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 A B S T R A C T

Wind flow predictions in realistic urban areas are sensitive to a wide range of governing parameters such as 
building resolution, wind incidence, urban morphology, and underlying topography, to name a few. In this 
study, we systematically study the impact of the geometric level of detail (LoD) of the urban built environment 
using a Reynolds Averaged Navier–Stokes (RANS) computational framework specifically tailored for urban air 
mobility. Using a wind-incidence angular resolution of 1◦, we simulated a total of 1440 simulations for two 
distinct urban areas and developed a probabilistic risk metric ( 𝑟) based on velocity and turbulence fields that 
allow us to compare the impact of LoD 1.2 (lower geometric detail) and LoD 2.2 (higher geometric detail). 
Comparing the wind-rose weighted average velocity and the risk map, we found that LoD 2.2 provides a more 
conservative prediction for high-risk areas than LoD 1.2, suggesting the need to adopt higher geometric details 
when applicable. Our results present a cautionary view on the impact of LoD and how automatic reconstruction 
can further the efficiency of current wind engineering practices.
1. Introduction

The need for understanding the impact of wind prediction in the 
urban built environment has accelerated in recent years to envision, 
improve, and support the development of sustainable and climate-
conscious urban planning (Blocken, 2015). The disproportionate con-
centration of economic and social activities and infrastructure within 
the urban built environment in almost all major urban centres in the 
world has imparted a unique resource strain on the modern urban 
built environment. As urban centres in the world take up more land to 
accommodate for the increasing population density (Güneralp, Reba, 
Hales, Wentz, & Seto, 2020; McDonald et al., 2020), complex and 
historically rooted zoning laws coupled with the limited horizontal 
space have led to the growth of taller buildings in urban areas, thus 
exacerbating wind-comfort and peak wind loading issues (Ciarlatani, 
Huang, Philips, & Gorlé, 2023; Hochschild & Gorlé, 2024a, 2024b; 
Pomaranzin et al., 2022). Accurate wind prediction in such dense urban 
environments is therefore critical for evaluating pedestrian wind com-
fort, structural safety, and the aerodynamic implications for emerging 
technologies such as urban air mobility systems.

In parallel, air quality (specifically SO2, NO𝑥, O3, PM2.5, PM10, to list 
a few) globally became progressively worse until 2018 (Fowler et al., 
2020). At this point, the most recent concrete emissions control was 
undertaken to improve the air quality in urban areas. Wolf, Pettersson, 

∗ Corresponding author.
E-mail address: a.l.patil@tudelft.nl (A. Patil).

and Esau (2020) conducted a high-resolution study in the city of 
Bergen, Norway, and found that poor urban air quality and particulate 
matter (PM2.5) can be attributed primarily to road traffic. Another 
study commissioned by the European Parliament found similarly con-
cerning levels of air quality in urban environments (Nagl, Buxbaum, 
Bohmer, Ibesich, & Mendoza, 2018), and recently lowered the per-
missible levels for particulate matter, SO𝑥, NO𝑥, O3, and PM2.5 (C. 
of the European Union, 2023), illustrating a pressing need to better 
understand, predict, and combat worsening air quality. One potential 
solution to alleviate poor air quality in urban areas that has been 
proposed is to eliminate traditional last-mile transit modes and sup-
plement these with Unmanned Aerial Vehicles (UAVs) or drones (Cui, 
Yang, Gao, Cui, & Najafi, 2024; Elsayed & Mohamed, 2020). Lemardelé, 
Estrada, Pagès, and Bachofner (2021) explored various drone last-
mile transit options to quantify the financial feasibility of using air 
delivery coupled with traditional transit options in European cities like 
Barcelona, Spain and Paris, France. While drones can be designed to 
actively avoid extreme wind events, including wind gusts, turbulence, 
and shear winds, to name a few (Cho et al., 2019; Tran, Santoso, & 
Garratt, 2021; Xing, Zhang, & Su, 2023), identifying the urban areas 
that have a relatively large probability for such events can help with 
better trajectory planning. One of the significant factors in deciding the 
https://doi.org/10.1016/j.scs.2025.106750
Received 8 May 2025; Received in revised form 18 August 2025; Accepted 18 Aug
vailable online 8 September 2025 
210-6707/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ust 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/scs
https://www.elsevier.com/locate/scs
https://orcid.org/0000-0001-9807-0733
https://orcid.org/0000-0002-5355-4272
mailto:a.l.patil@tudelft.nl
https://doi.org/10.1016/j.scs.2025.106750
https://doi.org/10.1016/j.scs.2025.106750
http://creativecommons.org/licenses/by/4.0/


A. Patil and C. García-Sánchez Sustainable Cities and Society 132 (2025) 106750 
viability of such a drone delivery system in dense urban areas is the in-
cident wind conditions, which can severely affect the battery drain rate 
for small- to medium-sized drones (Galkin, Kibilda, & DaSilva, 2019). 
Moreover, they found that statistically characterising the potential risk 
of traversing a given neighbourhood can provide substantial benefits 
when deciding the route.

As detailed above, understanding the wind flow within the urban 
canopy can help resolve a wide range of problems from pedestrian wind 
comfort to air quality, which are directly impacted by the complex 
transport processes therein (Collett & Oduyemi, 1997). However, pre-
dicting the wind conditions in a complex urban environment involves 
many challenges that have been concisely summarised by Blocken 
(2015). These challenges include strong flow variability at multiple 
spatial and temporal scales, the presence of sharp geometric discon-
tinuities, high turbulence intensities, and the difficulty of obtaining 
accurate boundary and validation data. Among these, urban morphol-
ogy plays a dominant role because it directly governs the spatial 
structure of the built environment, which in turn dictates the flow 
separation, recirculation zones, and channelling effects that are central 
to urban wind dynamics. Understanding the response of the urban 
environment to changing boundary conditions (in this case, wind-
incidence angle) is still poorly understood due to the wide variety of 
urban morphology. In this case, the definition of urban morphology 
is confined to the spatial context as discussed in Biljecki and Chow 
(2022), Boeing (2018) and Labetski, Vitalis, Biljecki, Ohori, and Stoter 
(2023), where the urban form does not constitute a single metric but 
a collection of multiple metrics, including the layout of the street net-
work, building heights, and building clusters, among others (Labetski 
et al., 2023).

Numerous studies have shown that variables such as urban density, 
plan and frontal area densities, canyon ratios, and building aspect 
ratios affect flow patterns (Carpentieri & Robins, 2015; Hang, Sandberg, 
& Li, 2009; Karimimoshaver, Khalvandi, & Khalvandi, 2021; Palusci, 
Monti, Cecere, Montazeri, & Blocken, 2021). However, accurately char-
acterising urban morphology requires identifying which of these many 
parameters has a dominant influence. Even if only a small subset — 
say 5% — of the proposed 300 metrics are of first-order importance, at 
least 15 parameters would need to be considered for fair comparisons. 
This highlights the need for a well-defined and consistent framework 
for describing urban form, which remains an ongoing challenge. One 
such standard is the Level of Detail (LoD), which offers a clear, hierar-
chical structure for representing building geometry (Biljecki, Ledoux, & 
Stoter, 2016), which also constitutes a central challenge in data acqui-
sition (Mirzaei, 2021). Each higher LoD level incrementally refines the 
geometric description (see Fig.  1), converging toward the true structure 
and enabling consistent differentiation of the built environment for 
wind simulations and related applications (Biljecki et al., 2016).

