work [28].

Unlike QUICKDROP, we also leverage Differentiable
Siamese Augmentation (DSA) [36], improving the masking
of real data and increasing the quality of synthetic samples,
as Zhao et al. [37] argue it can increase the efficiency of
gradient matching. The preferred choice of gradient matching
stems from the fact that the unlearning logic of the algorithm
performs SGA. As argued in the description of QUICKDROP,
the synthetic data should provide a gradient as close as possible
to the real one, such that the ascent operation is in the desired
direction. For the size of the synthetic dataset, we use a scale
parameter s such that |Sc

i | = ⌈|Dc
i | × s⌉, i.e., a fraction s of

the real samples from that class, but at least one.

B. General Workflow

We present the workflow of the algorithm in Algorithm 1,
with a detailed explanation of each step below:

Tune synthetic data. In the proposed algorithm, each client
i ∈ N holds a synthetic dataset (Si), which acts like a
condensed version of their real dataset, without containing
any sensitive data. This dataset is generated on the first global
training round and tuned for all remaining rounds. Every few

3

rounds, clients send their synthetic data to their neighbours for
them to cache it in case they leave the network unexpectedly.

Perform SGA on synthetic data. Before a client j ∈ N
disconnects, they may send out an unlearning request to its
direct neighbours, who then forward it recursively to the rest of
the network each via their own neighbours. The disconnecting
client passes its most recent synthetic dataset (Sj) as a payload
of this message, which will be used by others for unlearning via
SGA. Since learning is achieved using Decentralized Parallel
Stochastic Gradient Descent (D-PSGD) [11, 24], this makes
for a promising approach to effectively reverse the learning
process, with a strong focus on removing the influence of the
dropped node’s data (Df = Dj).

Augment synthetic datasets with real samples. After
unlearning, each client takes its own synthetic dataset and
prepares it for recovery by adding random samples from their
real dataset to their synthetic data. The quantity of random
samples is determined by the size of the synthetic dataset, such
that the number of real samples in the set will be equal to the
number of synthetic samples. Since this data can be sensitive,
the real samples are only kept for the upcoming recovery step,
after which the synthetic dataset is reverted to its previous
state. We go a step further and augment the dataset with new
random samples for each recovery step, allowing for better
relearning of past knowledge.

Recovery rounds. Because only performing unlearning
might not yield effective results [25], some recovery rounds
are needed, in which we aim to find out how fast the model
can reach a similar testing accuracy to its pre-unlearning state,
while forgetting Df . Normally, recovery is done by default
when training resumes, but we accelerate them by using the
previously augmented synthetic dataset.

VI. EXPERIMENTAL SETUP

System Setup

All experiments are conducted on a machine using an AMD
Ryzen Threadripper 1900X 8-core CPU and an RTX 3060 GPU
with 12 GB of memory running CUDA 12.6.3. We use Python
3.12.3 with PyTorch and TensorFlow among other libraries for
the implementation. All plots are done using Matplotlib.

The source code is made available in a TU Delft-hosted
GitLab repository1.

Decentralized Learning

Our environment is built using the DecentralizePy [24] DL
framework, which allows for many configurations out of the
box. In our configuration, nodes communicate via TCP and
execute learning via D-PSGD [11], while weight sharing is
done by Metropolis-Hastings averaging [38]. We execute the
code on a single machine, running a number of processes
equal to the number of clients, each client with one process.
Typically, clients will announce their disconnection, in which
case all others attempt to begin unlearning at the same round,

1See https://gitlab.tudelft.nl/cse3000-2025-robust-decentralized-learning/cse-
3000-razvan-dinu/.

Algorithm 1 DL Training with Unlearning and Recovery
Input: Training data {Di}Ni=1, rounds K, local steps T , tuning

steps ςS , learning rates ηS , ηθ, η
′
θ, scale s

for each client i = 1, . . . , N do
for each class c do

if client i has class c then
Sc
i ← ⌈|Dc

i | × s⌉ random samples from Dc
i

else
Sc
i ← ∅

Si ←
⋃

c S
c
i

for k = 0, . . . ,K−1 do
for each client i = 1, . . . , N do in parallel

for t = 0, . . . , T−1 do
Sample minibatches BD

i ∼ Di, BS
i ∼ Si

Compute ∇LDi
(θik,t), ∇LSi

(θik,t)
Update Si using d(∇LDi

,∇LSi
) {Eq. (1)}

if phase = train then
θik,t+1 ← θik,t − ηθ∇LDi(θ

i
k,t)

else if phase = unlearnj then
θik,t+1 ← θik,t + η′θ∇LSj

(θik,t)

else if phase = recover then
θik,t+1 ← θik,t − ηθ∇LSi

(θik,t)

