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Forests play akey partinthe water cycle, soboth planting and removing
forests can affect streamflow. Inarecent Article’, Evaristo and McDon-
nellused a gradient-boosted-tree model to conclude that streamflow
response to forest removalis predominantly controlled by the potential
water storage in the landscape, and that removing the world’s forests
would contribute an additional 34,098 km? yr™ to streamflow world-
wide, nearly doubling global river flow. Here we report several prob-
lems with Evaristo and McDonnell’s' database, their model, and the
extrapolation of their results to the continental and global scale. The
mainresults of the paper' remain unsubstantiated, because they rely on
adatabase with multiple errors and amodel that fails validation tests.

Database problems

We spot-checked the database underlying Evaristo and McDonnell’s
analysis' by comparing individual entries to the original cited refer-
ences. Roughly half of these spot checks revealed substantial errorsin
the calculated changesin water yields, or errorsin the classification of
individual studies as forest planting versus forest removal experiments.
Here we describe four examples. (1) The Valtorto catchment in Portugal
is classified as a forest clearing experiment' although the catchment was
never forested, but rather covered by 50-cm-tall heath®. The reported
post-clearing streamflow increase of 363.6% (ref.") is also inconsistent
with table 3 of ref. 2, which reports that average streamflow increased
by 150%, from 1.0 m® per day to 2.5 m®per day. (2) The database reports
that forest clearing at the Lemon catchment in Australia increased
streamflow by 631.8% (ref."), but from table 1 of ref.? we calculate that
the average pre- and post-clearing streamflows were 18.0 mmyr"and
27.9 mmyrrespectively, implying that streamflow increased by only
55%. (3) Brigalow catchments C2 and C3, which each appear twice in
the database, are classified as forest planting experiments’ although
neither was planted with forest: C2 was planted withsorghum and wheat
and C3 was planted with buffel grass for pasture*”. (4) Several forest
conversion experiments, in which forests were cleared and replanted
with other vegetation (for example, references 74,114,130 and 163 in
ref.'), are reported in the database as showing, counterintuitively, large
streamflow increases caused by forest planting'. However, the reported
changesinstreamflow were calculated relative to intact forest control
plots, not cleared land, so they mostly reflect the effects of clearing
the existing forest rather than the effects of planting. We suspect that
this misattribution of forest clearing effects to forest planting may
underlie the paper’s surprising finding (see Fig. 2 of ref. ' and associ-
ated discussion) that forest planting appears to increase streamflow
by 100% or more at many sites, with the largest increases at sites with

the highest evapotranspiration rates, a pattern that would normally
arise from forest clearing instead.

Model overfitting and validation failure

Gradient-boosted regressiontrees are data-hungry, and although Evar-
isto and McDonnell' compiled every paired watershed study that they
couldfind, the resulting databases of 161 forest clearing experiments
and 90 forest planting experiments are much too small to estimate
their seven-variable model reliably. We checked the model codes that
Evaristo and McDonnell provided with their paper (see the code avail-
ability statement of ref.?) and found that the boosted tree algorithm
fits 200 free parameters (not counting the dozens of additional free
parameters that define the tree’s branch points), suggesting substan-
tial overfitting. To test how this overfitting might affect the model’s
predictions, we split the forest removal and planting databases into
training sets (80% of the data) and test sets (the remaining 20% of the
data). To balance the distributions of the variables between the train-
ing and test sets, we used stratified random sampling; we also used
un-stratified random sampling asamore stringent test. We thenre-ran
the boosted-tree analysis, using the same data, the same platform
(JMP, the SAS Institute), and the same algorithm options that Evaristo
and McDonnell' used, for 300 of these random splits of the data, both
with and without ‘early stopping’ (in which the fitting algorithm stops
whenever the next layer would reduce the R?).

The results in Fig. 1show that the model fails these validation tests.
If the model were not overfitted, the fits to the test data (as measured
by the test R? on the vertical axis) would be similar to the fits to the
training data (as measured by the training R on the horizontal axis),
and the dots would lie close to the 1:1line. Instead, many of the dots
lie far below the 1:1line, and many test R? values even lie below zero,
indicating model predictions that are worse than random guessing.
Figure 1thus shows that the modelis overfitted and makes unreliable
predictions (because it is too flexible, and thus has been ‘fitted to the
noise’ in the training data). This result holds whether one uses ‘early
stopping’ or not, and both stratified and un-stratified validation tests
yield broadly similar results.

