
Discovering Bias in Dutch Automatic Speech Recognition by
Clustering Interpretable Acoustic and Prosodic Features

Kayleigh Jones1
Supervisors: Odette Scharenborg1, Jorge Martinez Castaneda1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Kayleigh Jones
Final project course: CSE3000 Research Project
Thesis committee: Odette Scharenborg, Jorge Martinez Castaneda, Merve Gürel
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Abstract
Dutch State-of-the-art Automatic Speech Recognition (ASR)
systems do not perform equally well for different speaker
groups. Existing metrics to quantify this bias rely on
demographic metadata, which is often unavailable. Recent
advances in the field use machine learning to find groups
of similar speakers instead. However, its black-box nature
obscures the interpretability of resulting groups. This paper
proposes an interpretable approach to bias discovery by
clustering speakers based on acoustic and prosodic features.
Different feature subsets were compared in their ability to
find performance disparities in five ASR systems for two
separate speaking styles. Results show that these feature
sets can uncover bias approaching known disparities between
demographic groups. While the effectiveness per feature
set differed between the speaking styles, the most successful
ones found significant disparities between clusters with diverse
demographic compositions.
Index Terms: speech recognition, interpretability, bias,
fairness, feature extraction

1. Introduction
Automatic Speech Recognition (ASR) is the process of
transforming spoken words into text. An ASR system
is typically based on a deep neural network and trained
on a large variety of transcribed conversations. While
becoming increasingly integrated into our daily lives, recent
evidence shows that State-of-the-art (SotA) ASR systems do
not perform equally well for different speaker groups [1,
2, 3, 4, 5]. For instance, children and nonnative speakers
are less accurately recognized than native adult speakers
in Dutch [4, 1, 5, 3]. Similarly, performance disparities
have been found between dialect regions [1, 3]. This bias
is typically quantified by comparing the Word Error Rates
(WERs) between speaker groups. Research in fairness for
ASR compares ASR performances for demographic speaker
groups under the assumption that the speakers within a group
share similar voice characteristics [4]. However, most databases
offer limited demographic information, also called metadata,
which complicates conventional bias quantification between
demographic groups. This indicates a need for alternative
ways to split speakers into groups that share global patterns of
pronunciation. Not only would more databases qualify for bias
estimation, but it additionally has the potential to identify new
types of speaker groups that exhibit significant and meaningful
biases.

Dheram et al. [6] proposed automatic cohort discovery
by clustering speaker embeddings, enabling bias quantification
while eliminating the need for demographic labels. However,
these embeddings were extracted using a deep neural
network [7], resulting in uninterpretable speaker groups
(“cohorts”, in Dheram et al.’s work). While the advancement
enables automatic bias mitigation leading to higher accuracy
[6], emerging views on fairness believe research on ASR
performance should address inclusion as well [3]. The proposed
approach by Dheram et al. does not address this aspect.
Research into interpretable alternatives for cohort discovery is
nonexistent to the best of my knowledge.

While fairness in ASR is a relatively nascent topic in
academia [1, 6], the assumption that demographic groups
exhibit different pronunciation patterns is grounded in decades
of phonetic research. Ladefoged and Broadbent [8]
attributed variation in speech to three different sources: (1)

variation between phonemes; (2) physical differences; and
(3) sociolinguistic variation. ASR systems aim to detect
phonemic differences, i.e., distinguish which of all possible
sounds in the language is being pronounced by the speaker,
while ignoring physical and social characteristics [9]. However,
the presence of known performance disparities [2, 4, 1, 5,
3] suggests that the remaining variability has an undesirable
impact on the ASR system’s acoustic model [4]. Bias due
to age is linked to physical variation in the vocal tract length
[10], while speakers with regional or nonnative accents exhibit
sociolinguistic variation [9]. Therefore, I hypothesize that
leveraging known age- and accent-related speech variability can
aid in the detection of poorly recognized speaker groups for
ASR models.

The aim of this paper is to investigate the effectiveness
of language-specific acoustic and prosodic feature sets in the
discovery of performance disparities between groups of similar-
sounding speakers. The overarching goal is to eliminate the
need for demographic information in bias quantification while
preserving the interpretability of the key vocal characteristics
of poorly recognized groups. Following a brief literature study
on speech variability, 17 features were selected and extracted
from a database of diverse speech. With known disparities
between demographic groups from [5] as a baseline, different
feature subsets were evaluated in terms of bias detection. The
feature sets that discovered the highest performance disparities
per speaking style were interpreted in more detail. I hope to
advance the field of fairness in ASR by providing a first report
on interpretable bias discovery and recommending possible
improvements to the approach for future researchers.

