

Delft University of Technology

Susceptible-infected-spreading-based network embedding in static and temporal
networks

Zhan, Xiu Xiu; Li, Ziyu; Masuda, Naoki; Holme, Petter; Wang, Huijuan

DOI
10.1140/epjds/s13688-020-00248-5
Publication date
2020
Document Version
Final published version
Published in
EPJ Data Science

Citation (APA)
Zhan, X. X., Li, Z., Masuda, N., Holme, P., & Wang, H. (2020). Susceptible-infected-spreading-based
network embedding in static and temporal networks. EPJ Data Science, 9(1), Article 30.
https://doi.org/10.1140/epjds/s13688-020-00248-5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1140/epjds/s13688-020-00248-5
https://doi.org/10.1140/epjds/s13688-020-00248-5

Zhan et al. EPJ Data Science (2020) 9:30
https://doi.org/10.1140/epjds/s13688-020-00248-5

R E G U L A R A R T I C L E Open Access

Susceptible-infected-spreading-based
network embedding in static and temporal
networks
Xiu-Xiu Zhan1, Ziyu Li1, Naoki Masuda2,3, Petter Holme4 and Huijuan Wang1*

*Correspondence:
H.Wang@tudelft.nl
1Faculty of Electrical Engineering,
Mathematics, and Computer
Science, Delft University of
Technology, Mekelweg 4, 2628 CD,
Delft, The Netherlands
Full list of author information is
available at the end of the article

Abstract
Link prediction can be used to extract missing information, identify spurious
interactions as well as forecast network evolution. Network embedding is a
methodology to assign coordinates to nodes in a low-dimensional vector space. By
embedding nodes into vectors, the link prediction problem can be converted into a
similarity comparison task. Nodes with similar embedding vectors are more likely to
be connected. Classic network embedding algorithms are random-walk-based. They
sample trajectory paths via random walks and generate node pairs from the
trajectory paths. The node pair set is further used as the input for a Skip-Gram model,
a representative language model that embeds nodes (which are regarded as words)
into vectors. In the present study, we propose to replace random walk processes by a
spreading process, namely the susceptible-infected (SI) model, to sample paths.
Specifically, we propose two susceptible-infected-spreading-based algorithms, i.e.,
Susceptible-Infected Network Embedding (SINE) on static networks and Temporal
Susceptible-Infected Network Embedding (TSINE) on temporal networks. The
performance of our algorithms is evaluated by the missing link prediction task in
comparison with state-of-the-art static and temporal network embedding
algorithms. Results show that SINE and TSINE outperform the baselines across all six
empirical datasets. We further find that the performance of SINE is mostly better than
TSINE, suggesting that temporal information does not necessarily improve the
embedding for missing link prediction. Moreover, we study the effect of the sampling
size, quantified as the total length of the trajectory paths, on the performance of the
embedding algorithms. The better performance of SINE and TSINE requires a smaller
sampling size in comparison with the baseline algorithms. Hence, SI-spreading-based
embedding tends to be more applicable to large-scale networks.

Keywords: Network embedding; SI spreading process; Link prediction

1 Introduction
Real-world systems can be represented as networks, with nodes representing the compo-
nents and links representing the connections between them [1, 2]. The study of complex
networks pervades in different fields [3]. For example, with biological or chemical net-
works, scientists study interactions between proteins or chemicals to discover new drugs

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-020-00248-5
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-020-00248-5&domain=pdf
mailto:H.Wang@tudelft.nl

Zhan et al. EPJ Data Science (2020) 9:30 Page 2 of 20

[4, 5]. With social networks, researchers tend to classify or cluster users into groups or
communities, which is useful for many tasks, such as advertising, search and recommen-
dation [6, 7]. With communication networks, learning the network structure can help un-
derstand how information spreads over the networks [2, 8]. These are only a few examples
of the important role of analyzing networks. For all these examples, the data may be incom-
plete. If so, it could be important to be able to predict the links most likely to be missing. If
the network is evolving, it could be crucial to forecast the next link to be added. For both
of these applications one needs link prediction [9–13].

In link prediction, one estimates the likelihood that two nodes are adjacent to each other
based on the observed network structure [14]. Methods using similarity-based metrics,
maximum likelihood algorithms and probabilistic models are major families of link pre-
diction methods [15]. Recently, network embedding, which embeds nodes into a low-
dimensional vector space, has attracted much attention in solving the link prediction
problem [15–20]. The similarity between the embedding vectors of two nodes is used
to evaluate whether they would be connected or not. Different algorithms have been pro-
posed to obtain network embedding vectors. A simplest embedding method is to take
the row or column vector in the adjacency matrix, which is called an adjacency vector of
the corresponding node, as the embedding vector. Then, the representation space is N-
dimensional, where N is the number of nodes. As real-world networks are mostly large
and sparse, the adjacency vector of a node is sparse and high-dimensional. In addition, the
adjacency matrix only contains the first-order neighborhood information, and therefore
the adjacency vector neglects the high-order structure of the network such as paths that
are longer than an edge. These factors limit the precision of network embedding based
on the adjacency vector in link prediction tasks. Work in the early 2000s attempted to
embed nodes into a low dimension space using dimension reduction techniques [21–23].
Isomap [21], locally linear embedding (LLE) [22] and Laplacian eigenmap [23] are algo-
rithms based on the k-nearest graph, where nodes i and j are connected by a link in the
k-nearest graph if the length of the shortest path between i and j is within the k-th shortest
among the length of all the shortest paths from i to any other nodes. Matrix factorization
algorithms decompose the adjacency matrix into the product of two low-dimensional rect-
angular matrices. The columns of the rectangular matrices are the embedding vectors for
nodes. Singular value decomposition (SVD) [24] is one commonly used and simple matrix
factorization algorithm. However, the computation complexity of most of the aforemen-
tioned algorithms is at least quadratic in terms of N , limiting their applicability to large
networks with millions of nodes.

Random-walk-based network embedding is a promising family of computationally effi-
cient algorithms. These algorithms exploit truncated random walks to capture the proxim-
ity between nodes [25–27] generally via the following three steps [28–30]: (1) Sample the
network by running random walks to generate trajectory paths. (2) Generate a node pair
set from the trajectory paths: each node on the trajectory path is viewed as a center node,
the nearby nodes within a given distance are considered as the neighboring nodes. A node
pair in the node pair set is formed by a center node and each of its neighboring nodes.
(3) Apply a word embedding model such as Skip-Gram to learn the embedding vector for
each node by using the node pair set as input. Skip-Gram assumes nodes that are similar
in topology or content tend to have similar representations [27]. Algorithms have been
designed using different random walks to capture high-order structure on networks. For

Zhan et al. EPJ Data Science (2020) 9:30 Page 3 of 20

example, DeepWalk [25] and Node2Vec [28] adopted uniform and biased random walks,
respectively, to sample the network structure. In addition, random-walk-based embedding
methods have also been developed for temporal networks, signed networks and multilayer
networks [31–34].