Althoughindividual randomizations canyield test R*values that are
similar to the training R? (or even higher), one should not draw conclu-
sions fromsuch anomalies. Model performanceis better reflectedin the
medians of the training and test R? values across many randomization
trials (Table 1). Table 1 confirms quantitatively what Fig. 1 shows visu-
ally: in each case, the median test R is much smaller than the median
training R?, and many test R? values are below zero.
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Fig.1|Split-sample validation tests of gradient-boosted-tree modelfitted to
forestclearing and planting data. a, b, Modelfitted to forest clearing data
withand without early stopping; ¢, d, model fitted to forest planting datawith
and withoutearly stopping. The source datawere randomly splitinto300
trainingand test setsin 80/20 ratios, as described in the text. If the model were

Allof the paper’s' main results are based on the boosted-tree model,
sothe validation failure documented here invalidates the paper’s con-
clusions. The other machine learning methods in the paper have similar
validation issues, but we will not explore them in detail because the
paper’s conclusions do not depend on them.

Exaggerated importance of potential storage

The finding' that streamflow response to forest removal was primarily
controlled, not by climate, but by total potential water storage in the
landscape, was puzzling to us for two reasons. First, it was difficult to
imagine how total storage, much of which may lie below the rooting

Table 1| Summary of split-sample validation test results

Model and split-sample test Median Median Fraction of
performed (80/20 splitinallcases) trainingR?  testR? testR?<0
Forestremoval model

Stratified, with early stopping 0.449 0.108 31%
Stratified, without early stopping 0.605 0.096 36%
Unstratified, with early stopping 0.458 0.053 34%
Unstratified, without early stopping 0.608 0.057 40%
Forest planting model

Stratified, with early stopping 0.827 0.455 13%
Stratified, without early stopping 0.852 0.486 10%
Unstratified, with early stopping 0.826 0.475 16%
Unstratified, without early stopping  0.844 0.474 17%

Test results are shown for the boosted-tree model fitted to forest removal and forest planting
data. ‘Fraction of test R? < 0’ indicates the percentage of tests in which model predictions
were worse than random guessing.
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notoverfitted, the R?statistics obtained from the training and test sets would
be similar toone another, and thus the dots would lie close to the 1:1lines.
Instead, the test R?statistics are generally much smaller than the training R*
values. Points with test R? values less than-0.5, which indicate that model
predictions were much worse than random guessing, are not shown.

zone of trees, could be the major control on the hydrological effects of
treeremoval. Second, given that forest planting and forest removal both
alter the same variable (forest cover), butin opposite directions, it was
hardtoreconcile the paper’s two main findings": that potential storage
isthe dominant control on streamflow response to forest clearing (but
not planting), and that actual evapotranspiration (AET) is the dominant
control on streamflow response to forest planting (but not clearing).
Closer examination reveals that the apparentimportance of poten-
tial storage relies on one extreme data point (the Lemon catchment,
Australia), which has a potential storage of 15 m, more than twice the
next-highest value in the dataset. If we remove this one data point,
potential storage disappears as the most important factor (Table 2),
and is replaced by potential evapotranspiration (PET). This one data
pointissoinfluential because Evaristo and McDonnell’s analysis' uses
an ‘independent uniform’ variable importance profiler. This profiler
isintended for use where the likely values of each variable will be uni-
formly distributed over the range of the data®, which is inconsistent
with the strongly skewed distributions of potential storage in Evaristo
and McDonnell’s paired watershed dataset (Fig. 2a) and in their global
catchment database (Fig. 2b). Potential storages exceeding 7.5m com-
prise only 0.6% of Evaristo and McDonnell’s paired watershed dataset
(light blue bars, Fig. 2a) and 6% of their global catchment database
(light blue bars, Fig. 2b), but 50% of the distribution used to calculate
the influence of potential storage, exaggerating itsimportance.
Although Evaristo and McDonnell fully documented their choice of
this “independent uniform” profiler’, other choices, more consistent
with the available data, lead to a different conclusion. For example, if
weinstead use aprofiling method that takesinto account the actual dis-
tributions of all of the variables (“independent resampled” profiling),
PET becomes the mostimportantvariable, and potential storage drops
tofourth place (Table 2). And if the profiling method also takes account
of the correlations among the variables, in addition to their actual
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Table 2 | Relative variable importance using different profilers

Profiling method and Potential Runoff Drainage Potential Actual evapotran- Rootzone Permeability
treatment of Lemon evapotran- coefficient area storage spiration storage

catchment spiration

Independent uniform

Lemon included 0.317(2) 0.098 (3) 0.036 (5) 0.508(1) 0.041(4) 0.007 (6) 0.000 (7)
Lemon omitted 0.500(1) 0.056 (4) 0.031(5) 0.299 (2) 0179 (3) 0.001(6) 0.001(6)
Independent resampled