2. Methodology
The approach consists of the following parts. First, features
were extracted from a corpus of diverse Dutch speech
containing two different speaking styles. Then, multiple
combinations of the features were explored for a broader
overview of how acoustic and prosodic features perform at
finding bias in ASR. For every feature subset and speaking style,
the feature sets were clustered into speaker groups, and ASR
performance was calculated based on these.

2.1. Dutch Corpora

Feature extraction was done on the full recordings and
transcriptions from the NL region in the JASMIN corpus
[11]. The JASMIN corpus contains diverse speech from (1)
Dutch children (DC); (2) Dutch teenagers (DT); (3) nonnative
teenagers (NnT); (4) nonnative adults (NnA); and (5) Dutch
seniors (DOA). It is divided into two different speaking styles:
read (Rd) speech and Human-Machine Interaction (HMI), both
of which were considered separately in this paper. Table 1
shows the number of speakers and hours of speech data per
demographic group for each speaking style.

2.2. Feature Selection

Seventeen features known to vary between speakers of the
Dutch language were derived from a diverse set of studies in
phonetics and ASR fairness [10, 12, 13, 4, 14, 15, 16, 17]. The
features extracted from the JASMIN data included 16 acoustic
and one prosodic feature. Acoustic features are measurements
on individual phonemes. Prosody is suprasegmental, thus
covering variability in acoustic features across utterances [18].



Table 1: Number of speakers and hours of speech data used per
demographic group of the NL region in the JASMIN corpus. For
DOA, #Spks is broken down by speaking style (Rd, HMI) due to
differences in exclusion in the feature extraction step.

Group #Spks #Hrs (Rd) #Hrs (HMI)

DC 71 8:36:34 6:34:34
DT 63 6:30:05 4:29:15
NnT 53 7:51:19 4:52:29
NnA 45 7:43:04 7:29:43
DOA 68, 67 8:35:26 10:17:44

2.2.1. Mean Pitch of Phoneme Segments

The mean pitch of a voice is usually higher for children than
for teenagers [10, 12]. In older adults, pitch has been found to
decrease [13]. The mean pitch was measured over all phoneme
segments, to ensure measurements do not include utterances
from the machine in Human-Machine Interaction (HMI).

2.2.2. Articulation Rate

Speaking rate is often slower for older adults, as well as for
children [4, 12] and nonnative speakers [14, 15, 16]. There
are two ways to measure speaking rate. The speech rate can
defined as the number of spoken phonemes divided by the
total duration of the recording. The articulation rate can be
calculated by dividing the number of spoken phonemes by the
total duration of the recording excluding all pauses [15]. In
the present research, the articulation rate was used due to the
challenge of using speech rate on Human-Machine Interaction
(HMI), where speakers pause for longer times to listen to the
machine’s responses.

2.2.3. Mean Vowel Formants and Durations

Vowels can be represented quantitatively by their formant
frequencies. Speech can essentially be defined as a source-filter
combination [19]. The vocal folds are the source, producing a
sound called the glottal tone. The mouth is the filter, which
can be controlled by the speaker using, among other things,
the tongue. The mouth acts as a resonating chamber where
different frequencies are amplified depending on the position
of the tongue. These frequencies are referred to as formants.
The first two formants, F1 and F2, respectively correlate closely
to tongue height and backness [9]. Thus, by measuring F1
and F2 of some vowel for each speaker, comparisons can be
made between speaker groups’ overall tongue positions for that
vowel, known as its vowel quality.

Only vowels with significant variability between speakers
or low ASR performance were selected. The focus of this
research lies on interpretability of characteristics of speaker
groups, thus a limited yet linguistically-motivated selection of
features is assumed beneficial for the clarity and relevance of
the results.

Due to their known socio-linguistic variation [17], mean
vowel durations were measured in addition to the formant
frequencies. The following five vowels were considered:
(1) /E/, expected to vary in F1 between different regions
in the Netherlands [17]; (2) /A/, expected to differ in F2
between regions in the Netherlands; (3) /@/, a phoneme
commonly misrecognized by ASR systems [4] that only occurs
in unstressed syllables and was therefore not analysed in the

phonetic research by Adank et al.’s work [20, 17]; (4) /O/, found
to be hard to recognize for ASR systems when pronounced by
speakers from the North of the Netherlands [4] and has shown
a longer average duration for Northern Standard Dutch (spoken
in the Netherlands) and Southern Standard Dutch (spoken in
Flanders) [17]; and (5) /u/, expected to differ in F2 between
communities within the Netherlands [17].

