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1
Introduction

In the modern world, most events are planned in advance. Unfortunately things do not always go according
to plan, as such altering our schedules occurs frequently. Ensuring that after the alteration we are left with an
efficient plan that is similar to our original plan is often an intuitive goal.

In the remainder of this chapter we will first introduce some scenarios in which it is relevant that the sched-
ule remains largely the same in Section 1.1. Subsequently, in Section 1.2 different environments in which
uncertainty can be considered are introduced. Section 1.3 describes different ways in which the degree to
which schedules differ can be measured. Finally, methods with which efficient schedules can be created in
an uncertain environment are given in Section 1.4.

1.1. Motivation
When a person is performing task, it seems reasonable to assume they would rather stick to the initial sched-
ule they have been given. This would seem particularly so if they use the same schedule multiple times and/or
if the tasks are short.

When considering a medical appointment, keeping the same assignment is important. Once a schedule has
been created, a patient has been scheduled to see a certain doctor and probably would rather not switch.
Additionally, patients will likely want their appointment not to move too much. Being on-site earlier can only
be done to a certain extent and having to wait is tiresome and can interfere with later appointments.

In the context of parcel delivery, the van that is being used is route dependent until it has been loaded. From
that point, there is overhead to using a different van. For instance because computing the optimization prob-
lem including parcel transfers between vans is time consuming as is the physical act of transferring parcels.
Because of this, we want parcels not to switch between the delivery vans and the vans are independent. While
the delivery times are free during the initial optimization, they no longer are after they have been communi-
cated to the destinations. From this point, we would like to have a delivery within the specified times-slot.

When scheduling combined cab rides, for instance those subsidised by the Dutch government for people who
are not mobile (Valys). A large national party will subcontract these rides to smaller local cab companies. If
the ride is altered – either the time or the location – this requires contacting the subcontractor, resulting in
overhead for every change.

1.2. Scheduling and Uncertainty
In this section we consider scheduling in an uncertain environment. This uncertainty manifests itself in a
variety of different ways. For example, a task takes longer than expected, a resource breaks down, a task is
added during execution or a resource is not yet available when the task is supposed to start. An issue in
many real-world environments is that insufficient reliable data is available about the distribution of these
disturbances.

In the remainder of this section we consider schedules that do not change during execution in Subsection

1



2 1. Introduction

1.2.1 and those that do in Subsection 1.2.2.

1.2.1. Static Scheduling and Uncertainty
In a static scheduling problem, we create a schedule that assigns tasks to resources in such a way that an
objective is minimized. This objective is usually some function of the start times (e.g. makespan or maximum
tardiness). A static scheduling environment assumes all information about the tasks and resources is known
beforehand and that no adjustments are made during execution.

Unfortunately, there usually is uncertainty about execution in reality. Trying to create a single schedule that
does not change to accommodate the myriad of potential real-world failures is unmanageable, we cannot
take all of them into account. In practical situations we cannot even foresee all of them. Controlling for
all those we can is usually impossible due to the constraints such as temporal constraints and the number
of available resources. When not impossible, the resulting static schedule for all but the least error-prone
environments would be very inefficient.

1.2.2. Dynamic Scheduling with Uncertainty
In dynamic scheduling, a situation is considered in which some of the information about the scheduling
problem is learnt during the schedule’s execution. When adjustments are made during execution there are
two main approaches. The first is to fully define a schedule based on likely values and alter it when new
information is learnt. The second to only partially define the schedule beforehand, and set the exact assign-
ment and start time during execution[6, 40]. For instance by fixing the order of the tasks beforehand so that
if executed in this order they meet the problem constraints and then to assign them to the first available re-
source during execution more sophisticated execution strategies exist[18]. This particular example only takes
certain kinds of disruptions into account.

While leaving many scheduling aspects undefined until execution can work well in e.g. manufacturing en-
vironments in which the available resources are fixed. Different scenarios mentioned above benefit from
having a fixed assignment to a fixed resource and time. For instance an appointment at a hospital, a time and
which doctor to see would be conventional. Other examples would be a window of time in which a parcel
may arrive and the time at which a subcontractor performs a certain task so that they can schedule other
tasks to perform on the same day.

The above examples can be modelled as scheduling problems of varying degrees of complexity, this work
limits itself to the identical parallel machine environment [26]. This choice is due to the relative simplicity
of the environment while still containing the intricacy of having multiple resources. As tasks can rarely be
interrupted and resumed in realistic scenarios involving people, pre-emption will not be allowed. Lastly, we
will focus on fully defined schedules to enable giving fixed times and allocations as detailed above.

1.3. Types of Objectives for Scheduling with Uncertainty
When scheduling in a dynamic environment we distinguish two types of objectives. The performance ob-
jectives that are unrelated to the way in which the schedule has been changed i.e. it does not matter how
different the executed schedule is from the initial one. For example, the makespan or mean flow time. Then
we have the stability objectives which are related to how the schedule has been changed. A common example
in literature is the completion time variance (CTV) [12, 33]. The difference in the completion time of all jobs
in the initial (base-line) schedule and the realized schedule is measured. Such a metric is particularly mean-
ingful for instance in a manufacturing environment when delivery times are agreed and altering them later
brings cost due to storage or late fees.

As outlined in section 1.1, taking the allocation into account is often important. In addition, when the re-
sources are human we also need to consider the stability from a resource perspective. That is, take into
account the sequence of tasks scheduled on each resource i.e. the tasks assigned to each person.

1.4. Creating Schedules in a Dynamic Environment
The steps taken when creating a schedule in a dynamic environment are generally to create a base-line (ini-
tial) schedule and then to repair this when disruptions make the execution of this schedule impossible. As
illustrated in figure 1.1, the proactive scheduler creates the first schedule from the problem instance. The
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objective of this step is to create a schedule that is likely to perform well with regard to the performance and
stability objectives. This is highly dependent on the events that can take place in the environment and the
policy employed by the reactive scheduler. The reactive scheduler repairs the schedule when a disruption
occurs and can be non-existent (the base-line schedule must be possible regardless of what happens in the
environment) or vary from a simple repair heuristic (e.g. right shift rescheduling[1]) to a complete reschedule.

The expectation of the performance and stability objective given the reactive policy and environment is the
robustness of the schedule. The robustness should not only be taken into account in the proactive scheduler
but also in the reactive scheduler.

An added degree of complexity is that we do not immediately have to communicate changes the moment
a disruption happens if executing the current schedule is still possible for some time. For example if the
duration of a task that is being executed increases, during that change the tasks on the other resources may
not have to change. There is a trade-off between informing the resources and tasks in advance versus having
inform them multiple times if more disruptions occur during the time the schedule remains the same. In
addition, we can consider the communicated schedules those to which our stability objective applies. After
all, these are the schedules that are considered by our tasks and resources. As the difference may be measured
as the sum of the changes between consecutively communicated schedules, part of the reactive policy may
be to keep the schedule identical for as long as possible to avoid having to communicate more often.

Figure 1.1: High level overview of proactive and reactive scheduling in a dynamic environment.

When the probability of another disruption approaches 0, the expected performance and stability approach
the actual performance and stability. As such, when the probability distribution over all possible disruptions
is part of the input, it must be at least as computationally hard as creating an optimally repaired schedule.

In practice, the repair has to be made quickly so that the repaired schedule can be executed without the need
for a pause to finish the computation. To this effect, we consider weakly NP-complete problems as potentially
viable because some pseudo-polynomial algorithms scale well in practice. On the other hand, due to the fact
that strongly NP-complete problems can not have pseudo-polynomial algorithms or fully polynomial time
approximation schemes[20] and we will consider finding a fast, exact and optimal repair strategy unlikely. The
information about the disruption will be known from the moment the task starts. By applying only a single
disruption, when to communicate does not have to be taken into account as there are only two schedules
that must both be communicated. This document will investigate the viability of optimally repairing parallel
processor schedules in an environment containing only a single disruption to the duration of a task.





2
Related Literature

In the previous chapter, we introduced the concept of performance and stability in a dynamic scheduling
environment. In this chapter we investigate previous work in these fields. There are different dimensions to
consider: We have proactive and reactive[41] scheduling, performance and stability objectives[24] , and dif-
ferent scheduling environments[5] . These environments may differ for example by the number of resources
considered, the way in which tasks can be executed on specific resources, the sort of disruptions that can
occur, and the likelihood of these disruptions occurring.

2.1. Partial Schedules
One option to avoid disruptions to postpone fixing scheduling details until execution[6, 40]. This enables
dealing with disruptions as they occur. For more difficult scheduling problems, work done ahead of time
enables quickly assigning tasks during execution. By not creating any expectations for a specific resource or
time, there is no such thing as the stability of the realized schedule. On the other hand, the realized perfor-
mance can be compared to the expected.

2.1.1. Temporal Networks
When considering partial schedules, they are often represented as a Simple Temporal Network (STN). A fre-
quent property of this STN is that it only represents valid temporal assignments of the original scheduling
problem. That is, all temporal assignments in the STN meet the other constraints (resource, precedence, etc.)
of the scheduling problem. For example, optimizing the makespan in an identical parallel machine environ-
ment is strongly NP-complete, while it is possible to limit the solution space of the problem in order to be
able to find a solution in polynomial time [40].

Such an STN will generally not contain all possible solutions to the problem. A measure that attempts to
capture the intuitive property of how many solutions are contained is the flexibility[27, 50]. Brooks et al. [9]
extend flexibility metrics to a robustness metric that takes the likelihood of certain events into account.

There are multiple extensions to STNs to include information about the uncertainty of dynamic scheduling.
For instance in a STNU (uncertainty) we have a lower and upper bounds on time at which certain events
occur. And in a PSTN (probabilistic) a probability density function over the times at which certain events
occur.

When a STNU is dynamically controllable [10, 13, 37] it means that set of solutions it contains are realizable
given any realization of the uncertainty. Rossi et al. [45] consider preferences for each of the time intervals
between events. Of all legal schedules, they pick the one that optimizes these preferences.

Tsamardinos et al. [46] provide a method to compute lower- and upperbounds on the probability of a valid
dynamic execution of an PSTN. Brooks et al. [9] call this probability the robustness of the PSTP. They experi-
mentally determine this robustness based on simulations that sample the probability distribution.

5



6 2. Related Literature

2.2. Constraint Programming
Constraint programming enables solving a variety of scheduling problems. Such as RCPSP[17], course timetabling
[7] or kernel resource feasibility [16]. Work has been done to create stable solutions to dynamic constraint
programming problems (CSPs). An example is to keep the solutions similar in the sense that as few variables
differ between them, known as minimum perturbation[34]. This approach has been combined with aiming
for the minimization of the makespan[17]. However, in this particular example the method of backtracking
from the original solution merely heuristically keeps the solutions similar. An approach that retains optimal-
ity with regard to the number of altered variables is suggested by Roos et al.[44]. They utilize a local search
to systematically apply constraint propagation from the disrupted variable. First checking all options that
could result in a valid solution with one variable change, then two, etc. continuing until a valid solution is
found. Due to the lack of performance of this method, a heuristic approach is suggested to limit the number
of solutions that are considered[42]. By pruning the search space in this manner, optimality is lost. In solv-
ing a scheduling problem of university timetables Lindahl et al.[34] offer human schedulers different options
to deal with a disruption. This disruption consists of a resource (classroom, lecturer, etc.) becoming avail-
able or unavailable. The actual computation is done by solving a mixed integer program with an increasing
allowance for perturbation until an acceptable solution quality is reached.

In order to guarantee a disruption in the form of a negated variable can be corrected within a perpetuation
bound, the concept of supermodels [21] was developed. Such a model allows for a fixed number of changes
a in the environment to be recovered by altering a fixed number of values b in polynomial time. If both a
and b are fixed numbers and the original problem is in NP, creating the supermodel is in NP[21]. This is the
case as there is only a fixed number of the original problem instances that need to be considered. However,
problems in NP can be too computationally intensive to solve in an acceptable amount of time. In addition,
scaling in a and b is not polynomial. So for larger values it is likely to be infeasible to compute the model.
Even if we only allow for a single disruption, the potential number of changes required for a repair scales with
the number of tasks. A further generalization of the supermodel is to find all solutions furthest way or closest
to the starting solution[22].

