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Transient waves along electrical transmission lines.
Waves in (1+1)-spacetime

Adrianus T. de Hoop and Ioan E. Lager

Faculty of Electrical Engineering, Mathematics and Computer Sciences, 2628 CD Delft, the Netherlands
a.t.dehoop@tudelft.nl, i.e.lager@tudelft.nl

Abstract—The properties of transient waves along electrical
transmission lines are investigated. In particular, the excitation
of the waves by impressed voltage and electric current sources
is studied. Specific choices of this excitation are shown to lead
to ‘one-sided transmission’ only. Furthermore, the reflection
and transmission at a localized line fault/defect is studied. An
illustrative time-domain reflectometry experiment is discussed.

Keywords— reflectometry, power distribution faults.

I. INTRODUCTION

The transient waves along electrical transmission lines
(TLs) are examined as an example of wave phenomena in
(1 + 1)-spacetime [1]. The goal is to derive a reflectometric
strategy for determining the position and physical properties of
localized line faults/defects. The spacetime equations are firstly
constructed and are subsequently time Laplace-transformed.
The expressions of the reflection and transmission coefficients
at the fault for a wave excitation by means of impressed voltage
and electric current sources are then derived. The reflected
waves are shown to assume simple, analytic expressions for
lossless cables. As an added novelty, a ‘one-sided transmission’
at the excitation point is obtained by matching the values of
the localized impressed voltage/electric-current sources.

The described procedure finds a direct practical application
in detecting and remotely characterizing possible faults in a
wide variety of TLs, such as power lines, data-transmission
lines, etc. The contribution contains a simple, but illustra-
tive numerical experiment, convincingly demonstrating the
possibilities, but also the challenges, in the case of a time-
domain reflectometry (TDR) measurement set-up for locating
and characterizing faults in megavolt DC cables.

II. THEORETICAL BACKGROUND

The electrical state quantities of the transmission line (TL)
related to transient traveling wave constituents are listed in
Table 1. All quantities are scalars.

A. Time-domain wave equations and constitutive relations

The coupled system of wave equations is

∂xI + ∂tQ = I imp (1)

∂xV + ∂tΦ = V imp. (2)

The constitutive relations that couple the extensive wave
quantities to the intensive wave quantities are

Q(x, t) = C [δ(t) + αH(t)]
(t)∗ V (x, t) (3)

Table 1. Transient waves along electrical transmission lines.

Intensive state quantities
I longitudinal electric current
V transverse (electric) voltage

Extensive state quantities
Q electric charge per length
Φ magnetic flux per length

Source quantities
I imp impressed electric current per length

V imp impressed voltage per length
Line parameters

C capacitance per length
G conductance per length
L inductance per length
R resistance per length
Y (t) = C ∂t +G transverse line admittance operator per length
Z(t) = L ∂t +R longitudinal line impedance operator per length

Space-time coordinates
x ∈ R position along the line
t ∈ R time coordinate
s = ∂̂t; s ∈ R, s > 0 time Laplace-transform parameter

where α = G/C is the reciprocal of the transverse Boltzmann
relaxation time [2] and

Φ(x, t) = L [δ(t) + βH(t)]
(t)∗ I(x, t) (4)

where β = R/L is the reciprocal of the longitudinal Boltz-
mann relaxation time.

B. Excitation by impressed voltages and electric currents

Using (3) and (4), the excitation of wave constituents by
impressed voltages and electric currents follows from solving
the system of wave equations

∂xI + Y (t)V = I imp (5)

∂̂t = s �⇒ ∂xÎ + Ŷ V̂ = Î imp (6)

∂xV + Z(t)I = V imp (7)

∂̂t = s �⇒ ∂xV̂ + ẐÎ = V̂ imp (8)

where

Y (t) = C(∂t + α) (9)

∂̂t = s �⇒ Ŷ (s) = C(s+ α) (10)

Z(t) = L(∂t + β) (11)

∂̂t = s �⇒ Ẑ(s) = L(s+ β). (12)

13th European Conference on Antennas and Propagation (EuCAP 2019)



C. Wave equation for the electric voltage

Elimination of Î(x, s) from (6) and (8) leads to the TL
wave equation for the electric voltage

γ̂2V̂ − ∂2
xV̂ = ẐÎ imp − ∂xV̂

imp (13)

with
γ̂(s) = c−1 [(s+ α)(s + β)]1/2 , (14)

in which c = (LC)−½ is the wavespeed.