Specifically, in the context of LoD 1.2 and LoD 2.2, one of the central 
distinguishing characteristics is the attribution of multiple building 
heights for a single building footprint. For LoD 1.2, each building 
footprint is restricted to have a unique height attribute, while for 
LoD 2.2, this is not the case, as clearly depicted in Fig.  1(b)–(e). 
This restriction of single building height also limits LoD 1.2 from 
representing sloped or slanting roofs, as well as tall features such as 
chimneys and towers, as seen when comparing Fig.  1(b) and (d) to 
(c) and (e). For a detailed description of the differences between the 
considered LoD’s, the discussion presented in Biljecki et al. (2016) can 
be consulted along with figure 3 therein. This limitation can lead to a 
substantial under-representation of the true building height distribution 
in urban environments. Despite recent efforts to extend the LoD frame-
work to better capture these complexities (van der Vaart et al., 2024), 
the original LoD definition remains a robust foundation for urban 
fluid dynamics applications, particularly in light of other leading-order 
uncertainties such as mesh complexity and data availability.

Motivated by the above discussion, In this paper, we systematically 
studied the effect of building LoD (i.e., geometric level of detail) on 
2 
the wind flow predictions both at the pedestrian level and the UAV 
operation level through the use of two distinct LoDs and two distinct 
urban environments with a wind incidence angular resolution of 1◦
resulting in a total of 1440 simulations (360 simulation per case with 
a total of 4 cases). Specifically, for the first time in the literature, we 
present a systematic investigation on the impact of LoD 1.2, which only 
allows for a single building height per building footprint (industry stan-
dard), against a relatively higher geometric detail LoD 2.2 (see Fig.  1). 
Here, the primary goal is to illustrate the effect of LoD on the predicted 
flow metrics and not to develop a recommendation on the minimum 
level of LoD required for a given application. Additionally, this study 
is not aimed at validating the current computational methodology 
against in situ measurements, as validation data does not yet exist. 
The following sections describe the computational methodology, mesh 
design, grid convergence, and boundary condition setup in Section 2. 
This is followed by presenting the results for the two cases considered 
in Section 3. Finally, in Section 4, we present the concluding remarks 
and future directions.

2. Methods

2.1. Governing equations and discretisation

This paper uses the steady-state Reynolds-Averaged Navier–Stokes 
(RANS) momentum equations constrained by the incompressible flow 
assumption to obtain the wind field within the urban environment. The 
governing equations are given by 

𝜕𝑗𝑢𝑗𝑢𝑖 = −1
𝜌
𝜕𝑖𝑝 + 𝜈𝜕𝑗𝜕𝑗𝑢𝑖 + 𝜕𝑗𝑢′𝑗𝑢

′
𝑖 , (1)

and 
𝜕𝑖𝑢𝑖 = 0, (2)

where 𝜌 is the density of the fluid, which is assumed to be constant, 𝜈
is the kinematic viscosity of the fluid (𝜈air = 10−5 m2∕s), 𝑢𝑖 represents 
the Reynolds-averaged velocity, 𝑝 is the pressure, and 𝜕𝑗𝑢′𝑗𝑢′𝑖 are the 
Reynolds-stress’ that constitute the closure problem for incompressible 
fluid flow equations described in Eqs. (1) and (2) where 𝑢′𝑖 represents 
the fluctuating component of the velocity. In the equations above, we 
use the tensorial index notation, where repeating indices are summed 
over unless mentioned otherwise. Specifically, the conventional partial 
differential operator 𝜕⟨⋅⟩∕𝜕𝑥 is equivalent to 𝜕1⟨⋅⟩ and 𝑗 = 1, 2, 3
corresponds to 𝑥, 𝑦, and 𝑧 coordinate axes, respectively. Here, the 𝑥 and 
𝑦 directions correspond to the horizontal directions, while the 𝑧 axis 
corresponds to the vertical direction using a right-handed coordinate 
system. The system of equations is mathematically closed using the 
Boussinesq eddy-viscosity hypothesis that relates the Reynolds-stress 
to the mean rate of strain via the linear eddy viscosity using the 
𝑘 − 𝜖 turbulence closure equation (Launder & Spalding, 1974) where 
𝑘 = 𝑢′𝑖𝑢

′
𝑖∕2 is the turbulent kinetic energy (TKE) and 𝜖 = 𝜈𝜕𝑗𝑢′𝑖𝜕𝑖𝑢

′
𝑗 is 

the TKE dissipation rate. Specifically, the standard variant (Launder 
& Spalding, 1974) of the two-equation closure is used to solve the 
transport equations given by 

𝜕𝑗𝑘𝑢𝑖 = 𝜕𝑗

(

𝜈 +
𝜈𝑡
𝜎𝑘

𝜕𝑗𝑘
)

+ 𝑃𝑘 − 𝜖 + 𝑆𝑘, (3)

and 

𝜕𝑗𝜖𝑢𝑖 = 𝜕𝑗

(

𝜈 +
𝜈𝑡
𝜎𝜖

𝜕𝑗𝜖
)

+ 𝐶1,𝜖𝑆𝜖 − 𝐶2,𝜖
𝜖2

𝑘 +
√

𝜈𝜖
+ 𝑆𝜖 , (4)

where, Eqs.  (3) and (4) are the transport equations for 𝑘 and 𝜖, 
respectively. Here 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3, 𝐶1,𝜖 = 1.44, and 𝐶2,𝜖 = 1.92 are 
model constants that have an empirical origin to close the transport 
equations for 𝑘 and 𝜖. While 𝑃𝑘 is the production of TKE, 𝑆𝑘 is a 
sink of TKE, and 𝑆𝜖 is the sink term for the TKE dissipation rate. The 
turbulent/eddy-viscosity (𝜈𝑡) is computed as 

𝜈 = 𝐶 𝑘2 , (5)
𝑡 𝜇 𝜖
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Fig. 1. (a) Consistent geometric definition through the level of detail for urban built environment schematic adapted from Biljecki et al. (2016). The primary 
difference between LoD 1.x and LoD 2.x is that the latter supports multiple heights in the same building footprint, while the former does not. (b–e) Comparison 
of part of the geometry illustrating the systematic geometric differences for each city, where the panels on the left (i.e., b and d) show LoD 1.2 while panels on 
the right (i.e., c and e) show the same region in LoD 2.2.
where 𝐶𝜇 = 0.09 constitutes the model coefficient.
The governing equations are discretised in space using a second-

order accurate, collocated finite-volume method, while the pseudo-
time stepping is used through the Semi-Implicit Method for Pressure 
Linked Equations (SIMPLE) algorithm to integrate the steady-state 
equations (Patankar, 1980). All the terms in the governing equations 
are discretised using blended second-order accurate schemes. Specif-
ically, the gradient terms are discretised using the cellLimited 
Gauss Linear 1 scheme, which corresponds to a second-order ac-
curate central differencing scheme with a gradient limiter such that 
the cell face values when extrapolated from the cell centre values 
remain bounded conditioned on the neighbouring cells. The advective 
acceleration terms are discretised using the bounded Gauss lin-
earUpwindV limited scheme, which corresponds to an upwind 
biased second order accurate scheme for vector fields (i.e., velocity) 
with a gradient limiter as used for the gradient terms. The scalar 
divergence terms are discretised using the bounded Gauss limit-
edLinear 1 scheme, which corresponds to a second-order accurate 
bounded convective scheme, and the viscous diffusion term is dis-
cretised using the Gauss linear scheme, which corresponds to a 
second-order accurate central differences. The governing equations are 
solved using the MPI-parallelised computational toolbox OpenFOAM 
(version 7) (Weller, Tabor, Jasak, & Fureby, 1998). The steady-state so-
lutions are integrated for a total of 3500 iterations until the normalised 
residuals plateau for the pressure solver at around 10−3, and those 
for velocity and the two scalars reach ∼10−5 (Blocken, 2015). All the 
simulations are run using the Delft Blue super-computing centre (Delft 
High Performance Computing Centre (DHPC), 2024) at the Delft Uni-
versity of Technology, Delft, using Intel Xeon E5-6448Y CPUs with 64 
cores. Each simulation takes approximately 288 CPU hours to obtain 
3 
converged solutions, requiring approximately 68 GiB of memory and 
generating a maximum of 5 GiB of data containing the 3D snapshots 
for velocity, pressure, turbulent kinetic energy, turbulent kinetic energy 
dissipation rate, and the turbulent viscosity, respectively.