Further advances have been made to more efficiently find a single minimum perturbation solution. For in-
stance by combining constraint optimization with constraint satisfaction techniques[55]. Even in the most
recent developments[19], no problems larger than 50 variables are considered for comparison. For a schedul-
ing problem, this is very little as a different variable is usually used for each possible start time for every task.

2.3. Performance Objective
A well-researched area of dynamic scheduling pertains to the optimization of the performance objective.
Most often, this is the same objective that was used in the creation of the baseline schedule. By creating
a robust schedule[23], it is possible to guarantee that no considered disruption alters the makespan past a
given bound[36].

When considering the completion times of the tasks as the objective, pseudo-polynomial algorithms exist for
certain special cases[52]. In scheduling RCPSP problems, Calhoun et al. [11] make the distinction between
making changes to the schedule before execution of the schedule (re-planning) and during execution of the
schedule (re-scheduling). They use a heuristic to create the initial schedule and then improve on it using
tabu search. Fu et al.[18] also make use of local search in RCPSP problems, of particular relevance is that they
utilise a STN to find the repaired schedule. For more information see for example Herroelen et al.[24].

2.4. Stability Objective
When considering stability objectives, we make a distinction between two types. Time based stability in
which only the start (or completion) times of the tasks are taken into account and resource based stability in
which the assignment between tasks and resources is taken into account.

.[38]

2.4.1. Time Based Stability
Considering only stability with regard to the completion times, completion time variation (CTV) is a frequent
objective [12, 33, 47, 48, 51]. On a single machine, Wu et al. [51] consider the experimental difference between
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different heuristics and genetic algorithms on CTV as well as the order of the tasks. An interesting conclusion
by Van de Vonder et al. [47] is that creating a robust schedule by adding buffers of idle time between tasks to
protect the makespan against disruptions does not create stability in the sense of CTV whereas placing the
buffers with the aim of the stability objective (CTV) does protect the makespan.

Another time based objective is to minimize the (weighted) tardiness of all tasks Du et al.[15] show this prob-
lem is NP-hard. However, a pseudo-polynomial algorithm does exist[30]. A robust schedule based on stochas-
tic machine failures as disruption can be created heuristically [38].

Other stability objectives are generally considered together with a performance objective. Abumaizar et al. [1]
measure the change in makespan, start times and sequence comparing right shift rescheduling to a complete
reschedule of the remaining tasks. The reschedule has the makespan as the objective. In a single machine
environment, Zhao and Tang [54] give a polynomial algorithm to minimize the sum of completion times
and keep the sequence as similar as possible. Considering only whether the schedule has changed during
execution [46] is also a stability objective. In effect, this considers only if there is a need to communicate a
change.

2.4.2. Resource Based Stability
When considering which resource each task is assigned to, Alagoz et al. [2] consider the sum of completion
times together with the assignment. This is under the assumption that each disruption has been recovered
before the next occurs and that full information on the length of the disruption is available. Additionally, they
consider a limited subset of machines on which each job can be executed. Liu et al. [35] consider the same
objectives when additional work is found during execution of the schedule. They show that it is possible to
perform this multi-objective optimization in polynomial time. Ozlen et al.[39] consider the same problem but
in an environment where a machine is disrupted being unable to perform tasks for some time. By considering
reactive scheduling policies ranging from right shift rescheduling to a full reschedule (makespan objective)
Arnaout and Rabadi [3] measure the effect on the makespan, assignment and the time it takes for the schedule
to be the same as the base-line schedule.

2.5. Complexity Theory
This section contains the most relevant aspects of complexity theory to this thesis. First we give a (very)
brief refresher on NP-hardness followed by a short introduction on the concept of strong NP-hardness. We
will consider two classes of problems P and N P [28]. The class P contains all problems we can decide in
polynomial time. The class N P contains all problems for which we can verify the solution in polynomial time
(given a certificate). There are certain problems for which we know that if we can solve them in polynomial
time, we can solve any problem in N P in polynomial time. These problems are known as NP-hard. Not all NP-
hard problems are in NP, those that are are referred to as NP complete. Whether P = N P is an open problem
in computer science. It is generally accepted that it is unlikely that P = N P , this is the assumption we will
make in this work.

The concept of strong-NP hardness[20], follows from the fact that no fully polynomial time approximation
scheme can exist for certain NP-hard problems. A pseudo-polynomial algorithm can be used to create such
an approximation scheme[20]. An algorithm is pseudo-polynomial if it’s runtime is a function of not just the
length of the input, but also the size of the input. This implies no pseudo-polynomial algorithm can exist for
strongly NP-hard problems. The strong-NP hardness property can be shown through a (pseudo)polynomial
reduction to a known strongly-NP hard problem. Problems that are known to not be strongly NP-hard, are
known as weakly NP-hard. One way of showing a problem is weakly NP-hard is through a pseudo-polynomial
algorithm for this problem.

2.6. Conclusion
In this chapter we have given an overview of the literature related to stability in scheduling. For the single
machine scheduling model, a substantial amount of work has been done on efficiently computing different
stability metrics and performance metrics. However, this is the easiest scheduling problem we consider which
hides much of the complexity of having multiple resources. In practice, most relevant scheduling problems
include more than one resource.

For the much more general constraint programming problem, work has also been done on computing in
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particular solutions at minimum perturbation as well as for other stability metrics in combination with opti-
mality objectives. However, we cannot compute optimal solutions efficiently. In fact, this problem is strongly
NPC in a static context and approaches to creating repairs are often heuristical.

There is still a variety of scheduling problems that exists in between the two mentioned above. Work has been
done on dynamic scheduling problems varying from identical parallel processors to RCPSP. However, work on
stability when regarding these problems is sparse. Particularly when combined with an optimality objective.
It is of great interest whether approaches exist for these problems that are both efficient and optimal so that
we need not fall back on the more general constraint programming problem as this either offers no guarantees
as to the solution quality or takes too long to make a fast repair. To this end, we consider the identical parallel
processors with only an increase of duration to a single task. This model includes multiple resources and
as such captures much of the complexity involved in practical schedule repair. In this context both stability
and performance will be considered. In this document we study the feasibility of creating fast repairs in this
context. Offering algorithms to show the feasibility of creating such a repair and proofs of complexity to show
infeasibility.



3
Parallel Processor Scheduling

In this chapter we present metrics that capture stability in scheduling; the difference between the initial and
realized schedule from the perspective of humans as resources or tasks. This occurs within the context of
Parallel Processor Scheduling as this is the simplest model that captures the intricacies in using multiple
resources. First, in Section 3.1 we formalize our scheduling environment and our disruption model. Finally,
we introduce our metrics and describe how they capture stability in Section 3.2.

3.1. The Parallel Processor Scheduling Problem
In this section, we formally define our problem consisting of identical parallel processors. Furthermore, we
state the way in which the single disruption to the duration is modelled. Only one disruption is considered to
avoid the complications of communicating changes. The disruption is to the duration as this is a particularly
common occurrence. Lastly, we give a more concise problem notation for easier reference in Chapter 4 where
the complexity of these problems is analysed.

In Subsection 3.1.1 the scheduling environment and the requirements for a schedule to be valid are defined.
Following this we introduce our disruption model in Subsection 3.1.2. Lastly, the notation for scheduling
problems including stability is given in Subsection 3.1.3.

3.1.1. Scheduling Environment
Our environment is the identical parallel processor scheduling problem [20, 26]. The output is a schedule
S so that all constraints are met. In this section we do not apply an optimization objective to S, only the
requirements that must hold for any valid schedule.

The scheduling problem consists of a set P = {p1, p2, . . . , pm} of m identical processors, a set of n tasks T =
{t1, t2, . . . , tn}, and d(ti ) (Z+ → Z+) denotes the duration of task ti ∈ T . Finally, we define a directed acyclic
graph G determining the precedence constraint on the tasks in T , an edge from ti to t j indicating ti must
finish before t j can start.

For a schedule S to be valid we require that each task ti ∈ T is assigned to one processor p j ∈ P for its duration
d(ti ). The function a(S, ti ) (→ {1,2, . . . ,m}) denotes that the task ti ∈ T is assigned to p j in schedule S. No
pre-emption is allowed, the tasks must continue until they are finished.

Additionally, we require that only one task is assigned to a processor at a time. Let s(S, ti ) (→Z+) denote the
start time of task ti ∈ T in schedule S and f (S, ti ) (→Z+) denote the finish time. To ensure that no two tasks
overlap we require that for each processor p j ∈ P , given a set of assigned tasks β(S, p j ) = {ti ∈ T : a(S, ti ) = j },
the following holds:

∀ti ,tk∈β(S,p j ):ti 6=tk
s(S, ti ) ≥ f (S, tk )∨ s(S, tk ) ≥ f (S, ti )

Further, to meet the precedence constraints, it must hold that if an edge exists from ti to t j , f (S, ti ) ≤ s(S, t j )
for any valid schedule S. If in G each vertex has at most one incoming edge and at most one outgoing edge,
we say that the precedence constraints are in the form of chai ns.

9
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Lastly, we introduce notation to be used bellow. Let L(S, p j ) denote the elements ti ∈ β(S, p j ) sorted by in-
creasing s(S, ti ). In other words, this is the sequence of tasks on processor p j in the order that they are exe-
cuted in S. I (ti ,L(S, p j )) denotes the index (starting at 1) of ti in L(S, p j ), or -1 if ti 6∈β(S, p j ).

3.1.2. Disruption Model
In this subsection, our model of disruptions is introduced. While many different such models exist, we opt
to investigate the simplest such model that is still realistic. A single disruption to the duration of a task.
An increase in the duration as it is common and a single disruption to avoid the complication of when to
communicate changes to the schedule.

When such a disruption occurs, both the baseline schedule S and the repaired schedule S′ need to abide by
the constraints outlined above in Subsection 3.1.1. Furthermore, there is a relation between S and S′ due
to part of the schedule already having been executed at the time of the disruption. Lastly, it is of particular
relevance what sort of disruptions are taken into account.

In our disruption model, one task can be delayed. This delay is a finite increase to the duration of that task
and is known from the moment the task starts. i.e. the delay of a single task q ∈ T , is known from time s(S, q).
Before the execution starts (and as such before the disruption occurs) S is fixed; both the start times and
assignment can no longer be changed.

The function d ′(ti ) (Z+ →Z+) denotes the duration of task ti ∈ T after the disruption.

The following applies to d ′:

d ′(q) > d(q)

and

∀ti∈T | ti 6=q d ′(ti ) = d(ti )

S′ denotes a valid repaired schedule, that abides by the original constraints for a valid schedule with an in-
creased duration for one task. In addition the tasks that have already started can no longer be moved. So for
each ti ∈ T |s(S, q) ≥ s(S, ti ), it must hold that s(S′, ti ) = s(S, ti ) and a(S′, ti ) = a(S, ti ). The subset of T that con-
tains all tasks ti for which it does hold that ti ∈ T |s(S, q) < s(S, ti ) is denoted by T ′. T ′ contains all tasks that
need to be scheduled during the schedule repair. As we assume tasks that start at the time of the disruption
can no longer be moved because it is too late for this, it seems logical to conclude that the tasks in T ′ must
start after the disruption. Let a j denote the time from which p j is available to schedule the tasks in T ′, a j is
the maximum between s(S, q)+1 and the time at which the last task on p j outside T ′ completes.

3.1.3. Problem Notation
In order to more concisely convey which problem we are addressing, we extend the notation of Lawler et al.
[31] to include disruptions. The extension consists of relating the objective to the baseline schedule S and
using a j to denote the time from which the machine is available as in Alagöz and Azizoğlu [2].

In this notation α|β|γ defines a class of scheduling problems where α specifies the machine environment, β
the job characteristics and γ the optimality criterion.