D. Wave equation for the electric current

Elimination of V̂ (x, s) from (6) and (8) leads to the TL
wave equation for the electric current

γ̂2Î − ∂2
xÎ = Ŷ V̂ imp − ∂xÎ

imp. (15)

E. Green’s function of the transmission-line wave equation

The time Laplace-transform domain Green’s function
Γ̂(x, s) of the TL wave equation is the solution to

γ̂2Γ̂− ∂2
xΓ̂ = δ(x) (16)

where δ(x) is the spatial Dirac delta distribution. To determine
Γ̂(x, s), from (16) the spatial Fourier representation

Γ̂(x, s) =
1

2π

∫
k∈R

exp(−ikx)Γ̃(k, s)dk (17)

is substituted. The time Laplace transform parameter s in the
procedure is taken to be real and positive. The result is

Γ̃ =
1

k2 + γ̂2
(18)

where γ̂(s) > 0 is the real propagation coefficient (see (14)).
To evaluate Γ̂, the integrand at the right-hand side of (18) is

extended into the complex k-plane. Here, the integrand has two
simple poles: one at k = −iγ̂ and one at k = iγ̂. For x < 0,
the path of integration (the real axis) is supplemented with
a semi-circle in the upper half of the k-plane with arbitrarily
large radius R. In view of Jordan’s lemma of complex function
theory, its contribution vanishes in the limit limR → ∞.
Application of Cauchy’s theorem then yields

Γ̂ =
exp(γ̂x)

2 γ̂
for x < 0. (19)

A similar procedure in the lower half of the k-plane yields

Γ̂ =
exp(−γ̂x)

2 γ̂
for x > 0. (20)

Equations (19) and (20) can be taken together as

Γ̂(x, s) =
exp(−γ̂|x|)

2 γ̂
. (21)

This equation has the properties

∂xΓ̂ = −γ̂Γ̂(x, s)sgn(x) (22)

with sgn(x) being the signum function sgn(x) = {−1, 0, 1}
for {x < 0, x = 0, x > 0} and

∂2
xΓ̂ = −δ(x) + γ̂2Γ̂ (23)

since ∂x|x| = sgn(x) and ∂2
x|x| = 2δ(x). By observing that

[(s+ α)(s+ β)]½ =

[(
s+

α+ β

2

)2

−
(
α− β

2

)2]½
(24)

the time-domain equivalent of (21) is via [3, Formula 29.3.93]

Γ(x, t) =
c

2
exp {− [(α+ β)/2] t}

I0

[
(|β − α|/2)(t2 − x2/c2)1/2

]
H(t− |x|/c) (25)

with I0 as the modified Bessel function of the first kind.

F. Expressions for the excited voltage and electric current

Observing that for any impressed source distribution

{V imp, I imp}(x, t) = {V imp, I imp} (x,t)∗ δ(x, t) (26)

∂̂t = s �⇒ {V̂ imp, Î imp}(x, s) = {V̂ imp, Î imp} (x)∗ δ(x) (27)

and introducing the traveling-wave potentials

A = Γ
(x,t)∗ I imp (28)

∂̂t = s �⇒ Â = Γ̂
(x)∗ Î imp (29)

and

Ψ = Γ
(x,t)∗ V imp (30)

∂̂t = s �⇒ Ψ̂ = Γ̂
(x)∗ V̂ imp (31)

the expression for V (x, t) follows from (13) as

V = −∂xΨ+ Z(t)A (32)

∂̂t = s �⇒ V̂ = −∂xΨ̂ + Ẑ(s)Â. (33)

Similarly, the expression for I(x, t) follows from (15) as

I = −∂xA+ Y (t)Ψ (34)

∂̂t = s �⇒ Î = −∂xÂ+ Ŷ (s)Ψ̂. (35)

G. Wave excitation by localized impressed sources

In this section, the transient wave constituents generated
by localized sources of impressed voltage and electric current
are investigated.

