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Abstract

Cooperative adaptive cruise control (CACC) makes the vehicle follow its predecessor at a
close but safe distance, and uses information received from other vehicles to accomplish this
task. In literature and in practice, the control method mostly applied for CACC is propor-
tional integral derivative (PID) control, possibly with some refinement for gear shifting or
comfort. The control method called model predictive control (MPC) can also be used for
CACC, and from literature it appears to be more promising than PID, because of its ability
to anticipate future situations and to implement constraints directly into the control algo-
rithm. MPC applies the first input of a control input sequence that optimises a performance
index calculated from predicted system behaviour, based on a prediction model, subject to
operational constraints, in a receding horizon approach. Furthermore, literature has shown
that with PID the use of state information from the second predecessor or the platoon leader,
in addition to the direct predecessor’s states, can improve the CACC performance.
Therefore, in this thesis the approach of using such additional communicated information
from either the second predecessor or the platoon leader is combined with the use of MPC as
control method. The goal is to investigate whether any of these two configurations give an
increase in performance compared with similar configurations with PID as control method,
and compared with a more basic configuration that uses just the direct predecessor’s state
information with either MPC or PID. Also, the possibly added value of using communicated
predicted states, in addition to current states, with MPC is investigated.
The CACC controllers are designed to control the throttle, the brakes, and the gears, subject
to operational constraints on acceleration, velocity, and vehicle-to-vehicle distance. The PID-
based CACC controller contains a proportional feedback of the errors in velocity, position,
and acceleration, combined with an automatic transmission scheme, and the control input is
restricted at time instants at which a constraint is (almost) violated. The MPC-based CACC
controller at each time step minimises the expected errors in position and velocity and the
corresponding input variation. The MPC prediction model is obtained by approximating a
nonlinear vehicle model by a piecewise affine (PWA) model, and converting the MPC opti-
misation problem into a mixed integer linear programming (MILP) problem.
In this project, tuning is done by applying simulated annealing for a scenario involving four
CACC-controlled vehicles following a platoon leader. Then, the tuned controllers are imple-
mented in a validation scenario comprising a larger platoon undergoing a longer simulation.
The results from simulating this validation scenario show that the PID-based CACC con-
troller has a low responsiveness, compared with MPC, and lets the first two vehicles crash.
With MPC several peaks and oscillations in throttle/brake input and acceleration occur, and
it is expected that with the MPC-based CACC controllers as designed and tuned here, string
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ii Abstract

stability will not always be achieved for increasing platoon lengths.
It is expected that properly retuning will result in better performing controllers. However,
due to limited time, this retuning could not be performed within the scope of this project,
and is therefore left as a recommendation. Therefore, only preliminary conclusions can be
formulated, which are that MPC should be preferred over PID as a control method for CACC,
because it is safer. Moreover, with MPC it should be preferred to, in addition to the cur-
rent states of the direct predecessor, at least use the current states of the second predecessor
and/or the predicted future states from the direct predecessor, in order to achieve better
string stability.
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Chapter 1

Introduction

This report is written as part of the graduation project of the MSc program in Systems and
Control at the Delft University of Technology. This chapter first gives the motivation for the
choice of this specific project, and then the problem statement, the goal, and the procedure
of the project are briefly described, after which an overview of the chapters of this report is
given.

1-1 Motivation

In the last couple of decades traffic intensity has grown significantly. One of the results of
this is an enormous growth in the amount of congestion, especially on highways. In addi-
tion to being very inconvenient, this congestion is financially disadvantageous for the parties
involved, and it has harmful environmental effects. The high traffic intensity also has a neg-
ative influence on road safety, and together with the resulting irregular driving causes high
fuel consumption.
Much research has been done on designing intelligent vehicle systems, which can partially ad-
dress problems like those mentioned above [5, 37, 42]. Intelligent vehicle systems are systems
that sense some elements of the driving environment, and then perform actions to control, or
to assist the driver in controlling part of the driving [5]. Another important motivation for
most of such systems is to increase the convenience of the driving task for the driver.

There are various intelligent vehicle systems being developed that can act on different levels
and different aspects of driving. An example of such a system is a lane departure warning
system, which gives a warning sign when the vehicle starts to cross the lane border. Lane
keeping assistance goes even one step further by applying a torque to the steering wheel to-
wards the centre of the lane that increases when the vehicle approaches the edge of the lane.
Examples of intelligent vehicle systems to be applied in more urban situations are pedestrian
detection and avoidance systems, intersection collision avoidance, and parking assist systems.

This project focuses on a system called (cooperative) adaptive cruise control. The purpose
of adaptive cruise control (ACC) is to control the velocity of the vehicle, and the distance to
its predecessor. The vehicle will maintain a preset speed unless there is a close predecessor,
in which case it will try to follow this predecessor at a safe distance. This distance may be
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2 Introduction

based on a time headway1 preselected by the driver. The ACC system can, e.g., measure the
distance to its predecessor with a radar sensor. However, if there is communication between
the vehicles, the controller can receive necessary data (e.g., position, velocity, and accelera-
tion of one, or even more predecessors) faster. Then this data may be more precise, and can
possibly give information about future actions of the surrounding vehicles. In this case the
ACC system is often called cooperative adaptive cruise control (CACC). Smaller headways
can be achieved, and if a group of vehicles is equipped with CACC, platooning is possible.
This means that a group of vehicles is driving in a tightly spaced formation. In this report
the abbreviation ACC is used as general term for ACC and CACC, and the term CACC will
be used when specifically talking about the system with use of vehicle-to-vehicle communi-
cation. Early ACC systems would only operate above a speed of about 40 km/h [11]. But
much research has already been done with systems that can completely stop the vehicle, if
necessary, and accelerate again from a standstill [2, 7, 9, 18, 22, 30].
ACC is primarily a convenience system, relieving the driver in the dreary, but exhausting
task of driving in busy or even congested traffic on highways. But it also has the potential to
have a positive effect on safety. In addition, the traffic throughput on highways will probably
be improved by ACC, because of the smaller following distance and the decrease of collisions.
At this moment, only a small percentage of the vehicles on the market, mainly high-end cars
[11, 38], is already equipped with (high-speed) ACC. But slowly the introduction of ACC
is spreading from the high-end vehicles towards the mid range. For CACC, other vehicles
also need to have such a system in order to fully benefit from its possibilities, and reliable
vehicle-to-vehicle communication should be implemented as well. Mainly because of this,
CACC systems are not on the market yet and it will take longer than for plain ACC before
they will be available in average cars [31, 38].
In the literature several strategies for tackling the ACC problem have been proposed [1, 2, 7,
9, 11, 18, 21, 24, 25, 40, 47, 49] (see Chapter 2 for more details). The control methods most
frequently used in literature are proportional integral differential (PID) control, and model
predictive control (MPC), of which the latter appears to be the most promising one, as will
be clarified in Chapter 2. A CACC system can use state information from just its direct
predecessor, but it can also be designed to additionally use communicated state information
from other vehicles in the platoon. Literature research shows that using states from e.g., the
second predecessor or the platoon leader in addition to the states of the direct predecessor can
give an improvement of the performance of the controller (see Chapter 2). Such approaches
are only found in literature in combination with a PID control method.

1-2 The Project

1-2-1 Problem statement and goal

Problem

The problem that needs to be dealt with is that high traffic intensities on highways cause traffic
congestions, with the undesirable (financial, environmental, safety, and convenience related)
consequences mentioned before. Therefore, research should be performed to find ways to

1The term headway represents the separation of (the front end of) the vehicle from (the rear end of) its
predecessor. This separation can be measured in spacial distance (in meters), where the more specific term
“distance headway” can be chosen to avoid confusion. The headway can also be given in terms of separation
in time, then called the “time headway”. The time headway specifies the time that would elapse for the vehicle
to reach the current position of the rear end of its predecessor, given the its velocity stays constant.
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1-2 The Project 3

safely and comfortably increase traffic throughput on highways. CACC systems should—
once they are widely introduced in vehicles—increase traffic throughput, because they allow
shorter intervehicle distances than possible with manual driven vehicles [1, 5, 42]. However,
research has shown that PID-based CACC systems perform worse in comfort for passengers
and avoiding collisions, than (less widely researched) MPC-based systems [2, 11]. Therefore,
CACC systems using PID generally are suspected to require bigger intervehicle distances than
systems using MPC. Furthermore, the approach of applying MPC in combination with using
communicated information from more than one predecessor has not been found in literature.
This while PID-based CACC performance has shown to improve when using such additional
information [22].

Goal

The goal of this project is to design different CACC controllers (further specified below), and
to evaluate these controllers by applying them in a simulation of a platoon of CACC-driven
vehicles, in order to answer the following question:

Does the combination of MPC with using communicated information from two
other vehicles, being either the first two predecessors or the direct predecessor
and the platoon leader, result in an increase of performance, compared with PID
(with or without using such additional information) or with MPC using just the
direct predecessor’s information? And in what aspects, and to what extent, is the
performance different?

To be able to answer this question, CACC controllers will be designed in three different infor-
mation gathering configurations, based on which combinations will be made of other vehicles
from which states will be used. The first configuration only uses state information from the
direct predecessor. The second configuration uses state information from its two direct pre-
decessors. The third configuration uses states from its direct predecessor and the platoon
leader. Each configuration will be designed in two types, one with MPC, and one with PID.
MPC needs reference trajectories for the vehicle’s states, which are derived from the states of
the other vehicles used. Having the vehicles communicate their predicted states (which are
calculated in the MPC algorithm) is expected to improve the performance. However this has
not been proven yet. Therefore, the MPC version will be designed in two variants, one with
using only the current states of the other vehicle(s), and one with also using communicated
predicted states.
With each controller to be designed, simulated vehicles should be able to follow at close dis-
tance without colliding, in typical everyday traffic scenarios, where the leader’s states (which
make up the scenario) stay within comfort limits for its passengers. This means that the
controllers are not intended to prevent collision in all circumstances. For instance, in the case
of the leader braking from high velocity to zero with maximum force, the vehicles (equipped
with the CACC controllers designed here) may still collide. For such more extreme situations
some sort of collision avoidance system would have to be added. Therefore, in this project the
aim is to find which proposed controller performs best for everyday traffic situations, keeping
in mind that in a later stadium an additional collision avoidance system could be designed to
handle more extreme situations. Furthermore, a platoon of CACC-controlled vehicles should
be string stable. This means that if a disturbance enters the platoon, e.g., when the leader
suddenly brakes, it should not amplify while propagating towards the tail of the platoon.
The CACC system should also ideally obey the following constraints: The velocity of the
vehicle should be between zero and a certain maximum velocity, and the acceleration should
be between a minimum and a maximum value, representing comfort limits2.
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1-2-2 Procedure

While designing the CACC controller it is assumed that at each time step the states of the
own vehicle are known from measurements, and the necessary state information of other ve-
hicles is received through communication. Furthermore it is assumed that the outputs of the
CACC controller, which are the throttle/brake pedal position and the current gear, can be
appropriately applied to the vehicle. For this project the controllers will be tuned and evalu-
ated by simulating a platoon of vehicles in Matlab, undergoing some typical traffic scenarios
(imposed on the platoon leader). Each of these vehicles, except the leader, will be controlled
by a copy of the same CACC controller. Each vehicle will be simulated using a mathematical
model of the dynamics of a vehicle.
During the design stage each controller has a few tuning variables which will be tuned by
minimising a performance measure calculated from the outputs of a simulation of a range of
typical traffic scenarios. This performance measure will assess close following, obeying con-
straints, the amount of gear switches, smooth pedal position variation, and a string stability
margin. These factors will also be assessed when evaluating and comparing the designed
controllers in the end.

1-3 Overview

This report is organised as follows. Chapter 2 explains the theory behind (C)ACC in more
detail, and discusses state-of-the-art CACC systems presented in literature. Chapter 3 then
describes the main objectives of the project, the CACC design methods used here, and a tuning
algorithm design. Chapter 4 presents a case study, where the controllers are implemented in
a computer simulation of a platoon of vehicles to be tuned and evaluated. Finally Chapter 5
gives some conclusions and recommendations.

2The minimum allowed acceleration has a negative value and represents the maximum allowed deceleration.

C. Kreuzen Master of Science Thesis



Chapter 2

State of the art

In literature several proposed ACC systems can be found. Different researchers use different
approaches to tackle the various aspects of the ACC problem. Also different methods from
control theory have been applied in the design of such systems. Most of these systems have
only been tested in simulations, and some have been implemented in test vehicles on test
tracks. In this chapter first the ACC problem will further be explained (Section 2-1), after
which the state of the art of the proposed ACC systems from literature is presented (Section
2-2). Next, the results from simulations or vehicle tests, as presented in literature, will be
discussed (Section 2-3). The chapter will conclude with a short summary.

2-1 The adaptive cruise control problem

In this section, first the task of the system is described, and how it can get its information
and apply the control signals when it is used in a real vehicle. Then dynamical models of a
vehicle will be presented, after which the control problem will be discussed.

2-1-1 The ACC system in general

The ACC task

The task of ACC is to make the vehicle follow its predecessor at a safe distance, and, in
absence of an obstructing predecessor, to drive with a predetermined velocity.
While accomplishing this main task, ACC should be able to achieve string stability. A platoon
is string stable if disturbances die out when propagating towards the tail of the platoon. Such
a disturbance can for instance be the disturbance in following distance that results when a
vehicle suddenly brakes strongly. ACC should also make sure that the (variations in) acceler-
ation and deceleration stay within a comfort zone. Furthermore, frequent switching between
applying throttle and brakes should be avoided.

A general representation of the vehicle with the ACC in a block diagram is shown in Figure
2-1. The ACC controls the position and velocity of the vehicle. It aims to make the velocity
error and the position error zero. The reference signal in the figure consists of the desired
position, velocity, and possibly acceleration. The desired velocity is often equal to the velocity
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vehicle

dynamics
ACCreference

position

velocity

(acceleration)

+

-

control 
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other 

vehicle(s)

Figure 2-1: General block diagram of an ACC controlled vehicle.

of the predecessor. If following the other vehicle(s) requires a desired velocity that is higher
than the preset velocity for free driving, this preset velocity becomes the desired velocity.
The desired position is usually derived from a desired distance to the predecessor(s). If there
is no preceding vehicle to follow, there is no reference position, and only the velocity (and
if desired, acceleration) is controlled. If information from vehicles further along is received
through communication and used, this can be used to adapt the desired state values, or
communicated states can be used as extra references to which an extended control algorithm
can be applied (see Section 2-2-3).

Measurements

The ACC system needs to know at least the velocity of its own vehicle and of the predecessor
(if there is one present) and the distance to this predecessor. Some systems also use the accel-
eration of these two vehicles or the same parameters corresponding to vehicles further ahead.
Sometimes radar sensor systems are used, which are fast and give a robust performance for
various weather conditions. But these systems are quite expensive [5]. An alternative is the
use of lidar systems, which use near-infrared light laser pulses, at wavelengths between 750 nm
to 1000 nm, to measure the distance to and the velocity difference with the predecessor [5]1.
These are cheaper, but have trouble handling fast moving images and visibility reduction
caused by fog or smoke. Other ACC systems use a global positioning system (GPS) receiver
[7, 21, 30]. The position accuracy from GPS is in the order of 10− 20 m. Additional dif-
ferential positioning error correction signals from the nearest ground GPS base station can
improve this accuracy up to 1-2 cm [30]. These FM signals are received by a radio receiver
mounted on the vehicle. The update frequency of this differential GPS is too low (∼1 Hz)
for ACC. Moreover, differential GPS signals can be blocked by, e.g., buildings, trees, and
bridges causing the signal to not always be available. To have position information available
at all time, the differential GPS data can be fused with data from dead reckoning sensors
like wheel encoders and accelerometers2. This data fusion can be done by means of an ex-
tended Kalman filter, which estimates the parameters for time instants at which no new
GPS signal is received, based on information from the dead reckoning sensors [21]. If such a
GPS method is used, the states of the preceding vehicle are not measured, but they can be
obtained by means of vehicle-to-vehicle communication. From the position data (in time) ob-
tained by the above sensor methods, velocity (and acceleration) data can easily be calculated.

Vehicles can use wireless communication to inform other vehicles about their states and
possibly send information about their expected states and (upcoming) throttle and brake
actions. For more information on the various technical methods that can be used to achieve
such communication, the interested reader is referred to [5].

1Lidar stands for “light detection and ranging”.
2Dead reckoning is the process of estimating a state from a measured value of this state at a known time

instant in the past and measurement of a state that ideally represents the derivative of this state during
the period since that time instant. For instance, the time-integral of the measured angular speed of a wheel
times the wheel’s radius should give the travelled distance since the last measurement of the actual position.
However, wheel slip or other circumstances can cause the error in estimated position to grow.
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Figure 2-2: ACC vehicle i in a platoon, with important parameters shown.

Actuation mechanisms

The ACC controls the actions of the throttle and the brakes. Some ACC systems take over
the control of the gear switching as well, whereas most systems leave that to the automatic
transmission of the vehicle.

If the throttle is “by-wire”, there is a potentiometer attached to the pedal that converts the
pedal position into an analogue signal, which it sends to the motor controller. In this case
the ACC throttle controller can send a similar signal to the motor controller, which replaces
the pedal signal [30]. For brake-by-wire or gear-by-wire, similar interventions can be made to
control braking or gear switching.
If the throttle is mechanically driven, the throttle position can be controlled by a stepper
motor [49]. A common hydraulically assisted braking system can be actuated by having a
DC motor pulling the brake pedal, or by a solenoid valve controlled electric vacuum booster
influencing the pressure in the brake system [49].

2-1-2 Modelling

In order to compare different methods and to avoid confusion, a general standard notation for
most of the variables involved is introduced here. This notation will be followed throughout
the remaining of this report.

The ACC is being designed for vehicle i (the ACC vehicle, see Figure 2-2). Its predecessor
is vehicle i− 1, counting all the way further up to vehicle 1, which is the platoon leader in
case of a platoon. The velocity of each vehicle is given by v with as subscript its number
(i, i− 1, . . . , 1) and its acceleration by a with corresponding subscript. The letter s will be
used for the position of (the nose of) the vehicle and l is its length. The distances (head to
tail) between two vehicles is assigned a d with subscripts indicating which two vehicles the
parameter refers to, as shown in Figure 2-2. The distance between the ACC vehicle and its
predecessor is called the distance headway of this vehicle3.
Furthermore, sdes,i,i−1 refers to the desired position of vehicle i in the case where the only
other vehicle (other than vehicle i itself) from which states are used by the ACC system of
vehicle i is vehicle i− 1. When state information from more vehicles is used, the desired
position used by the controller can be different from sdes,i,i−1. The absolute desired position,

3In the literature, two definitions can be found for the term headway, differing in whether the distance from
head to tail is indicated or the head-to-head distance. In this report, the former version is used to define the
term headway.
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obtained from the information from all the vehicles considered, is given by sdes,i.

The relation between the force that the tires exert on the road (wheel force Fw), and the
velocity and acceleration of the vehicle is given by [11]

Fw(t) = ma(t) + (cv2(t) + µmg) · sgn
(

v(t)
)

(2-1)

where m is the mass of the vehicle, s, v, and a respectively give the position, velocity and
acceleration of the vehicle, c is the viscous friction coefficient to model the air drag, µ is the
Coulomb friction coefficient to model a static friction between the tires and the road, and g
is the gravitational acceleration.
The powertrain, transferring the force on the throttle or brake pedal to wheel force contains
a delay, which acts as a low-pass filter [18]. This gives the following dynamic vehicle model
[2, 18], in which (2-1) can be substituted:

F (t) = Fw(t) + τḞw(t) (2-2)

where F is the force at the throttle pedal or, in case of braking, the negative of the force at
the brake pedal, and τ is the delay time constant (e.g., τ = 0.5 s [2, 18]).
Most ACC systems in literature give as control input to the vehicle the throttle/brake pedal
position. The relation between this pedal position and the force at the pedal, in the simplified
case of neglected powertrain delay (i.e. τ = 0), depends on the current gear and the velocity
as follows [11]:

F (t) = b(j(t), v(t))utb(t) (2-3a)

with

b(j(t), v(t)) =
Te(ω)p(j)

R
, v =

ωR

p(j)
(2-3b)

where b(j, v) is a gear dependence function, j is the gear, utb ∈ [−1, 1] is the pedal position
(with a negative value representing brake and a positive value representing throttle action)4,
Te(ω) is the engine torque at engine rotational velocity ω, p gives the gear ratio, and R is
the average radius of the wheels. The relation between vehicle control inputs (pedal position
and gear) and the vehicle’s velocity and acceleration can be obtained by combining equations
(2-1)-(2-3). For the simplified case of neglected powertrain delay (i.e. τ = 0), this gives as
dynamical vehicle model

b
(

j(t), v(t)
)

· utb(t) = ma(t) + (cv2(t) + µmg) · sgn
(

v(t)
)

(2-4)

In literature, often one or more factors that are modelled above are neglected.

In the above, acceleration caused by braking was modelled by putting the negative of the
braking force as the force input into the equations. In reality, the dynamics for braking are
somewhat different from the dynamics while applying the throttle. Several models for braking
can be found in literature (see, e.g., [9, 24]). But in most ACC research no special model for
braking is used.

4The variable utb gives the relative position of the pedals such that a value of -1 corresponds to the brake
pedal being pushed all the way down, 0 corresponds to no brake or throttle action, and 1 corresponds to the
throttle pushed all the way down. The (undesired) situation of pushing both pedals simultaneously is not
modelled here.
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2-1 The adaptive cruise control problem 9

Figure 2-3: Block diagram of an ACC-controlled vehicle. Dashed segments are optional.

2-1-3 Control problem

ACC comprises a control algorithm that consists of some general control method from control
theory, like PI(D) or MPC. These methods will be further explained in Section 2-2. Such
control methods are constantly working to reduce the error in the outputs of the system to,
preferably, zero. In the case of ACC, the system to be controlled consists of the longitudi-
nal motion of the driving vehicle. The outputs of this system are the vehicle’s position and
velocity. Also its acceleration can be measured and controlled. The control inputs to the
(longitudinal) vehicle system are throttle, brake, and gear signals. For the simple situation
of just following one predecessor without constraints, this is shown in Figure 2-3, which is a
more specific version of the block diagram of Figure 2-1.

Some proposed ACC systems in the literature let one controller directly calculate the throt-
tle/brake (force) command [9, 11, 24, 30, 40, 47]. Other systems have an outer loop with a
controller that outputs an acceleration command to an inner loop. The inner loop then con-
trols the dynamics of the vehicle giving a throttle/brake (force) command output [1, 2, 7, 22].
Some ACC systems have different controllers for brake control and for throttle control, com-
bined with some kind of switching logic [9, 24, 30]. However most systems use one controller,
that gives as output either the demanded acceleration for an inner loop [2, 21], or a throt-
tle/brake command, where a positive sign corresponds to throttle action and a negative sign
corresponds to brake action [11, 18, 25, 40, 47].

When only looking at the direct predecessor, the desired position is determined by the desired
distance headway. Without vehicle-to-vehicle communication the desired distance headway
needs to be velocity dependent in order to be able to achieve string stability [10, 16, 39].
This means that the desired distance increases with increasing velocity. In literature mostly a
constant time headway (h0) is used, meaning that the desired elapsed time between now and
the moment of passing the point where (the rear end of) the preceding vehicle is right now
should be independent of velocity. A small minimum distance headway (d0) is then added as
a safety distance. This makes the desired headway equal to [18, 24, 30, 47]:

ddes,i,i−1(t) = d0(t) + h0vi(t) (2-5)

Sometimes a variable time headway is used. A term that takes the difference in velocity
between the two vehicles into account is then added to the constant time headway. Namely,
if the leading vehicle is driving faster than its follower (positive velocity difference), the
desired headway can be made smaller than in the situation where the following vehicle is
approaching the leading one (negative velocity difference). With variable time headway the
equation becomes [18, 22, 47],

ddes,i,i−1(t) = d0 +
(

h0 − ch(vi−1(t)− vi(t))
)

· vi(t) (2-6)

where ch is a constant.
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v ≥ 0 m/s v ≤ vmax d ≥ dmin a ≥ amin a ≤ amax

Table 2-1: Some general constraints

When communicated information of more vehicles is used, one way to use this information
is to adapt the desired headway based on the communicated data (more on this in Section
2-2-3).

Constraints

Ideally, the controller is to be restricted by some general constraints [2, 9, 11, 24], the most
important of which are given in Table 2-1 and are explained below. The first constraint
(v ≥ 0 m/s) makes sure that the controller does not allow the vehicle to drive backwards.
Without such a constraint, e.g., when the desired velocity is close to zero, but the current
velocity is significantly greater than that, the controller can try to get to the desired velocity
with first having some overshoot, which will make the velocity (in theory) below zero. It is
very intuitive that in reality this does not make sense. The other velocity constraint v ≤ vmax

could be set to the legally maximum allowed velocity or to a different desired maximum ve-
locity.
If the headway (d) would become less than zero, the vehicles would collide. A controller,
not knowing this, can make the vehicle arrive at the desired distance after having had some
overshoot, which might have been too big, causing d to become negative (which corresponds
to a crash). This is the reason for the so called collision avoidance constraint d ≥ dmin, with
a small value for the minimal distance.
Acceleration constraints can be added to keep the movements of the vehicle within the com-
fort zone. The minimum comfortable acceleration (maximum comfortable deceleration) gives
the constraint a ≥ amin, and the maximum comfortable acceleration a ≤ amax.
It may also be desirable to add constraints on the control inputs, that make sure that the
controller does not give control inputs that exceed the physical limitations of the actuators
or the vehicle.

2-2 Control methods

Control theory has yielded several control methods. ACC systems in vehicles on the mar-
ket today still mainly use simple PI controllers, but some other methods are extensively
researched, and in the future, versions of those may be implemented in commercial vehicles.
The two controller types most frequently found in literature are PID (or just PI) and MPC.
An explanation of these methods and an overview of how they are used in adaptive cruise
controllers as described in various articles on the subject, will be given in the next subsections.

2-2-1 PI(D)

A proportional integral derivative (PID) controller acts on the error in the output (vector) of
the system, which is the difference between the output and the reference value. It calculates
the time integral and time differential of the error and feeds a sum of those and the error
itself back to the system, each with a gain factor.

C. Kreuzen Master of Science Thesis



2-2 Control methods 11

In [24, 47] the ACC system uses a PI controller on the velocity error and the position error.
The control law is given by

utb(t) = kp
(

vi−1(t)− vi(t) + k1(sdes,i(t)− si(t))
)

+ kint

∫ t

0

(

vi−1(t′)− vi(t′) + k2(sdes,i(t
′)− si(t′))

)

dt′ (2-7)

where sdes,i is the desired position, k1, k2, kp and kint are positive design constants, and utb

is the throttle/brake signal. The letter u will be used to denote the output of the controller
from this point on. The other variables are as defined in Section 2-1-2. According to [24]
the use of the term vi−1(t′)− vi(t′) in the integral part is found to be beneficial in reducing
the speed overshoot due to a large position error. The variables k1 and k2 can then be used
to fine-tune the ratio between the influence of the position error and the speed error for the
proportional and the integral term separately. This can be very useful to optimally make use
of the benefits of the term vi−1(t′)− vi(t′).

In most literature on ACC no integral term as above is used in the PI(D) controller. Most often
a proportional action over the position, velocity, and sometimes additionally the acceleration
error, is considered [2, 9, 11, 18, 22]. This gives as control law,

utb(t) = ks · (sdes,i(t)− si(t)) + kv · (vi−1(t)− vi(t)) + ka · (ai−1(t)− ai(t)) (2-8)

where ks, kv are positive design constants, and ka is either positive or zero, the last of which is
the case in literature that does not consider acceleration. This can be seen as a proportional
(P) controller with as input a vector containing the errors in the two or three outputs of the
system5.

For heavy-duty vehicles some model parameters can vary quite strongly. The mass variation
between a lightly and heavily loaded truck can be more than 300%. Also road grade has much
more influence than it has on light passenger vehicles. This causes fixed-gain controllers to
have limited performance. A way to deal with this problem is to use adaptive gains [47]. For
this, a reference model is used, and at each time step the gains of the controller are adapted
online such that the system and the reference model have the same response to the same
input signal. To achieve this, the error between the system and the reference model responses
is used, and a Lyapunov function is applied, after which an update law for the gains is found.
For the exact method, see [24, 47].