The phonemes /Y/, /y/ and /œy/ are commonly
misrecognized by ASR systems when pronounced by
nonnative speakers [4]. Unfortunately, for each of these
phonemes, at least 50 out of 300 speakers in HMI data never
used it, thus insufficient measurements were be obtained for
these speakers during feature extraction. To avoid excessive
data exclusion, /Y/, /y/ and /œy/ were removed from the feature
space instead. However, this suggests that HMI and read speech
differ in word choice, which can provide future directions for
research into feature relevance.

2.3. Feature Extraction

Feature extraction was done using Praat version 6.4.12 [21].
Due to the non-linearity of human hearing [22], formant
features were measured in the perceptually relevant bark-scale1

to avoid overemphasis of higher frequencies. Remaining
configurations were left on Praat’s default settings, with a
formant ceiling2 of 5500 Hz and a pitch range3 of 50-800
Hz. The Praat manual recommends using these values for
analysing female voices, but adjusting them for male speakers
or children. Although the JASMIN corpus contains each of
these speaker categories, demographic metadata is assumed
absent throughout the present research. Therefore, frequency
features may be less accurate for some speakers than for others.
The resulting feature vectors per speaker were exported into
CSV format with 10 decimals precision.

Speakers that did not pronounce at least one of the
phonemes of the selected feature space were excluded from
the research. This could happen when (1) the phoneme never
occurred in the transcriptions; or (2) when the phoneme did
occur, but Praat could not find enough formants. This lead to the
exclusion of one speaker from the DOA group for HMI speech.
For read speech, no data was excluded.

2.4. Data Pre-processing

No vowel normalization was applied to account for anatomical
variation between speakers, despite formant features being
selected exclusively for socio-linguistic variation. Lobanov’s z-
score transformation [23] can be applied to eliminate unwanted
variability for Dutch vowels [9]. Unfortunately, it requires
measurements of all vowels, which are not available for a large
portion of the JASMIN data. Consequently, the features used
in this paper may exhibit collinearity, which may impact the
results due to increased importance of certain features when
using Euclidean distances.

New temporal features were engineered by multiplying
each speaker’s vowel durations with their corresponding
articulation rate. Unprocessed temporal features exhibited
significant linear pairwise correlation, causing unwanted

1https://www.fon.hum.uva.nl/praat/manual/
_hertzToBark_.html

2https://www.fon.hum.uva.nl/praat/manual/
Sound__To_Formant__burg____.html

3https://www.fon.hum.uva.nl/praat/manual/
Intro_4_2__Configuring_the_pitch_contour.html

https://www.fon.hum.uva.nl/praat/manual/_hertzToBark_.html
https://www.fon.hum.uva.nl/praat/manual/_hertzToBark_.html
https://www.fon.hum.uva.nl/praat/manual/Sound__To_Formant__burg____.html
https://www.fon.hum.uva.nl/praat/manual/Sound__To_Formant__burg____.html
https://www.fon.hum.uva.nl/praat/manual/Intro_4_2__Configuring_the_pitch_contour.html
https://www.fon.hum.uva.nl/praat/manual/Intro_4_2__Configuring_the_pitch_contour.html


Table 2: Features included in each of the five feature subsets used in the experiments. The possible features were mean pitch (“Pitch”),
mean articulation rate (“Artic. Rate”), and mean duration (“Dur”), mean first and mean second formant frequencies (“F1” and
“F2”, respectively) of five Dutch vowels. Vowels are written in IPA notation. “Mean” was omitted from column names due to space
limitations. Checkmarks (“✓”) indicate that a feature was included in the feature set, and an empty space that it was not.

Feature
Subset Pitch Artic.

Rate
/E/ /A/ /u/ /O/ /@/

Dur F1 F2 Dur F1 F2 Dur F1 F2 Dur F1 F2 Dur F1 F2

Pitch ✓
Artic ✓
Adank ✓ ✓ ✓ ✓ ✓ ✓
Feng+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
All ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

increased feature importance. The way articulation rate was
measured allowed for the transformation of phoneme durations
into durations relative to the speaker’s overall phoneme rate.
These engineered features replace the durational features for the
remainder of the research.

To ensure equal importance of each feature, min-max
scaling from the scikit-learn library [24] was applied to the
features before clustering. Before selecting a scaling method,
I conducted the Shapiro-Wilk [25] test for normality from the
SciPy library [26] on feature vectors from both speaking styles.
Results indicated that the majority of the 17 extracted features
is not normally distributed (p < 0.05). Consequently, min-max
scaling was used for its simplicity in handling feature spaces
with varying distributions. However, future research could
explore alternative scaling or standardization methods when
sufficient expert knowledge is obtained about the significance
of the underlying variability of chosen features.