θk+1 ←
N∑
i=1

|Di|
|D| θ

i
k,T

Output: Synthetic datasets {Si}Ni=1, final model θK,0

specified by the one that leaves. In case of an unexpected crash,
we implement a timeout mechanism of 10 minutes: if after
this time a neighbour does not send its weights at the end of a
training round, we consider them crashed and begin unlearning
on their data. This crash is simulated by ending the execution
immediately.

We evaluate the algorithm on the MNIST [39] and
CIFAR-10 [40] datasets, partitioned among clients using a
Dirichlet distribution with α = 0.1. The client to disconnect
is chosen such that their number of training data points is
close to the average. Each client uses a ConvNet [41] as its
deep neural network. It consists of D duplicate blocks, where
each block comprises a convolutional layer with W filters of
size 3× 3, followed by a normalization layer N , an activation
function A, and a pooling layer P . This structure is represented
as [W,N,A, P]×D. The default ConvNet uses 3 such blocks,
each containing 128 filters, InstanceNorm, ReLU activation,
and AvgPooling. A linear classifier is applied after the final
block. Images are reshaped to 32× 32 size for standardization.

We consider three different static topologies (see Appendix A
for visual representations):

• A 16-node 3-regular graph, simulating a sparse DL
environment.

• A 16-node 4-regular graph, a more connected but still
network-efficient DL environment.

• A 10-node fully-connected graph, a less realistic DL

4

environment, but theoretically equivalent to FL when it
comes to convergence rate, allowing for better compar-
isons with related work.

We primarily experiment on the 3-regular graph and use the
others to show the influence of the connectivity of the graph
and better benchmark against FL algorithms.

Hyperparameters

For all experiments, unless specified otherwise, we pre-
train a model for K = 400 global training rounds and up to
T = 50 local steps per round (stops early if a full epoch has
been achieved). We use a batch size of 128 for training and
unlearning. We use SGD optimizers with learning rates ηθ
for training and 0.02 and η′θ for unlearning 0.02 for MNIST
and CIFAR-10, as well as a single optimization step for each
(ςθ = ςθ′ = 1). We perform 2 rounds of unlearning and 3
rounds of recovery. We found these to be a good balance
between unlearning speed and forgetting efficiency for most
experiments, but in Section VIII we argue how some topologies
might require or allow for different unlearning hyperparameters.

Synthetic Data Generation

To generate synthetic data, we train the synthetic images
along with the local model (i.e., for up to T = 50 for every
global iteration k). This happens in the same training loop as
the real data’s. We use SGD as the optimization algorithm with
learning rate ηS = 0.1 and one optimization step (ςS = 1).
We set the scale parameter s = 0.02, such that the synthetic
dataset is 2% of the real dataset of a client, allowing for minimal
storage overhead. Synthetic samples are generated from random
samples of real data, and we use the same distance function
d as Zhao et al. [28] as the matching loss between the real
and synthetic data. For DSA [36, 37] we use the color, crop,
cutout, flip, scale, rotate methods for CIFAR-10 and exclude
flip for MNIST, since flipping is not suitable for digit datasets,
as argued by their work.

VII. PERFORMANCE EVALUATION

We report the average Top-1 accuracy of all clients on
the global test set rounded to two decimals. For the F-set
accuracy we consider the accuracy on the training dataset of
the client that disconnects. We reconstruct this set locally using
DecentralizePy’s mapping module [24]. Since it is not realistic
that other clients can access the data of others, we only use this
set to assess the efficiency of the algorithm. The algorithm does
not take this accuracy into account for learning. DecentralizePy
views testing accuracy as the generalization capability of the
model on the global dataset. In other words, the test set is
global and the same for all clients. It is unchanged throughout
execution, which remains the case for this project as well. As
such, we report R-set accuracy as the testing accuracy of the
model on the global test set, even if the remaining dataset
D \Df no longer holds samples of a particular class. Because
of this, we expect higher F-set accuracies and lower R-set
accuracies than what other FL SOTA algorithms report, which
dynamically change the test set throughout learning.