2.2. Mesh design and grid convergence

To simulate flow around a realistic urban area, we choose the 
Delft University of Technology campus (henceforth TUD-campus) and 
the city of Den Haag (henceforth the Hague) as representative urban 
areas in terms of the built environment as they showcase a variety 
of buildings, vegetation, water bodies, and other semantic surfaces 
that are located in a single area. Specifically, buildings and semantic 
surfaces within a radius of 1 km are considered as the region of interest 
for the simulations, while for the TUD-campus case, only the central 
university campus is considered. The proximity of the two urban areas 
to a wind measurement station allows for leveraging incident wind 
conditions that can be used as boundary conditions for setting up the 
model. Fig.  2 depicts the choice of the urban area and the compu-
tational mesh as discretised in the numerical framework used in this 
study. The building geometry for LoD 2.2 is obtained from the 3DBAG 
database (Peters, Dukai, Vitalis, van Liempt, & Stoter, 2022) while 
LoD 1.2 buildings are directly reconstructed using City4CFD (Pađen, 
García-Sánchez, & Ledoux, 2022; Pađen, Peters, García-Sánchez, & 
Ledoux, 2024). Surface features such as terrain, vegetation, and water 
polygons are obtained from the Dutch National Digital Repository of 
Geospatial Data (Georegister, 2025). These two tools allow for seamless 
integration of the building environment into the computational mesh in 
an automated workflow, ensuring that all the semantic surfaces, such 
as terrain, water, and vegetation, can be correctly incorporated along 
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Fig. 2. (a) and (c) Map of the region of interest relative to the other features with the red polygons indicating the built environment that is considered in this 
study. Figure courtesy of Open Street Map (OpenStreetMap contributors, 2017). (b) and (d) Computational mesh (LoD 1.2) depicting the buildings and the terrain 
used in the study to simulate the urban environment. Buildings are marked by grey, vegetation is marked by green, forest is dark green, ground/terrain is marked 
by white, and water is marked by blue.
with the buildings in the region of interest. The total time required for 
the reconstruction process was 2 h, where data acquisition required 
1.95 h, while the reconstruction process required only (100) s. Fig. 
2(b) and (d) show that the buildings are accurately placed along with 
the other surfaces, thus improving the representation of the various 
elements present in the urban environment.

The flow domain is designed following the best practice guidelines 
as detailed in Blocken (2015) and Franke, Hellsten, Schlunzen, and 
Carissimo (2011) using a cylindrical domain around the region of 
interest (ROI) as shown in Fig.  2. The simulation domain consists of 
the region of interest around which the domain is extended (see Fig. 
3). The computational mesh is generated such that closer to the ROI, 
the mesh is sufficiently fine to resolve the geometric features and is 
successively refined away from the buildings, as shown in Fig.  3(b). 
The cylindrical domain enables running various inflow wind directions 
without meshing the domain for every wind incidence angle, and 
instead, only the inflow angle is changed in the boundary conditions.

In order to correctly generate the mesh using snappyHexMesh ap-
plication, the underlying background mesh is refined using a hierarchy 
of relatively refined boxes with level 1 and level 2 refinement as shown 
in Fig.  3(b). Here, level 1 corresponds to the background grid being 
halved, while level 2 corresponds to the background grid refined by 
a factor of 4, respectively. In addition to these refinement regions, to 
accurately resolve the building surfaces, distance-based refinement is 
used such that all distances within the first 4 m normal to the building 
surface are refined with level 5 (i.e., undergo grid refinement by a 
factor of 25 = 32), and the next 8 m normal to the building surface 
are refined with level 4 (factor of 24 reduction), and the next 13 m 
normal to the building surface are refined with level 3, respectively. A 
similar distance-based grid refinement is employed for the terrain, such 
that the first 3 m are refined with level 5 grid refinement.

To carry out the grid convergence/sensitivity test, we use the TUD-
campus case with a wind incidence angle of 𝜃 = 210◦ with respect to 
North. A similar grid convergence test was carried out for the Hague 
case, but it has not been detailed here for brevity. Table  1 details 
the three meshes considered in the grid convergence test, where the 
representative grid size is the average grid size computed as 

𝛥ℎ𝑟 =
(

𝛥𝑉
)1∕3

, (6)

where 𝛥𝑉  is the average cell volume in the domain. As the flow field 
around the urban area is relatively complex, to avoid contamination 
4 
Table 1
Description of the three grids used to understand the sensitivity of the mesh 
to the predicted results.
 Mesh name Number of cells Representative grid size 
 (×106) 𝛥ℎ𝑟 (m)  
 Coarse 9.6 12.46  
 Nominal 22.35 8.92  
 Fine 46.61 7.22  

Table 2
Grid convergence indicators for the three meshes used to test the sensitivity 
of the grid on the results predicted. Since the turbulent eddy viscosity (𝜈𝑡) is 
a derived parameter, it has not been included in the table above.
 Convergence parameter 𝑢1 𝑢2 𝑢3 𝑝 𝑘 𝜖  
 Apparent order 4.4 4.4 4.1 4.7 3.0 4.6  
 Relative error (%) 0.18 0.15 2.1 1.42 0.61 1.0  
 Extrapolation error (%) 0.14 0.13 1.94 0.90 0.90 0.70 
 GCI (%) 0.18 0.17 2.44 1.12 1.13 0.85 

of grid sensitivity estimates due to local grid effects, we sample ap-
proximately 200 probes and 100 line probes as shown in Fig.  4 within 
the domain and use the median grid convergence index (GCI) param-
eter (Celik, Ghia, Roache, & Freitas, 2008) to estimate the suitability 
and grid independence for this case.

