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Embedded Hierarchical MPC for Autonomous
Navigation

Dennis Benders

Robert Babuska”, Javier Alonso-Mora

Abstract—To efficiently deploy robotic systems in society, mo-
bile robots must move autonomously and safely through complex
environments. Nonlinear model predictive control (MPC) methods
provide a natural way to find a dynamically feasible trajectory
through the environment without colliding with nearby obstacles.
However, the limited computation power available on typical em-
bedded robotic systems, such as quadrotors, poses a challenge to
running MPC in real time, including its most expensive tasks:
constraints generation and optimization. To address this problem,
we propose a novel hierarchical MPC scheme that consists of a
planning and a tracking layer. The planner constructs a trajectory
with a long prediction horizon at a slow rate, while the tracker
ensures trajectory tracking at a relatively fast rate. We prove that
the proposed framework avoids collisions and is recursively feasi-
ble. Furthermore, we demonstrate its effectiveness in simulations
and lab experiments with a quadrotor that needs to reach a goal
position in a complex static environment. The code is efficiently
implemented on the quadrotor’s embedded computer to ensure
real-time feasibility. Compared to a state-of-the-art single-layer
MPC formulation, this allows us to increase the planning horizon
by a factor of 5, which results in significantly better performance.

Index Terms—Embedded autonomous mobile robots, hierarch-
ical model predictive control (MPC), obstacle avoidance, real-time
motion planning and tracking.

I. INTRODUCTION

UTONOMOUS mobile robots play an increasingly im-
portant role in our society [1]. The application domains
are widespread, including self-driving cars [2] and environment
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exploration in search and rescue operations [3]. To successfully
perform its task in such applications, a robot typically needs to
navigate through a complex environment and reach a goal [4],
[5]. This requires solving the motion planning and control
problem: the robot needs to plan a smooth, collision-free, and
dynamically feasible trajectory to avoid unnecessary braking
and remain safe.

A natural way to solve this problem is to leverage nonlinear
model predictive control (MPC) [6]. MPC is an effective method
that, based on a nonlinear system model and an online observed
environment, can optimize for a smooth, dynamically feasible,
and collision-free trajectory. Using MPC, one can incorporate
model, actuator, system, and obstacle avoidance constraints in
a straightforward way, which, if constructed properly, provides
safety guarantees of the closed-loop system [7], [8], [9].

A common approach is to use a single-layer MPC (SMPC)
scheme that executes trajectory planning and tracking as a single
optimization problem [7], [8], [9], [10], [11], [12], [13]. How-
ever, the main drawback of this approach is the time to solve the
problem, which increases with increasing prediction horizon (for
long-term predictions) and decreasing sampling times (for fast
feedback), meaning that the user has to make a tradeoff between
long-term planning and accurate tracking. This tradeoff leads
to suboptimal solutions, especially on mobile robots that carry
embedded hardware with limited computing power.

To overcome this problem, recent works consider decoupling
the planning and tracking tasks in the form of a hierarchical MPC
(HMPC) scheme, where a planning MPC (PMPC) computes a
long-term trajectory, which is tracked by a fast tracking MPC
(TMPC) [14], [15], [16], [17], [18], [19]. In HMPC, the PMPC
must generate a dynamically feasible trajectory that the TMPC
is able to track. Although necessary for reliable operation, some
of the mentioned works do not consider the codesign of PMPC
and TMPC, i.e., designing the PMPC based on the tracking capa-
bilities of the TMPC. Furthermore, to ensure runtime feasibility,
these works either consider linearizing the nonlinear model or
optimizing a plan from a predefined set of motion primitives,
thereby limiting the maneuverability of the nonlinear system.

To address both problems, we propose a novel HMPC frame-
work. In this framework, PMPC and TMPC use the same
nonlinear robot model but are sampled at different rates. This
allows planning a dynamically feasible trajectory far ahead and
tracking it accurately (see Fig. 1). The TMPC and PMPC are
codesigned so that we can formally prove collision avoidance
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Fig. 1. Closed-loop trajectory of (a) baseline SMPC scheme and (b) proposed
HMPC scheme. Whereas SMPC solves the planning and tracking tasks in a
single-layer formulation, HMPC decouples the tasks using a PMPC and a TMPC
that use the same nonlinear model but run at different frequencies. SMPC uses
the same nonlinear model as PMPC and TMPC and is sampled at the same rate as
TMPC to ensure reliable operation. Both schemes fly from start to goal position
and avoid the obstacles. Compared to SMPC, HMPC has a significantly longer
planning horizon, given the limited computational resources on the onboard
computer, and does not have to balance planning and tracking tasks. Therefore,
HMPC reaches the goal faster, is less sensitive to model mismatch, and maintains
altitude better than SMPC.

and recursive feasibility for the overall HMPC framework in
static environments. Furthermore, we show the runtime feasi-
bility of the framework on embedded hardware.

A. Related Work

The problem of planning and tracking a trajectory for a
mobile robot has been addressed in the literature using different
methods. Popular planning methods include reactive [20], [21],
sampling-based [22], optimization-based [23], or a combination
of sampling and optimization-based [24] methods. The planner
output can take various forms of plans, including paths [25],
splines [26], and time-parameterized kinodynamic trajecto-
ries [23]. A general overview of motion planning methods can
be found in [2], [27], and [28].

Depending on the type of plan, various tracking methods
might be preferred. An overview of trajectory tracking methods
onroad and aerial vehicles is given in [29] and [30], respectively.
Popular methods to design tracking controllers are proportional-
integral-derivative [31], linear-quadratic regulator [32], sum-of-
squares (SOS) [33], and MPC [16].

Most of the methods above focus on either the planning or the
tracking task and do not consider the tracker capabilities in the
planner. Consequently, they cannot guarantee the satisfaction of
input and state constraints for general nonlinear robotic systems.
Therefore, we consider works describing the planner and tracker
codesign in the remainder of this section. We first discuss general
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planner-tracker schemes that do not use MPC in both the planner
and tracker. These schemes can be separated into approaches
that perform planning offline and online. Afterward, we focus
on existing HMPC approaches.

1) Planning Offfine: Offline planning is useful in static sce-
narios such as car racing, [34] quadrotor racing [35], and indus-
trial ground robot applications [36].

In the case of racing, there is usually no codesign of planner
and tracker, and the assumption is that the planner and tracker are
designed suitably and that the tracker is sampled at a sufficiently
high frequency that it can accurately track the plan. Recent
MPC schemes with tracking guarantees can be found in [37] and
[38]. However, ensuring recursive feasibility requires restrictive
terminal equality constraints.

Lietal. [36] showed the performance of a hierarchical scheme
in which a trajectory is planned and the velocity is smoothed
offline, and the plan is tracked with MPC online on an industrial
autonomous ground vehicle.

It should be noted that a significant number of works in the
offline planning field show embedded hardware results since
it is easier to obtain runtime feasibility for these algorithms
compared to online planning methods. However, they can only
be applied to solve a predefined task in a known environment.

2) Planning Online: Online planning is relevant in scenar-
ios where the perceived environment information of the robot
changes during runtime. The main challenges of online planning
methods are ensuring runtime feasibility and constructing a
plan such that the closed-loop system avoids collisions despite
deviating from the plan. Three relevant approaches to quan-
tify this deviation are Lyapunov-based, hamilton-Jacobi (HJ)
reachability-based, and contraction-based methods.

Common Lyapunov-based methods design funnels around
offline-designed motion primitives [39], [40] from which the
composable ones are selected during runtime [41]. The dis-
advantage is that the robot is limited to the set of motion
primitives, which can lead to conservative plans. This problem
is addressed in recent works using parameterized funnels [42] or
a combination of sampling and invariant set analysis [43]. Other
relevant Lyapunov-based methods include explicit reference
governors [44] and control barrier functions [45], [46], [47].

One of the possible applications of HJ reachability-based
methods is to derive a tracking error bound (TEB) between a
low-fidelity planning and high-fidelity tracking model in order to
reduce planning computation time [14], [48]. However, the TEB
is computationally expensive and can be overly conservative. To
address these problems, Althoff et al. [49] reduced computation
time by linearizing around operating points and constructs corre-
sponding zonotopic reachable sets, and Fridovich-Keil et al. [50]
reduced conservatism by switching between a nonconservative
“slow” plan and a conservative “fast” plan.

Contraction-based methods are based on contraction theory,
which concludes about the convergence of two trajectories, the
planned and closed-loop trajectories, based on the evolution of
two infinitesimally close trajectories [51]. The approach in [52]
leverages contraction theory and SOS programming to generate
a control contraction metric controller with a corresponding
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funnel around the trajectory but suffers from expensive com-
putation time, both offline and online, and a conservative plan.
The method proposed in [53] combines the approaches in [52]
and [48] to reduce offline computations compared to [48] and
online planning time compared to [52].

3) Hierarchical MPC: Similar to general planner-tracker
methods, HMPC schemes also suffer from long planning com-
putation times and propose similar solutions: using a sim-
pler model or optimizing from a predefined set of motion
primitives.

Following a similar idea to [48], Falcone et al. [14] used a
low-fidelity nonlinear PMPC model and a high-fidelity linear
time-varying TMPC from [54]. Other works leverage a linear
PMPC model to reduce computation time. For example, Ibrahim
et al. [18] showed how to efficiently use a linear mixed-integer
PMPC and nonlinear TMPC to cover an area with a quadrotor
in simulation.

Optimizing based on a set of motion primitives can be done via
mixed-integer programming. This approach was taken in [15],
demonstrating results in simulation and on a real passenger car
driving on a slippery surface.