20 40 60 80 100
communication rounds

40

50

60

70

80

90

100

Te
st

in
g

Ac
cu

ra
cy

 (%
)

mnist-regular-training
mnist-retrain-or
mnist-sga-or

Fig. 1: Average global testing accuracies of the clients in
the 16-node 3-regular network trained on the MNIST dataset.
Comparison of 3 scenarios: regular training, RETRAIN-OR,
and SGA-OR. Client 5 disconnects at iteration 50. Standard
deviation is shown by the shaded area.

A. Baselines

We consider two baseline algorithms:
1) Retraining from scratch. Upon receiving an unlearning

request, the RETRAIN-OR oracle resets all remaining
local models and optimizers and retrains from scratch,
thus acting like the dropped node never existed. The
number of recovery rounds of RETRAIN-OR is equal to
the number of training rounds prior to unlearning.

2) SGA. The SGA-OR oracle follows a similar approach
to the proposed algorithm, but uses real training data
instead of synthetic data. This is not applicable in practice
for DL systems because it requires knowledge of the
training dataset of the dropped node, but it provides a
solid baseline for the effectiveness of using synthetic
data.

Figure 1 exemplifies these algorithms, while other topologies
and datasets being considered in Subsection VII-C.

B. Quality of Synthetic Data

Each client trains a dataset of synthetic images that should
represent a condensed version of the original data as closely
as possible. To assess the quality of this synthetic data, we
employ two different comparison methods:

Training on synthetic data. We train a new DL model
using only synthetic data and compare its global test accuracy
to a model trained on real data. Despite the synthetic data
being optimized for short unlearning rounds, its performance
is comparable to that of real data, at just 2% of the size of
the original dataset (see Fig. 2). It does have some difficulty
in holding a stable high accuracy, which we attribute to the
small dataset size.

Fréchet inception distance (FID) [42]. To measure the
quality of the synthetic images, we also use the FID score.
This metric compares the feature representations of real and

5

20 40 60 80 100
communication rounds

40

50

60

70

80

90

100
Te

st
in

g
Ac

cu
ra

cy
 (%

)

mnist-regular-training
mnist-syn_data-training

Fig. 2: Comparison on testing accuracies of a model trained on
the real dataset and a model trained on the synthetic dataset,
tested on the global test set. The original dataset is MNIST,
and the topology is a 3-regular 16-node graph.

generated images, extracted using a pre-trained Inception v3
model. It calculates the distance between the two sets of
features to estimate how similar they are. A lower FID score
means the synthetic images are closer to the real ones in
terms of visual features, with a score of 0.0 indicating perfect
similarity. After training for 100 rounds, a 16-node 3-regular
DL topology reaches an FID score of 1.57 for MNIST and
487.2 for CIFAR-10, using 1000 images from the real data
to calculate it. Due to the high complexity and variety of
CIFAR-10, the small training time and sample size might
prove insufficient to fully assess the feature similarity between
the real and synthetic datasets.

TABLE II: The mean total training and DD compute time for
clients training on MNIST and CIFAR-10 after 115 iterations
with one unlearning request. Calculated for a 3-regular 16-node
network.

Dataset
Total Train

Time (s)
DD Compute

Time (s)
DD

Overhead
MNIST 1320.01 1041.67 77.99%
CIFAR-10 1106.07 884.45 79.95%

C. Performance of a Single Unlearning Request

For the following experiments, we perform 10 iterations
(global rounds), and client 8 disconnects at iteration 3, sending
out an unlearning request to its neighbours, along with its
synthetic data S8. These neighbours then recursively propagate
the request to the rest of the network via their neighbours.

We report the drop in general testing accuracy during
unlearning and recovery in Figure 3. We compare F-set and
R-set accuracies with the proposed baselines in Table III. We
notice that our proposed method remains competitive with the
oracles, proving its correctness. As we increase the degree of
each node, we can notice the method recovering faster and

better, while maintaining a low F-set accuracy. This leads
to the observation that the more sparse a DL system is, the
more difficult it is to both unlearn and recover in an efficient
manner. However, for a fully connected network, the chosen
unlearning hyperparameters prove to be too aggressive, as the
model struggles to regain its past performance for CIFAR-10.
Moreover, this ties in closely with the fact that DL systems
have a slower convergence rate and higher variance in per-
client testing accuracy. We also notice how R-set accuracies
fail to reach the previous values for global accuracy, even
for the retrain oracle. This is because of the strong non-IID-
ness (α = 0.1) of the data, which can lead to large parts
of a class being deleted from the training data, as some
nodes may be of higher importance to the global model than
others. This, combined with a sparse network, makes correctly
classifying these classes happen slower than before the client’s
disconnection.