If constraints should be implemented with a PID control method, this can only be done by
cutting off the output at the appropriate values. This means that a simple algorithm should
decide, at every instant, whether a constraint is (about to be) violated. If so, it should
calculate the corresponding maximum or minimum allowed output and give that as output,
instead of the output it would give with no constraints. To be able to do this, a model of the
system is needed.
For the constraints on the acceleration this means that if the output of the PID control
law would make the vehicle accelerate faster than the maximum allowed acceleration, the
controller output will be set to the value that will make the vehicle assume this maximum
acceleration. Similarly, if the expected acceleration resulting from applying the PID law is
too small, violating of the minimum acceleration constraint will be prevented by setting the
controller output to the value resulting in the smallest allowed acceleration (maximum allowed

5This can also be seen as a PID controller over the velocity, because acceleration is the derivative of velocity
and position is the integral of it.
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deceleration).
For some of the constraints this is implemented in [9], which uses different controllers for
braking and accelerating. The throttle control law is given by

ut(t) =











min
(

(amax+kfvi(t))
bu

, ks
(

sdes,i(t)− si(t)
)

+ kv
(

vi−1(t)− vi(t)
)

)

, if vi < vmax

kfvi(t)
bu
, if vi = vmax

(2-9)

Here ut is the throttle pedal position, bu is a positive constant, and kfvi gives the (simplified)
friction. The simplified vehicle model for positive throttle input used here is6 buut(t) =
ai(t) + kfvi(t). So the first line of the control law makes sure the maximum acceleration is
obeyed. The second line prevents the vehicle to go above the maximum velocity. Similar
constructions can be made to obey some of the other constraints.
In [1], the ACC system tries to obey the maximum velocity by taking the minimum of two
calculated acceleration commands, to give as input to an inner loop:

aref = min(arefv , arefd) (2-10)

where aref is the acceleration command, used as acceleration reference by the inner loop, arefv

is the acceleration command based on following the maximum velocity, so a little overshoot
can occur here, and arefd is the acceleration command based on following the predecessor.

In more extreme situations, e.g., when the predecessor suddenly brakes strongly or when a
vehicle suddenly changes lane right in front of the ACC-controlled vehicle, there is an in-
creased chance of collision. To take care of this problem, some PID-based ACC designs have
extended the algorithm with a special part to avoid collisions in situations like these. See
[9, 22, 30] for the different approaches.

2-2-2 MPC

Model predictive control (MPC) uses a mathematical model of the system to be controlled
and, if available, knowledge of the future values of the reference signals, to predict the effect
of a sequence of control inputs. By finding the control sequence that results in the most op-
timal predicted system behaviour, restricted by the given constraints, the next control input
is determined.

MPC often uses a state space model to calculate state and output values corresponding to
the input values that are explored during the optimisation. The model can be nonlinear,
but often it is desirable to use a linear model for reasons of low computational expense. A
discrete-time linear state space model is of the following form7:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(2-11)

where x(k) is the state vector at time step k, u(k) is the input, and y(k) is the output vector.
MPC uses a performance index to determine the cost of every input-predicted output sequence

6Although [9] fails to mention the mass with respect to the positive-throttle vehicle model, it is assumed
that the coefficients kf and bu in (2-9) are values considered per unit mass.

7In this thesis the simulation period (Tsim), i.e., the period between two time steps in the discrete simulation
model used by the MPC controller to simulate predicted future dynamics, is set equal to the sampling period
Ts, i.e., the time between subsequent output measurements performed to be used by the controller. Therefore,
from now on the term sampling period will be used when referring to this period.
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[8, 28, 33]. Such a performance index can take different forms, which usually are quite similar
in essence. In the case when there are reference signals to track, a possible performance index
is

J(u, k) =
N
∑

n=Nm

∥

∥Q
(

ŷ(k + n | k)− r(k + n)
)∥

∥

p2
p1

+
Nc
∑

n=1

‖Ru(k + n− 1)‖p2p1 (2-12a)

or

J(u, k) =
N
∑

n=Nm

∥

∥Q
(

ŷ(k + n | k)− r(k + n)
)∥

∥

p2
p1

+
Nc
∑

n=1

‖R∆u(k + n− 1)‖p2p1 (2-12b)

where ŷ(k + n | k) means the prediction of the output y at time step k + n, based on knowl-
edge up to time step k (current time), r(k + n) is the reference signal at time k + n, u
is the input control signal to the system, ∆u(k) = u(k)− u(k − 1) is the input increment,
Q is the weighting matrix for the output error, R the weighting matrix for the input (in-
crement), Nm ∈ {1, . . . N} is called the minimum cost horizon, N the prediction horizon,
Nc ∈ {1, . . . N} the control horizon, and p1 and p2 determine the order of the norm. Often
1-norms (p1 = p2 = 1) or squared 2-norms (p1 = p2 = 2) are used, but other norms can be
used too, like the ∞-norm (p1 = ∞, p2 = 1). It should be noted that if C in (2-11) is an
identity matrix, then the output y used in (2-12a) is equal to the state. In the following, the
“| k” part will be omitted in the equations for ease of notation.
The first part of the performance index from (2-12a) calculates a weighted quadratic sum of
the predicted output error over time steps from Nm up to the prediction horizon N . The
second part is a weighted sum of the inputs over the length of the control horizon. Hence,
keeping the performance index low is making the output follow the reference well, while also
trying to keep the input control signal small. The second performance index (2-12b) takes as
second part a sum of the input increments. This is because sometimes it is preferable to keep
the variation in the input control signal small.
MPC uses an optimisation algorithm to find a sequence of control inputs that minimises the
performance index for fixed prediction, control, and minimum cost horizons. It then takes
the first value of this optimal input sequence and feeds this to the system. At the next time
step, this is done again including data from the new measurements of the output, and new
reference values, and so on. Every time step, after a new control signal has been applied, it
stays constant until its value is updated to match the calculated control input of the next
time step.
In the explanation above, it is assumed that the sampling frequency and the control update
frequency, i.e., the frequency of computing and updating the control signal, are equal. How-
ever, it is also possible to have a sampling period that is a multiple of the control update
period. This way, modelled system dynamics occurring between control-update time instants
can be detected by the optimisation. A performance index of the type of (2-12b) would, in
the case that the control-update period Tctrl is bigger than the sampling period Ts according
to Tctrl = mcTs (mc 6= 0 ∈ N), look like

J(u, k) =
N
∑

n=Nm

∥

∥Q
(

ŷ(k + n | k)− r(k + n)
)∥

∥

p2
p1

+

Nc/mc
∑

n=1

‖R∆u(kc + n− 1)‖p2p1 (2-13a)

with

kc = floor

(

k − 1

mc
+ 1

)

(2-13b)

Here “floor” means rounding down to the nearest integer, and kc is the control update step

counter. In the model of (2-11) u(k) is then replaced by u
(

floor
(

k−1
mc

+ 1
))

8.

8Although the performance index (2-13) and the system model representation for the case of Tctrl = mcTs

may look unusual, they are easy to transform into a prediction form (defined in Section 3-3-3) as is needed for
the application of the MPC algorithm.
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Figure 2-4: Relation between the vehicle’s velocity and maximum wheel traction force, i.e., for
utb = 1, for each gear. Here the model parameters of a SMART are used, according to [11].

If the computations are too complex to be done online, the optimisation can also be done
offline instead. Then a look-up table has to be constructed, which can be used online to find
the right values corresponding to the current situation. The disadvantage of off-line MPC is
that it requires more on-board memory. If the future reference signals are not known a priori,
in the prediction they will usually be assumed to be equal to the current reference signal, i.e.,
r(k + n) = r(k) for n = Nm, . . . , N (or estimated in some other manner).
Because some optimisation algorithms can cope with several kinds of constraints on the vari-
ables, MPC using such an algorithm can directly deal with constraints, without having to
apply extra (non-sufficient) tricks as has to be done with PID (discussed in Section 2-2-1).

Because in a model predictive controller the system model plays an important role, the con-
troller will perform better if the model is a closer representation of the reality. However,
a model that is too complex results in too much computation needed to obtain the control
signal, which is undesirable, especially when the computations have to be done online. Also,
often not much will be gained by using a very complex model, because it will not make the
controller more robust against changing circumstances.
For the ACC application it can be chosen to use a simplified model that neglects the non-
linear influence of the air drag, and to assume that the force is proportional to the pedal
position independent on the gear. This is done in [2], which also neglects the tire friction. A
disadvantage of just neglecting such factors can be that the control input at some points is
far from optimal, because it is based on a model that is simplified too much9.

Another article [11] takes the more complex model from (2-3), as a basis, and then presents
several ways to approximate this model for use as a prediction model for MPC. Two factors
make this model very complex to use. The first is the presence of the gear dependence
function (b(j, v)), which is a nonlinear function of the gear and the velocity. The second is
the nonlinearity introduced by modelling the air drag giving a squared velocity.
The (approximated) relation between the velocity and the traction force for each gear for

9In [2] the model simplifications are also applied in the model used to simulate the vehicles in the validation
scenarios. Therefore it is not clear from this paper what the consequences of these simplifications in the model
used by MPC are when applying the controller to a more realistic vehicle simulation.
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Gear j δ1 δ2 δ3 b(j)(N)

1 0 0 0 4057
2 1 0 0 2945
3 0 1 0 2116
4 1 1 0 1607
5 0 0 1 1166
6 1 0 1 838

Table 2-2: Relation between the gear number and the values of the three binary variables that
encode the gear, and the values of the gear dependence function b(j) after it was simplified to
only depend on j.

utb = 1 and ωmin ≤ ω ≤ ωmax is given by [11] as shown in Figure 2-410. As can be seen
from the figure, for each gear there is a region where the traction force is approximately
constant at a maximum value. To simplify the model, in [11] for each gear the traction
force is assumed to be equal to this maximum (see Table 2-2), where the velocity bounds for
choosing each gear are put at the edges of the respective maximum value region (as can be
seen by comparing Figure 3-2b with Figure 2-4). So the minimum and the maximum allowed
velocity for each specific gear number j are given by constants vlow,j , and vhigh,j respectively.
In this approximated model the traction force factor (b) is no longer (directly) dependent on
the velocity, but only dependent on the gear, replacing b(j, v) by b(j).
The resulting model is given by

b(j(t))utb(t) = ma(t) + (cv2(t) + µmg) · sgn
(

v(t)
)

(2-14)

After discretising and translating to a state space form this becomes

x(k + 1) =

[

x1(k) + Tsx2(k)

x2(k)− Tsc
m x

2
2(k)− Tsµg

]

+

[

0
Ts

m b(j(k))

]

· utb(k) (2-15)

where x = [x1, x2]T = [s, v]T, and Ts is the sampling period.
Then [11] approximates the nonlinear gear dependence b(j) by a PWA function. Here, instead
of the gears being controlled actively, gear switching is governed by dividing the velocity
domain into regions. In each region only one gear is allowed, which is defined by the following
inequality constraints:

vg,0 + vg,1j(k) ≤ v(k) ≤ vg,0 + vg,1 · (j(k) + 1) (2-16)

where vg,1 > 0 and vg,0 are constants. For each gear, between its velocity bounds, the gear
dependence is approximated by a linear function of the gear number, b(j(k)) ≈ β0 + j(k)β1,
with β0 and β1 constants. Then j is encoded as

j(k) , δ1(k) + 2δ2(k) + 4δ3(k) + 1 (2-17)

where δi(k) ∈ {0, 1} are binary variables (used to be able to transform the model into an
MLD form, as described below, see (2-26)). This way each value of the gear corresponds to a

10Here the relation Te(ω) (representing the engine torque at engine rotational velocity ω, see (2-3b)) is
approximated by a piecewise affine (PWA) function consisting of three lines, which for the vehicle model
of a SMART have their edges at the points (105 N·m, 5 rad/s), (209 N·m, 80 rad/s), (471 N·m, 80 rad/s), and
(628 N·m, 60 rad/s). Hence the straight lines in Figure 2-4. The function p(j) (giving the gear ratio for each
gear in (2-3b)) for the SMART has values 14.203, 10.31, 7.407, 5.625, 4.083, and 2.933 for the respective gears
in increasing order.
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Figure 2-5: PWA approximation of the squared velocity, applied by [11].

unique combination of values for the three corresponding binary variables, as shown in Table
2-2. The gear dependence function now becomes

b(j(k)) ≈ (β0 + β1) + β1δ1(k) + 2β1δ2(k) + 4β1δ3(k) (2-18)

Because of the combination of continuous and discrete variables, this is a hybrid system,
which can be dealt with by selecting appropriate MPC algorithms [3, 11].

Several methods are applied by [11], for comparison purposes, where the model is further
approximated in different ways and to different extents. First applies MPC is applied with
a nonlinear discrete-time model with approximated gear dependence. This has very high
computational costs. Therefore, some other methods are applied with linearised models. One
of those uses the affine system tangent to the current operating point. This way, the linearised
model has to be calculated at each time step. Another method (applied in two variants, online
and offline) approximates the nonlinear air drag by a PWA function, as shown in Figure 2-5.
The expressions for the two lines (P1, and P2) of the PWA function are given by:

P1 : β
αx2, x2 ∈ [0, α]

P2 : v2
max−β
vmax−α

(x2 − α) + β, x2 ∈ [α, vmax]
(2-19)

with

α =
vmax

2
, β =

3v2max

16
(2-20)

Each line is valid in a specific region on the domain of x2. This means that replacing x2
2 in the

model by its PWA approximation results in a different state space equation for each region.
The term x2 − Tsc

m x
2
2 from (2-15) can now be replaced by

x2 − Tsc
m x

2
2 → (1− Tscβ

mα ) · x2 = a1x2 ⇐⇒ vmin ≤ x2 ≤ α

x2 − Tsc
m x

2
2 → (1− Tsc(v2

max−β)
m(vmax−α) ) · x2 + Tscα(v2

max−β)
m(vmax−α) −

Tscβ
m

= a2x2 + r ⇐⇒ α < x2 ≤ vmax

(2-21)

where the constants a1, a2, and r are introduced here for clarity. After substituting this, a
PWA state space model is obtained of the form

{

x(k + 1) = A1x(k) + F1 +Butb(k), for x2(k) < α

x(k + 1) = A2x(k) + F2 +Butb(k), for x2(k) ≥ α
(2-22)
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Some tools are developed in [3] to deal with such PWA models. This paper shows that
a binary variable can be introduced, which encodes the two regions of the model. For the
model of (2-22) this gives δ0(k) = 0 for x2(k) < α, and δ0(k) = 1 for x2(k) ≥ α. The following
rules from [45] are presented (by [3]) to be able to further process models with such variables.
This first rule shows how to construct a system of linear inequalities to alternatively express
the definition of these (region-encoding) binary variables:

([f(x) ≤ 0] ⇐⇒ [δ = 1]) ⇐⇒
{

f(x) ≤ M(1− δ)
f(x) ≥ ε+ (m− ε)δ (2-23)

with tolerance ε > 0 having a very small value11, M = maxx∈X f(x) and m = minx∈X f(x),
where X is the domain of x. The next rule can be used when in the system model a product
occurs between a binary input or state variable and a continuous input or state variable. Such
a product makes the model nonlinear. By replacing it by a new continuous auxiliary variable,
and alternatively expressing the definition of this variable by a system of linear inequalities,
the model can be linearised. The corresponding rule is [45]

z = δf(x) ⇐⇒



















z ≤ Mδ
z ≥ mδ
z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ)

(2-24)

with z a continuous auxiliary variable. Similarly, a product between two binary input or state
variables, making a model nonlinear, can be replaced by a new binary variable of which the
definition can also be expressed by linear inequalities according to [45]

δ3 = δ1δ2 ⇐⇒











−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1
(2-25)

It is proposed in [3] to transform a PWA model into a mixed logical dynamical (MLD) model,
which is done in [11] with the model of (2-22). The general MLD model looks like







x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B5

E1u(k) + E2δ(k) + E3z(k) ≤ E4x(k) + E5

(2-26)

with state vector x = [xT
c , x

T
b ]T, xc ∈ R

nc , xb ∈ {0, 1}nb , input vector u = [uT
c , u

T
b ]T, uc ∈ R

mc ,
ub ∈ {0, 1}mb , δ ∈ {0, 1}rb a vector of binary auxiliary variables, and z ∈ R

rc a vector of con-
tinuous auxiliary variables.

Using this approach, (2-22) can be transformed into

x(k + 1) = (1− δ0(k))(A1x(k) + F1) + δ0(k)(A2x(k) + F2) +Butb(k) (2-27)

After defining a new continuous auxiliary variable z, where z(k) = δ0(k)x(k), the model
becomes

x(k + 1) = A1x(k) +Butb(k) + (F2 − F1)δ0(k) + (A2 −A1)z(k) + F1 (2-28)

11In (2-23) the statement [f(x) ≤ 0] ⇐⇒ [δ = 1] (with δ ∈ {0, 1}) implies [f(x) > 0] ⇐⇒ [δ = 0]. The
statement [δ = 1] =⇒ [f(x) ≤ 0] is represented by f(x) ≤ M(1 − δ) (if δ = 0 this inequality stays valid, by
stating that f(x) is smaller than or equal to it maximum value). The statement [δ = 0] =⇒ [f(x) > 0] can be
represented by f(x) > mδ. To rewrite this strict inequality into a non-strict inequality, the small tolerance ε
is introduced, which typically has the size of the machine precision, giving the inequality f(x) ≥ ε+ (m− ε)δ.
If, here, the value of f(x) is smaller than ε the constraint f(x) > 0 is considered to be violated [3].
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18 State of the art

The inequalities that arise from applying (2-23)-(2-25) become part of the MLD model (2-26),
and can be incorporated into the MPC algorithm as constraints to the optimisation.

The performance index used in [11] is based on 1-norms. The advantage of this over squared
2-norms is that it lowers the complexity of the optimisation problem, allowing the use of
mixed integer linear programming (instead of mixed integer quadratic programming). It is
preferable to also minimise the number of gear switchings (∆j), which is why this is also
entered in the performance index:

J(x(k), ũtb(k), j̃(k)) =
N
∑

i=1

(

‖ Qe(k+ i) ‖1 + ‖ Ru∆utb(k+ i− 1) ‖1 + ‖ Rj∆j(k+ i− 1) ‖1
)

(2-29)
where e(k) = x(k)− xdes(k) is the state error vector, Q, Ru, and Rj are weighting matrices,
ũtb(k) = [utb(k), . . . , utb(k + N − 1)]T, and j̃(k) = [j(k), . . . , j(k + N − 1)]T. Because the
acceleration is not used as an output or state, the acceleration constraint is written as func-
tion of the state x2 and sampling period Ts as aminTs ≤ x2(k + 1)− x2(k) ≤ amaxTs. Extra
constraints are necessary here, because of the introduction of the gears:

1 ≤ j(k) ≤ 6 → 0 ≤ δ1(k) + 2δ2(k) + 4δ3(k) ≤ 5

−1 ≤ j(k + 1)− j(k) ≤ 1

→֒ −1 ≤ δ1(k + 1) + 2δ2(k + 1) + 4δ3(k + 1)− δ1(k)− 2δ2(k)− 4δ3(k) ≤ 1

(2-30)

The first is because there are only 6 gears in the specific car used. The second constraint,
which can be applied if desired, prohibits gear changes that jump to two or more gears higher
or lower.
The optimisation problem becomes a mixed integer nonlinear programming or a mixed inte-
ger linear programming (MILP) problem depending on whether the final model still contains
nonlinearities.

As seen above, the structure of the MPC method is very suited to add constraints and include
extra features, e.g., introducing discrete variables into the model, like the gear. Also, because
the minimisation of the performance index can be done online, the MPC method can deal
better with model variation than the PID method. It just needs an observer to estimate
online the value of parameters that might vary, like the mass in case of a truck. These values
can then be adapted in the model that is used for the prediction of future states and outputs.
With the forward looking ability of MPC, choosing the appropriate constraints should be
sufficient to avoid collision, at least in everyday driving situations12.

2-2-3 Using communicated information from more vehicles

Sometimes it can be very useful to already act directly on what a vehicle further downstream is
doing. For instance in the situation where the second vehicle ahead suddenly brakes strongly,
it is safer to start braking right away instead of waiting until the direct predecessor reacts to
it. When there is communication between the vehicles, information from vehicles downstream
(or upstream if necessary) can be received by wireless communication, and the vehicle can also
react to changes further ahead. Including these changes in the controller can be implemented

12Extreme situations, like a suddenly maximally braking predecessor are not researched in the articles about
MPC considered here. In such cases an MPC-based ACC system following at close distance may still crash,
since ACC is designed as a vehicle following system and not as a collision avoidance system.
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2-3 Evaluation of strategies from literature 19

by designing a special cooperative adaptive cruise control (CACC) algorithm.
One method to use communicated state information is proposed in [22]. For just following
the direct predecessor (vehicle i− 1) it uses a PID control law to determine the commanded
acceleration (aref,i−1) (to pass to an inner loop). To include communicated information from
the second vehicle in front, it now uses a similar control law to keep a desired distance

ddes,i,i−2 = ddes,i−1,i−2 + li−1 + ddes,i,i−1 (2-31)

to this second predecessor (i− 2). Here ddes,i−1,i−2 is the desired headway from vehicle i− 1
to vehicle i− 2, and l represents vehicle length. This results in reference acceleration aref,i−2.
Then an algorithm computes the resulting commanded acceleration from the outputs of the
two PID rules:

aref,i =

{

min(aref,i−1, aref,i−2), if min(aref,i−1, aref,i−2) < 0

max
(

aref,i−1,
aref,i−1+aref,i−2

2

)

, otherwise
(2-32)

with a smooth transition (unspecified by [22]) designed between the outputs of the two rules.

Most changes in acceleration of the vehicles in a platoon of ACC vehicles are an indirect
response to actions of the platoon leader. So in the case of a CACC platoon, it can be useful
for all vehicles to react also to the movements of the platoon leader in addition to already re-
acting to the direct predecessor. To implement this, [18] extends the PID equation by adding
terms to it that perform a similar PID action, but this time with the references based on the
platoon leader’s states. The values of the PID gains of this extra part can then be tuned to be
lower than the gains of the part based on keeping a desired distance to the direct predecessor.
Instead of first applying a PID to different sets of desired states, it is also possible to use
information from vehicles further ahead to directly apply a correction term to the desired
distance to the predecessor (ddes,i,i−1), as is done in [7].

2-3 Evaluation of strategies from literature

In literature, the ACC systems are tested by implementing them in simulations or sometimes
with real vehicles that undergo some typical traffic scenarios. The scenarios used are catching
up with a distant predecessor, following the predecessor when it accelerates or decelerates
to a new constant velocity, or coming to a stop safely behind a suddenly strongly braking
predecessor. The focus is usually on vehicle following, meaning monitoring the situation
between two subsequent vehicles, or on platoon behaviour, like evaluating string stability.

2-3-1 Effects on vehicle following

Literature shows that when using a PID controller, close following often results in either
violating (desired) acceleration constraints or collision in some situations [2, 11]. This is
caused by the fact that either no acceleration bounds are included, or the PID controller
output has to be cut off to obey the minimum acceleration. Because PID cannot predict the
results of its actions, it can crash when the deceleration is bounded. Using MPC without
constraints, or only with the minimum acceleration constraint (both applied in [2] to gain
more insight), can also result in a crash in some situations (with closer following). This is
because the minimum distance constraint is necessary for the controller to “know” that the
position overshoot should not become too big to avoid collision. With the right constraints
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applied, MPC-based ACC can handle several types of scenarios without collision or uncom-
fortably strong decelerations [2, 11]. Because the MPC algorithm can include constraints like
the minimum distance constraint, closer following distances can be achieved compared to PID.

In [11] robustness to model variation is tested by performing a number of simulations with
different systems, each time changing different parameters in the simulation vehicle model.
The conclusion drawn is that in case of model variation, online methods (like online MPC) are
not affected, but a look-up table or a fixed gain PI method only finds sub-optimal solutions
and seems to violate the constraints (even) more.

It is shown in [22] that with CACC and using information from the first two predecessors
(compared with ACC that just looks at the direct predecessor), vehicles can react very quickly
to changes ahead. Two SMARTs using the algorithm of (2-32) following a Peugeot that sud-
denly brakes strongly to stop, react fast and simultaneously by also braking. The second
SMART only needs to brake with half the intensity that the first SMART uses in order to stop
at d0 = 8 m behind the first SMART (with h0 ≈ 1.5 s in (2-6)). This means that the minimum
acceleration constraint does not need to be violated to avoid a crash, even though PID is
used here. This also means that the brake intensity decreases with vehicles more upstream,
so string stability will also be achieved in a platoon of such vehicles. Because of the quicker
reactions, with CACC smaller safe intervehicle distances can be achieved.

2-3-2 Effects on platoon behaviour and string stability

In the literature different definitions of the term “string stability” can be found [6, 12, 31, 40,
46]. Based on these definitions, a general description would be the following. A platoon of
vehicles is string stable if disturbances that are introduced anywhere in the platoon die out
when propagating upstream (i.e., towards the tail of the platoon).
Different papers focus on different measures to represent the propagating disturbances men-
tioned above. Some papers consider the propagation of the position error from one vehicle to
the next towards the tail of the platoon to study string stability [12, 46]. Others consider the
propagation of position and velocity errors [40], of position, velocity, and acceleration errors
[6], of velocity [12], of acceleration [12], or of a combination of control input, position error,
velocity, and acceleration [31]. Sometimes, a definition of string stability is given that is a
relaxed version of the description above, and states that, provided that the initial state errors
of all the vehicles are bounded, the state errors of all vehicles stay bounded in time [40]13. A
few papers make a distinction between strong string stability, which requires (norms of) the
measure(s) considered to attenuate from each vehicle to its follower, and weak string stability,
which only requires (norms of) the measure(s) to decrease from the platoon leader to each of
its followers, provided the disturbance started with the platoon leader [17, 31, 39].

In the literature investigation of whether a platoon of ACC vehicles is string stable has been
done analytically and empirically.
The analytical method calculates a frequency domain transfer function (G(jω)) for the consid-
ered measures from one vehicle to the next one. This can be calculated after the closed-loop
system of the vehicle with the ACC controller is determined. Papers that only consider

13The relaxed condition for string stability considering bounded errors or states should not be used for a
platoon with bounded length (especially when relatively short), because even if this condition is satisfied for
the bounded platoon, it does not guarantee boundedness for longer platoons

C. Kreuzen Master of Science Thesis



2-3 Evaluation of strategies from literature 21

the position error, state that for (strong) string stability, the following should hold in the
frequency domain [18, 24, 46]:

|G(jω)| =
∣

∣

∣

∣

∣

Sdes,i(jω)− Si(jω)

Sdes,i−1(jω)− Si−1(jω)

∣

∣

∣

∣

∣

< 1, ∀ω > 0 (2-33)

where Si(jω) and Sdes,i(jω) are the frequency domain representations of, respectively, the po-
sition and the desired position of vehicle i. To investigate the propagation of other measures
(or from the leader to vehicle i), similar transfer functions as (2-33) could be derived for these
other measures (or for this other vehicle combination) [31]. By using condition (2-33), it is
proven that no string stability can be achieved if the reference distance is constant and there
is no vehicle-to-vehicle communication [24, 37, 42, 46]. In fact, it is found that either vehicle-
to-vehicle communication (not only from each vehicle to its direct follower)14, or use of rear
end sensor information [46, 50], or a speed-dependent distance headway [10, 16, 24, 39, 46] is
needed in order to be able to achieve string stability.
To empirically study the way disturbances propagate through the platoon, the platoon leader
accelerates or decelerates from an initial constant velocity to another velocity, which it keeps
constant for some period of time. Then the propagation of the measures considered upstream
through the platoon and in time is evaluated. In the case of string stability, the peak value
over time of the measure(s) considered should decrease for increasing vehicle index (or, in
the case of the weaker form of string stability, at least decrease for each vehicle compared to
the platoon leader, or the first ACC controlled vehicle). It has been shown, by conducting
such empirical analysis, that indeed stability is achieved in simulations of ACC methods that
use communication or speed-dependent distance headways [9, 18, 24, 47]. Furthermore it is
found that with using a variable time headway as in (2-6) instead of a constant time headway,
string stability is easier to achieve and the resulting errors are smaller in magnitude [47].

