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Abstract 
Automatic real-time control of railway traffic perturbations has recently received the 
attention of practitioners. The aim is to make use of mathematical algorithms to maintain 
the required service availability during unplanned disturbances to operations. In the 
literature many tools for real-time traffic control are proposed, but their effects on traffic 
have never been studied neither in real life nor in realistic simulation environments. We 
can mention only a few pilot tests and a unique installation in the Lötschberg Base tunnel 
in Switzerland, which is in any case an ad-hoc implementation not extendible to other 
case studies. In this paper we present the ON-TIME framework for the real-time 
management of railway traffic perturbations. The main innovation is a standard web 
service-oriented architecture that ensures scalability and flexibility. A standard RailML 
interface is used for the input/output data of the modules, allowing immediate 
applicability of the framework to any network having a RailML representation. The 
scalability makes the framework independent from the number of modules and the amount 
of data exchanged. The flexibility permits any module to be replaced with others having 
similar features. The framework is tested in a closed-loop with the simulation 
environment HERMES for a perturbed traffic scenario on the Swedish Iron Ore line. Tests 
are performed for two different replanning algorithms (ROMA and RECIFE) used as 
conflict detection and resolution modules of the framework. The analysis represents a 
proof-of-concept to confirm the effectiveness of our framework in automatically solving 
conflicts and deadlocks during perturbed traffic conditions. 

Keywords 
Railway traffic control, real-time replanning, traffic optimization, standard 
communication architecture.  
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1 Introduction 

The recent growth in the demand for railway transportation has resulted in a high traffic 
density and heavily used networks, which are sometimes working in saturated 
conditions. In this context, perturbations to traffic (e.g. extensions of running and/or 
dwell times) can lead to track conflicts, i.e. situations where two or more trains request 
the same block section in overlapped time periods. Track conflicts force trains to slow 
down or even stop at unplanned restricted signal aspects, thereby deviating train services 
from the original plan. 

Slight perturbations can still be absorbed by time allowances in the timetable, 
but larger disturbances need to be specifically managed by replanning the service in real-
time. Real-time replanning means adjusting the space-time trajectory of trains based on 
the current traffic information, with the aim of mitigating the impact of perturbations as 
much as possible. Basically a train can be replanned with control measures such as: 
changing the passage order at a given station or junction (reordering), modifying the 
arrival/departure times at a station (retiming), or even detouring the train over a different 
route (rerouting). The set of control measures that is planned to be taken in a given time 
period ahead is called the Real Time Traffic Plan (RTTP). A RTTP therefore contains 
the list of passage orders, arrival/departure times and/or routes that are planned to be 
respected by trains in the next time period. In other words the RTTP is the microscopic 
train path plan resulting when control measures are taken. 

So far, the control measures contained in the RTTP are decided by human 
dispatchers on the basis of their own experience and/or rules-of-thumb. Nevertheless, it 
is very difficult for a human being to understand the effects of his/her decisions on 
traffic, especially in the case of large networks or heavily congested areas. This can 
sometimes result in control measures that may be not effective or even 
counterproductive. To this end advanced decision support systems have been proposed 
that automatically compute a set of control measures (i.e. a RTTP) that optimizes given 
traffic performance (e.g. minimizes the total delay, maximizes the punctuality) while 
ensuring conflict-efficient train operations. Conflict-efficient means that we aim to 
remove all track conflicts, but we cannot guarantee that trains will run without any 
conflicts once these measures are put into operation. Some trains could indeed still 
encounter restricted signal aspects during real operations. Train operations are optimized 
by a Conflict Detection and Resolution module (CDR), which consists of mathematical 
models for both detecting and solving track conflicts. Briefly, the Conflict Detection 
element considers current traffic information to predict future traffic conditions and 
detect potential track conflicts. The Conflict Resolution part  solves the detected 
conflicts by identifying a set of control measures that optimizes a given objective 
function and allows conflict-efficient train operations. 

Although several CDR models are proposed in literature ([3], [8], [20], [25]) 
nothing more than pilot tests can be mentioned ([14], [15], [17]). Automatic replanning 
tools have not been seriously applied into practice yet, mostly because infrastructure 
managers are afraid of implementing systems whose impacts on traffic are blurry and not 
well known. On the other hand, it is not clear yet how these systems can interface with 
real traffic, whether a standard communication interface can be defined and if these tools 
work for any traffic condition.  