D. Performance of Multiple Unlearning Requests
In our setup, we allow for an arbitrary number of clients

to drop. We also go beyond QUICKDROP by allowing clients
to crash unannounced, and implement a timeout mechanism,
as presented in Section VI. We report the client-wise global
testing accuracies of sequentially unlearning half of the clients
in random order of a 4-regular 16-node network in Figure 4
such that the network remains connected. We observe that as
more clients leave, the variance between them increases. This
stems from the low connectivity of the network, which slows
down convergence rate. However, most clients are still able
to reach a high global accuracy despite half of them leaving,
which shows that the recovery remains effective.

E. Overhead During Training
We report the following types of overhead during training

for the proposed algorithm:
1) Computation overhead of data distillation (DD).

Table II exemplifies the additional computation time
needed for DD with the proposed hyperparameters. The
total train time is calculated for each local training
step, without initialization, communication or weight
averaging, while the DD compute time is calculated
only for tuning the synthetic dataset using the minibatch
samples. While this does add some overhead, it is
necessary for using synthetic data for fast and efficient
unlearning and recovery.

2) Time overhead of unlearning. Our baselines remain
competitive in terms of speed of unlearning and recovery,
as shown by Table III. The increase in duration with
respect to SGA-OR is due to the fact that the synthetic
dataset is augmented for each recovery step. While it
does add overhead to the unlearning operation, we prove
it is worthwhile by the increase in R-set accuracy it
provides over SGA-OR.

VIII. DISCUSSION

The results presented in Section VII showcase the impact of
our research in the field of DL. We propose a novel approach

6

2 4 6 8 10
communication rounds

0

20

40

60

80

100

Te
st

in
g

Ac
cu

ra
cy

 (%
)

Unlearning RecoveryUnlearning RecoveryUnlearning Recovery

ours-mnist-3regular16
ours-mnist-4regular16
ours-mnist-fc10

(a) MNIST

2 4 6 8 10
communication rounds

10

20

30

40

50

60

Te
st

in
g

Ac
cu

ra
cy

 (%
)

Unlearning RecoveryUnlearning RecoveryUnlearning Recovery

ours-cifar10-3regular16
ours-cifar10-4regular16
ours-cifar10-fc10

(b) CIFAR-10

Fig. 3: Average testing accuracy of the clients in the network before, during, and after unlearning and recovery for two datasets
(MNIST (a) and CIFAR-10 (b)). Client 8 disconnects at iteration 3. Comparison of 3 topologies: 3-regular 16-node (3regular16),
4-regular 16-node (4regular16), and fully connected 10-node (fc10). Standard deviation is shown by the shaded area.

TABLE III: F-Set and R-Set accuracies, computation cost, and speedup of different DU methods for MNIST and CIFAR-10
datasets after unlearning and recovery. Comparison of 3 topologies: 3-regular 16-node (3regular16), 4-regular 16-node
(4regular16), and fully connected 10-node (fc10). For RETRAIN-OR, we consider 400 rounds of retraining. We measure the
time from when the unlearning request is triggered until the last recovery step ends. F-set accuracy should be low and R-set
accuracy high. The best values are in bold.

Topology DU Approach MNIST CIFAR-10
F-Set R-Set Time (s) Speed-up F-Set R-Set Time (s) Speed-up

3regular16
RETRAIN-OR 94.16% 97.19% 2641.06 1× 54.61% 54.93% 1613.99 1×
SGA-OR 3.15% 40.68% 83.71 31.55× 5.66% 30.84% 46.67 34.58×
This Work 5.40% 73.54% 103.06 25.63× 8.37% 28.17% 66.42 24.30×

4regular16
RETRAIN-OR 94.83% 97.91% 2698.77 1× 59.96% 57.78% 1725.76 1×
SGA-OR 4.03% 60.03% 79.86 33.79× 3.41% 33.46% 43.91 30.30×
This Work 5.59% 74.62% 107.59 25.08× 7.97% 29.09% 72.05 23.95×

fc10
RETRAIN-OR 93.73% 98.54% 2369.61 1× 62.06% 68.59% 1470.90 1×
SGA-OR 8.93% 77.59% 63.66 37.22× 3.33% 33.36% 41.60 35.36×
This Work 9.05% 79.07% 76.50 30.98× 10.64% 37.71% 68.90 21.35×

for DU by improving on the existing FU SOTA, allowing
for more real-world use cases (client crashes) and a more
efficient gradient matching algorithm in theory. In this section
we provide arguments towards the necessity of broader study
in the area and make recommendations for the directions to
take.