A comparison between the two basic control methods, PI(D) and MPC, with respect to string
stability cannot be given here, because none of the papers on MPC found in literature have
done tests on this matter.

Simulations have shown that for vehicles from neighbouring lanes it may be hard to merge
into a close-following CACC platoon [1]. This is caused by the small intervehicle spaces and
the fact that CACC only considers the situation in the longitudinal direction. A solution
to this problem could be to design some co-operative merging procedure. Furthermore from
simulations it is concluded that ACC significantly reduces the probability of collision between
the ACC vehicle and its predecessor, but it slightly increases the chance of collision for the
followers of the ACC vehicle [41, 42].

14Often, when in the literature statements are made about vehicle-to-vehicle communication being needed
to achieve string stability with a constant desired distance headway, it is added that this means that the
platoon leader can communicate its velocity (and acceleration) to all other vehicles in the platoon [18, 36, 46].
Additionally, [46] specifically states that it is impossible to achieve string stability with only receiving commu-
nicated state information from the direct predecessor, and not from other vehicles. However, no information
has been found on the possibility or impossibility of achieving string stability when the communication is
not between the platoon leader and all its followers, but, e.g., between each combination of three subsequent
vehicles. Furthermore, such statements—although expressed in general terms—are derived as conclusions from
research with PID-like methods. It seems incorrect to extend such statements, without further research, to
ACC systems that use different control methods, such as MPC.
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2-4 Summary

In this chapter, several approaches from literature to tackle the ACC problem are reviewed.
Here a short summary will be given.

It is found that both reviewed control methods, proportional integral (derivative) (PI(D))
and model predictive control (MPC), appropriately implemented with possibly necessary ex-
tra features, can give reasonably acceptable results with respect to vehicle following when
applied in average circumstances. However, when the circumstances diverge from average
vehicle following, or when comfort issues are considered, MPC performs better than PID.
This is because with PID constraints cannot be properly included, and the controller cannot
predict the consequences of its actions. This results in a higher chance of collisions in more
critical circumstances, or a greater following distance. MPC on the other hand can easily
include constraints in its algorithm. Moreover, because at each control update time step
MPC performs an optimisation based on system predictions, the effects of the constraints can
be incorporated and be accounted for when deciding the optimal control input. This makes
MPC-based ACC safer and more comfortable than a PID-based one. Another advantage of
MPC is that online MPC is more robust to variations in the vehicle model. Online MPC is
much more computationally complex than PID, but with the use of a simplified model, and
with the increase of computational power of computers, it does not have to be too complex
to be implemented.
Cooperative ACC (CACC) uses vehicle-to-vehicle communicated information. The use of a
special CACC algorithm (incorporating information from more vehicles than just the direct
predecessor) was only found in the literature in combination with PID, so at this point no
comparison with MPC can be done on this issue. It can be concluded from the literature that
with PID closer following can be achieved when communication is involved, especially with
the use of specially designed CACC methods.

So, MPC appears to be the control method with the most potential to include several impor-
tant aspects to make the ACC systems of the future even better at their task. Introducing
vehicle-to-vehicle communication and using communicated data in a cooperative ACC algo-
rithm is expected to further improve the benefits of ACC.
Therefore, the project that will be described in the remaining of this report will combine the
use of MPC and vehicle-to-vehicle communication.
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Chapter 3

Designing control systems for
cooperative adaptive cruise control

Now that the state of the art CACC systems have been reviewed, ideas to combine promising
approaches in the design of a new CACC controller arise on which this and the following
chapter will report1. This chapter covers the theoretical part of this new research, independent
of the specific vehicle or exact traffic situation the controllers are applied to. First a detailed
description of the design objectives is given in Section 3-1. In Section 3-2 a slightly simplified
vehicle model is presented to be used for vehicle simulation, and to base the controller design
on. Then control algorithms are designed in Section 3-3, after which a way to measure the
performance and tune the controllers is presented in Section 3-4.

3-1 Design objectives

Within this project several variants of CACC controllers are to be designed that ideally
meet a set of performance requirements that will be given below. The measurement and
communication data, which consist of position, velocity, and acceleration states (present and,
if needed, predicted future states) of the own vehicle and other vehicles in the platoon, will
be assumed available. It will also be assumed that lower-level control is implemented that
appropriately applies the control signals, i.e., throttle/brake pedal positions and current gear
number, to the vehicle. So the CACC design here will be limited to the level of designing
the algorithms that take the measured and communicated data as input and give the control
signals as output.

3-1-1 CACC controllers to be designed

Recall that for ease of the exposition the vehicles in a platoon are numbered, starting with
the platoon leader as vehicle 1, its follower being vehicle 2, and so on (see Figure 2-2). When
designing the CACC controller for an unspecified vehicle in the platoon, this vehicle will be

1From this point on, the term “CACC controller” (or just “controller”) is used to denote the combination of
PID/MPC control law and the processing of the communicated information from other vehicles. Both of these
steps can differ for the different CACC controllers. So, as will be explained below, in this chapter nine CACC
controllers are designed, and for the sake of clarity, the term “CACC system” will not be used to indicate these
specific CACC controllers.
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called vehicle i, with 2 ≤ i ≤ total number of vehicles in the platoon. This makes, e.g., its
direct predecessor vehicle i− 1.
Concerning how to use the opportunity of communicating with other vehicles in the platoon,
the CACC controllers will be designed in three different information gathering configura-
tions. These configurations will differ in which other vehicles they use communicated state
information from:
Configuration I. Only communicated data from the direct predecessor is used. So vehicle

i uses data from vehicle i− 1.
Configuration II. Communicated data from the first two predecessors is used. So vehicle i

uses data from vehicles i− 1 and i− 2.
Configuration III. Communicated data from the direct predecessor and from the platoon

leader is used. So vehicle i uses data from vehicles i− 1 and 1.
Furthermore, for each of the configurations above, two main controller types will be designed,
based on which basic control methods will be used:
- PID is used as control method.
- MPC is used as control method.
As mentioned in Chapter 2, the promising performance of the use of MPC as well as vehicle-
to-vehicle communication in the design of ACC systems, led to the idea of combining the
two approaches. Because in the literature and in practice PID is the control method most
frequently used, this method will be applied for comparison with MPC. The reasons for the
choice of these three specific configurations (I-III) above are the following. Configuration I is
very commonly found in literature and, with measuring the states of the predecessor instead
of using communication, already applied in real-life commercial vehicles, and is therefore cho-
sen as reference to compare the performance of the other configurations with. Configuration
II, documented in [7, 22] (with PID), is chosen because it is reported to achieve better perfor-
mance than configuration I, since the vehicle can react quicker to upcoming changes, making
shorter following distances possible. No literature has yet been found that documents using
this configuration in combination with MPC, which is why this promising combination is
going to be researched here. Configuration III, proposed in [18] (with PID), is also expected
to give a better performance than configuration I, since every (significant) change in velocity
introduced by the leader travels through the platoon and will reach each following vehicle
at some point. Therefore, incorporating state data from the platoon leader in the CACC
controller of each follower is expected to help the vehicles react quicker to such changes. Just
as the second configuration, the third configuration, too, is not found in combination with
MPC yet, and since it is a considerably different approach compared with configuration II,
this configuration is also chosen to investigate.

Because MPC uses predictions of the vehicles’ states, the question arises whether or not the
CACC controller will perform even better if the vehicles also communicate their predicted
states and the controllers use these predicted states from other vehicles. Therefore, the MPC
types, for all three configurations I-III, will be designed in two variants:
MPC1: Only current state data from other CACC-controlled vehicles is used by the MPC-

based CACC controller.
MPC2: In addition to current states, also predicted state data from other CACC-controlled

vehicles is received via communication and used by the MPC-based CACC controller.
It will be assumed that the leader of the platoon knows its own future actions (at least up to
the prediction horizon of the MPC controllers of the other vehicles), and that for both of the
above MPC variants the leader communicates its expected states for the near future to the
vehicles that use its states2.

2MPC controllers of vehicles that receive future states from the platoon leader through communication use
this information for their state reference trajectories corresponding to future time steps up to the length of the
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v ≥ vmin = 0
v ≤ vmax > 0 m/s
d ≥ dmin > 0 m

a ≥ amin < 0 m/s2

a ≤ amax > 0 m/s2

Table 3-1: Constraints that give performance requirements.

Furthermore it is chosen for the CACC controllers to be designed to, in addition to the throt-
tle and brake pedals, also include the gear choice as a control variable. This will be done,
because it is expected that the MPC-based CACC controllers may find a more efficient time-
gear trajectory if the gear choice along with its consequences are incorporated in the MPC
scheme, which looks forward in time.

3-1-2 Performance requirements

To tune, and later to evaluate the controllers, a simulation needs to be designed. Such a
simulation should represent a platoon of vehicles moving in longitudinal direction only, each
of which (except the leader) is controlled by a CACC controller. To obtain a closer match
to reality, the vehicle dynamics simulation is preferably based on a continuous time vehicle
model, and the CACC controller is in discrete time. This means that measured state data
(and communicated data) is received by the CACC controller at time steps, and the control
output is fed to the vehicle simulation through a zero-order hold filter. For the evaluation of
the performance of the controllers, different types of traffic scenarios should be simulated in
order to cover the main range of typical longitudinal traffic situations on highways.

The controllers have to be designed subject to some performance requirements. First, driving
with CACC should be safe, while the following distance should be be small. If the following
distance will be taken very big, e.g., a distance corresponding with a time headway of five
seconds, then it will probably not be so hard to design a controller that is safe in all circum-
stances. But the smaller the preferred following distance, the harder it is to make a design
that is still safe in all kinds of typical traffic scenarios. So the aim is to design the controllers
such that the following distance can be as small as possible, without collisions occurring in the
range of daily traffic situations. Also, the controller should obey some constraints, which are
shown in Table 3-1. Here, the constraints on the acceleration are for comfort purposes, the
constraints on velocity to only drive in the forward direction and to obey a desired maximum
velocity, while the distance constraint is to prevent collision, as was explained in more detail
in Section 2-1-3. Exact values should be assigned to the parameters vmax, dmin, amin, and
amin before the controllers are tuned, as will be done in Section 4-2-1. The distance constraint
(d = si−1− si− li−1 ≥ dmin with dmin having a small value) is one that should not be broken,
because otherwise the vehicle will almost definitely crash into its predecessor. The minimum
velocity constraint should not be broken, because in a real vehicle a negative velocity in ve-
hicle following makes no sense, and is very undesirable. For the maximum velocity it can be
chosen (in the designing stage), e.g., to allow the driver to choose the value for it, or to fix

prediction horizon. Therefore, receiving state information from the platoon leader at least for this period of
time into the future is assumed to be beneficial (otherwise missing future (platoon leader) states would have
to be predicted in some manner). Since PID cannot handle predictions, the fact that the platoon leader knows
its future actions is not relevant for PID-based CACC controllers.

Master of Science Thesis C. Kreuzen



26 Designing control systems for cooperative adaptive cruise control

its value to, e.g., the legally allowed maximum velocity on highways. This maximum velocity
should not be exceeded too strongly, because, e.g., one could get a fine at some point if it is
broken frequently. Though probably if it is approximately obeyed with possibly some very
small overshoots (say < 0.5 m/s = 1.8 km/h), it will not pose too much problems in real traffic
situations. For the acceleration comfort constraints it will also not suddenly cause a highly
uncomfortable situation if relatively small excesses of the constraints (say < 0.05 m/s2) occur
at some points. Still, the aim will be to strictly obey these constraints. However, knowing
from literature research this may not be achievable with PID, the above reasoning will give
some extra guidelines for designing the PID controller.
Furthermore, the CACC controller should achieve string stability for a platoon of vehicles
that use this controller.

Another comfort issue is to try to make the input variation go smoothly, without too sudden
changes or unnecessary changes back and forth (i.e., chattering) resulting in more gradual
movements. This does not give hard constraints, but rather motivates to keep changes in the
throttle or brake pedal positions or the gear low.

The performance requirements given above should be taken into account while designing and
tuning the controllers. Also the evaluation of the controller performance should be based on
these requirements.

3-2 Vehicle model

Equation (2-14), from [11], will be taken as the model to represent the vehicle dynamics:

b(j(t))utb(t) = ma(t) + (cv2(t) + µmg) · sgn
(

v(t)
)

(3-1)

where v is the vehicle’s velocity, a its acceleration, m its mass, c the viscous friction coef-
ficient, µ the coulomb friction coefficient, g the gravitational acceleration, utb ∈ [−1, 1] the
throttle or negative of the brake pedal position (normalised), j ∈ {1, 2, 3, 4, 5, 6} is the current
gear with each value of j only allowed in a given speed interval (see Section 2-2-2), and the
function b(j) gives for each gear the maximum traction force (that is the traction force when
utb = 1) as described in Section 2-2-2.
In [11], within this model the lower velocity velocity bound for the first gear (vlow,1) is set to
the starting point of the constant traction force region in Figure 2-4 (which, in that figure,
is 3.94 m/s). Because the vehicle should also be able to drive with velocities lower than this
value, without further complicating the model again, vlow,1 will be set to zero. The velocity
bounds for the other gears, as well as the mass of the vehicle, depend on what vehicle is
used and therefore are given in Chapter 4, which describes the case study. It is assumed,
for simplicity, that all the vehicles in the platoon have the same vehicle model, and therefore
each vehicle has the same length, denoted by lveh.

3-3 CACC controller algorithms

This section presents the algorithms that make up the CACC controllers. First it is shown how
desired values for the states at each time step are obtained from the states of other vehicles
serving as reference. Then it is shown how each of the control methods, PID and MPC,
are implemented, and strategies are presented that deal with different problems that arise.
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3-3-1 Handling the reference values

Depending on which of the three information gathering configurations is concerned, one or
two other vehicles in the platoon are used as reference to derive the desired state values for the
own vehicle. Looking first at the situation between two subsequent vehicles in the platoon,
the velocity of the predecessor is used as desired velocity for its follower, and (if used) the
desired acceleration of the follower is the acceleration of the predecessor. The ideal following
distance (not knowing what is happening elsewhere in the platoon) is then given by

ddes,i,i−1(k) = d0 + h0vi(k) (3-2)

Here, d0 represents the intervehicle distance at zero velocity, where this value is a reasonable
value for traffic situations. How small the value of time headway h0 can be chosen, depends on
how well the controller can perform. The desired headway is chosen to be velocity-dependent
so as to have bigger following distances at higher velocities, which is preferable for safety.
When there is no communication with vehicles other than the direct predecessor (configuration
I), the desired states are derived as just described, where the desired position is at the point
which lies the desired distance behind the predecessor:

sdes,i(k) = sdes,i,i−1(k) = si−1(k)− lveh − ddes,i,i−1(k)
= si−1(k)− lveh − d0 − h0vi(k)

vdes,i(k) = vdes,i,i−1(k) = vi−1(k)
ades,i(k) = ades,i,i−1(k) = ai−1(k)

(3-3)

When the CACC controller uses communicated state information from specific other vehicles
in the platoon, this information will be used to adapt the desired state values. From the
states of each other vehicle of which information is used, a set of alternative desired states
will be derived in a similar way as is done before with using the states of the direct predeces-
sor. The resulting set represents the desired states as if the focus were on following only this
other vehicle, knowing its relative place in the platoon. Then the different sets are linearly
combined, with normalised weights, to form one resulting set of desired states, which will be
used by the PID or MPC algorithm. This is the general idea, but in this project only states
from at most one other vehicle, in addition to the direct predecessor, are used.
Specifically, the alternative set of desired states for vehicle i derived from the second prede-
cessor’s (vehicle i− 2) information are (see also (2-31))

sdes,i,i−2(k) = si−2(k)− 2lveh − ddes,i,i−1(k)− ddes,i−1,i−2(k)
= si−2(k)− 2lveh − 2d0 − h0

(

vi(k) + vi−1(k)
)

vdes,i,i−2(k) = vi−2(k)
ades,i,i−2(k) = ai−2(k)

(3-4)

where the subscript “des, i, i− 2” means that this is the desired value for vehicle i when only
taking into account vehicle i − 2. The desired values when only taking vehicle i− 1 into
account are as in (3-3). Now, when the first two predecessors states are used as references
(configuration II), the final set of desired states will be derived as follows

sdes,i(k) = qs,p1sdes,i,i−1(k) + qs,p2sdes,i,i−2(k)
vdes,i(k) = qv,p1vdes,i,i−1(k) + qv,p2vdes,i,i−2(k) = qv,p1vi−1(k) + qv,p2vi−2(k)
ades,i(k) = qa,p1ades,i,i−1(k) + qa,p2ades,i,i−2(k) = qa,p1ai−1(k) + qa,p2ai−2(k)

(3-5a)

with
qs,p1 + qs,p2 = 1, qv,p1 + qv,p2 = 1, and qa,p1 + qa,p2 = 1 (3-5b)

where the weights are represented by the parameters q, with subscript “p1” corresponding to
the references from the direct predecessor, and subscript “p2” corresponding to the references
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ddes,i,i-1

Figure 3-1: Illustration of how, without applying (3-7), the desired position (of vehicle i) could
lie beyond the predecessor (vehicle i− 1). In this example qs,p1 = qs,p2 = 0.5

from the second predecessor.
For the configuration where the direct predecessor and the platoon leader are used as ref-
erences, the position of the leader is not used by the vehicles that do not have the leader
as direct predecessor (only its velocity). This is because the relevance of the own position
relative to the leader diminishes when there are more vehicles between the leader and the own
vehicle, because of position errors of predecessors. The leader is added as reference because of
its function in the platoon, where usually the rest of the platoon will follow the leader. This
means the leader will probably induce most of the velocity changes in the platoon. Therefore,
it is expected that using the velocity and acceleration of the leader to slightly influence the
desired velocity and acceleration respectively, will have a positive effect on quick reaction to
changes induced by the leader. So in the case of configuration III (using states of direct the
predecessor and the platoon leader) the desired state values are given by

sdes,i(k) = si−1(k)− lveh − ddesi,i−1(k) = si−1(k)− lveh − d0 + h0vi(k)
vdes,i(k) = qv,pvi−1(k) + qv,lv1(k), with qv,p + qv,l = 1
ades,i(k) = qa,pai−1(k) + qa,la1(k), with qa,p + qa,l = 1

(3-6)

where weights with the subscript “p” correspond to references from the direct predecessor,
and the subscript “l” represents weights corresponding to the references from the platoon
leader.

Above for configuration II the desired position is calculated as a weighted average of the
desired position when just looking at the direct predecessor, and the desired position when
just looking at the second predecessor. This means that when this second predecessor is
driving away from the direct predecessor, at some point the desired position (of the vehicle’s
front tip) can go beyond the rear end of the direct predecessor or even exceed that vehicle’s
front tip position, as is illustrated in Figure 3-1. To prevent this from happening, a minimum
for the desired distance is introduced. When the desired position according to (3-5a) becomes
greater than the point lying at the minimum desired distance behind the direct predecessor,
this latter point will be used instead as desired position. In that situation, if the direct
predecessor’s velocity or acceleration is less than the desired velocity or acceleration of the
own vehicle respectively, as calculated according to (3-5a), the value of this predecessor’s state
will replace the calculated value of the respective desired state. This is expressed by

ddes,min,i(k) = cdmin(d0 + h0vi(k)), with 0 ≤ cdmin < 1
sdes,max,i(k) = si−1(k)− lveh − ddes,min,i(k)

(3-7)

and

if sdes,i(k) > sdes,max,i(k), then redefine:











sdes,i(k) := sdes,max,i(k)
vdes,i(k) := min

(

vdes,i(k), vi−1(k)
)

ades,i(k) := min
(

ades,i(k), ai−1(k)
)

(3-8)

where the value of cdmin may be chosen to be different for the MPC-based CACC controller
than for the PID type. The lower bound for cdmin is set to 0 to avoid a desired position that
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exceeds the position of the rear end of the predecessor. Here it is assumed that the platoon
will not completely split up, so a big gap in the platoon will only be a temporary situation.

The time headway h0 can have different values for each of the CACC controllers. The second
vehicle in the platoon only has one predecessor. When a controller with configuration II or
configuration III is used in the vehicles in the platoon, this second vehicle only receives state
information from the leader. Its desired states are then calculated in a similar way as with
configuration I (as in (3-3), including using the value of h0 for configuration I with the same
controller type. For a platoon in which all vehicles from the third and further (i ≥ 3) have
configuration II CACC, the third vehicle applies, to the first line of (3-4), the fact that the
second vehicle uses this other value of h0. This changes the second line of (3-4) accordingly.
The PID controller will use the error in all three states (position, velocity, and acceleration),
whereas the MPC controller will only use the position and velocity errors. This choice is made
because the MPC algorithm is more powerful than the PID algorithm, since it uses predicted
state errors over a prediction period along with the ability to obey constraints. Because of
this, using also the acceleration error in the MPC algorithm is considered to be less important
(than for PID). Furthermore, not using it will lower the amount of computation at each time
step, which is relatively high for an online MPC controller.

3-3-2 CACC with PID

At each time step k the CACC controller will receive state data from the own and other
vehicle(s), calculate the control inputs, and apply these to the throttle or brake pedal, and
to the gearbox. The PID control law is given by

uPID(k)
(

= b(j(k)) ·utb

)

= ks
(

sdes(k)− s(k)
)

+ kv
(

vdes(k)− v(k)
)

+ ka
(

ades(k)−a(k)
)

(3-9)

Here, the desired states (sdes(k), vdes(k), and ades(k)) are ideal states which serve to compare
to the already fixed states (s(k), v(k), and a(k)) to calculate the state errors. These state
errors are needed to determine—by applying the PID law above—how to adjust the input
signal. One could call this a proportional (P) control law (or even PDD or PII), but it will
be called a PID control law here, because of the three states that are fed back, one (s(k)) is
actually the integral of one of the other states (v(k)), and one (a(k)) is the differential of this
state v(k). The output of the PID law gives the wheel traction force that is needed, which is
the product of the input variable for the throttle/brakes (utb(k)) with b(j(k)), which in its
turn is a function of the other input variable the gear. It is assumed here that a model of the
vehicle dynamics, including a representation of gear dependency b(j(k)), like (3-1) is available.

Now the question is how to divide the value of uPID(k) over b(j(k)) and utb(k). First the
gear number is obtained by applying some sort of shifting scheme. Equation (2-16) showed
how [11] divided the velocity domain into regions, each of which only allows for one specific
gear. One problem with this approach is that the gear could be chattering up and down if the
velocity is only slightly varying around a shifting value. To solve this problem, hysteresis can
be added to such a shifting scheme, making the new gear value not only depend on velocity
but also on the previous gear value. Another problem with this scheme is that it does not
take into account the amount of wheel traction force demanded. That is, if the PID output
(uPID(k)) is high it is preferable to choose a lower gear than in case of a low PID output,
since throttle input is cut off at 1 (physical limit) and a lower gear gives higher traction.
Conversely choosing a higher gear is favoured in case of low PID output, because of lower fuel
consumption rates. This is why conventional automatic transmission schemes also use the
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Figure 3-2: The gear scheduling algorithm as applied by the PID-based CACC controller, illus-
trated by two schematic plots. (The values are based on the model of a SMART, which is used
in the case study of Chapter 4)

throttle input (usually exerted by a human driver) as input to the shifting scheme [27, 29, 35].
In these schemes the gear shift point is based on the velocity and the throttle input, with
hysteresis added such that the up-shift point from gear j⋆ to j⋆ + 1 lies at a higher velocity
or lower throttle input than the down-shift from j⋆ + 1 to j⋆ with the same throttle input or
the same velocity respectively. The gear scheduling algorithm that will be applied here uses
a simplified gear shift scheme based on these conventional automatic transmission schemes.
Recall (from Section 3-2) that in the vehicle model (3-1) each gear is only allowed between its
lower and upper velocity bounds, and that while in one gear the maximum achievable traction
force (equal to the value of b(j)) stays constant. To make full use of these velocity regions,
for each gear j⋆ the velocity for the up shift to gear j⋆ + 1 while at full throttle (utb = 1) is
set to the upper velocity bound for this gear (vhigh,j⋆). The up-shift velocity for zero throttle
(utb ≤ 0, so no throttle action, but possibly brake action) is set to a value 15 % lower, at
0.85 · vhigh,j⋆ . The velocity for a shift down from j⋆ to j⋆ − 1 while utb ≤ 0 is set to the lower
velocity bound for this gear (vlow,j⋆). The velocity for this down shift with full throttle is set
at a 15 % higher value3 (at 1.15 · vlow,j⋆). Figure 3-2 shows this scheme graphically.
Now the situation is such that the gear scheduling algorithm needs utb(k) as an input, while
to calculate utb(k) the gear number is required. This is handled by first calculating utb(k)
assuming that the gear stays constant, according to

utb(k) =
uPID(k)

b(j(k))
(3-10)

Then (after, if necessary, having cut of the throttle input to try to obey the maximum velocity
and maximum acceleration constraints, which will be explained below, around (3-11)) apply
the gear scheduling algorithm with this value. Then, only if the gear changes, once more
calculate utb, now with the new value of the gear. Since it is not preferred to have the gear
change to much, these steps are not repeated again (which could cause an additional change

3No specific information could be found in literature on how to choose the precise shape and location of
the gear shift lines. This is why here the lines in Figure 3-2a are chosen to be straight and the endpoints are
chosen as explained in the text, where the 15 % approach is chosen to make these lines diverge for increasing
throttle input (as they do in the literature).
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in the gear), thereby keeping the gear change ‖∆j‖ ≤ 1.

As explained before, the constraints from Table 3-1 should ideally be obeyed, and the throt-
tle/brake signal should be between utb = −1 and utb = 1. A PID controller cannot anticipate
such saturation and constraints, nor can it, in its basic form, obey them. The problem with
no anticipation cannot be solved, and strictly obeying the constraints (from Table 3-1) in
all situations is not achievable. However, some tricks can be applied to try to meet some
of the constraints by approximation. Say, the situation is such that a constraint is violated
and the PID control signal is expected to make the situation even worse. Then the initially
computed control signal can be replaced by a signal with a magnitude that is expected to
(partly) abolish the violation of the constraint for the next time step, as was done in [9]
(see also Section 2-2-1). Assuming a continuous-time model is available, it can be used to
calculate a replacing throttle/brake signal that aims at keeping the state (approximately) at
the boundary for the violated constraint. So after the initial PID output is calculated, a few
constraints are checked one by one in a specific order, after each check giving the control
signal a new restrained value if necessary, according to

1. if v(k) ≥ vmax −→ utb := min
(

1
b(j)(cv2max +mµg), utb

)

2. if utb > utb(amax, k) −→ utb := utb(amax, k)

3. if v(k) ≤ vmin = 0 −→ utb := max
(

0, utb

)

4. if utb < utb(amin, k) −→ utb := utb(amin, k)

5. if utb < utb,min = −1 −→ utb := −1

6. if utb > utb,max = 1 −→ utb := 1

(3-11a)

with

utb(a, k) =
1

b(j)

(

ma+ (cv(k)2 +mµg)sgn(v(k))
)

(3-11b)

where utb(a, k) gives the pedal input at time step k that would theoretically result in the in-
stantaneous acceleration a. This approach was inspired by [9] (see also Section 2-2-1). In rule
1 of (3-11a), for the case when the velocity has reached the maximum allowed velocity and
the PID output tries to increase the velocity even further, the new control signal is calculated
such that the acceleration a becomes zero. Rules 2 and 4 of (3-11a) try to (approximately)
obey the acceleration constraints. The input is restricted by rules 5 and 6 by just cutting of
the control signal value at ±1.
In fact, the first two rules of (3-11a) are already applied once before the new gear is cal-
culated. This is because these are the only constraint related rules that affect the throttle
signal4 (utb > 0). Then after the definite value j(k) is obtained and (3-10) is applied, if the
gear has changed, the first two rules are applied again (not if the gear stays constant). Then
the remaining rules are applied.

Now for almost all constraints an algorithm has been designed that tries to keep from vio-
lating the constraint (strongly), except for one. The constraint d ≥ dmin is one that cannot
be properly dealt with. Namely this constraint exists because breaking it represents colliding
with the vehicle in front, after which no control actions can be taken any more. Just as with

4The other rules that are related to constraints only affect the brake signal. The throttle input saturating
rule 6 of (3-11a) should not be applied before the new gear is obtained, because the unsaturated value of utb

represents how much traction is needed. The throttle (/brake) input saturation is only applied completely at
the end of the CACC algorithm.
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the other constraints, the PID algorithm cannot foresee breaking this one5. To avoid breaking
this minimum distance constraint the desired distance should be made big enough such that,
even with restricted negative acceleration, the vehicles will not collide.