A concrete reply to these issues is provided by the European FP7 funded project 
ON-TIME [19]. A relevant part of this project focussed on designing, developing and 
testing an integrated framework for the optimal real-time management of railway traffic 
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perturbations. This paper describes the main outcomes of this research explaining the 
different modules of the framework and their interactions. A proof-of-concept is given 
that shows how traffic perturbations can be optimally and automatically managed by 
mathematical algorithms connected to operations through standard software interfaces. 
Many are the contributions to the literature provided by this paper, specifically: 
 A perturbation management framework has been developed that integrates 

algorithms for traffic state monitoring, prediction, track and connection conflict 
detection and resolution, automatic route setting, driver advisory system. 

 The algorithms of the perturbation management framework have been interfaced 
and tested within simulated operations in a closed-loop control. 

 A web service-oriented architecture is realized which lets the algorithms 
communicate with each other and with simulated operations, in a standard,  flexible 
software interface. Modularity allows replacement of any module with similar ones.  

 A standardization of the data flow communicated among the different modules and 
with the simulated operations have been realized by using RailML [24]. 

 A novel formalisation has been developed for a XML representation of the  current 
traffic state, the RTTP and the Train Path Envelope. 

 A touch screen Human-Machine Interface has been connected via the architecture to 
both the framework and the simulated operations allowing dispatchers to visualize 
current and replanned traffic operations. 

The framework executes closed loop control of railway traffic by following a 
rolling horizon approach. Current traffic information (e.g. train positions and speeds) is 
gathered from the field at regular time intervals (called Replanning Interval, RI) to 
automatically compute an optimal RTTP which tackles all conflicts detected in a certain 
time period ahead (called Prediction Horizon, PH). The resulting RTTP is then shown to 
the dispatcher for acceptance by means of a Human-Machine Interface. In cases where 
the dispatcher accepts the RTTP, this latter is implemented into the field and followed by 
train services.  

The framework is tested versus real test cases within the simulated traffic 
environment HERMES. The ON-TIME project considered three railway networks across 
Europe: the East Coast Main line in the United Kingdom, the Iron Ore line in Sweden 
and the Utrecht-Eindhoven-Tilburg-Nijmegen corridors in the Netherlands. For each 
network several disturbed scenarios have been examined, including train entrance delays 
and infrastructure limitations such as temporary speed limit restrictions. Obtained results 
prove that our framework for real-time traffic management works effectively regardless 
of the network or the traffic conditions analysed. For the sake of brevity, this paper 
illustrates how the framework works when applied to a case in which a train is heavily 
delayed on the Iron Ore line.  

The paper is structured as follows: a review of methods for replanning railway 
traffic in real-time is given in Section 2, while a description of our framework is 
provided in Section 3. Section 4 gives more details on each module composing the 
framework, while Section 5 illustrates how the framework works when applied to a real 
case study on the Swedish Iron Ore line. Conclusions and directions for future research 
are provided in Section 6.  

2 Literature Review  

In the literature several models for real-time replanning of railway traffic can be found. 
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We can mention macroscopic models such as those introduced by Carey and Lockwood 
[4], or Higgins et al. [11] to reduce train tardiness and/or energy consumption. Meng and 
Zhou [16] present a macroscopic stochastic programming approach to study the 
robustness of a meet-pass plan for a disrupted single track line. Chen et al. [5] introduce 
a macroscopic mixed-integer programming approach to reschedule trains at junctions 
and bottlenecks by means of a differential evolution algorithm. All these macroscopic 
models represent the network with a low level of detail, which is why they solve 
conflicts at the level of corridors between two consecutive stations or junctions. More 
accurate are instead microscopic approaches that detect and solve conflicts at the level of 
block sections taking into account constraints deriving from the signalling and 
Automatic Train Protection (ATP) systems as well as those regarding the detailed 
network topology (e.g. switches, platform layout). Microscopic models can be 
distinguished according to the formulation and the algorithm used to solve the 
replanning problem. Some authors such as D’Ariano and Pranzo [8] or Mazzarello and 
Ottaviani [15] base their models on alternative graphs. Törnquist [25], Pellegrini et al. 
[20] or Caimi et al. [3] adopt instead a Mixed-Integer Linear Programming approach.  