Let a j be a job characteristic which defines that we have release times for our processors, this occurs if we
have a disruption as defined in section 3.1.2. In addition, a j implies access to the baseline-schedule in creat-
ing the repairs. Note that this in and of itself does not relate the repaired schedule to the baseline schedule. In
fact, when we consider (only) a performance objective (e.g. makespan) as optimality criterion, the criterion
is not directly related to the baseline schedule.

However, if we consider a stability objective as part of the optimality criterion this does relate to the previous
schedule. It is measured between S which is part of the input and S′ which is part of the output. To cap-
ture this, a stability objective in the scheduling problem is passed the baseline schedule as an argument. For
example when considering (only) the assignment objective as defined in section 3.2.1, γ = A(S). The opti-
mization problem is to keep the value as low as possible. The corresponding decision problem is whether or
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not a schedule S′ exists such that the metric between S and S′ remains below some fixed value. When con-
sidering performance objectives, we limit ourselves to instances in which the performance objective is not
required to be improved in S′.

Lastly we abuse the notation by denoting the multi-objective optimization problem of our metric and the
makespan by taking γ = met (S),Cmax . Where met refers to any of the metrics in section 3.2. This corre-
sponds to the decision problem of whether or not a solution exists that has both has a value of Cmax below a
fixed value D and the respective metric below some other fixed value. Alternative problem definitions exist
for multi-objective optimization such as finding Pareto optimal solutions or first optimizing one objective
and while maintaining the optimal value for it, optimizing the other. We opt for this formulation as the gen-
erality of being able to weigh the importance of stability and performance is relevant in practice and we forgo
investigating Pareto optimality.

As an example, P |a j |A(S) denotes the problem of selecting a schedule without precedence constraints on
identical parallel machines that is as similar as possible to schedule S with regard to the assignment. Our
re-scheduling problem consists of the duration of the tasks d ′, the set of tasks T ′, and the baseline schedule
S. Note that these can be inferred from the original duration of the tasks d , the original set of tasks T , S and
the new duration of the delayed task d ′(q). The output is the repaired schedule S′ for which the similarity
with regard to the assignment is maximized.

3.2. Metrics
When disruptions occur, the aim is to pick a repaired schedule that is the most similar to the baseline sched-
ule. We measure how similar two schedules S and S′ are through a function that maps assignment schedules
S and S′ to a non-negative real number. We will refer to such a function as a metric. Each of this section’s four
subsections defines a metric, these all increase as the schedules are more similar.

3.2.1. Assignment
The number of tasks that are executed on the same processor in S and S′ is the assignment metric. This
metric has been used previously in literature for varying reasons[2, 3, 35, 39] such as the cost associated with
changing resource allocation during the schedule’s execution. We elect to use it as it captures the stability of
the relation between an assigned task/resource pair. In our example, this corresponds to patients keeping the
same doctor as detailed in section 1.1. This metric is the number of identical assignments.

We formally define the assignment metric as follows:

Definition 3.2.1.

A(S,S′) = |{i ∈ {1,2, . . . ,n} : a(S, ti ) = a(S′, ti )}|

Theorem 3.2.1. A(S,S′) can be computed in polynomial time.

proof. We loop over all tasks, aggregating the number for which the assignment remains the same. This
results in computing A(S,S′) in linear time.

3.2.2. Order
The amount the schedule of a resource changes is relevant as explained in section 1.1. The amount of change
is captured by the degree to which the order of the tasks they must perform remains the same. We approach
the order by taking the number of positions the task has moved in the sequence of tasks the resource must
perform. This is similar to the number of steps between two rankings taken in Spearman’s rank correlation
[53].

When the second task of different processors switch assignment, their position in the sequence remains the
same. However, this does introduce a substantial chance in the schedule. Because of this, we only consider
the position in the sequence if the assignment of a task remains the same. If not, we consider this less similar
than if the assignment had stayed the same. As such, if a task is no longer executed on the same processor,
the penalty u is occurred.

We define our order metric as follows:
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Definition 3.2.2.

Ou(S,S′) = 1∑
p j ∈P

∑
ti∈β(S,p j ) LS(ti , p j ,S,S′,u)

Where the function LS is defined as follows:

LS(ti , p j ,S,S′,u) =
{
|I (ti ,L(S, p j ))− I (ti ,L(S′, p j ))| I (ti ,L(S′, p j )) > 0

u I (ti ,L(S′, p j )) ≤ 0

Theorem 3.2.2. For a value of u > n2, maximizing O(S,S′), maximizes A(S,S′).

proof. Let
∑

p j ∈P
∑

ti∈β(S,p j ) LS(ti , p j ,S,S′,u) be the penalty for changes to the order. By definition, minimiz-

ing this penalty maximizes our similarity O. Now, when u is larger than n2, the penalty for altering the assign-
ment of one task between S and S′ is more than n2. Because of the definition of LS, each tasks can contribute
no more than n to the penalty if their position is changed by n. As there are only n tasks, the contribution
of the alteration of the ordering by tasks that keep their assignment is bound by n2. As such, maximizing O
requires maximizing A.

Theorem 3.2.3. O(S,S′) can be computed in polynomial time.

proof. We loop over all processors in S determining the position of each task, we then repeat this for S′. Then,
we loop over all tasks and first compare their assignment in S and S′, adding u to the total if they are different.
If the assignment does not change, we aggregate the number of positions the task has moved. Finally, we
compute the inverse to go from a distance to a similarity. As each of the sequential steps is done in linear
time, this results in computing Ou(S,S′) in linear time.

3.2.3. Timed assignment
The number of changes, relevant in for example the case of the subcontractors in section 1.1 is captured in
the timed assignment metric. It is defined as the number of tasks that is still executed on the same processor
at the same time in S′. This metric is similar to the minimum perturbation in constraint programming[34].

More formally the timed assignment metric is:

Definition 3.2.3.
T A(S,S′) = |{i ∈ {1,2, . . . ,n} : a(S, ti ) = a(S′, ti ) ∧ s(S, ti ) = s(S′, ti )}|

Theorem 3.2.4. T A(S,S′) can be computed in polynomial time.

proof. We loop over all tasks, aggregating the number for which both the assignment and start time does not
change. This results in computing T A(S,S′) in linear time.

3.2.4. Stable time window
A generalization of the timed assignment metric is the number of tasks that is executed on the same processor
within a time window. This metric relates to the delivery windows when considering parcels as shown in
Section 1.1. This time window is symmetrical and has an allowed offset of α on either side.

We define our stable time window metric as follows:

Definition 3.2.4.

ST Wα(S,S′) = |{i ∈ {1,2, . . . ,n} : a(S, ti ) = a(S′, ti ) ∧ |s(S, ti ) − s(S′, ti )| ≤α}|

Note that for α= 0 this is the timed assignment metric and for α>∑
ti∈T d(ti ) it is the assignment metric.

Theorem 3.2.5. ST W (S,S′) can be computed in polynomial time.

proof. We loop over all tasks, aggregating the number for which the assignment does not change and the start
time moves by at most α. This results in computing T A(S,S′) in linear time.
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Complexity

This chapter investigates the complexity of repairing a schedule so that it maximizes the similarity to the base-
line schedule. This is of particular relevance as it is a large factor in determining if fast repairs are feasible. In
this chapter we assume that P 6= N P , whether this is true remains one of the largest open problems in com-
puter science. However, this is a generally held belief inside the research community. We consider problems
that are weakly NP-complete (wNPC) potentially feasible as pseudo polynomial algorithms for problems such
as partition scale very well, and those that are strongly NP-complete (sNPC) infeasible as no pseudo polyno-
mial algorithm can exist.

In this chapter we first investigate the complexity of optimizing each metric in an environment with an un-
bounded number of processors. This both provides us with a lower-bound on the complexity of harder prob-
lems (precedence constraints, multi-objective) and is a relevant result in and of itself in case the stability is the
sole consideration. In addition, we consider the complexity when precedence constraints are added. These
are common in environments in practice. Lastly, we consider the multi-objective problem as a combination
between the stability metric and the most prevalent performance objective: The makespan. Both in the con-
text of an unbounded number of processors as is the most general scenario and in the context of only two
processors to see if significant performance increases are possible on a bounded small number of processors.

This chapter is organized as follows: First the verification of the problems is considered in Section 4.1. Fol-
lowed by the complexity of the performance objective makespan in Section 4.2. The results consisting of the
complexity of each problem outlined above follow, generally categorized by stability metric. Lastly, we con-
clude this chapter in Section 4.7 giving an overview of- and reflection on the results. This chapter contains
two proof concepts in Sections 4.5.2 and 4.5.3 which are used again in Chapter 5.

4.1. Polynomial-time Verification
In this subsection we consider the complexity of the verification of any of the problems in Table 4.1. S′ can
be considered as a certificate that shows a solution exists for a certain value. By Theorem 3.2.1, 3.2.3, 3.2.4,
and 3.2.5 we can verify this certificate in polynomial time for each of our stability metrics. Computing the
makespan of a schedule S′ is known to be in P . Checking that S′ meets the requirements outlined in Section
3.1.1 can also be done in polynomial time as can checking the requirements of our disruption model given in
Section 3.1.2. As such, all problems contained in Table 4.1 are verifiable in polynomial time and are in N P .

4.2. Makespan
The first objective we consider is the performance objective makespan. This section shows the complexity
of optimizing this objective in our disruption model. The aim of this section is to use the results bellow,
as a lower bound on the complexity of multi-objective optimization problems including the makespan. The
proofs contained in this section are relatively simple as they reduce to the same problem without a disruption.

When considering the makespan in an optimization problem the aim is to minimize the latest finishing time
of all tasks. When considering the corresponding decision problem, the question is whether a schedule exists

13
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of which the latest finishing time at most some deadline D .

We investigate the problem in the case of two processors (P2|a j |Cmax ) and in the case of an unbounded
number of processors (P |a j |Cmax ).

4.2.1. Makespan on Two Parallel Processors: P2|a j |Cmax
Theorem 4.2.1. P2|a j |Cmax is NP-hard.

We show Theorem 4.2.1 is true by showing the decision problem corresponding to P2|a j |Cmax is NP-hard by
means of a reduction from subset sum.

We use the following definition of Subset Sum:

Definition 4.2.1. Subset Sum: Given a set of elements E = {1, . . . ,n} with integer weights w1, . . . , wn do the
weights of any subset of E sum up to exactly W ?

In the following proof we create a base-line schedule S so that a delay of length 1 forces swapping a task of
duration W +1 for a set of tasks with durations equal to W . Because the durations of the tasks are equal to the
weights in Subset Sum, if such a set exists we have a solution to Subset Sum. A sketch of S is given in Figure
4.1. The task that is delayed to ensure the move is q .

q z

h t1 t2 . . . tnC−1 tnC

p1

p2

W +1 W +10 D

Figure 4.1: Sketch of S

Proof. Given a non-trivial instance E , W of subset sum, we create an instance of P2|a j |Cmax as follows:

1. We create two processors p1 and p2.

2. We create two tasks to be scheduled on p1 in S and n+1 tasks for p2. The tasks for p1 are q and z. For p2

we have h and a task ti for each element in E , the tasks corresponding to elements in E are contained
in set E ′.

3. The deadline D is set to
∑n

i=1 wi +2.

4. The duration for all tasks corresponding to the elements in E is equal to the weight of the element.
∀e∈E d(te ) = we

5. The duration of h is 1, d(h) = 1.

6. The duration of z is W +1, d(z) =W +1. This is the task that will be forced to change allocation.

7. The duration of q is set to fit with z on p1 before D exactly, d(q) =∑n
i=1 wi −W +1.

8. The tasks q and h start at time 0, s(S, q) = 0 and s(S,h) = 0.

9. The tasks in E ′ are scheduled to start after h, as soon as the previous task has finished. This means that
the start times s(S, z) =∑n

i=1 wi −W +1.