3-3-3 CACC with MPC

MPC model

As explained in Section 2-2-2, at each control update time step the MPC determines the input
sequence that minimises a certain performance index defined over a certain prediction period,
and takes from this minimising sequence the input vector corresponding to the current time
step (k) to apply to the system. To be able to predict future outputs resulting from applying
a sequence of inputs to the system, the MPC algorithm uses a model of the system.

Because the CACC controller uses samples of the vehicle’s states and other necessary variables,
the controller will be acting in discrete time. Therefore, the model that the controller uses to
predict the system behaviour must be in discrete time too. First the model from (3-1) will
be written in state-space form, and then discretised. For the MPC application the position
and velocity of the vehicle will be joined in one state vector:

x =

[

x1

x2

]

=

[

s
v

]

(3-12)

The state-space formulation looks as follows,

ẋ(t) =

[

x2(t)
− cmx2

2(t)− µg · sgn(x2(t))

]

+

[

0
1
mb
(

j(t)
)

· utb(t)

]

(3-13)

Here utb as well as j are inputs, and from the original term c
mx

2
2(t) · sgn(x2) (from (2-14))

the “sgn” operation is omitted. This is because the minimum velocity constraint will prevent
the velocity from becoming negative, and when the velocity is zero, making sgn(x2) zero, x2

2

is also zero. So omitting the sgn(x2) factor from that term does not change anything within
the operational region.

Now, the model will be discretised according to the Euler rule:

ẋ(kTs) ≈ x(k+1)−x(k)
Ts

−→ x(k + 1) ≈ x(k) + Ts · ẋ(kTs) (3-14)

where Ts represents the sampling time. This results in the discrete-time model

x(k + 1) =

[

x1(k) + Tsx2(k)

x2(k)− Tsc
m x

2
2(k)− Tsµg · sgn(x2)

]

+

[

0
Ts

m b
(

j(k)
)

· utb(k)

]

(3-15)

The model from (3-15) contains several nonlinearities (resulting from x2
2, b(j), and sgn(x2)),

which makes it highly computationally expensive to be used in online MPC. This is because
the optimisation problem to be solved within the MPC algorithm is nonconvex. For the vehicle
to react quickly, the control signal should be determined and applied quickly. To significantly

5The difference with the other constraints is that even if they are violated, the vehicle can still drive and
the CACC controller can try to keep the state close to the limit value (instead of significantly breaking the
constraint). Contrarily to this, when breaking the minimum distance constraint, it is too late for any action,
which is why no such rule as the ones from (3-11a) is designed for the minimum distance constraint.

C. Kreuzen Master of Science Thesis



3-3 CACC controller algorithms 33

              velocity

v 
2   /

   
P

W
A

 a
pp

ro
xi

m
at

io
n

PWA approximation of squared velocity

δ
0
=0

δ
0
=1

α v
max

β

ζ

 

 

v 2

PWA approximation

Figure 3-3: Piecewise affine approximation of the squared velocity, applied for the MPC model
of the vehicle.

shorten the computation time, the strategy to approximate linearities by PWA functions and
apply some other manipulations to obtain a mixed logical dynamical (MLD) model (2-26) is
adopted from [11] (see also Section 2-2-2). However, some different choices are made, com-
pared to [11], in the application of this strategy. The optimisation problem will then become
a mixed integer linear programming (MILP) problem, reducing the optimisation running time.

The first linearisation is to approximate the nonlinear term x2
2, representing the increase of the

air drag with velocity, by a PWA function (see Figure 3-3). A PWA function consisting of two
straight lines should give a fair trade-off between good approximation and low mathematical
complexity. The optimal values for the parameters defining these lines are derived from
an optimisation procedure to fit the lines as well as possible to the parabola between the
minimum and maximum allowed velocities. While searching for these optimal values, the
start of the first line is fixed on the origin. This is because any other value at zero velocity
would represent air drag while the vehicle is standing still. This would cause the controller
to still give unwanted throttle/brake signals unequal to zero to try to counteract this air drag
in the prediction model, in the case where the vehicle should stay still. Contrarily to the
approach of [11] (see Figure 2-5), it is chosen not to fix the point for vmax at v2max, but to
find the optimal value for it. This way a closer approximation can be achieved. Now, the
expressions for the two lines (P1, and P2) of the PWA function can be given by:

P1 : β
αx2, x2 ∈ [0, α]

P2 : ζ−β
vmax−α

(x2 − α) + β, x2 ∈ [α, vmax]
(3-16)

Because the system needs only to be modelled for velocities between the minimum and maxi-
mum allowed velocities, these values are used as the lower bound for the first region (vmin = 0)
and the upper bound for the second region (vmax) respectively. The optimal values for the
unknown parameters that define the two lines can be found by minimising the mean squared
error between the PWA approximation and x2

2. These optimal values are

α = (−2 +
√

6) · vmax, β = (7
1

2
− 3
√

6) · v2max, ζ = (−1
1

2
+
√

6) · v2max (3-17)

The term x2(k)− Tsc
m x

2
2(k) from (3-15) can now be replaced similarly as was shown in (2-21)
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according to

x2(k)− Tsc
m x

2
2(k) → (1− Tscβ

mα ) · x2(k) = a1x2(k) ⇐⇒ vmin ≤ x2(k) ≤ α

x2(k)− Tsc
m x

2
2(k) → (1− Tsc(ζ−β)

m(vmax−α)) · x2(k) +

Tscα(ζ−β)
m(vmax−α) −

Tscβ
m = a2x2(k) + r ⇐⇒ α < x2(k) ≤ vmax

(3-18)

where the constants a1, a2, and r are introduced here for clarity. Now a dummy binary
variable δ0(k) ∈ {0, 1} will be defined as follows:

δ0(k) = 0 ⇐⇒ x2(k) ≤ α
δ0(k) = 1 ⇐⇒ x2(k) > α

(3-19)

This definition as such cannot be implemented into the MLD model, or anywhere else in the
MPC algorithm. Therefore, using (2-23) (from [3]), the definition of δ0 will be rewritten into
the form of the system of inequalities

x2(k) ≥ (α+ ε)δ0(k) + (1− δ0(k))vmin = (α+ ε)δ0(k)
x2(k) ≤ α(1− δ0(k)) + δ0(k)vmax

(3-20)

where ε > 0 has a very small value (as explained in Section 2-2-2, e.g., ε = 10−14). The
introduction of the variable δ0(k) makes it possible to join the two expressions from (3-18)
into a single expression valid on the whole velocity domain:

x2(k)− Tsc
m x

2
2(k) → (1− δ0(k))a1x2(k) + δ0(k)(a2x2(k) + r)

= a1x2(k) + (a2 − a1)δ0(k)x2(k) + rδ0(k)
(3-21)

This expression contains the product of a binary variable and a state variable (δ0(k) · x2(k)),
which makes the expression still nonlinear. Replacing this product by the new auxiliary
variable z0(k) = δ0(k)x2(k), and alternatively expressing this definition by a system of in-
equalities, removes the nonlinearity. This system of inequalities, derived from (2-24) is given
by

z0(k) ≤ δ0(k)vmax

z0(k) ≥ δ0(k)vmin = 0
z0(k) ≤ x2(k)− vmin(1− δ0(k)) = x2(k)
z0(k) ≥ x2(k)− vmax(1− δ0(k))

(3-22)

In the state-space model (3-15) there is another nonlinearity that should be taken care of,
which is the term Tsµg · sgn(x2(k)). To get rid of this nonlinearity, a new binary variable
δµ(k) ∈ {0, 1} is introduced, with δµ(k) = 0 ⇐⇒ x2(k) = 0, and δµ(k) = 1 ⇐⇒
0 < x2(k) ≤ vmax. This can be put into the inequalities

x2(k) ≥ εδµ(k)
x2(k) ≤ vmaxδµ(k)

(3-23)

Now the term Tsµg · sgn(x2(k)) can be replaced by Tsµgδµ(k). After the introduction of the
variables δ0(k), z0(k), and δµ(k), the new, now partly linearised, state space model becomes

x(k + 1) =

[

1 Ts

0 a1

]

· x(k) +

[

0
Ts

m b
(

j(k)
)

· utb(k)

]

+

[

0 0
r −Tsµg

]

·
[

δ0(k)
δµ(k)

]

+

[

0
a2 − a1

]

· z0(k) (3-24)
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As was done in [11], the gear is encoded by binary variables according to (2-17), for conve-
nience shown again here:

j(k) = 1 + δ1(k) + 2δ2(k) + 4δ3(k) (3-25)

where δ1(k), δ2(k), δ3(k) ∈ {0, 1}. Now these three binary variables become control inputs for
the MPC model instead of j, which can easily be calculated from these binary variables using
(3-25). The constraints that restrict the gear to stay between 1 and 6 are given by (2-30).
Recall that each gear number can only be chosen between corresponding velocity bounds. For
each gear number j⋆, this restriction can be given by a pair of inequalities as follows:

j(k) = j⋆ → x2(k) ≥ vlow,j⋆ and x2(k) ≤ vhigh,j⋆ (3-26)

This can alternatively be represented by a pair of inequalities involving x2(k) and the bi-
nary variables δ1(k), δ2(k), and δ3(k). Doing this for all gears results in a total of twelve
inequalities. Here, e.g., the inequality pair corresponding to the second gear looks like

x2 ≥ δ1(1− δ2)(1− δ3) · vlow,2 +
(

1− δ1(1− δ2)(1− δ3)
)

· vmin

x2 ≤ δ1(1− δ2)(1− δ3) · vhigh,2 +
(

1− δ1(1− δ2)(1− δ3)
)

· vmax
(3-27)

where vmin = 0 is the minimum allowed velocity, vmax is the maximum allowed velocity, and
the dependence on k has been omitted for clarity. For the other ten inequalities the reader
is referred to Appendix A-1. These inequalities contain several instances of the products
δ2(k)δ3(k), and δ1(k)δ2(k)δ3(k). However, as can be seen from Table 2-2, within the operating
region, δ2(k), and δ3(k) are never both equal to 1 simultaneously. Therefore, these products
are always zero, and can be omitted from the inequalities. The inequalities also contain the
products δ1(k)δ2(k), and δ1(k)δ3(k), which makes them nonlinear. Therefore, these products
will be replaced by new binary dummy variables, according to

δ4(k) = δ1(k)δ2(k) (3-28a)

δ5(k) = δ1(k)δ3(k) (3-28b)

the definition of which will alternatively be expressed by systems of inequalities by applying
(2-25) (see Appendix A-1).

The final nonlinearity to linearise is the dependence of the traction force factor on the gear
(b(j)), which is shown in Figure 3-4. When approximating this relation, the final point (value
for j = 6) should be fixed at the original point (b(6)). This is because otherwise it will lie below
that, causing the controller to give higher throttle inputs when close to vmax. This can then
result in the velocity exceeding its maximum allowed value with the MPC scheme not being
able to find an input that theoretically would decrease the velocity to below its upper bound
before the next sample step. That would then result in an infeasible optimisation problem for
the MPC controller6. A possible linearisation approach is to approximate this relation b(j)
by one straight line, as was done by [11] (see (2-18)). However, this results in a significant
model mismatch. A second possible approach, which gives smaller model errors compared to
the first approach, is to perform a two-region-PWA approximation, similar to what was done
for the approximation of the squared velocity in Figure 3-3. A third approach, which employs
the fact that the gear is a (already binary decoded) discrete variable, is to keep the six values
of b(j), and make a six-region-PWA approximation, as it were. For each of these areas the
respective line is just reduced to one point that lies on b(j). The arithmetics of applying
these three approaches are shown in Appendix A-2. It turns out that all three approaches

6Applying experiments with b(j) approximated such that the final point has a lower value than b(6) indeed
resulted in the infeasible situation described when trying to maintain the velocity at (approximately) vmax.
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Figure 3-4: The gear dependence factor (equal to traction force at maximum pedal input) is
nonlinear with the gear. Values are derived from the vehicle model of the SMART, which is
used later on for the simulation setup (in Section 4-1). Approximations (not used, see text) are
obtained with mean squared error minimisation method.

can be applied without the need to introduce new binary dummy variables. However, all
require the introduction of three new continuous auxiliary variables, z1(k) = δ1(k)utb(k),
z2(k) = δ2(k)utb(k), and z3(k) = δ3(k)utb(k), and both the second and third approach require
two more of such variables, z4(k) = δ4(k)utb(k) and z5(k) = δ5(k)utb(k). It is decided to apply
the third approach, because this approximation is better than the second one, and compared
with the first approach the approximation is so much better, that it should outweigh the
computational demands of the two additional real-valued variables. The three binary variables
that encode the gear can be used to specify each of the six areas of the PWA function, which
are actually the six (discrete) gears. This way b(j) can be replaced by

bδ(δ1, δ2, δ3) = (1− δ1)(1− δ2)(1− δ3)b1 + δ1(1− δ2)(1− δ3)b2

+ (1− δ1)δ2(1− δ3)b3 + δ1δ2(1− δ3)b4 + (1− δ1)(1− δ2)δ3b5 + δ1(1− δ2)δ3b6 (3-29)

where b1, . . . , b6 represent the respective values of the traction force gear dependence factor
b(j) for each gear, and for ease of notation the dependence of all the binary variables (and j)
of k is omitted (as will be done in the following lines). After substituting for δ4 and δ5 (from
(3-28)) and expanding, the function becomes

bδ(δ1, δ2, δ3, δ4, δ5) =
(

b2 − b1
)

δ1 +
(

b3 − b1
)

δ2 +
(

b5 − b1
)

δ3

+
(

b1 − b2 − b3 + b4
)

δ4 +
(

b1 − b2 − b5 + b6
)

δ5 + b1 (3-30)

After replacing b(j(k)) in (3-24) by bδ(δ1(k), δ2(k), δ3(k), δ4(k), δ5(k)), the vehicle model will
contain the product bδ(δ1(k), δ2(k), δ3(k), δ4(k), δ5(k)) · utb(k), which means it contains prod-
ucts between binary (input and dummy) variables and the throttle/brake input utb(k). This
makes the model still nonlinear. To linearise these nonlinearities, five continuous auxiliary
variables are introduced, defined as

z1(k) = δ1(k)utb(k), z2(k) = δ3(k)utb(k), z3(k) = δ3(k)utb(k),

z4(k) = δ4(k)utb(k), z5(k) = δ5(k)utb(k)
(3-31)

each of which will alternatively be expressed by a system of inequalities resulting from apply-
ing (2-24) (see (A-16) in Appendix A-2).
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After applying the above, the model can easily be written in the form of an MLD model as
was given by (2-26), with

u(k) =











utb(k)
δ1(k)
δ2(k)
δ3(k)











, δ(k) =











δ0(k)
δ4(k)
δ5(k)
δµ(k)











, z(k) =



















z0(k)
z1(k)
z2(k)
z3(k)
z4(k)
z5(k)



















, (3-32)

which is demonstrated in Appendix A-3. All the inequalities that alternatively express the
definition of (continuous and binary) dummy variables together with the constraints that
express the physical limits on the throttle brake inputs,

utb(k) ≥ utb,min = −1, utb(k) ≤ utb,max = 1, (3-33)

are gathered into one big inequality that forms the second line of the MLD model formulation
of (2-26).

MPC optimisation problem

The MPC controller task for time step k can be formulated as solving the following problem:

min
ũtb(k),j̃(k)

J(x(k), ũtb(k), j̃(k))

s.t. eq. (2-26),
dmin ≤ d(k),
0 ≤ x2(k) ≤ vmax,
amin(k) ≤ a(k) ≤ amax

(3-34a)

with

J(x(k), ũtb(k), j̃(k)) =
N
∑

n=1

(

∥

∥Q
(

x(k + n)− xdes(k + n)
)∥

∥

1

+ ‖Rutb
·∆utb(k + n− 1)‖1 + ‖Rj ·∆j(k + n− 1)‖1

)

(3-34b)

and

∆utb(k + n) = utb(k + n)− utb(k + n− 1)
∆j(k + n) = j(k + n)− j(k + n− 1)
ũtb(k) = [utb(k), . . . , utb(k +N − 1)]T

j̃(k) = [j(k), . . . , j(k +N − 1)]T

d(k) = x1,i−1(k)− x1(k)− lveh

(3-34c)

Here a represents acceleration, x1,i−1 the position of the direct predecessor, the desired state
vector at time step k, xdes(k) = [sdes(k), vdes(k)]

T, is derived as described in Section 3-3-1,
and Q ∈ R

2×2, Rutb
∈ R, and Rj ∈ R are weights. The performance index J here has the

same form as the one used by [11], given by (2-29). Minimising this index means trying to find
a trade-off between following the desired states, and keeping the variation of both the inputs
low. The second part is to make the driving experience feel more smoothly. Here 1-norms are
chosen, instead of, e.g., 2-norms, because 1-norms can be recast as PWA functions, as can be
seen later on, making the optimisation problem less complex.
It is chosen to set the control update frequency equal to the sampling frequency. Hence, each
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38 Designing control systems for cooperative adaptive cruise control

time step k represents a sample step as well as a control update step.
The linearised model (as derived above) should be used to predict future states as function
of present and (theoretical) future inputs. It is preferable to write the whole optimisation
problem in the following form, such that it can be solved by an MILP optimisation algorithm,

min
y
MT · y, s.t. E′ · y ≤ F (3-35)

where y = [yc, yb]T with yc ∈ R
mc , yb ∈ {0, 1}mb , M , and F are column vectors, and E′ is a

matrix. The problem statement as given in (3-34) needs to be rewritten in several steps to
obtain the MILP form of (3-35).

First, the predicted future states can be written as function of the current state and current
and future inputs, according to

x̃(k) = A∗x(k) +B∗1 ũ(k) +B∗2 δ̃(k) +B∗3 z̃(k) (3-36a)

with

x̃(k) =







x̂(k + 1)
...

x̂(k +N)






, ũ(k) =







u(k)
...

u(k +N − 1)






(3-36b)

and δ̃(k) and z̃(k) defined similarly, which is shown in Appendix A-4, where also the definition
of the matrices A∗, B∗1 , B∗2 , and B∗3 can be found. Here, x̂(k + n) represents the predicted
state at time step k + n, resulting from theoretically applying inputs u(k) to u(k + n − 1).
Equation (3-36) is the prediction form of the first line of the MLD model (2-26), which means
that it represents this line of the model for each of the time steps within the prediction
horizon. By applying the prediction form of the variables in the second line of (2-26) and
expanding the matrices E1, . . . , E5 accordingly, the part of the MLD model that is represented
by inequality constraints can be rewritten in prediction form. The constraints from the MPC
control problem formulation (3-34) should also be written in prediction form, and combined
with the rest of the inequalities (in prediction form) to construct one big inequality. First it
should be noted that, since the acceleration is not used as a state, the acceleration constraint
from (3-34) needs to be rewritten, as follows

aminTs ≤ x2(k + 1)− x2(k) ≤ amaxTs (3-37)

where Ts is the sampling time. The general inequality in prediction form looks like this:

E∗1 · ũ(k) + E∗2 · δ̃(k) + E∗3 · z̃(k) ≤ E∗4 · x̃(k) + E∗5 (3-38)

where the derivation of the matrices E∗1 , . . . , E
∗
5 can be found in Appendix A-4.

In order to write the problem of minimising the performance index of (3-34) into the MILP
form of (3-35), this index should first be formulated as function of x̃ and ũ. Doing this, it
can be shown that J in (3-34) is equivalent to7

J(ũ(k), x̃(k), k) = ‖Q∗x̃(k) +Q∗xr(k)‖1 + ‖R∗uũ(k) +R∗up(k)‖1 + ‖R∗j ũ(k) +R∗jp(k)‖1
= ‖Mperf(ũ(k), x̃(k), k)‖1,

with Mperf(ũ(k), x̃(k), k) =







Q∗x̃(k) +Q∗xr(k)
R∗uũ(k) +R∗up(k)

R∗j ũ(k) +R∗jp(k)







(3-39)

7The full notation of the performance index J(ũ(k), x̃(k), k) in (3-39) would be
J(ũ(k), x̃(k), Q∗xr(k), R

∗

up(k), R∗jp(k)), but since Q∗xr(k), R
∗

up(k), and R∗jp(k) are known at time step k
before this performance index is minimised, and depend on k, these variables are omitted from this notation
and instead just k is added as a separate variable.
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The definition of the matrices Q∗ ∈ R
2N×2N , R∗u ∈ R

N×4N , R∗j ∈ R
N×4N , and the vectors

Q∗xr(k), R
∗
up(k), R∗jp(k) is given in Appendix A-5. The prediction of the states of the other

vehicle(s) used as reference is contained in Q∗xr(k). As described in Section 3-1-1, with MPC
for each configuration (I, II, and III) two variants will be designed. One variant has the vehi-
cles (except the leader) only communicate their current states. Then the future states of the
other vehicle(s) will be predicted assuming their velocity stays constant. The second variant
has the vehicles communicate their predicted states from the previous time step, correspond-
ing to their optimising input vector. In that case these predicted states, received through
communication, will be used for the reference sequence by the CACC controllers of vehicles
that receive this information. These communicated future states were predicted one time step
before they are used by the controller of the receiving vehicles. This means that the final
prediction over the prediction horizon (corresponding to time step k + N) of the states of
the other vehicles (except the platoon leader) needed as reference for the MPC algorithm is
not received through communication. This final reference value is gained from predicting the
states of the other vehicle(s) assuming their respective velocities stay constant from time step
k+N−1 to k+N . Only the platoon leader’s states are received for the entire prediction hori-
zon. This is because with both MPC variants the platoon leader communicates its current and
future states up to N time steps into the future, which are assumed to be known by the leader.

In order to be able to minimise this performance index, the 1-norm should be eliminated.
This can be done by applying the fact that the problem

min
θ∈Rm
‖θ‖1 s.t. Aθ ≤ b (3-40a)

is equivalent to the linear problem

min
ρ,θ∈Rm

m
∑

i=1

ρi, s.t. ρi ≥| θi | and Aθ ≤ b (3-40b)

So the optimal solution of (3-40a) is equal to the optimal solution of (3-40b). For the problem
of minimising the performance index of (3-39), this means

min
ũ(k),x̃(k),δ̃(k),z̃(k)

J(ũ(k), x̃(k), k)

s.t. (3-36), and (3-38)











≡







































min
ũ(k),x̃(k),δ̃(k),z̃(k),ρ(k)

m
∑

i=1

ρi(k)

s.t. eqns. (3-36) and (3-38),

ρ(k) ≥ Mperf(ũ(k), x̃(k), k),

ρ(k) ≥ −Mperf(ũ(k), x̃(k), k)

(3-41)

where Mperf ∈ R
m with m = 4N , and ρ = [ρ1, . . . , ρm]T ∈ R

m is a vector of new dummy
variables8.
Now, the inequality constraints that have been generated in (3-41) should be combined with
the other inequality constraints from (3-38), which results in

E1,ρ · ũ(k) + E2,ρ · δ̃(k) + E3,ρ · z̃(k) + E6,ρρ(k) ≤ E4,ρ · x̃(k) + E5,ρ(k) (3-42)

The definitions of the vector and matrices in this equation are given by (A-29). Now the
expression for x̃(k) from (3-36) can be substituted for x̃(k) in (3-42). After some rearranging,
this results in

E1,subs · ũ(k) + E2,subs · δ̃(k) + E3,subs · z̃(k) + E6,ρρ(k) ≤ E5,subs(k) (3-43)

8Mperf has lengthm = 2N +N +N = 4N . The first 2N corresponds to the predicted states up to k+N , the
next N corresponds to the throttle/brake input sequence over the prediction horizon, the final N corresponds
to the gear sequence over the prediction horizon (See also (3-39)).
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where E1,subs, . . . , E5,subs are defined accordingly (shown in Appendix A-6)9. This inequality
now gives the linear inequality constraints which together with the linear objective function
(being ρ(k)) to be minimised, form the MILP problem that needs to be solved at control
update time step k (see Appendix A-6 for the exact formulation of this MILP problem).

The mixed-integer linear and quadratic programming solver TOMLAB /CPLEX can be ap-
plied to solve this problem [23]. The optimisation results in finding an optimiser yopt(k) =
[ũT

opt(k), δ̃
T
opt(k), z̃

T
opt(k), ρ

T
opt(k)]

T for the problem in the form of (3-35). The starting point for
the search will be the previous optimiser, where the entries corresponding to time step k − 1
are omitted and the entries corresponding to k +N are taken equal to the entries correspond-
ing to k +N − 1. The first four entries of the optimising vector yopt(k) represent the first
input of the optimising input sequence (uopt(k) = [utb,opt(k), δ1,opt(k), δ2,opt(k), δ3,opt(k)]

T).
The value of utb,opt(k) will be given as throttle/brake pedal position input at the current
control update time step (utb(k)). The gear choice at this time step will be jopt(k) =
1 + δ1,opt(k) + 2δ2,opt(k) + 4δ3,opt(k). The predicted output sequence for time steps k + 1
to k +N can be calculated from substituting the optimal prediction vectors from yopt(k) into
the prediction model of (3-36).

3-4 Platoon performance measures for tuning and evaluation

The tunable parameters of each controller will be tuned for a series of typical everyday traffic
scenarios, covering a major part of the range of possible types of traffic situations. The goal
here is to tune the controllers such that the intervehicle distances are as small as possible
while safe at all time, and the performance requirements as described in Section 3-1-2 are
satisfied. The tuning will be achieved by optimising a measure of the performance of a sim-
ulated platoon of vehicles using the same CACC controller. The same measure, which will
be called the platoon performance measure, will later be used to evaluate the tuned controllers.

For tuning and evaluation, as will be done in the case study of Chapter 4, preferably the
following four typical traffic scenarios described in general terms will be used, which cover
most of the vehicle following situations.

a. The initial distance between the platoon leader and its direct follower (second vehicle) is
significantly greater than the desired distance. The initial velocity of the second vehicle
may be different from the leader’s velocity. The other vehicles in the platoon are initially
following at steady state. The leader keeps its velocity constant at its initial value.

b. From initial steady following at some velocity10, the platoon leader accelerates to a higher
velocity, after which its velocity stays constant.

c. From initial steady following at some velocity, the platoon leader decelerates to a lower
velocity, after which its velocity stays constant.

d. From initial steady following at some velocity, the platoon leader decelerates to a halt,
after which it keeps standing still.

9E5,subs(k) depends on k (only) because it contains the current state x(k), so at one time step k it is not a
variable, but just a constant vector (after the value of x(k) has been inserted).

10Steady following means that a steady state has been reached. In other words, as long as the platoon leader
does not change its velocity, the intervehicle distances and the velocity of all the vehicles will stay constant as
well. Thus, initial steady following means that the initial intervehicle distances and vehicles’ states are such
that, for the specific CACC controller used, the platoon is initially at steady-state.
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3-4 Platoon performance measures for tuning and evaluation 41

e. Initially all vehicles are standing still at a proper intervehicle distance11. Then the platoon
leader accelerates to some velocity, after which it keeps its velocity constant.

Also, the leader’s acceleration should obey the comfort bounds given for the CACC-controlled
vehicles. Furthermore, the leader’s trajectory should obey the limits that a vehicle would en-
counter when simulated with the simulation model used for the CACC-controlled vehicles
(i.e., limited acceleration feasibilities for higher velocities). To get a representative measure
of the general performance of the controller, the series of traffic scenarios to be actually used
for tuning (and evaluation) should at least cover variations of the scenarios above. The more
variations of scenarios are applied, and the more vehicles are in the platoon, the better the
general performance of the controller can be evaluated. It can be chosen, for during tuning,
to let the acceleration of the leader in some of the scenarios slightly cross the acceleration
comfort bounds, or the acceleration feasibility limits valid for the CACC-controlled vehicles12.
This to give the tuned CACC controllers of the followers a little more robustness especially
against strong decelerations.