The main limitation with all these approaches is that they have scarcely been 
tested in a closed-loop interface with real operations, nor with simulation environments 
that reproduce realistic traffic dynamics. Lüthi [13] defines in a schematic way how 
these replanning models could be integrated with real traffic to achieve closed-loop 
control. Such a scheme has been applied by Quaglietta et al. [21], [22] who interfaced 
the replanning model ROMA with the traffic simulation model EGTRAIN to study the 
stability and the quality of optimal RTTPs. The framework applied is however not 
scalable for implementation in real-life. To the best of the authors’ knowledge the only 
real-life installation of a system for the automatic closed-loop control of railway traffic is 
the one in the Lötschberg Base tunnel in Switzerland [17]. This system builds on an ad-
hoc framework that has the limitation of not being extendible to different networks or 
traffic conditions. Other real-life implementations do not go beyond pilot tests such as 
those described by Mannino and Mascis [14] or Mazzarello and Ottaviani [15]. It is clear 
that the gap between literature and practice stays on one hand in the definition of a 
standard framework for real-time traffic control that could be applied to any railway 
network and traffic conditions. On the other hand there is the necessity of proving by 
means of experiments in simulation that such a framework leads towards a perturbation 
management that is better than current practice. Filling this gap would motivate 
infrastructure managers to implement these systems into practice. This paper mainly 
contributes to filling this gap, providing a proof-of-concept, proving that such a system 
works and is implementable into real-life. 

3 The ON-TIME Framework for the Optimal Real-Time Control of 
Railway Traffic 

The ON-TIME framework developed for the optimal real-time management of railway 
traffic perturbations is illustrated schematically in Figure 1.  

The modules of the framework communicate with each other by means of a web 
service-oriented architecture that works according to the principle of event 
publishing/subscription. This means that the output events from each module are 
published and queued in the architecture. An event stored in the architecture is then sent 
as input to all the modules that subscribed to that specific event. For instance if a module 
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returns as output an event type A this is published and queued in the architecture where it 
is then dispatched as input to all the modules that subscribed to the event type A. In the 
figure, the events published by each module are represented by the arrow directed towards 
the architecture, while those in input are depicted by the arrows in entrance to the module.  

Railway traffic is represented by the microscopic simulation environment HERMES. 
This simulation model accurately reproduces all the dynamic interactions among the 
trains, the signalling/ATP systems (e.g. signals, braking behaviour), the infrastructure 
elements (platforms, switches) and the interlocking (e.g. dependencies between switch 
positions and signal aspects). Each time that a train occupies or releases a track detection 
section (e.g. track circuit) the corresponding event is published to the architecture. Each 
“track occupation/release” event is then forwarded to the Traffic State Monitoring (TSM), 
which elaborates these events to produce the current traffic state as output, i.e. the current 
position and speed of every train on the network. The current traffic state is transferred 
under the form of RailML to the architecture and then communicated to the Perturbation 
Management Module (PMM). The PMM is the core of the framework since it provides 
the control measures that allow the optimal real-time control of traffic perturbations. As 
can be seen the PMM is composed of three interacting sub-modules, namely the Traffic 
State Prediction (TSP), the Conflict Detection and Resolution (CDR) and the Connection 
Conflict Detection and Resolution (CCDR). 

Figure 1: The ON-TIME framework for the real-time management of railway traffic perturbations. 
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The TSP receives as input from the architecture the current traffic state in order to 
forecast the traffic behaviour in a given time period ahead (the Prediction Horizon, PH). 
The traffic prediction is then set as input to the CDR module. Specifically, the Conflict 
Detection uses the prediction to identify track conflicts potentially occurring within the 
Prediction Horizon. If conflicts are detected the Conflict Resolution algorithm determines 
a set of control measures (i.e. reordering, retiming and/or rerouting), which optimizes 
certain traffic performance while guaranteeing conflict-efficient train operations. The 
control measures are printed out in the form of a Real-Time Traffic Plan expressed by 
means of a specifically designed XML scheme. This XML scheme has been appositely 
elaborated within the ON-TIME project to standardize the way in which dynamic railway 
data are expressed. The CCDR analyses the RTTP received as input, to identify all those 
connections that should be removed because they are critical in terms of delay 
propagation. The output of the CCDR is therefore a list containing all the connection 
constraints that should be removed to avoid delays. If no connection is cancelled, then the 
RTTP can be sent to the architecture. Otherwise, a new traffic prediction must be 
performed, taking into account the new list of connection constraints and a new RTTP 
must consequently be computed. The RTTP is communicated together with the traffic 
prediction to the Human-Machine Interface, which graphically shows to the dispatcher the 
optimal control measures computed by the CDR. If the dispatcher accepts these measures 
then the RTTP is implemented into the field. 