10. Our disruption to q is an increase in the duration of 1, d ′(q) =∑n
i=1 wi −W +2.

It is impossible to schedule z on p1 in the repaired schedule S′ without breaking the deadline. This is because
the duration d(q) is set in step 7 so that d(q)+d(z) = D . As such, there is no idle time on p1 in S. Due to the
delay of q in step 10, q and z cannot both be scheduled on p1 in S′, as q starts at the time of disruption it can
not change allocation and z must.

There can be no idle time in a valid S′. We consider the idle time in S and the delay. Firstly, there is no idle
time on p1 in S as shown above. On p2 the durations are chosen so that d(h)+∑

ti∈E ′ d(ti ) = D −1 in step 4
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and 5. As the sum of the durations increases by 1 after the delay, there can be no idle time in S′ assuming the
deadline is met and all tasks are scheduled.

If a valid S′ exists, we can create a subset of E of which the weights sum up to W . As there is no idle time, the
durations of the tasks assigned to p1 – excluding q – must sum up to W and the corresponding elements of E
have weights that sum up to W .

If there is a subset of E of which the weights sum up to W , a valid S′ exists. If there are elements in E of which
the weights sum up to W , there are tasks in E ′ of which the durations sum up to W . As such, we can select
these tasks and assign them to p1, the remaining tasks can be assigned to p2 as the sum of their durations∑

ti∈β(S′,p2) d ′(ti ) adds up to
∑n

i=1 wi +1.

As a valid S′ exists iff there is a subset of E of which the weights sum up to W and the reduction is polynomial,
P2|a j |Cmax is NP-hard.

4.2.2. Makespan on Parallel Processors: P |a j |Cmax
When instead of a fixed number of two processors we consider an unbounded number, the problem is strongly
NP-hard.

Theorem 4.2.2. P |a j |Cmax is strongly NP-hard.

We show the problem of P |a j |Cmax is at least as hard as P ||Cmax and as such strongly NP-hard[20] through a
polynomial reduction from P ||Cmax to P |a j |Cmax .

First we give a definition of the decision problem corresponding to P ||Cmax , that is minimizing the makespan
in a parallel machine scheduling problem without precedence constraints:

Definition 4.2.2. Decision P ||Cmax : Given a set PC of mC identical processors and a set of nC tasks T C , a
function dC defining the duration of each task tC

i ∈ T C and a deadline DC (∈ Z+). Here the superscript C is
used to more easily distinguish the instance from that to which it is reduced.

Question: Does a schedule SC exist such that the makespan of this schedule equal to or less than DC ?

h1

h2

h3

...

hnC−1

hnC

tC
1

tC
2

tC
3

tnC−1

tnC

nC

0 D

Figure 4.2: Created input schedule for P |a j |Cmax

.

The idea behind our proof below is to solve an instance of Decision P ||Cmax by using a polynomial number
of instances of P |a j |Cmax . The basic idea is to start by creating a schedule for the tasks in T C between 1 and
DC +1 on nC processors, assigning 1 task to each processor. A task hi is scheduled on each processor. Figure
4.2 shows a sketch of this configuration.
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Figure 4.3: S′ after one disruption, removing one processor from those available for the tasks in T C .

We then reduce the amount of available processors by 1 through a delay to a task hi . The tasks in T C cannot
be scheduled any later than DC +1 in the repaired schedule because this would be after D . In Figure 4.3 the
delay is represented, the tasks in T C are not.

We can then take our repaired schedule S′ and use it as the baseline schedule S, restarting the execution and
delaying the next task hi in H , until we have m processors on which the original tasks T C are scheduled.

Proof. Given an instance of Decision P ||Cmax create an instance of P |a j |Cmax in the following manner:

Initialization Phase

1. We create a set P of nC (= |T C |) processors.

2. We create a set H of nC tasks.

3. The duration of tasks in H is 1, i.e. ∀hi∈H ,d(hi ) = 1.

4. We retain the duration of the tasks in T C : ∀ti∈T C ,d(ti ) = dC (ti )

Using T = H∪T C as the set of tasks, P as the set of processors d as durations D = DC +1 as deadline we create
S:

5. All tasks in H start at time 0. ∀hi∈H , s(S,hi ) = 0.

6. Each task in H is assigned to a different processor. ∀hi∈H , a(S,hi ) = i

7. Start the tasks in T C at 1 to avoid the tasks in H . ∀ti∈T C s(S, ti ) = 1

8. Assign each task in T C to a different processor. ∀ti∈T C a(S, ti ) = i

Note that the tasks in H take place in the interval [0,1) and the tasks in T C in the interval [1,DC +1).

Iteration Phase

1. If nC −mC tasks in H have a duration D , accept.

2. Delay a task hi ∈ H with d(hi ) = 1 by DC , i.e. d ′(hi ) = D .

3. We now solve the problem P |a j |Cmax , with P , T , S, D and d ′ as input and get a valid repaired schedule
S′ or a reject.

(a) If a reject is returned, we reject too.

(b) If we receive a valid S′, we repeat the iteration phase with S = S′. Note that ∀hi∈H s(S′,hi ) = 0 as
they started at the time the disruption occurred.

Given a repaired schedule S′ in which the tasks in T C are scheduled between 1 and DC +1 we can create a
schedule SC in which only the tasks in T C are scheduled between 0 and DC on mC processors. At least nC−mC

processors must contain only 1 task hi ∈ H as their duration is D and there is no other way to schedule them
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before D . This leaves mC processors, each having a hi scheduled on the interval [0,1). This means the tasks
T C are scheduled between 1 and D (= DC +1). As such, the assignment in SC is identical to that in S′, the start
times are all decreased by 1.

Given SC in which the tasks in T C are scheduled between 0 and DC we can create a schedule S′ after nC −mC

disruptions, by delaying all tasks in T C by one, and assigning the tasks assigned to a processor in SC to a
processor in S′ of which the task hi has not been delayed.

As such, a schedule S′ exists after nC −mC delays of this form iff SC exists.

The initialization phase can be performed in polynomial time as can the iteration phase. The initialization
is executed once, the iteration is executed at most nC −mC times which is linear in the input. This makes
the reduction polynomial time and as such P |a j |Cmax must be strongly NP-hard as P ||Cmax is strongly NP-
hard[20].

4.3. Assignment
4.3.1. Order on Parallel Processors with Precedence Constraints: P |a j , pr ec|O(S)
This problem is considered before those regarding the Assignment metric. This is due to it being more general
and as such Corollary 4.3.1.1 and 4.3.1.2 follow from the following theorem:

Theorem 4.3.1. P |a j , pr ec|O(S) is in P

A polynomial time algorithm for the problem P |a j , pr ec|O(S) exists. Namely, Right-Shift Rescheduling (RSR)[1],
the idea is to simply delay all tasks that are in some way dependent on the finishing time of q by the delay
incurred by q i.e. shifting them right in the schedule. This always results in an identical order and assignment
and as such an optimal solution with regard to O.

4.3.2. Assignment on Parallel Processors with Precedence Constraints: P |a j , pr ec|A(S)
Corollary 4.3.1.1. The problem P |a j , pr ec|A(S) is in P

By Theorem 3.2.2 P |a j , pr ec|A(S) is a special case of P |a j , pr ec|O(S). As P |a j , pr ec|O(S) is in P by Theorem
4.3.1, it follows that P |a j , pr ec|A(S) is in P .

4.3.3. Assignment on Parallel Processors: P |a j |A(S)
Corollary 4.3.1.2. The problem P |a j |A(S) is in P

Any instance of P |a j |A(S) is an instance of P |a j , pr ec|A(S) with no precedence constraints. As P |a j , pr ec|A(S)
is in P by Corollary 4.3.1.1, P |a j |A(S) must be in P .

4.3.4. Assignment and Makespan on Two Parallel Processors: P2|a j |A(S),Cmax
Theorem 4.3.2. P2|a j |A,Cmax is weakly NP-complete.

While for an unbounded number of processors this problem is sNPC, this does not imply there can be no
(pseudo-)polynomial algorithm for a fixed number of processors. It follows from Theorem 4.2.1 that this
problem is NP-hard as it is a more general case. In this section we give an optimal pseudo-polynomial algo-
rithm.

Theorem 4.3.3. A pseudo-polynomial algorithm exists for the problem P2|a j |A,Cmax .

We show a pseudo-polynomial Dynamic Programming (DP) algorithm exist using Lemma 4.3.4 and Lemma
4.3.5. The combination of these lemmas shows an adaptation of a knapsack algorithm is correct for this
problem.

Given an instance of P2|a j |A,Cmax , let the processor on which the delay occurs be p1 and the other be p2

without loss of generality. Let the idle time of a processor be the time before the deadline during which it is
not assigned a task. Let the idle time of a schedule be the sum of the idle time over all processors.

The idle time in the repaired schedule S′ is fixed for each problem instance. This is the case as by defini-
tion, idle time I is F −∑

ti∈T ′ d ′(ti ). Where T ′ is the set of tasks not yet started at the moment the disrup-
tion occurred. Note that F , the time available after the disruption to schedule the tasks in T ′ is fixed as
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F = 2D − a1 − a2. The sum of the durations of the tasks in T ′,
∑

ti∈T ′ d ′(ti ) is obviously fixed as well. We
assume a non-trivial problem instance for which F ≥∑

ti∈T ′ d ′(ti ).

Lemma 4.3.4. In any valid repaired schedule S′ the latest completion time on p1 after q is between D − I and
D.

Proof. By definition, the idle time on p1 in S′ is no more than I . As there are no precedence constraints we
can move the tasks on p1 and p2 in T ′ to start the moment the previous task is completed (or at a j for the first
task in T ′ scheduled on p j ). This results in no idle time between the tasks. If there is no idle time on p2, the
sum of the duration of tasks assigned to p1 is D −a1 − I , by not having any idle time the last completion time
on p1 is D − I . If p2 has I idle time, the sum of the duration of tasks assigned to p1 is D −a1, and as such the
latest completion time is D . In conclusion, the completion time on p1 must be between D − I and D .

From our set of available tasks T ′, we can compute a subset of tasks (if one exists) that sums up to each value
in the range between D−a1 and D−I−a1. This is the Subset Sum problem and pseudo-polynomial algorithms
exist [29]. Note that any such assignment of tasks from T ′ to p1, results in a valid S′ as the remaining tasks
will fit on p2.

A generalization of the Subset Sum problem is the Knapsack problem in which it is not the weight of the
subset that is maximized but the value of the elements.

Definition 4.3.1. Knapsack: Given a set of elements E = {1, . . . ,n} with integer weights w1, . . . , wn and values
v1, . . . , vn what is the maximum sum of values of a subset of E of which the sum of the weights is at most W ?

In order to maximize A(S,S′) we use the function z(ti ), defined as follows:

z(ti ) =
{

1 if ti ∈β(S, p1)

−1 if ti ∈β(S, p2)

z(ti ) = 1 if the tasks was scheduled on p1 in S, and b =−1 if it was not (and as such was scheduled on p2). Let
K be a list containing all items.

Lemma 4.3.5. Maximizing
∑

ti∈β(S′,p1) z(ti ) maximizes A(S,S′).

Proof. By definition 3.2.1:
A(S,S′) = |{i ∈ {1,2, . . . ,n} : a(S, ti ) = a(S′, ti )}|

The maximum value of A(S,S′) is n = |β(S, p1)|+ |β(S, p2)|. The actual value is this minus the tasks that were
moved or |β(S, p1)| − |β(S, p1)∩β(S′, p2)| + |β(S, p2)| − |β(S, p2)∩β(S′, p1)|. |β(S, p1)| − |β(S, p1)∩β(S′, p2)| =∑

ti∈β(S,p1) z(ti ) and −|β(S, p2)∩β(S′, p1)| =∑
ti∈β(S,p2) z(ti ). As |β(S, p2)| is constant, and we maximize the sum

between the remaining positive and negative aspect, the lemma holds.

We can now create an algorithm for P2|a j |A(S),Cmax to show Theorem 4.3.3 holds.

