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Abstract—In this paper, we investigate the classification of
Activities of Daily Living (ADL) by using a pulsed ultra-wideband
radar. Specifically, we focus on contiguous activities that can
be inseparable in time and share a common transition, such as
walking and falling. The range-time data domain is deliberately
exploited to determine transitions from translation activities to
in-place activities and vice versa, using a simple, yet effective
approach based on the proposed Derivative Target Line (DTL).
The separation of different in-place activities is then addressed
using an energy detector finding the onset and offset times.
Furthermore, the possible ADL for classification are limited at
any decision stage based on kinematic constraints of human
movements. We show that such limitation of classes at any
given time leads to a classification improvement over a classifier
containing always all ADL classes.

Index Terms—micro-Doppler, assisted living, feature fusion,
machine learning, classification, range-map, activities of daily
living.

I. INTRODUCTION

Nowadays, aging of the population with an increasing
number of elderly people becomes one of the top societal
challenges since the elderly live longer at home with chiefly
limited external support. Remotely monitoring systems us-
ing Radio Frequency (RF) technologies are powerful non-
obtrusive tools for Activities of Daily Living (ADL) [1].
Different approaches with different radars have shown promis-
ing results, e.g. Continuous Waveform (CW) or Frequency
Modulated Continuous Waveform (FMCW) and pulsed ultra-
wideband (UWB) radars, where the former provides a micro-
Doppler (µD) spectrogram only, whereas the latter two support
diverse data representations such as the range-time, range-
Doppler, or radar data cube processing [2]–[4]. Radar capabil-
ity improvements in terms of operational bandwidth allow for
monitoring of vital signs (heart rate or respiration rate) thanks
to the finer radar resolution, both in the range and frequency
domain [5]. Approaches with sensor fusion, e.g. wearable
devices or recognition with multiple cooperative radars, can
be used to increase the monitoring accuracy and generally
improves the overall performance by exploiting advantages of
diverse sensors [6]–[9].

This paper investigates the classification of sequences for
ADL using the range and Doppler information provided by
a pulsed UWB radar, and specifically where the transition
between translational movement (e.g. walking) and in-place
movements (e.g. bending or sitting) can be separated. We

propose an algorithm monitoring the person in an indoor
environment, where we deliberately exploit the range-time
profile for the discrimination of translating vs in-place be-
haviors. The algorithm reduces the noise outside the true
Target Line (TL) and monitors the position of the subject
over time. This method can be used for data sequences of
any length and does not require a time limitation as in [10].
The proposed Derivative Target Line (DTL) is then used
and combined with the limitation of the possible classes for
classification. This, with different classifiers and optimization
of their parameters, is shown to significantly improve the
classification rate compared to using all classes at any given
time. We adopt Two Dimensional (2D) Principal Component
Analysis (PCA) as a feature extractor, and the decision tree
classifier for both, the micro-Doppler (µD), the range-map
(RM), and their fusion.

The rest of the paper is organized as follows. Section II
introduces the radar setup, data analysis, and the proposed
algorithm. Section III describes the data acquisition proce-
dure and the classification performance achieved with our
experimental data. The conclusion and remarks are given in
Section IV.

II. DATA ANALYSIS

The results presented in this paper use a P410 Humatics
radar (former Time Domain™). The pulsed radar has a band-
width of 2 GHz and a center frequency of 4.3 GHz [11], [12].
The coverage area is 4.39 m from 1 m to 5.39 m, as shown in
the RM in Fig. 1a. The radar was used with a pulse repetition
interval of 8.2 ms, with an unambiguous Doppler frequency
of ±61 Hz. The Short-time Fourier transform (STFT) is used
[13], [14] with a Hann (Hanning) window of 64 samples
and an overlap of 60 samples (94%) to compute the µD
spectrogram, as in Fig 4b. The majority of the noise samples
from the µD spectrogram and the RM is then eliminated
by using the eCLEAN algorithm [4], [15]. The initial µD
spectrogram and RM (Fig. 1a) are resized to 128 sampled for
the y-axis and 64 samples for 1 s in slow time, which results
to 3840 samples for the 60 s sequence. The finally resulting
µD spectrogram and RM are shown in Fig. 4a and 4b.