As shown in Fig.  4, there is very little difference observed between 
the velocity profiles across all the mesh sizes, and this is consistent for 
the other 96 line probes sampled (not shown here) in the comparison. 
Some differences were observed in the lower portions of the velocity 
profiles. However, the differences were insignificant, and there was 
monotonic convergence towards the fine mesh results. Table  2 com-
pares the statistical median values of the grid convergence parameters 
used in this study. The median apparent order of convergence is higher 
than the discretisation order of convergence due to similar results 
obtained on all three meshes. The rest of the three parameters are all 
below 3% and suggest that the results obtained are sufficiently grid-
independent. As a result, the nominal mesh will be used for all the 
results discussed in the following section as it is sufficiently accurate 
and computationally efficient based on the metrics presented in Table 
2.
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Fig. 3. (a) Top view of the computational domain with the region of interest (ROI) marked by the grey buildings (Franke et al., 2011). (b) Side view of the 
computational domain with the black solid lines marking the computational mesh and grey colour denoting the buildings.
Fig. 4. Top view of the buildings marked in grey, and the vertical line sampling probe locations are marked in red. Four panels on the right compare the velocity 
profiles at various locations corresponding to the symbol marked at the top left corner of each sub-panel.
Since the flow conditions for LoD 2.2 are identical to those consid-
ered for LoD 1.2, the mesh design for LoD 2.2 is based on the geometric 
resolution requirements. As the building features for LoD 2.2 are rela-
tively more complex when compared to those of LoD 1.2 (Biljecki et al., 
2016), a finer grid resolution is required for LoD 2.2 to resolve these 
small geometric details. Consequently, for LoD 2.2, the computational 
grid has approximately 48 Million cells. Similar differences between the 
two LoDs were observed for the Hague case, where LoD 2.2 required 
a finer grid resolution than LoD 1.2. Effectively, this requires an addi-
tional computational cost of 1.5 times for the LoD 1.2 cases. It is also 
important to remark that this increased cost is expected to be non-linear 
and is sensitive to the computational framework used and its weak-
scaling behaviour; since OpenFOAM scales approximately linearly for 
the problem sizes considered in this work, there are no substantial 
parallelisation costs associated when comparing LoD 1.2 and LoD 2.2 
for the hardware on which these simulations are run.

2.3. Wind characteristics and boundary conditions

To characterise the wind conditions for the TUD-campus case, 
we use the weather station data collected by the Delft University 
of Technology accessed through the weather data platform (https:
//weather.tudelft.nl/). Specifically, we use the Delfshaven weather 
station to characterise the wind data to supply the simulation bound-
ary conditions in this paper. As for the Hague case, data from the 
KNMI data portal (https://www.knmi.nl/nederland-nu/klimatologie/
daggegevens) was processed for the Voorschoten weather station. Fig. 
5 shows the normalised wind rose for both weather stations over the 
5 
period from 2002 to 2022. Panel (a) shows the normalised wind rose for 
the Delfshaven stations with a 1◦ resolution. For the TUD-campus, most 
of the incident wind comes from the west, while for the Hague case, 
most of the incident wind originates in the south (not shown here). The 
wind histogram shown in Fig.  5(b) follows a log-normal distribution 
marked by the solid black line. Since we are interested in understanding 
the average/mean wind conditions in this study, the black dotted line 
with an 𝑥 marks the wind speed location chosen as the simulation’s 
representative inflow boundary condition. For the Hague case, the same 
wind condition corresponds to the mean wind conditions. However, it 
is important to realise that the KNMI data is measured at 10 m above 
the ground. At the same time, the Delfshaven measurement station 
is located approximately 4 m above the ground, thus explaining the 
difference between the two stations. In our simulations, we consider 
the 10 m reference velocity at the inflow boundary condition, which 
corresponds to the 5.0 m/s choice made for the simulations. In this 
study, fixed increments of 1◦ are made for the inflow angle to span 
the entire wind-rose over 360◦; consequently, only the wind direction 
is changed while the inflow velocity magnitude is fixed as detailed 
below. It is important to note that the flow Reynolds number is large 
and can be safely assumed to be in the asymptotic range, such that a 
reference velocity larger than the one prescribed in this case can be 
linearly applied without loss of generality (Hågbo & Giljarhus, 2024).

At the inlet boundary, the neutral atmospheric boundary layer 
velocity, turbulent kinetic energy, and turbulent kinetic energy dissi-
pation rate profiles are applied using the log-law equation given by 
(𝑢2 = 𝑢3 = 0) 

𝑢1 =
𝑢𝜏 ln

(

𝑧 − 𝑑 + 𝑧0
)

, (7)

𝜅 𝑧0

https://weather.tudelft.nl/
https://weather.tudelft.nl/
https://weather.tudelft.nl/
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
https://www.knmi.nl/nederland-nu/klimatologie/daggegevens
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Fig. 5. (a) Twenty-year averaged (2002 to 2022) and normalised wind-rose diagram for Delfshaven Wind-speed probability density function (PDF) for Delfshaven 
measurement station (top) and Voorschoten measurement station (bottom). The Delfshaven measurement station is used for the TUD-campus case, while the 
Voorschoten measurement station is used for the Hague case. The radial axis represents the wind incidence angle, with 0 corresponding to the North direction 
and increasing in angles in the clockwise direction. (b) The fitted log-normal distribution is marked using the black solid line. The vertical black dashed line and 
cross mark the inflow velocity chosen for the simulations. The wind rose for the Hague weather station is not shown here for brevity.
𝑘 =
𝑢2𝜏

√

𝐶𝜇

√

𝐶1 ln
(

𝑧 − 𝑑 + 𝑧0
𝑧0

)

+ 𝐶2, (8)

𝜖 =
𝑢3𝜏

𝜅(𝑧 − 𝑑 + 𝑧0)

√

𝐶1 ln
(

𝑧 − 𝑑 + 𝑧0
𝑧0

)

+ 𝐶2, (9)

where 𝑢𝜏 = 𝜅𝑈𝑟𝑒𝑓∕ ln(
𝑧𝑟𝑒𝑓+𝑧0

𝑧0
) is the friction velocity, 𝑈𝑟𝑒𝑓  is the refer-

ence velocity used at 𝑧𝑟𝑒𝑓 = 10 m above the ground, 𝑧0 = 0.5 m is the 
aerodynamic roughness length, 𝜅 = 0.41 is the von Kármán constant, 
𝑑 is the displacement height for large roughness elements such as tree 
canopies, forests, shrubs, etc. and is not used for buildings, 𝐶1 = 1.44, 
𝐶2 = 1.92, and 𝐶𝜇 = 0.09 are model constants. Here, 𝑢1 is aligned along 
the wind incidence direction and is practically implemented by using 
a vector sum between the horizontal velocity components that result 
in the desired velocity magnitude specified at the inlet boundary. As 
seen in Fig.  2, the various semantic surfaces such as terrain, vegetation, 
forest, are not explicitly modelled, but are assigned the appropriate 
aerodynamic roughness length (𝑧0) based on the updated Davenport 
classification (Davenport, 1960; Wieringa, 1992) to correctly model 
the influence of varying terrain features (Davenport, 1960; Shirzadi, 
Tominaga, & Mirzaei, 2020; Wieringa, 1992). While many other studies 
have investigated the impact of including vegetation explicitly (Fu, 
Pađen, & García-Sánchez, 2024; Hui, Tang, Yang, & Mochida, 2024), 
the focus in this work is to isolate the impact of varying LoD on the 
flow within the urban built environment without introducing other 
parameters. Consequently, the vegetation, forest, and terrain features 
are modelled implicitly through the aerodynamic roughness values of 
0.03, 0.8, and 0.5, respectively (Davenport, 1960; Wieringa, 1992). In 
addition to the above-mentioned 𝑢1, 𝑘, and 𝜖 profiles at the inlet, we 
use an atmospheric boundary layer wall function at all terrain features 
such that there is no spurious decrease in the velocity magnitude and 
shape as it develops within the computational domain (Parente, Gorlé, 
van Beeck, & Benocci, 2011).