The platoon performance measure combines assessment of performance at platoon level (string
stability) with assessment of performance at vehicle level (e.g., throttle/brake input variation).
To calculate the platoon performance measure, implementations of the traffic scenarios above
should be simulated subsequently as subscenarios to form one scenario, and from the result,
information on several performance-indicating elements should be extracted. The choice of
these elements is based on the performance requirements that are formulated in Section 3-1-2.
These elements are intervehicle distances, amount of gear switches, changes in pedal position,
amount and severity of constraint violations, and string stability (margin). The information
on each of these elements is averaged over all vehicles and over time, and normalised (based
on implementation in simulations) to obtain values for the different elements that are of the
same order of magnitude. Then each element is given a weight that represents the importance
of optimising this particular element. Finally a weighted sum of the element-specific platoon
performance measures is taken, which gives a measure of the overall platoon performance. The
computation of the element specific platoon performance measure P{element} for the different
elements is shown into detail now.

• Intervehicle distance:

dav =

∫ tend

0

(

s1(t)− sNveh
(t)
)

dt

tend(Nveh−1) − lveh

Pd = dav

dav,norm

(3-44)

where Nveh is the total number of vehicles in the platoon, tend is the ending time of the
simulation, dav is the average head-to-tail intervehicle distance, and dav,norm is a normalising
factor13.

11When it is stated that the vehicles are standing still at a proper intervehicle distance, this means that the
distance between each pair of subsequent vehicles is the desired distance for zero velocity, i.e., d0.

12For higher gears the gear dependence factor b(j) is lower, limiting the acceleration and deceleration feasi-
bilities of the vehicles. The effect of this overpowers the effect of the increase of air drag on deceleration, and
adds to it for positive acceleration.

13The normalising factors in (3-44)-(3-46) (dav,norm, utb,av1.5,norm, and jav1.5,norm) should be chosen such
that for the types of traffic scenarios as will be used for tuning and evaluation of the controllers, and for
acceptably tuned controllers, the values of the respective performance measures (Pd, Putb

, and Pj) are (based
on simulations) expected to be in the order of 1.
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• Pedal position variation:

∆utb,av1.5 =

Nveh
∑

i=2





kend
∑

k=1

| utb,i(k)− utb,i(k − 1) |1.5 /tend





1/1.5

(Nveh−1)

Putb
=

∆utb,av1.5

utb,av1.5,norm

(3-45)

where i is vehicle number, tend is the ending time of the simulation, k is the sample step
counter (with sampling time Ts, k = 0 at initial situation), kend is the number of the final
sample step (at tend), utb,i(k) is the value of the discrete-time throttle/brake signal for vehicle
i at time step k, and utb,av1.5,norm is a normalising factor. Instead of the plain average (over
vehicles and time) of the absolute change in pedal position input over all (CACC-controlled)
vehicles, the power 1.5 is applied to the changes and the 1.5-power-root is taken. This is to
cause sudden big changes to be punished more severely than the same change spread over
more time steps, but not as severely as would be the case if the root mean square (power 2)
was taken.

• Gear variation:

∆jav1.5 =

Nveh
∑

i=2





kend
∑

k=1

| ji(k)− ji(k − 1) |1.5 /tend





1/1.5

(Nveh−1)

Pj = ∆jav

jav1.5,norm

(3-46)

where ji(k) is the discrete-time gear choice for vehicles i at time step k, and jav1.5,norm is a
normalising factor. The reasoning behind this equation is similar as for (3-45).

• String stability:
When an (online) MPC controller is applied, a closed-loop frequency domain transfer function
of the vehicle with the controller, as used in (2-33) to determine string stability, cannot be
obtained. Therefore, another function is designed to assess the performance concerning string
stability, which takes its inputs from the simulation results. Only a limited part of the various
(almost unlimited) thinkable traffic scenarios can be simulated. Therefore, for the platoon
performance measure it is not only important whether the platoon is string stable in the
simulated scenarios, but also the margin of stability should not be too small, in order to
improve the likelihood of stability in other scenarios. Recall from Section 2-3-2 that string
stability can be assessed based on the propagation of state errors (then at least the position
error), or of the velocity or acceleration or a combination of those. Because the stability
margin will be compared between the different designed CACC controllers (instead of just
determining whether the controller achieves stability), it is chosen not to use state errors in the
stability margin function. This is because these errors depend on the desired states (sdes(i)),
which are internal variables of the controller and are derived differently for different controllers
(compare the derivations of the desired states for configuration I with configurations II and
III in Section 3-3-1). Also, the PID controller keeps a nonzero position error in steady state
driving (except at zero velocity) such that the resultant throttle input counteracts the tire
friction and air resistance. Therefore, for the PID-based CACC controllers the propagation
of position errors does not exactly represent the propagation of disturbances. This is why it
is chosen to use the acceleration of the vehicles, or more precisely the maximum deceleration
during periods when all following vehicles have to brake. For such a braking period, of the
relative decline of the maximum deceleration from each vehicle to its follower the root mean
square is taken instead of just the mean. This is to encourage a faster decline.
For each period during which all following vehicles have to brake, the minimum acceleration
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3-4 Platoon performance measures for tuning and evaluation 43

of each following vehicle (i ≥ 2) over this period is taken. For braking period p and for vehicle
i this minimum is called amin,p,i. Then

fstab,p = 1−

√

√

√

√

Nveh
∑

i=3

(

amin,p,i

amin,p,i−1

)2/

(Nveh − 2), for p = 1, . . . , Nper

fstab = 1
∑

p
wp

∑

p

wp · fstab,p, with wp =

{

1
2Nper if fstab,p < 0
1 if fstab,p ≥ 0

Pstab =

{

cstab /fstab if fstab > 0
∞ if fstab ≤ 0

(3-47)

where fstab (< 1) is a stability margin measure, Nper is the number of braking periods con-
sidered here, and the constant cstab represents an acceptable value for the stability margin
measure. An unstable braking period is given extra weight in (3-47) before the average is
taken, because the occurrence of this is very undesirable14. For fstab it holds that, the bigger
its value the bigger the stability margin, with fstab = 0 representing marginal stability, and
fstab < 0 no string stability.

• Constraint violations:
Since not only breaking a constraint is important, but also how strongly it is broken, the
extent of violation is used for the calculation of the platoon performance measure. Here a
small extent of violation will be punished mildly, but growing extent will be punished extra
strongly to avoid violation to such a larger extent. For each constraint of Table 3-1 (except
for the minimum distance constraint), and for each vehicle, the difference between the state
and its bound is calculated for all violation periods. This is then normalised through dividing
by a value (cx) that is considered as an (almost) acceptable small violation for the constraint
considered. The square of this is integrated over the violation periods. After having done this
for each CACC-controlled vehicle, the results are averaged over all vehicles. Then the result
is divided by the total period of time that the platoon leader’s state approaches the bound15.
This last action is to obtain a sort of time-average based on the time period most likely to
cause the specific constraint to be violated. For a maximum value constraint on parameter x
this looks like

Pxmax =
Nveh
∑

i=2

∫

{t|xi(t)>xmax}

(

xi(t)− xmax

cx

)2

dt

ε0 + (Nveh − 1)

∫

{t|x1(t)>xmax−xp}
dt

(3-48)

such that xmax represents either vmax (with xi representing vi), or amax (with xi representing
ai), and with ε0 > 0 a small constant to avoid dividing by zero. For a minimum value
constraint on parameter x this looks like

Pxmin =
Nveh
∑

i=2

∫

{t|xi(t)<xmin}

(

xi(t)− xmin

cx

)2

dt

(Nveh − 1)

∫

{t|x1(t)<xmin+xp}
dt

(3-49)

14If one of the braking periods is unstable, this of course means that the controller fails in achieving string
stability in all cases. Nevertheless it was chosen not to give the stability performance measure Pstab an infinite
value in this situation, in order for Pstab to be a continuous function. The chosen approach in this matter, in
retrospect, is not the right approach. In Section 4-4 an approach is given that would have been better.

15The reason why the total time period that the platoon leader approaches the bound is used in (3-48) and
(3-49) instead of the time period that it exceeds this bound is because the leader approaching the bound can
result in the follower exceeding this value. Even if the leader never exceeds any of these bounds, with poor
CACC controllers followers may still do so.
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such that xmin represents either vmin (with xi representing vi), or amin (with xi representing
ai). The parameters cx and xp from (3-48) and (3-49) have different values for different
constraints.
The minimum vehicle-to-vehicle distance constraint (d ≥ dmin) exists because breaking it
means (practically) the occurrence of collision. Violation of this constraint should be punished
very strongly, with a distance smaller than or equal to zero (collision) given a performance
measure of infinity. Therefore, the inverse distance is used. For the distance approaching
zero, the penalty starts increasing (from zero) at d = dpun0, and is chosen to rise such that it
has the value of 1 for d = dpun1. This results in the performance measure equation,

Pdmargin
=
Nveh
∑

i=2

∫

{t|di,i−1(t)<dpun0}

dpun1

dpun0 − dpun1

(

dpun0

di,i−1(t)
− 1

)

dt

(Nveh − 1)fdmtend
(3-50)

where fdmtend should represent a rough estimate of the fraction of the time (tend) that for the
scenarios used, without optimally tuned parameters, it would be possible for the intervehicle
distance to approach dmin.

The overall platoon performance measure is given by

Pplatoon = WdPd +Wutb
Putb

+WjPj +WstabPstab +WvminPvmin+

WvmaxPvmax +WaminPamin +WamaxPamax +WdmarginPdmargin (3-51)

where Wd, Wutb
, Wj , Wstab, Wvmin, Wvmax, Wamin, Wamax, and Wdmargin are the weights of

the element-specific platoon performance measures for each of the respective elements.

To tune each of the controllers, an optimisation method is applied to an objective function
that needs to be optimised. This function comprises a simulation of variations of each of the
scenarios mentioned above. The inputs to the function are the parameters that need to be
tuned. The output of the function is the platoon performance measure (3-51) calculated from
the simulation results. This objective function is not convex, causing local search algorithms
to only find a local optimum. Therefore, in Chapter 4 it will be chosen to use a more global
search method, called simulated annealing [14, 48]. Because at the time of designing and
execution of most of this part of the project the simulated annealing toolbox of Matlab was
not yet available, a self-made simulated annealing function is designed in Matlab, which is
described in Appendix A-7.

3-5 Summary

This chapter has described the design objectives of the project into further detail, given the
vehicle model that will be representing a real vehicle in this project, presented designs of the
CACC controllers, and proposed a way to rate the performance and an approach to tune the
controllers. The contents are summarised here.
In short, the CACC controllers to be designed as part of the project goal are MPC-based as
well as PID-based CACC controllers, with for each of these controller types three information
gathering configurations, one that only looks at the direct predecessor for its reference, one
that looks at its first two direct predecessors, and one that looks at its direct predecessor and
the platoon leader. The state data from the vehicles is assumed to be obtained from vehicle-
to-vehicle communication. The controllers have to be designed according to performance
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requirements such as keeping a distance that is as small as possible while still being safe,
achieving string stability, and obeying constraints on velocity, acceleration, and distance. A
model from literature is chosen to represent vehicle dynamics. The inputs of this model are
pedal input (positive for throttle, negative for brakes) and gear number. The CACC controller
combines the states from other vehicles to form a set of reference states. The PID controller
uses proportional gains for the position, velocity, and acceleration errors respectively. To try to
(approximately) obey the constraints, the calculated PID output is cut off when it is expected,
from model calculation, that a constraint will otherwise be broken. For its predictions, the
MPC controller uses an approximation of the vehicle model that results in an MLD model.
The optimisation problem for determining the optimal control inputs then takes the form of
an MILP problem. To rate the performance of the CACC controllers a performance measure is
developed, based on the various aspects of the performance requirements given earlier in this
chapter. This measure will be used for the tuning and the final evaluation of the controllers
in the next chapter.
This chapter has presented the theory of the project, independent of the parameter values
(mass, length, etc.) of the specific vehicle used, the choice of constraint values, the values
of the parameters that are part of the performance measure for tuning and evaluation (e.g.,
weights and normalisation factors), or the exact values of the parameters defining the traffic
scenarios for tuning or evaluating the controllers. These parameters are assigned values in
the next chapter, where they define the specifics of the case study.
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Chapter 4

Case study

The CACC controllers that are described in Chapter 3 will be implemented into simulated
vehicles that are part of a simulation of a platoon of vehicles. The controllers will be tuned
and evaluated using this simulation setup. They are not evaluated with real vehicles, because
that is beyond the scope of this project. This chapter first describes the simulation setup,
after which the scenarios used to tune the controllers with are given and the tuning results
are presented. The final section then evaluates the tuned controllers.

4-1 Simulation setup

In Matlab a simulation of a platoon of vehicles is developed, where the vehicles are simulated
according to the vehicle model presented in Section 3-2. Figure 4-1 depicts such a platoon.
All of the vehicles, except the platoon leader, are controlled by a copy of the same CACC
controller. They can share their state information, and in case of the MPC2 variant also their
predicted states, via communication. The platoon leader trajectory is given by a time-velocity
sequence, which is defined by periods of constant acceleration that can be altered before start-
ing the simulation. It is assumed that the leader knows its future states for at least up to the
prediction horizon of the MPC-CACC-driven followers, and that it communicates its current,
and in the case of MPC its future states (up to time instant t = (k+N) · Ts), to the vehicles
that require this information for their CACC controller. The simulation is one-dimensional.
This means that only the longitudinal direction is considered, and the lateral (steering) di-
rection is ignored. So the vehicles are assumed to be perfectly aligned longitudinally, and
driving on a straight, flat, horizontal road.

The simulation consists of a main simulation function in Matlab, which calls other functions.
This main function contains some simulation settings that can be altered. The first of these
settings are the information gathering configuration, the controller type (MPC or PID), and
the MPC variant (communication of just states, or also predictions). For the information
gathering configuration, there can be chosen between using state information from just a
number (f < total number of vehicles in the platoon) of direct predecessors, or in addition to
that also the platoon leader or even the direct follower. In the case of also using the platoon
leader’s information, the vehicles to whom the platoon leader is also one of their (≤ f) direct
predecessors concerned consider the leader only as in this latter capacity (one of the direct
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di,i-2

di,i-1
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(given t-v sequence)

IIIII
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CACC -controlled vehicles

lvehlvehlvehlveh

Figure 4-1: A platoon of vehicles as simulated in Matlab. The coloured dashed lines illustrate
from which vehicles vehicle i receives information for the three different information gathering
configurations (I, II, and III).

predecessors)1. This means that the simulation has room for more configurations than just
the three configurations that are described in Chapter 3. Even though the simulation is
developed such that it is possible to choose settings that give other configurations, only these
three (with their different controller types) are tuned and investigated within the scope of this
project. The other simulation settings are the total number of vehicles in the platoon, the
leader time-acceleration sequence, and the initial states of the other vehicles, together defining
the traffic scenario to be simulated, the sampling period (Ts), and the simulation sampling
period2 (Ts,sim ≤ Ts). Recall that in this project, for simplicity3, Tctrl = Tsim = Ts. The leader
time-velocity sequence is defined by sets of time instants and corresponding accelerations.
Between two subsequent given time instants (ta,n−1 < t ≤ ta,n, with ta,n = ca,n · Ts,sim,
ca,n ∈ N, ca,n−1 < ca,n, ca,0 = 0), the leader is accelerating with the corresponding given
acceleration (an), which can be negative, positive, or zero (see, e.g., Figure 4-2). The main
simulation function also assigns values to all the tunable parameters (from Table 4-4), which
will be set to the optimal values found after being tuned. During the tuning stage, the values
of the tunable parameters will be passed to the main simulation function by the function that
contains the tuning algorithm. This file runs the main simulation function in every iteration
with varying values of the tunable parameters, in order to find the values that optimise the
platoon performance measure calculated on the simulation results.
The main simulation function simulates the platoon over the simulation period (ended at
the final leader-acceleration time instant given) by executing a loop of which each iteration
represents one sampling period (Ts). At each sampling step each vehicle is simulated for the
time period between the current and the next sampling step by calling a vehicle simulation
function. The time-state and control action data that are given as outputs by these vehicle
function executions are, in addition to being used for the next time step, also gathered to be
used to calculate performance information after the simulation has finished, and to graphically

1To illustrate, e.g., when f = 3 and information from the platoon leader is used, vehicle 2 to 4 do not use
the leader’s states the way that all followers of vehicle 4 do, but operate as if only information from the first
three predecessors is used.

2The simulation sampling period (Ts,sim) gives the interval between time instants at which the simulated
states that are calculated according to the continuous-time simulation model (the vehicle model of (3-1)) are
sampled. These state samples are used after the simulation has finished to calculate the platoon performance
measure, and to plot time-state graphs representing the simulated vehicles.

3Recall that the control update period (Tctrl) gives the interval between control update time instants, i.e.,
time instants at which the controller calculates a new control input and applies it to the vehicle. The sampling
period (Ts) gives the time interval between samples taken to be used by the controller. The simulation period
Tsim would represent the time between two time steps used by MPC to simulate the results of possible future
control actions, to be used for the calculation of its performance index.

C. Kreuzen Master of Science Thesis



4-2 Tuning 49

Vehicle Vehicle Viscous Coulomb Gravitational
mass length friction friction constant
m l c µ g

800 kg 2.5 m 0.5 kg/m 0.01 9.8 m/s2

Gear Traction force and velocity bounds for the gears
j b(j) (N) vlow,j (m/s) vhigh,j (m/s)

1
2
3
4
5
6

4057 0 9.46
2945 5.43 13.04
2116 7.56 18.15
1607 9.96 23.90
1166 13.70 32.93
838 19.10 45.84

Table 4-1: Model parameter values (for a SMART) [11].

show the simulation results. At each time step the vehicle simulation function receives as input
the data needed by the CACC controller. It then processes this data according to the theory
of Section 3-3, and applies the PID or MPC controller4. The vehicle function then passes
the control signal to a function that contains the continuous model of the vehicle from (3-1).
To retrieve the state trajectories for the time period between the current and the next time
step (k · Ts < t ≤ (k + 1) · Ts), the differential equation is solved, with the control inputs kept
constant over this period. The states at times Ts,sim = 0.01 s apart are then calculated (by
means of the Matlab function “ode45”) to obtain vectors with samples of the simulated
continuous-time state trajectories.
The vehicles that are simulated all have the same vehicle model. In this project the model
parameters of a SMART, taken from [11] are used for the vehicle simulation, and therefore
the controllers are designed and tuned to be used in a (simulated) platoon of SMARTs. The
values of all the parameters of the vehicle model (3-1) for the SMART and the vehicle length
are shown in Table 4-1.

4-2 Tuning

Limiting the computation time for tuning

For the tuning of parameters in the CACC controllers of Chapter 3, repeatedly a platoon of
vehicles undergoing a traffic scenario is simulated in order to minimise the platoon perfor-
mance measure, using an optimisation algorithm. The more different subscenarios the traffic
scenario contains (i.e., the longer it gets) or the more vehicles it comprises, the more time the
computer needs for the simulation. Similarly, the shorter the chosen sampling period Ts, the
more computation time is needed to simulate a scenario that represents the same time range.
Also, when tuning, the more parameters are tuned simultaneously, the more iterations are
(ideally) needed (growing exponentially). Therefore, in the following subsections some non-
ideal choices will be made in order to keep the computation time needed for tuning relatively
low. These choices will concern the following (for further details see the subsections below):

4For the MPC controller, the largest part of the matrices is defined outside of the major loop in the main
simulation function to minimise the amount of calculation, to be done at each iteration of this loop.
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Parameter Value

dmin 0.1 m
vmin 0 m/s
vmax 120 km/h ≈ 33.3 m/s
amin -2.5 m/s2

amax 2.5 m/s2

Ts 0.5 s

Table 4-2: Chosen values for parameters associated with the CACC design, partly based on
[1, 11, 13, 15, 20].

- The value of the control update time (here equal to Ts) will be chosen higher than it should
be for practical implementations (Section 4-2-1).

- The prediction horizon (N) will be tuned separately, only after the other parameters are
tuned (Section 4-2-2).

- Several parameters that occur in all three configurations, are tuned with configuration I,
and then the optimal value found is also given to these parameters in the corresponding
configurations II and III (i.e., with the same controller type/MPC variant, Section 4-2-2).

- The number of vehicles in the tuning scenario, and the number of subscenarios making up
the tuning scenario are kept low (Section 4-2-3).

- The separate subscenarios that make up the tuning scenario are given a smaller time span
when tuning MPC, compared with when tuning PID, i.e., every time after the platoon
leader has just accelerated/decelerated in the MPC tuning scenario less time passes before
it starts accelerating/decelerating again, compared with the PID tuning scenario (because
MPC demands more computation time than PID, Section 4-2-3).

- The maximum allowed number of iterations and the number of starting points for the multi-
start simulated annealing optimisation applied for tuning, are kept realtively low (Section
4-2-4).

4-2-1 Chosen parameter values

In Chapter 3 several parameters have been defined that need to be assigned values for this
case study. These parameters are the constraint values that give performance requirements
(introduced in Table 3-1), the sampling period, and platoon performance measure related
parameters (introduced in Section 3-4). The chosen values for these parameters are given in
Tables 4-2 and 4-3. The minimum velocity (vmin) was already fixed to zero, necessary for the
controller design in general (to avoid negative velocity, as explained in Section 3-1-2). For
the maximum velocity (vmax) the maximum allowed velocity on highways in The Netherlands
(120 km/h) is used. The values for minimum and maximum comfortable acceleration (amin

and amax respectively) are chosen based on the range of values used for these parameters in
literature [1, 11, 13, 15, 20]. The control update period—chosen equal to the sampling period,
Ts—is set to 0.5 s for simplicity.
The chosen value or vmax fixes the values of the parameters concerning the PWA approxima-
tion of the squared velocity in Figure 3-3. For future reference it may be useful to know that
now α ≈ 14.98 m/s, and the three (nonzero) intersections between v2 and its PWA approxi-
mation lie at respective (approximate) velocities 11.24 m/s, 18.86 m/s, 29.45 m/s.
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Performance
element

Weights
Other

parameter values

Name Value Name Value

intervehicle dist. Wd 10 dav,norm 22.5 m

pedal variation Wutb
2.0 ∆utb,av1.5,norm

1
15

gear variation Wj 2.5 ∆jav1.5,norm
1
9

string stability Wstab 1.25 cstab 0.03

distance margin Wdmargin 10
dpun0 1.25 m
dpun1 1 m
fdm

1
25

Parameters related to
constraint violations

cx xp

vmin Wvmin 100 0.05 m/s 3.3 m/s

vmax Wvmax 10 0.5 m/s 3.3 m/s

amin Wamin 5 0.05 m/s2 0.05 m/s2

amax Wamax 5 0.05 m/s2 0.05 m/s2

Table 4-3: Chosen values for parameters associated with the platoon performance measure.

4-2-2 Parameters to be tuned

In Sections 3-3-1 to 3-3-3 many CACC controller parameters have been defined that still need
to be tuned. Some of these parameters are mutually dependent since the sum of specific sets
of parameters should be equal to 1. This is why for configurations II and III the ratio of
importance of the two other vehicles considered is tuned. The weight matrix Q from (3-34b)
can be represented by

Q =

[

Qs Qvs
Qsv Qv

]

, (Qvs = Qsv = 0 for simplification) (4-1)

It is chosen to set Qvs = Qsv = 0 to simplify the tuning task. For Qs, Qv, Rutb
, and Rj only

the ratio between the values of these parameters is important. Therefore, the first of these is
set to Qs = 1. Then, tuning the other three means finding the optimal values relative to Qs.
For reasons given at the start of Section 4-2, the prediction horizon N is assigned a constant
value (N = 5), while tuning the other parameters. Then, after all other parameters are tuned,
N will be varied between 1 and 14 to see which increase of N still gives a significant decrease
of the platoon performance measure, while also considering the average computation time
needed for the MPC optimisation at each time step. The parameters that are only tuned
with configuration I (for each controller type), and then are assigned the same values for
configuration II and configuration III (see the start of Section 4-2) are ks, kv, and ka for PID,
and Qv, Rutb

, and Rj for MPC. Because for configurations II and III the information of the
second other vehicle considered is expected to help the controller react quicker to changes,
making closer following possible, the time headway is retuned for each of the three configura-
tions (recall that the second vehicle in the platoon always uses the value for h0 corresponding
to the appropriate configuration I).
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Figure 4-2: Acceleration and velocity trajectories of the platoon leader for the tuning scenario.
When tuning MPC, shorter subscenarios are used (see the start of Section 4-2).

4-2-3 Traffic scenario for tuning

To obtain the platoon performance measure used for tuning the CACC controllers, a platoon
of vehicles will undergo a series of subscenarios which represent variations of all the traffic
scenario types a-e listed in Section 3-4. The more variations are used, the better the space
of all possible traffic scenarios is represented. Here, a platoon should consist of at least
three vehicles in order to also take string stability into account, although it is preferable to
have more vehicles for this. If there are at least four vehicles, then for each of the three
configurations there is at least one vehicle that does not use states from all its predecessors.
The traffic scenario used for tuning will consist of seven of the before mentioned subscenarios,
simulated for a platoon of five vehicles.
The velocity and acceleration trajectories of the leader for the tuning scenario are shown in
Figure 4-2. The initial situation mimics vehicle 2 and its followers up to the time instant
t = 0 being one platoon catching up with another vehicle that, from t = 0 on, takes the
place of platoon leader (a variant of scenario type a from Section 3-4). All followers have an
initial velocity of 25 m/s, while the platoon leader has an initial velocity of 16.1 m/s. Initially,
the distance between the leader and the second vehicle is 100 m. Between the other three
subsequent vehicle pairs the initial distance is the distance they would keep if the platoon
leader were not there and the second vehicle were the leader, i.e., di,i−1(t=0) = d0 +h0 ·vi(t=0)
for i = 3, 4, 5. As can be seen in Figure 4-2, the scenario types from Section 3-4 are represented
in the following order: a-b-d-e-b-c. When braking from 32.9 m/s to zero velocity, here the
deceleration increases in steps in order not to exceed (too greatly) the maximum deceleration
that can be achieved for the corresponding velocity with the vehicle model (3-1).

4-2-4 Values of the tuned parameters

For reasons described in Section 3-4, as optimisation method for tuning, simulated annealing is
used. Although this method is not guaranteed to find the global optimum for a problem when
only given finite time, theoretical results show that if it is given sufficient time, ultimately
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configuration tuned parameters PID MPC1 MPC2

I

h0 (s) 2.731 0.82 0.437
ks (N/m) 141 — —
kv (N·s/m) 1182 — —
ka (N·s2/m) 18 — —
Qv — 1.727 1.286
Rutb

— 0.262 0.582
Rj — 0.45 0.48
N — 5 5

II

h0 (s) 0.492 0.662 0.299
cdmin 0.32 0 0.45
qs,p2

qs,p1
0.719 0.439 6.25

qv,p2

qv,p1
0.375 0.441 0.021

qa,p2

qa,p1
103.73 — —

N — 5 5

III

h0 (s) 0.417 0.78 0.325
qv,l
qv,p

0.089 0.013 0.175
qa,l
qa,p

206.04 — —

N — 5 5

Table 4-4: Tuned values for the tunable parameters7.

a global optimum can be found5 [14]. Here, multi-start simulated annealing is applied, with
only two different random starting points, with a maximum number of performance measure
evaluations per starting point of 5000 with MPC and 7500 with PID (because its simulations
require less time). Only with PID-II three starting points are applied, with a maximum of
10000 performance measure evaluations per starting point, because one additional parameter
is tuned simultaneously compared with the other configuration II and I controllers.
Tuning the tunable parameters, i.e., optimising the platoon performance measure (3-51) for
simulations of the tuning scenario (where the states are “measured” with simulation sampling
period Ts,sim)6, results in the values given in Table 4-4. Some interesting aspects of these
tuned parameter values will be discussed now.

When looking at Table 4-4, one thing that stands out are the different values of the time
headway h0. As will be seen in Section 4-3-2 the tuned PID controllers react more slowly
to changes than MPC does. The fact that the platoon performance measure (minimised by
tuning) punishes big sudden changes in throttle/brake signal must have caused the PID gains
after tuning to be such that the responsiveness is as low as it is. This low responsiveness,
combined with the fact that the PID controller cannot anticipate the leader’s, hard to follow,

5Since it is not known whether the time given here to the simulated annealing optimisations is actually
sufficient to find the global optima, (some of) the optima found might actually be local optima, i.e., giving
suboptimal results. However, for the sake of simplicity, from now on the general term “optimal” is used, also
when referring to what might actually be suboptimal.