A. Limitations

While our proposed approach achieves competitive results
against existing baselines and oracles, several limitations
remain. Due to the fundamental differences between FL and
DL, directly transferring hyperparameters from QUICKDROP
did not lead to optimal performance. In FL, each node
follows a synchronized and centrally-coordinated workflow,
which simplifies parameter tuning. In contrast, DL involves
asynchronous peer-to-peer communication, making it harder
to ensure convergence and consistency. As such, our method

required specific hyperparameter tuning for different topologies
and datasets, limiting generalizability. More specifically, more
unlearning and recovery steps were needed to reach similar
effectiveness.

Moreover, although our method supports unlearning without
full retraining and enables crashed client detection, scalability
remains a concern. As the number of clients increases, so
does the volume of synthetic data being shared and cached,
despite it being only 2% of the size of their data partition. This
leads to increased communication overhead, accentuated in
dense topologies, which can become a bottleneck in resource-
constrained environments. Currently, a client shares their data
with all of its neighbours, who cache it in anticipation of
potential unlearning requests. One could experiment with only
sharing the synthetic data with a few of the neighbours.

Although DecentralizePy is synchronous by design, where

7

0 20 40 60 80 100 120 140
Communication Rounds

0

20

40

60

80

100
Te

st
 A

cc
ur

ac
y

(%
)

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7

Node 8
Node 9
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15

Fig. 4: Per-client global testing accuracy after unlearning clients 0, 9, 5, 6, 7, 1, 11, 12 every 15 iterations starting with round
15, on the MNIST dataset, with a 4-regular 16-node topology. Clients leave without notice, in which case neighbours initiate
unlearning using the cached synthetic data of the departed client.

iteration n+1 begins only after a client and its neighbours
complete iteration n, the propagation of unlearning requests is
not. This asynchronous behaviour occurs only when a client
crashes. For example, if client i crashes during iteration n, its
neighbours may only react in iteration n+1 after completing
their own local training. This is shown in Figure 4, where
unlearning, marked by a sharp drop in test accuracy, begins at
different times for different clients, especially as the network
becomes more sparse. Since weight averaging continues during
unlearning and recovery rounds to aid convergence and prevent
overfitting, a recovering client may average with one that is
unlearning, reducing the efficiency of the unlearning process.

Another challenge arises from the strongly non-IID nature
of the data. When a client leaves the network, it may carry
with it many unique samples of a class, causing entire classes
to disappear. This makes both unlearning and recovery more
difficult, and is particularly evident in sparse graphs, where
fewer neighbours means less redundancy in the data.

B. Future work

Although our work focuses on client-level unlearning, the
algorithm is, in theory, extensible to class-level and sample-level
unlearning. This could prove useful for tasks involving sensitive
categories or user-specific examples. Further research in this
direction could help assess the adaptability and robustness of
our method to these different types of unlearning requests.

Another direction is relearning, where a client who previously
requested unlearning later rejoins the network. The current code
does not support this functionality, but the method itself does,
since synthetic data of dropped clients remains cached in their
neighbours.

Scalability is also an important aspect for future exploration.
Running our algorithm on larger DL networks would test its
robustness, communication cost, and computation efficiency
at scale. Exploring different topologies and their effects on
convergence and unlearning quality may offer insights into
how to optimize network structure dynamically during training
or unlearning.

Additionally, our method could be tested on more complex
models and real-world datasets. The current use of small CNNs
and academic datasets like MNIST and CIFAR-10 may not fully

reflect the challenges faced in real-world scenarios. The existing
method of HDUS [10] was not evaluated in this work due to
time constraints and the complexity of implementing it into
DecentralizePy, but should be included in future comparisons
to better understand the relative strengths and weaknesses of
different approaches to DU.

We also recommend investigating alternative DD algorithms,
such as those using distribution matching [43, 44]. These
methods may offer better performance, higher convergence
rates, or improve privacy when generating synthetic data.

IX. CONCLUSION

This work has addressed the under-explored problem of
client-level unlearning in decentralized learning systems. We
propose a method inspired by QUICKDROP, adapting it to the
decentralized setting through asynchronous peer-to-peer com-
munication. Our algorithm allows for the effective removal of
a dropped client’s influence via SGA, followed by accelerated
recovery rounds that restore generalization performance using
only synthetic data.