Proof. To solve P2|a j |A(S),Cmax we use a Dynamic Programming (DP) algorithm for Knapsack, choosing the
duration as the primary objective and our assignment as the secondary objective. This is done by encoding
both into the value attribute. Due to the nature of dynamic programming, we can compute the solution to all
the sub problems in the range in Lemma 4.3.4 with little overhead.

The encoding of our problem as an instance of Knapsack is performed as follows: For each task ti we create
an item i with a weight wi and a two-dimensional value vi . The weight of the item is equal to d ′(ti ). The
value vi is denoted by a tuple (a,b) where a is also the duration d ′(ti ). And b is z(ti ) where z is defined as
follows:

The objective is to maximize the sum of the value of the subset we select while staying within the weight
limit W . When comparing values, the first element (a) is dominant and the second (b) is a tiebreaker. Us-
ing a DP algorithm for knapsack, we get the possible tasks assignments for p1 (those within the bounds of
Lemma 4.3.4) and their corresponding sum of z(ti ). We pick the one with the maximum value of z(ti ), as this
maximises A(S,S′) by Lemma 4.3.5.
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As we pick the task assignment (from those that have valid lengths) to p1 which maximizes z(ti ), we maximize
A(S,S′). As our algorithm for an NP-hard problem is pseudo-polynomial Theorem 4.3.2 must hold.

Corollary 4.3.5.1. P2|a j |Cmax i sw N PC .

By Theorem 4.3.3, a pseudo-polynomial algorithm for the more general problem P2|a j |A(S),Cmax exists. In
addition Theorem 4.2.1 states that P2|a j |Cmax is NP-hard. From this, it follows that P2|a j |Cmax is weakly
NP-complete.

4.3.5. Assignment and Makespan on Parallel Processors: P |a j |A(S),Cmax
Corollary 4.3.5.2. P |a j |A(S),Cmax is sNPC

P |a j |A(S),Cmax is sNPC as P |a j |A(S),Cmax is at least as hard as P |a j |Cmax . Which is strongly NP-hard by
Theorem 4.2.2.

4.4. Order
Order on Parallel Processors: P |a j |O(S)
Corollary 4.4.0.1. P |a j |O(S) is in P

The problem P |a j |O(S) is a special case of P |a j , pr ec|O(S). As P |a j , pr ec|O(S) is in P by Theorem 4.3.1,
P |a j |O(S) must be in P also.

4.4.1. Order and Makespan on Two Parallel Processors: P2|a j |O(S),Cmax
Corollary 4.4.0.2. P2|a j |A(S),Cmax is NPC

This problem is at least as hard as P2|a j |Cmax which by Theorem 4.2.1 is NP-hard.

4.4.2. Order and Makespan on Parallel Processors: P |a j |O(S),Cmax
Corollary 4.4.0.3. P |a j |A(S),Cmax is sNPC

This problem is at least as hard as P |a j |Cmax which by Theorem 4.2.2 is strongly NP-hard.

4.5. Timed Assignment
4.5.1. Timed Assignment on Parallel Processors: P |a j |T A(S)
Theorem 4.5.1. P |a j |T A(S) is in P

First, we note that the processors p j ∈ P are independent with regards to T A. This is the case as we can always
schedule tasks in S′ after all tasks in S are done and there are no precedence constraints.

For all processors p j for which q 6∈β(S, p j ) we can keep the start times and assignments from S.

We know that for all tasks ti on the same processor as q in S that those for which s(S, ti ) ≤ s(S, q) can not be
moved (and are optimal with regard to T A). For the remaining tasks it holds that all those that have a start
time s(S, ti ) that is less than s(S, q)+d ′(q) can never be scheduled at the same time. The tasks for which
s(S, ti ) ≥ s(S, q)+d ′(q) do not have to be moved.

So, by only moving the tasks ti on the same processor as q for which s(S, q) < s(S, ti ) < s(S, q)+d ′(q) (e.g.
by adding the makespan to the start time in S), we create an optimal schedule with regards to T A. This can
obviously be done in polynomial time.

4.5.2. Timed Assignment on Parallel Processors with Chain Precedence Constraints: P |a j ,chai ns|T A(S)
Theorem 4.5.2. P |a j ,chai ns|T A(S) is strongly NP-hard

We prove that P |a j ,chai ns|T A(S) is strongly NP-hard by showing a polynomial time reduction from the de-
cision version of P |a j |Cmax . This decision version is sNPH as the maximum value of the deadline DC is
pseudo-polynomially bounded.
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O1[1] . . . O1[nc +1]

O2[1] . . . O2[nc +1]

O3[1] . . . O3[nc +1]

O4[1] . . . O4[nc +1]

OnC [1] . . . OnC[nc+1]

...
...

...
...

...
...

...

mC

nC −mC

0
DC nC +1

SC

h1

hnC−mC

Figure 4.4: Representation of S for the problem P |a j ,chai ns|T A(S). As a part of solving decision P |a j |Cmax .

The basic idea behind this proof is that we create an instance of P |a j ,chai ns|T A(S) that includes all the
tasks (T C ) from our instance of decision P |a j |Cmax . In fact, we keep the assignment and start times from the
baseline schedule SC of P |a j |Cmax . Such an instance is represented by Figure 4.4. In the created instance,
we add a chain of nC + 1 tasks to each processor starting at the deadline. We add a precedence constraint
from each task in T C to one of these chains. Only the first task in each of these chains is available as the
others already have a predecessor. As such, this requires nC chains. To this end we add nC −mC additional
processors to facilitate these chains. Finishing a task in T C later than the deadline results in moving at least
nC +1 tasks, as the entire chain dependent on it moves. If the instance of P |a j |Cmax should be accepted, we
can find a solution to the created instance of P |a j ,chai ns|T A(S) in which at most nC tasks (T C ) are moved.

Let an instance of P |a j |Cmax be defined by the set of processors PC , the set of tasks T C , the durations after
the disruption d ′C , the deadline DC , and the base-line schedule SC .

Proof. We solve an instance of decision P |a j |Cmax through the following reduction:

1. We create a new set U = {u1, . . . ,unC−mC } of processors.

2. The set of processors contains PC and U , P = PC ∪U .

3. We create a list O j for each processor p j ∈ P . Each of these lists consists of nC +1 tasks.

4. For each list O j , the duration of all tasks is 1: ∀ j∈1,...,m∀ti∈O j ,d(ti ) = 1

5. Precedence constraints are added between the tasks in each of the lists. We add an edge from O j [i ] to
O j [i +1] for all j ∈ {1, . . . ,m} and all i ∈ {1, . . . ,m} to the graph G .

6. Let O be the set of tasks that are contained in some list O j .

7. In order to avoid the tasks in T C being executed after those in O, we add an edge from each task ti ∈ T C

to Oi [1] to the precedence graph G .

8. We add a task hi for every processor in U . Each of these tasks has a duration DC . The set of these tasks
is denoted by H .

9. The set of tasks is defined as follows: T = T C ∪O ∪H .

Using T as the set of tasks, P as the set of processors and G as the set of precedence constraints we create S:

10. Copy the start times from SC , ∀ti∈T C s(S, ti ) = s(SC , ti ).

11. The assignment stays the same (this will always be to a processor in PC ), ∀ti∈T C a(S, ti ) = a(SC , ti ).

12. The list O j is assigned to processor with index j , i.e. ∀ j∈{1,...,m−1}∀{1,...,n}a(S,O j [i ]) = j .

13. Schedule the tasks in O j in precedence order after DC , ∀ j∈{1,...,m−1}∀{1,...,n}s(S,O j [i ]) = DC −1+ i .
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14. The tasks in H start at time 0, ∀hi ∈ H s(S,hi ) = 0.

15. Each task hi is assigned to a different processor not in PC , ∀hi ∈ H a(S,hi ) = ui .

The tasks in T C are in the interval [0,DC ) as are the tasks in H , but they do not overlap as they are scheduled
on a different set of processors (PC and U respectively). There is no overlap between the tasks in H or T C and
those in O as the tasks in O are in the interval [DC ,DC +n +1).

We now solve the problem P |a j ,chai ns|T A(S), with P , T , G , and d ′ as input and get a schedule S′. The one
task with an increased duration in d ′, is that which is delayed in the input problem P |a j |Cmax .

By scheduling a task in T C to finish later than the deadline DC in S′ at least n+1 tasks in O are moved. Without
moving tasks in O, at most n tasks can be moved. Due to the precedence constraints between the different
tasks in a list O j , delaying the first task in the list means the remainder of the list must be delayed as well. Due
to the each task in T C being a prerequisite for the first task in at least one of the lists, scheduling it to finish
after DC means moving at least n +1 tasks. The tasks in H start at time 0 and as such can not be moved, this
leaves us with at most n tasks that can be moved if no tasks in O move.

Given S′ for which T A(S,S′) ≤ nC , we can create S′C by taking the processors in PC and omitting the tasks in
O from S′. All tasks in T C will be finished before DC , as otherwise at least n+1 tasks would have been moved.

Given a valid S′C , we can create a valid S′ for which T A(S,S′) ≤ nC by adding the tasks in O and H with the start
time and assignment in S. There will be no overlap between O and T C as the tasks in T C all finish before DC

and the tasks in O start after DC . The remaining tasks in O and those in H can be scheduled on the processors
in U with their assignment and start time from S.

A valid S′C exists iff an S′ exists for which T A(S,S′) ≤ nC . As the reduction is polynomial and P |a j |Cmax is
strongly NP-hard, P |a j ,chai ns|T A(S) is strongly NP-hard.

4.5.3. Timed Assignment and Makespan on Two Parallel Processors: P2|a j |T A(S),Cmax
Theorem 4.5.3. P2|a j |T A(S),Cmax is strongly NP-hard

We show Theorem 4.5.3 through a reduction from the decision version of P ||Cmax (Definition 4.2.2).

The idea behind our proof is to create a delay on one processor so that our tasks are forced to move to the
other. As there are already boundaries in place on the second processor, the tasks are forced to divide over mC

intervals between these barriers. Each of these intervals represents the solution for a processor in the P ||Cmax

problem. We can create these boundaries by scaling all tasks by a factor of nC +1 so that we can fit nC +1 tasks
in what used to be our smallest time unit. An example for mC = 3 is given in figure 4.5. The boundaries consist
of nC +1 tasks of length 1. When we minimize T A, disrupting one such task implies disrupting all of them as
we can create an equivalent schedule with fewer disruptions otherwise.

q t1 t2 . . . tnC−1 tnC

h

p1

p2

nC +1 nC +1
(nC +1)DC (nC +1)DC (nC +1)DC

0 D

Figure 4.5: Sketch of S for a non-trivial example. In this instance mC = 3.

Proof. Given an instance of Decision P ||Cmax consisting of PC , T C , dC , and DC , we create an instance of
P2|a j |T A(S),Cmax as follows:

1. Create a set of two processors P = p1, p2.
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2. Create the tasks in the boundaries. Here X is the set of (mC −1)(nC +1) tasks that make up the (mC −1)
boundaries. For each boundary subset of X is denoted by X j where j ∈ {1, . . . ,mC −1}, these subsets are
disjoint.

3. q is the first task on p1, h is the first task on p2.

4. The set of tasks is a combination of the original tasks T C , the boundary tasks, q and h, i.e. T = T C ∪X ∪
{q}∪ {h}.

5. Scale the duration of all tasks in T C by nC +1, ∀ti∈T C d(ti ) = (nC +1)dC (ti ) .

6. The duration of the boundary tasks is 1, ∀ti∈X d(ti ) = 1.

7. The duration of q and h is 1, d(q) = 1, d(h) = 1.

8. The deadline is set so that there is enough available time to schedule all tasks in T C , our barriers X and
h on p2 (if the tasks in T C divide up), D = (nC +1)mC DC + (mC −1)(nC +1)+1.

9. Create S by scheduling all tasks in T C and q on p1 and all tasks in X and h on p2.

10. Both q and h start at time 0, s(S, q) = s(S,h) = 0.

11. If
∑

ti∈T C d(ti ) > D −1 there can be no solution as this implies
∑

ti∈T C dC (ti ) > DC , otherwise they fit on

p1. Starting at time 1, the tasks in T C are scheduled without idle time between them.