No dimensionality reduction was applied to the feature
space. While techniques such as Principal Component Analysis
(PCA) may prove beneficial for minimizing linear correlations
in the feature space, it engineers new features at the cost of
interpretability. Therefore, it does not align with the main focus
of the research.

2.5. Feature Subsets

Five feature subsets were compiled to provide a more general
overview of the effectiveness of acoustic and prosodic features
in ASR bias discovery. The full set of extracted features was
expected to exhibit substantial collinearity between frequency-
based features due to the absence of vowel normalization.
Table 2 presents the features contained in each of the five feature
sets that were explored in the rest of this paper.

Two sets contained a single feature, namely pitch and
articulation rate. These were chosen due to their suspected
influence on ASR performance in Feng et al. [4]. Additionally,
they are among the mentioned features in Dheram et al.’s paper
on automatic cohort discovery when proposing an interpretable
alternative [6].

Another two sets were inspired by the works of Adank et al.
and Feng et al. The Adank set comprised vowel formants with
significant regional variation between Northern Standard Dutch
[17]. However, her paper measured speech characteristics
of native teachers of Dutch, while the focus of the present
research lies on diversity. Thus, the Feng+ set was compiled,
containing vowels that were commonly misrecognized by ASR
for diverse speaker groups [4]. Articulation rate and pitch
were additionally added to the Feng+ set as these features were
mentioned as potentially relevant sources of bias [4].

Finally, the All set was selected to imitate a scenario where
one does not have extensive knowledge on existing speech
variability and corresponding bias in ASR.

2.6. Clustering

For each feature subset, bottom-up hierarchical clustering, also
called agglomerative clustering [27], was used to cluster the
feature vectors into five speaker groups to match the number
of known demographic groups for comparison. The algorithm
starts by assigning each speaker to its own cluster, followed
by repeatedly merging the closest two clusters as defined by
a criterion known as a “linkage”. After experimenting with
different linkages using the scikit-learn library [24], Ward
linkage [27] was found to outperform single, average and
complete linkage in terms of balancing cluster sizes.

Agglomerative clustering, being a distance-based solution,
was expected to better suit the task of identifying interpretable
speaker groups than a density-based solution. The latter was
designed to discover arbitrary cluster shapes [28]. In this paper,
this was expected to complicate the comparison between speech
characteristics of the resulting speaker groups, since speech
variability within a cluster could fully overlap with others.
Moreover, density-based solutions discard outliers, which did
not align with the nature of this research as speakers with
characteristics that deviate most from the mean are possibly
among the most challenging for ASR systems to recognize.

Hierarchical clustering was chosen over k-means for its
deterministic nature, with reproducible research in mind. While
hierarchical clustering is known for its high computational
cost4, this was not a problem here due to the small sample size
of 300 speakers and the maximum of 17 dimensions.

2.7. State-of-the-Art ASR systems

Following the setup from [5], performance and bias measures
were applied to recognition output of the JASMIN data from
five different ASR models. The first (NoAug) is a conformer
model with no data augmentation on its training material.
Next, SpAug and SpSpecAug are additionally trained on speed
perturbed speech and the latter also on spectral augmented
speech. The last two, Whisper and FT-Wpr, are OpenAI-
Whisper small models [29], respectively without and with fine-
tuning. All models were trained on data from the Corpus
Gesproken Nederlands (CGN) [30], which consists of Dutch
speech from native adults and has no speaker overlap with the
JASMIN corpus.

4https://scikit-learn.org/stable/modules/
clustering.html#hierarchical-clustering

https://scikit-learn.org/stable/modules/clustering.html##hierarchical-clustering
https://scikit-learn.org/stable/modules/clustering.html##hierarchical-clustering


Table 3: Overall Bias for each of the five ASR models under evaluation for speaker groups defined by predefined demographic metadata
(“Demog.”) and the clustering results of the five feature subsets (“Pitch”, “Artic”, “Adank”, “Feng+” and “All”), for JASMIN read
speech and Human-Machine Interaction separately.