Other approaches combine a linear model and a set of motion
primitives. One of these works is [16], in which the authors
implement a runtime feasible HMPC scheme on small race cars
by linearizing the nonlinear dynamics around the previously
optimal trajectory and selecting trajectories from a predefined
set of motion primitives in the PMPC. Another work is [17], in
which simulation results are shown of a PMPC optimizing from
a set of motion primitives and aggressive modes, and a TMPC
being a tube-based formulation.

To avoid limited maneuverability, Kogel et al. [19] proposed
a mixed-integer PMPC formulation that explicitly considers the
distance to obstacles based on the aggressiveness mode and
a TMPC being a cyclic horizon MPC. Quadrotor simulation
results demonstrate that the method can safely fly from start
to goal in a known static environment. However, the PMPC
computation time is already at its limit for real-time feasibility
while only using a linear model, and it was not implemented on
embedded hardware.

In conclusion, designing an HMPC that computes a plan using
the nonlinear robot dynamics online and accurately tracks it
in real time on a real robot with limited computation power is
challenging. The methods above solve this problem by reducing
the model complexity or optimizing a plan using a set of prede-
fined motion primitives. In contrast, our method uses the same
nonlinear model in both MPC layers and guarantees tracking of
the planned trajectory, similar to the idea of decoupling PMPC
and TMPC while maintaining recursive feasibility presented
in [55]. Leveraging recently developed MPC tracking [56] that
guarantees computationally efficient tracking performance and
recursive feasibility, we propose an HMPC framework for a
mobile robot navigating in a static environment. The framework
ensures collision avoidance and recursive feasibility, thereby
taking an important step toward closing the gap between real-
world mobile robot deployment and theoretical MPC feasibility
and tracking guarantees.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

B. Contributions

The main contribution of this article is a novel HMPC frame-
work to enable embedded motion planning and tracking on a
mobile robot. In particular, we propose the following:

1) a combined design methodology for PMPC and TMPC
leveraging the same nonlinear model, in which the PMPC
constructs adynamically feasible trajectory that the TMPC
is guaranteed to track by tightening the constraints in ac-
cordance with the offline terminal ingredients design of the
TMPC. The proposed PMPC can solve the long-horizon
planning problem completely independent of the TMPC
over a longer, user-chosen time interval;

2) theoretical guarantees that both PMPC and TMPC are
recursively feasible and the HMPC framework avoids
static obstacles in complex environments at all times;

3) an efficient way to implement the convex free-space de-
composition scheme presented in [57] for an MPC-based
planner.

While the framework can be used on any mobile robotic
platform, we implemented it on a quadrotor’s NVIDIA Jetson
Xavier NX embedded computer. Simulations and experiments
validate the theoretical guarantees and practicality of the pro-
posed HMPC framework.

The code base, written in C++ as a robot operating system
package, implements different MPC formulations (i.e., SMPC,
TMPC, and PMPC) and solves these problems leveraging the
ForcesPro NLP solver [58], [59]. The only change in code for
the different simulations and experiments is the interface, which
allows for easier debugging and enhances sim-to-real transfer.
The package, together with simulation and analysis code, is con-
tained in a Docker environment, in line with the recommendation
in [60], and is available at https://github.com/dbenders1/hmpc.

C. Outline

The rest of this article is organized as follows. Section II
describes the considered robot and environment. Furthermore, it
formulates the general trajectory planning and tracking problem
and explains how the hierarchical framework follows from this
scheme. Section III presents the TMPC design, including termi-
nal ingredients (terminal cost and set) design with corresponding
tracking properties. Section IV provides the PMPC design to
construct a reference trajectory and the corresponding obstacle
avoidance constraints for the TMPC to ensure recursive feasibil-
ity and obstacle avoidance of the closed-loop system. The overall
HMPC framework is described in Section V, including concise
pseudoalgorithms, the theoretical analysis of the framework and
its components with proofs given in Appendices A and B, and
a summary of the theoretical properties that the framework
provides. Section VI provides the implementation details and
experimental results. Finally, Section VII concludes this article.

D. Notation

N{q,0) represents the natural numbers between a and b, in-
cluding a and excluding b. Vectors are expressed in bold, matri-
ces in capitals. || - || represents the 2-norm, and the quadratic
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vector norm for a positive definite matrix () is written as
|x[|?, = 2" Qz, Q = 0. All subscripts relate to time or indices
of vectors/matrices, the rest of the information is given as su-
perscript, i.e., ¥ represents the state at time ¢ for PMPC P. The
superscripts are omitted if the meaning is clear from the context.
For the MPC problem at time ¢, the predicted state-input pair is
denoted by (x|, u,|;), and its optimal solution by (:I::‘t, u:‘t)
with predicted time 7 € [0, T'] and prediction horizon T'. Finally,
x.; represents all states over the prediction horizon.

II. PROBLEM FORMULATION

A. Robot Description

The mobile robot system is described by the following Lips-
chitz continuous nonlinear dynamics:

Ty = f(wuut) (D

with states x; € R™", inputs w; € R™, time t € R, and
continuous-time dynamics f (¢, u; ). The system constraints are
given by a compact polytopic set Z

Z=XxU

= {(w,u) E Rnx+nu

g;(iL’, u) <0, ,7 € N[l,ns]} (2)

s |

where g5 (@, u) = L

u

] -5, L5 € RIx(m™4n®) 15 ¢
R,j € N[l,ns]-

B. Obstacle Avoidance Constraints Formulation

Without loss of generality, the position states of a mobile
robot are given by p = C'z € R™", with dimensions depending
on the robot configuration space, where C'is a matrix selecting
the corresponding states from . Position p is used to formulate
obstacle avoidance constraints, ensuring that the robot region R
does not intersect with obstacle regions O. The obstacle avoid-
ance constraints at time ¢ are given by the following polytopic
free space set:

Frp = {pﬂt | 95.7t(P7) <0, j € N[Ln‘)]} )
where g_;‘)ﬂ—‘t(p‘r\t) = L_(;‘,T‘tpﬂt - l?,ﬂt? L?;r\t S Rlxn", ?,T\t €
R, j € Nj1 ;0. Without loss of generality, we set [[LS || =
1,j € N[ 0] by scaling the constraints.

Section IV-B provides details on constructing the obstacle
avoidance constraints.

C. Trajectory Planning and Tracking

The problem we aim to solve is to generate a dynamically
feasible and collision-free trajectory for a mobile robot nav-
igating in a static environment while considering the limited
computation resources of the robot’s embedded computer. To
solve this problem, we rely on MPC. The SMPC scheme to
solve this problem is given by

min j(m.ﬁ,u.‘t,pg) (4a)

x. tyU.|t

st @y = @y (4b)
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Fig. 2. HMPC framework overview. In the offline phase, the terminal ingre-

dients of the TMPC, including the terminal set, cost, and tightening constants,
are computed. During online operation, the PMPC plans a trajectory based on
goal position p& and grid map M, and the TMPC tracks this trajectory using
state feedback .

& = f(®rp, ury), 7€I0,T] (4¢)
(T, ur) € Z, T €10,7T) (4d)
Pt € Fries 7€ [0,T] (4e)
zr; € A (4f)

which optimizes a trajectory by minimizing cost function
J (:c,‘t, U g, p?) (4a), while satisfying system constraints (4d)
and obstacle avoidance constraints (4e), in order to steer the
robot with dynamics (4c) from an initial state (4b) to a terminal
set (4f) in the direction of goal position p&.

Asdiscussed in the introduction, such an SMPC is challenging
to implement on embedded hardware. Hence, our goal is to
develop PMPC and TMPC formulations that, when combined,
reach goal pY while satisfying constraints (4b)—(4f). PMPC and
TMPC are combined so that (a) the TMPC is guaranteed to track
the trajectory provided by the PMPC and (b) the overall scheme
avoids collisions and is recursively feasible. In this setting, the
PMPC minimizes a user-chosen planning cost, while the TMPC
minimizes a tracking cost related to the reference generated by
the PMPC. Both MPC formulations use the actual nonlinear
dynamics (1) for the prediction.

To achieve this goal, the main TMPC design challenge is
computing terminal ingredients, including terminal cost in (4a)
and terminal set (4f), such that the closed-loop system tracks the
reference computed by the PMPC.

The main PMPC design challenges are (a) constructing initial
state constraint (4b), such that the communicated trajectory to
the TMPC is continuous and dynamically feasible, (b) tightening
the system and obstacle avoidance constraints, such that the
robot does not collide with obstacles given the offline computed
terminal set of the TMPC, and (c) choosing a proper terminal
set ensuring recursive feasibility of the PMPC.

To summarize the codesign of PMPC and TMPC, Fig. 2
provides an overview of the proposed HMPC framework. The
framework is detailed in Section V.

III. TMPC DESIGN

This section presents the TMPC formulation in Section III-A.
Section III-B describes the offline design of suitable terminal
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ingredients to prove recursive feasibility and convergence to the
reference trajectory. Finally, Section III-C gives some properties
that the reference trajectory and obstacle avoidance constraints
generated by the PMPC should satisfy and formalizes the cor-
responding TMPC tracking properties in Proposition 1.

A. TMPC Formulation

The TMPC formulation is based on [56] with added obstacle
avoidance capability

Tt

:cmin jf’t(th\t_xg“ﬂt) + jS)t(wT\ta u‘r\tv r‘r\t) dr
(Wt —

(5a)

s.t. xojy = x4 (5b)

d37'|t = f(mﬂta ur\t)a TE [Oth] (5¢)

(mT\ta uT\t) € Z? T E [Oth] (5d)

Pt € ]:T\tv TE [OaTt] (5e)

(CCTtlt — a:th“) € Xﬂt (50)

with TMPC sampling time 7. This means that (5) is solved
every T seconds.
The cost penalizes the error between the prediction and the

reference trajectory r = [x"'u" '] using stage and terminal
costs
TN (@ u,r) = [l — 2f + |lu - u (6)
T (@) = & — 2|3 O]

with @, R, P > 0. The optimal input to Problem (5) is denoted
by u:‘ ;- As aresult, the closed-loop system is given by

Urgt o= Upy_pee, 7€ [0,T™]. ®)

B. Offline Terminal Ingredients Design

The terminal ingredients are computed offline using the
semidefinite program (SDP) (9) shown at the bottom of this
page, with linearized system dynamics

Of(x,u)

AR = e

- By = YW

ou (19)

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Based on the SDP solution, the terminal cost matrix P and
feedback law gain K are computed using

P=X"'! K=YP (11)

and the quadratic terminal cost is an incremental Lyapunov
function [56] defined in (7).