In contrast to random-walk-based embedding, here we propose SI-spreading-based net-
work embedding algorithms for static and temporal networks. We deploy the susceptible-
infected (SI) spreading process on the given network, either static or temporal, and use the
corresponding spreading trajectories to generate the node pair set, which is fed to the Skip-
Gram to derive the embedding vectors. The trajectories of an SI spreading process cap-
ture the tree-like sub-network centered at the seed node, whereas random walk explores
long walks that possibly revisit the same node. We evaluate our static network embedding
algorithm, named SINE,a and temporal network embedding, TSINE, via a missing link
prediction task in six real-world social networks. We compare our algorithms with state-
of-the-art static and temporal network embedding methods. We show that both SINE
and TSINE outperform other static and temporal network embedding algorithms, respec-
tively. In most cases, the static network embedding, SINE, performs better than TSINE,
which additionally uses temporal network information. In addition, we evaluate the effi-
ciency of SI-spreading-based network embedding via exploring the sampling size for the
Skip-Gram, quantified as the sum of the length of trajectory paths, in relation to its perfor-
mance on the link prediction task. We show that high performance of SI-spreading-based
network embedding algorithms requires a significantly smaller sampling size compared
to random-walk-based embeddings. We further explore what kind of links can be better
predicted to further explain why our proposed algorithms show better performance than
the baselines.

The rest of the paper is organized as follows. We propose our method in Sect. 2. In
Sect. 2.1, we propose our SI-spreading-based sampling method for static networks and
generation of the node pair set from the trajectory paths. Skip-Gram model is introduced
in Sect. 2.2. We introduce an SI-spreading-based sampling method for temporal networks
in Sect. 2.3. In Sect. 3, our embedding algorithms are evaluated on a missing link predic-
tion task on real-world static and temporal social networks. The paper is concluded in
Sect. 4.

2 SI-spreading-based embedding algorithm
This section introduces SI-spreading-based network embedding methods. Firstly, we
illustrate our SI-spreading-based network embedding method for static networks in
Sects. 2.1 and 2.2. Section 2.3 generalizes the method to temporal network.

Because we propose the network embedding methods for both static and temporal net-
works, we start with the notations for temporal networks, of which the static networks
are special cases. A temporal network is represented as G = (N ,L), where N is the node
set and L = {l(i, j, t), t ∈ [0, T], i, j ∈ N } is the set of time-stamped contacts. The element
l(i, j, t) in L represents a bidirectional contact between nodes i and j at time t. We con-
sider discrete time and assume that all contacts have a duration of one discrete time step.b

We use [0, T] to represent the observation time window, and N = |N | is the number of
nodes. The aggregated static network G = (N , E) is derived from a temporal network G .
Two nodes are connected in G if there is at least one contact between them in G . E is the
edge set of G. We formulate the network embedding problem as follows:

Zhan et al. EPJ Data Science (2020) 9:30 Page 4 of 20

Given a network G = (N , E), static network embedding aims to learn a low-dimensional
representation for each node i ∈N . The node embedding matrix for all the nodes is given
by U ∈ Rd×N , where d is the dimension of the embedding vectors (d < N). The i-th column
of U, i.e., −→ui ∈ Rd×1, represents the embedding vector of node i.

2.1 SI-spreading-based static network sampling
The SI spreading process on a static network is defined as follows: each node is in one of
the two states at any time step, i.e., susceptible (S) or infected (I); initially, one seed node is
infected; an infected node independently infects each of its susceptible neighbors with an
infection probability β at each time step; the process stops when no node can be infected
further. To derive the node pair set as the input for Skip-Gram, we carry out the following
steps as described in Sections 2.1.1 and 2.1.2.

2.1.1 Construction of spreading trajectory paths
In each iteration or realization of the SI spreading process, a node i is selected uniformly at
random as the seed. We perform the SI spreading process from seed node i. The spreading
trajectory Ti(β) is the union of all the nodes that finally get infected supplied with all the
links that have transmitted infection between node pairs. If a susceptible node i becomes
infected via more than one infected neighbors at the same time step, we uniformly ran-
domly choose one of these infected neighbors, say j, and assume i gets infected only by
neighbor j via the edge in between. Hence, edge (i, j) will be included into the spreading
trajectories. The spreading trajectories are exactly trees under this assumption.

From each of the spreading trajectory Ti(β), we construct mi trajectory paths, each of
which is the path between the root node i and a randomly selected leaf node in Ti(β). The

Algorithm 1 Generation of trajectory paths from SI spreading process
Input: G = (N , E), B, Lmax, β , mi

Output: node trajectory path set D
1: Initialize number of context windows C = 0
2: Initialize node trajectory path set D = ∅

3: while B – C > 0 do
4: Randomly choose node i as the seed to start the SI spreading
5: Generate spreading trajectory tree Ti(β)
6: Randomly choose mi trajectory paths Dgi (gi = 1, . . . , mi) from Ti(β)
7: for gi = 1, . . . , mi do
8: if |Dgi | > Lmax then
9: Choose the first Lmax nodes from Dgi to form D∗

gi

10: Add the trajectory D∗
gi

to D
11: C = C + |D∗

gi
|

12: else
13: Add the trajectory Dgi to D
14: C = C + |Dgi |
15: end if
16: end for
17: end while
18: return D

Zhan et al. EPJ Data Science (2020) 9:30 Page 5 of 20

Figure 1 Generating node pairs from a trajectory path 1, 3, 6, 8, 9, 10, 7, 5. The window size ω = 2 and only the
first four nodes 1, 3, 6 and 8 as the center node are illustrated as examples

number mi of trajectory paths to be extracted from Ti(β) is assumed to be given by

mi = max

{
1,

K(i)∑
j∈N K(j)

mmax

}
,

where mmax is a control parameter and K(i) is the degree of the root node i in the static
network (or aggregated network).

The trajectory paths may have different lengths (i.e., number of nodes in the path). For
a trajectory path whose length is larger than Lmax = 20, we only take the first Lmax nodes
on the path.