1) Excitation by an impressed voltage source

The transient waves excited by a localized impressed
voltage source follow upon substituting in (5) and (7)

V imp(x, t) = V0(t)δ(x − xV ) (36)

where x = xV is the location and V0(t) the time signature of
the source, and

I imp(x, t) = 0. (37)

The corresponding traveling-wave potentials are

Ψ(x, t) = V0(t)
(t)∗ Γ(x− xV , t) (38)

∂̂t = s �⇒ Ψ̂(x, s) = V̂0(s)Γ̂(x− xV , s) (39)
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A(x, t) = 0 (40)

∂̂t = s �⇒ Â(x, s) = 0. (41)

For this kind of excitation, (6) leads to

∂xÎ + Ŷ V̂ = 0 (42)

or

−γ̂(s)sgn(x− xV )Î(x, s) + Ŷ (s)V̂ (x, s) = 0 (43)

which is rewritten as

Î(x, s) = sgn(x−XV )η̂(s)V̂ (x, s) (44)

where η̂(s) = Ŷ (s)/γ̂(s) is the TL traveling-wave admittance.
The resulting expressions for the source-excited voltage and
electric current are

{V̂ , Î}(x, s) = V̂0(s) {1, η̂(s)sgn(x − xV )} Γ̂(x− xV , s).
(45)

2) Excitation by an impressed electric-current source

The transient waves excited by a localized impressed
electric-current source follow upon substituting in (5) and (7)

I imp(x, t) = I0(t)δ(x − xI) (46)

where x = xI is the location and I0(t) the time signature of
the source, and

V imp(x, t) = 0. (47)

The corresponding traveling-wave potentials are

Ψ(x, t) = 0 (48)

∂̂t = s �⇒ Ψ̂(x, t) = 0 (49)

A(x, t) = I0(t)
(x,t)∗ Γ(x− xI) (50)

∂̂t = s �⇒ Â(x, s) = Î(s)Γ̂(x− xI , s). (51)

For this kind of excitation, (8) leads to

∂xV̂ + ẐÎ = 0 (52)

or

−γ̂(s)sgn(x− xI)V̂ (x, s) + Ẑ(s)Î(x, s) = 0 (53)

which is rewritten as

V̂ (x, s) = ζ̂(s)Î(x, s) (54)

where ζ̂(s) = Ẑ(s)/γ̂(s) is the TL traveling-wave impedance.
The resulting expressions for the source-excited electric current
and voltage are

{Î, V̂ }(x, s) = Î0(s)
{
1, ζ̂(s)sgn(x− xI)

}
Γ̂(x− xI , s).

(55)

III. TRAVELING-WAVE REFLECTION AND TRANSMISSION AT

A LINE FAULT

The reflection and transmission of traveling waves at a line
fault or defect is a basic issue in TDR. For analyzing such
configurations, the line fault or defect is modeled as a local
disturbance of the transverse line admittance operator and/or
the longitudinal line impedance operator

fault in Y (t) = δY (t)δ(x − xF), (56)

fault in Z(t) = δZ(t)δ(x − xF), (57)

in which δY (t) = δC∂t+δG, δZ(t) = δL∂t+δR and x = xF

is the location of the fault. Using the notations

[. . .]|+− = lim
x↓xF

[. . .]− lim
x↑xF

[. . .] (58)

〈. . .〉+− =
1

2

[
lim
x↓xF

[. . .] + lim
x↑xF

[. . .]

]
(59)

the presence of the fault or defect is modeled via the cross-fault
electric-current or voltage, respectively, boundary conditions

[I]|+− = δY (t)
(t)∗ 〈V 〉+− (60)

[V ]|+− = δZ(t)
(t)∗ 〈I〉+− (61)

that follow from (5) and (7) by integrating them about x = xF

under the application of the trapezoidal rule.

A. The reflectometric configuration

The analysis is carried out in the time Laplace-transform
domain. In the TL section where the fault is located, an inter-
rogating ‘incident’ wave i is launched at x = xV (xV < xF){

V̂ i, Î i
}
= V̂0(s) {1, η̂(s)} exp [−γ̂(s)(x− xV )]

for xV < x. (62)

At the fault, a ‘reflected’ wave r is generated{
V̂ r, Îr

}
= R̂(s)V̂0(s) {1,−η̂(s)} exp [γ̂(s)(x− xV − xF)]

for x < xF (63)

where R̂(s) is the (voltage) reflection coefficient. In the section
x > xF a ‘transmitted’ wave t is generated

{V̂ t, Ît} = T̂ (s)V̂0(s) {1, η̂(s)} exp [−γ̂(s)(x − xV − xF)]

for xF < x (64)

where T̂ (s) is the (voltage) transmission coefficient. Use of
(62), (63) and (64) in (58) and (59) leads to