ASR Model JASMIN Read Speech JASMIN HMI

Demog. Pitch Artic Adank Feng+ All Demog. Pitch Artic Adank Feng+ All

NoAug 24.6 4.8 23.1 11.9 14.8 12.9 13.1 5.1 7.8 10.7 8.6 9.9
SpAug 25.2 4.1 23.7 11.0 17.2 13.1 16.4 3.1 8.0 9.6 9.3 7.9
SpSpecAug 24.9 3.6 23.8 11.5 15.7 12.0 17.9 3.3 6.3 8.6 8.7 8.6
Whisper 21.1 2.9 21.0 10.9 14.1 10.9 18.8 4.9 12.7 11.7 12.3 12.5
FT-Wpr 24.5 4.6 24.9 12.4 15.1 13.5 13.7 4.7 7.4 10.2 7.9 7.6

The recognition output from these models was sourced
from the first author of [5], and contained the insertions,
deletions, substitutions and word counts of pre-processed audio
files from the JASMIN corpus. Thus, while feature extraction
was done on the full audio files, the corresponding ASR
evaluation was carried out on a version where silence chunks
were removed. This was not seen as an issue, since the speakers,
speaking styles and utterances remained identical.

Note that the ASR models under evaluation were not trained
by me. Instead, I made use of the insertions, deletions,
substitutions and word counts of the recognition output by
calculating the Word Error Rates (WERs) myself. However, the
WERs of demographic groups may deviate from those in [5],
as they were recalculated after excluding speakers that did not
pass feature extraction.

2.8. Bias and Performance Measures

Meta-measure: The Overall Bias [31] was used to quantify the
performance of the ASR models. This measure returns a single
number representing how the model performs in overall, given
a set of speaker groups that are being compared and a bias
measure to compute the bias of a single speaker group. The
Overall Bias of an ASR system is defined as

OverallBias =
1

G
×

∑
g

Biasspkg (1)

where G is the number of speaker groups minus the reference
group. In this paper, the reference group is defined as the group
with the lowest base error rate [1, 6]
Bias Measure: The bias of a speaker group was calculated as the
difference between the base error rate of itself and the reference
group:

Biasspkg = bspkg − bmin. (2)

Base Metric: Word Error Rate (WER) was used as the base
metric (b). The WER of a speaker group is defined as

WER =
I + S +D

N
× 100% (3)

where I , S and D are respectively the total number of
insertions, substitutions and deletions, and N the total word
count of all speakers in the speaker group.

2.9. Experimental Setup

In the experiment, clustering was applied to each feature
subset and both speaking styles separately. The Word
Error Rates (WERs) of the resulting speaker groups were

calculated and used to estimate the bias of each ASR model
using the Overall Bias measure. The average Overall Bias
across the models served as an indicator of the feature sets’
effectiveness in identifying speaker groups with disparities
in ASR performance. For both speaking styles, the most
successful feature set was further analysed. In particular, key
characteristics of its resulting clusters were compared to those
of demographic groups, and the demographic distribution of the
clusters was examined.

3. Results
3.1. ASR Perfromance Disparities per Feature Subset

Evaluation of the Automatic Speech Recognition (ASR) models
using the Overall Bias revealed that the different feature sets
varied in their ability to find ASR performance disparities.
Some feature sets approached the demographic baseline, while
others were less effective. Table 3 presents the Overall Bias per
ASR model using each feature set, for read speech and Human-
Machine Interaction (HMI) separately.

For read speech, the Overall Bias resulting from each
feature subset was consistent across the ASR models. The Pitch
feature set was the least successful set for each model, followed
by Adank, All, Feng+ and finally Artic. None of the feature
sets consistently outperformed demographic groups. However,
the estimated bias for the FT-Wpr model was higher than the
baseline for the Artic feature set.

For HMI, the effectiveness of the feature sets was less
consistent across the ASR models. For example, the Adank
set lead to a higher Overall Bias than the Feng+ set for FT-
Wpr, NoAug and SpAug, but not for SpSpecAug and Whisper.
The Pitch set consistently performed the worst in terms of bias
discovery, as was the case for read speech. The Artic set
lead to the highest Overall Bias among the feature sets only
for Whisper, while scoring the second lowest for three of the
remaining ASR models. None of the feature sets outperformed
the baseline on any ASR model. However, the Adank set was
the most successful among the five sets of acoustic and prosodic
features, despite it exclusively comprising formant frequencies.

3.2. Analysis of the Artic Feature Set for Read Speech

The Word Error Rate (WER) per ASR model from JASMIN
read speech for each speaker group after clustering on the Artic
feature set is presented in Table 4. The corresponding WERs
for each demographic group can be found in Table 5.

Table 4 shows that Cluster 1 received the highest WER
among the speaker groups for each ASR model, while Cluster 2
was the best recognized. The feature variation between clusters



Table 4: %WER per ASR model for each resulting speaker
group (“Cluster”) when clustering on the Artic feature set, for
JASMIN read speech.