The terminal set is defined as an ellipsoidal sublevel set of the
incremental Lyapunov function given by

)

= {2z e R" ||z} < o®} (12)

with a user-chosen terminal set scaling v > 0. Xt is positive
invariant for control input u = «f(a, r) with

K (z,r) = u" + K(z—z") (13)
which is crucial to ensure recursive feasibility and safety.

The objective of SDP (9) is to find a P that gives a suit-
able terminal cost and set for trajectory tracking. The weights
¢j are tuning parameters that are normalized with respect
to the system constraint intervals to ensure equal tighten-
ing of each constraint j € Np; ¢ using tightening constant
c;, which will be defined later in (17a), and terminal set
scaling a.

Linear matrix inequality (LMI) (9b) ensures that the incre-
mental Lyapunov function (7) exponentially decreases when
applying the feedback law (13) in the terminal set (12). LMI (9¢)
ensures that the system constraints are satisfied for all z € Z,
see [61] and [56] for more details.

Note that Z represents the continuous state-input space, and
we optimize for X, Y, and ¢ that uniformly hold forall z € Z.
Therefore, SDP (9) is semi-infinite, and we need to grid or con-
vexify Z to solve it. If (9) is infeasible, one could leverage a more
general formulation with state-dependent X and Y'; see [56] for
details.

Note also that, since (9) ensures exponential stability with
linear feedback K, a feasible solution for nonholonomic sys-
tems, such as cars, only exists when enforcing a minimum
velocity.

C. Closed-Loop Properties

Properties 1 and 2 formalize the required properties for the
reference trajectory and obstacle avoidance constraints.

ns

in  — logdet X ¢cs? 9
XH}l/lilJQ ogde +;c]cj (9a)
i T 1 T 1 T
A(2)X + B(2)Y + (A(2)X + B(2)Y) (an) (RéY) N
8. t. . 1) 0 <0 Vz= [u] €z (9b)
L 0 I
[ S S Y
s sl
T =0, 5€ N[l_ns], X = 0. (9¢)
s |Y X '
(1]x])
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(1215 - :B)}E

Fig.3. Quadratic Lyapunov function 7 f-¢ (x—a") for two state tracking error

dimensions. The blue ellipsoid is the terminal set X' > intersecting 71t (x—a")
at value a2,

Property 1: The reference trajectory satisfies the following
construction (a) and update (b) conditions.
1) For 7 € [0,T"], it holds that

&L = f(ah,, ury,) (14a)
T €2 (14b)
Cxl, € Fry (14c)
with
Z:=XxU
=< (z,u) e R “;]Jéwl’\]ﬁ);] Ges 07} (15)
and

./T:.-,-‘t = {th c Rnp

95,71t (Prie) + O < 0’} (16)
VS N[l)no]

with Z C Z and ]t'ﬂt C F;; following from tightening
with o > 0 from (12) and:

& =PI KL, j€Np. (172
=[P 2CT. (17b)

2) For 7 € [0, 7], it holds that
Ty e = Lo yren = Loy (18)

Intuitively, Property 1(a) states that the reference trajectory
is dynamically feasible (14a), and it satisfies tightened system
constraints (14b) and tightened obstacle avoidance constraints
(14c¢). Property 1(b) states that the reference trajectory is con-
tinuous, i.e., the reference trajectory in the time interval [0, 7]
of the current TMPC run is the same as the reference trajectory
in the interval [7%*, 27*] of the last TMPC run.

Fig. 3 illustrates an example of a 2-D Lyapunov function
and corresponding ellipsoidal terminal set around the reference
trajectory.
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Remark 1: The terminal set scaling v can be seen as a tuning
parameter to make a tradeoff between the performance of TMPC
and PMPC. The smaller «, the closer PMPC can plan to the
obstacle avoidance constraints, resulting in a less conservative
trajectory. The bigger a, the bigger the terminal set for TMPC,
making it easier for TMPC to find a solution. Although not for-
mally proven in this article, the size of the terminal region alpha
is related to the inherent robustness of the TMPC, cf. [62]. This
property ensures that closed-loop properties remain valid under
sufficiently small disturbances, which is crucial for application
on the real robot.

Property 2: The obstacle avoidance constraints satisfy the
following construction (a) and update (b) conditions.

1) They form a subset such that the robot does not collide

with obstacles: ., NO®R =0, 7 €[0,TP].

2) They are updated in a consistent way, such that
Py, € Frip = Py, € Fr_qenjpirew, TE[TP, TP], with
PMPC sampling time 7°P and prediction horizon
TP,

Intuitively, Property 2(b) states the reference trajectory should
be contained in the updated tightened obstacle-free region, given
that it is contained in the current tightened obstacle-free region
at the same point in time.

Section IV shows that Properties 1 and 2 are ensured by the
PMPC design.

Proposition 1 formalizes the properties of the TMPC terminal
ingredients.

Proposition 1 (Terminal ingredients): Suppose the terminal
ingredients are designed as above, r satisfies Property 1 and
F satisfies Property 2. Then, for any x satisfying (x — x") €
Xf .t

%Jf’t(a:—wr) < —js’t(il:,lif(iv,’l“),’l“) (19a)
(x, k' (z, 7)) € Z (19b)
Cx € F. (19¢)

Proof: (19a) holds given a feasible solution to SDP (9). The
main steps of the proof, similar to [56], are
d f,t T T r
ST N8) =267 P (f(w,w) — fla,u))

© 98T P (A(2(s)) + B(2(s))K) 8

ING

—6' (Q+K'RK) 6

= _js.'t(ma ‘%f(azv ’I"), ’I")

where 0 =x— (a) uses the fact that

r

E
r n
xr

+s d linearly interpolates between (x,u)

r

u
and (x", u") for s € [0, 1], and the mean value theorem ensuring
that this equality holds for some value of s. (b) follows from
LMI (9b), see [56, Lemma 3]. Furthermore, given L € R'*™
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satisfying || L|| = 1 and & such that [|§]|% < o2 it holds that
LC& < ||LCP3P36| < ||[LCP || Pz 4|
< |[CP2||P25 < |CP 2o

where the second and third inequalities use the triangular in-
equality. Applying this to L$ with [[L$| =1, it holds that
L‘]?Cé < ¢°«, meaning that L?C:B < L‘J?C’:cr + cPa < l;?, jE
Ni1,n01 holds by (14c), given (16) and (17b), thereby prov-
ing (19¢). A similar proof holds for (19b), see [56] for more
details. [ |

Intuitively, Proposition 1 states that, given Properties 1 and 2,
the closed-loop trajectory converges to the reference trajectory
and system and obstacle avoidance constraints are satisfied
when applying terminal control law (13) in terminal set (12).
Therefore, the terminal set is positively invariant under the
terminal control law. This means that the shifted previously
optimal solution appended with the terminal control law is a
feasible, not necessarily optimal, candidate solution for the next
TMPC run. Repeating this argument demonstrates that TMPC
Problem (5) is recursively feasible. This is formally proven in
Theorem 1 in Section V-B.

IV. PMPC DESIGN

The planner’s goal is to optimize a dynamically feasible
trajectory toward goal position p® such that the TMPC is guaran-
teed to track it. Section I'V-A presents the PMPC formulation to
optimize the trajectory. The generation of the obstacle avoidance
constraints is described in Section I'V-B.

A. PMPC Formulation
The PMPC formulation is given by

m_r‘rtl,iﬁl_“jf’p(xTP\ta W), P°)+ :O T*P (21, Urpy, P) dT
(20a)
S.t. Topp =Xy qpenp_garn, T E[0,T°F] (20b)
@i = [, Urpe), T€[0,T7] (20c)
(T, urp) € Z, T €[0,77) (20d)
Pt € Frits T€0,T7] (20e)
f(@ro, upey) =0 (20f)

with PMPC sampling 7P, and Z and F,;, 7 € [0,TP], given
by (15) and (16), respectively. As mentioned, the cost is a
user-chosen planning cost that can include any terms suitable
for navigating in the environment (e.g., goal-oriented MPC
(GO-MPCQ), see [4], or MPCC, see [8], [11]). Section VI-A
elaborates on the specific function used to generate the experi-
mental results. The combination of initial state constraint (20b)
and system dynamics (20c), is sufficient to enforce both (14a)
in Properties 1(a) and (b). Furthermore, (20d) and (20e) ensure
(14b) and (14c¢) in Property 1(a), respectively. Finally, (20f) is
a terminal set constraint to ensure the recursive feasibility of
the PMPC. Note that (20b) can be efficiently implemented by
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using a shorter horizon 7P — TP with initial state constraint

%
Lot = Lps.pg—sp-

B. Obstacle Avoidance Constraints

This section describes the method to generate obstacle avoid-
ance constraints of the form (3). To deal with an online observed
environment with obstacles O, we leverage grid map represen-
tation M in which the occupied cells O indicate the obstacle
edges. Given these occupied cells, the method should generate
constraints satisfying Property 2.