T̂ (s)− 1 + R̂(s) +
δŶ (s)

2η̂(s)

[
T̂ (s) + 1 + R̂(s)

]
= 0 (65)

with δŶ (s) = sδC + δG, and

T̂ (s)− 1− R̂(s) +
δẐ(s)η̂(s)

2

[
T̂ (s) + 1− R̂(s)

]
= 0. (66)
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with δẐ(s) = sδL+ δR. From (65) and (66) it follows that

R̂(s) =
1

2

[
1− δŶ /2η̂

1 + δŶ /2η̂
− 1− δẐη̂/2

1 + δẐη̂/2

]
(67)

T̂ (s) =
1

2

[
1− δŶ /2η̂

1 + δŶ /2η̂
+

1− δẐη̂/2

1 + δẐη̂/2

]
(68)

Note that when δY = 0 and δZ = 0, (67) and (68) satisfy the
check R̂(s) = 0 and T̂ (s) = 1. The reflectometric response at
x = xV is then

V̂ r(s, xV ) = V̂0(s)R̂(s) exp [−2γ̂(s)(xF − xV )] (69)

and is available for further processing to extract the parameters
of the fault or defect.

B. Lossless line analysis

A commonly encountered situation is that when the line is
lossless (R = 0, G = 0), implying that γ̂ = s/c, η = (C/L)½

and ζ = (L/C)½, with c = (LC)−½ being the wavespeed
along the line. In that case, (67) becomes

R̂(s) =
2η/δC

(2η/δC + δG/δC) + s
− 2/ηδL

(2/ηδL+ δR/δL) + s

=
AY

αY + s
− AZ

αZ + s
= M̂Y − M̂Z . (70)

From (67) it is inferred that: when either δC = 0 or δL = 0,
the corresponding term M̂Y or M̂Z becomes independent of
s; when δC = δL = 0, R̂(s) becomes independent of s. From
(69) and (70) it folows that the reflected wave in the case of
a lossless line consists of constituents having a time Laplace
transform of the general shape

V̂ r(s, xV ) = V̂0(s)
AF exp(−sTF)

(s+ αF)
for s ∈ C, Re(s) > −αF

(71)
for δC 	= 0 or δL 	= 0, and of the general shape

V̂ r(s, xV ) = V̂0(s)AF exp(−sTF) for s ∈ C (72)

for δC = δL = 0, where TF is the two-way travel time from
the line’s access point to the location of the fault, and back.

C. Localized combined impressed voltage/electric-current
source excitation – one-sided excitation

The transient waves excited by a localized combined
impressed voltage/electric-current source follow upon substi-
tuting in (5) and (7)

V imp(x, t) = V0(t)δ(x− xV I) (73)

∂̂t = s �⇒ V̂ imp(x, s) = V̂0(s)δ(x− xV I) (74)

I imp(x, t) = I0(t)δ(x − xV I) (75)

∂̂t = s �⇒ Î imp(x, s) = Î0(s)δ(x− xV I) (76)

where x = xV I is the location of the source and {V0(t), I0(t)}
are its time signatures. The corresponding wave potentials are

Ψ(x, t) = V0(t)
(t)∗ Γ(x − xV I , t) (77)

∂̂t = s �⇒ Ψ̂(x, s) = V̂0(s)Γ̂(x− xV I , s) (78)

A(x, t) = I0(t)
(t)∗ Γ(x− xV I , t) (79)

∂̂t = s �⇒ Â(x, s) = Î0(s)Γ̂(x− xV I , s). (80)

From (45) and (55) the resulting expressions for the source-
excited voltage and electric current are{

V̂ , Î(x, s)
}
= V̂0(s) {1, η̂(s)sgn(x− xV I)} Γ̂(x− xV I , s)

+Î0(s)
{
ζ̂(s)sgn(x− xV I), 1

}
Γ̂(x− xV I , s). (81)

For V̂0(s) = Î0(s)ζ̂(s) (81) yields

{V̂ , Î}(x, s) = 0 for x < xV I (82)

whereas for V̂0(s)η̂(s) = −Î0(s) (81) yields

{V̂ , Î}(x, s) = 0 for x > xV I (83)

namely one-sided excitation results.