Through experiments on the MNIST and CIFAR-10 datasets
over three different topologies, we show that our method
performs competitively with optimal baselines, which require
impractical assumptions, such as access to raw training data
or retraining from scratch. Moreover, our approach uniquely
supports client crashes by using cached synthetic datasets,
making it suitable for real-world decentralized systems where
churn is inevitable.

Despite this, the algorithm’s efficiency depends heavily on
the quality of synthetic data, and performance can degrade in
highly sparse and non-IID environments. Communication over-
heads increase with network size, and careful hyperparameter
tuning is needed across different settings.

Nevertheless, this work provides a foundation for future
research into privacy-preserving mechanisms in DL systems.
Potential extensions include supporting other unlearning types,
improving scalability, experimenting with larger models, and
exploring other synthetic data generation algorithms. By
enabling practical unlearning in decentralized contexts, our
method takes a step toward more robust decentralized learning.

8

X. RESPONSIBLE RESEARCH

This research was conducted responsibly in accordance with
the Netherlands Code of Conduct for Research Integrity [45]. In
this section, we reflect of several aspects of our work, highlight-
ing measures towards transparency, integrity, reproducibility,
replicability, and the responsible use of Artificial Intelligence
(AI) throughout the research process and delivery.

A. Datasets

This research uses only publicly available datasets
(MNIST [39], CIFAR-10 [40]) and code with an MIT License
(DecentralizePy [24], DatasetCondensation [28]). The choice
of datasets was backed by the need for ease and speed of
development (MNIST), and effectiveness in benchmarking
against other algorithms (CIFAR-10).

B. Results and Evaluation

DecentralizePy plays a major role in the reproducibility of
the experiments we conduct, as it saves the configuration and
command-line arguments used for each experiment along with
its results. We save all results reported in this paper along in
the aforementioned code repository. Its README file provides
steps for reproducing each experiment. All experiments have
been run at least three times to check that results have low
variance. Additionally, we use pre-defined and configurable
seeds for all randomness within our code. Moreover, we
considered replicability in every step of our processes, by
using the same non-skewed datasets which are often part of
similar work. All design choices are outlined and explained in
Sections V and VI.

Due to limited resources, experiments were run via SSH on
an external machine, making some values, particularly timings
in Tables II and III, sensitive to system and network conditions.
Evaluation on CIFAR-10 was performed less frequently due
to CUDA memory issues, which may have inflated speed
compared to MNIST. These factors mean the reported speeds
may vary across runs and are not fully representative. The
extended timeout described in Section VI was necessary to
avoid disconnections, as shorter timeouts proved unreliable.
To provide more stable comparisons, we also report relative
percentages for speed-ups and overheads.

C. Research Process

The research process was conducted responsibly, beginning
with a thorough literature review. Section III presents the
work performed in recent years in the areas of Federated and
Decentralized Unlearning. We mention how, to the best of our
knowledge, DU research is minimal, and attempt to translate the
SOTA from FL to DL, while making some improvements. The
process was also conducted with various ethical and correctness
considerations in mind. Our research respects the privacy of
users by making it more efficient for DL systems to respect
users’ rights to be forgotten (e.g. the GDPR [16]).

D. Use of Artificial Intelligence

AI was only used for correcting errors within the code,
explaining new concepts or writing scripts for calculating
reported values (e.g. mean unlearning times), via publicly
available products like ChatGPT and GitHub Copilot. All
generated content was verified by the authors. No section
of this paper was written using AI.

REFERENCES

[1] P. Kairouz et al. “Advances and Open Problems in Federated
Learning”. English. In: Foundations and Trends® in Machine
Learning 14.1–2 (June 2021). Publisher: Now Publishers, Inc.,
pp. 1–210.

[2] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao. “A survey
on federated learning”. In: Knowledge-Based Systems 216 (Mar.
2021), p. 106775.

[3] B. Cox, L. Y. Chen, and J. Decouchant. “Aergia: leveraging
heterogeneity in federated learning systems”. In: Proceedings
of the 23rd ACM/IFIP International Middleware Conference.
2022, pp. 107–120.

[4] I. Hegedűs, G. Danner, and M. Jelasity. “Gossip Learning as
a Decentralized Alternative to Federated Learning”. en. In:
Distributed Applications and Interoperable Systems. Cham:
Springer International Publishing, 2019, pp. 74–90.