6Recall that the platoon performance measure (Pplatoon from (3-51)) evaluates a CACC controller by evalu-
ating the performance of a whole simulated platoon of vehicles using this CACC. This should not be confused
with the MPC performance index (J from (3-34)), which is minimised at each control update time step as part
of the MPC algorithm in order to determine the control input to feed to the vehicle.

7Recall that the position weight in the MPC performance index was set to Qs = 1, and that the parameters
ks, kv, ka, Qv, Rutb

, and Rj are tuned with configuration I, and then given the same values for the correspond-
ing configurations II and III. See Section 3-1-1 for the meaning of configurations I-III, MPC1, and MPC2.

Master of Science Thesis C. Kreuzen



54 Case study

future actions causes the second vehicle in the platoon (i = 2) to need a large time headway
to keep a safe distance to the platoon leader throughout the tuning scenario. Hence the high
value of h0 for PID with configuration I. The second vehicle’s trajectory varies more slowly
than the leader’s, making it easier for the third vehicle to follow closely with configurations II
and III. This combined with the advantage of the extra features of configurations II and III,
i.e., using information from one additional predecessor would explain the much lower values
of h0 for these configurations8.
For MPC2 following at close distance appears to be easier than for MPC1, which suggests that
the communication of predicted states might indeed improve the controller. When comparing
the values of h0, it should be noted that at constant velocity, the same value of h0 causes a
larger steady-state intervehicle distance for PID than it does for MPC. This is because with
PID a positive position error is needed in order to have the controller give a positive throttle
input to counteract the air resistance and tire friction components in the vehicle model.

From the PID gains (shown in Table 4-4) it can be seen that, in PID terms, the proportional
action (corresponding to kv) is here the most important one, while the integral action ks is
just needed to adjust the control action to avoid drifting. The differential action ka is of al-
most no importance, probably because a high value of ka would have made the throttle/brake
input trajectory much less smoothly, caused by following the sudden changes in acceleration
of the platoon leader. Note that, although the ratios (qa,p2/qa,p1) for configuration II and
(qa,l/qa,p) for configuration III are relatively big, because of the low value of ka the influence
of this is on the control action is still very limited.

The value of cdmin = 0.32 for PID-II means that the desired position will not become closer
to the direct predecessor than roughly one third of the desired distance resulting from only
considering this predecessor, and not the second predecessor (according to (3-7)-(3-8)). A
similar reasoning holds for cdmin = 0.45 with MPC2-II. For MPC1-II cdmin = 0, which means
that the desired position (of the vehicle front end) can approach the rear end of the direct
predecessor, but cannot exceed it. For this controller, the optimum found corresponds to
a line on which cdmin ≤ 0.15, and the values for the other tunable parameters as shown in
Table 4-4. It turns out that, for the tuning scenario, at this optimum the part of the CACC
algorithm that applies cdmin ((3-7) and (3-8)) is not executed (because also without this part,
the desired position does not exceed the rear end of the predecessor). It was therefore chosen
to set the parameter cdmin to zero for MPC1-II9.

Recall that the prediction horizon was set to N = 5 while all the other parameters of the con-
trollers where first tuned. After that, N was varied to find the optimal value, while the other
tunable parameters were fixed to their optimal values, just found. Using this approach, instead
of tuning N simultaneously with the other parameters, increased the likelihood of N = 5 to
give the best performance to be found for the tuning scenario (see section 4-4 for reflection on
this). Indeed, for all MPC controllers N = 5 does give the best platoon performance measure.

8Retuning, afterwards as a test, only h0 for vehicles i ≥ 3 with configuration I, gave with PID and MPC2 a
lower value for this h0 (0.646 s and 0.364 s respectively). However, this lower value of h0, and the corresponding
decreased value of the platoon performance measure, were not as low as those of the corresponding configu-
rations II and III. With MPC1 no such improvement was found. This shows that, indeed, using information
from an extra predecessor (in part) causes the lower value of h0 for configurations II and III.

9A smaller value than zero for cdmin would be undesirable, because it could put the desired position during
another traffic scenario on or beyond the predecessor.

C. Kreuzen Master of Science Thesis



4-3 Evaluation 55

0 200 400 600 800 1000 1200

 −2.5
−2.25

   −2

 −1.4
 −1.1
   −1

    0

 0.88
 1.25
  1.6
    2

 2.33
  2.5

Leader acceleration in time

time (s)

a
cc

e
le

ra
ti

o
n

 (
m

/s
)

0 200 400 600 800 1000 1200

−2.35
−2.15
−1.71

−1.25
−1.05

 −0.5

  0.8
    1

  1.5
  1.8
 2.25
 2.35

0 200 400 600 800 1000 1200
    0

 7.35

 9.82
11.75

14.85

 19.3
21.25

24.55

   28

31.15
33.25

Leader velocity in time

time (s)

v
e

lo
ci

ty
 (

m
/s

)

0 200 400 600 800 1000 1200

 2.83

  8.7
   10

13.75

 17.5

 19.9

22.55

 26.1

 29.3

32.35
 33.3

2

Figure 4-3: Acceleration and velocity trajectories of the platoon leader for scenario 2 (used for
evaluation of both PID and MPC-based CACC controllers).

4-3 Evaluation

4-3-1 Results from simulating different scenarios

To be able to evaluate the CACC controllers that have been designed, they are implemented
in a platoon of vehicles that undergoes two traffic scenarios, each of which is composed of
several subsequent subscenarios. The first scenario, which will be called scenario 1, is the
scenario used for tuning of the PID-based controllers (again with five vehicles)11. The second
scenario (the validation scenario, scenario 2) is built up from similar types of subscenarios,
but with different values for velocity and acceleration. Because this scenario is only used for
validation (i.e., not for tuning), there is no need for it to be small. Furthermore, the longer
the platoon and the more different situations are simulated, the better the controllers can be

10When looking at Table 4-5, it should be noted that the average distance is for the entire simulation period,
including the period of time when, with the PID-based controllers, the second vehicle’s position lies beyond the
leader’s rear-end position, giving a negative vehicle-to-vehicle distance, i.e., the vehicles crashed. Furthermore,
it should be noted that since the heavy oscillations in acceleration with MPC1 configurations I and III are
all bounded at amin (= 2.5 m/s), which inhibits the decrease of minimum acceleration reached with increasing
vehicle number, their string stability measure does not fully show the severity of their string instability.

11Recall that the PID tuning scenario only differs from the MPC one in the length of the leader’s constant
velocity periods. The acceleration and constant-velocity values during the acceleration periods are the same
for the two scenarios.
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Performance platoon average number throttle string total constraint violation time
aspect → perfor- distance of gear /brake stability /vehicle

mance switches variation margin (s)
measure (m) /vehicle
Pplatoon /100s (s-1) ∆utb,av1.5 fstab vmin vmax amin amax dmin

Type/
Configuration Scenario 1 (PID tuning scenario):

PID-I 30.35 58.93 2.95 0.055 0.126 10.67 0 0 0 0
PID-II 16.30 25.20 2.95 0.057 0.032 31.66 0 0 0 0
PID-III 15.83 24.65 2.95 0.055 0.036 24.44 0 0 0 0

MPC1-I 13.15 19.86 2.57 0.058 0.064 0 0 0.78 0.25 0
MPC1-II 11.81 17.53 2.57 0.052 0.086 0 0 1.05 0.22 0
MPC1-III 13.15 19.29 2.57 0.060 0.050 0 0 1.14 0.29 0

MPC2-I 10.61 12.49 2.90 0.066 0.043 0 0 0.64 0.13 0
MPC2-II 8.91 10.47 2.62 0.059 0.088 0 0 1.09 0.76 0
MPC2-III 9.18 10.87 2.90 0.059 0.100 0 0 1.16 0.35 0

Scenario 2 (validation scenario):

PID-I ∞ 55.15 3.94 0.040 0.133 3.72 0 0 0 1.99

PID-II ∞ 17.23 4.26 0.056 0.016 18.19 18.74 0 0 1.99

PID-III ∞ 16.58 4.20 0.053 0.045 9.93 8.25 0 0 1.99

MPC1-I ∞ 18.00 3.55 0.145 -0.021 0 0 1.22 1.17 0

MPC1-II ∞ 15.38 3.55 0.063 -0.001 0 0 1.20 0.16 0

MPC1-III ∞ 17.33 3.55 0.179 -0.036 0 0 1.46 2.86 0

MPC2-I ∞ 10.98 3.55 0.088 -0.006 0 0 1.82 3.32 0

MPC2-II ∞ 8.73 3.55 0.095 -0.021 0 0 1.30 1.98 0

MPC2-III ∞ 9.16 3.58 0.088 -0.032 0 0 1.79 4.24 0

Table 4-5: For each controller the platoon performance measure and the performance measures
according to each of the performance aspects, for both traffic scenarios. Here measures that
give values per vehicle are averaged over all following vehicles. The distance (third column) is
taken from head to tail. See (3-51), (3-45), and (3-47) for the definitions of Pplatoon, ∆utb,av1.5,
and fstab. The value Pplatoon = ∞ is caused with PID by the violation of the minimum distance
constraint (vehicles crash), and with MPC by a negative string stability margin (indicating string
instability). These unsatisfactory results are indicated by a red shade10.

evaluated. Therefore, the platoon contains more vehicles than with the tuning scenario, and
the scenario contains more variations of the proposed (sub)scenarios from Section 3-412.
The velocity and acceleration trajectories of the platoon leader for scenario 2 are shown in
Figure 4-3. In this scenario the platoon consists of twelve vehicles, with initial conditions:
vi(t=0) = 17 m/s for i = 2, . . . , 12, intervehicle distance d2,1(t=0) = 65 m, di,i−1(t=0) =
d0 + h0 · vi(t=0) for i = 2, . . . , 12. The stepwise increase or decrease in acceleration that oc-
curs at some points is introduced to approximately obey the maximum/minimum achievable
acceleration with the vehicle model used for simulation, which depends on velocity (caused
by air resistance) and gear number.
From the results, all elements of performance shall be evaluated. For each of these two sce-
narios, comparing the value of the platoon platoon performance measure from (3-51) will
tell which of the controllers performs best in general. In addition to that, each aspect that
is graded by the platoon performance measure will also be analysed separately to be able

12The number of vehicles in the platoon for the validation scenario (scenario 2) is chosen based on what was
still feasible to simulate with the memory available on the computers used (7.93 GB), keeping in mind that
the more vehicles in the platoon, the better it can be seen if the platoon is string stable.
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to get better insight into the performance of the controllers. The performance measures of
the controllers for these two scenarios are given in Table 4-5. Graphs showing parts of the
simulation results (trajectories in time) for scenario 2 are given in the next section. For a
more general overview, simulation results for some of the controllers for a few subscenarios of
scenario 2 are plotted in Figure B-1 in Appendix B.

4-3-2 Evaluation of the designed CACC controllers

Intervehicle distance

It can be seen from Table 4-5 that with MPC2-II the vehicles keep the smallest average inter-
vehicle distance. PID-I achieves by far the highest average intervehicle distance. In Section
4-2-4 is was explained how the tuned value of time headway (h0) for PID-I became signif-
icantly higher than those of PID configurations II and III. The differences in the resulting
average intervehicle distances between these three configurations reflect these different values
of h0.
While with PID, configuration III keeps the smallest average intervehicle distance, it is con-
figuration II that keeps the smallest average intervehicle distance with the two MPC variants.

The minimum distance constraint is violated with the PID-based controllers for scenario 2
by the second vehicle, of which the front end (for t ∈ [197.7 s, 219 s]) exceeds the rear-end
position of the platoon leader (reaching a peak of d1,2 = -1.7 m, see Figure 4-4). So even
though this second vehicle tries to keep a relatively big time headway, it still crashes.

During this same period within scenario 2 (around t = 200 s), with MPC2 configurations I
and III, the vehicles come to a halt at different vehicle-to-vehicle distances (as close as d =
0.15 m for i = 7 with MPC2-I, see Figure 4-4c, and d = 0.19 m for i = 5 with MPC2-III).
Contrarily to what PID would do, MPC does not try to drive backwards, but keeps its vehicle
steady at zero velocity. In all other cases all MPC-controlled vehicles come to a halt at a
proper 3 m (= d0) distance from their stalled predecessors.

Velocity trajectories

The PID-based controllers do not brake fast enough such that, for scenario 2, in the first and
third of the subscenarios where the leader decelerates to zero, the followers do not reach zero
velocity before the leader starts to accelerate again. During the second time the leader brakes
to a halt, and when the leader decelerates to zero during scenario 1 (in both cases around
t = 200 s), not braking fast enough causes vehicles i = 2 with PID-I, and 2 ≤ i ≤ 4 with
PID-II and PID-III to come (approximately) to a halt beyond the desired position, which at
zero velocity is at d0 = 3 m behind the predecessor. In fact, in these cases the velocity of
the vehicles, just like the position, has an overshoot, causing the violations of the minimum
velocity constraint for the PID-based CACC controllers that can be seen in Table 4-513.

With PID-I it takes a long time for all the vehicles to reach a new target velocity. PID configu-
rations II and III are quicker, because the vehicles further along start earlier with accelerating.

13The PID-based CACC algorithm ((3-11) line 3) prevents the velocity to become significantly negative.
The air resistance causes minor oscillation of the velocity around zero (amplitude ∼ 10−5 m/s). During these
oscillations, a positive velocity at a sample time instant causes the controller to give a negative pedal input,
hence the negative peaks in acceleration in Figure 4-4a.
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(a) PID I and II, note: vehicle 2 crashes, oscillations around a = 0, PID-I is slow.

Figure 4-4: Overview of a part of a subscenario of scenario 2 where the platoon leader decelerates
to zero. (The acceleration in this and the other figures is sampled with Ts (=0.5 s) for clarity,
avoiding vertically overlapping lines at each sample instant.)
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(b) MPC1, note: no crash, oscillations with MPC1-I (MPC1-III is similar here), MPC1-II shows lighter
fluctuations and looks the best of all in this subscenario. (see Figure 4-4a for the legend)

Figure 4-4: (continued) Overview of a part of a subscenario of scenario 2 where the platoon
leader decelerates to zero.

Master of Science Thesis C. Kreuzen



60 Case study

MPC
2
−II

180 185 190 195 200 205
0

5

10

15

20

time (s)

di
st

an
ce

 (
m

)

180 185 190 195 200 205
0

10

20

30

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

180 185 190 195 200 205

−2

−1

0

1

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

MPC
2
−I

180 185 190 195 200 205
0

5

10

15

20

time (s)

di
st

an
ce

 (
m

)

180 185 190 195 200 205
0

10

20

30

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

180 185 190 195 200 205

−2

−1

0

1

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

(c) MPC2, note: no crash, close intervehicle distances with MPC2-I (the small distances staying constant
until the reaction to the leader accelerating again, similar with MPC2-III), slight positive acceleration before
deceleration, unwanted acceleration peaks with MPC2-II. (see Figure 4-4a for the legend)

Figure 4-4: (continued) Overview of a part of a subscenario of scenario 2 where the platoon
leader decelerates to zero.
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Figure 4-5: Example of mild oscillations around a constant velocity with MPC1. In this figure it
can also be seen that the MPC controller obeys the maximum-velocity constraint. This example,
which shows a part of scenario 2, clearly demonstrates the effect of string instability, i.e., the
oscillation gets stronger with higher vehicle number.

The velocity trajectories for the MPC-based controllers show unexpected fluctuations, ripples,
and in some cases oscillations (see, e.g., Figure 4-4b left middle, and Figure 4-4c right middle),
that are the result of undesirable fluctuations and oscillations in acceleration that will be
described below (under the heading “Acceleration trajectories”). An example of oscillations
in the velocity trajectories are oscillations that occur with the MPC1-based controllers during
a few periods of constant leader-velocity. The amplitude of oscillation grows with vehicle
number, but not in time. In Figure 4-5 this is shown for MPC1-I, during a subscenario, which
is chosen, because it also shows that the controller obeys the maximum velocity constraint.

PID-II violates the maximum velocity constraint with scenario 2, which is caused by an over-
shoot (from t = 361 s) up to v = 33.361 m/s (recall that vmax ≈ 33.33 m/s). According to the
performance requirements of Section 3-1-2, a small overshoot like this is acceptable, and its
penalty in the calculation of the platoon performance measure Pplatoon is therefore negligible.

With MPC, the highest velocity the controller allows the vehicle to reach is 33.316 m/s (see
Figure 4-5), which lies just below the velocity vmax used in the maximum velocity constraint.
At this velocity, when the MPC “thinks” it gives a force that causes the vehicle to exactly
reach vmax by the next sample step (Ts = 0.5 s from now), this force exactly cancels out the air
drag and friction forces. This difference between expected effect and real effect of the control
input is caused by underestimation of the air drag, according to (3-16) and Figure 3-3.

Acceleration trajectories

With PID, some vehicles show fluctuation in acceleration around zero with accidental negative
peaks, when having reached zero velocity beyond their desired position, as described above.
With the PID-based CACC controllers the vehicles do not reach the maximum acceleration
for the simulated scenarios. They do reach the minimum acceleration of -2.5 m/s2, but do not
exceed this value. This is because the acceleration is bounded according to line 4 of (3-11).
The acceleration trajectories for the PID-based controllers are significantly smoother than
those for the MPC-based controllers. Apart from the added constraints, the PID controller
is nothing more than a weighted sum of the state errors. This means that as long as the
desired states, and hence the state trajectories of its predecessors, vary smoothly in time or
the PID gains are sufficiently low, the throttle/brake input and the resulting acceleration also
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Figure 4-6: First a light increase in acceleration before decreasing, as occurring with all configu-
rations with MPC2. Also some brief undesirable fluctuations in accelerations is visible here. (This
example is part of scenario 2.)

vary smoothly. The platoon leader’s acceleration does not always vary smoothly, but the PID
acceleration gain after tuning is so low that it does not have a significant negative effect on
the smoothness of the state trajectories of the followers.

With MPC1 configurations I and III, during scenario 2, every time the platoon leader stops
accelerating (positively or negatively), and often already when starting accelerating, as a (in-
direct) reaction, the acceleration of the followers from vehicle 3 and onward starts oscillating.
For the first vehicles this is a very moderate oscillation (only viewable when closely inspect-
ing), but it grows with vehicle number to an extreme oscillation for the vehicles at the rear
end of the platoon. Every time such oscillations occur, the amplitude first grows in time,
and then decreases again to zero (see Figures 4-4b top left, 4-8 top, and B-1c). From vehicle
i = 2 on, the slope of the time-acceleration trajectory of each next vehicle deviates more than
that of its follower (for each next vehicle with one time step more delay), resulting in the
observed oscillations in acceleration, which indicates string stability. To examine this phe-
nomenon an MPC2-I controller has been given the same tuning settings as the tuned MPC1-I
controller and the two have been compared for their response to initial situations from which
with MPC1-I vehicles start oscillating. This showed that the described oscillations do not
occur when the vehicles communicate their predicted future states (the feature of MPC2 that
MPC1 lacks). For the reference for its predicted states MPC1 assumes constant velocity of its
predecessors. This is why the control action of the third vehicle (i = 3), when its predecessors
are accelerating, is not as optimal as expected, which it has to correct for at the next time
step. The assumption that vehicle i = 4 makes about the future states of i = 3 are false to an
even greater extent than the assumption i = 3 made about the future states of i = 2, because
of the attempt that i = 3 will make to correct for its poor action (unforeseen by i = 4). At
following time steps, i = 4 needs to correct for its poor control action, and so forth. This
causes the amplitude of the oscillations to grow with vehicle number.
This phenomenon is the most severe for MPC1-III (with amplitudes up to 2.5 m/s2, only
constrained by the acceleration bounds); with MPC1-I it is only slightly less severe (with
amplitudes up to 2.3 m/s2). In both cases the oscillations occur in all of the subscenarios of
scenario 2, whether it should be an easy to follow subscenario, like the final one (leader decel-
erates in 15 s from 14.85 m/s to 7.35 m/s, then keeps its velocity constant), or a more difficult
one. With MPC1-II these oscillations also occur, but to a much more moderate extent, not
necessarily amplified with growing vehicle number, and not during all subscenarios. Still also
with this controller the oscillations can be experienced by passengers as unpleasant (mostly
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Figure 4-7: Irregular fluctuations in acceleration, as occurring with the MPC2-based controllers
during scenario 2. In this example the vehicles decelerate from 14.85 m/s to 7.35 m/s.

with amplitudes up to 0.25 m/s2, but occasionally up to 1 m/s2).
A few times with MPC1 when the leader has a constant velocity and the followers have al-
ready reached that velocity, a longer lasting light oscillation of the acceleration around zero
occurs (see Figure 4-5 for corresponding oscillations in velocity).

With MPC2, every time before starting to decelerate, as a (indirect) reaction to the platoon
leader starting to decelerate, the acceleration of the vehicles first increases slightly (see Figure
4-6). Vehicle i = 2 starts slightly accelerating 2 seconds ((N − 1) ·Ts) before the leader starts
decelerating. Then each following control update time step (Ts = 0.5 s) each next follower
starts accelerating. The peak of this acceleration usually first grows with vehicle number i (up
to a value between 1 · 10−3 m/s2 and 0.12 m/s2), but from some value of i on it stays approx-
imately constant or decreases with i. Each vehicle then starts decelerating after having had
such low positive acceleration for a period of 0.5 s–1 s. The explanation of this phenomenon
would be that the expected decrease in velocity within the prediction horizon, that will result
from following the deceleration of the predecessor, implies that the desired distance to this
predecessor is also expected to decrease. It seems that the weight ratios Rutb

/Qs and Qv/Qs
in the MPC performance index (see also (4-1)) are such that it is considered cheaper to first
accelerate in order to already decrease the intervehicle distance slightly, before starting to
decelerate. This is unexpected, and not ideal behaviour.
This phenomenon occurs as well during scenario 1 as during scenario 2, and the reverse also
occurs after the leader starts a period of positive acceleration (i.e., the followers first de-
celerate slightly before starting to positively accelerate), but with negligible intensity. The
MPC1-based controllers also show this behaviour, however to a much less significant extent
(peaks of up to 10−2 m/s2) and the peaks mainly decrease with increasing vehicle number.
This difference between MPC1 and MPC2 is caused by the fact that with MPC1 only i = 2
receives future states from its predecessor. The other vehicles do not expect their predecessor
to decelerate during the prediction horizon, so they do not perform actions anticipating that.

With the MPC2-based CACC controllers often the followers’ acceleration trajectories show
unwanted fluctuations that usually last only up to a few sample steps, but sometimes continue
during a longer period (see Figures 4-4c top right, and 4-6 to 4-8). The intensity of these
phenomena usually fluctuates with vehicle number (i), and only occasionally as a general trend
increases with i. These unwanted fluctuations in acceleration are significantly less extreme
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Figure 4-8: Oscillations in acceleration during scenario 2. The plot of MPC1-III is an example
of oscillations that are typical for MPC1 configurations I and III with this scenario. The plot of
MPC2-III is an example for oscillations that last longer than a few sample periods, as occurring
with all three MPC2-based controllers. In this example the vehicles accelerate from 0 m/s to
13.75 m/s.
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than the oscillations that occur with MPC1 configurations I and III. They do not occur dur-
ing all of the subscenarios, but they do occur in different situations, i.e., when following a
strongly decelerating platoon leader, as well as a very lightly decelerating leader, or a pos-
itively accelerating leader. The amplitudes of these oscillations (with MPC2) usually reach
values between 0.15 m/s2 and 1.0 m/s2, but are sometimes as large as 1.75 m/s2.

All MPC-based controllers violate the minimum and maximum acceleration constraints at
times, with some vehicles. This is, except for additional violations for MPC1 configurations
I and III caused by their heavy oscillations, always due to respectively underestimation or
overestimation of the air drag by the MPC prediction model. This underestimation occurs
when the velocity is close to α (≈ 16.67 m/s), and this overestimation occurs when the ve-
locity has a value that lies between zero and the first intersection (at v ≈ 11.2 m/s) of the
PWA approximation of v2 and the original v2 plot in Figure 3-3. The violations of the min-
imum and maximum acceleration constraints by the MPC controllers are acceptably small
with absolute violations by at most 0.035 m/s2 and 0.020 m/s2 respectively.

Gear variation

The differences in number of gear changes between the MPC-based controllers with scenario
1 occur at a certain point where different numbers of vehicles perform a down shift in order
to increase the traction force while positively accelerating. The PID-based controllers switch
gear more than the MPC-based controllers, because they follow a switching scheme that is
based on velocity and throttle input, without any effort to try to keep the number of gear
switches low, as the MPC algorithm does.

Throttle/brake input variation

With PID-I, after a constant velocity period every vehicle starts pushing the throttle/brake
pedal one time step after its direct predecessor. With configuration II the vehicles start
changing their throttle/brake input in pairs, meaning vehicles i = 2 and i = 3 0.5 s after the
leader, i = 4 and i = 5 after 1 s, i = 6 and i = 7 after 1.5 s, and so on, while with PID-III
all the followers (i ≥ 2) start pushing the throttle/brake pedal simultaneously, one sample
step after the platoon leader starts accelerating/braking. These differences between the three
configurations with PID can be seen in Figure 4-9.

The fluctuations occurring with the MPC-based controllers, that were described above in
the subsection on acceleration, can be traced back to similar behaviour of the throttle/brake
pedal position sequences in time (see e.g., Figure 4-9). This means that sudden peaks in
acceleration are induced by sudden peaks in throttle/brake input, i.e., not by a gear change.
Closer examination shows that indeed such fluctuations almost always occur a significant
period of time away from gear shift moments. So, even though the MPC algorithm tries
to minimize the throttle/brake input variation, the result with respect to this task is very
poor. This implies that the tuned weight Rutb

corresponding to this task (as part of the MPC
performance index J , see (3-34))—although it is high enough for the tuning scenario—should
have been higher, in order to give good performance for other scenarios.
Also, with scenario 2, with PID the throttle/brake variation measure, before being averaged
over all vehicles, decreases with vehicle index i, while with MPC the general trend is for this
measure to increase with i (except with MPC1-II, for which it only increases for i ≥ 11), which
is another indication of string instability with MPC (more on this in the next paragraph).
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Figure 4-9: Braking behaviour during a period (of scenario 2) where the platoon leader brakes to
decelerate from v = 10 m/s to v = 0 m/s. With PID it can be seen how the vehicles start braking
(pairwise) simultaneously or subsequently, depending on the information gathering configuration.
With MPC the plots show fluctuations in throttle/brake pedal position that result in similar
fluctuations in acceleration.
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Figure 4-9: (Continued) Braking behaviour during a period (of scenario 2) where the platoon
leader brakes to decelerate from v = 10 m/s to v = 0 m/s. With PID it can be seen how the
vehicles start braking (pairwise) simultaneously or subsequently, depending on the information
gathering configuration. With MPC the plots show fluctuations in throttle/brake pedal position
that result in similar fluctuations in acceleration.
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String stability margin

Recall, from (3-47), that a positive string stability margin means that when in front of the
platoon a vehicle decelerates, the intensity of the deceleration of vehicles as a reaction to
this manoeuvre generally decreases with increasing vehicle number. If the value of fstab in
Table 4-5 (see (3-47)), representing the string stability margin, is negative, then during the
simulation there is at least one braking period during which the trend is that the intensity of
the deceleration increases towards the back of the platoon, or several vehicles decelerate sig-
nificantly stronger than their direct predecessors. Therefore, from a negative string stability
margin it is concluded that the platoon is string unstable.

PID has no problem keeping a positive string stability margin for the two traffic scenarios.
With the desired distance depending on velocity, it was already expected that, after proper
tuning, the controllers would make the platoons string stable (as stated in Section 2-3-2).
The high stability margin for PID-I can be ascribed to indirectly resulting from the relatively
big time headway (h0).

With the MPC-based controllers it appears to be much more common to have some vehicles
brake more intensely than others independent of their index i. That does not necessarily pose a
problem, as long as these fluctuations in maximum deceleration with i are not too big, and the
trend is for the maximum of the deceleration to decrease with vehicle number, for each braking
period. However, the unwanted oscillations and other fluctuations in acceleration, growing or
otherwise fluctuating with vehicle number (already being a sign of string instability), cause
deceleration peaks that cause the string stability margin measure (fstab) to become negative.
This indeed means that the MPC-based controllers are assessed not to bring string stability.
As reported above, inspection of the time-acceleration plots showed that the intensity of the
oscillations with MPC1 configurations I and III always grow with increasing vehicle number.
For the other MPC-based controllers the unwanted fluctuations do not consistently grow with
vehicle number. The plots therefore show that MPC1 configurations I and III have in fact
the worst string instability, which is not obvious from the values in Table 4-5, due to the
imperfection of the stability margin measure.