2.4. Suitability of the computational model

In order to accurately and efficiently model the wind flow around 
complex urban built environments, certain modelling choices have been 
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made, as detailed in the discussion above. In this work, a total of 4 
scenarios were simulated as detailed in Table  3, resulting in a total of 
1440 simulations that each take 4.5 wall clock hours using 64 CPUs 
(288 CPU hours) as detailed earlier. While other studies have used a 
relatively lower wind-incidence angular resolution using increments of 
10◦ (Hagbo & Giljarhus, 2022), in our work, we make use of a much 
finer angular resolution of 1◦ to adequately capture the impact of each 
of the wind directions when calculating the UAV risk as detailed in the 
following sections. Additionally, the dataset generated in this work can 
be used for further studies, given the relatively high-resolution wind 
direction data. While higher-fidelity computational frameworks exist, 
such as the Large-Eddy Simulations (LES) (Bou-Zeid, Overney, Rogers, 
& Parlange, 2009; García-Sánchez, van Beeck, & Gorlé, 2018), the 
computational cost associated with such a framework is significantly 
higher when compared to the RANS framework detailed in the section 
above. For example, García-Sánchez et al. note that one realisation 
for a comparable urban built environment using the LES framework 
required a total of 340000 CPU hours (in 2018). In contrast, all the 
simulations detailed in Table  3 required a total of 414720 CPU hours, 
effectively justifying the choice of the computational approach used in 
this work. Moreover, most LES frameworks employ a Cartesian grid 
structure coupled with an immersed boundary method (IBM) to include 
solid objects such as buildings and trees (Peskin, 2002). This effectively 
limits the grid resolution, which further limits the geometric resolution 
that can be used for complex urban built environments. Consequently, 
despite the numerical and scale-resolving capabilities of the existing 
LES frameworks, RANS modelling is much more suited to predicting 
mean wind flow conditions and provides a scalable alternative. It is 
also important to mention that this modelling framework has been 
extensively validated and tested for wind tunnel and in-situ mean 
wind conditions with sufficient accuracy (García-Sánchez et al., 2018; 
García-Sánchez, Philips, & Gorlé, 2014; Hertwig, Efthimiou, Bartzis, & 
Leitl, 2012; Moonen, Dorer, & Carmeliet, 2011; Salim, Buccolieri, Chan, 
& Di Sabatino, 2011, to list a few).
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Table 3
List of simulations carried out per scenario, including the two cities and two 
LoDs with a wind-incidence resolution of 1◦.
 Case name LoD Wind simulations 
 TUD-Campus 1.2 360  
 TUD-Campus 2.2 360  
 The Hague 1.2 360  
 The Hague 2.2 360  
 Total simulations 1440  

3. Results and discussions

3.1. TUD-campus case

We start by first presenting the wind-rose weighted average quantity 
defined as 

𝑓 𝑎 =
1
𝑁𝜃

𝑖=𝑁𝜃
∑

𝑖=1
𝑤𝑖|𝑓𝑖|, (10)

where 𝑁𝜃 are the number of wind-incidence angles simulated (in this 
case 360), 𝑤𝑖 is the weight which is the value of the wind-rose pdf for 
angle 𝜃𝑖 (see Fig.  5), and |𝑓𝑖| is the 𝐿2-norm if 𝑓 is a vector quantity 
or the scalar magnitude when 𝑓 is a scalar at a given grid-point. The 
wind-rose PDF is obtained from the weather station data by normalising 
the wind direction probability at a specific angle such that the area 
under the histogram is unity. In what follows, we assume LoD 2.2 
as the ground truth, as illustrated by the relatively better geometric 
representation of the built environment in Fig.  1. Fig.  6 shows the 
non-dimensional 𝑈𝑎 comparison at three different vertical heights for 
the two LoDs considered in this study (i.e., LoD 1.2 and LoD 2.2). 
The average wind flow around the campus exhibits a relatively strong 
accelerating/funnelling flow commonly observed within the central 
part of the campus, marked by the white dashed circle (YouTube, 
2023). Additionally, both LoDs are able to sufficiently capture the 
average flow features, where the hot spot for large wind speed in the 
central canyon between the campuses is relatively underpredicted by 
LoD 1.2 when compared to LoD 2.2. The LoD 2.2 case, where the tall 
building is located in the vicinity of the central canyon (white dashed 
line on the top left panel), exhibits a characteristic difference in its 
dimensions when compared to the LoD 1.2 scenario. The region with a 
significant value of 𝑈𝑎 is observed to be offset away from the adjacent 
buildings and towards the south-east quadrant in the figure. Since LoD 
1.2 attributes a uniform height of the building to the entire footprint, 
the flow is strained in the lateral direction, leading to a large wind 
velocity for the LoD 2.2 scenario. Comparing the two LoDs, it is clear 
that there is a substantial difference between the peak wind prediction, 
while both LoDs adequately capture the average trend in the flow field.

Despite these differences observed in LoD 1.2 compared to LoD 
2.2, as shown in Fig.  6, the regions of high-wind speed are adequately 
addressed. Additionally, it must be stressed that for this specific case, 
there appears to be an under-prediction (10%–20% magnitude) of the 
region of high-wind speed in the LoD 1.2 case. On the west side of the 
region of interest, systematic differences are observed where LoD 2.2 
exhibits relatively higher average velocity when compared to LoD 1.2. 
However, any generalisation about a direct comparison between LoD 
1.2 and LoD 2.2 cannot be translated to a different case, as this is case-
sensitive, as detailed later. While the magnitude is not substantially 
different between the two LoDs, the spatial extent of the high-speed 
regions is demonstrably distinct between the two LoDs, with a relatively 
greater extent predicted by LoD 1.2 than LoD 2.2. Thus, we first note 
that the overall trend for this case suggests that the wind-rose weighted 
average wind speed is observed to be sensitive to the difference in the 
LoDs.

For safe UAV operations, knowing the locations of high-wind speed 
is not sufficient as it does not provide a valuable metric for other 
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unsteady processes that may be present; this is especially true for a 
steady-state RANS simulation where such unsteady features are absent 
by definition as detailed in Eq.  (1). Consequently, to understand the 
risk associated with UAV operations, a probabilistic framework must 
be considered where the high-wind speed regions conditioned on large 
TKE regions can be used to create a risk map as a function of space. Ad-
ditionally, looking at the velocity or the TKE levels independently can 
result in diverging conclusions. This metric is motivated by different-
sized UAVs interacting differently with the flow around them. The 
term risk here is used in the broadest sense and can be referenced as 
predicted risk potential. To this end, we consider the risk map, which 
is defined as the probability given by 
𝑟 ≡ 

(

𝑈∗ > 𝛼 ∩ 𝑘∗ > 𝛽
)

(11)

where 𝑟 is the joint probability that the non-dimensional velocity 
𝑈∗ ≡ 𝑈∕𝑈∞ exceeds a given value 𝛼 and the non-dimensional TKE 
𝑘∗ ≡ 𝑘∕𝑈2