Lemon included 0.642(1) 0.114(3) 0.165 (2) 0.094 (4) 0.030(5) 0.005 (6) 0.000 (7)
Lemon omitted 0.710(1) 0.077 (4) 0.134(2) 0.091(3) 0.050 (5) 0.001(6) 0.003(7)
Dependentresampled

Lemon included 0.440(1) 0.189(2) 0171(3) 0.137(5) 0.109 (6) 0.155 (4) 0.095 (7)
Lemon omitted 0.433(1) 0.180(2) 0174 (3) 0129 (5) 0.102 (6) 0.161(4) 0.098(7)

Relative importance scores for each of the seven variables in Evaristo and McDonnell's forest removal model' are shown for three different profiling methods, and for including and excluding
the Lemon catchment (see text). Ranks are shown in parentheses. The most important variable in each case is highlighted in bold.

distributions (“dependentresampled” profiling), the mostimportant
variable is again PET, and potential storage drops to fifth place out of
seven variables (regardless of whether we include or exclude the Lemon
catchment; see Table 2).

Exaggerated global streamflow implications

Toestimate the potentialimpact of forest clearing onglobal streamflow
(tablelofref."), Evaristo and McDonnell first applied their boosted-tree
modeltoadatabase 0f 442,319 catchments for which the required seven
inputvariables are available (whether or not they are actually forested).
Evaristo and McDonnell then multiplied the median of the modelled
percentage change in streamflow for each continent’s catchments by
the average continental river flow (see Table 3). Because less than 30%
of Earth’s land area is forested’, however, the potential percentage
increase in streamflow from forest clearing should not be applied to
the entire continental runoff; that is, one cannot clear forests from
the 70% of Earth’s land surface where no forests exist. Evaristo and
McDonnell’s calculation' implicitly assumes that Earth’s entire land-
mass is forested, and leads to unrealistic results. For example, under
Evaristo and McDonnell’s median scenario’, their table 1implies that
total post-clearing runoff in Asia would be 95% of total Asian precipi-
tation® (32,140 km? yr™; Table 3), a runoff ratio that is rarely observed
eveninurban areas. For Australia and Oceania, the results in Evaristo
and McDonnell’s' table1violate conservation of mass, with total post-
clearingrunoff (1,970 km>yr™+5,412km®yr*=7,382km>yr™) exceeding
total precipitation® (6,405 km?yr™).

Distributed over the roughly 40 million square kilometres of the
Earth’s surface that is actually forested’, Evaristo and McDonnell’s
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Fig.2|Distributions of potential storage, compared to the uniform
distribution used to estimate itsinfluencein Evaristoand McDonnell’s
analysis’. a, Distribution of potential storage in Evaristo and McDonnell’s
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claimed global streamflow increase' of 34,098 km? yr! implies an
average of 850 mm yr™ more streamflow from cleared forest lands.
This value exceeds the streamflow increases that were measured in
every one of the 95 paired watershed studies reviewed by Stednick’®,
and exceeds their average by a factor of five.

Back-of-the-envelope calculations suggest different conclusions. Glob-
ally, evapotranspiration from forestsis roughly 250 mmyrgreater than
from croplands or grasslands'®, and multiplying this difference by the
40 millionsquare kilometres of global forests’ yields arough estimate of
10,000 km?*yr™, less than one-third of Evaristo and McDonnell’s' result.
Even this may be an overestimate, because the lower evapotranspiration
rates of grasslands partly reflect the fact that they often occur in drier
climates; thus the difference between forest and grassland evapotran-
spirationmay exaggerate the effects of converting forests to grasslands.

Concluding remarks

Evaristoand McDonnell are valued colleagues of ours, and we greatly appre-
ciatetheir transparencyinmaking their dataand codes available, without
whichtheissues described here would have beenmuch harder todiagnose.
We agree with them that streamflow response to forest management is
animportant issue that deserves a comprehensive analysis, including
subsurface catchment characteristics as potential explanatory variables.

Readers should also keep in mind that this is not a purely academic
exercise. How much, and under what conditions, forests should be
clearedisanimportant policy question with wide-ranging consequences
for economies, societies and ecosystems. In that regard, we are con-
cerned that the conclusion that “forest removal can lead to increases
in streamflow that are around 3.4 times greater than the mean annual
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dataset of 161 paired watershed studies. b, Distribution of potential storage in
Evaristo and McDonnell’s database of over 400,000 catchments worldwide.