A. Target Line (TL) Detection

The RM contains essential information on the human move-
ments, such as acceleration in either directions for translating
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Fig. 1: (a) The raw range-map (RM) together with (b) the
cleaned RM (RMC) and (c) the Target Line (TL) for the
activity sequence of a bi-directional walking merged with
falling, followed by standing up from a fall, sitting down,
standing up, and finally a bi-directional walking again.
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Fig. 2: The Derivative Taget Line (DTL) and the Decision
Vector (DV) for translating in either direction and the in-place
activity segments.

activities, towards or away from the radar, or for the non-
translating activities. This allows to find the onset and offset of
each inter class activities, e.g. walking-falling merged [10]. We
introduce the Target Line (TL) detection process for finding
the position of the target (human being). As a simple cleaning
algorithm, a method similar to the TL detection was introduced
in the prior work [16]. Our extended method in this paper
additionally monitors the position of the target at any given
slow-time sample. The cleaned range-map (RMC) is shown in
Fig. 1b and the TL plot can be seen in Fig. 1c.

B. Derivative Target Line (DTL) processing

The initial Target Line vector, TL(n), enables the discrim-
ination between translation and in-place activities since the

relative distance to the radar is tracked. For that, we assume
that the vector TL(n) is represented by a continuous function
TL(t), where t represents the continuous time. Here, the first
derivative of TL(t) can be expressed as,

DTL (t) =
d (TL (t))

dt
, t ∈ R : [0s, 60s] (1)

with DTL(t) as a function of t representing the slope of the
TL(t) at any given time. Particularly, the first derivative of the
location (TL) represents the target velocity, which is estimated
more precisely without using the µD spectrogram.

As the vector TL(n) is a discretely sampled function, the
discrete Derivative Target Line (DTL) can be computed as,

DTL (n) = TL (n+ 1)− TL (n) , n = 0, ..., N − 1 (2)

The vector DTL (n) indicates the person’s in-place and
translation activities, and is shown in Fig. 2a, as the red
curve. The curve refers to the down-sampled RM of 128 ×
3840 samples with a range coverage area between 1 m and
5.39 m for 60 s. The empirically found threshold values
of th = [+0.15,−0.15] (green horizontal lines) are used
to discriminate between the person’s in-place action and the
persons translation action in either direction – towards and
away from the radar. This is a stand alone experimental result:
in the majority of cases, the human velocity in range by
the person’s in-place action is less than threshold of ±0.15.
The threshold can be decreased to become more sensitive to
th = [+0.10,−0.10], for which the false alarm rate of the
translation activities increases. On the other hand, a larger
threshold (th = [+0.20,−0.20]) leads to a more robust system
for in-place activities, but with the risk of little swaths in range
for translation activities to be easily overlooked. With the
DTL and the th, the Decision Vector (DV) is then computed
as,

DV (n) =


1, if DTL(n) > th(1) = +0.15

0, if DTL(n) < th(2) = −0.15

0.5, otherwise
(3)

for n = 1, ..., N−1 and is shown in Fig. 2b as the blue curve.
Specifically, a value of 1 for the DV indicates a translation
activity away from the radar, whereas a DV value of 0 shows a
translation activity towards the radar. In-place time periods are
indicated by 0.5, as shown in Eq. 3. It can be seen that few
outliers around the sample 2050 indicate a movement away
from the radar, which refers to the backward movement from
a standing up after falling. Therefore, small peaks of less than
32 samples (0.5 s) are set to be in-place activities as shown in
the Fig. 2b by the red curve. The equivalent values of DV ∈
[1, 0, 0.5] are shown in the RM and µD spectrogram by the
white, gray, and black bars in the Fig. 4a and 4b.