ASR Model Cluster

0 1 2 3 4

NoAug 33.3 61.8 27.7 47.5 60.3
SpAug 31.6 62.2 26.4 46.8 59.6
SpSpecAug 30.3 59.2 23.9 44.3 56.9
Whisper 32.8 64.3 28.8 46.2 56.0
FT-Wpr 32.2 60.6 24.4 46.6 57.7

Table 5: %WER per ASR model for each predefined
demographic speaker group (“Group”), for JASMIN read
speech.

ASR Model Group

DC DOA DT NnA NnT

NoAug 44.5 29.7 23.9 62.9 57.0
SpAug 38.6 29.0 22.6 65.1 58.5
SpSpecAug 38.0 27.5 20.7 62.3 54.3
Whisper 40.3 34.1 25.5 58.1 53.8
FT-Wpr 40.9 28.2 22.4 60.8 57.7

as well as demographic groups is visualized using boxplots in
Figure 1 using the Matplotlib library [32].

Due to the one-dimensional feature space, articulation rates
of the clusters did not overlap. Thus Cluster 1, 4, 3, 0, and 2
were the speaker groups from lowest to highest articulation rate,
respectively. This order directly corresponded with the WERs
of the clusters for every ASR model, in decreasing order.

In contrast to the clusters, demographic groups generally
overlapped in articulation rate. Table 5 shows that the ASR
recognition was worst for nonnative speakers, NnA and NnT,
among the demographic groups. While these groups had the
lowest average articulation rates, DC fully overlapped in their
ranges, despite the WERs being approximately 15% lower
for DC than for the nonnative groups. Due to this overlap
in articulation rate between demographic groups, the worst
recognized cluster contained nonnative speakers as well as
children. The full demographic composition of the clusters is
presented in Table 6.

Table 6: Number of speakers per demographic group that ended
up in each of the resulting clusters when clustering on the Artic
feature set, for JASMIN read speech.

Cluster DC DOA DT NnA NnT Total

0 28 47 29 9 9 122
1 5 1 0 9 6 21
2 6 8 31 0 1 46
3 11 11 3 12 14 51
4 21 1 0 15 23 60

Figure 1: Visualization of the speech variability of resulting
clusters when clustering on the Artic feature set, versus
predefined demographic groups, for JASMIN read speech. Each
box displays the interquartile range (IQR) of the data belonging
to that speaker group, corresponsing to the 25th to 75th
percentile, with the 50th percentile between them. The whiskers
on either side of the boxes extend to points within 1.5 IQRs of
the 25th or 75th percentile, and the circles represent remaining
data points.

3.3. Analysis of the Adank Feature Set for Human-Machine
Interaction

Table 7 presents the WER per ASR model from JASMIN
Human-Machine Interation (HMI) for each speaker group after
clustering on the Adank feature set. The corresponding WERs
for the demographic groups are shown in Table 8.

Table 7: %WER per ASR model for each resulting speaker
group (“Cluster”) when clustering on the Adank feature set, for
JASMIN Human-Machine Interaction (HMI).

ASR Model Cluster

0 1 2 3 4

NoAug 46.3 53.0 57.3 44.9 65.6
SpAug 43.7 53.2 55.9 44.5 59.7
SpSpecAug 40.6 47.7 52.0 40.4 55.6
Whisper 47.4 56.2 67.0 51.8 61.7
FT-Wpr 41.7 52.3 55.2 42.9 57.1

For four out of the five models, the worst ASR recognition
belonged to Cluster 4. However, the WER for the Whisper
model was highest for Cluster 2. The reference group, i.e., the
group with the lowest WER, differed between models. Cluster
0 served as the reference group for three models and had the
lowest average WER across the clusters.

The speech characteristics of the resulting clusters as well
as demograhic groups are visualized in Figure 2. The boxplots
corresponding to the resulting clusters generally showed higher
average formant frequencies for Cluster 4 than for the other
clusters, with an exception for F2 of /u/ and F2 of /O/. When
comparing the best recognized clusters 0 and 3 to the worst
recognized clusters 2 and 4 in terms of ASR recognition, the
pairs primarily differed in F2 of /A/, F2 of /u/ and F2 of
/O/. However, only F2 of /A/ also showed substantial variation
between demographic groups.

Table 9 presents the demographic composition of the



Figure 2: Visualization of the speech variability of resulting clusters when clustering on the Adank feature set (top), versus predefined
demographic groups (bottom), for JASMIN Human-Machine Interaction (HMI). Each box displays the interquartile range (IQR) of the
data belonging to that speaker group, corresponsing to the 25th to 75th percentile, with the 50th percentile between them. The whiskers
on either side of the boxes extend to points within 1.5 IQRs of the 25th or 75th percentile, and the circles represent remaining data
points.