Within the ON-TIME project we did not focus on the interaction with the human 
dispatcher, so we consider that every RTTP is automatically put into operation without the 
acceptance of the dispatcher. The implementation of the RTTP into the field is realized by 
the Automatic Route Setting (ARS). This module automatically implements train routes in 
the HERMES simulator, in the same order as established by the RTTP. In this way, trains 
running on the network follow the passage orders, the arrival/departure times and the 
routes contained in the real-time traffic plan. The route setting commands are sent to the 
simulator via the architecture, in the form of events. Based on the RTTP, the Train Path 
Envelope Computation (TPEC) calculates the buffer times between trains that can be 
exploited to fine-tune train speed-distance trajectories in an energy-efficient fashion. The 
train path envelopes are received as input by the Driver Advisory System (DAS), which 
determines energy-efficient train speed-distance trajectories that minimize the energy 
consumption while guaranteeing the respect of the scheduled arrival/departure times. The 
output of the DAS is then transferred through the architecture to HERMES where trains 
will follow the energy-efficient trajectories provided as input. 

The real-time control of railway traffic follows a rolling horizon approach; this means 
that after every Replanning Interval the current traffic state is sent to the PMM and a new 
RTTP is computed and implemented into the field. 

The adopted web-service architecture ensures independence amongst the 
modules and scalability with respect to the amount of data exchanged. This allows 
replacement of any module with another having similar characteristics. Such a 
framework can be straightforwardly applied in real-life if we replace the HERMES 
simulator with a real railway network. A relevant innovation is given by the standard 
communication interface achieved by expressing all the input/output data in standard 
RailML format. This feature enables immediate application of the framework to any 
railway network and traffic condition as long as the infrastructure, rolling stock, 
timetable and interlocking data are available in RailML. 

033-6

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



7

4 Functional Description of the Modules 

In the following we provide a concise description of all the modules composing the 
presented framework for real-time replanning. For each module we describe the input and 
output data, as well as the underlying mathematical models. 

4.1 HERMES: A Microscopic Simulation Model of Railway Traffic 
HERMES [10] is an object-oriented microscopic model for the simulation of railway 
traffic, developed in Java by the British company GRAFFICA. The model is based on six 
integrated components respectively representing the infrastructure, the rolling stock, the 
timetable, the signalling/ATP systems, the interlocking and the train driver behaviour. The 
infrastructure is described at a high level of detail and formalized as a directed graph. The 
nodes of the graph can represent signals, stop posts, the joints in between two track 
detection sections or the points of a switch. The arcs instead constitute track detection 
sections of the network. The rolling stock is modelled by considering all the 
characteristics of the vehicles such as the length, the mass, the number of coaches, the 
tractive effort-speed curve, the braking rate, and the resistance parameters. The timetable 
contains all the scheduled arrival/departure times at stations as well as the passage times at 
relevant signals and/or junctions. The signalling/ATP systems are modelled by 
considering the aspects of every signal and the corresponding ATP speed codes, which 
ensure a safe braking of the trains at red signals. The interlocking describes each route by 
means of the start and target signals, the sequence of track detection sections to be 
traversed and the direction required by the switches to set that route. The 
interdependencies between signal aspects and switch direction are also considered to 
avoid the simultaneous setting of conflicting routes. The driver behaviour component 
allows the specification of different parameters which enable a more aggressive rather 
than a more cautious driving style. This component has additional features that let the 
trains drive according to the scheduled speed-distance trajectories or follow energy-
efficient driving advice provided by DAS algorithms. The simulation is performed by 
means of a hybrid approach where some components (e.g. trains) follow a time-driven 
simulation, while others (e.g. signals, switches, routes) are simulated on an event-driven 
basis. In particular, train movements are reproduced by integrating over time Newton’s 
differential equations of motion. The integration is made numerically by using Simpson’s 
quadrature rule [26]. The outputs consist of train speed-distance or time-distance 
trajectories as well as simulated train delays at stations. The HERMES simulator has an 
interface for the RailML export of all the network data. Moreover it is equipped with an 
open set of APIs that allow the user to introduce traffic disturbances, infrastructure 
disruptions and/or customise functions relative to the driver behaviour or the route setting. 

4.2 The Traffic State Monitoring 
The Traffic State Monitoring aims to collect all the track occupation/release data from the 
simulated traffic environment in order to estimate the current traffic state, i.e. the current 
position and speed of each train on the network. The estimation of the current traffic state 
is performed by adopting the approach of Albrecht et al. [1] who use the kinematic 
equations of motion to reconstruct train speed-distance trajectories based on track 
occupation data. The algorithm uses a least-squares optimization approach to estimate the 
train speed at each track section border and has been specially fitted for real-time 
application. It uses the last five section occupation events of a train (if available) but not 
less than three. If a planned or unplanned stop is detected (average speed on a track circuit 
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smaller than 10 km/h), the current speed is estimated as 0. If no speed estimation is 
possible, the speed is estimated to be 50% of the maximal permitted speed value. An 
extension of the algorithm has been made, which improves its behaviour in iterative calls 
like in our framework. Here, the information that a train has not yet entered the next track 
detection section at a given time could be an indicator that a train might have to brake. 
This is considered using an extension of the objective function of the optimizer. The 
whole module has been implemented in Java using the Apache math implementation of 
the Levenberg-Marquardt algorithm for least squares optimization. 