From each iteration of the SI spreading process that starts from a randomly chosen seed
node i, we can generate a spreading trajectory Ti(β) and mi trajectory paths from Ti(β).
We stop such iteration to generate new trajectory paths once the total length of the tra-
jectory paths collected reaches the sampling size B = NX, where X is a control parameter.
We consider X ∈ {1, 2, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350}. We compare different al-
gorithms using the same B for fair comparison [31] to understand the influence of the
sampling size. We show how to sample the trajectory paths in Algorithm 1.

2.1.2 Node pair set generation
We illustrate how to generate the node pairs, the input of the Skip-Gram, from a trajec-
tory path in Fig. 1. Consider a trajectory path, 1, 3, 6, 8, 9, 10, 7, 5, starting from node 1 and
ending at node 5. We set each node, e.g., node 3, as the center node, and the neighboring
nodes of the center node are defined as nodes within ω = 2 hops. The neighboring nodes
of node 3 are, 1, 6 and 8. We thus obtain ordered node pairs (3, 1), (3, 6), and (3, 8). Thus,
we use the union of node pairs centered at each node in each of trajectory path as the input
to the Skip-Gram model.

2.2 Skip-Gram model
We illustrate how the Skip-Gram derives the embedding vector for each node based on
the input node pair set. We denote by NSI(i) the neighboring set for a node i derived from
the SI spreading process. A neighboring node j of i may appear multiple times in NSI(i) if
(i, j) appears multiple times in the node pair set.

Given node i, let p(j|i) be the probability of observing neighboring node j. We model
the conditional probability p(j|i) as the softmax unit parametrized by the product of the

Zhan et al. EPJ Data Science (2020) 9:30 Page 6 of 20

embedding vectors, i.e., −→ui and −→uj , as follows:

p(j|i) = log
exp(−→ui · −→uj

T)∑
k∈N exp(−→ui · −→uk T)

. (1)

Skip-Gram is to derive the set of the N embedding vectors that maximizes the log prob-
ability of observing every neighboring node from NSI(i) for each i. Therefore, one maxi-
mizes

maxO =
∑
i∈N

∑
j∈NSI (i)

log p(j|i). (2)

Equation (2) can be further simplified to

maxO =
∑
i∈N

(
– log Zi +

∑
j∈NSI (i)

−→ui · −→uk
T
)

, (3)

where

Zi =
∑
k∈N

exp
(−→ui · −→uk

T)
. (4)

To compute Zi for a given i, we need to traverse the entire node set N , which is compu-
tationally costly. To solve this problem, we introduce negative sampling [27], which ran-
domly selects a certain number of nodes k from N to approximate Zi. To get the embed-
ding vectors for each node, we use the stochastic gradient ascent to optimize Eq. (3).

We name this static SI-spreading-based network embedding algorithm that uses Skip-
Gram model as SINE.

2.3 SI-spreading-based temporal network sampling
We generalize SINE to the SI-spreading-based temporal network embedding by deploy-
ing SI spreading processes on the given temporal network, namely, TSINE. For a temporal
network G = (N ,L), SI spreading follows the time step of the contacts in G . Initially, node
i is chosen as the seed of the spreading process. At every time step t ∈ [0, T], an infected
node infects each of its susceptible neighbor in the snapshot through the contact between
them with probability β . The process stops at time T . We construct the spreading tra-
jectory starting from node i as Ti(β), which records the union of nodes that get infected
together with the contacts through which these nodes get infected. We propose two pro-
tocols to select the seed node of the SI spreading. In the first protocol, we start by selecting
uniformly at random a node i as the seed. Then, we select uniformly at random a time step
from all the times of contacts made by node i as the starting point of the spreading process,
i.e., the time when i gets initially infected. We refer to this protocol as TSINE1. In the sec-
ond protocol, we choose a node i uniformly at random as the seed and start the spreading
at the time when node i has the first contact. We refer to this protocol as TSINE2.

Both TSINE1 and TSINE2 generate the node pair set from the spreading trajectory Ti(β)
in the same way as described in Sect. 2.1. The node pair set is the input of the Skip-Gram
for calculating the embedding vectors. The SI-spreading-based temporal network embed-
ding uses the information on the time stamps of contacts in addition to the information
used by the static network embedding.

Zhan et al. EPJ Data Science (2020) 9:30 Page 7 of 20

3 Results
For the link prediction task in a static network, we remove a certain fraction of links from
the given network and predict these missing links based on the remaining links. We apply
our static network embedding algorithm to the remaining static network to derive the em-
bedding vectors for the nodes, which are used for link prediction. For a temporal network,
we select a fraction of node pairs that have at least one contact. We remove all the con-
tacts between the selected node pairs from the given temporal network. Then, we attempt
to predict whether the selected node pairs have at least one contact or not based on the
remaining temporal network. We confine ourselves to the prediction of whether the se-
lected node pairs have contact(s) or not, instead of predicting the number of contacts and
their associated time stamps between each selected node pair. We use the area under the
curve (AUC) score to evaluate the performance of the algorithms on the link prediction
task. The AUC quantifies the probability of ranking a random node pair that is connected
or has at least a contact higher than a random node pair that is not connected or has no
contact.

3.1 Empirical networks
We consider temporal networks, each of which records the contacts and their correspond-
ing time stamps between every node pair. For each temporal network G , one can obtain
the corresponding static network G by aggregating the contacts between each node pair
over time. In other words, two nodes are connected in static network G if there is at least
one contact between them in G . The static network G derived from G is unweighted by
definition. We consider the following temporal social network data sets.

• HT2009 [35] is a network of face-to-face contacts between the attendees of the ACM
Hypertext 2009 conference.

• Manufacturing Email (ME) [36] is an email contact network between employees in a
mid-sized manufacturing company.

• Haggle [37] records the physical contacts between individuals via wireless devices.
• Fb-forum [38] captures the contacts between students at University of Califonia,

Irvine, in a Facebook-like online forum.
• DNC [39] is an email contact network in the 2016 Democratic National Committee

email leak.
• CollegeMsg [40] records messages between the users of an online community of

students from the University of California, Irvine.
Table 1 provides some properties of the empirical temporal networks. In the first three
columns we show the properties of the temporal networks, i.e., the number of nodes (N),
timestamps (T) and contacts (|L|). In the remaining columns, we show the properties
of the corresponding aggregate static networks, including the number of links (|E|), link
density, average degree, and clustering coefficient. The temporal networks are consider-
ably different in size, which ranges from hundreds to thousands of nodes, as well as in the
network density and clustering coefficient. Choosing networks with different properties
allows us to investigate whether the performance of our algorithms is consistent across
networks.