Regarding Fig. 2b, the beginning and ending samples of
each sub-sequence – a translation in either directions, or an
in-place sequence – is marked with the blue, green, and yellow
circles and indicate the onset and offset samples times. In
Fig. 2b two translating away activities are found with the
offset samples of 406 and 3550. Additionally, there are two
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the green and blue lines indicating the onset and offset samples
(times) of the in-place and translating activities, respectively.
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Fig. 4: The discriminated activities of translating in either
direction (blue) and the in-place activities (green) are shown
for a multi-motion sequence of 60 s.

translation activities towards the radar denoted by the offset
samples of 801 and 3199. The latter does not exceed the
time window of 2 s; therefore, the activity is not captured
for classification. For the two activities away from the radar
and the first activity towards the radar, a window of 4 s
(256 samples) is placed, which captures 3 s of the translation
activity and 1 s of the in-place activity, as shown by the blue
rectangles in Fig. 4a and 4b. The 8-bit gray-scale images of
these three specific activities are shown in Fig. 5 with (a), (b),
and (f) for the µD and (g), (h), and (l) for the RM.

C. Power Burst Curve (PBC)

The DTL is used to separate translation activities from in-
place activities, whereas within in-place activities with almost
no range swath the DTL cannot be applied for discriminating
between multiple consecutive in-place activities. For separat-
ing such in-place activities, we rely on an energy detector,
known as the Power Burst Curve (PBC) [13], [17].

Onset and offset times provided by the DTL are used
to define the in-place segments. An in-place segment with
multiple motions is shown in Fig. 4a and 4b between the
sample points 802 and 3135 (12.53 s and 48.98 s). The PBC
as in Eq. (8) [18] is applied on the positive frequency bands

between 4 Hz and 61 Hz and the negative frequency bands
between −4 Hz and −61 Hz. The resulting PBC is shown
in Fig. 3 as the blue curve. We apply a moving average
window of 20 samples for smoothing the signal, shown as the
brown curve (filtered PBC). An empirically found threshold
of 5% over the minima has been applied and is computed as,
PBCmin+0.05·(PBCmax−PBCmin). For in-place separation,
we only rely on the in-place segment, which means the PBC
is not used on any segment which is indicated as a translation
activity by the DTL, as discussed before. The discriminated
activities are illustrated by the green binary signal vector
(binary vector in-place actions). The found onset and offset
times are used for cropping the individual spectrogram and
RM, as shown in Fig. 4a and 4b indicated with the green
rectangles. The saved images for these specific activities are
enlarged and shown in Fig. 5 in (c), (d), and (e) for the µD
and (i), (j), and (k) for the RM.

III. EXPERIMENTAL RESULTS

The data were collected with six monostatic radars in a
linear baseline with 0.5 m separation. The facing angle for the
data collection to the radar was within ±51.3◦. In this paper,
a multi-activity sequence was chosen with a bi-directional
walking contiguously merged with falling at the beginning,
followed by a sequence of in-place activities, namely, standing
up from a fall, sitting down on a chair, and standing up, before
another bi-directional walking ends the sequence. In Fig. 7,
the test person performs the activities towards the radar. The
test candidates age is between 22 and 40 years, with a height
between 1.67m and 1.85m, and a weight between 65kg and
89kg.

For this paper, we are using a comprehensive number of
20 ADL classes which can be found in Table V. A data
set of 305 samples for each class was collected using the 6
radar sensors simultaneously, while a training:validation ratio
of 80:20 was used. We apply 2D-PCA as a feature extraction
method followed by a decision tree classifier [19], [20]. For
the 2D-PCA, the covariance matrix H is computed as,

H =
1

I

I∑
i=1

(X(i) − X̄)T · (X(i) − X̄) (4)

where X̄ ∈ Rη×η is the mean image, as X̄ = 1
I

∑I
i=1X

(i),
with η = 128 the downsampled image size. I is the total
number of images in the training data, and X(i) ∈ Rη×η is
the i-th µD or RM image, as shown in Fig. 5, respectively.
From the eigendecomposition of H , the eigenvalues and
eigenvectors (νi) are extracted. The eigenvectors correspond to
the d largest eigenvalues form the matrix Φ = [ν1, ν2, ..., νd].
The default values for d are dµD = 3 and dRM = 3 for the µD
and the RM classification, respectively.

The training and test images X are projected on the η× d-
dimensional subspace matrix Φ to compute the principal
component matrix, Y = XΦ, for the µD, YµD, with the
dimension Rη×dµD , and the RM, YRM, with the dimension
dimension Rη×dRM .
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Fig. 7: Visualization of walking-falling followed by standing
up from falling, sitting down, standing up and walking.