In particular, the method builds on DecompUtil as introduced
in [57, Fig. 5-8]. Based on the grid map and a linear path
segment, DecompUtil builds a convex obstacle-free region by
appending the tangential line of a growing ellipsoid around
the path segment at the first encountered occupied grid cell
after removing all grid cells behind the previously generated
tangential lines and clipping the result to bounding box 5.

In this work, the obstacle avoidance constraints are con-
structed following the same method, based on piecewise
linear segments between optimally planned PMPC posi-
tions pifTs,p‘tiTs,p and p’(‘iH)Ts‘p‘tiT&p,i €Ny yq, N =
%, starting with B around the initial position. This approach is
further referred to as Iterative-DecompUtil (I-DecompUtil) and
visualized in Fig. 4.

There are two important things to note in the figure: the
selection of M and the usage of the robot radius to both tighten
the obstacle-free convex regions and inflate the obstacles.

Selection of M reduces the computation time by reducing the
number of grid cells that need to be considered.

Since (5) and (20) optimize for the geometric robot center, the
distance between obstacle avoidance constraints and occupied
grid cells should be at least the robot radius. Tightening the
constraints by the robot radius would result in sharp corners
between subsequent obstacle-free regions around sharp obstacle
corners, resulting in more conservative plans. On the other hand,
inflating the obstacles by the robot radius would lead to the
scenario depicted in Fig. 5, meaning that a crash may occur. To
prevent both issues, half of the robot radius is used to tighten
the constraints, and the other half is used to inflate the obstacles.
This ensures collision avoidance, given that the robot radius is
significantly larger than the grid map resolution.

The resulting obstacle-free convex regions from [-
DecompUrtil are piecewise-defined as
Fryirert = Firswpe, T € (0,T%P], 4 € Ng y_13. - (21)

This means that p’(‘iTs,p}(iH)Ts,p”t € Firse)t,t € No N_1]-
Note that, although the regions are constructed using piecewise
linear segments, the nonlinear robot trajectory is contained in
these convex regions since the constraints are imposed on the
TMPC and PMPC trajectories through (5e) and (20e), respec-
tively.

To prove recursive feasibility of PMPC formulation (20) later
in Section V-B, we consider the following assumption regarding
the grid map M and the PMPC sampling time 7.

Assumption 1: The grid map M and PMPC sampling time

TP are such that each trajectory segment p’ giTsplt—Tep> T €
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(a)

—

(©)

(d)

Fig. 4. 2-D visualization of map preprocessing and I-DecompUtil, given occupied grid cells O and the last optimized plan m:‘ ;- (@) Obstacles are inflated by

half of the robot radius (orange arrows). (b) To construct the obstacle avoidance constraints around a specific line segment, first, a subset of the grid map M is
selected such that the bounding box B with any orientation fits in this subset. (c) Obstacle avoidance constraints s {ps,p are constructed according to the SFC
method in [S7] by growing an ellipsoid around the line segment, creating the tangential lines and clipping them to B. Furthermore, F|;  7s,p are tightened by the
other half of the robot radius, such that the robot does not collide with the obstacles if its center satisfies /¢ 7s.p. (d) Tightened obstacle avoidance constraints

]:'T‘t +7s.p are constructed by tightening 7, 7s,p with c®a according to (16), visualized using terminal set X’ £,% in this figure. Note that (b)—(d) are repeated

for all line segments.

10) L™

0 O (cel)
®

e O (point)
[ JEn
1 Fryers

Fig. 5. Visualization of a scenario in which the robot would crash into the
obstacle if the constraints are not tightened. The obstacle is inflated, here
represented by O, with corresponding occupied grid cells O and the point
representation of O in the code. While the ellipsoid does not intersect the grid
points, it overlaps with the obstacle region, i.e., F N O # (.

[0, T*P],i € N, ny_1) is contained within the ellipsoid to used
to generate the first half-space constraint, j = 1 in (3), of the
obstacle-free region Firs.»t, i € Njg n_1]-

Remark 2: This assumption becomes a limiting factor in
scenarios with a high obstacle density, a long PMPC sampling
interval, and a high velocity. If this assumption is not satisfied,
the PMPC sampling time or the maximum velocity constraint
needs to be reduced. This was not a limiting factor in the
simulations and experiments in Section V1.

Combining (21), Assumption 1, and the fact that the con-
vex regions are generated based on the previously optimal
SOWUtioN Pl zvyiygeps Ppss o)—qep ls0 satisfies the new
constraints

p:lt_Ts,p S ‘/—"T,Ts,p‘t, T E [Ts,p7Tp] (22a)

Proj—rsp € Froji- (22b)

Thus, Property 2(a) is ensured by the combination of As-
sumption 1 and the fact that the obstacle avoidance con-
straints are generated by growing ellipsoids starting in free
space until it touches O. Moreover, Property 2(b) is satisfied
by (22).

In conclusion, by formulation (20), Assumption 1, and the
design of the obstacle avoidance constraints generation method,
both Properties 1 and 2 are satisfied.

The following section provides an overview of how TMPC
and PMPC are codesigned and details the theoretical properties
of the overall HMPC framework.

V. HMPC FRAMEWORK

This section provides the design and implementation
overview of the overall HMPC framework in Section V-A, fol-
lowed by the theoretical analysis in Section V-B, and a summary
of the framework design and properties in Section V-C.

A. Design and Implementation Overview

Fig. 2 gave an overview of the HMPC framework. Given
p® from a global planner, and M satisfying Assumption 1,
the PMPC, formulated in (20) with sampling time 7P satis-
fying Assumption 1 and horizon length 7P, generates obstacle
avoidance constraints F and optimizes a corresponding feasible
reference trajectory (", u") toward p2. Based on the state feed-
back x, the TMPC, formulated in (5) with sampling time 7
and horizon length 7", computes the control input u required to
track (', u").

The main motivation for this framework is its capability to
solve an expensive optimization-based planning and tracking
problem on an embedded computer with limited computation
power in real time. Since the optimization takes a non-negligible
amount of time (as shown later in Section VI), it introduces a
delay in both the reference trajectory update and the control
input update. To ensure the dynamic feasibility of the optimized
solution, the framework is implemented with timing properties
highlighted in Fig. 6.
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Fig. 6.

ends in terminal set X'T+* around the reference trajectory a:ﬂ .

~ (red) that becomes valid at ¢;.

Example timing diagram with 1-D state trajectories. (a) At time t; — T the TMPC optimizes a trajectory (orange) over horizon T starting from
forward-simulated state mo‘t (purple), which is the model response when applying u®

7s.¢ Starting from current state ;, _ps.¢ (green). The trajectory
(blue) (b)

[0 T )[t;—

fr‘ t is the sub-sampled version of reference plan :c

In this example, the TMPC executes 2 more times (7 € {0, 7%'*}) until the next reference tra]ectory becomes valid, thereby getting closer to the reterence (c) At

time t;41 —

7%, the TMPC starts optimizing a trajectory based on a new reference plan :c_r

i that becomes valid at ;1 1. This reference plan is optimized by

the PMPC starting at time ¢; — 75" and satisfies the initial state equality constraint (20b).

Algorithm 1: Offline Design.

Algorithm 2: Online Implementation.

Input: f, Z

I:  X,Y <« Solve (9) using gridding or convexification
2: P K, ¢;, ¢ <= Compute using (11) and (17)

3 « < Choose

4: x%t Z « Compute using (12) and (15)

Both PMPC and TMPC run at constant sampling times 7P
and 1%, respectively, with TP = 37% 3 > 2. For conve-
nience of visualization, the figure is constructed using S = 3.
Note that the value of 5 used in the implementation is provided
in Section VI. Furthermore, both PMPC and TMPC optimize a
trajectory that becomes valid one sampling time in the future.
This means that TMPC optimizes a trajectory ( uy, ,a:';;) at
t; — Tt before it becomes valid at ¢;, based on a reference plan
(u}i;,, @), ) that the PMPC started optimizing at t; , — T =

TIt; » &

t; — TSP — TS Att;, uo"’; is sent to the robot before the TMPC
starts optimizing the next trajectory (utﬂ’:5 $Teb miﬁ $Tet)

Thus, the TMPC optimization can take a maximum of 7’ st and
the PMPC a maximum of 7°'P in execution time.

In conclusion, the HMPC framework gives valid reference
trajectories and constraints and control inputs by the satisfaction
of Properties 1 and 2 and allows sending control commands to
the robot at a fixed frequency.

Remark 3: In theory, any ( € I, works provided that
TP > (14 [ ~1+2)TP such that the PMPC has at least
three stages free to optimize to move toward the goal and satisfy
(20f). If [TTt},} > 1 one has to adjust (20b) accordingly by
constraining more PMPC stages. Given a TMPC design with
fixed 7' and T", increasing 3 means that TP increases, giving
a coarser replanning time and, thus, reduced computational load
for the PMPC, and vice versa. Hence, the user can trade off
PMPC execution time and performance by choosing .

Algorithms 1 and 2 give an overview of the relevant design
choices of the HMPC framework.

Input: Results from Algorithm 1, B, R, T, T*,
TP (3), TP, p& and M

Define: t; = TP, i € Nxg

Define: t; j = t; + jT**,j € Njg 3_1

1: 1=0,7=0

2: fort =t; ; run TMPC

30 Applyul,,,7€[0,75(8)

4: Ty <— Measure

5: Zoj¢, ;,, < Forward-predict using x;

6: Fi < Select based on F

7 ujt < Solve (5) with @o;; = Zoy, ;,,

8: J —j+1

9: if j = § — 1 and p® not reached run PMPC
10: Fltys f|t < Construct as in Section I'V-B
11: (:”ﬂ)t , ‘t *) < Solve (20)
12: Send (!, =ah T, *, Ft,) to TMPC
13: 1 —i+1
14: J —0

B. Theoretical Analysis

First, Theorem 1 formalizes the TMPC obstacle avoidance
and recursive feasibility guarantees. Second, Theorem 2 for-
malizes the recursive feasibility of the PMPC. By combining
these results, Corollary 1 concludes the recursive feasibility and
obstacle avoidance of the HMPC framework.