3.2 Baseline algorithms
The performance of network embedding algorithms depends on the sampling process to
obtain the (node pair) input data as well as the learning model. In this work, we aim to

Zhan et al. EPJ Data Science (2020) 9:30 Page 8 of 20

Table 1 Properties of the empirical temporal networks. The number of nodes (N), timestamps (T),
and contacts (|L|) are shown. In addition, the number of links (|E|), link density, average degree, and
clustering coefficient of the corresponding static network are shown

Dataset N T |L| |E| Link density Average degree Clustering coefficient

HT2009 113 5246 20,818 2196 0.35 38.87 0.53
ME 167 57,842 82,927 3251 0.23 38.93 0.59
Haggle 274 15,662 28,244 2124 0.57 15.50 0.63
Fb-forum 899 33,515 33,720 7046 0.02 15.68 0.06
DNC 1891 19,383 39,264 4465 0.002 4.72 0.21
CollegeMsg 1899 58,911 59,835 13,838 0.01 14.57 0.11

understand the effect of the sampling process that we proposed on the performance of an
embedding algorithm. Hence, we choose as baseline three state-of-the-art network em-
bedding algorithms (DeepWalk, Node2Vec and CTDNE) that share the same Skip-Gram
learning model as our algorithms. These baseline algorithms and the algorithms that we
proposed differ only in the method to sample trajectory paths and the node pair set, which
is used as the input of the Skip-Gram. DeepWalk [25] and Node2Vec [28] are static network
embedding algorithms based on random walks. CTDNE [31] is a temporal network em-
bedding algorithm based on random walks. We also choose tNodeEmbed [41] as a baseline
model, which uses a different learning model from the above models. It learns temporal
network embedding by combining static node embeddings learned from Node2Vec with
Recurrent Neural Networks. Via this baseline, we would like to explore whether the per-
formance improvement via the design of learning model is significantly higher than that
via the design of the sampling process.

• DeepWalk [25] deploys classic random walks on a given static network.
• Node2Vec [28] deploys biased random walks on a given static network. The biased

random walk gives a trade-off between breadth-first-like sampling and depth-first-like
sampling of the neighborhood, which is controlled via two hyper-parameters p and q.
We use a grid search over p, q ∈ {0.01, 0.25, 0.5, 1, 2, 4} to obtain embeddings that
achieve the largest AUC value for link prediction.

• CTDNE [31]: CTDNE is a temporal network embedding algorithm based on temporal
random walks. The main idea is that the timestamp of the next temporal contact on
the walk should be larger than the timestamps of previously traversed contacts. Given
a temporal network G = (N ,L), the starting contact for the temporal random walk is
selected uniformly at random. Thus, every contact has probability 1/|L| to be selected
as the starting contact. Assume that a random walker visits node i at time step t. We
define �t(i) as the set of nodes that have contacted node i after time t allowing
duplicated elements. A node may appear multiple times in �t(i) because it may have
multiple contacts with node i over the course of time. The next node to walk to is
uniformly selected from �t(i), i.e., every node in �t(i) is chosen with probability
1/|�t(i)|. Nguyen et al. [31] generalized the starting contact and the successor node of
a temporal walk to other distributions beyond the uniform distribution illustrated
here. When we compare the performance of the algorithms on link prediction, we
explore the embeddings that give the largest AUC value for link prediction of CTDNE
by taking into account all possible generalizations proposed by Nguyen et al.

• tNodeEmbed [41]: The objective of tNodeEmbed is to preserve the static network
neighborhood for each node and the stability of embeddings over time. Given a
temporal network observed within [1, T], a set of T1 ≤ T coarse-grained network

Zhan et al. EPJ Data Science (2020) 9:30 Page 9 of 20

snapshots can be obtained, where each snapshot is the temporal network aggregated
over the time window of the snapshot. In each snapshot network, an embedding
vector can be obtained for each node using Node2Vec. Recurrent Neural Networks
(RNN) is further employed among the embeddings at different time snapshots to
obtain a final d-dimensional embedding vector for each node. For each dataset, we
tune hyper-parameters such as the number of snapshots and learning rate to obtain
the largest AUC value. The number of snapshots for obtaining optimal AUC for
HT2009, ME, Haggle, Fb-forum, DNC and CollegeMsg are 22, 24, 27, 29, 42 and 34,
respectively.

In our SI-spreading-based algorithms for both static and temporal networks, we set
β ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We use window size ω = 10 and
embedding dimension d = 128 for our algorithms and the baseline algorithms.

3.3 Performance evaluation
3.3.1 Training and test sets
In this section, we illustrate how to generate the training and test sets in the link prediction
task in temporal and static networks. We run the network embedding algorithms on the
corresponding training set and obtain embedding vector for each node, and use AUC to
evaluate link prediction performance in the test set.

Given a temporal network G , we select uniformly at random 75% node pairs among the
node pairs that have at least one contact between them in G as the training set for temporal
embedding algorithms, including all the contacts and their timestamps. The training set
for static network embedding algorithms is the aggregation of the training set for temporal
embedding algorithms. In other words, for every node pair, there is a link between the two
nodes in the training set for static network embedding if and only if they have at least one
contact in the training set for temporal embedding algorithms.

We use the remaining 25% node pairs among the node pairs that have at least one con-
tact ofG as the positive links in the test set. We label these node pairs 1. Then, we uniformly
randomly sample an equal number of node pairs in G which have no contact between
them. These node pairs are used as negative links in the test set, which we label 0. The
same test set is used for the link prediction task in both temporal and static networks.

For each temporal network data set, we randomly split the network to obtain the training
and test set according to the procedures given above five times. Both random walks and
SI spreading processes are stochastic. For each split data, we run each algorithm on the
training set and perform the link prediction on the test set for ten realizations. Therefore,
we obtain ten AUC scores for each splitting of the data into the training and test sets,
evening the randomness stemming from stochasticity of the random walk or SI spreading
processes. We obtain the AUC score for each algorithm with a given parameter set as an
average over 50 realizations in total.

3.3.2 Evaluation results
We summarize the overall performance of the algorithms on missing link prediction in
Table 2. For each algorithm, we tune the parameters and show the optimal average AUC
score.