The individual vectorized training matrices vec(YmD,train),
vec(YRM,train), and vectorized test matrices vec(YmD,test),
vec(YRM,test) are used by the decision tree for µD and RM
classification, respectively. Additionally, we apply the fusion
classifier which uses the concatenated µD, vec(YµD), and RM,
vec(YRM) vectors for the decision tree classifier, such as
YFu = [vec(YµD)T, vec(YRM)T]T [16], [21].

TABLE I: Classifier 0 (away): First translation activity with
(I) walking-stopping and (II) walking-falling away from the
radar. Classifier: Decision tree; PC: [dµD = 3; dRM =
3]; σmD,RM,Fu = [2.673%, 3.624%, 2.708%]; PmD,RM,Fu =
[92.24%, 84.47%, 92.06%] , (Accuracy is expressed in %)

Micro-Doppler
predicted

Range-map
predicted

Fusion
predicted

cl. (I) (II) (I) (II) (I) (II)
(I) 92.1 7.9 85.6 14.4 92.1 7.9

(II) 7.7 92.3 16.7 83.3 8.0 92.0

The highest average classification rate for µD (PµD), RM
(PRM), or their fusion classification (PFu) is reported in each
table. The standard deviation of 100 Monte Carlo simulation
routines is expressed as σmD,RM,Fu for the µD, RM, or fusion
classification, respectively. The individual classification rates
can be compared to Table V, which contains all ADL activities
classified altogether at once. It is noted, a translation activity
determined by the DTL resets the applied classifier, as shown
in Fig. 6, such that the discrimination is executed only between
walking-stopping or walking-falling in either direction.

For the first activity, the DTL has rendered the offset of the
translating away activity, shown in Fig. 5a+5g for the µD and
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TABLE II: Classifier 0 (toward): Second translation activity
with (I) walking-stopping and (II) walking-falling towards
the radar. Classifier: Decision tree; PC: [dµD = 3; dRM =
3]; σmD,RM,Fu = [1.918%, 2.549%, 1.969%]; PmD,RM,Fu =
[94.88%, 89.78%, 95.03%], (Accuracy is expressed in %)

Micro-Doppler
predicted

Range-map
predicted

Fusion
predicted

cl. (I) (II) (I) (II) (I) (II)
(I) 94.9 5.1 90.8 9.2 95.0 5.0

(II) 5.1 94.9 11.2 88.8 5.0 95.0

the RM image. Here, a binary classifier 0 (away) is applied
with the classes (I) walking-stopping and (II) walking-falling
translating away from the radar. For translating away activities,
the µD classification is used, since the average classification,
P µD, rate has shown slightly higher performance than the
fusion, PFu or even the RM, PRM, classifier, shown in Table I.
Now, the ground truth activity of walking-stopping is correctly
classified with 92.1% accuracy (compared to the all classes
(aC) classifier in Table V: 89.6%).

Then the person turns around and translates towards the
radar which is detected by the DTL. Thus a classifier reset
is fulfilled. The previously classified activity of walking-
stopping away from the radar does not affect any decision
anymore, since the systems priority is the DTL. The rendered
activity is shown in Fig. 5b+5h, which is classified with
the binary classifier 0 (toward) (Table II) of (I) walking-
stopping and (II) walking-falling towards the radar. For this
classifier the dominant PC maintain with 3 and 3 for µD
and RM, respectively. Differently from before, the fusion
classification rate (µD+RM) is shown to outperform the µD
and RM classifier. The ground truth motion of walking-falling
is classified with 95.0% (aC: 92.5%) accuracy with 5.0%
of false alarm probability and missing probability each. It is
noted, the potentially life-threatening action of walking-falling
can be overlooked by a probability of 5.0%. Therefore, the
algorithm accounts for wrong decisions, as shown in Fig. 6
by the state blocks of standing and laying, which is then
followed by the Classifier 1. This means the next activity can
occur from a standing position, such as, (I) bending while
standing, (II) sitting down facing the radar, (III) sitting down
away from the radar with rotation, (IV) falling from standing.
Or this can be from a laying position, such as, (V) standing
up from falling, shown as Classifier 1 in Table III. The first
ground truth in-place activity of standing up from falling is
rendered by the PBC, which is shown in Fig. 5c+5i. The PC
changes to 4 and 2, whereas the fusion classifier keeps the
highest average accuracy such that the ground truth activity is
classified with 93.8% (aC: 82.4%). This activity then leads the
person back to a standing position, where the same classifier
is used again. The activity is discriminated by the PBC and
is shown in Fig. 5d+5j. The ground truth action of (II) sitting
down is classified with a certainty of 87.4% (aC: 74.7%). This
activity leads the person to the sitting position, from where
the Classifier 2 is used with the classes (I) a standing up from
sitting, (II) a standing up from sitting with rotation, and (III)