12. Start the tasks in X j in the interval [(n+1)(DC + j −1)+1,(n+1)(DC + j )+1]. This creates spaces without
any scheduled tasks of length (n +1)(DC ).

13. Delay q by D−1, d ′(q) = D . For all other tasks ti the duration remains the same d ′(ti ) = d(ti ). The delay
ensures that q is the only task performed on p1 as it lasts until D and can not be moved.

The resulting S′ will have a value for T A ≤ n iff a valid SC exists. Moving one of the tasks in X implies that we
have either moved all of the tasks in an X j , or we can create a schedule S′ with fewer moved tasks by starting
the tasks in T C at a start time that is an integer number times n +1 plus one.

A valid S′ with T A ≤ nC implies a valid SC . We can create SC from S′ by taking the tasks in T C that are sched-
uled between X j and X j+1 and assigning them to processor pC

j+1. For processor pC
1 we take those tasks before

X1. As the tasks in X have not been moved, the tasks in these intervals will be done before DC . Note that the
order on the processors in PC does not matter and that the task duration is determined by the function dC .

A valid SC implies a valid S′ with T A ≤ n. We can create S′ from SC by taking the tasks on processor pC
j+1 and

assigning them to the interval between X j and X j+1. For processor pC
1 we assign them between h and X1. As

the tasks fit (even with the durations d ′), the schedule S′ is valid. As only nC tasks are moved, T A ≤ nC .

As the bi-implication holds and this reduction is polynomial, P2|a j |T A(S),Cmax is strongly NP-hard.

4.5.4. Timed Assignment and Makespan on Parallel Processors: P |a j |T A(S),Cmax
Corollary 4.5.3.1. P |a j |T A(S),Cmax is sNPC

This problem is at least as hard as P |a j |Cmax which by Theorem 4.2.2 is sNPH. It is also at least as hard as
P2|a j |T A(S),Cmax which is sNPH by Theorem 4.5.3.

4.6. Stable Time Window
4.6.1. Stable Time Window on Parallel Processors: P |a j |ST W (S)
Theorem 4.6.1. P |a j |ST W (S) is in P.

We show Theorem 4.6.1 by proving a greedy algorithm is optimal. In the construction of such an algorithm
the first thing we note is that we only need to considered the processor on which the disruption occurs. This
is because assignment is required for a task to add to the similarity and there is no bound on the finishing
times so tasks that are outside their time window can simply be executed after all other tasks. Unlike in the
case of T A, the start times are not fixed.
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Without loss of generality, let us consider p1 the processor on which the disruption occurs. We define an
inversion as two tasks ti and t j for which it holds that in the baseline schedule S, ti started before t j and in
the repaired schedule S′, t j starts before ti . We show that:

Lemma 4.6.2. For every valid repaired schedule S′ that is optimal with regard to maximising ST W , a schedule
S∗ exists in which no tasks that remain in their time window are inverted.

Proof. Proof by contradiction (exchange argument). Assume Lemma 4.6.2 is false. Then there must be an
optimal valid schedule S′ with at least one inversion for which no schedule S∗ exists without an inversion.

The earliest start time for a task ti in the repaired schedule S′ without leaving the time window is s(S, ti )−α,
the latest is s(S, ti )+α. Here α is the parameter determining the size of the time window. Let task ti start
(directly) after task t j in S′ and ti and t j be inverted. We can assume they are adjacent because firstly, any
task that is not within its time window can be moved to start outside any possible valid time window (very
late). Secondly, if an inversion amongst the tasks in their time windows exist there must be an adjacent one
as we can loop over all tasks (within their time window) until two form an inversion.

We can now create a schedule S′′ in which these two tasks are swapped. ti will still be in its time window
as the lowest s(S′, t j ) can be is s(S, t j )−α which is obviously greater than s(S, ti )−α as ti started before t j

in S. It is also less than s(S, ti )+α as ti starts later than t j in S′ and is within its time window. Similarly,
t j will still be within its time window, as s(S′, ti ) ≤ s(S, ti )+α < s(S, t j )+α. As swapping ti and t j reduces
the number of inverted tasks that are within their time window, S′ can not be the optimal schedule with the
fewest inversions. This is a contradiction and as such Lemma 4.6.2 must hold.

As we can create a schedule for which all tasks that are within their time window remain in order, we can
greedily start at the beginning of L(S, p1) and select tasks until their duration sums up to at least d ′(q) −
d(S, q)−α. These tasks can not be scheduled within their time window. All other tasks can then be delayed
by α to create a valid S′ in which they stay in their time window. As this can be done in polynomial time,
Theorem 4.6.1 holds.

4.6.2. Stable Time Window on Parallel Processors with Chain Precedence Constraints:
P |a j ,chai ns|ST W (S)

Corollary 4.6.2.1. P |a j ,chai ns|ST W (S) is sNPC

When we consider the problem of optimizing ST W under chain precedence constraints, it turns out the
problem is sNPC. This is because P |a j ,chai ns|ST W (S) is a generalization of P |a j ,chai ns|T A(S). As shown
above, P |a j ,chai ns|T A(S) is sNPH by Theorem 4.5.2.

4.6.3. Stable Time Window and Makespan on Two Parallel Processors: P2|a j |ST W (S),Cmax
Corollary 4.6.2.2. P2|a j |ST W (S),Cmax is sNPC

When considering the multi-objective problem P2|a j |ST W (S),Cmax , we can see this is a generalization of
P2|a j |T A(S),Cmax . From Theorem 4.5.3 above it follows that P2|a j |T A(S),Cmax is sNPH.

4.6.4. Stable Time Window and Makespan on Parallel Processors: P |a j |ST W (S),Cmax
Corollary 4.6.2.3. P |a j |ST W (S),Cmax is sNPC

In the case of an unbounded number of processors, the problem P |a j |ST W (S),Cmax is at least as hard as
P |a j |T A(S),Cmax . Shown above is that P |a j |T A(S),Cmax is sNPH in Corollary 4.5.3.1. As such, Corollary
4.6.2.3 holds.
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4.7. Conclusion
Table 4.1: Overview of the computational complexity of the problems considered in this section. The number indicates the theorem or
corollary from which this result follows. NPC indicates that it is an open whether this problem is strongly or weakly NPC.

A O T A ST W

P |a j |met (S) P 4.3.1.2 P 4.4.0.1 P 4.5.1 P 4.6.1

P |a j ,chai ns|met (S) P 4.3.1.1 P 4.3.1 sN PC 4.5.2 sN PC 4.6.2.1

P |a j , pr ec|met (S) P 4.3.1.1 P 4.3.1 sN PC 4.5.2 sN PC 4.6.2.1

P2|a j |met (S),Cmax w N PC 4.3.2 N PC 4.4.0.2 sN PC 4.5.3 sN PC 4.6.2.2

P |a j |met (S),Cmax sN PC 4.3.5.2 sN PC 4.4.0.3 sN PC 4.5.3.1 sN PC 4.6.2.3

In conclusion, of the problems considered in this chapter, few appear feasible based on their complexity. An
overview of the shown complexities can be found in Table 4.1. The complexity of all but one of the problems
considered is known. It remains an open research problem whether P2|a j |O(S),Cmax is weakly or strongly
NP-complete. Those problems that are feasible are the easier problems that may not capture the intricacies of
the problem in practice, for instance when performance is also relevant. Some reservations have to be made
with regard to these results when applied to a practical context. Due to the structure of the proof of Theorem
4.3.5.2 it requires a processor for each task. In practice, problems tend to have fewer processors than tasks,
this proof does not tell us whether instances in which m is bounded in n (eg m ≤ n

2 ) are still strongly NP-hard.
However, as we can see from the complexity of our problem given only two processors, this algorithm would
at best be pseudo-polynomial. It is also impossible for such an algorithm to scale well with in the number of
processors due to the strong NP-hardness in the case of an unrestricted number of processors.

As so many of our problems are in fact strongly NP-hard, further research into solving these problems should
focus on finding heuristic methods to get usable results or approximation algorithms to get bounds on the
quality of the solution.
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Partial Order Schedules

As we have seen in Chapter 4, many of the problems considered are (strongly) NP-hard making a fast repair
unlikely. As such, methods that speed up these repairs will be considered. Many of the reductions that lead
to these results come from problems involving the makespan of a schedule. In addition, for many problems
the makespan is one of the optimization objectives, making the problem NP-hard by Lemma 4.2.1 or even
strongly NP-hard in the case of an unbounded number of processors as shown in Theorem 4.2.2.

Using a Partial Order Schedule (POS), we can optimally compute the makespan in polynomial time[40]. This
is done by limiting the search space for a scheduling problem by only containing schedules that are valid with
regard to the requirements stated in Section 3.1.1. Note that not all valid solutions are generally contained in
a POS, so optimality in the original problem is sacrificed.

In Section 5.1 POSs are formally defined in our scheduling environment, integrated into our disruption
model and included in our notation. Finally, Section ?? investigates the complexity of our the problems in-
cluding a POS.

5.1. The Parallel Processor Scheduling Problem with Partial Order Sched-
ules

In this section we extend our definition of the scheduling problem to include POSs. First, in Subsection 5.1.1
POSs are formally defined in the context of Parallel Processor Scheduling. Second, in Subsection 5.1.2 the
model of disruptions within a POS is considered. Last, the problem notation is extended to encompass POS
in Subsection 5.1.3.

5.1.1. Scheduling Environment
In this subsection, the scheduling environment of Section 3.1.1 is extended to include POSs. To achieve this,
we first give a definition of POSs and then define how our base-line and repaired schedule relates to this.

We define a partial order schedule [43] for a parallel processor scheduling problem as follows:

Definition 5.1.1. Given a set of precedence constraints in the form of a graph denoted by Z on the tasks T ,
it holds that for every combination of start times s(S, ti ) of all tasks ti ∈ T . Given a schedule S that meats the
constraints in Z , a valid assignment a(S,T ) exists.

We note that for a valid assignment to exist, at most m (the number of processors) tasks can have overlapping
execution times.

We introduce some notation for use bellow. At time x, let Ux denote the set of tasks that has been completed
and let Wx denote the remaining tasks in T where T =Ux ∪Wx . If for a task v ∈W no path exists in the graph
Z from a task w ∈ {Wx |v 6= w} to v , this means we can start the task v . Let the set of tasks for which this
property holds be denoted by Vx . We know that at any time |Vx | ≤ m.

25
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When considering a POS Z as part of our environment, both the initial schedule S and the repaired schedule
S′ must meet the precedence constraints of Z .

5.1.2. Disruption Model
The manner in which using a POS effects the disruption model is considered in this subsection. By requiring
that both the base-line and the repaired schedule are in (the same) POS, the repair options are limited. This
is likely to result in sub-optimal solutions to the original problem.

5.1.3. Problems
In this subsection, we extend the notation defined in Section 3.1.3 to include POSs. Given a problem instance,
the input is extended with a POS. Let α|a j ,POS|γ denote a problem instance containing a disruption and a
POS. Note that as any precedence constraints must be met in the POS and our requirements on the POS do
not distinguish between the original problem with or without precedence constraints we do not consider the
problems with and without precedence constraints separately.

5.2. Complexity in Partial Order Schedules
In this section the complexity of finding an optimal repair within a POS is considered. As mentioned above
in Subsection 5.1.3, POSs that are the result of problems with precedence constraints are not separately con-
sidered. Similar to the situation without POSs, we considered the stability metrics as sole objective and as
multi-objective in combination with the makespan. In the multi-objective case we again consider both an
unbounded number of processors and the case in which there are only two processors. The unbounded case
is for scalability in realistic instances, the case with only two processors to determine if for some smaller
instance with a fixed low number of processors a fast repair may be possible.

The remainder of this section consists of the complexity of these problems. These are generally divided into
subsections by stability metric, some exceptions are made for theorems from which corollaries follow.