Table 3 | Modelled effects of forest cover change on continental runoff

Region Totalriver Changeinrunoffinresponseto Totalriverrunoff Total Change inrunoffinresponseto Median water yield in
runoff forest-cover change® (km®yr?") after removal precipitation forest-cover change (%)" complete catchment
(km3yr')? (km3yr')® (km3yr?)° dataset (%)°
Planting Removal Planting Removal Planting Removal
Africa 4,320 -605(1,944) 8,986(5,616) 13,306 20,780 -14.0(45.0) 208.0(130.0) -14(45) 208(130)
Asia 14,550 -1,979(5,835) 16,062(25,783) 30,612 32,140 -13.6(40.1) 110.4(177.2) -14(40) 10(177)
Australia and 1,970 -412(725) 5,412(4,962) 7,382 6,405 -20.9(36.8) 274.7(251.9) -21(36) 275(252)
Oceania
Europe 3,240 -875(1102) 813(1,426) 4,053 7165 -27.0(34.0) 25.1(44.0) -27(34) 25(44)
North and Central 6,200 -806(2,034)  918(2,102) 7118 13,910 -13.0(32.8) 14.8(33.9) -13(33) 15(34)
America
South America 10,420 0(3,751) 1,908(17559) 12,328 28,355 0.0(36.0) 18.3(168.5) 0(36) 18(168)
Totals 40,700 -4,676 34,098 74,799 109,755

Values with parentheses are medians (and interquartile ranges).

From table 1of ref. .

°Sum of total river runoff and median change due to removal.

“Total precipitation from ref. &, which is also the original source of the total river runoff values.
9Median and IQR of runoff changes, as percentage of total river runoff.

°Median and IQR of water yield predictions (each rounded to the nearest percentage point in the published database) for Evaristo and McDonnell’s 442,319 ‘complete’ catchments. These agree
within roundoff error with the percentages calculated by dividing the change in runoff by the total runoff for each continent. This agreement demonstrates that the changes in runoff shown in
table 1 of ref. " were calculated by multiplying the median (and IQR) of the percentage water yield predictions by the total river runoff, rather than by the runoff from forested areas.

»ls

runoff ofthe Amazon River”is overstated and could be misinterpreted.
The Amazon flows continuously, but the streamflow benefits of forest
clearing are transient, typically lasting only afew years, or at most dec-
ades, after felling". One must also keep in mind that the water transpired
by vegetationis animportant source of precipitation farther downwind,
estimated to account for roughly 40% of continental precipitation®.
Thus, sustained large-scale clearing of forests would predictably lead
to precipitation decreases and drying of continental interiors, although
the precise magnitude of this effect remains difficult to constrain.

Data availability

Allof the dataanalysed here are available as described in the data availabil-
ityand code availability statements of ref., or from the cited references.
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Planting and removal of forest affect average streamflow (also referred
to as water yield), but there is ongoing debate as to what extent this
long-term difference between precipitation and evapotranspirationis
modulated by local conditions. Arecent paper by Evaristoand McDon-
nell'introduces a conceptual vegetation-to-bedrock model to explain
variability inreported streamflow responses to changesin forest cover
based on ananalysis of seven factors that describe climate, soil proper-
tiesand catchment size. Their analysis excludes well known controls—
such as the percentage of catchment area under change?, forest type
and time since afforestation—that we show here to be important. By
excluding these primary controls, Evaristo and McDonnell risk attribut-
ing water yield response to co-varying secondary controls rather than
to the underlying causes.

Weiillustrate the importance of the record length (or time since
afforestation) using unique longterm measurements of water yield
made under controlled conditions. At Castricumin The Netherlands,
and St Arnold in Germany, two large lysimeters were planted with
coniferous and deciduous trees in the1940s and 1960s, respectively,
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Fig.1|Impactofforest age on water yield response to forest planting. Data
points are from coniferous (triangles) and deciduous (circles) lysimeters at
Castricum (green) and St Arnold (red/orange). Dashed curvesindicate
exponential fitswitha characteristic timescale rof 15years, with a10-year shift
assumed for the deciduous lysimeterin St Arnold. Letters A, Band Cindicate
record length (or forest age) domains used in Fig. 2. The background histogram
shows thedistribution of the record length of the forest planting studies used
by Evaristo and McDonnell. Note that most studies (82%) have arecord length
oflessthan30years,and strong changesin water yield response are observed
inthis period. This figure and Fig. 2 were generated by Matlab 2015b (http://nl.
mathworks.com/products/matlab/).