TABLE III: Classifier 1: The in-place activities of (I) bend-
ing while standing towards (T) the radar, (II) sitting down
(T), (III) sitting down away (A) from the radar with rota-
tion, (IV) falling from standing (T), (V) standing up from
falling (T). Classifier: Decision tree; PC: [dµD = 4; dRM =
2]; σmD,RM,Fu = [2.716%, 2.806%, 2.506%]; PmD,RM,Fu =
[86.38%, 85.15%, 89.99%], (Accuracy is expressed in %)

Micro-Doppler predicted
cl. (I) (II) (III) (IV) (V)
(I) 83.6 10.0 2.7 2.9 0.8

(II) 11.7 85.6 1.8 0.7 0.1
(III) 3.5 2.3 84.6 5.0 4.6
(IV) 4.0 1.5 5.9 87.4 1.1
(V) 1.0 0.2 7.3 0.9 90.6

Range-map predicted
(I) 78.3 8.7 5.6 6.2 1.2

(II) 9.9 86.2 2.8 0.3 0.9
(III) 5.7 3.1 83.3 2.6 5.3
(IV) 8.0 0.3 2.9 88.2 0.6
(V) 2.5 1.6 5.1 1.1 89.7

Fusion predicted
(I) 86.2 8.2 2.6 2.4 0.6

(II) 10.7 87.4 1.5 0.3 0.1
(III) 3.7 2.3 90.3 1.4 2.3
(IV) 3.3 0.8 2.5 92.3 1.1
(V) 1.6 0.3 3.3 1.0 93.8

TABLE IV: Classifier 2: The in-place activities of (I)
standing up from sitting (T), (II) standing up from sit-
ting (T) with rotation, and (III) bending while sitting
(T). Classifier: Decision tree; PC: [dµD = 3; dRM =
2]; σmD,RM,Fu = [3.620%, 4.740%, 3.754%]; PmD,RM,Fu =
[88.80%, 77.28%, 88.05%], (Accuracy is expressed in %)

Micro-Doppler
predicted

Range-map
predicted

Fusion
predicted

cl. (I) (II) (III) (I) (II) (III) (I) (II) (III)
(I) 88.1 0.5 11.5 78.1 4.1 17.8 86.7 0.5 12.8

(II) 1.7 93.9 4.4 4.5 83.2 12.3 1.4 94.0 4.6
(III) 11.7 3.9 84.4 17.6 11.9 70.6 12.5 4.0 83.4

a bending while sitting. The ground truth motion of standing
up from sitting has 93.9% (aC: 72.9%) classification accuracy
by using µD classification only (Table IV), which is superior
over the fusion classification. The captured individual motion
is shown in Fig. 5e and 5k. It is noted that we do not account
for wrong decision at any given time, as performed in [18]; in
fact, we rely on the proposed DTL approach, which resets the
classifier after every translation activity. The follow-on actions
are walking which is detected by the DTL where the detection
routing is reset.

IV. CONCLUSION

In this paper, we propose a simple yet effective approach
based on the DTL to separate the human being’s translational
vs in-place activities. We found that a threshold of ±0.15 for
the DTL suits for bidirectionally translational and in-place
activity separation. From a translational activity, we begin
always with a binary classifier, which outperforms an ADL
classifier with all 20 classes. The same applies for in-place
activities, which enables us to drastically restrict the space to
a small subset of possible activities at a given classification
stage. For classification, the 2D-PCA is used to extract the
features followed by a decision tree classifier. The method is
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TABLE V: Fusion classifier for all ADL motion classes (all classes classifier – aC). Classifier: Decision tree; PC: [dµD = 4;
dRM = 3]; σmD,RM,Fu = [1.957%, 2.053%, 1.931%]; PmD,RM,Fu = [72.80%, 59.10%, 73.97%], (Accuracy is expressed in %)
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V