∞ exceeds a value 𝛽, where both 𝛼 and 𝛽 are defined constants. 
These constants are functions of the urban morphology and require 
an understanding of how the flow is expected to respond to a given 
urban morphology. For example, for heterogeneous urban areas, the 
flow within the urban canopy is expected to have relatively larger 
energy dissipation and thus lower levels of 𝑈∗ and 𝑘∗ and vice versa 
for non-heterogeneous urban areas. Additionally, since different-sized 
UAVs interact with the flow around them differently, 𝛼 and 𝛽 can 
be set based on the UAV characteristics and expected flow levels, as 
discussed earlier. We also carried out a systematic sensitivity analysis 
for the threshold values of 𝛼 and 𝛽 to better quantify the impact of 
choosing specific thresholds. Specifically, we considered 𝛼 = [0.1 − 0.7]
and 𝛽 = [0.03 − 0.1] with 𝛿𝛼 = 0.1 and 𝛿𝛽 = 0.01 being the increments 
for each parameter, resulting in a total of 56 different combinations of 
the exceedance parameters to better understand the behaviour of the 
risk map subject to the two parameters. A few combinations of 𝛼 and 
𝛽 are detailed in Appendix, which suggests that for small values of 𝛼, 
it is difficult to draw precise conclusions as the entire area of interest 
is classified as a high-risk region, which is not surprising. While cases 
with increasing values of 𝛼, LoD 1.2, are observed to be consistently 
under-predicting the risk region. For a detailed discussion, the readers 
are referred to Appendix. Currently, there is no standard that exists, but 
it is often reported through the manufacturer of the UAV as a maximum 
wind resistance rating (DJI, 2025; Gao et al., 2021). Consequently, in 
our case, unless otherwise specified, we use 𝛼 = 0.4 and 𝛽 = 0.08
for all the discussion relating to the risk map 𝑟. In Eq.  (11), the risk 
map can be identically defined through a union operator, which would 
yield a relatively larger risk region for the same values of 𝛼 and 𝛽. The 
choice of the intersection operator was motivated by the need to have 
a relatively less conservative framework, as that would provide a more 
viable path for trajectory optimisation within urban environments. For 
UAV applications, we consider 7 m and 10 m above the ground as 
representative heights for wind speed within the urban environment. 
These two heights are motivated by the need to better understand the 
risk associated with smaller drones that primarily navigate the urban 
canopy region.

Fig.  7 shows the risk map comparison for the two LoDs considered 
in this study. Despite the relatively good comparison for the wind 
speed in Fig.  6, the risk map clearly highlights some differences when 
directly comparing the bulk parameters for two different LoDs. In 
this case, there is quite a large discrepancy observed between LoD 
1.2 and LoD 2.2 for 𝑟 = 0.5, which can be interpreted as a 50% 
chance that both the mean velocity and the TKE levels exceed the 
threshold’s (𝛼 = 0.4 and 𝛽 = 0.08). Large differences are observed in 
regions with flow separation and canyon-like regions where the mean 
flow is strained. Since identical turbulence closure and wind incidence 
conditions are used, these differences can be attributed to the difference 
in the geometric resolution, i.e., LoD. While the risk map in Fig.  7 is 
shown in two dimensions, a 3-dimensional risk map (perhaps more 
aptly a field) can also be estimated, and regions of large 𝑟 can be 
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Fig. 6. Top row: Non-dimensional wind-speed for LoD 1.2, where the dark shades mark larger wind-speed while lighter shades mark low wind-speed. Here 𝑈∞ =
5.0 m/s, which is the wind speed at the inflow boundary condition. Bottom row: Same as the top row, except that this row corresponds to building LoD 2.2.
identified to inform UAV trajectory planning and routing. In this case, 
the region would constitute iso-surfaces as opposed to iso-contours such 
as the ones shown here; however, for the sake of brevity, the iso-surface 
for high-risk regions has not been presented. Despite the lack of any 
unsteady features in the results discussed thus far, the risk map serves 
as a first indicator which can be used to identify potentially problematic 
regions where a more informed trajectory decision can be made using 
unsteady/real-time sensed data.

3.2. The hague case

The area of interest in the Hague case has a substantially different 
urban morphology when compared to the TUD-campus case. Specifi-
cally, the built environment has a traditionally compact arrangement 
as opposed to the relatively sparse built environment observed in the 
TUD-campus case. As shown in Fig.  8, in some locations of the region 
of interest, a consistent over-prediction can be observed for LoD 1.2 
compared to LoD 2.2. This over-prediction mainly seems to overesti-
mate the total region that experiences a high wind speed for LoD 1.2 
due to its attribution of a single height per footprint polygon (Biljecki 
et al., 2016). For the 𝑥3 = 2 m slice in panel (a), both the low-
speed and high-speed regions are relatively well captured by LoD 1.2 
and LoD 2.2. Since pedestrian wind comfort (Sanz-Andres & Cuerva, 
2006) is typically evaluated at this height, this would indicate that 
for this specific urban scenario, the differences between the two LoDs 
are small, unlike the TUD-campus case. At the same time, most of 
the differences are observed at the semantic surfaces, such as water 
and vegetation, between the two LoDs for high-speed regions. This 
is especially true as the semantic surfaces, along with the 𝑥3-varying 
terrain surfaces, significantly impact the local wind conditions, thus 
further demonstrating the vital role these features play within the 
urban built environment despite the highly parametrised/modelled 
methodology (Fu et al., 2024). In the city centre, where there is a 
four-way pedestrian intersection (upper left side of the white dashed 
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line on the top left panel), LoD 1.2 wind predictions are observed to 
be relatively smaller (5%–10%) when compared to that of LoD 2.2 
such that LoD 1.2 predicts a larger extent and more intense high-
speed region. A similar observation can be made in the region that is 
relatively close to the periphery of the city centre (lower right side of 
the white dashed line on the top left panel), where a similar four-way 
crossing is located opposite a relatively high-rise building. For all panels 
with LoD 1.2, a relatively lower wind speed is observed when compared 
to that for LoD 2.2, suggesting a systematic under-prediction with LoD 
1.2. Similar observations can be made for the various 𝑥3 locations 
and neighbourhoods within the region of interest, suggesting a strong 
influence of the LoD. These results also indicate the importance of using 
semantic surfaces to represent the various elements of the urban fabric, 
such as water, vegetation, and forest, that can be observed to have a 
large impact on the wind speeds observed in these regions.

For the Hague case, the joint probability exceedance parameters 
are defined to be 𝛼 = 0.4 and 𝛽 = 0.05 and Fig.  9 shows the risk 
map for this case. Comparing LoD 1.2 against LoD 2.2, there is clear 
evidence that despite an overall larger mean wind speed prediction 
in both extent and magnitude, the joint probability of both the wind 
speed and the turbulence level is consistently under-predicted when 
using LoD 1.2. This joint probability definition differs from the comfort 
class categorisation (Lawson, 1978), which is only conditioned on wind 
speed. It is clear from the trend that the locations of high wind speed 
are a subset of high turbulence levels based on the fact that the black 
contour lines are enveloped by the white contour lines in Figs.  7 and
9. The information about high turbulence levels is essential in the 
case of UAVs, given that the relevant gradients are proportional to 
the size of the UAV, and this information can be extracted from the 
turbulence levels. While LoD 1.2 can capture the risk regions (defined 
in Eq.  (11)), there is a systematic under-prediction of the extent and the 
risk magnitude associated. These under-predictions are systematically 
located in regions around closed corridors underlying semantic surfaces 
(see Fig.  2).
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Fig. 7. Comparison of the risk metric as a function of the two LoDs considered in this study at 7 m and 10 m above the ground (𝑥3 = 0). The top row corresponds 
to LoD 1.2, while the bottom row corresponds to LoD 2.2. Here, the solid black line marks the contour for  𝑟 = 0.5, and the solid white line marks the contour 
for  𝑟

𝑘 = 0.5, which is the probability that 𝑘∗ > 𝛽.
Furthermore, comparing the two horizontal slices detailed in Fig. 
9, it is clear that further away from the ground (comparing 𝑥3 = 7 m 
against 𝑥3 = 10 m), the overall region marked by the risk map increases 
as expected. The densely built environment, in this case, limits the 
extent of the risk regions to areas such as road crossings, open parks, 
and the periphery of the region of interest, unlike the TUD-campus case, 
which is sparsely packed with buildings. This systematic difference 
between the two areas suggests that urban morphology can play a big 
role in characterising the viability of UAVs, primarily through the use 
of the risk map.