4.3 The Traffic State Prediction 
The aim of the Traffic State Prediction is to forecast time-distance and speed-distance 
trajectories of trains within the Prediction Horizon. Input data to this module are both 
static and dynamic. Static data describe the characteristics of the infrastructure (e.g. 
switches, platforms, track length and gradient), the timetable (e.g. scheduled 
arrival/departure times at stations), the rolling stock (e.g. mass, tractive effort-speed 
curve), the signalling/ATP systems (positions of signals, signal aspects and braking 
behaviour) and the interlocking. The dynamic data is the current traffic state produced by 
the TSM. The static input data are provided in standard RailML format, while the current 
traffic state is expressed with an XML appropriately defined. Time-distance and speed-
distance trajectories of each train are predicted by numerically integrating  Newton’s 
equations of motion, considering current train speeds and positions as boundary 
conditions. The outputs are time-distance and speed-distance trajectories of each train 
running within the Prediction Horizon. The TSP module is written in Java and is generally 
separated from the Conflict Detection and Resolution module. In such a case the traffic 
prediction must be transferred as input to the CDR in order to detect and solve potential 
conflicts. Some CDR algorithms such as ROMA instead have the TSP directly integrated 
with the Conflict Detection model. In the case of ROMA, the TSP is coded in C++ and the 
predicted train operation times (running, headways and dwell times) are directly used for 
the conflict detection process. 

4.4 The Conflict Detection and Resolution 
This module is composed of two components: the Conflict Detection and the Conflict 
Resolution. The former detects the presence of potential track conflicts within the 
Prediction Horizon. The latter instead solves detected conflicts by identifying a set of 
control measures that optimize a given objective function while allowing conflict-efficient 
and deadlock-free train operations. We consider two different CDR models, namely 
ROMA [8] and RECIFE [20], which have been alternatively tested within our ON-TIME 
framework. The modularity of the framework allows the substitution of modules with 
similar characteristics; that is why we could separately test one or the other CDR model, 
just by plugging one or the other into the framework. Input data of both ROMA and 
RECIFE are the current traffic state and the microscopic characteristics of the 
infrastructure (e.g. positions of switches, platforms, track detection sections), the rolling 
stock, the signalling/ATP and the interlocking systems as well as the timetable. 

The ROMA model uses alternative graphs to formulate both the conflict detection and 
the conflict resolution problems. More details about the mathematical formulation can be 
found in [8]. In particular, track conflicts are detected by means of blocking time theory 
[9], which considers a track conflict as an overlap between the blocking times of two 
different trains over the same block section. The conflict resolution instead is defined as 
an iterative two-step optimization problem. The first optimization problem considers train 
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routes as fixed and uses a truncated Branch and Bound algorithm [7] to identify the train 
passage orders and the shifts in departure/arrival times that minimize the maximum 
consecutive delay on the network. This latter is indeed the objective function adopted by 
the ROMA model. Once the optimal orders and times are found, the second optimization 
problem employs a tabu search [6] to identify possible alternative routes able to further 
reduce the maximum consecutive delay. If more convenient routes are found, another 
iteration of the two-step optimization is performed until no further improvement of the 
objective function is found or a computation time threshold is reached.  

The RECIFE module tackles the conflict detection and resolution problems through 
the solution of a mixed-integer linear programming formulation [20]. This solution can be 
obtained through any integer programming solver. Namely, IBM ILOG CPLEX (version 
12) showed extremely good performances on rather different case studies. The two 
problems of conflict detection and resolution are considered concurrently: if no conflict is 
detected, RECIFE immediately returns the original traffic plan. If conflicts are detected, 
they are solved to optimality, for what concerns both the rerouting and the rescheduling 
problems. If the optimality proof is not possible within a computation time threshold, the 
best traffic plan found within this time is returned. The quality of a traffic plan is assessed 
in terms of total delay of all trains at any station where they have a scheduled stop, plus 
the trains’ delay at their exit from the network. This sum is the objective function 
optimized by RECIFE. The network is represented by taking into account the microscopic 
data up to the level of detail of track detection sections. Such a representation allows the 
modelling of both the route-lock-route-release and the route-lock-sectional-release 
interlocking systems. In our experiments, we considered the route-lock-sectional-release. 