Theorem 1: Suppose the terminal ingredients are designed
according to Section III-B, r satisfies Property 1, F satisfies
Property 2, and (5) is feasible at ¢ = 0. Then, the resulting
closed-loop system ensures that (5) is recursively feasible,
satisfies system constraints (x;,u;) € Z and avoids obstacle
collisions Cxy ¢ O for all ¢ > 0. Moreover, the tracking error
||+ — x}|| asymptotically converges to zero.

The proof is detailed in Appendix A. It uses a candi-
date solution that shifts the previously optimal solution by
T%' and appends the terminal control law (13). Feasibility
is ensured by the invariant terminal set, cf. Proposition 1,

Authorized licensed use limited to: TU Delft Library. Downloaded on June 12,2025 at 12:13:14 UTC from IEEE Xplore. Restrictions apply.



BENDERS et al.: EMBEDDED HIERARCHICAL MPC FOR AUTONOMOUS NAVIGATION

and convergence follows by showing that the optimal cost
decreases.

Theorem 2: Suppose that Assumption 1 holds and (20) is ini-
tialized with a feasible steady-state plan, i.e., & = 0, (z,u) €
Z,pc ]:".‘0. Then, (20) is recursively feasible for ¢ > 0, the op-
timal solution satisfies Property 1, and the constructed obstacle
avoidance constraints satisfy Property 2.

The recursive feasibility proof is detailed in Appendix B.
Similar to the proof for Theorem 1, it is based on a candidate
solution equal to the previously optimal solution, appended with
an input ensuring steady state. Given that the previously optimal
solution ends in steady state, the candidate also ends in steady
state, meaning that system and obstacle avoidance constraints
are always satisfied. Satisfaction of Properties 1 and 2 follow
from the reasoning explained in Section I'V-B.

Corollary 1: Suppose the terminal ingredients are designed
according to Section III-B, Algorithm 2 is initialized with a
steady-state reference plan satisfying Property 1, and (5) and
(20) are both feasible at t = 0. Then, (5) and (20) are recursively
feasible for the closed-loop system in Algorithm 2 and the
closed-loop system satisfies system constraints (x;,u;) € Z
and avoids obstacle collisions R N O = (@ for t > 0. Moreover,
the tracking error ||x; — @}|| asymptotically converges to zero.

By Theorem 2, (20) is recursively feasible and ensures that the
reference trajectory satisfies Property 1 and obstacle avoidance
constraints satisfy Property 2. Then, given the initial feasibility
of (5), applying Theorem 1 gives system and obstacle avoid-
ance constraints satisfaction and asymptotic convergence to the
reference trajectory of the closed-loop system.

C. Summary

We solve SDP (9) offline for known nonlinear system dynam-
ics (1). A feasible solution to (9) gives matrices X and Y, and
tightening constants ;. X and Y are used to compute matrices P
and K, which are subsequently used to calculate the tightening
constants ¢® and to construct the TMPC terminal cost, set, and
control law.

Note that LMI (9c) ensures that c? are Lipschitz constants, so
the terminal set scaling o does not have to known before solving
(9) and can instead be computed as o = C% with d the minimum
distance between obstacles and reference trajectory.

Online, we compute the reference trajectory by solving PMPC
Problem (20) using tightening constants ¢ and ¢” and obstacle
avoidance constraints generated as described in Section IV-B.
Theorem 2 states that the reference trajectory and corresponding
constraints satisfy Properties 1 and 2, respectively, and that
the PMPC is recursively feasible by including PMPC terminal
constraint (20f).

Given the offline-computed terminal ingredients as proposed
in Proposition 1 and online-computed reference trajectory sat-
isfying Property 1 with corresponding obstacle avoidance con-
straints satisfying Property 2, Theorem 1 states that the online ex-
ecution of TMPC Problem 5 guarantees asymptotic convergence
to the reference trajectory, obstacle avoidance, and recursive
feasibility.
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Consequently, by the proposed codesign of TMPC and PMPC,
Corollary 1 concludes that the HMPC framework is recursively
feasible, satisfies system constraints, and avoids obstacle colli-
sions at all times. In addition, the timing of PMPC and TMPC as
described in Section V-A allows sending control commands to
the robot at a fixed frequency while maintaining the properties
described above.

Important to note is that the optimized trajectory of the PMPC
evolves based on the previously optimal PMPC solution, so there
is no state feedback from the real system. In contrast, the state
feedback is incorporated in the TMPC formulation as an initial
state constraint (5b).

VI. RESULTS

This section demonstrates an efficient way to generate ob-
stacle avoidance constraints. Furthermore, it shows the per-
formance and advantages of the proposed HMPC framework
compared to SMPC, which is commonly used in local motion
planning schemes [10], [12], [13]. To make a fair comparison,
SMPC inherits the cost function and system dynamics from
PMPC, and initial state, system, and obstacle avoidance con-
straints from TMPC. This means, it solves (20), where (20b),
(20d), and (20e) are replaced by (5b), (5d), and (5e), respectively.

The results include simple simulations without model mis-
match, Gazebo simulations with model mismatch, and lab ex-
periments. All results will focus on the lab experiments and
highlight the differences with simulations when relevant. The
simulations and lab experiments use the same PMPC, TMPC,
and SMPC settings, which are chosen to ensure real-time per-
formance on the hardware of the real quadrotor. These settings
include sampling times, horizon lengths, and weights.

We first detail the different MPC implementations and test
setup in Section VI-A. After that, we provide the results on
both obstacle avoidance constraints generation and comparison
between HMPC and SMPC, in Section VI-B.

The open-source implementation to reproduce these results is
available at https://github.com/dbenders1/hmpc.

A. Implementation and Setup Details

The implementation and setup consider several aspects, in-
cluding the considered grid map to the quadrotor model, the
MPC details, the software setup, and the hardware setup, as
described next.

1) Grid Map: The considered grid map M is 2-D and gen-
erated offline with size 12x 12 m and resolution 0.01 m. The
rectangular obstacles are described by their center, width, and
length. The obstacle contours, formed by thin lines of occupied
grid cells, are efficiently created using OpenCV.! As described
in Section IV-B, an extra inflation layer is designed around
the obstacles to allow smoother planning of the PMPC around
the obstacles. The same holds for the lines representing the
environmental boundaries. M is the same for the simulation
and lab results below for consistency.

! [Online]. Available: https://github.com/opencv/opency
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2) Quadrotor Model: The following quadrotor model is used
in the MPC schemes:

_pZE_ _,Uflf

pY| = o

pZ /UZ

[9] [ s¢s¥ 4 ¢?s0c¥ 0]

Y| = | —sPc? +¢?s%sY | a— |0
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é -5 0 0 0 é B [o°
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6| |0 -% o0 0| 10], LR

= ¥

¥ 0 0 —L 0| |e] & |

al Lo o0 ~L] la Bl La°
(23)

with states including 3-D positions, velocities and attitudes, and
acceleration given by x = [p® p¥ p* v® v¥ v* ¢ 0 1) a]" and
inputs including 3-D attitude commands and collective mass-
normalized thrust, or acceleration command, given by w =
[¢° 0° ¢ a] T, sine (s) and cosine (c) expressions, gravitational
constant ¢, and time and gain constants 7¢ = 7% = 0.18, 7% =
0.56, 7% = 0.050, k¢ = k% = k¥ = k® = 1 for roll, pitch, yaw
and acceleration, respectively.
The system constraints are given by

—15m < p”*, pY <15m
Om < p* <4m
—2m/s <o” VY, v* <2m/s
—30° < ¢, 0, ¥, ¢°, §°, Y° < 30°
5m/s? < a, a° <15m/s%.  (24)

The PMPC and SMPC leverage an extended model in which
the inputs are given by [¢° 6¢ ¢¢ ac], with —60s <
¢°, 6°, ¢ < 60° /s, to allow for penalizing angle rates in
the cost function, and thus creating a smoother trajectory. The
absolute angle commands [¢°, §¢,1°] are included in the states
in that case.

Both PMPC and TMPC implement the discretization of the
quadrotor model (23) using the fourth-order Runge—Kutta (RK4)
integration method with a 50 ms time interval. The TMPC has
a sampling time of 50 ms, requiring 1 RK4 step, whereas the
PMPC has a sampling time of 500 ms, requiring 5 = 10 RK4
steps. Thus, although the sampling times differ between PMPC
and TMPC, the model discretization is the same.

3) TMPC Offline Computations: The offline computations
described in Section III are implemented using Yalmip. The at-
titude states occur nonlinearly, and the acceleration state occurs
linearly in the linearized system dynamics (10). Therefore, the
LMIs are generated using a grid of five points equally divided
over the attitude state constraint intervals and the two endpoints
of the acceleration constraint interval. The solution to SDP (9)
is checked for 21 points per attitude state and two points for the
acceleration state constraint interval. All LMIs are satisfied at
the checked points in the state space, meaning that the theoretical
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guarantees hold for those points. The total time to generate the
LMIs, solve the SDP, and check the results is 38 s.

4) PMPC and SMPC Cost Function: The PMPC and SMPC
aim to reach the goal with a cost similar to GO-MPC [4]. On a
quadrotor, one can control the yaw angle independently from the
position, meaning that the goal is described by a 3-D position
with yaw angle (p#,#) € R*. Consequently, the cost function
is given by

js,p(leh uf\h Pg7 1/Jg)
= wa,ng(pﬂﬂlyt’pxy,g) 4 wz7g(pi‘t_pz,g)2

+w? (P —9)* + w(aZ), — g)?