5.2.1. Order on Parallel Processors in a Partial Order Schedule: P |a j ,POS|O(S)
Theorem 5.2.1. P |a j ,POS|O(S) is in P.

The first such exception is the problem of order stability in a scheduling context that includes a POS. Sim-
ilarly to P |a j |O(S), P |a j ,POS|O(S) is in P . Right-Shift Rescheduling (RSR)[1] does not change whether the
constraints in the POS are met. Nor does it change the order of the tasks.

5.2.2. Assignment on Parallel Processors in a Partial Order Schedule: P |a j ,POS, pr ec|A(S)
Corollary 5.2.1.1. P |a j ,POS|A(S) is in P.

By Theorem 3.2.2 P |a j ,POS|A(S) is a special case of P |a j ,POS|O(S). As P |a j ,POS|A(S) is in P by Theorem
5.2.1, so is P |a j ,POS|A(S).

5.2.3. Assignment and Makespan on Parallel Processors in a Partial Order Schedule:
P |a j ,POS|A(S),Cmax

In this section we show the complexity of the multi-decision problem for both makespan and assignment
does not change given a POS. That is, it stays strongly NP-hard.

Theorem 5.2.2. P |a j ,POS|A(S),Cmax is strongly NPC.

The idea behind our proof is to create a reduction from the decision problem P ||Cmax . Due to the POS, tasks
in P |a j ,POS|A(S),Cmax are not generally free to be reordered. While a large part of the complexity of P ||Cmax

is that no constraints are placed on the order. In this reduction, we add additional processors and tasks in
such a way that the original tasks T C from P ||Cmax do not have precedence relations between them. We do
this by creating additional tasks and processors that we occupy half of the time. By occupying them half of
the time, a single chain can cover two processors. By adding enough of them, each task in T C can be alone
in it’s chain. As we have the same number of chains as we do processors this is a valid POS. To avoid the
extra processors from being used by the tasks in T C , we scale the duration of these tasks so that moving one
of them to these processors that are only occupied half the time results in moving at least nC +1 tasks. At least
nC +1 tasks must be moved, as the tasks that occupy processors half of the time are part of chains that have
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no idle time until the deadline so they cannot shift in time.

Proof. We take an instance of the decision problem P ||Cmax as in Definition 4.2.2 and create a (pseudo)polynomial
reduction to P |a j ,POS|A(S),Cmax . Let PC , T C , DC , dC , be our instance of P ||Cmax .

1. Let the number of tasks in T C be nC (= |T C |).

2. Create a set Z = {z1, . . . , z2nC } of 2nC processors, p0 is a special processor and P = PC ∪Z ∪ {p0}.

3. Create a set H of mC tasks(= |PC |).

4. Create a set Y of l = 2(nC +1)DC ·nC tasks, t0 is a special task and T = T C ∪H ∪ Y ∪ {t0}. The tasks in
Y are in one of n sequences Yi of length 2(n + 1)DC . We let Yi [ j ] indicate the j th element of the i th

sequence.

5. The duration of each task ti in T C is multiplied by 2(nC +1), i.e. ∀ti∈T C d(ti ) = 2(nC +1)d c (ti ).

6. We set the duration of t0 and all tasks in Y to 1, i.e. d(t0) = 1 and ∀yi∈Y d(yi ) = 1.

7. The deadline is set to allow all tasks in T C and t0 to fit on p0 initially. D = 1+2(nC +1)
∑

ti∈T C d(ti ).

8. For the tasks hi in H the duration is D −2(nC +1)DC . So that 2(nC +1)DC time is available to schedule
other tasks on the same processor in the repaired schedule S′.

9. Our POS consists of several chains. Each task ti ∈ T C is a chain on its own, as is each task in H . Similarly,
t0 is also a chain on its own.

10. The tasks in Y form nC chains, each Yi being one. We have an edge from Yi [ j ] to Yi [ j + 1] for all
i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,D −1}.

11. As such, we have a total of 2nC +mC +1 chains and 2nC +mC +1 processors making our POS valid, as
at every time at most one task from each chain can be scheduled.

We create a schedule S:

12. The tasks in Y are scheduled starting at time 0, without time between two successive tasks, so s(S,Yi [ j ]) =
j .

13. The tasks in Y are assigned to processors in Z . Those in Yi are divided over processors z2i−1 and z2i .
i.e. a(S,Yi [ j ]) = z2i−1 if j is even and a(S,Yi [ j ]) = z2i if j is odd. Because each Yi is split over two
processors, the processors in Z are idle half of the time.

14. t0 starts at time 0 and is assigned to po , i.e. s(S, t0) = 0 and a(S, t0) = p0.

15. We schedule the tasks ti ∈ T C at time s(S, ti ) = f (S, ti−1) with a(S, ti ) = p0.

16. The tasks in H are scheduled on PC , starting at time 0. These are the processors the tasks in T C can go
to in S′ without moving more than n other tasks. i.e. a(S,hi ) = pC

i and s(S,hi ) = 0.

17. Our disruption to S is the delay of t0 by D −1, so d ′(t0) = D and for all other tasks d ′(ti ) = d(ti ).
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Figure 5.1: Graphical representation of S
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Figure 5.2: A single chain Y1 scheduled on two processors z1 and z2.

Before the disruption, the situation is depicted in Figure 5.1, we can see only the processors in PC and p0 have
room available to move to without disrupting at least nC +1 tasks. A more detailed view on the construction
of the chains is given in Figure 5.2. After the disruption to the duration of t0, the tasks must move from p0 to
a processor in PC (or the assignment metric is higher than nC ).

If the tasks in T C can be scheduled on PC to finish before D , A(S,S′) = nC . This is because scheduling one of
the tasks in T C on a processor in Z disrupts at least n +1 tasks and it is impossible to move t0 (as this is the
delayed task) and the tasks in H (as they start at the moment of disruption) so A(S,S′) ≤ nC . And as all n tasks
are assigned to p0 in S and must be moved, A(S,S′) ≥ nC , so A(S,S′) = nC is the optimum.

If a valid S′ exists while A(S,S′) = n, we can construct SC by reducing the start times to offset the hi , scaling

the start time back, and keeping the assignment. i.e. s(SC , ti ) = ⌊ s(S′,ti )−d ′(hi )
2(n+1)

⌋
and a(SC , ti ) = a(S′, ti ) for all

ti ∈ T C . We floor the start time because a task may have delayed into idle time after the task.

If a valid SC exists, it must hold that A(S,S′) = n for an optimal S′. This is the case as we can create such a
schedule by scaling the start times and delaying them by the duration of hi , the assignment stays the same.
i.e. s(S′, ti ) = s(SC , ti )2(n + 1)+d ′(hi ) and a(SC , ti ) = a(S′, ti ) for all ti ∈ T C . As these processors are empty
before, and none of the other tasks are scheduled after D , we alter the assignment of only n tasks.

As S′ such that A(S,S′) = n implies SC and SC implies an S′ exists such that A(S,S′) = n, this pseudo-polynomial
reduction means P |a j ,POS|A(S),Cmax is as hard as the decision problem P ||Cmax and therefore strongly NP-
hard.

5.2.4. Order and Makespan on Parallel Processors in a Partial Order Schedule: P |a j ,POS|A(S),Cmax
Corollary 5.2.2.1. P |a j ,POS|O(S),Cmax is strongly NPC.

This problem is at least as hard as P |a j ,POS|A(S),Cmax , as the order metric is a generalization of the assign-
ment metric. As P |a j ,POS|A(S),Cmax is sNPC by Theorem 5.2.2, it follows that P |a j ,POS|O(S),Cmax is also
sNPC.
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5.2.5. Timed Assignment on Parallel Processors in a Partial Order Schedule: P |a j ,POS|T A(S)
Theorem 5.2.3. If there is no idle time in the base-line schedule S, P |a j ,POS|T A(S) is in P.

Proof. When a task q is disrupted at time x, q ∈ Vx . Let us denote the set of tasks scheduled after q on the
same processor by C . If there is a path in our POS from q to all elements of C these tasks will be delayed and
not be scheduled at the same time. In addition, any task to which there is a path in our POS from q will be
delayed.

If there is no such path, for some element ci ∈ C . ci must be in Vx . As ci can be executed in parallel to q it
must hold that there is another processor available and ci can be executed at the same time but on a different
processor. If this holds for all tasks in C , their assignment must change. However, all tasks for which a path
exists from q in the POS but are not in C can be scheduled at the same time on the same processor.

If a path exists from q only to some elements in C , any task to which there is a path in the POS from q will
still be delayed.

If idle time in S is allowed, we show that P |a j ,POS|T A is at least as hard as the decision version corresponding
to P ||Cmax .

Theorem 5.2.4. P |a j ,POS|T A(S) is at least as hard as Decision P ||Cmax .

The idea behind our proof is to take an instance of the decision problem P ||Cmax and create a polynomial re-
duction to P |a j ,POS|T A. Combining the proof concepts of using O from Section 4.5.2 to ensure the deadline
is met, Z from Section 5.2.3 to allow the freedom of movement for the jobs within the POS and the dividers
X from Section 4.5.3 to achieve deciding the makespan outside a POS.

Proof. We take an instance of Decision P ||Cmax as in Definition 4.2.2 and create a reduction to P |a j ,POS|T A(S).
Let PC , T C , DC , dC , be our instance of P ||Cmax .

We first create our tasks and processors:

1. Create two processors p1 and p2, and a set of 2(nC + 1) processors Z . Now let our set of processors
P = Z ∪ {p1}∪ {p2}

2. Create the tasks in the boundaries. Here X is the set of (mC −1)(nC +1) tasks that make up the (mC −1)
boundaries. For each boundary subset of X is denoted by X j where j ∈ {1, . . . ,mC −1}, these subsets are
disjoint.

3. Create a set Y of (nC +1)D tasks.

4. Let D denote a deadline, we will show later that a task in T C passing this deadline will incur a value of
T A ≥ nC +1. The deadline D is set so that there is enough available time to schedule all tasks in T C , h,
and our barriers X on p2, if there is a feasible solution to the instance of Decision P ||Cmax . As such the
deadline D = 2(nC +1)mC DC + (mC −1)(nC +1)+1.

5. The tasks in Y are in one of nC +1 sequences Yi of length D . Where Yi [ j ] indicates the j th element of
the i th sequence.

6. T = T C ∪X ∪Y ∪ O ∪ {q}∪ {h}.

Next we define the duration of all tasks:

7. The duration of each task ti in T C is multiplied by 2(nC +1), i.e. ∀ti∈T C d(ti ) = 2(nC +1)dC (ti ).

8. We set the duration all tasks in Y to 1, i.e. ∀yi∈Y d(yi ) = 1.

9. The duration of the boundary tasks is 1, ∀ti∈X d(ti ) = 1.

10. The duration of q and h is 1, d(q) = 1, d(h) = 1.

We define the precedence constraints as part of the POS:

11. Our POS consists of several chains. q is a chain on its own, as is h.
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12. Precedence constraints are added between the tasks in each of the lists in O. We add an edge from O j [i ]
to O j [i+1] for all j ∈ {1, . . . ,m} and all i ∈ {1, . . . ,m} to the graph G . In order to avoid the tasks in T C being
executed after those in O, we add an edge from each task ti ∈ T C to Oi [1] to the POS. This step forms
nC chains.

13. The tasks in Y form nC +1 chains, each Yi being one. We have an edge from Yi [ j ] to Yi [ j +1] for all
i ∈ {1, . . . ,n} and all j ∈ {1, . . . ,2(nC +1)DC −1}.

14. All tasks in X form a single chain.

15. As such, we have a total of 2nC +4 chains and 2(nC +1)+2 processors making our POS valid.

Create the baseline schedule S:

16. Schedule all tasks in T C and q on p1 and all tasks in X and h on p2.

17. q is the first task on p1, h is the first task on p2. Both q and h start at time 0, s(S, q) = s(S,h) = 0.