First of all, tNodeEmbed with its advanced design like RNN in the learning model per-
forms worse than the algorithms we proposed in 3 out of the 6 networks. This illustrates

Zhan et al. EPJ Data Science (2020) 9:30 Page 10 of 20

Table 2 AUC scores for link prediction. All the results shown are the average over 50 realizations.
Bold indicates the optimal AUC among the embedding algorithms, ∗ indicates the optimal AUC
among all the algorithms. L2, L3, L4 are the short for link prediction metrics which counts the
number of l = 2, 3, 4 paths, respectively

Dataset DeepWalk Node2Vec CTDNE tNodeEmbed TSINE1 TSINE2 SINE L2 L3 L4

HT2009 0.5209 0.5572 0.6038 0.5358 0.6740 0.6819 0.6726 0.7069∗ 0.7066 0.7055
ME 0.6439 0.6619 0.6575 0.7281 0.7329 0.7462 0.7744 0.7855 0.7878∗ 0.7790
Haggle 0.3823 0.7807 0.7796 0.8702∗ 0.8051 0.8151 0.8267 0.8167 0.8255 0.8226
Fb-forum 0.5392 0.6882 0.6942 0.6013 0.7104 0.7195 0.7302∗ 0.5606 0.7179 0.7203
DNC 0.5822 0.5933 0.7274 0.9105∗ 0.7539 0.7529 0.7642 0.7704 0.7627 0.7193
CollegeMsg 0.5356 0.5454 0.7872 0.8724∗ 0.8257 0.8321 0.8368 0.7176 0.8609 0.8203

the importance of exploring the design of the sampling process in embedding algorithms,
not only of the learning model. From now on, we will focus on embedding algorithms
based on Skip-Gram, but not tNodeEmbed any more, to investigate the influence of the
sampling process on the performance of the embedding algorithms.

Among the static network embedding algorithms, SINE significantly outperforms Deep-
Walk and Node2Vec. The improvement in the AUC score is up to 30% on the CollegeMsg
dataset. Additionally, we have tested the static embedding algorithms on another two large
static networks. The network description and the embedding results are shown in Tables
S1 and S2 in the Supporting Information 1. The out-performance of SINE in such large
networks is even more evident. Embedding algorithms CTDNE, TSINE1 and TSINE2 are
for temporal networks. The SI-spreading-based algorithms (i.e., TSINE1 and TSINE2) also
show better performance than random-walk-based one (CTDNE). Additionally, TSINE2
is slightly better than TSINE1 on all data sets. Therefore, we will focus on TSINE2 in the
following analysis. In fact, SINE shows better performance than temporal network em-
bedding methods including TSINE2 on all data sets except for HT2009. It has been shown
that temporal information is important for learning embeddings [31, 42, 43]. However,
up to our numerical efforts, SINE outperforms the temporal network algorithms although
SINE deliberately neglects temporal information.

To explore further the difference in performance among the embedding algorithms, we
investigate the distribution of the dot product of node embedding vectors. Given a link
(i, j) in the test set, we compute the dot product of the two end nodes’ embedding vectors,
i.e., −→ui ·−→uj

T . We show the dot product distribution for the positive links and negative links
in the test set separately. For each embedding algorithm, we consider only the parameter
set that maximizes the AUC, i.e., the parameter values with which the results are shown in
Table 2. We show the distribution of the dot product for Haggle in Fig. 2 and for the other
data sets in Figure S1–S5 in the Supporting Information 1. Compared to the random-walk-
based algorithms, TSINE2 and SINE yield more distinguishable distributions between the
positive (grey) and the negative links (pink). This result supports the better performance
of SI-spreading-based embeddings than random-walk-based ones.

The embedding algorithms differ only in the sampling method to generate the node
pair set. These algorithms use the same Skip-Gram architecture, which takes the node
pair set as input, to deduce the embedding vector for each node. We explore further how
the algorithms differ in the node pair sets that they sampled. The objective is to discover
the relation between the properties of the sampled node pairs and the performance of an
embedding method. We represent the node pair set generated by an embedding method as
a network GS = (N , ES), so called the sampled network. Two nodes are connected in GS if

Zhan et al. EPJ Data Science (2020) 9:30 Page 11 of 20

Figure 2 The dot product distribution of the two end nodes’ embedding vectors of the positive and negative
links in the test set. We show the result of the Haggle data set. For each algorithm, we use the same parameter
settings as that of Table 2 to obtain the embeddings. Dot products of positive links are shown in grey.
Negative links are shown in pink. The results are shown for algorithms (a) DeepWalk; (b) Node2Vec; (c) CTDNE;
(d) TSINE2 and (e) SINE

they form a node pair in the node pair set. We note that GS is an unweighted network. For
each algorithm, with the parameter set that maximizes the AUC, we show the cumulative
degree distribution of its sampled network GS in Fig. 3. The cumulative degree distribution
of the training set for static network is also given. Compared to the cumulative degree
distribution of the training set, the sampled networks tend to have a higher node degree.
Zhang et al. and Gao et al. [30, 44] have shown that when the degree distribution of GS

is closer to that of the training set, the prediction performance of a random-walk-based
algorithm tends to be better. Even though SI-spreading based algorithms perform the best
across most of the data sets, we have not found a direct relation between the performance
of the embedding algorithm and similarity between the degree distribution of the sampled
network and that of the training set.

Zhan et al. EPJ Data Science (2020) 9:30 Page 12 of 20

Figure 3 Cumulative degree distribution of the static network derived from the training set and that of the
sampled networks GS from different algorithms. We show the results for (a) HT2009; (b)ME; (c) Haggle;
(d) Fb-forum; (e) DNC; (f) CollegeMsg

Figure 4 Illustration of l paths between a pair of nodes i and j. Here we show l = 2, 3, 4

Similarity-based methods such as the number of l = 2, 3, 4 paths have been used for link
prediction problem [10]. An l path between two nodes refers to a path that contains l
links. We show examples of l = 2, 3, 4 path between a node pair i and j in Fig. 4. Kovács et
al. [45] have shown that l paths (l = 3, 4) outperform existing link prediction methods in
predicting protein interaction. Cao et al. [46] found that network embedding algorithms

Zhan et al. EPJ Data Science (2020) 9:30 Page 13 of 20

based on random walks sometimes perform worse in link prediction than the number of
l = 2 paths or equivalently the number of common neighbors. This result suggests a limit
of random-walk-based embedding in identifying the links between node pairs that have
many common neighbors. Therefore, we explore further whether our SI-spreading-based
algorithms can overcome this limitation, thus possibly explain their outperformance.