+ [ | 4+ w? i\f +09,%) + ww’Cwi‘f

° 25)
with goal position weights w*¥°% and w**®, goal yaw weight
w?:8, acceleration weight w?, input weights matrix U =
diag(us, ..., u,n) and, and input attitude memory state weights
w®%¢ and w?-°. Terminal cost 7 5P has the same expression as
stage cost J*P, but with different weight values. 7—£(pf‘yt7 prYvE)
denotes the Huber loss [63] of the 2-D Euclidean distance from
position pﬂ’t toward goal position p*¥&. The linear relation
further away from the origin makes the Huber loss useful to
ensure moving toward the goal with approximately constant
velocity without accelerating quickly and reaching the goal
slowly.

5) PMPC and SMPC Terminal Steady State: The terminal
state used to implement (20f) in both PMPC and SMPC is given
by {v* =0,v¥ =0,v* =0,0=0,0 =0,a = g}.

6) TMPC Terminal Set: As Section III shows, the terminal
set scaling « is a tuning parameter to tradeoff PMPC and TMPC
performance. In this case, « is computed using o = ;%, in which
d = 0.1 m is the minimum allowed distance from obstacles to
reference trajectory and c° is given by (17b).

7) SMPC Slack: Both the Gazebo simulations and lab ex-
periments in Section VI-B3 include model mismatch. HMPC
indirectly accounts for this by tightening the obstacle avoidance
constraints in the PMPC. However, SMPC would become infea-
sible because the system would exceed the obstacle avoidance
constraints. Therefore, the obstacle avoidance constraints in
SMPC are implemented using a slack variable, e.g., see [64],
allowing the system to exceed the constraints but with high
penalization to steer the system back into the constraints set.
Similar to the tightening of constraints in HMPC, SMPC uses a
safety distance of 0.1 m to avoid collisions.

8) PMPC, TMPC, and SMPC Settings: Table I summarizes
the PMPC, TMPC, and SMPC settings, including the sampling
times, horizon lengths, and weights. The TMPC and SMPC
sampling times are chosen sufficiently low to ensure accurate
control but long enough to solve the MPC optimization problems
in real time. Based on the TMPC sampling time 7!, the PMPC
sampling time is chosen using 3 = 10. Given T*'*, this factor is
selected sufficiently low for the PMPC to optimize a reasonable
plan and sufficiently high for the TMPC to satisfy the terminal
set constraint.

The PMPC horizon is chosen long enough to be able to find
a reasonable plan through the environments described below.
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TABLE I
PMPC, TMPC, AND SMPC SETTINGS IN SIMULATIONS AND LAB
EXPERIMENTS

Method | T (s) | T (s)
PMPC 0.5 2.5

Weighting matrices

wXY 8" =40, w8 =40, w¥&" =40,

WY 8" =200, w»e" =200, w?:&" =200,

w? = 40, w??¢ = 16, w¥ > = 16,

U = diag(16, 16, 16, 16)

Q= diag(2e3, 2€3, 2¢3, 20, 20, 20,
100, 100, 100, 100),

R=diag(2e3, 2¢3, 2¢3, 100)

w8 =200, w*8" =200, w? 8" =200,

wxy e =2e3, we' =2e3, we’ =2e3,

w? = 200, w??¢ = 160, w?° = 160,

U = diag(160, 160, 160, 160)

TMPC 0.05 0.5

SMPC 0.05 0.4

The TMPC horizon is chosen to equal the PMPC sampling
time. Furthermore, the SMPC horizon is reduced until the
MPC scheme is runtime feasible on the hardware described as
follows.

The GO objective weights used in PMPC and SMPC are
chosen such that the terminal stage and other stages contribute
equally to the cost function. Note that PMPC and SMPC have
a similar weight ratio between the terminal stage and the rest
of the horizon for a fair comparison. One of the differences
is that the PMPC GO objective stage weights are increased to
gain aggressiveness and improve goal-reaching performance,
which is not possible for SMPC for stability reasons. Stability
is ensured in both PMPC and SMPC by increasing the input
weights. Note that this increase is more significant for SMPC
than for PMPC.

The TMPC position state and attitude input weights are
chosen large enough to ensure that the reference positions are
accurately tracked to avoid collisions, and the system will not ag-
gressively compensate for any reference tracking error, thereby
increasing model mismatch. To further enhance stable flight,
the acceleration input and state weights are increased. Since
the reference acceleration is given in the body frame, its value is
only valid for attitude values resulting in the corresponding body
frame. Therefore, the attitude weights are increased as well.

Since we compute the terminal cost offline, we hard-code
the TMPC weighting matrices to save computation time during
runtime. In contrast, the PMPC and SMPC weights are not hard-
coded to allow the user to change them without generating a new
solver.

Note that the costs are given in continuous time and discretized
using Euler.

9) Software Setup: In all simulations and lab experiments,
the ForcesPro NLP solver [58], [59] is leveraged, using x86
compilation for simulations and ARM compilation for lab ex-
periments. Furthermore, in both Gazebo simulations and lab
experiments, PX4 stable release v1.12.3 is leveraged, using
Posix compilation for simulations and NuttX compilation for
lab experiments. The advantage of this setup is that both the
solver and low-level controllers are the same in simulations and
lab experiments to reduce sim-to-real transfer.
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Fig. 7. Lab experiment setup. (a) Quadrotor with important components is
highlighted. Components between square brackets are not used in this work’s
experiments. (b) Quadrotor is flying near the obstacles in the lab.

10) Hardware Setup: The quadrotor used to generate the lab
experiment results is the HoverGames drone?, with the flight
controller being replaced by a Pixhawk 6X mini and an added
NVIDIA Jetson Xavier NX embedded computer, which has a
6-core 1400 MHz NVIDIA Carmel ARMvVS.2 processor. The
position and orientation of the quadrotor are tracked using the
Vicon Vantage V5 camera system and sent via Wi-Fi to the
embedded computer, where all code runs. Fig. 7 shows the lab
experiment setup.

The simulations are run on a Dell XPS 15 laptop witha 12-core
2.60 GHz Intel i7-10750H CPU.

B. Results

This section presents simple simulation results focusing on
the computational efficiency and size of the obstacle avoidance
constraint sets in Section VI-B1 and the effect of the tuning
parameter 5 in Section VI-B2. Thereafter, it describes the
performance of the HMPC framework in lab experiments and
simulations in Section VI-B3.

A video of the lab experiments and simulations is available at
https://youtu.be/ORnrKk6830I.

1) I-DecompUtil: The purpose of this section is twofold.
First, it shows how to make the runtime code for obstacle avoid-
ance constraint generation efficient. Second, it demonstrates the
impact of the bounding box width on the computation time and
the time required to reach the goal.

It is important to note that DecompUtil iterates through grid
map M to find all occupied grid cells O that are contained in
the bounding box B around the line segment. After finding the
occupied grid cells, DecompUtil iterates through them to com-
pute the constraints for a specific line segment. I-DecompUtil
repeats this process for all line segments between the stages in
the horizon.

The time to compute the obstacle avoidance constraints varies
significantly depending on the implementation. Table II shows

2 [Online]. Available: https://nxp.gitbook.io/hovergames/
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TABLE II
MEAN (STANDARD DEVIATION) OF CONSTRAINT COMPUTATION TIMES (MS)
OVER A SINGLE RUN FROM START TO GOAL POSITION

Map pre-processing
No Yes
. N No | 2312.6 (165.0) | 147.7 (69.2)
Compiler optimization Yes 6103 55 (L0

50

Duration (ms)

] %%

0.5 1.0 1.5 2.0
Bounding box width (m)

Fig. 8.  Obstacle avoidance constraints computation times for different bound-
ing box widths when moving from start to goal with an MPC with 100 stages
and 0.05 s sampling time.

the mean and standard deviation of the timing results for the
different combinations of two options to reduce computation
time: C++ compiler optimization, i.e., setting compiler flag -03
to allow for loop unrolling, and map preprocessing, i.e., selecting
only the relevant part corresponding to the line segment to reduce
the number of occupied grid cells to iterate through. The results
are obtained by moving from start to goal using an MPC with a
horizon of 100 stages and a sampling time of 50 ms. A long
horizon is chosen so that the impact of other, high-priority
processor tasks on the constraints computation time is averaged
out.

The results clearly illustrate that compiler optimization is the
main factor in reducing constraints computation time, allowing
for real-time feasibility. The larger the map, the more significant
the impact of map preprocessing becomes, up to the point
that map preprocessing becomes necessary to ensure real-time
feasibility.

Another factor to consider is the bounding box width tuning
parameter. This parameter affects the size of the bounding box
B and, correspondingly, the size of the preprocessed map. The
primary purpose of S is to limit the number of grid cells to
consider for constraints computation. As a result, this parameter
trades off the speed at which the MPC scheme converges to the
goal, or can find a way to the goal at all, and the constraints
computation time.

Fig. 8 shows the computation times for four different bound-
ing box widths, given the scenario with two obstacles described
in Section VI-B3. The figure illustrates that the computation
time grows with the bounding box width but saturates after a
certain width, depending on the obstacle shapes and density
in the environment. The variation in timing depends on the
environment as well.

Table III shows the time required to move from start to goal
for SMPC and HMPC using different bounding box widths. The
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TABLE III
TIME TO REACH GOAL WITH SMPC AND HMPC FOR DIFFERENT BOUNDING
BoX WIDTHS
B width (m)
0.5 1 1.5 2
Time to reach goal (s) SMPC | 52.3 | 523 | 52.3 | 523
HMPC | 14.8 6.4 7.3 6.9
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Fig. 9. PMPC execution times (boxplots) and goal-reaching times (line) for
different values of 8 when moving from start to goal with HMPC. The TMPC is
implemented as given in Table I. Given constant 7%, the PMPC is implemented
using T5P = BT with 8 € {4,7,10,13,16}. Except for 8 = 16, TP was
chosen to be the closest to the value in Table I. For 3 = 16, the horizon has
to be 7P longer according to Remark 3, which causes a slight increase in
computation time compared to 5 = 13.