Both ROMA and RECIFE are developed in C++. The output of the CDR models is a 
Real-Time Traffic Plan containing the train passage orders, the shifts in the 
departure/arrival times and the routes that optimize the objective function.  

4.5 The Connection Conflict Detection and Resolution 
Train delays might severely affect the travel times of passengers in the system. This holds 
particularly for passengers who have to transfer from a so-called feeder train to a 
connecting train as part of their journey. When the feeder train is delayed and the time 
between the arrival of the feeder train and the departure of the connecting train is short, 
passengers might miss the connecting train. As a consequence, they have to wait for the 
next train to their destination, which significantly increases their travel time. In such 
cases, it can be beneficial to delay the departure of the connecting train, too, to allow these 
passengers to catch the connecting train. The aim of the Connection Conflict Detection 
and Resolution module is: to detect such connection conflicts and decide for each 
connection conflict whether the connecting train should wait for the delayed passengers or 
should depart on time. 

The CCDR module takes the RTTP as input from the CDR and information about the 
travel plans of all passengers in the system. It then detects any connection conflicts that 
might be present and solves a mathematical optimization model to determine which 
connections can be dropped. The objective of this module is to minimize the total delay of 
all passengers in the system. The CCDR module is written in Java. The output of the 
module is a list of connections that can be dropped.  

4.6 The Human-Machine Interface 
The Human-Machine Interface (HMI) is a module written in Java composed of two sub-
modules, the Line Describer (LD) and the Train Graph (TG). The LD uses the 
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infrastructure data expressed in RailML to visualize on the screen the network topology 
including all the infrastructure elements like platforms, switches and signals. The user is 
also allowed to stretch or rotate graphical elements on the screen for adjusting the network 
visualization to his/her specific needs.  

The TG instead illustrates both the planned and actual time-distance diagram of all 
train services. The planned time-distance diagrams can be given by either the RTTP or the 
original timetable (when no RTTP has been computed yet by the framework). Both the 
RTTP and the timetable must be expressed in RailML format.  

The actual time-distance diagrams realized by trains until the current time are instead 
obtained directly from track occupation/release events provided by the simulated 
environment HERMES. Planned and actual time-distance diagrams are respectively 
represented with a thin and a thicker line. 

4.7 The Automatic Route Setting 
This Java module implements the routes in the simulation environment by issuing route 
setting commands in the same order as established by the RTTP. Route setting commands 
are issued at the “most suitable” time. On one hand, this time is early enough to prevent 
trains meeting restricted signal aspects due to too late a route setting. On the other hand it 
is late enough to be capable of changing route orders for as long as possible, so as to allow 
more flexibility in the traffic management. Figure 2 shows the time-distance diagram 
predicted by the TSP (blue solid line), the start signal S0 of route R0, the automatic block 
signals S2 and S1, as well as the predicted arrival times at these signals, t2 and t1. The 
most suitable time t0 to set route R0 is obtained by subtracting from time t1 the signal sight 
time tS, the driver’s reaction time and the time to set the route TRD.

Figure 2: Calculation principle of the most suitable route setting time. 
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Condition A is fulfilled for a route when no train occupies a track detection section 
belonging to this route and no train has reserved the route. As soon as condition A is 
fulfilled, the state of the route switches from 0 to 1 and condition B is checked. If 
condition B is also satisfied, the route passes immediately to state 2, otherwise it remains 
in state 1.  

When the RTTP is updated by the CDR module all routes that are in state 2 will be 
reset to state 1 and condition B will be checked again. 

4.8 The Train Path Envelope Computation 
A Train Path Envelope (TPE) is a sequence of time windows in which trains can drive in 
an energy-efficient way without hindering the next train and/or being hindered by the 
previous one. In order to avoid conflicting train operations, the DAS must define energy-
efficient train paths that are contained in these windows. For a given train, the TPE is 
computed by taking into account the buffer times with the previous and the next train. 
This requires the computation of blocking times for all trains, considering the sequence of 
train services and the running times scheduled by the RTTP. Inputs to this module are the 
RTTP, from which train sequences for all track detection sections are extracted, and a 
database containing information about the energy consumption of different train types on 
the track detection sections. We first combine all subsequent track detection sections 
being traversed by the same sequence of trains (CTDS) in order to lower the number of 
variables in the computation. Then the TPE computation is performed in three steps: i)
train movements are microscopically simulated for each CTDS of each train; ii) energy 
optimal train paths are computed for each train considering as constraints the train 
sequence on the CTDS and the driving times given by the previous step; iii) blocking 
times on every track detection section are computed for each train assuming the train 
paths provided at step ii). 