Overall performance

Just from the results with traffic scenario 1 it could be said that the general performance of
MPC2 is better than that of MPC1, of which the performance in turn is better than that of
PID, and that configuration II is the best configuration to use with MPC, while configuration
III is the best in combination with PID, and MPC2-II performs the best of all. However, all
of the controllers perform unsatisfactory with validation scenario 2, hence the infinite pla-
toon performance measure. The PID-based controllers have an infinite platoon performance
measure value (Pplatoon) because of the distance between the second and first vehicle in the
platoon becoming negative at some point, representing a crash. The MPC-based controllers
receive the infinite value of Pplatoon for their inability to achieve string stability. These con-
trollers have been tested with increased prediction horizon, up to N = 9, while the other
tuning settings were still fixed to their values in Table 4-4). However, none of the increased
values of N resulted in string stability for any of the MPC-based controllers for scenario 2.

From scenario 2, even though all controllers have an infinite platoon performance measure,
from the measures of the different performance aspects and from the plots showing the simula-
tion results, still the overall performance of the different controllers can be compared. First of
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all it can be stated that PID performs worse than MPC, because a crash is significantly more
severe than (even very) uncomfortable peaks or oscillations in acceleration. Furthermore, it
can be seen that with PID, configuration II performs much better than configuration I on the
average distance, but worse on the other performance aspects. Overall PID-II seems better
than PID-I. The same holds for PID-III, which, on top of that, performs better on all aspects
than PID-II. Therefore the overall performance of configuration III can be considered the best
of the three configurations with PID. With MPC1, however, configuration II clearly performs
the best overall, and configuration I and III perform more or less equally badly. This while
with MPC2 there are not such big overall differences between the three configurations. The
performance of configurations I and III with MPC2 might be considered worse than that of
configuration II, because with both of these former configurations, a vehicle comes uneasily
close to its predecessor at some point.
These differences may be explained as follows. PID is a pretty straightforward control method,
such that two vehicles having the same CACC controller more or less apply similar control
actions. Therefore, if with PID the control actions of all vehicles are partly based on the
leader’s states, the vehicles can closely follow, especially since the second vehicle in the pla-
toon undergoes only slow changes. This was more or less expected after the literature review.
MPC, using a prediction model that contains discrete—in this case binary—variables, on the
other hand, might give a significantly different control signal for an only marginally different
situation. This makes that with such an MPC-based CACC controller the control actions of
each individual vehicle in the platoon will differ more, no matter which of the information
gathering configurations is used. It is probably this difference between MPC and PID that
causes the difference in added value of using the platoon leader’s states. The second prede-
cessor is much closer in the platoon than the leader (for most vehicles), which makes using
its information still advantageous for MPC1. MPC2, however, receives expected future states
from its predecessor, which in turn result from predictions that were based on communicated
expected future states of the second predecessor (and so on). Therefore, indirectly MPC2 has
much more information on what will happen in front than MPC1 has, reducing the added
value of directly communicated information from its second predecessor.

4-4 Recommendations for the case study

After having reviewed the results, an important question is why do the MPC-based CACC
controllers designed here give such instability. For the MPC1 variant it was explained above
that the oscillations result from assuming the velocity of its predecessor(s) to stay constant.
For the MPC2 variant it is not that obvious what causes the problems (in a direct sense).
In both cases it is clear that the weighting factor for input variation (Rutb

) in the MPC
performance index (J) is not high enough to prevent such oscillations. Because the value of
this weight was determined by tuning, the fact that Rutb

has been assigned too low a value
could be caused by choices made in relation to any (or a combination) of the following four
items:

1. the parameters to be tuned (simultaneously)

2. the (extent of the) traffic scenario used for tuning

3. the construction of the platoon performance measure (minimised when tuning)

4. the settings for the optimisation algorithm

Therefore, below, these four subjects are addressed, and suggestions are given about alter-
ations that may result in better performing controllers, and, with that, results from which
more relevant conclusions can be drawn. Unfortunately, the suggested improvements could
not be implemented within the scope of this project, due to the limited time span.
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1. Tuning all tunable parameters simultaneously for each controller.
In the case study, when tuning the controllers, some weight parameters (ks, kv, ka, Qv, and
Rutb

, Rj) were tuned with configuration I and then given the same value for the corresponding
configurations II and III. Moreover, the parameter N (prediction horizon) was kept constant
during the tuning of all other tunable parameters, and only after that tuned for each controller
separately. This is not the best approach. The optimal values for the weight parameters, just
mentioned, for configuration I may not be optimal for configuration II or III. Furthermore, a
higher prediction horizon would have most probably resulted in a better performance, when
combined with some different values for the other tunable parameters.
Therefore, all the parameters just mentioned should be tuned simultaneously with the other
tunable parameters for each controller in which they play a part. This means retuning the
weight parameters (mentioned above) for each configuration, and tuning N simultaneously
with the other parameters. Of course, then a penalty needs to be added for using a higher value
of N , since this results in higher computational costs. For the tuning it should be taken into
account that the optimisation computation time for such a nonlinear, nonconvex optimisation
problem in general increases exponentially with the number of parameters to be tuned.

2. Expanding the tuning scenario.
In order to improve the probability of detecting unwanted behaviour, more different subsce-
narios and more vehicles should be added to the tuning scenario. This will in principle only
linearly increase the computation time.

3. Improving the platoon performance measure.
For its performance assessment of all the controllers on both traffic scenarios (and on several
test scenarios) the platoon performance measure appears to be grading all the performance as-
pects as intended, except for the stability margin (see also Table 4-5). It was already observed
in Section 4-3-2 that the difference in severity of the string instability between the controllers
is not in all cases adequately represented in the value of the string stability margin measure.
Looking at (3-47) it can be seen that the string stability performance measure Pstab can have
a good (low) value even if one of the braking periods proved the controller to be slightly
string unstable. This is undesirable, because if a CACC-vehicle combination is said to be
string stable, a platoon of (any number of) vehicles should be stable in any circumstances
within the operational region specified. This means that if any of the braking periods in
the simulation gives instability, Pstab should have infinite value, just as it now has if all the
braking periods give instability, or one or more such periods are unstable to a higher extent.
The derivation of the stability performance measure (3-47) can be improved by first deriving
such a measure for each braking period (p), before averaging these measures to obtain one
overall performance measure for stability. The proposed improved equation for Pstab is

fstab,p = 1−

√

√

√

√

Nveh
∑

i=3

(

amin,p,i

amin,p,i−1

)2/

(Nveh − 2), for p = 1, . . . , Nper

Pstab,p =

{

cstab /fstab,p if fstab,p > 0
∞ if fstab,p ≤ 0

Pstab = 1
Nper

Nper
∑

p=1

Pstab,p

(4-2)

Furthermore, the derivation of a stability measure has been based on the braking periods, be-
cause often in literature for empirical evaluation of string stability only braking is considered.
However, it should also be based on the positive acceleration periods, because the platoon

C. Kreuzen Master of Science Thesis



4-5 Summary 71

leader suddenly positively accelerating is also a disturbance that travels upstream14. Then
amin,p,i in (4-2) should be replaced by apeak,p,i, where for braking periods apeak,p,i will be the
same as amin,p,i, and for positive acceleration periods apeak,p,i will represent amax,p,i, i.e., the
maximum acceleration for vehicle i during period p.
Having an improved measure to rate the performance with respect to string stability margin
should improve the chance of finding a set of values for the tunable parameters, during the
tuning stage, that induces a better margin of string stability for other traffic scenarios.
Furthermore, the occurrence of all the unwanted fluctuations in acceleration and throttle in-
put means that the value of Rutb

in the MPC performance index (3-34b) is too low, relative
to the other weights in this index. Although for the tuning scenario no such fluctuations
occurred with the tuned controllers, increasing the weight (Wutb

in eq:generalP) of the pedal
position variation measure that is part of the platoon performance measure might help find
more optimally tuned parameters with respect to keeping the input variation low.

4. Adding more starting points to the multi-start search, and increasing the total
number of allowed iterations within the optimisation algorithm during tuning.
Because the variation of the platoon performance measure with varying values of the tun-
able parameters is highly non-convex, the simulated annealing optimisation algorithm may
not have found the global optimum within the time given (the maximum allowed number of
function evaluations, i.e., tuning scenario simulations, was in the order of 104, divided over
searches from two starting points). Using more starting points with simulated annealing may
(further) improve the tuning results. Additionally, if the available time permits, it could be
attempted to improve the tuning results by allowing for more function evaluations within the
optimisation algorithm (in addition to already increasing the number of iterations allowed
in accordance with the increased number of parameters to be tuned simultaneously). Also,
if available, the Matlab function “simulannealbnd” can be used instead of the simulated
annealing function for Matlab as designed for this case study (described in Appendix A-7).
However, for the tuning scenario the optimised platoon performance measure does appear
to have a low value, corresponding to promising results. Therefore, it is expected by the
author that the suggestions concerning the previous three subjects are more important when
retuning in order to find better results.

4-5 Summary

In this chapter a case study has been performed with simulated platoons of SMARTs, under-
going scenarios that consist of a small series of common traffic scenarios. In these platoons all
followers use the same CACC controller, while the leader has been assigned a specific time-
velocity sequence. The tunable parameters have been tuned by minimising a performance
measure applied to the results from simulating a five vehicle platoon, undergoing a certain
traffic scenario. Then, for each tuned controller a simulation of a twelve-vehicle platoon un-
dergoing another, longer, traffic scenario has been carried out, after which the performance of
the controllers has been evaluated and compared. The results show that all controllers behave
very poorly. The PID-based controllers allow a collision to happen, while the MPC-based con-
trollers cause sudden peaks and oscillations in throttle/brake pedal input and acceleration,
and string instability. Finally, the results have been discussed and recommendations have
been formulated that should result in a better performance.

14In literature, when the concept of empirically studying string stability is described in general, the peaks
in time are taken regardless whether these peaks are minima or maxima [12].
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Chapter 5

Conclusions and recommendations

5-1 Project summary

The goal of this project was to answer the following question concerning CACC (as stated in
Chapter 1):

Does the combination of MPC with using communicated information from two
other vehicles, being either the first two predecessors or the direct predecessor
and the platoon leader, result in an increase of performance, compared with PID
(with or without using such additional information) or with MPC using just the
direct predecessor’s information? And in what aspects, and to what extent, is the
performance different?

In order to answer this question, for each of these combinations a CACC controller has been
designed. Several constraints have been presented, which the controllers should—at least
approximately—obey, representing acceleration comfort bounds, velocity bounds (minimum
velocity being zero), and a minimum intervehicle distance bound. The control variables are
the throttle and brake pedal positions, and the gears. To the author’s best knowledge, this
thesis is the first to explicitly include the gears as control variable in CACC.
It is chosen for the desired distance to the predecessor(s), as used by the controller, to be
proportional to the vehicle’s velocity. When only the direct predecessor states are used by
the CACC controller (configuration I), the desired velocity and acceleration are equal to this
predecessor’s velocity and acceleration respectively. When the states of the second predeces-
sor are used (configuration II), the desired states are a weighted average of the desired states
based on following the direct predecessor and the desired states based on following the second
predecessor at a larger distance. When the platoon leader’s states are used (configuration
III), a similar construction is applied, except that the leader’s position is not used in the
algorithm. The second vehicle always uses the configuration that only looks at the direct
predecessor (i.e., configuration I).
With PID, velocity, position, and acceleration errors are fed back, with a simple automatic
gear transmission scheme added. Approximately obeying constraints (except the minimum
distance constraint) has been achieved by cutting off the output of the PID control law at
values that according to an available vehicle model would cause the vehicle’s states to stay at
the upper or lower bounds for their constraints.
The model used for vehicle simulation in the case study is linearised to obtain the model that
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the MPC controllers use for their predictions. One of the nonlinearities, the air drag, which
is a function of the squared velocity, is approximated by a piecewise affine function consisting
of two straight lines. To convert the hybrid model that results from this into a model of a
linear nature, and to similarly handle other nonlinearities, the model is rewritten into a so
called mixed logical dynamical form [3]. It is chosen to have the MPC minimise the predicted
future state errors and input variation. The MPC-based CACC controllers for simplicity use
only position and velocity states. These controllers are designed in two variants, one that
uses communicated predicted future states to derive the reference signals from, and one that
assumes the velocity of its predecessors constant when calculating future desired states.
For the case study, each controller has been tuned by applying multi-start simulated anneal-
ing to optimise the performance of a simulated platoon of five vehicles undergoing a sequence
of everyday (non-extreme) traffic scenarios. The leader is given a time-acceleration sequence
with an initial velocity, and the other four vehicles use CACC. The platoon performance
includes the averaged intervehicle distance, the throttle/brake pedal position variation, the
gear variation, the number and severity of constraint violations, and the margin in platoon
string stability. To save time, the weight factors of the states (and inputs with MPC) that
occur in the CACC algorithm are only tuned for the configuration I controllers, and given
the same value for the corresponding configuration II and III controllers, and the prediction
horizon for MPC is only tuned afterwards, when all the other tunable parameters have been
given their already tuned values.
After tuning, for each controller a simulation has been performed with the tuned CACC
controller implemented in vehicles undergoing a validation traffic scenario. This validation
scenario consists of a different and larger set of typical everyday traffic scenarios than the
set used for tuning, and is simulated with a platoon of twelve vehicles. The performance
of each controller is evaluated by considering the platoon performance calculated from these
simulations, as well as by looking at the time-state and time-input graphs of the simulations.

The most important results found are:

• PID
With PID, the time-state sequences are relatively smooth, but the vehicles are rather slow
in their following task, and during the validation scenario the second vehicle crashes into the
platoon leader. When only information from the direct predecessor is used, the vehicles keep
a very big distance to their predecessors (an average distance of 55.2 m for the validation
scenario). Also using information from the second predecessor improves the controller (the
average distance decreases to 17.2 m). Also using information from the platoon leader gives
an even better improvement (with an average distance of 16.6 m). With PID the trend is for
vehicles to brake less intensively than their predecessors, meaning string stability is achieved
in the simulated scenarios.

• MPC
With MPC, when no information about future states is being shared (variant 1, with aver-
age distances for the validation scenario of 18.0 m, 15.4 m and 17.3 m for configurations I,
II, and III respectively), during the validation scenario heavy oscillations occur frequently in
the throttle/brake input and the acceleration when only the direct predecessor’s states or in
addition also the leader states are used. The intensity of these oscillations grows from the
front to the rear of the platoon. When the states of the two direct predecessors are used,
only much smaller fluctuations occur (not necessarily growing from the front to the rear of
the platoon). These are also less severe than the fluctuations occurring with MPC variant
2, although they would sometimes still be unpleasant for passengers. Also communicating
predicted future states between vehicles with MPC (variant 2), resulted in the most respon-
sive controllers with the smallest average intervehicle distances (11.0 m, 8.7 m, and 9.2 m for
configurations I, II, and III respectively for the validation scenario). However, also unwanted
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short-term fluctuations in the throttle/brake input and the acceleration are observed, usually
not specifically growing from the front to the rear of the platoon, and of which several are
expected to be uncomfortable. With all six MPC-based controllers, for each individual vehicle
these fluctuations do not keep growing in time, but diminish. However, they do sometimes—
with some of the controllers more, and more consistently, than with others—increase from
vehicle to vehicle, indicating string instability.

5-2 Conclusions

Although all the designed CACC controllers performed poorly with the validation scenario,
it is expected that retuning with properly improved tuning conditions will result in better
performing controllers. Therefore, it cannot be stated indefinitely that conclusions drawn from
the results of the case study performed here will hold in general. That is why only preliminary
conclusions will be formulated here, based on the case study and the expectation that the
observed qualitative differences in performance between the controllers, that these conclusions
are based on, will be similar in the case of better tuned versions of these controllers.
With respect to the research question presented in Section 5-1 the preliminary conclusions
are:

1. MPC-based CACC is safer than PID-based CACC, and therefore preferred
as a control method for CACC.
Even though the PID-based CACC controllers were safe for the tuning scenario, they
let two vehicles crash during the validation scenario. PID, by itself, cannot anticipate
dangerous situations as well as MPC can. The first follower of the vehicle that introduces
a disturbance (usually the platoon leader) has the highest risk of colliding into its
predecessor. Its followers have a lower risk for that because they apply similar control
actions, especially when they use information from more than one predecessor, combined
with the fact that the platoon shows string stability for the simulated scenarios. The
MPC-based controllers kept the vehicles safe (although not always comfortable) for the
relatively small platoon lengths simulated in the case study. The MPC-based controllers
that caused the worst string stability would, without retuning, probably also cause
collision in some larger platoons. However, for the other MPC-based controllers, the
peaks and oscillations in acceleration did mostly only fluctuate from the front to the
rear of the platoon, but not necessarily grow. Therefore, it is expected that MPC-based
CACC can also be safe for larger platoons. Because safety is more important than
comfort, from the results of this case study it can be deduced with a high degree of
certainty that MPC is indeed superior over PID as control method for CACC.

2. With MPC-based CACC it is preferred to receive through communication,
in addition to the current states of the direct predecessor, at least the current
states of the second predecessor and/or the predicted future states from the
direct predecessor, in order to achieve better string stability.
This means that better string stability can be achieved if the CACC controller has some
indication of what the direct predecessor is going to do. Here, the current states of the
second predecessor give an indirect indication of the near-future states of the direct
predecessor. This conclusion is deduced from the fact that the MPC-based CACC
controllers that do not use predicted future state information from predecessors and
that do not use any state information from the second predecessor, caused by far the
worst string instability in the case study.
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Furthermore, with respect to designing CACC controllers, based on the case study the fol-
lowing conclusion can be formulated:

3. It is not easy to design a CACC controller that obtains smooth throt-
tle/brake trajectories with MPC. With PID this seems easier to achieve,
but at the cost of a slower response.
The right tuning of the weight factor that punishes throttle/brake increments as part of
the MPC performance index is very important, because the results from the case study
showed how too low a value for this weight can cause sudden peaks and oscillation in
acceleration. Because too high a value of this weight could give other problems (e.g., low
responsiveness to braking predecessors, possibly causing the need for excessive braking
later on, past the initial prediction horizon), it is not easy to find the right value for it.
With PID the observed throttle/brake trajectories were much smoother. But it should
be noted that in order to achieve this, the acceleration gain after tuning was negligible.
This also resulted in a slow response, which in turn, resulted in the need for a large
headway for the second vehicle in the platoon, and in the fact that this vehicle still
could not avoid a crash during the validation scenario.

5-3 Recommendations for further research

During the course of this project several ideas for further research have been formed. The
most relevant of these will be addressed briefly here.

5-3-1 Recommendations concerning the specific CACC controllers as designed
in this project

First, to possibly achieve more useful results, from which better conclusions can be drawn
about the CACC controllers as designed in Chapter 3, these controllers would need to be
retuned with applying the following improvements (as suggested, and further explained, in
Section 4-4)1:

- Tuning all tunable parameters simultaneously for each controller.

- Expanding the tuning scenario (to include more different subscenarios and more vehicles).

- Defining a platoon performance measure that better detects string instability and more
strongly punishes throttle/brake input variation.

- Changing the settings for the optimisation algorithm used for tuning, in order to introduce
more starting points for multi-start simulated annealing, and possibly to allow for more
function evaluations.

Some of these will increase the time needed to tune the controllers (even exponentially for
the first improvement listed).
After retuning, if some of the controllers give satisfying results, a natural continuation would
be to study the performance of the better ones on simulations with more realistic vehicle
models, and, after that, in case of positive results, while implemented in real test vehicles.
Also, the vehicle mass or the road/air resistance could be varied to investigate robustness.

Then, still, some suggestions can be given for alterations to the CACC controllers that might
further improve such controllers:

1The insight that these issues should have been handled differently was gained during a later stage of the
project (when processing the simulation results, after tuning), at a point when the time needed to implement
these improvements and retune all controllers was no longer available within the scope of this project.
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• Using more regions for the piecewise affine approximation in the model for MPC.
There is no direct evidence that suggests that there is a relation between the fact that the
linearised MPC prediction model deviates from the vehicle simulation model, and the observed
problems with MPC. However, it can be investigated whether using more regions in the
piecewise affine approximation—causing the model to be more accurate—improves the CACC
performance. When doing that, it should be considered whether an observed improvement in
performance outweighs the increase in computational costs.
• Allowing for emergency braking.

CACC controllers as designed here should be combined with some sort of a collision avoidance
algorithm that takes over in emergency situations, obviously then being allowed to break the
comfort constraint on deceleration. For configuration II, a simple example of such a collision
avoidance algorithm could be the following:

When at least one of the two predecessors brakes with an acceleration lower than
amin− ε1, with ε1 > 0 (e.g., ε1 = 0.1 m/s2 or ε1 = 0.05 · |amin|), then the constraint
a ≥ amin is temporarily removed from the set of constraints. After that, this
constraint is reinstated as soon as

a(k) ≥ amin + ε2 & min
(

ai−1(k − n), ai−2(k −m)
)

≥ amin

∀n ∈
{

0, 1, . . . ,floor
(

T1

Ts

)}

∀m ∈
{

0, 1, . . . ,floor
(

T2

Ts

)} (5-1)

where ε2 > 0 (e.g., ε2 = 0.1 m/s2), T2 > T1 ≥ Ts (Ts is the sampling time, Ts =
0.5 s in this project, e.g., T1 = 1 s, T2 = 1.5 s), a represents acceleration, and indices
i− 1 and i− 2 refer to the direct and second predecessor respectively.

With MPC, another option to avoid collisions in more extreme circumstances is to make the
minimum acceleration constraint a soft constraint [3], instead of the hard constraint it was in
this project, i.e., replace the constraint

a(k) ≥ amin (5-2)

by
{

a(k) ≥ amin − ε(k)
ε(k) ≥ 0

(5-3)

To the MPC performance index of (3-34), which is minimised at each control time step, the
following term is then added:

N
∑

n=1

‖Qεε(k + n)‖1 (5-4)

where Qε is a penalty weight that should be relatively large, such that only if the problem
would otherwise become infeasible the acceleration will become lower than amin.
• Only looking at the direct predecessor when slowing down to a halt.

It is suggested, if information from other vehicles besides the direct predecessor is used, to
lower the influence of this information to none when approaching zero velocity. This is to
prevent the second predecessor’s position to cause the own “desired position” to become
dangerously close to, or unnecessarily far from the direct predecessor when coming to a halt.
The latter situation may unnecessarily cause an infeasible optimisation problem.
• Finding a better braking model.

In the vehicle models used here for simulation and for MPC prediction, braking is modelled as
following the same dynamics as positive acceleration, but with a negative pedal input value.
This way, e.g., the influence of braking is dependent on current gear in the same way as
positive acceleration is. If problems arise while implementing a CACC controller based on
such a model in a more realistic simulation or in a real vehicle, it is advisable to find a better
braking model to use for the MPC prediction model, and for simulations.
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• Favouring higher gears to protect the environment.
If desired, the MPC-based CACC controller could be made more environmentally friendly by
adding a term to the MPC performance index that comprises the negated gear number with
a small weight factor.
• Considering more predecessors.

If using communicated information from the second predecessor indeed turns out to improve
the CACC performance, compared with only using the direct predecessor’s information, then
it could be investigated whether, and up to which value of n, using information of the closest
n predecessors (n ≤ total number of predecessors) gives an even further improvement.
• Comparing with other control methods.

A CACC controller that uses another control method than PID or MPC, e.g., fuzzy logic,
can be designed and applied with the same configurations as applied here, with respect to
which other vehicles to use information from as reference, in order to investigate if this control
method can give a better performance than MPC can.

5-3-2 Recommendations concerning CACC systems in general

The CACC controllers designed in this project assume that all the vehicles in the platoon
(except maybe the leader) are equal and use the same type of CACC. In addition, the CACC
controllers assume that the vehicle weight and the road conditions are non-changing, and that
all vehicles will stay in the platoon, and no new vehicles will join. Besides these assumptions,
everyday traffic situations are assumed, meaning no extreme actions of predecessors. It is
recommended to extend the CACC system with features (or combine them with another
intelligent systems) that can handle the following situations:
• Platoon splitting.

When the platoon splits, caused by vehicles in front accelerating permanently away from
the remaining part of the platoon, or vehicles leaving by changing lanes, this could result in
the remaining platoon having a new leader or in the direct predecessor(s) that the CACC
controller needs information from being a different vehicle than before. The CACC controller
should be made able to adapt to the new situation by re-identifying vehicles from which
information is needed. Furthermore, the CACC controller can be integrated with a higher-
level controller that coordinates the platoon splitting procedure and the (relative) movements
of platoons.
• Platoon merging.

Two platoons or one platoon and a new vehicle should be able to join to form one new
platoon. This situation can occur as a result of two platoons catching up or vehicles merging
from a neighbouring lane or an on-ramp. In the latter situation, not only the CACC systems
of (some) vehicles need to adjust to the insertion and reordering of vehicles in the platoon.
Also, to maintain autonomous longitudinal driving, the CACC system would need to be
combined with a higher level cooperative merging system. This means that the merging
vehicles should—in a direct or indirect way—communicate with the vehicles in the platoon,
and the platoon should make room for the new vehicles to merge.
• Different parameter values for different types of vehicles or for changing circum-

stances.
Usually vehicles within a platoon will differ from each other in several characteristics, e.g.,
mass, size, aerodynamics. Moreover, such characteristics may even change for one vehicle
with changing circumstances. Therefore, the values of the time headway h0 and possibly
other CACC parameters should depend on such characteristics. Furthermore, to improve the
performance of MPC-based CACC systems for changing circumstances, the value of param-
eters from the vehicle model corresponding to some of these characteristics can be measured
(or otherwise identified) at regular time intervals, and be adapted in the vehicle model used
by MPC.
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• Looking at the direct follower.
An idea that could be investigated, especially for its value in mixed traffic is for the CACC to
also use communicated/measured data from its direct follower. This way, the vehicle can avoid
close encounters with a follower that has a much slower reacting (C)ACC or no ACC at all.
• Designing CACC for emergency situations as well as for daily following.

CACC should not only be able to safely perform close following in daily traffic scenarios, but
also to react adequately to suddenly strongly braking predecessors, so as to avoid collisions
(as already mentioned above). Since also lateral vehicle control systems are being studied and
developed, at some point, the combination of longitudinal and lateral control can provide for
even better collision avoidance features, enabling the CACC controller to steer around the
predecessor if that provides for a better chance of avoiding a (severe) collision under the given
circumstances (i.e., the presence or absence of a neighbouring lane with or without nearby
vehicles, the velocity difference with the predecessor, the road friction, etc.).
• Applicability in mixed traffic.

It will be a long time before all vehicles on the road will be equipped with some version
of CACC. If CACC controllers are to be introduced in vehicles that take part in everyday
traffic, the percentage of traffic that is equipped with these controllers will at first only grow
slowly. This means that these controllers have to be able to longitudinally control the vehicle
in mixed CACC/manual traffic. If the direct predecessor is not able to communicate the
required information, some of it (e.g., its position and relative velocity) should be measured.
If the predecessor is not using CACC, or a CACC controller with different settings, it will
behave differently than is to be expected of a CACC-driven predecessor with similar CACC
settings as those of the own vehicle. If the second predecessor cannot communicate, its
states cannot be used by the controller, unless the direct predecessor’s measurements of the
second predecessor’s states are used in some way. Solutions to these and other problems that
are consequences of mixed traffic should be incorporated in an extended design of CACC
controllers.
• Multi-level control for the vehicle following within a platoon.