Table 8: %WER per ASR model for each predefined
demographic speaker group (“Group”), for JASMIN Human-
Machine Interaction (HMI).

ASR Model Group

DC DOA DT NnA NnT

NoAug 52.0 43.5 41.7 63.2 60.8
SpAug 45.6 42.8 37.2 64.1 61.9
SpSpecAug 43.2 40.2 31.3 58.9 54.5
Whisper 54.5 50.9 40.6 73.1 59.3
FT-Wpr 43.5 43.9 37.6 58.3 59.6

clusters. It shows that Cluster 0, which received the best
ASR recognition, mainly comprised young native speakers.
Conversely, the second best recognized cluster, Cluster 3,
primarily contained native teenagers and older adults. Cluster
4, which four of the ASR models recognized the worst,
predominantly consisted of native children, despite DC being
the third best recognized demographic group (see Table 8). In
fact, Cluster 4 lead to a higher WER for the NoAug model than
the worst recognized demographic group NnT, consisting of
nonnative adults.

4. Responsible Research
In any form of research, it is crucial to consider reproducibility
and ethical implications. In this section, the reproducibility of

Table 9: Number of speakers per demographic group that ended
up in each of the resulting clusters when clustering on the Adank
feature set, for JASMIN Human-Machine Interaction (HMI).

Cluster DC DOA DT NnA NnT Total

0 40 10 29 7 6 92
1 1 11 9 12 18 51
2 17 21 7 19 22 86
3 1 25 16 5 6 53
4 12 0 2 2 1 17

the results, inclusion of the paper, and ethical implications of
the proposed approach are addressed.

4.1. Reproducibility

Due to space limitations, only the most significant results
are presented in this paper. Given the broad scope of the
proposed approach in this paper, it was infeasible to further
analyse the performances of individual clusters resulting from
the remaining feature sets. However, results can be reproduced
as the full implementation is publicly available on GitHub5.
The extracted features are not shared to prevent any reverse
engineering of the JASMIN-CGN corpus. The corpus is

5https://github.com/Kayyleigh/
Interpretable-Automatic-Bias-Discovery-in-ASR
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available on request from the Dutch Language Institute6 for
research purposes.

4.2. Inclusion

Inclusion is achieved in this paper through the use of colorblind-
friendly plots using the Seaborn Python visualization library
[33].

4.3. Ethical Considerations

The aim of this research was not to predict demographic labels
of unknown speakers. While ideas were borrowed from earlier
works that measure the fluency of native and nonnative speakers
[14, 15, 16], these papers mention definitions of fluency that do
not align well with the focus of this research. The goal of fair
ASR is to ensure all speakers are recognized equally regardless
of demographics. This reflects the fact that nonnative speech is
generally comprehensible by speakers of the Dutch language,
evidenced by the ability to transcribe their speech. Thus, it is
important to highlight that the performance measures in this
research exclusively describe the quality of the ASR systems.

5. Discussion
This study explored the effectiveness of clustering acoustic and
prosodic features in the discovery of performance disparities
in Automatic Speech Recognition (ASR). In particular, five
feature sets were compiled and each clustered into speaker
groups, which were then evaluated in terms of bias and
compared to known bias between demographic groups. The
experiment was carried out for read speech and Human-
Machine Interaction (HMI) separately. The results suggest
that certain feature sets can discover substantial performance
disparities for different ASR models. However, performance
varies across feature sets, and no relation seems to exist between
the size of a set and its performance.

The five sets were motivated by different parts of the
literature. Two single-feature sets, one comprising Pitch and
the other Articulation Rate, were chosen as these are expected
to vary between age groups and levels of nativeness [4]. Next,
two sets were compiled based on the works of Adank [17] and
Feng [4], respectively. The remaining feature set contained all
extracted features.

The Pitch set lead to the smallest disparities for both
speaking styles, which suggests pitch may be less influential for
bias than expected. However, note that pitch is primarily known
to vary across ages, while the highest WERs for JASMIN data
belonged to nonnative speakers, of which no young children
were present in the data.