We investigate what kind of network structure surrounding links makes them more eas-
ily be predicted. For every positive link in the test set, we study its two end nodes’ topo-
logical properties (i.e., the number of l = 2, l = 3 and l = 4 paths) and the dot product of
the embedding vectors of its two end nodes. Given a network, the parameters of each em-
bedding algorithm are tuned to maximize the AUC, as given in Table 2. We take data set
Haggle as an example. Figure 5 shows the relation between the dot product of the em-
bedding vectors and the number of l = 2, 3, 4 paths of the two end nodes of a positive link
in the test set for all the embedding methods. The Pearson correlation coefficient (PCC)
between the two variables for all the networks and algorithms is given in Table S3 in the
Supporting Information 1. Figure 5 and Table S3 together show that the dot product of the
embedding vectors constructed from TSINE2 and SINE is more strongly correlated with
the number of l paths, where l = 2, 3 or 4, than the random-walk-based embeddings. This
result suggests that SI-spreading-based algorithms may better predict the links whose two
end nodes have many l-paths, thus overcoming the limit of random-walk-based embed-
ding algorithms.

The number of l = 2, 3 paths has been used to predict links in [10, 45, 46]. The obser-
vation and the limit of random-walk-based embedding algorithms motivate us to use the
number of l = 2, 3, 4 paths between a node pair to predict missing links. Take l = 2 paths as
an example. For every link in the test set, the number of l = 2 paths between the two end
nodes in the training set is used to estimate the likelihood of connection between them.
In the networks we considered, two end nodes of a link tend to be connected by l = 2,
l = 3 and l = 4 paths (see Figs. 5). Table 2 (L2, L3, L4 shown in the table correspond to the
method of using the number of l = 2, 3, 4 path for link prediction) shows that in such net-
works, the similarity-based methods do not evidently outperform the SI-spreading-based
embedding. Actually, the SI-spreading-based embedding performs better in two out of six
networks.

Next, we study the effect of the sampling size, B, on the performance of each algo-
rithm. The sampling size is quantified as the total length of the trajectory paths as de-
fined in Sect. 2.1. Given a network, we set B = NX, where N is the size of the network
and X ∈ {1, 2, 5, 10, 25, 50, 100, 150}. We evaluate our SI-spreading-based embedding al-
gorithms SINE and TSINE2, and one random-walk-based embedding algorithm CTDNE,
because CTDNE performs mostly the best among all random-walk-based algorithms. The
result is shown in Fig. 6. For each X, we tune the other parameters to show the optimal
AUC in the figure. Both SINE and TSINE2 perform better than CTDNE and are relatively
insensitive to the sampling size. This means that they achieve a good performance even
when the sampling size is small, even with X = 1. This is because the node pair set sam-
pled remains relatively the same when X varies. We give the overlap between node pairs
set sampled by different X of HT2009 as an explanation in Figures S6–S7 in the Supporting
Information 1. The random-walk-based algorithm, CTDNE, however, requires a relatively
large sampling size to achieve a comparable performance with SINE and TSINE2.

Zhan et al. EPJ Data Science (2020) 9:30 Page 14 of 20

Figure 5 Relation between the dot product of the two end nodes’ embedding vectors and the number of
l = 2, 3, 4 paths between the two end nodes of the positive links in the test set for Haggle data set. (a1–a5),
(b1–b5) and (c1–c5) are the results for the number of l = 2, 3, 4 paths, respectively

The AUC as a function of the infection probability β is shown in Fig. 7. For each β ,
we tune the other parameters to show the optimal AUC. The SI-spreading-based algo-
rithms achieve high performance with a small infection probability (0.001 ≤ β ≤ 0.1) for
all the data sets. The high performance of SI-spreading-based embedding algorithms with
the small value of X and β across different networks motivates the further study whether
one can optimize the performance by searching a smaller range of the parameter values.
Finally, we test how the AUC values change with the embedding dimension d for em-
bedding algorithm SINE [47]. The results are shown in Fig. 8. For each of the datasets,
we only change the value of d, the other parameters are set the same as these of Table 2.
We choose d ∈ {2, 4, 8, 16, 32, 64, 128, 256}. With the increase of d, the AUC value firstly
slightly increases and then stays stable for all the network datasets. Figure 8 shows that
d = 128 as the default value is sufficient to produce high AUC values for missing link pre-

Zhan et al. EPJ Data Science (2020) 9:30 Page 15 of 20

Figure 6 Influence of the sampling size B = NX on the link prediction performance, i.e., AUC score. The error
bar shows the standard deviation of the AUC score calculated on the basis of 50 realizations. We show the
results for (a) HT2009; (b)ME; (c) Haggle; (d) Fb-forum; (e) DNC; (f) CollegeMsg

diction. Figure 8 also shows the possibility that a similar performance can be achieved by
a smaller dimension for the networks we have considered.

The out-performance and efficiency of the algorithms we proposed lie in SI spreading
process which samples the information that can not be captured by random-walk-based
sampling process. We take SINE as an example. Each trajectory path generated by the SI-
spreading-based sampling method doesn’t have any repeat node on the path. All the nodes
on the path are thus unique. The biased random-walk sampling method used in Node2Vec
can practically interpolate between depth-first-sampling and breadth-first-sampling via
tuning the parameters. Still, the walks generated, even tuned towards the DFS may contain
repeat nodes. Consider the SI spreading trajectory obtained from a random seed node i on
a given static network with a given infection probability β . Links in the static network close
to the seed node (root) are more likely to be included in the spreading trajectory. When
β = 1, all links incident to the seed will be included in the trajectory. Links incident to the
neighbors of the seed will be included in the trajectory if they link to new nodes but not
the seed nor the neighbors of the seed. In this case, the trajectory path between the seed
node and a uniformly randomly selected node is the shortest path in the static network.
When β is small, the trajectory tends to be large in depth (the largest hopcount between

Zhan et al. EPJ Data Science (2020) 9:30 Page 16 of 20

Figure 7 AUC as a function of β for SI-spreading-based network embedding algorithms. We show the results
for (a) HT2009; (b)ME; (c) Haggle; (d) Fb-forum; (e) DNC; (f) CollegeMsg

the seed and any other node) and the trajectory path tends to be longer, as shown in Figure
S6 in the Supporting Information 1. The links around high degree nodes tend to appear
in a trajectory tree. The infection probability balances the preference of links around high
degree nodes and links close to the seed to appear in the trajectories thus trajectory paths.
Such kind of sampling over the neighborhood of the seed and the links of high degree
nodes without repeat node in trajectory paths cannot be captured by random walk type
sampling.