SMPC has such a short horizon that the size of the obstacle
avoidance constraints does not influence the goal-reaching time.
On the other hand, for HMPC, a short bounding box width
of 0.5 m limits the goal-reaching time. This effect vanishes
in our environment setup for bounding box widths {1,1.5,2}
m. Instead, the specific shape of the constraint regions and the
ability of the PMPC to plan more aggressive maneuvers that
cause a slight goal overshooting play a more significant role in
the goal-reaching times for these bounding box widths.

The combination of the results in Fig. 8§ and Table III demon-
strates the tradeoff above up to 1 m: the smaller the bounding
box, the less computation time but the more limited the plan
is, and vice versa. Since a bounding box width of 1 m gives a
similar goal reaching time to the larger bounding box widths but
with lower computation times, this value is used to generate the
rest of the results in this section.

It is important to note that the above results are generated
using the grid map as presented in Section VI-B3. This grid map
is pregenerated with thin obstacle edge lines to make SMPC
feasible in real time. However, in experiments with onboard
perception, the grid map will contain thicker obstacle edges due
to noise in sensor measurements (e.g., from a depth camera).
Furthermore, these grid maps are usually constructed in 3-D
instead of 2-D, which will significantly increase the number of
occupied grid cells and enlarge the impact of map-preprocessing.

2) Effect of 5: Next, we demonstrate the impact of 3 on the
PMPC. Recall from Remark 3 that S trades off PMPC execution
time and performance. This result is visible in Fig. 9: the larger
B, the shorter the PMPC execution time and the longer the goal-
reaching time. The longer goal-reaching time is caused by the
coarser replanning time and the fact that the obstacle avoidance
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Fig. 10. Boxplot with overall execution times for SMPC and HMPC (control
loop) and its most important parts: Module updates and optimization. The
maximum control loop execution time is 50 ms for real-time feasibility of SMPC
and TMPC and 500 ms for PMPC. Note that module updates includes constraints
generation and loading new cost function terms, and is low compared to the
optimization time. Since the TMPC receives the constraints from the PMPC,
its module updates computation time is even lower. Optimization is the time
between calling the solver and obtaining the solution. SMPC contains several
control loop cycles exceeding its real-time limit, whereas PMPC and TMPC
always finish on time.

constraints are more conservative for a coarser plan, meaning
that the PMPC can plan less far ahead in each optimization step.

Based on Fig. 9, we have set 5 = 10 in the next section. Note
that 8 = 10 allows for convenient results interpretation since
TSP = T" given the numbers in Table 1.

3) HMPC: This section describes the performance of HMPC
compared to SMPC in lab experiments and highlights dif-
ferences with simulation results when relevant. Two types of
simulations are run: a simple simulation with perfect system
knowledge, i.e., the simulated system is also (23) integrated
using RK4 with sampling time 7%, and one in Gazebo, i.e.,
including model mismatch.

First, we need to know whether all MPC schemes are feasible
on the embedded computer in real time. Fig. 10 shows the
execution times of the control loop and its main components
for SMPC, PMPC, and TMPC. PMPC and TMPC comply with
execution time limits, whereas SMPC is around its maximum
of 50 ms and sometimes exceeds the maximum. This problem
cannot easily be avoided on the embedded computer since it has
a limited number of threads. The lower the number of threads,
the greater the risk of the control loop being interrupted by other
operating system tasks. Since most of the SMPC control loops
finish in time, the frequency at which control loops are scheduled
catches up with the desired frequency after exceeding the limit.
Consequently, the results still provide valuable insights.

To show the impact of the embedded hardware on the execu-
tion times, Table IV shows the mean and standard deviation of
the control loop execution times for SMPC, PMPC, and TMPC
in both simulations and lab experiments. The numbers clearly
illustrate a drastic increase in mean and standard deviation of
the control loop execution time when moving from simulations
to lab experiments with embedded hardware.

The main limitation of SMPC is the computation time. There-
fore, an SMPC with increasing discretization times was also
tested in an attempt to reduce the number of stages while keeping
the same planning horizon length. However, this scheme is not
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TABLE IV
MEAN (STANDARD DEVIATION) OF CONTROL LOOP EXECUTION TIMES (MS) OF
SMPC, PMPC, AND TMPC IN SIMPLE SIMULATIONS (SIM), GAZEBO
SIMULATIONS (GAZ), AND LAB EXPERIMENTS USING EMBEDDED HARDWARE

(LAB)
System
sim gaz lab
SMPC | 8.0 (1.2) | 84 (1.3) | 46.8 (7.3)
Method | PMPC | 4.9 (0.9) | 52(0.9) | 37.7 (4.2)
TMPC | 3.2 (0.6) | 3.4 (0.7) | 24.1 (4.9)
TABLE V

TIME (S) TO MOVE FROM START TO GOAL FOR SMPC AND HMPC IN SIMPLE
SIMULATIONS (SIM), GAZEBO SIMULATIONS (GAZ), AND LAB EXPERIMENTS

(LAB)
System
sim gaz lab
SMPC 52.3 107.5 | 35.1
Method ' —posc—1—67 1 84 | 8.1

able to plan a trajectory around an obstacle as the line segments
of two stages separated by a relatively large discretization time
intersect with the obstacles when moving around them, i.e.,
Assumption 1 does not hold.

Note that since the PMPC has a sampling time of 500 ms
and only needs 50 ms to solve the considered scenario, it has
time left to account for processing a more realistic grid map and
optimizing a plan in a more challenging environment.

Given the real-time feasibility of SMPC and HMPC, we
can now analyze the schemes’ closed-loop properties. Table V
summarizes the goal-reaching times of SMPC and HMPC in
all simulations and lab experiments. In this case, the goal is
reached if the system enters the circle with a radius of 5 cm
around the goal in (p*, p¥)-plane. We can draw three conclusions
based on the results. First, HMPC can move more efficiently
from start to goal. Second, the presence of model mismatch
significantly affects the goal-reaching times of SMPC, while
HMPC is less sensitive to the presence of model mismatch.
Third, the goal-reaching time of SMPC in lab experiments is
significantly shorter than in simulations. Compared to simple
simulations, the quadrotor moves quicker around the obstacle
edges since the combination of model mismatch and slack results
in higher accelerations, also in the direction of moving alongside
the obstacle. Compared to the Gazebo simulations, the real
quadrotor responds more quickly to control commands. This
effect becomes more significant when the cost function gives less
incentive to increase attitude, and consequently, acceleration.
Therefore, the real quadrotor reaches the circle with a radius of
5 cm around the goal faster.

Fig. 11 shows the 2-D closed-loop trajectories of both SMPC
and HMPC in the lab experiments. Furthermore, Fig. 12 displays
the corresponding planning costs of SMPC and PMPC.

Related to the SMPC performance, we would like to highlight
three aspects.

First of all, the SMPC start and goal positions are closer
to each other compared to HMPC. With the original start
and goal positions, SMPC gets stuck behind the first encoun-
tered obstacle. This is due to the short horizon that ends in
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Fig. 11.  2-D closed-loop SMPC and HMPC trajectories with associated ve-

locities in lab experiments. HMPC has a longer planning horizon and results in
a smoother trajectory reaching the goal in 8.1 s versus 35.1 s for SMPC. Note
that the start and goal positions for SMPC are closer. Otherwise, SMPC cannot
find a way around the first encountered obstacle.
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Fig. 12.  Optimal costs for SMPC and PMPC runs. Due to its longer horizon,

PMPC reduces its cost quickly, whereas SMPC takes longer to move around
obstacles and is sensitive to model mismatch.

steady state and the fact that SMPC is a local method. Af-
ter moving the start and goal positions, SMPC still strug-
gles to find a way around the obstacles because of its short
horizon. As a result, the trajectory slowly rotates around the
obstacle corners, and it takes a long time to reach the goal.
This is reflected in Fig. 12 by the “plateaus" in the cost
function.

Second, SMPC is sensitive to model mismatch. Without con-
straints softening, a slight disturbance effect causes the system to
exceed the constraints, making the optimization problem infea-
sible. With constraints softening, the system gets aggressively
pushed back due to the high slack penalization term in the
cost function. However, this increases the distance to the goal,
causing the robot to move back toward the constraints, repeating
the same process. This is visible in Fig. 11 by the oscillating
trajectory near the obstacles and in Fig. 12 by the noisy cost
values.

To prevent collisions despite this oscillating behavior, the
safety margin, as described in Section VI-A7, is tuned to 0.1 m.
Fig. 13 shows the maximum slack value that occurs in the
prediction horizon of the different SMPC runs over time. The
maximum value is 0.15 m, meaning that the predicted position
in at least one of the stages exceeds the safety margin of
0.1 m. This happens in the last stage, not in the first stage,
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Fig. 13.  Maximum SMPC slack in the horizon over time. The maximum slack
value is around 0.15 m.
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Fig. 14.  Specific snapshot of the TMPC prediction starting from a forward-

simulated state (TMPC init state) and ending in terminal set (12), given the
obstacles, their collision region indicated by the inflation with the radius of the
robot region R, PMPC prediction as reference plan and corresponding reference
trajectory (TMPC ref traj), and obstacle avoidance constraints (PMPC obs con).
Note that the PMPC obstacle avoidance constraints are tightened with respect to
the TMPC obstacle avoidance constraints (TMPC obs con). Furthermore, the last
measured state (current state) is plotted. The last measured state and forward-
simulated state do not overlap, showing the presence of model mismatch.

meaning the robot does not collide with the obstacles. However,
the SMPC scheme cannot provide strict safety guarantees in
general.