III)
Standing

f.Falling-T

(X
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)
F alling.f.Standing-A

(X
X

)
Standing

f.Falling-A

I 91.0 0.4 8.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
II 0.7 89.6 0.3 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
III 6.9 0.3 92.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IV 0.2 11.6 0.3 87.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
V 0.0 0.0 0.0 0.0 62.4 0.7 4.9 4.6 1.1 1.2 0.4 1.6 0.9 0.9 16.7 1.4 1.8 0.2 1.0 0.1
VI 0.0 0.0 0.0 0.0 1.1 72.3 1.0 0.9 7.1 4.8 0.2 0.5 2.5 1.7 0.6 6.5 0.3 0.1 0.2 0.2
VII 0.0 0.0 0.0 0.0 5.7 1.1 74.7 5.8 0.6 1.2 0.1 0.2 0.5 0.5 6.8 2.2 0.1 0.1 0.4 0.0
VIII 0.0 0.0 0.0 0.0 6.0 1.1 6.7 72.9 1.7 0.3 0.1 0.3 0.6 0.2 8.0 1.4 0.2 0.0 0.4 0.1
IX 0.0 0.0 0.0 0.0 1.7 8.8 1.1 1.9 68.5 2.3 0.5 0.5 5.1 1.1 1.4 5.1 1.1 0.1 0.2 0.7
X 0.0 0.0 0.0 0.0 1.7 5.7 1.6 0.6 1.9 71.8 0.1 0.4 2.0 6.3 0.9 5.0 0.3 0.4 1.2 0.1
XI 0.0 0.0 0.0 0.0 0.9 0.4 0.2 0.1 0.8 0.3 70.9 14.0 4.3 1.7 0.8 0.1 1.0 0.8 0.6 3.1
XII 0.0 0.0 0.0 0.0 1.7 0.6 0.2 0.5 0.9 0.5 13.6 65.9 4.0 2.4 1.3 0.2 0.6 2.8 1.8 2.9
XIII 0.0 0.0 0.0 0.0 1.7 3.4 0.8 1.0 6.0 2.8 4.1 4.0 56.1 8.9 0.7 2.0 1.3 1.2 1.5 4.4
XIV 0.0 0.0 0.0 0.0 1.5 2.3 0.7 0.5 1.6 7.1 2.2 3.2 9.4 59.6 0.3 1.7 1.0 5.5 0.9 2.6
XV 0.0 0.0 0.0 0.0 18.4 1.0 6.3 8.5 1.1 0.8 0.7 1.8 0.6 0.7 57.1 2.0 0.4 0.1 0.5 0.2
XVI 0.0 0.0 0.0 0.0 2.4 8.0 2.5 2.2 5.4 5.8 0.1 0.1 2.5 1.8 3.3 64.1 0.4 0.3 0.4 0.4
XVII 0.0 0.0 0.0 0.0 2.7 0.9 0.2 0.7 2.0 0.6 1.6 1.1 2.0 1.6 1.0 0.8 81.7 0.4 1.7 1.2
XVIII 0.0 0.0 0.0 0.0 0.2 0.4 0.1 0.1 0.1 0.4 0.7 3.4 1.7 5.8 0.1 0.5 0.2 82.4 0.6 3.2
XIX 0.0 0.0 0.0 0.0 2.0 0.8 0.9 0.2 0.5 2.6 0.7 2.0 1.1 2.3 0.6 1.1 1.5 0.7 82.6 0.4
XX 0.0 0.0 0.0 0.0 0.3 0.3 0.1 0.2 1.0 0.1 4.1 4.0 5.9 3.0 0.2 0.4 1.4 3.2 0.3 75.6

applied with different parameters (e.g. the number of principal
components) or different data domains, e.g. micro-Doppler
(µD) or the fusion classifier (µD and range classification at the
same time). This provides initially promising results. Future
work will extend this framework of hierarchical classification
to more complex sequences of activities and more diverse
positions of the available six radar sensors, as well as more
subjects.
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