[5] R. Wang et al. “MUDGUARD: Taming Malicious Majorities in
Federated Learning using Privacy-Preserving Byzantine-Robust
Clustering”. In: Proceedings of the ACM on Measurement and
Analysis of Computing Systems 8.3 (2024), pp. 1–41.

[6] B. Cox, A. Mălan, L. Y. Chen, and J. Decouchant. “Asyn-
chronous Byzantine federated learning”. In: arXiv preprint
arXiv:2406.01438 (2024).

[7] A. Shankar, L. Y. Chen, J. Decouchant, D. Gkorou, and
R. Hai. “Share Your Secrets for Privacy! Confidential Fore-
casting with Vertical Federated Learning”. In: arXiv preprint
arXiv:2405.20761 (2024).

[8] A. Mălan, J. Decouchant, T. Guzella, and L. Chen. “CCBNet:
Confidential Collaborative Bayesian Networks Inference”. In:
arXiv preprint arXiv:2405.15055 (2024).

[9] R. Ormándi, I. Hegedűs, and M. Jelasity. “Gossip learning with
linear models on fully distributed data”. en. In: Concurrency
and Computation: Practice and Experience 25.4 (2013). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.2858,
pp. 556–571.

[10] G. Ye, T. Chen, Q. V. H. Nguyen, and H. Yin. Heterogeneous
Decentralized Machine Unlearning with Seed Model Distilla-
tion. arXiv:2308.13269 [cs]. Aug. 2023.

[11] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu. Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel Stochastic
Gradient Descent. arXiv:1705.09056 [math]. Sept. 2017.

[12] S. Biswas et al. “Noiseless Privacy-Preserving Decentralized
Learning”. In: Proceedings on Privacy Enhancing Technologies
(2025).

[13] D. Stutzbach and R. Rejaie. “Understanding churn in peer-to-
peer networks”. In: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement. IMC ’06. New York,
NY, USA: Association for Computing Machinery, Oct. 2006,
pp. 189–202.

[14] W. Wang, Z. Tian, C. Zhang, and S. Yu. Machine Unlearning:
A Comprehensive Survey. arXiv:2405.07406 [cs]. July 2024.

[15] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. “Making AI
Forget You: Data Deletion in Machine Learning”. In: Advances
in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc., 2019.

9

[16] European Union. General Data Protection Regulation. Apr.
2016.

[17] A. Dhasade, Y. Ding, S. Guo, A.-M. Kermarrec, M. de Vos,
and L. Wu. “QuickDrop: Efficient Federated Unlearning via
Synthetic Data Generation”. In: Proceedings of the 25th
International Middleware Conference. Middleware ’24. New
York, NY, USA: Association for Computing Machinery, Dec.
2024, pp. 266–278.

[18] A. Hatua, T. T. Nguyen, F. Cano, and A. H. Sung. Machine Un-
learning using Forgetting Neural Networks. arXiv:2410.22374
[cs]. Oct. 2024.

[19] A. K. Tarun, V. S. Chundawat, M. Mandal, and M. Kankanhalli.
“Fast Yet Effective Machine Unlearning”. In: IEEE Transactions
on Neural Networks and Learning Systems 35.9 (Sept. 2024),
pp. 13046–13055.

[20] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. “Re-
member What You Want to Forget: Algorithms for Machine
Unlearning”. In: Advances in Neural Information Processing
Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 18075–
18086.

[21] Y. Li, J. Zhang, Y. Liu, and C. Chen. Class-wise Federated
Unlearning: Harnessing Active Forgetting with Teacher-Student
Memory Generation. arXiv:2307.03363 [cs]. Mar. 2025.

[22] A. Golatkar, A. Achille, and S. Soatto. Eternal Sunshine
of the Spotless Net: Selective Forgetting in Deep Networks.
arXiv:1911.04933 [cs]. Mar. 2020.

[23] Y. Cao and J. Yang. “Towards Making Systems Forget with
Machine Unlearning”. In: 2015 IEEE Symposium on Security
and Privacy. ISSN: 2375-1207. May 2015, pp. 463–480.

[24] A. Dhasade, A.-M. Kermarrec, R. Pires, R. Sharma, and
M. Vujasinovic. “Decentralized Learning Made Easy with
DecentralizePy”. en. In: Proceedings of the 3rd Workshop
on Machine Learning and Systems. Rome Italy: ACM, May
2023, pp. 34–41.