The output of this module is an XML dataset that contains for each train the time 
windows that can be exploited for every track detection section to minimize energy 
consumption while avoiding track conflicts. The whole module is developed in Java. A 
more detailed description of this module is given in [12]. 

4.9 The Driver Advisory System 
The concept of centrally guided train control has been defined in the ON-TIME project, 
which has as its main component a driver advisory system that enables the driver to 
follow the train path envelope along an energy-optimal trajectory computed therein. 
The main algorithmic component of such a concept is the computation of energy-optimal 
train trajectories that are drivable by a human driver, i.e. that contain a limited number of 
changes. Furthermore, the algorithm should cover a wide range of applications; therefore 
traction specifics like engine efficiency or energy recovery from braking are not 
considered. Here, an existing algorithm based on the regimes obtained through application 
of the maximum principle and the application of an iterative gradient method [2] has been 
extended to consider the additional restrictions of the train path envelope. The extensions 
mainly consider the introduction of a new kind of optimization entity (target window 
section limited by two consecutive target windows) and the process to find the optimal 
times and speeds at the position of these target windows (within the restrictions given by 
the perturbation management). This algorithm delivers the trajectory of the train as a 
sequence of points along the train run that contain information about time, speed, distance 
and driving regime. The implementation of this module is realized in Java. Different 
architecture alternatives have been developed, where the computation of the trajectory can 
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either be directly on-board or in a central unit and then be transmitted using XML data 
formats to the on-board unit.  

4.10 Standardized Static and Dynamic Input/Output Data 
Static and dynamic input/output data exchanged among the different modules have been 
expressed in a standard format. Standardization makes data independent from the 
modules, allowing easy substitution of a module with others with similar characteristics. 
Having standard input/output interfaces also allows immediate applicability of the 
framework to any network whose data are expressed with the same standard. Specifically, 
static data regarding the infrastructure, the timetable, the rolling stock and the interlocking 
are input to the framework and are represented in the standard RailML version 2.2. The 
XML schemes of each one of these data types can be seen on the RailML official website 
[24]. Dynamic data like the current traffic state, the RTTP, the TPEC and the energy-
efficient driving regimes of the DAS are represented with specifically designed XML 
developed during the ON-TIME project. These XML schemes are respectively 
represented in Table 1, Table 2, Table 3 and Table 4.  

Table 1: Snippet of the standard representation of the current traffic state. 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<trafficState currentTime="2013-10-21 01:02:00.000 CEST" xmlns="be.jdb.jaxb.model" > 
<trainStateInArea>
    <trainID trainNumber="T00009919B"/>
    <trainPosition trackID="SEC_3" travelDirection="-1" posOnTrack="170.0"

currentTrackVacancyDetectionSection="TDS00013"
previousTrackVacancyDetectionSection="TDS00011" astOccupationTime="01:01:30 CEST"/>

    <speed>0.0</speed>
</trainStateInArea>
<trainStateInArea>
    <trainID trainNumber="T00009922B"/>
    <trainPosition trackID="SEC_58" travelDirection="1" posOnTrack="50.0"

currentTrackVacancyDetectionSection="TDS00156"
        previousTrackVacancyDetectionSection="TDS00152" lastOccupationTime="01:01:20 CEST"/>
    <speed>27.0</speed>
</trainStateInArea>

Table 2: Snippet of the standard representation of the RTTP. 
<rTTP>
   <rTTPTrainView>
    <rTTPForSingleTrain trainId="T00004005">
         <tDSectionOccupation tDSectionID="TDS00120" trainID="T00004005" occupationStart="01:02:00
             CEST" routeId="routeR00095"/>
         <tDSectionOccupation tDSectionID="TDS00112" trainID="T00004005" occupationStart="01:08:37
             CEST" routeId="routeR00081"/>
         <tDSectionOccupation tDSectionID="TDS00111" trainID="T00004005" occupationStart="01:08:59
             CEST" routeId="routeR00081"/>
     </rTTPForSingleTrain>
    </rTTPTrainView>
   <rTTPInfrastructureView>
    <rTTPForSingleTDSection tDSectionId="TDS00081">
         <tDSectionOccupation tDSectionID="TDS00081" trainID="T00009926B" occupationStart="01:02:07
             CEST" routeId="routeR00050"/>
         <tDSectionOccupation tDSectionID="TDS00081" trainID="T00009921B" occupationStart="01:39:49
             CEST" routeId="routeR00052"/>
         <tDSectionOccupation tDSectionID="TDS00081" trainID="T00004005" occupationStart="01:57:58
             CEST" routeId="routeR00052"/>
       </rTTPForSingleTDSection>
   </rTTPInfrastructureView>
 </rTTP>