IV. THE ECHOGRAM AS A DIAGNOSTIC TOOL

Monitoring the operation of large grid systems for electric
power transmission and distribution [4], [5] presents testing
challenges, one of them being detecting, locating and charac-
terizing faults in kilovolt or megavolt DC cables. Presently,
there is a vast bibliography on fault detection schemes for
overhead TLs and, more recently, for cables, with traveling-
wave based fault location being widely credited as the path
to follow. Most strategies use a TDR measurement set-up, in
which a pulse with a suitable waveform is injected at an access
point, and the time-of-arrival of the reflected wave measured at
the same point gives an indication of the fault’s location. The
accuracy of TDR methods hinges on the knowledge of the line
parameters [6] and the detection of the incoming pulse [8], [9].

In this section we shall demonstrate how information about
the (physical) nature of the fault can also be extracted from
the time signature of the reflected pulse. The cable under
investigation is modeled as a uniform section of lossless
TL with an access point that is activated by impressing a
voltage pulse (or a pulsed electric current surge). The system’s
response is monitored at the same point via a tester displaying
the exciting voltage and the response(s).

A. Analytic model pulse shapes

As the basic pulse shape for modeling analytically the
excitation of the cable under test we take the exponential pulse

V0(t) = A0 exp(−α0t)H(t) (84)

where A0 is the amplitude, and the pulse time width tw,0 – the
latter is related to the time decay coefficient α0 via tw,0 = α−1

0 .
The pulse’s time Laplace transform is

V̂0(s) =
A0

s+ α0
for s ∈ C, Re(s) > −α0. (85)
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B. Reflector parameters extraction

For lossless cables, (71) implies that the reflection at a
cable fault for an excitation of the type (85) will also have an
exponential pulse shape. The reflected wave constituent has
then a time Laplace transform of the general shape

V̂ r(s, xV ) =
A exp(−sTF)

(s+ α0)(s+ αF)

for s ∈ C, Re(s) > −min(α0, αF) (86)

that yields the time-domain reflected wave

V r(t) =
A

αF − α0
[exp(−α0t

′)− exp(−αFt
′)]H(t′)

for α0 	= αF (87)

V r(t) = At′ exp(−αt′)H(t′) for α0 = αF = α (88)

with t′ = t − TF. This type of signatures are denoted as
exponential doublet pulses (Exp2-pulse). By following a
similar reasoning, (71) will yield a time-retarded, scaled copy
of the excitation pulse as reflected wave.

At this point it is noted that, in general, the extraction
of the desired parameters from the reflector’s TD reflection
function as it occurs in the pertaining reflected wave requires
a deconvolution of this signal with the excitation, through
the application of signal processing deconvolution algorithms.
Some of the parameters can, however, be directly obtained
from the echogram itself. This will be elucidated for the case
when the excitation takes place with the pulse in (84). In view
of editorial space restrictions, the more general situation when
δC or δL are nonzero is elaborated upon (the cases when either
one of, or both δC or δL are zero can be dealt with in a similar
manner). Let us consider one of such constituents

V (t) =
A

αF − α0
[exp(−α0t)− exp(−αFt)]H(t) (89)

with α0 	= α1. In the echogram, this pulse shows a peak value
V peak at the pulse rise time tr. By taking ∂tV (t) = 0 for t =
tr, this peak value is V peak = (A/αF) exp(−α0tr). Carrying
out the sensing experiment with two different values of α0 and
extracting from the echograms the values of V0, V peak and tr,
two relations between A and αF follow, from which the values
for the reflector under consideration can be obtained.

C. Illustrative signatures for the three basic configurations

Some illustrative signatures are hereafter given. The re-
flection functions associated with the reflection due to faults
are shown in Fig. 1. The superposition of two Exp2-pulse-
s is visible. The echograms demonstrate the sharp change at
the reflected wave’s arrival time TF, this allowing an accurate
determination of the distance to the termination. However, the
amplitude of the reflected wave is quite smaller and, moreover,
drops as the fault’s contrast with respect to the line’s traveling-
wave admittance η̂ and impedance ζ̂, respectively, decreases.
This may affect the ability to accurately determine the distance
to the fault in the cases when noisy signatures are received.
This amplitude reduction must also be accounted for in the
case of algorithms for reconstructing the fault’s parameters.
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Fig. 1. Echograms for faults. TY = 2 cxF is the two-way travel time from
the access point of the cable to the position of the fault and back.
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