Conversely, the Artic set lead to substantial bias for read
speech for each ASR model. In fact, the FT-Wpr model received
a higher Overall Bias when using the clusters than when using
demographic groups. When visualizing the articulation rates,
the Word Error Rate (WER) of resulting clusters were found
to decrease as the articulation rates increased (see Figure 1).
Known ASR performance for demographic groups [5] were
highest for nonnative groups. The findings are in line with
this, as these groups exhibited the lowest average articulation
rate among demographic groups. However, native children
showed substantial variation in articulation rate, in line with
findings from Lee et al. [12]. As a result, children were spread

6https://taalmaterialen.ivdnt.org/download/
tstc-jasmin-spraakcorpus/

across clusters of varying ASR performance, including the
worst recognized cluster. This suggests that more meaningful
disparities may be discovered between ages when further
splitting the DC speaker group.

A surprising finding was that the Artic set generally
performed worse than the other sets for HMI. Instead,
the most successful features set was Adank, exclusively
comprising formant frequency features. Interestingly, the
highest WER resulting from this feature set belonged to a
cluster that primarily consisted of native children. This
contrasts with previous research [5], where ASR systems
consistently recognized nonnative speaker groups more poorly
than native children. Moreover, one of the best recognized
clusters, Cluster 0, mainly comprised young native speakers as
well. This further suggests that significant ASR performance
disparities exist within demographic groups.

The findings from successful feature sets for read speech
and HMI collectively imply that clustering on acoustic and
prosodic features can lead to poorly recognized groups of
speakers that do not necessarily align with demographics.
However, for the two feature sets discussed in this paper, the
clusters with the highest WERs were also the smallest clusters.
Furthermore, considerable variation could be observed between
cluster sizes in general, and no reference clusters were identified
with a lower WER than the reference demographic group DT.

The main benefit of using acoustic and prosodic features
instead of Machine Learning-based speaker embeddings is that
the key characteristics of poorly recognized speaker groups
can be better interpreted. However, note that the ability of a
feature set to discover ASR performance disparities does not
necessarily mean the features cause bias; they may instead be an
effective proxy for demographic information. Nevertheless, the
proposed approach enables interpretable ASR bias discovery
without the need for demographic metadata.

5.1. Limitations

The proposed approach has several limitations. First and
foremost, formant frequencies were extracted using the same
Praat configuration for each speaker, despite this being
discouraged due to anatomical differences between genders and
age groups. Consequently, the accuracy of these measurements
may vary between speakers. Additionally, the present approach
still requires an expected number of clusters. When the
approach is applied for bias discovery without a direct
comparison to known disparities between demographic groups,
the usefulness of the resulting clusters is presumably dependent
on an expert’s interpretation, which is unknown beforehand.
Moreover, this interpreted meaning of the resulting clusters is
likely to differ across datasets and speaking styles. Finally, no
quantitative assessment of the interpretability of resulting bias
was carried out due to time constraints.

A limitation of the study is that the results only hold
for the five ASR models under evaluation. Additionally, the
feature sets in this paper were exclusively designed for the
Dutch language. Finally, the approach may benefit from vowel
normalization [9], which was not applied in this study due to
multiple vowels being absent in a considerable fraction of HMI
data.

5.2. Future Research

Further directions for research include investigating how
extracted features from speakers with anatomical differences
can be obtained and compared more fairly in terms of
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configurations as well as vowel normalization techniques.
Furthermore, the approach can be extended with a quantitative
assessment of cluster interpretability. The methodology may
be improved by adding features that capture rhythm and vowel
space [34], as well as additional prosodic features [14, 15]
and word choice. Finally, future directions include comparing
alternative scaling methods and clustering algorithms, as well
as implementing a systematic approach for feature subset
selection.

6. Conclusions
This study investigated the effectiveness of acoustic and
prosodic features in discovering interpretable performance
disparities Automatic Speech Recognition (ASR) without
the need for demographic metadata. Five linguistically-
motivated feature sets were compared. The study shows
that certain feature sets successfully lead to clusters with
varying ASR recognition. In particular, when clustering
exclusively on articulation rate, larger disparities are found
than for demographic groups for read speech. For Human-
Machine Interaction (HMI), none of the sets outperformed the
demographic baseline. However, the most successful of the
five feature sets comprised only formant frequencies. For
both speaking styles, resulting clusters of the best feature sets
consisted of diverse demographics, indicating a potential to find
new ASR performance disparities that may not exist between
demographic groups. Interestingly, an exception was the
worst-recognized cluster for HMI, which primarily comprised
children despite previous studies finding that the nonnative
speaker groups exhibit larger Word Error Rates (WERs) than
the native groups.

This paper provides a first report on interpretable fairness
in ASR without the need for demographic metadata. Future
research should focus on improving the approach by adding
new features and exploring alternative methods. By doing so,
an improved approach may be found that, given an appropriate
language-specific feature space, has the potential to outperform
demographic groups in the discovery of bias in ASR systems
for any spoken language.
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