The optimal performance is obtained when β is small. As shown in Figure S6 in the
Supporting Information 1, the average length of a trajectory path is around 3.5 for HT2009
and ME, which is far smaller than the length of walks derived from the random-walk-
sampling strategy. Such a small length of trajectory paths without redundant nodes in
each path, and the tendency of links around high degree nodes to appear in a trajectory
paths may explain why a small sampling size (the total number of nodes in the trajectory
paths) is sufficient to capture the essential information thus obtain high performance.

Zhan et al. EPJ Data Science (2020) 9:30 Page 17 of 20

Figure 8 AUC as a function of embedding dimension d of embedding algorithm SINE. We show the results
for (a) HT2009; (b)ME; (c) Haggle; (d) Fb-forum; (e) DNC; (f) CollegeMsg

4 Conclusions
In this paper, we proposed network embedding algorithms based on SI spreading pro-
cesses in contrast to the previously proposed embedding algorithms based on random
walks [48, 49]. We further evaluated the embedding algorithms on the missing link pre-
diction task. The key point of an embedding algorithm is how to design a strategy to sam-
ple trajectories to obtain embedding vectors for nodes. We used the SI model to this end.
The algorithms that we proposed are SINE and TSINE, which use static and temporal
networks, respectively.

On six empirical data sets, the SI-spreading-based network embedding algorithm on the
static network, i.e., SINE, gains much more improvement than state-of-the-art random-
walk-based network embedding algorithms across all the data sets. The SI-spreading-
based network embedding algorithms on the temporal network, TSINE1 and TSINE2,
also show better performance than the temporal random-walk-based algorithm. Tem-
poral information provides additional information that may be useful for constructing
embedding vectors [31, 42, 43]. However, we find that SINE outperforms TSINE, which
uses timestamps of the contacts. This result suggests that temporal information does not
necessarily improve the embedding for missing link prediction. Moreover, when the sam-
pling size of the Skip-Gram is small, the performance of the SI-spreading-based embed-
ding algorithms is still high. Sampling trajectory paths takes time especially for large-scale
networks. Therefore, our observation that the SI-spreading-based algorithms require less

Zhan et al. EPJ Data Science (2020) 9:30 Page 18 of 20

samples than other algorithms promises the applicability of the SI-spreading-based al-
gorithms to larger networks than the random-walk-based algorithms. Finally, we show
insights of why SI-spreading-based embedding algorithms performs the best by investi-
gating what kind of links are likely to be predicted.

We deem the following future work as important. We have already applied susceptible-
infected-susceptible (SIS) model and evaluated the SIS-spreading-based embedding.
However, this generalization has not improved the performance in the link prediction
task. Therefore, one may explore whether or not sampling the network information via
the other spreading processes, such as susceptible-infected-recovered (SIR) model, fur-
ther improves the embedding. It is also interesting to explore further the performance of
the SI-spreading-based algorithms in other tasks such as classification and visualization.
Moreover, the SI-spreading-based sampling strategies can also be generalized to other
types of networks, e.g., directed networks, signed networks, and multilayer networks.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1140/epjds/s13688-020-00248-5.

Additional file 1. Supplementary information (PDF 601 kB)

Acknowledgements
We thank the SocioPatterns collaboration (http://www.sociopatterns.org) for providing the data sets.

Funding
XZ is supported by the China Scholarship Council (CSC). NM acknowledges support from AFOSR European Office (under
Grant No. FA9550-19-1-7024). PH was supported by JSPS KAKENHI Grant Number JP 18H01655 and by the Grant for Basic
Science Research Projects by the Sumitomo Foundation. HW would like to thank Netherlands Organisation for Scientific
Research NWO (TOP Grant no. 612.001.802).

Abbreviations
SI, susceptible-Infected; SINE, Susceptible-Infected network embedding on static networks; TSINE, Susceptible-Infected
network embedding on temporal networks; LLE, locally linear embedding; SVD, Singular value decomposition; AUC, area
under the curve; CTDNE, Continuous-Time Dynamic Network Embeddings; tNodeEmbed, Node Embedding over
Temporal Graphs; BFS, Breadth-first Sampling; DFS, Depth-first Sampling; PCC, Pearson correlation coefficient; SIS,
susceptible-infected-susceptible; SIR, susceptible-infected-recovered.

Availability of data and materials
We use open data which can be downloaded on http://www.sociopatterns.org and https://snap.stanford.edu/data/. The
source code will be available from the first author based on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors planed the study; XZ and ZL performed the experiments and prepared the figures. All authors analyzed the
results and wrote the manuscript. All authors read and approved the final manuscript.

Author details
1Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 4, 2628
CD, Delft, The Netherlands. 2Department of Mathematics, University at Buffalo, State University of New York, Buffalo, NY
14260-2900, New York, USA. 3Computational and Data-Enabled Science and Engineering Program, University at Buffalo,
State University of New York, Buffalo, NY 14260-2900, New York, USA. 4Tokyo Tech World Research Hub Initiative (WRHI),
Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

Endnotes
a The abbreviation SINE of our Susceptible-Infected Network Embedding on static networks should be distinguished

from SiNE, a signed network embedding model proposed in [50].
b Real-world temporal networks are measured or sampled at discrete time steps with possibly different sampling

frequencies thus different durations of a time step, limited by the measurement technique as well as the targeting
research question. Moreover, a contact may actually last less than a unit time step, which is not observable due to
the limited sampling frequency. These two factors motivate us to consider a wide range of the infection probability

https://doi.org/10.1140/epjds/s13688-020-00248-5
https://doi.org/10.1140/epjds/s13688-020-00248-5
http://www.sociopatterns.org
http://www.sociopatterns.org
https://snap.stanford.edu/data/

Zhan et al. EPJ Data Science (2020) 9:30 Page 19 of 20

per unit time step β ∈ {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} in the SI-spreading-based embedding
algorithms to get the optimal embedding vector for every node.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 April 2020 Accepted: 25 September 2020

References
1. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
2. Zhang Z-K, Liu C, Zhan X-X, Lu X, Zhang C-X, Zhang Y-C (2016) Dynamics of information diffusion and its applications

on complex networks. Phys Rep 651:1–34
3. Costa LdF, Oliveira ON Jr, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE (2011)

Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys
60(3):329–412

4. Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification
methods for use in protein interaction prediction. Proteins, Struct Funct Bioinform 63(3):490–500

5. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA
99(12):7821–7826

6. Jacob Y, Denoyer L, Gallinari P (2014) Learning latent representations of nodes for classifying in heterogeneous social
networks. In: Proceedings of the 7th ACM international conference on web search and data mining. ACM, New York,
pp 373–382