In the previous sub-section, most of the discussion focused on 
illustrating the impact of LoD using a relatively larger domain and the 
variations therein. However, the differences in LoD can significantly 
impact the local risk as a consequence of the systematic height and 
geometry differences between LoD 1.2 and LoD 2.2, as illustrated in 
Fig.  1. To demonstrate such a local effect, we consider the east corridor 
of the Hague case as shown in Fig.  10 that compares the risk contex-
tualised with the buildings marked in grey to better understand the 
differences that arise due to the variation in LoD. In the region marked 
by the dashed circle, LoD 1.2 attributes a single height to the building 
footprint as opposed to LoD 2.2, which retains the individual buildings 
at the east and west sides of the circle. This leads to a funnelling 
effect when the wind is incident from the north and south directions, 
leading to a relatively higher risk forecast as a consequence of this 
acceleration. However, such a marked effect due to the differences in 
building height is not observed for the same location when considering 
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LoD 1.2, which yields a relatively lower risk in the downstream region 
of the buildings. In the region marked by the dashed square, a similar 
effect can be observed where LoD 1.2 fails to correctly capture the 
differences in the building footprint and instead attributes a single 
height to the entire footprint, thus leading to a relatively less tall 
building and lower risk prediction when compared to LoD 2.2. When 
compared to LoD 2.2 on the south-east corner of the dashed square, 
the building geometry is drastically different in LoD 1.2. The tower-like 
structure can lead to relatively large flow separation, thus inducing a 
downwash leading to large velocity and TKE magnitudes at the four-
way crossing. Lastly, the dashed triangle illustrates the importance of 
including sloping roofs (included in LoD 2.2 but not in LoD 1.2) in 
addition to the correct building heights that can greatly impact the 
wind flow within the urban canopy. As seen in this case for the region 
marked by the dashed triangle, LoD 2.2 predicts a relatively higher 
risk in the central region when compared to LoD 1.2. While these 
observations are only shown for a relatively small region of interest for 
one of the cases, similar observations were made for the TUD-campus 
case (not shown here) and illustrate the importance of using the right 
level of detail for wind simulations. These observations collectively 
indicate that using a probabilistic metric conditioned only on the wind 
speed can provide a false sense of similarity where the effect of the 
geometric detail can seem less important when, in reality, substantial 
differences exist in the data. Since building height constitutes one met-
ric in the urban morphology characterisation (Fleischmann, Romice, 
& Porta, 2021; Labetski et al., 2023) and the attribution of building 
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Fig. 8. Top row: Non-dimensional wind-speed for LoD 1.2, where the dark colours mark larger wind-speed while lighter colours mark low wind-speed. Here 
𝑈∞ = 5.0 m/s, which is the wind speed at the inflow boundary condition. Bottom row: Same as top row, except that this row corresponds to building LoD 2.2.
height is dependent on the LoD classification (Biljecki et al., 2016; 
van der Vaart et al., 2024), it is important to correctly isolate the 
effect of such a systematic building characterisation in urban fluid 
dynamics applications. Specifically, when using mixed LoD building 
models, the impact of LoD can become substantially large depending 
on the parameter of interest, and a generalised conclusion of the effect 
of such a characterisation should be made with caution.

3.3. Pedestrian wind comfort

As presented in the sections above, comparing the wind-rose
weighted velocity (𝑈𝑎) and the risk map (𝑟) for the two LoDs ex-
hibits a significant difference. While the primary focus of this study 
is on LoD effects for drone-related wind assessments, pedestrian wind 
comfort (PWC) serves as a valuable diagnostic for evaluating wind 
comfort at near-ground level, where the influence of geometric detail 
is particularly pronounced. Including PWC is relevant not only for 
general urban wind safety analysis but also for ensuring comfort and 
safety in areas of potential drone infrastructure, such as vertiports and 
transit corridors (Federal Aviation Administration, 2024; Muia et al., 
2024). As shown in the previous sub-sections, LoD plays a crucial 
role in capturing flow variations at pedestrian height, making PWC a 
complementary metric to assess the fidelity and applicability of urban 
wind simulations. For a more generalised perspective on other wind 
engineering applications, the Pedestrian Wind Comfort (PWC) is used 
for safety assessment (NEN, 2006). Specifically, to better understand 
the impact of LoD on PWC, we use the NEN8100 standard for the wind 
velocity data at 2m above 𝑥3 = 0 in what follows. Table  4 details the 
NEN8100 PWC criteria used to categorise the various grades of comfort. 
Using this definition, we compared the effect of LoD on PWC for the 
two cases detailed in this work to better understand the impact of LoD.

As shown in Figs.  11 and 12, there are distinct differences in the 
PWC when comparing LoD 1.2 against LoD 2.2. Specifically, LoD 1.2 
is observed to consistently under-predict the grade of the PWC when 
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Table 4
Pedestrian wind comfort criteria definition (NEN, 2006) for various activities. 
The probability mentioned in the first column is taken to be per hour, and the 
velocity is prescribed in  m/s where 𝑈𝐼 is the in-situ velocity.
 (𝑈𝐼 > 5) Grade Sitting Strolling Traversing 
 <0.025 A Good Good Good  
 0.025−0.05 B Moderate Good Good  
 0.05−0.1 C Poor Moderate Good  
 0.1−0.2 D Poor Poor Moderate  
 >0.2 E Poor Poor Poor  

compared to LoD 2.2. It is also pertinent to note that while significant 
differences are observed for the wind-rose averaged velocity and the 
risk map, the PWC map fails to capture the finer details despite using 
identical statistical data. For the TUD-campus case, the PWC map for 
LoD 1.2 fails to adequately capture grade C in the central part of the 
region of interest that is famously known for high wind risk (YouTube, 
2023). As for the Hague case, a similar overall trend is observed where 
the grade B PWC is not predicted in the centre of the region of interest 
by LoD 1.2. Additionally, the areas with relatively higher grades of 
discomfort in the north-east part of the region of interest are also 
not correctly predicted by LoD 1.2 when compared to LoD 2.2. It is 
interesting to note that while some differences are observed in the PWC 
maps as detailed in Figs.  11 and 12, the differences observed between 
the two LoDs are not substantially large and are confined to a difference 
in PWC grade that is consistently one level lower for LoD 1.2 when 
compared to LoD 2.2. This is not a surprising outcome as the flow 
2m above the ground is governed by the near wall effects that are 
largely governed by the in-canopy heterogeneity (Zhang, Zhu, Yang, & 
Wan, 2022). Consequently, any differences observed at this height are 
small unless large building height changes are introduced due to the 
limitation in LoD 1.2 definition. This is evidenced when comparing the 
PWC map for the Hague case and the TUD-campus case in the central 
part of the region of interest, where such effects dominate the flow. 
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Fig. 9. Comparison of the risk metric as a function of the two LoDs considered in this study at 7 m and 10 m above the ground (𝑥3 = 0). The top row corresponds 
to LoD 1.2, while the bottom row corresponds to LoD 2.2. Here, the solid black line marks the contour for  𝑟 = 0.5, and the solid white line marks the contour 
for  𝑟

𝑘 = 0.5, which is the probability that 𝑘∗ > 𝛽 ≡ 0.05.