18. The list O j is assigned to processor with index j , i.e. ∀ j∈{1,...,m−1}∀{1,...,n}a(S,O j [i ]) = j .

19. Schedule the tasks in O j in precedence order after D , ∀ j∈{1,...,m−1}∀{1,...,n}s(S,O j [i ]) = D −1+ i .

20. If
∑

ti∈T C d(ti ) > D −1 there can be no solution as this implies
∑

ti∈T C dC (ti ) > DC , otherwise they fit on

p1 before the tasks in O. Starting at time 1, the tasks in T C are scheduled without idle time between
them.

21. Start the tasks in X j in the interval [2(nC +1)(DC + j −1)+1,2(nC +1)(DC + j )+1]. This creates spaces
without any scheduled tasks of length (nC +1)(DC ).

22. The tasks in Y are assigned to processors in Z . Those in Yi are divided over processors z2i−1 and z2i .
i.e. a(S,Yi [ j ]) = z2i−1 if j is even and a(S,Yi [ j ]) = z2i if j is odd. Because each Yi is split over two
processors, the processors in Z are idle half of the time.

23. The tasks in Y are scheduled starting at time 0, without time between two successive tasks, so s(S,Yi [ j ]) =
j .

Finally, a disruption is incurred:

24. Delay q by D −1, d ′(q) = D . For all other tasks ti the duration remains the same d ′(ti ) = d(ti ).

By scheduling a task in T C to finish later than the deadline D in the repaired schedule S′ at least n+1 tasks in
O are moved. Without moving tasks in O, at most n tasks can be moved. Due to the precedence constraints
between the different tasks in a list O j , delaying the first task in the list means the remainder of the list must
be delayed as well. Due to the each task in T C being a prerequisite for the first task in at least one of the lists,
scheduling it to finish after DC means moving at least nC +1 tasks.

If T A ≤ nC , no task in T C can be scheduled on a processor other than t1. Scheduling one of the tasks in T C

on a processor in Z disrupts at least n +1 tasks. The only other option is p0, which contains q which cannot
be moved and lasts until D .

Lastly, we can not schedule any of the tasks in T C on p1 at a time during which in S a task in X was scheduled
without increasing T A past nC . Moving one of the tasks in X implies that we have either moved all of the
tasks in an X j , or we can create a schedule S′ with fewer moved tasks by starting the tasks in T C at a start time
that is an integer number times n +1 plus one. As such, the resulting S′ will have a value for T A ≤ n iff a valid
SC exists.

A valid S′ with T A ≤ nC implies a valid SC . We can create SC from S′ by taking the tasks in T C that are sched-
uled between X j and X j+1 and assigning them to processor pC

j+1. For processor pC
1 we take those tasks before

X1. As the tasks in X have not been moved, the tasks in these intervals will be done before DC . Note that the
order on the processors in PC does not matter and that the task duration is determined by the function dC .

A valid SC implies a valid S′ with T A ≤ n. We can create S′ from SC by taking the tasks on processor pC
j+1 and

assigning them to the interval between X j and X j+1. For processor pC
1 we assign them between h and X1. As

none of the tasks in T C are in the same chain, no precedence constraint will be violated. In addition, the tasks
fit (even with the durations d ′), as such the schedule S′ is valid. As only nC tasks are moved, T A ≤ nC .
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As the bi-implication holds and this reduction is polynomial, P |a j ,POS|T A(S) is strongly NP-hard.

5.2.6. Timed Assignment and Makespan on Parallel Processors in a Partial Order Sched-
ule: P |a j ,POS|T A(S)

Corollary 5.2.4.1. P |a j ,POS|T A(S),Cmax is sNPC.

As shown above, P |a j ,POS|T A(S) is sNPC by Theorem 5.2.4. As we now additionally consider the makespan,
this problem must be at least as hard.

5.2.7. Stable Time Window on Parallel Processors in a Partial Order Schedule: P |a j ,POS|ST W (S)
Corollary 5.2.4.2. P |a j ,POS|ST W (S) is sNPC.

The Stable Time Window metric is a generalization of the Timed Assignment metric in which tasks are counted
as contributing to the stability if their start time is within a fixed bound from their original start time. As such,
this problem must be at least as hard as P |a j ,POS|T A(S) which is strongly NPC by Theorem 5.2.4.

5.2.8. Stable Time Window and Makespan on Parallel Processors in a Partial Order Sched-
ule: P |a j ,POS|ST W (S),Cmax

Corollary 5.2.4.3. P |a j ,POS|ST W (S),Cmax is strongly NPC.

Because this problem considers the makespan as well as ST W (S) it is a generalization of P |a j ,POS|ST W (S).
As P |a j ,POS|ST W (S) is sNPC by Corollary 5.2.4.2, it follows that P |a j ,POS|ST W (S),Cmax is also sNPC.

5.3. Conclusion
Table 5.1: Overview of the computational complexity of the problems considered in this section. The number indicates the theorem or
corollary from which this result follows. NPC indicates that it is an open whether this problem is strongly or weakly NPC and a ? indicates
that the complexity is unknown.

A O T A ST W

P |a j ,POS|met (S) P 5.2.1.1 P 5.2.1 sN PC 5.2.4 sN PC 5.2.4.2

P |a j ,POS|met (S),Cmax sN PC 5.2.2 sN PC 5.2.2.1 sN PC 5.2.4.1 sN PC 5.2.4.3

The considered problems in POSs turns out to have a complexity at least as large as those without such
a constraint. A full overview of the problems examined and their complexity can be found in Table 5.1. No
results are known for problems involving a bound number of processors. However, due to the problems being
strongly NP-hard for an unbounded number it cannot scale well with the number of processors.

While makespan as a performance objective can be computed in polynomial time, this result does not extend
to any of our stability objectives being considered with the makespan. Due to the way in which the considered
metrics are inherently dependent on the assignment of tasks to resources, reductions can be constructed that
allow the free movement of the tasks in the original (not inside a POS) tasks. In fact, in these instances the
POS can be used to include precedence constraints on these original tasks.

We can not say that in general, for metrics that depend on the assignment the problem is at least as hard in a
POS as it is outside. While the results in this section are consistent with this hypothesis. They are incomplete
as mentioned above. Furthermore, for metrics that do not have certain desirable properties, e.g. allowing a
small group of resources to contribute all of the differences, this may well not hold.

In conclusion, for the stability problems defined in Section 1.1, it is unlikely that an improvement in complex-
ity will be found through the use of POSs. By focussing on different problems in stability or relaxing certain
requirements it may yet be possible to do so.
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Conclusion

In this chapter we review the results regarding the complexity of obtaining stable, efficient repairs to sched-
ules. Our results show that in the general case with multiple machines, it is computationally infeasible to
create an optimally repaired schedule. For specific cases in which we do so, efficient algorithms are given. In
this chapter we give an overview of our results, discuss their impact, the relation between them and finally
we suggest directions for future work within the context of stable scheduling.

6.1. Discussion
The problems that allow for a (pseudo) polynomial algorithm have been identified. This includes considered
stability metrics as well as the multi-objective problem of makespan and assignment on two processors4.3.3.
For this subset of problems fast optimal repairs can be made.

This work also shows the infeasibility of computing the multi-objective optimization problem of stability
objectives in combination with the makespan given an unbounded number of processors. This is also an
important result as it indicates concessions will have to be made to the optimality in order to facilitate a
fast repair. As a result of this, when creating the schedule ahead of time while having knowledge of the repair
policy[49], either more work needs to be done ahead of time to facilitate faster repairs or the sub-optimality of
the repair will need to be accepted. The stability metrics are selected to be the easiest subset that still contains
the characteristics of our motivating examples in 1.1. As such, it is unlikely that different metrics capturing
the important aspects of these examples that can be computed more efficiently will be found. All of the
used stability metrics emphasise the assignment between resources and tasks. Metrics that do not use this
coupling might be easier to compute. However, they will invariably lose an aspect of stability that is important
in many situations. The makespan is both one of the most frequently used and easiest performance metrics.
The complexity of other objectives such as the average completion time is not known to be easier[39]. As
such, our contribution shows that it is unlikely that efficient algorithms exist for multi-objective problems
with both stability and performance objectives on an unbounded number of processors.

Another attempt to achieve a lower complexity would be to alter the disruption model. Again, the model
is aimed to be a simple as possible without losing that which defines the problem. A suggested option in
literature is to not allow tasks after the disruption to start earlier[47]. While this might make the problem
easier to solve, it is likely to create significantly less stable schedules. Whereas most real world scenarios
considering stability allow for tasks that start earlier. An alternative would be to restrict the search space in a
different manner. For instance through the use of POSs as in Chapter 5.

POSs were intended to be used to more efficiently create repairs in multi-objective problems as they en-
able minimizing the makespan in polynomial time. Much of the complexity in our multi-objective problems
comes from the makespan. As it turns out, this does not decrease the complexity of our considered problems.
While this is surprising, it can be explained due to the POS containing no information on the assignment of
the resources, this is an important aspect to all considered stability metrics. An alternative to the POS would
be to restrict tasks from switching between resources. While this would likely be good for the stability of our
schedule, the impact in the makespan could in many instances be rather large. This is due to there being
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no way to divide the delay over different resources when the assignment is fixed. We have shown that POSs
do not offer reduced complexity in these instances, it is likely that they do not offer reduced complexity in
problems that consider both stability and performance objectives.

Lastly, we discuss the limits to the practical implications of our analysis using complexity theory. While this
enables us to draw certain conclusions about the manner in which problems scale, it does not directly allow
us to conclude that real world scenarios are infeasible. Scheduling problems can have large input sizes. As
such, strongly NP-hard problems tend not to be feasible to compute exactly . Even so, there is no guarantee
that for an acceptable bound on the size of a realistic problem no algorithm exists that computes an optimal
solution in an acceptable amount of time. However, computing the solution to such a problem quickly would
imply a (very) low constant in the runtime of the algorithm which seems unlikely.

6.2. Future Work
As mentioned above, the selected metrics capture our motivating examples, for example the timed assign-
ment characterising the amount of taxies that are effected in the existing schedule. While they attempt to be
the easiest metrics to compute that do this, no proof for this is given. We suggest further research into the
properties of stability metrics, and the complexity of computing metrics with these properties. An important
next step is to give a complete identification of under which conditions (metrics, environment) plan repair is
polynomially solvable.

As it is computationally hard to compute optimal solutions in the general case, an area for further research
would be to attempt to create sub-optimal solutions. In order to have a bound on how far from optimal the
solution is, approximation algorithms or relaxations can be used. In literature there are examples of using
approximation algorithms to minimize the makespan in a static context[25, 32].

An alternative would be to look into algorithms that give no bound on the quality of our solution but do
tend to create good solutions. For example through using heuristics to effect a repair, we have seen this in
this document in the Right Shift Rescheduling[1] approach. Heuristics are also used in the creation of static
schedules with the aim of minimizing the makespan[14]. Another approach that gives no guarantees on the
solution quality is machine learning. As we can evaluate the quality of our repaired schedule reasonably
quickly this is an avenue worth investigating. An overview in static scheduling is given by Aytug et al.[4].
Additionally, if we do have particular information on the probability distribution of the disruption, stochastic
scheduling approaches can be used[8]. Finally, in situations where a lot of time and computational resources
are available before the start of the schedule, all situations can be considered in advance. In effect, creating
something similar to a supermodel[21].

6.3. Closing
In closing, this work considers stable repairs to schedules. The concept of stability when the resource and the
task may be human is used. This concept is based on several situations in Section 1.1 showing the relevance,
such as the patient doctor assignment. We select metrics that encompass stability in these situations, aiming
to make them computationally easy. Our disruption model is also aimed at being simple while still realistic.
The performance metric is the most common. For the problems for which an efficient algorithm exists, it is
given. For those for which none can exists, proofs of strong NP-hardness are given. As such, we can now limit
ourselves to looking for non-optimal methods of solving these problems as research continues in the field
of stable scheduling. So that one day when things do not go according to plan, we may find a similar and
efficient repaired schedule without having to wait for it.
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