while reference conditions (bare soil and grassland, respectively)
were maintained in an additional lysimeter. At both stations, strong,
consistent and continuing declines in average water yield response
were observed over averaging periods that ranged from several years
up tothe whole experiment duration (Fig. 1), coinciding with asteady
increase in tree height and biomass®* and in spite of possible limita-
tionsinrooting depth. The declines follow an exponential decay (with
acoefficient of determination of 0.91or larger) with an e-folding time
rofl5yearsand astronger water yield response for coniferous forest
thanfor deciduous forest. Asaresult, each individual lysimeter already
covers arange in water yield response of 30% up to 70%, comparable
to the total range reported by Evaristo and McDonnell across differ-
ent watersheds'. Similar response times were found for afforestation
experiments in deciduous broadleaf forest in North Carolina in the
USA’and at the German lysimeter station of Britz-Eberswalde®, while
analysis of longterm streamflow datain Sweden revealed similar strong
effects of forest biomass and age’.

The record length of the studies used by Evaristo and McDonnell*
varies considerably from 1year to 75years, butis mostly lower than the
timescale of water yield response to forest growth of 15 years (Fig. 1).
Therefore, it is likely that the values reported in studies with record
lengths of up to once or even twice the e-folding time (15-30 years) are
infact highly sensitive to the length of their record. The mixing of data
with variablerecordlengths could explain why Evaristo and McDonnell
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Fig.2|Global tree canopy cover change distribution and record length of
wateryield response to forest planting. Points/circlesindicate locations of
forest planting studies used by Evaristo and McDonnell', with the size
reflecting the record length according to classes A, Band Casindicatedin
Fig.1. Thebackground map shows changesintree canopy cover over the period
1982-2016 obtained from arecent analysis of satellite data®.
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find actual evapotranspiration (AET) to be the factor explaining most of
the magnitude, rather than timing, of water yield response to planting.
When the location of stations with sufficient record length are added
to a global map of changes in forest cover over the recent decades®,
itbecomes clear that accurate observations of longterm impacts of
forest planting on water yield are concentrated in only a few regions.
Strikingly, the forest cover change hotspots are observational blind
spots for water cycleimpacts. Given the potential of large-scale affor-
estation to offset carbon emissions®, a robust understanding of the
hydrologicalimpacts of current and future forest management is more
important than ever.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
Five-year-average water yield observations used in the analysis are
provided in Extended Data Table 1.
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Matters arising

Extended Data Table 1| Observed water yield at long-term lysimeter stations

Site Period P Reference  Broadleaf  Deciduous
St. Arnold 1966-1970 932.04 496.4 484.02 441.2
St. Arnold 1971-1975 677.28 357.24 340.44 191.8
St. Arnold 1976-1980 676.94 346.38 271.86 127.54
St. Arnold 1981-1985 773.34 439.62 334.94 198.8
St. Arnold 1986-1990 791.16 442.96 252.58 173.78
St. Arnold 1991-1995 872.9 530.08 328.16 276.72
St. Arnold 1996-2000 813.24 376.56 181.38 140.42
St. Arnold 2001-2005 835.98 391.74 153.74 171.48
St. Arnold 2006-2010 799.86 333.92 133.68 141.1
St. Arnold 2011-2013 703.43 253.57 130.6 NaN
Castricum 1941-1945 790.2 590.4 533.2 540.8
Castricum 1946-1950 791.4 596.4 433.4 351
Castricum 1951-1955 8354 631.4 374 208.2
Castricum 1956-1960 857.6 664.4 339.4 190.6
Castricum 1961-1965 873.4 663.6 367 .4 204
Castricum 1966-1970 910.8 700.2 366 175.6
Castricum 1971-1975 762.2 546 230.6 87.75
Castricum 1976-1980 783.6 597 270 122.8
Castricum 1981-1985 891.8 682 341.2 164.4
Castricum 1986-1990 848.8 657.2 361.2 118.4
Castricum 1991-1995 933.8 735.6 378.6 147.2
Castricum 1996-1997 744 550 145.5 2

E18 | Nature | Vol 578 | 13 February 2020

Precipitation data are shown as reference. The reference lysimeter is grassland at St Arnold and bare soil at Castricum. Data after 2007 were not considered for the lysimeter with deciduous
forest at St Arnold owing to storm damage caused by cyclone Kyrill. All units are millimetres per year.
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