Fig. 10. Comparison of the risk metric as a function of the two LoDs zoomed on the east corridor at 7 m above the ground. The dashed lines mark the various 
locations of interest, while the colourmap marks the risk, and the solid grey lines mark the buildings at the two LoDs.
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Fig. 11. Comparison of the PWC for the TUD-campus case using 20-year historical data.
Fig. 12. Comparison of the PWC for The Hague case using 20-year historical data.
Since the risk map is not limited by the height above which it needs to 
be defined, it does not suffer from the intrinsic assumptions that may 
limit characterising the differences. In other words, further away from 
the ground, the differences induced by the LoD can significantly impact 
the flow; thus, the risk map is a valuable tool for UAV risk predictions.

Overall, these observations suggest a substantial impact of the level 
of geometric detail on the wind parameters of interest in urban environ-
ments. Additionally, it is clear from the above discussion that spanning 
the large set of parameters using a computational fluid dynamics (CFD) 
approach is not feasible for producing engineering solutions. This is 
true even for a turbulence-modelled Reynolds-Averaged Navier–Stokes 
(RANS) type simulation framework. This makes predicting flows in 
complex urban areas computationally expensive and has remained a 
challenge even when it comes to RANS-style simulations subject to 
varying inflow wind incidence and even more so when relatively higher 
fidelity computational methods are applied (Nazarian, Krayenhoff, & 
Martilli, 2020).
12 
4. Conclusions and discussions

In this work, we studied the effect of a systematic method to char-
acterise one of the many urban morphology parameters, i.e., building 
geometry level of detail, on wind prediction capabilities of the RANS 
computational approach using a wind-incidence angular resolution of 
1◦. We found that lower LoD, specifically LoD 1.2, has a tendency to 
over-predict the wind speed within the urban area when compared to 
LoD 2.2 due to a single height attributed to the entire footprint in LoD 
1.2 in certain locations. The differences between LoD 1.2 and LoD 2.2 
overall for the directionally averaged wind speed are not as large (less 
than 20%) when compared against each other. However, a systematic 
under-prediction is observed in LoD 1.2 when the joint exceedance 
probability of velocity and turbulence levels is considered. Given that 
LoD 1.2 is typically used in urban flow simulations, statistical risk 
assessment relying on this quantity, such as pedestrian wind comfort, 
pollutant transport, and other risk metrics, must be made with sufficient 
caution, as evidenced by the differences observed in the pedestrian 
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Fig. A.13. Comparison of the risk map for varying values of 𝛼 and 𝛽 parameters starting. The black solid lines correspond to LoD 1.2, and the white solid lines 
correspond to LoD 2.2. The colours mark the risk map associated with LoD 2.2, while the grey region corresponds to LoD 1.2. Top row corresponds to 𝛼 = 0.03
and 𝛽 = 0.05, middle row corresponds to 𝛼 = 0.04 and 𝛽 = 0.06, while the bottom row corresponds to 𝛼 = 0.05 and 𝛽 = 0.09, respectively.
wind comfort maps. Our simulation data also suggests that while wind-
rose (i.e., directionally) averaged wind speed predictions may seem 
relatively consistent across LoD 1.2 and LoD 2.2, a closer look at the 
statistical flow parameters, such as the risk map as introduced in this 
work, suggests a consistent under-prediction when using LoD 1.2 for 
the two test scenarios discussed. Consequently, when presenting annual 
forecasts and risk metrics for parameters such as wind comfort, mean 
pollutant dispersion, and other similar statistical flow features, when 
available, a higher level of geometric detail must be used instead of 
the conventional LoD 1.2, which can severely under-predict the mean 
flow parameters.

While our results provide novel insights through the use of the risk 
map and the systematic characterisation of the LoD for urban wind flow 
applications, this work is subject to a number of limitations. One of the 
fundamental limitations of the turbulence-modelled RANS framework 
is that it inhibits the inclusion of unsteady features in flow dynamics. 
13 
This is especially true for regions of the flow where the mean wind 
is observed to separate, inducing a relatively large form drag, where 
steady-state models like the ones applied in this work have relatively 
poor predictive capabilities. Additionally, the risk map, as defined in 
this work, is a first attempt to move away from a mean prediction 
of the wind flow and arrive at a coherent statistical framework that 
can be directly applied to a variety of urban wind simulations and 
their applications. As a result, a relatively generic framework through 
the definition of 𝛼 and 𝛽 is proposed that is agnostic to the target 
application. This further puts the burden of adequate cut-off values to 
be defined by the user for their respective application, thus rendering 
the tuning parameters relatively ambiguous. To alleviate some of the 
ambiguity, an extensive parameter sensitivity has been conducted in 
Appendix.

In conclusion, our work systematically investigated the impact of 
the geometric level of detail in the built environment to aid future 
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Fig. A.14. Same as Fig.  A.13 with the top row corresponds to 𝛼 = 0.06 and 𝛽 = 0.04, middle row corresponds to 𝛼 = 0.07 and 𝛽 = 0.03, while the bottom row 
corresponds to 𝛼 = 0.07 and 𝛽 = 0.09, respectively.
studies for green technologies, such as replacing UAVs with last-mile 
transit and proposed the use of a risk map for trajectory planning. Our 
work provides a novel statistical framework as a first step in urban 
microclimate modelling applied to UAV trajectory planning and routing 
using an accurate and computationally efficient simulation framework. 
Based on our observations and data, we find that any generalisations 
of the overall urban morphological response to the inflow conditions 
must be made with care as the transfer function between the input 
and output is not known a priori. This suggests that urban morphology 
can play a big role in how the risk is distributed over the region 
of interest, as our data demonstrates. Since the parameters required 
to characterise urban morphology require many metrics, concluding 
the universality of a few parameters can be speculative at best, if 
not entirely problematic. Our data suggest that even small changes in 
14 
the geometric characterisation of the buildings introduce systematic 
differences in the risk parameters and mean wind predictions. Thus, 
universality regarding relatively more complex urban morphological 
responses requires a detailed investigation and more comprehensive 
numerical experiments.
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Appendix. Exceedance parameter sensitivity on the risk map

To better quantify the sensitivity of the risk map parameters, we 
compare the effect of risk map prediction for the two LoDs considered 
in this paper. To compare this, we use the TUD-campus case, in which 
the risk map is calculated. In the figures below, the risk map calculated 
for LoD 1.2 is compared against the one calculated for LoD 2.2 with 
increasing values of 𝛼 and 𝛽. For increasing values of 𝛼 the region 
predicted to be above the 50% mark shrinks, which is not surprising 
since the area corresponding to a relatively larger non-dimensional 
velocity shrinks. For the same value of 𝛼 and increasing values of 𝛽, 
a similar reduction in the risk map is observed since the regions with 
relatively large non-dimensional velocity and TKE shrink in size. Figs. 
A.13–A.14 exhibit a constant under-prediction by LoD 1.2 in the risk 
region when compared to LoD 2.2, further supporting the utility of 
the joint probability distribution as a useful metric to quantify the 
similarities and differences observed for this case.

For small values of 𝛽 < 0.04, the risk map classifies most of the 
area as high-risk, mainly because of the smallness of the parameter, 
such that all grid points return a positive value. This is especially 
true for 𝛼 < 0.4, where most, if not all, of the area presented in the 
figures below is classified as high-risk. Since small values of 𝛽 introduce 
this consistent bias, the choice for 𝛼 = 0.4 and 𝛽 = 0.08 was made 
in this work to quantify the differences between the two LoDs. It is 
important to note that this choice must be made with care, is not a 
generalisation for other urban geometries, and only serves to compare 
the two different LoDs.
15 
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