In this thesis each vehicle had its own CACC controller. At each time step the MPC-based
CACC controller receives (expected) states from the predecessor(s). Then it optimises a
sequence of control actions over a prediction horizon. All vehicles do this simultaneously.
This means that, even though the CACC controller can react to the previous actions of its
predecessors, and possibly to previously optimised paths of the predecessor(s), it cannot in-
stantaneously anticipate the control actions the other vehicles are calculating at the same
moment. Also, each vehicle computes only its own optimal trajectory, based on a given or
assumed trajectory of other vehicles. This raises the idea that the trajectories of the vehicles
might be more optimal if the control actions of all vehicles in a platoon are optimised simul-
taneously by one MPC algorithm. This algorithm then optimises the state trajectories and
input sequences of all the vehicles over the prediction horizon. It can be executed by some
form of roadside network. The centralised controller would receive the vehicles’ states through
communication, and at each control update step send the respective throttle/brake position
and gear choice to each of the vehicles. For this, the controller also should have received
vehicle model information of all vehicles in the platoon. The effect of such centralised control
in a simulation of a platoon of vehicles can be investigated. In reality the corresponding
optimisations would be highly computationally demanding. Therefore, if simulations indeed
show that centralising the longitudinal vehicle control bring significant benefits, then prob-
ably strategies need to be devised and investigated that lower the computational demands.
E.g., it could be considered to investigate multi-level control, where a higher-level controller
computes optimal paths for the vehicles in the platoon, using MPC, for a small number of
relatively large time steps (e.g., Tcontr,central = 1 s, Ncentral = 5). Here, the MPC alorithm still
tries to keep the corresponding throttle, brake, and gear changes low. Then between these
subsequent time steps lower-level controllers within the vehicles can control the throttle/brake
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and gear to follow the received optimal velocity and distance trajectories, with a higher con-
trol update frequency (e.g., Tcontr,vehicle = 0.1 s, and Nvehicle = 5 or a PID controller). This
way, e.g., the higher-level controller can use a simplified model, and the lower-level on-board
controllers can be more precise on a local level.

Furthermore, strategies similar to the ones applied in this project may be useful to apply, in
an adapted manner, to control problems other than longitudinal vehicle following on roads.
Recommendations along this line are:

• Applying cooperative control to laterally control a number of neighbouring vehi-
cles.
The concept of cooperative control to keep a safe distance, as applied in this thesis, may
also be applicable in the lateral direction when there is room for more than two vehicles side
by side. If the vehicles in neighbouring lanes communicate and coordinate their lateral and
longitudinal motions, they may be able to drive closer together laterally. This does not just
mean that the lanes may be made smaller, but even that eventually, in the long term, there
is no need to have the road divided in stationary lanes. The number of vehicles driving side
by side, and the lateral distances between these vehicles can just be based on circumstances
such as velocity, road surface quality, straightness of the road, and vehicle saturation. This
can be combined with a tidal flow system, i.e., a system that devides the entire width of the
road between the two opposing driving directions, depending on the sizes of the two opposing
traffic flows.

• Application of CACC to railway traffic.
Usually for railway traffic a signalling block system is used [32]. A railway track is divided into
blocks with, in the Netherlands, a length of 1 km to 1.5 km each. Safety is preserved by denying
trains access to a block, by means of signalling, if a part of this block is already occupied by
another train. This causes the minimum space between any two trains on the same track (or
crossing tracks) to be relatively large. Therefore, for some railway networks, a moving block
system has already been implemented. This means that the distance between two trains must
be at least the sum of a predetermined safety distance and the required braking distance of
the following train [19, 32]. This enables closer following distances. However, it seems likely
that introducing platooning with MPC-based CACC and possibly the use of information
from more than one predecessor can further increase the throughput on railway tracks. This
would then replace the (moving) signalling block system. So, it is recommended to investigate
the possible benefits of the application of CACC (combined with platoon forming/platoon
splitting procedures) with configurations like the ones designed here, possibly with increasing
the number of trains to use communicated information from, to railway traffic.

• Application of CACC to aircraft in formation flight.
Research has shown that formation flight of aircraft can reduce fuel consumption, airspace
congestion, and operator workload [4, 34]. It is therefore proposed to apply the strategy of
using communicated states of other vehicles to obtain state reference values in combination
with MPC, as designed in this thesis, to design an onboard control system to control the
velocity and relative position of the aircraft.
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Appendix A

Additional information on MPC
models and methods

A-1 Gear-velocity restrictions

In this section the dependence of the velocity (state x2) and the binary variables (δn with
n = 1, . . . , 5) on the time step k will be omitted for ease of notation. The twelve inequalities
that alternatively represent the restriction that each gear can only be chosen between its
corresponding velocity bounds as given in (3-26) (two of which are shown by (3-27)) are

x2 ≥ (1− δ1)(1− δ2)(1− δ3) · vlow,1 +
(

1− (1− δ1)(1− δ2)(1− δ3)
)

· vmin

x2 ≤ (1− δ1)(1− δ2)(1− δ3) · vhigh,1 +
(

1− (1− δ1)(1− δ2)(1− δ3)
)

· vmax

x2 ≥ δ1(1− δ2)(1− δ3) · vlow,2 +
(

1− δ1(1− δ2)(1− δ3)
)

· vmin

x2 ≤ δ1(1− δ2)(1− δ3) · vhigh,2 +
(

1− δ1(1− δ2)(1− δ3)
)

· vmax

x2 ≥ (1− δ1)δ2(1− δ3) · vlow,3 +
(

1− (1− δ1)δ2(1− δ3)
)

· vmin

x2 ≤ (1− δ1)δ2(1− δ3) · vhigh,3 +
(

1− (1− δ1)δ2(1− δ3)
)

· vmax

x2 ≥ δ1δ2(1− δ3) · vlow,4 +
(

1− δ1δ2(1− δ3)
)

· vmin

x2 ≤ δ1δ2(1− δ3) · vhigh,4 +
(

1− δ1δ2(1− δ3)
)

· vmax

x2 ≥ (1− δ1)(1− δ2)δ3 · vlow,5 +
(

1− (1− δ1)(1− δ2)δ3
)

· vmin

x2 ≤ (1− δ1)(1− δ2)δ3 · vhigh,5 +
(

1− (1− δ1)(1− δ2)δ3
)

vmax

x2 ≥ δ1(1− δ2)δ3 · vlow,6 +
(

1− δ1(1− δ2)δ3
)

· vmin

x2 ≤ δ1(1− δ2)δ3 · vhigh,6 +
(

1− δ1(1− δ2)δ3
)

· vmax

(A-1)

These are six inequality pairs, each of which corresponds to a specific gear number. Each such
pair states that for the combination of binary variables that correspond to this gear number,
the velocity can only lie between the velocity bounds of this gear. Furthermore, for any other
combination of the three binary variables, each inequality should remain valid. Therefore, in
(A-1) the terms containing vmin or vmax are added, expanding the bounds to vmin and vmax

respectively (instead of zero, which would be the case if these terms were omitted).
The systems of inequalities that arise from applying (2-25) to the definition of δ4 and δ5 by
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(3-28) are

δ4 = δ1δ2 →











−δ1 + δ4 ≤ 0
−δ2 + δ4 ≤ 0
δ1 + δ2 − δ4 ≤ 1

(A-2)

δ5 = δ1δ3 →











−δ1 + δ5 ≤ 0
−δ3 + δ5 ≤ 0
δ1 + δ3 − δ5 ≤ 1

(A-3)

For the gears up to 6 the variables δ2 and δ3 are never both equal to 1 simultaneously, as can
be seen in Table 2-2. Therefore δ2δ3 can be set to zero. After expanding the inequalities of
(A-1), substituting for δ4 = δ1δ2 and δ5 = δ1δ3, and setting δ2δ3 = 0 and vlow,1 = vmin = 0, the
system of linear inequalities that constrain the allowed velocity range for each gear becomes

0 ≤ x2

(vhigh,1 − vmax)(δ1 + δ2 + δ3 − δ4 − δ5) ≤ vhigh,1 − x2

vlow,2(δ1 − δ4 − δ5) ≤ x2

(vhigh,2 − vmax)(−δ1 + δ4 + δ5) ≤ vmax − x2

vlow,3(δ2 − δ4) ≤ x2

(vhigh,3 − vmax)(−δ2 + δ4) ≤ vmax − x2

vlow,4δ4 ≤ x2

−(vhigh,4 − vmax)δ4 ≤ vmax − x2

vlow,5(δ3 − δ5) ≤ x2

(vhigh,5 − vmax)(−δ3 + δ5) ≤ vmax − x2

vlow,6δ5 ≤ x2

−(vhigh,6 − vmax)δ5 ≤ vmax − x2

(A-4)

A-2 Linearisation of gear dependence for the MPC model

In this section the dependence on the time step k of utb, j, δn, and zn with n = 1, . . . , 5
will be omitted for ease of notation. In Section 3-3-3, in the part leading up to (3-29), three
approaches to linearise the nonlinear relation between the gear (discrete variable j) and the
gear dependence factor (b(j)), shown in Table 2-2 and Figure 3-4, are proposed. Here, each
of these approaches will be worked out to demonstrate which new variables would need to be
introduced for each method, and to clarify why the third method is chosen.

1. Straight-line approximation (applied in [11]):
Approximate b(j) by bs(j), where

bs(j) = β0 + jβ1 (A-5)

with β0 and β1 real valued scalars. After substituting for (3-25), this becomes

bs(δ1, δ2, δ3) = β0 + β1 + β1δ1 + 2β1δ2 + 4β1δ3 (A-6)

Recall that the model (3-24) contains the product b
(

j(k)
)

· utb(k). This product can now
be replaced by

bs(j)utb = (β0 + β1)utb + β1δ1utb + 2β1δ2utb + 4β1δ3utb (A-7)
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Since δ1, δ2, and δ3 are now inputs to the model (instead of j), products between any
of these binary variables and the other input utb still contribute nonlinearities to the
model. To get rid of these nonlinearities, new continuous auxiliary variables can be defined
according to

z1 = δ1utb, z2 = δ2utb, z2 = δ3utb (A-8)

Then (2-24) can be applied to alternatively express these definitions with systems of linear
inequalities.

2. Two-region PWA approximation:
The nonlinear function b(j) can be approximated by two affine lines, each of which is valid
in a different region of the gear domain, intersecting at the boundary between the two
regions, as shown in Figure 3-4. From optimising the mean squared errors between the
possible two-region PWA approximations and the original values for the SMART model,
it is found that for the best approximation the boundary between the two regions lies
between j = 2 and j = 3. This turns out to be very convenient concerning the number of
variables, since now instead of needing to introduce a new binary variable to encode the
regions, the binary variables that already encode the gear can be used. From Table 2-2
it can be seen that the variables δ2 and δ3 are both zero for each of the first two gears
(first region), while they are never zero simultaneously for any of the other gears (second
region). Now the approximation of b(j) can be given by

bpwa2(j) =

{

β01 + jβ11, for j ≤ 2
β02 + jβ12, for j ≥ 3

(A-9)

This can be put into a single-line equation as

bpwa2(j, δ2, δ3) = (1− δ2)(1− δ3)(β01 + jβ11 − β02 − jβ12) + β02 + jβ12 (A-10)

After eliminating j by substituting for (3-25), and simplifying (applying δ2δ2 = δ2, δ3δ3 =
δ3, and δ2δ3 = 0) , this becomes

bpwa2(δ1, δ2, δ3) = δ1β11 + δ2(β02 + 3β12 − β01 − β11) + δ3(β02 + 5β12 − β01 − β11)

+ δ1δ2(β12 − β11) + δ1δ3(β12 − β11) + β01 + β11 (A-11)

After substituting for δ4 = δ1δ2 and δ5 = δ1δ3, which were already defined in (3-28), this
becomes

bpwa2(δ1, δ2, δ3, δ4, δ5) = δ1β11 + δ2(β02 + 3β12 − β01 − β11)

+ δ3(β02 + 5β12 − β01 − β11) + δ4(β12 − β11)

+ δ5(β12 − β11) + β01 + β11 (A-12)

From this it is clear to see that the product bpwa2(δ1, δ2, δ3, δ4, δ5) · utb, replacing the term
b
(

j(k)
)

· utb(k) in the model (3-24), gives five products between binary input or dummy
(-state) variables and the continuous input variable utb. These products still make the
model nonlinear. To get rid of these nonlinearities, these products need to be replaced by
new continuous auxiliary variables, defined as follows

z1 = δ1utb, z2 = δ2utb, z3 = δ3utb, z4 = δ4utb, z5 = δ5utb (A-13)

As with the first approach above, (2-24) can be applied to derive five corresponding systems
of linear inequalities, which are given below by (A-16).
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3. Six-region PWA approximation:
This approach is applied similar to the previous approach, except that now six regions are
defined, where each region lies around another value of j. Since j is discrete, each region
can be reduced to just the corresponding value of j, and each corresponding affine line
is then just reduced to one point being the value of b(j) at that gear. The regions are
encoded the same way as the gear by δ1, δ2, and δ3. So now, b(j) can be replaced by

bpwa6(δ1, δ2, δ3) = (1− δ1)(1− δ2)(1− δ3)b1 + δ1(1− δ2)(1− δ3)b2

+(1− δ1)δ2(1− δ3)b3 + δ1δ2(1− δ3)b4

+(1− δ1)(1− δ2)δ3b5 + δ1(1− δ2)δ3b6

= δ1(b1 − b2) + δ2(b3 − b1) + δ3(b5 − b1)

+δ1δ2(b1 − b2 − b3 + b4) + δ1δ3(b1 − b2 − b5 + b6) + b1

(A-14)

where δ2δ3 = 0 is applied. After substituting for the already defined δ4 = δ1δ2 and
δ5 = δ1δ3, this becomes:

bpwa6(δ1, δ2, δ3, δ4, δ5) = δ1(b1 − b2) + δ2(b3 − b1) + δ3(b5 − b1)

+ δ4(b1 − b2 − b3 + b4) + δ5(b1 − b2 − b5 + b6) + b1 (A-15)

Similar as with the second approach, above, here the product bpwa6(δ1, δ2, δ3, δ4, δ5) · utb

results in products of input or dummy variables and the continuous input variable utb.
Therefore also here the five continuous auxiliary variables of (A-13) need to be defined.
The linear inequalities that result from applying (2-24) to these definitions are

zn ≤ δnutb,max = δn
zn ≥ δnutb,min = −δn
zn ≤ utb − utb,min(1− δn) = utb + (1− δn)
zn ≥ utb − utb,max(1− δn) = utb − (1− δn)

(A-16)

for n = 1, . . . , 5.

So, to summarise, for none of the three approaches to linearise the gear dependence new
binary dummy variables are needed. However, all approaches require the introduction of new
continuous auxiliary variables, and corresponding systems of inequalities. The first approach
(straight-line approximation) only requires the introduction of three such variables, while the
other two approaches (respectively two, and six region PWA approximation) need an addi-
tional two more of such variables, i.e., five in total. However, in the decision which approach
to choose (in Section 3-3-3) it is also taken into consideration how well the linearised model
compares with the original model.

A-3 MLD representation of linearised vehicle model used for MPC

After all the nonlinearities in the vehicle model have been linearised in Section 3-3-3 (when
arriving at (3-32)), the linearised model can be written in MLD form (as presented in (2-26)).
The first line of this model is given by

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (A-17a)

with
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A =

[

1 Ts

0 a1

]

, B1 =

[

0 0 0 0
Ts

m b1 0 0 0

]

, B2 =

[

0 0 0 0
r 0 0 −Tsµg

]

,

B3 =

[

0 0 0 0 0 0
a2 − a1

Ts

m
(b2 − b1) Ts

m
(b3 − b1) Ts

m
(b5 − b1) Ts

m
(b1 − b2 − b3 + b4) Ts

m
(b1 − b2 − b5 + b6)

]

,

u(k) =











utb(k)
δ1(k)
δ2(k)
δ3(k)











, δ(k) =











δ0(k)
δ4(k)
δ5(k)
δµ(k)











, z(k) =



















z0(k)
z1(k)
z2(k)
z3(k)
z4(k)
z5(k)



















(A-17b)

A-4 MPC prediction model

Based on (A-17a), the predicted future states can be written as function of the current state
and current and future inputs, according to


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x̂(k + 1)
...

x̂(k +N)
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


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
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A
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


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A I 0
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·
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
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0 B1
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


·




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u(k)
...

u(k +N − 1)
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



+







B2 0
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0 B2






·







δ̂(k)
...

δ̂(k +N − 1)






+







B3 0
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0 B3






·







ẑ(k)
...

ẑ(k +N − 1)












(A-18)

where x̂(k + n), δ̂(k + n), and ẑ(k + n) are the predictions of respectively x, δ, and z for
prediction time step k + n. After defining

x̃(k) =







x̂(k + 1)
...

x̂(k +N)






, ũ(k) =
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
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
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ẑ(k +N − 1)






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, A∗b =






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, (A-19)

B∗1 = A∗b ·







B1 0
. . .

0 B1






, B∗2 = A∗b ·







B1 0
. . .

0 B2






, B∗3 = A∗b ·







B3 0
. . .

0 B3







the predicted states equation becomes

x̃(k) = A∗x(k) +B∗1 ũ(k) +B∗2 δ̃(k) +B∗3 z̃(k) (A-20)

The prediction form of the inequality part of an MLD model formulation was given in (3-38),
and is repeated here as

E∗1 · ũ(k) + E∗2 · δ̃(k) + E∗3 · z̃(k) ≤ E∗4 · x̃(k) + E∗5 (A-21)

The matrices of this inequality are built from matrices E1, . . . , E5 that make up the second
line of the MLD model (2-26) giving the model inequalities, and are given by
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(A-22)

When looking at these matrices, recall from (A-19) that the entries of x̃(k) range from x̂(k+1)
to x̂(k + N), while ũ(k), δ̃(k), and z̃(k) contain expected values for the time steps k to
k +N − 11.

1If the matrices for the state constraints were attached at the bottom of the E matrices before the extension
to prediction form, then after this extension the matrices for these inequalities for the final time step (k +N)
would still need to be attached to the E∗ matrices separately. Also then for time step k these inequalities
would also be checked, even though the states for this time step are already fixed. That is why the prediction
form inequalities of the state constraints are all combined with the inequality after it has been extended to
prediction form for all the other inequalities. Because E4x(k) cannot result from the product of a matrix (put
within E∗4 ) and x̃(k) (since x̃(k) does not contain x(k)), it is calculated within E∗5 .
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A-5 Derivation of the prediction form of the MPC performance

index

To show how (3-39) is derived from (3-34b), first the sum (
∑

) is eliminated from this latter
equation. To be able to do that, the performance index is written as function of the state
and input prediction vectors, resulting in

J(ũ, k) =

∥

∥

∥
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∥

∥
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+ (A-23)
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1

where C ∈ R
2N×2N and x∗ref(k) ∈ R

2N are different for each of the information gathering
configurations that are being designed.
For configuration I (using communicated state information from just the direct predecessor),
which only uses information from the direct predecessor, these two parameters are given by
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(A-24)

where x̂i−1(k + n) is the predicted state of the direct predecessor at step k + n, used as
reference2, and d0 and h0 are the distance headway and time headway respectively, which
make up the desired intervehicle distance according to (3-2).
For configuration II (using state information from the first two predecessors), the matrix C
and the vector x∗ref(k) are given by

C =
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, (A-25)

x∗ref(k) =
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qs,p1(ŝi−1(k + 1)− lveh − d0) + qs,p2(ŝi−2(k + 1)− h0v̂i−1(k + 1)− 2lveh − 2d0)
qv,p1v̂i−1(k + 1) + qv,p2v̂i−2(k + 1)

...
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





2The predicted states of the predecessors (vehicles i − 1, i − 2, and 1, according to which are needed) are
calculated as explained in Section 3-3-3. In short, the communicated states are used to predict the future
states, assuming the velocity stays constant. For MPC variant 2, these communicated states also comprise a
set of future states, up to k +N − 1, that were the optimal predicted states found in the previous time step.
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where ŝi−1(k+n) and ŝi−2(k+n) are the predicted position of respectively the direct and the
second predecessor at time step k+n, v̂i−1(k+n) and v̂i−2(k+n) are the predicted velocity of
respectively the direct and the second predecessor at time step k+n, and qs,p1, qs,p2, qv,p1, qs,p2

are weights that are defined in Section 3-3-1.
For configuration III (using state information from the predecessor, and just velocity state
information from the leader), the matrices C and x∗ref(k) are given by

C =


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(A-26)
where v̂1(k + n) is the predicted velocity of the leader at time step k + n, and qv,p and qv,l
are weights that are defined in Section 3-3-1.

Then, the following new parameters are defined to simplify the notation:

Q∗ =







Q 0
. . .

0 Q






· C, Q∗xr(k) = −







Q 0
. . .

0 Q






· x∗ref(k),

R∗up(k) = Rutb
·











−utb(k − 1)
0
...
0











, R∗jp(k) = Rj ·











−δ1(k − 1)− 2δ2(k − 1)− 4δ3(k − 1)
0
...
0











,

(A-27a)
and

R∗u = Rutb
·

















1

0−1 0 0 0 1
−1 0 0 0 1

. . .

0 −1 0 0 0 1
0 0 0 0 −1 0 0 0 1 0 0 0

















,

R∗j = Rj ·















0 1 2 4 0

00 −1 −2 −4 0 1 2 4
−1 −2 −4 0 1 2 4

. . .

0 −1 −2 −4 0 1 2 4















(A-27b)

After that, the parameters of (A-27) are substituted into (A-23) to obtain (3-39).

A-6 Combining the model and the performance index into an MILP

problem representation

The inequality of (3-42) is a combination of the inequality (3-38), representing the model
inequalities, the system limits and the performance constraints in prediction form, and the
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inequalities of (3-41), containing new variables ρi that are generated as part of a “trick” to
make the optimisation problem a linear problem (see (3-40) and (3-41)). When substituting
Mperf from (3-39) into (3-41), the inequalities of (3-41) become

ρ ≥







Q∗x̃(k) +Q∗xr(k)
R∗uũ(k) +R∗up(k)

R∗j ũ(k) +R∗jp(k)






and ρ ≥ −







Q∗x̃(k) +Q∗xr(k)
R∗uũ(k) +R∗up(k)

R∗j ũ(k) +R∗jp(k)






(A-28)

The inequality (3-42) is built such that the inequalities from (A-28) are now given by its lower
2 · 4N lines, and the rest of the lines are the same as (3-38). Hence, the definitions of the new
matrices and vector (E5,ρ being a vector) in (3-42) are given by

E1,ρ =

























E∗1
0
R∗u
R∗j
0
−R∗u
−R∗j

























, E2,ρ =

[

E∗2
0

]

, E3,ρ =

[

E∗3
0

]

,

E4,ρ =















E∗4
−Q∗
0
Q∗

0















, E5,ρ(k) =

























E∗5(k)
−Q∗xr(k)
−R∗up(k)

−R∗jp(k)

Q∗xr(k)
R∗up(k)

R∗jp(k)

























, E6,ρ =







0
−I
−I







(A-29)

where each 0 represents a matrix of only zeros with the occurrences of 0 in the definitions of
E1,ρ, E4,ρ, and E5,ρ all having a hight of 2N , and the occurrences of 0 in the definitions of
E2,ρ, E3,ρ both having a hight of 8N , and the hight of the 0 in E6,ρ equal to the hight of E∗1 ,
and I here represents an identity matrix of hight 4N .

The new matrices and vector of (3-43) are given by

E1,subs = E1,ρ − E4,ρB
∗
1

E2,subs = E2,ρ − E4,ρB
∗
2

E3,subs = E3,ρ − E4,ρB
∗
3

E5,subs(k) = E4,ρA
∗x(k) + E5,ρ(k)

(A-30)

Rearranging the above gives the MILP problem

min
y(k)
M · y(k), s.t. E′ · y(k) ≤ F (k) (A-31)

with

M = [0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 1, . . . , 1]T, y =











ũ(k)

δ̃(k)
z̃(k)
ρ(k)











,

E′ = [E1,subs, E2,subs, E3,subs, E6,ρ] , F (k) = E5,subs(k)

(A-32)
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A-7 Simulated annealing

Simulated annealing mimics the annealing of metal. In this process the heated metal is cooled
slowly while the metal structure’s state is changing. If the cooling rate is sufficiently slow, the
state can “escape” from non-optimal structures and reach an optimal crystal-like structure
in the end. An optimisation algorithm derived from this process can escape local minima in
order to find a more optimal minimum.

In short, at each iteration simulated annealing selects a trial point from the neighbourhood
of the current point in the search space. If the objective function value at the trial point is
lower than at the current point, the trial point is accepted as the next current point. If the
trial point function value is higher, this point is accepted with a probability depending on the
current “temperature”, decreasing with decreasing temperature. If it is rejected, the current
point stays the same for the next iteration. The simulated annealing algorithm as applied in
this project looks as follows.

First some functions and parameters are defined. For the decrease in ’temperature’ (T ) with
temperature step (t) a simple cooling schedule is chosen [26], given by

T (t) =
T0

ct
(A-33)

where t ranges from 0 to te, c is the cooling factor calculated based on T (te) = Te with
Te given, and T0 the initial temperature. A neighbourhood function (Fneigh(x, t)) is chosen,
which defines how a new trial point is generated from the neighbourhood of the current point
(vector x ∈ R

m with m the number of search parameters) at each iteration, depending on the
current temperature step. The chosen neighbourhood function looks as follows:

xtry = Fneigh(x, σ(t)) :
For each dimension i (≤ m), find new value xtry,i in neighbourhood of xi:

Draw random value from normal distribution,
with standard deviation σi(t) and mean xi;

Then xtry = [xtry,1, . . . , xtry,i, . . . , xtry,m].

where σ(t) is a vector of standard deviations for all dimensions at temperature step t. To
have a higher probability of finding an optimum, with lower computational cost, following [26,
43, 44, 48] the size of the neighbourhood is chosen to decrease with progressing temperature
steps, according to

σ(t) =
σ0

ctσ
(A-34)

with σ0 = σ(t = 0), and cσ is determined such that σe = σ(te) has a predetermined value.
The number of iterations per temperature step n is set to n ≈ 2.75te, where the exact values
of n and te ∈ N are computed based on the maximum number of allowed function evaluations
fnmax, with n · (te + 1) ≤ fnmax. The final temperature step may have less than n iterations.

Now, the optimisation algorithm looks as follows.

Initialise:
Set t = 0, k = 1;
Randomly choose a point x(1) from the search space;
Calculate objective function value at x(1): f

(

x(1)
)

;
Remember best value: set initial fbest = f

(

x(1)
)

, xbest := x(1);
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Iterate:
Generate new trial point xtry(k) = Fneigh(x(k), σ(t));
Compute δ(k) = f(xtry(k))− f(x(k));
Select random number r(k) ∈ (0, 1);
Accept or reject trial point:

if r(k) < exp(−δ(k)/T (t)), then
x(k + 1) := xtry(k)
Check if best value:

if f(xtry(k)) > fbest, then fbest := f(xtry(k)), xbest := xtry(k)
else x(k + 1) := x(k);

k = k + 1;
Check if cooling step: if n divides k, then t := t+ 1;
Check stopping criterion: if k = fnmax, then STOP.

Here a “point” means a vector consisting of the tuning parameters each of which having some
value (often also called a “configuration”). A second stopping criterion is added which checks
whether up to 2.0σ distance from x(k) (since arrived at x(k)), at least a predefined number
of points are tried. If this is the case and f(x(k)) is the lowest value found so far, the search
has converged, which means meeting the second stopping criterion. If however it is known
to be only a local optimum, because a more optimal point has been found earlier, the search
proceeds from that lower point. This has been properly built into the algorithm above. When
one of the stopping criteria is met, the algorithm is terminated.
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Appendix B

Result plots

Figure B-1 shows parts of the trajectories of states, intervehicle distances, and inputs for the
validation scenario (scenario 2) for some of the controllers. This is to show some differences
between the controllers— differences that have been described in Chapter 4—at a more global
scope, compared with the plots shown in the main text that were more zoomed in.
PID-III, shown in Figure B-1a keeps the shortest intervehicle distances of the three PID con-
trollers. The second vehicle keeps such a big intervehicle distance that most of it is not visible
in the plot, because it is zoomed in on the other vehicles. The trajectories of PID-II look
roughly similar, but with larger distances, and for PID-I the distances are much more signif-
icantly larger, as can be seen in Table 4-5. The trajectories of MPC1-I are roughly similar to
those of MPC1-III, shown in Figure B-1c, with only slightly less intensive oscillations. It can
clearly be seen that MPC1-II is an improvement compared with the MPC1 configurations I
and III, because it does not show such heavy oscillations. In Figure B-1d the trajectories of
MPC2-II are shown, which are roughly similar to those of the MPC2 configurations I and III,
the main difference being the significantly larger intervehicle distances with configuration I.
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(a) PID-III

Figure B-1: A part of scenario 2.
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Figure B-1: A part of scenario 2.
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Figure B-1: A part of scenario 2.
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Figure B-1: A part of scenario 2.
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