7. Traud AL, Mucha PJ, Porter MA (2012) Social structure of Facebook networks. Phys A, Stat Mech Appl
391(16):4165–4180

8. Wang H, Li Q, D’Agostino Gregorio, Havlin S, Stanley HE, Van Mieghem P (2013) Effect of the interconnected network
structure on the epidemic threshold. Phys Rev E 88(2):022801

9. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol
58(7):1019–1031

10. Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A, Stat Mech Appl 390(6):1150–1170
11. Lü L, Medo M, Yeung CH, Zhang Y-C, Zhang Z-K, Zhou T (2012) Recommender systems. Phys Rep 519(1):1–49
12. Martínez V, Berzal F, Cubero J-C (2017) A survey of link prediction in complex networks. ACM Comput Surv 49(4):69
13. Liu C, Ma Y, Zhao J, Nussinov R, Zhang Y-C, Cheng F, Zhang Z-K (2020) Computational network biology: data, model,

and applications. Phys Rep 846:1–66
14. Getoor L, Diehl CP (2005) Link mining: a survey. ACM SIGKDD Explor Newsl 7(2):3–12
15. Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embedding. IEEE Trans Knowl Data Eng 31(5):833–852
16. Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving network embedding. In: Thirty-first AAAI

conference on artificial intelligence
17. Pandhre S, Mittal H, Gupta M, Balasubramanian VN (2018) Stwalk: learning trajectory representations in temporal

graphs. In: Proceedings of the ACM India joint international conference on data science and management of data,
pp 210–219

18. Béres F, Kelen DM, Pálovics R, Benczúr AA (2019) Node embeddings in dynamic graphs. Appl Netw Sci 4(1):64
19. Sato K, Oka M, Barrat A, Cattuto C (2019) Dyane: dynamics-aware node embedding for temporal networks. arXiv

preprint. arXiv:1909.05976
20. Torricelli M, Karsai M, Gauvin L (2020) weg2vec: event embedding for temporal networks. Sci Rep 10(1):1–11
21. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction.

Science 290(5500):2319–2323
22. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science

290(5500):2323–2326
23. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances

in neural information processing systems, pp 585–591
24. Golub GH, Reinsch C (1971) Singular value decomposition and least squares solutions pp 134–151
25. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th

ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 701–710
26. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In:

Proceedings of the 24th international conference on world wide web, pp 1067–1077. International World Wide Web
Conferences Steering Committee

27. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their
compositionality. In: Advances in neural information processing systems, pp 3111–3119

28. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 855–864

29. Cao Z, Wang L, de Melo G (2018) Link prediction via subgraph embedding-based convex matrix completion. In:
Proceedings of the 32nd AAAI conference on artificial intelligence (AAAI 2018). AAAI Press, Menlo Park

30. Zhang Y, Shi Z, Feng D, Zhan X-X (2019) Degree-biased random walk for large-scale network embedding. Future
Gener Comput Syst 100:198–209

31. Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In:
Companion of the web conference 2018 on the web conference 2018, pp 969–976. International World Wide Web
Conferences Steering Committee

32. Yuan S, Wu X, Xiang Y (2017) Sne: signed network embedding. In: Pacific-Asia conference on knowledge discovery
and data mining. Springer, Berlin, pp 183–195

33. Bagavathi A, Krishnan S (2018) Multi-net: a scalable multiplex network embedding framework. In: International
conference on complex networks and their applications. Springer, Berlin, pp 119–131

http://arxiv.org/abs/arXiv:1909.05976

Zhan et al. EPJ Data Science (2020) 9:30 Page 20 of 20

34. Qu C, Zhan X-X, Wang G, Wu J, Zhang Z-K (2019) Temporal information gathering process for node ranking in
time-varying networks. Chaos, Interdiscip J Nonlinear Sci 29(3):033116

35. Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J-F, Van den Broeck W (2011) What’s in a crowd? Analysis of face-to-face
behavioral networks. J Theor Biol 271(1):166–180

36. Michalski R, Palus S, Kazienko P (2011) Matching organizational structure and social network extracted from email
communication. In: International conference on business information systems. Springer, Berlin, pp 197–206

37. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007) Impact of human mobility on opportunistic forwarding
algorithms. IEEE Trans Mob Comput 6:606–620

38. Opsahl T (2013) Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc
Netw 35(2):159–167

39. DNC emails network dataset—KONECT (2017) http://konect.uni-koblenz.de/networks/dnc-temporalGraph
40. Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2):155–163
41. Singer U, Guy I, Radinsky K (2019) Node embedding over temporal graphs. arXiv preprint. arXiv:1903.08889
42. Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In:

Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, New
York, pp 2857–2866

43. Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embedding by modeling triadic closure process. In:
Thirty-second AAAI conference on artificial intelligence

44. Gao M, Chen L, He X, Zhou A (2018) Bine: bipartite network embedding. In: The 41st international ACM SIGIR
conference on research & development in information retrieval, pp 715–724

45. Kovács IA, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, Bian W, Kim D-K, Kishore N, Hao T et al (2019)
Network-based prediction of protein interactions. Nat Commun 10(1):1–8

46. Cao R-M, Liu S-Y, Xu X-K (2019) Network embedding for link prediction: the pitfall and improvement. Chaos,
Interdiscip J Nonlinear Sci 29(10):103102

47. Yin Z, Shen Y (2018) On the dimensionality of word embedding. In: Advances in neural information processing
systems, pp 887–898

48. Zhan X-X, Hanjalic A, Wang H (2019) Information diffusion backbones in temporal networks. Sci Rep 9(1):6798
49. Zhan X-X, Liu C, Zhou G, Zhang Z-K, Sun G-Q, Zhu JJ, Jin Z (2018) Coupling dynamics of epidemic spreading and

information diffusion on complex networks. Appl Math Comput 332:437–448
50. Wang S, Tang J, Aggarwal C, Chang Y, Liu H (2017) Signed network embedding in social media. In: Proceedings of the

2017 SIAM international conference on data mining. SIAM, Philadelphia, pp 327–335

http://konect.uni-koblenz.de/networks/dnc-temporalGraph
http://arxiv.org/abs/arXiv:1903.08889

	Susceptible-infected-spreading-based network embedding in static and temporal networks
	Abstract
	Keywords

	Introduction
	SI-spreading-based embedding algorithm
	SI-spreading-based static network sampling
	Construction of spreading trajectory paths
	Node pair set generation

	Skip-Gram model
	SI-spreading-based temporal network sampling

	Results
	Empirical networks
	Baseline algorithms
	Performance evaluation
	Training and test sets
	Evaluation results

	Conclusions
	Supplementary information
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References