Finally, SMPC is not able to maintain altitude during flight.
This is caused by the fact that the SMPC needs to balance both
the planning task, reaching the goal without collisions, and the
tracking task, sending control commands to achieve stable flight,
in a single formulation with a short horizon and in the presence
of model mismatch, especially in thrust dynamics. In simple
simulation, the z position varies between 1.39 and 1.41 m,
in Gazebo between 1.37 and 1.67 m, and in lab experiments
between 0.20 and 1.56 m.

Next, we would like to highlight six aspects related to the
performance of HMPC.

First of all, to verify the implementation of the HMPC scheme,
we checked the simple simulation results and concluded that
the TMPC tracking error was zero at all times. This proves the
validity of Theorems 1 and 2.

Second, in contrast to SMPC, HMPC gives a similar closed-
loop trajectory and similar goal-reaching times in simple simu-
lations, Gazebo simulations, and lab experiments. Therefore, it
is less sensitive to model mismatch compared to SMPC.
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Fig. 15.  2-D closed-loop HMPC trajectory with associated velocity in a more

complex Gazebo environment. HMPC can deal with more complex environ-
ments and finds its way to the goal in 8.4 s without collisions.

Third, the PMPC horizon is long enough to plan a reasonable
trajectory around the obstacles. This is clearly shown by the
quickly decreasing PMPC cost compared to the SMPC cost in
Fig. 12. Due to its longer horizon, PMPC quickly finds a way
toward the goal. On the other hand, SMPC needs time to move
around the obstacles. The horizontal parts of the SMPC cost
illustrate this effect. Moreover, the SMPC cost is noisier, which
is caused by the model mismatch.

Fourth, the TMPC has a sufficiently long horizon to satisfy
the terminal set constraint in every run, as is clearly illustrated
for a particular run between the obstacles in Fig. 14.

Fifth, HMPC can maintain altitude during flight: in simple
simulations, the z position varies between 1.37 and 1.40 m, in
Gazebo between 1.39 and 1.42 m, and in lab experiments 1.32
and 1.43 m.

Finally, to show that HMPC scales to more complex environ-
ments, Fig. 15 illustrates the closed-loop trajectory of HMPC in
a corridor-like Gazebo environment. Even though HMPC is a
local method, it finds its way from start to goal in 8.4 s without
colliding with the obstacles. The maximum PMPC and TMPC
control loop execution times are 7.0 ms and 5.8 ms, respectively,
meaning that HMPC is runtime feasible.

VII. CONCLUSION

Optimizing a trajectory complying with nonlinear system
dynamics and avoiding collisions is a computationally expensive
task. Consequently, it is not feasible to run an SMPC scheme
in real time that generates obstacle avoidance constraints and
optimizes the corresponding trajectory with areasonable horizon
length on an embedded computer.

To address this problem, we propose a novel HMPC scheme,
which includes the codesign of a PMPC and TMPC. In the offline
phase, we compute the terminal ingredients of the TMPC. These
are also utilized to adjust the constraints in the PMPC during
runtime. By ensuring the continuity of the reference plan and
consistency in updating the obstacle avoidance constraints, the
PMPC can run independently from the current system state and
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construct a plan with a long time horizon. This saves constraints
generation and optimization time on the side of the TMPC.
Consequently, the TMPC runs at a higher frequency, resulting
in accurate tracking of the reference plan.

We compared HMPC to SMPC in simulations without model
mismatch, Gazebo simulations, and lab experiments. In general,
the prediction horizon of SMPC needs to be reduced signifi-
cantly to achieve real-time feasibility in the lab experiments.
Therefore, SMPC has difficulty finding a way to the goal, needs
constraints softening to remain feasible, and deviates signifi-
cantly from the desired altitude. On the other hand, HMPC op-
timizes a smoother plan, does not require constraints softening,
and maintains altitude more accurately.

To summarize, HMPC is more computationally efficient and
less sensitive to model mismatch than SMPC. HMPC also pro-
vides tracking and recursive feasibility guarantees. It simplifies
the task for robotic practitioners so they can leverage off-the-
shelf nonlinear solvers for motion planning and tracking without
having to optimize code, linearize models, or take care of safety
themselves. Furthermore, due to its computational efficiency,
HMPC can easily be deployed on different robotic platforms.

While the experiments and simulations demonstrate colli-
sion avoidance and recursive feasibility, the derived theoretical
guarantees are only valid in the absence of model mismatch.
Our next step is to extend the TMPC to a robust formulation
that can explicitly leverage predetermined bounds on the model
mismatch, similar to the ideas in [65]. Lastly, we would like
to move away from motion capture cameras to onboard sensors,
such as LiDAR or depth cameras, for obstacle detection and 3-D
constraint generation, e.g., in outdoor scenarios.

APPENDIX A
PROOF THEOREM 1

Proof: The proof consists of three parts. Part I proposes the
previously optimal solution shifted by 7® = T, appended with
the state after applying «f, as candidate solution with horizon
T =T* for the next TMPC run. Part II shows that all system
and obstacle constraints are satisfied for the candidate solution.
Finally, Part 11l shows asymptotic convergence of the state to
the reference trajectory.

Part I. Candidate solution

For convenience, define for 7 € [T, T + T%]

Uz = “f(wi\tvrlr.w (26)
and a:j‘t according to (5¢) by applying (26).
Consider the following candidate solution:
aT‘t+Ts = uj—{»Ts\ﬁ :i:‘r\H»TS = w‘r*'+TS\t7 T E [07T] (27)

with the reference trajectory defined by (18) in Property 1.
Part II: Recursive feasibility
Part II-1. System constraints satisfaction: For T € [0,T —
T%),j € N1 ne), the system constraints given the candidate
solution satisfy

@0

5d
9;(wr\t+TS7Ur|t+TS) = gj($:+Ts\tau:+Ts\t) < 0. (29)
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Part II-11. Obstacle avoidance: Similarly, by Property 2(b), for
T€(0,T-T%,j¢€ N1 01, the obstacle avoidance constraints
given the candidate satisfy

(5¢)(22)
<

g;,‘r—&-TS\t(p:—kTﬂt) 0

(27

= 95 rt+1= (Prj4rs) <0 (29)

thus ensuring obstacle avoidance by Property 2(a).
Part II-111. Terminal constraints satisfaction: Given candidate
(27) and reference (18), the following holds for r € [T' — T®, T7:

fit /4 r (277) £t/ ,.% r
J (J/‘T\HTS,J?T\HTJ =J (mT+T°‘|t7mT|t+TS)

(19a) (5f)
<T@y, wy,) < o (30)
i.e., the terminal set (Z,|py7s—a%,, p.) € X4t is positive in-
variant. Therefore, by Proposition 1, the following holds for
Te[T—-T5T]:

) ) (19b) .

g;(x7|t+TsauT|t+TS) < 07 J € N[l,ns] (31)
5 (19¢) )

g?7T\t+TS (pr\tJrTs) < 0, J € N1, noy- (32)

Part III. Asymptotic convergence
Asymptotic convergence is shown using Barbalat’s Lemma.
By (19a), the following holds:

SR f,
J t(-’IUT\tJrTS—er\tJrTs) -J t(5U*T|t_5'ch\t)

T
+ /_T - jS7t(wj—+TS‘t7wj—+TS‘t7rT+TS‘t)dT S O (33)

Therefore, the following inequality is established:

j*,t (wt+TS s w_r‘tJrTs )

T
s,t (4, ~
< T> (w'r\tJrTsvuT\tJrTSvrT\tJrTS)dT
7=0

+ T @ rs — @y 1)

(33) *,t by " s,t * *
< T x) — TN @y, T T )T (34)
=0

T

which proves

\7*7t(wt+Ts7 x-r\t-Q—TS) - j*7t(mt7 mr\t)
(35)

t+71%
<= [ o allfyr
T=t

using Q, R = Owith ¢/ > 0.Iterating this inequality and using
the fact that 7" (x;, a!,) is uniformly bounded yields

t
|z~

lim (36)

2
Jim —x|[odr < oo.

Asymptotic convergence follows by invoking Barbalat’s
Lemma. |
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APPENDIX B
PROOF THEOREM 2

Proof: The proof consists of two parts. Part I proposes the
previously optimal solution shifted by 7° = T%P, appended
with an input ensuring steady state, as candidate solution with
horizon 7" = TP for the next PMPC run. Part I shows feasibility
of the candidate solution given the previously optimal solution.

Part I: Candidate solution

Consider the following candidate solution, valid by (20f):

ey, TE[0T—TF)

e = 37a

T \ugy, e -T0.T) G70)

Boppre = X ey TE [0, —1T%) (37b)
©h,  TE[T— T

Part II: Recursive feasibility

Part II-I. System constraints satisfaction: For 7 € [0,T —
T%),j € Nj1,n¢), the system constraints given the candidate
solution are

S ~ (37) S * * (20d)
G5 (Zrjpg s Urpprrs) = G5 (7 ppepps Ur ) < 0. (38)

Part II-1I. Obstacle avoidance constraints satisfaction: Sim-
ilarly, by Property 2(b) for 7 € (0,7 — T%],j € Ny 01, the
obstacle avoidance constraints given the candidate satisfy

. . (20€)(22)(16)
9j,-r+TS|t(pT+TS\t) <

B) ~
=" 65 rjsrs (Prpgrs) < 0. (39

Part II-111. Terminal constraints satisfaction: Given the steady-
state condition in candidate (37), (38), and (39) hold for 7 €
[T —T%,T) as well. |
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