[25] L. Wu, S. Guo, J. Wang, Z. Hong, J. Zhang, and Y. Ding.
“Federated Unlearning: Guarantee the Right of Clients to
Forget”. In: IEEE Network 36.5 (Sept. 2022), pp. 129–135.

[26] A. Halimi, S. Kadhe, A. Rawat, and N. Baracaldo. Feder-
ated Unlearning: How to Efficiently Erase a Client in FL?
arXiv:2207.05521 [cs]. Oct. 2023.

[27] C. Wu, S. Zhu, and P. Mitra. Federated Unlearning with
Knowledge Distillation. arXiv:2201.09441 [cs]. Jan. 2022.

[28] B. Zhao, K. R. Mopuri, and H. Bilen. Dataset Condensation
with Gradient Matching. arXiv:2006.05929 [cs]. Mar. 2021.

[29] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms.
en. CRC Press, Feb. 2025.

[30] G. Ye, T. Chen, Y. Li, L. Cui, Q. V. H. Nguyen, and H.
Yin. “Heterogeneous Collaborative Learning for Personalized
Healthcare Analytics via Messenger Distillation”. In: IEEE
Journal of Biomedical and Health Informatics 27.11 (Nov.
2023), pp. 5249–5259.

[31] A. Koloskova. “Optimization Algorithms for Decentralized,
Distributed and Collaborative Machine Learning”. en. PhD
thesis. EPFL, 2024.

[32] A. Koloskova*, T. Lin*, S. U. Stich, and M. Jaggi. “De-
centralized Deep Learning with Arbitrary Communication
Compression”. en. In: Sept. 2019.

[33] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. “Gossip-based peer sampling”. In: ACM Trans.
Comput. Syst. 25.3 (Aug. 2007), 8–es.

[34] B. Cox, J. Galjaard, A. Shankar, J. Decouchant, and L. Y. Chen.
“Parameterizing Federated Continual Learning for Reproducible
Research”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2023,
pp. 478–486.

[35] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset
Distillation. arXiv:1811.10959 [cs]. Feb. 2020.

[36] S. Zhao, Z. Liu, J. Lin, J.-Y. Zhu, and S. Han. “Differentiable
Augmentation for Data-Efficient GAN Training”. In: Advances
in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., 2020, pp. 7559–7570.

[37] B. Zhao and H. Bilen. “Dataset Condensation with Differ-
entiable Siamese Augmentation”. en. In: Proceedings of the
38th International Conference on Machine Learning. ISSN:
2640-3498. PMLR, July 2021, pp. 12674–12685.

[38] L. Xiao, S. Boyd, and S.-J. Kim. “Distributed average consensus
with least-mean-square deviation”. In: Journal of Parallel and
Distributed Computing 67.1 (Jan. 2007), pp. 33–46.

[39] Y. LeCun and C. Cortes. “The mnist database of handwritten
digits”. In: 2005.

[40] A. Krizhevsky. “Learning Multiple Layers of Features from
Tiny Images”. In: 2009.

[41] S. Gidaris and N. Komodakis. “Dynamic Few-Shot Visual
Learning Without Forgetting”. In: 2018, pp. 4367–4375.

[42] T. Kynkäänniemi, T. Karras, M. Aittala, T. Aila, and J. Lehtinen.
The Role of ImageNet Classes in Fr\’echet Inception Distance.
en. Mar. 2022.

[43] B. Zhao and H. Bilen. Dataset Condensation with Distribution
Matching. arXiv:2110.04181 [cs]. Dec. 2022.

[44] C.-Y. Huang, K. Srinivas, X. Zhang, and X. Li. Overcoming
Data and Model Heterogeneities in Decentralized Federated
Learning via Synthetic Anchors. arXiv:2405.11525 [cs]. Mar.
2025.

[45] Netherlands Code of Conduct for Research Integrity | NWO.
en.

10

APPENDIX A
TOPOLOGIES USED

This Appendix provides a visual presentation of the topolo-
gies used throughout our experiments, outlined in Section VI.2

An n-regular graph is a graph where each node has degree n.

Fig. 5: The 16-node 3-regular graph we used.

Fig. 6: The 16-node 4-regular graph we used.

2Drawn using CS Academy’s Graph Drawer. See
https://csacademy.com/app/graph_editor/

Fig. 7: The 10-node fully connected graph we used.

11