The current traffic state reports the current time (CurrentTime) and represents each 
train on the network with the tag <trainStateInArea> specifying the train number 
(trainNumber), the section (trackID) and the track detection section currently occupied 
(CurrentTrackVacancyDetectionSection), as well as the track detection section occupied 
previously (PreviousTrackVacancyDetectionSection).  
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The RTTP contains the solution of the CDR as observed from two different points of 
view, namely the train and the infrastructure. The RTTP is indeed composed of two parts 
called “train view” and “infrastructure view”, respectively. The “train view” is identified 
by the tag <rTTPTrainView>. For each train (trainID) it reports the chronological 
sequence of track detection sections to be crossed, specifying the ID (tDSectionID), the 
time when the train is expected to enter them (occupationStart) and the route (routeID)
the sections belong to. The “infrastructure view” instead is identified by the tag 
<rTTPInfrastructureView>. For each track detection section (tDSectionID), it gives the 
chronological sequence of the trains (trainID) crossing it, the corresponding entrance time 
(occupationStart) as well as the route (routeID) the section belongs to. 

It is clear that these two parts of the RTTP are nothing but two different standpoints 
of the same CDR solution. 
The “infrastructure view” is a more suitable representation to use for the ARS module, 
while the “train view” is preferred by the HMI for the visualization of train time-distance 
trajectories on the screen.  

Table 3: Snippet of the standard representation of the TPE. 
<tpe xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
  <corridor train_service_id="S3521" timestamp="10/12/2018 07:28:20">

<corridorWindow position_id="startd15e30_Ut_Gdm40" time_min="90,00" time_max="90,00"
vel_min="0" vel_max="50" nonCommercialStop="false" reason="reason:StartOfEnvelope" /> 

    <corridorWindow position_id="TDS0_Ht0026d15e1562_41080" time_min="1243,11" time_max="6901,83"
vel_min="20" vel_max="80" nonCommercialStop="false" reason="reason: trainBeforeLeaves" /> 

    <corridorWindow position_id="TDS0_Ht0038d15e911_2205" time_min="1263,41" time_max="6957,06"
vel_min="40" vel_max="120" nonCommercialStop="false" reason="reason: hostTrainGoSlower" /> 

    <corridorWindow position_id="TDS0_NHt111d15e1433_41090" time_min="1291,26" time_max="7023,06"
vel_min="40" vel_max="120" nonCommercialStop="false" reason="reason: endOfEnvelope" /> 

  </corridor>
  <corridor ...../>
</tpe>

Table 4: Snippet of the standard representation of the DAS energy-efficient advice.
<trajectory id="traj1_S3523" obuId="127.0.0.1" timeStamp="07:31:54.832" trainId="S3523">
  <samplingPoint drivingRegime="ACCELERATION" optimalSpeed="0" position="193"

reasonCode="energyOptimisation" reasonText="Ht" time="07:52:01.000"/>
  <samplingPoint drivingRegime="CONSTANTSPEED" optimalSpeed="40" position="298"

reasonCode="energyOptimisation" reasonText="Ht" time="07:52:19.836"/>
  <samplingPoint drivingRegime="ACCELERATION" optimalSpeed="40" position="921"

reasonCode="energyOptimisation" reasonText="Ht" time="07:53:15.892"/>
  <samplingPoint drivingRegime="CONSTANTSPEED" optimalSpeed="80" position="1657"

reasonCode="energyOptimisation" reasonText="Ht" time="07:53:56.799"/>
  <samplingPoint drivingRegime="COASTING" optimalSpeed="80" position="2254"

reasonCode="energyOptimisation" reasonText="Ht" time="07:54:23.625"/>
</trajectory>

The Train Path Envelope reported in Table 3 gives for each train service 
(train_service_id) the current time (timestamp) and the sequence of time windows 
computed for each corridor (corridorWindow). Corridors correspond to track detection 
sections, identified by means of the id of their borders (position_id). The time window 
relative to a track detection section is determined by the lower (time_min) and the upper 
(time_max) bounds, both expressed in seconds. Also the lower (vel_min) and the upper 
(vel_max) bounds of the energy-efficient speed advice are given to the DAS algorithm, 
together with the information on the presence of non commercial train stops 
(nonCommercialStop). 

The XML scheme in Table 4 provides the energy-efficient speed advice as output from 
the DAS module. For each train (trainId) it is reported the current time (timestamp), the 
ID of the on-board unit (obuId) and the list of switching points (samplingPoint) among 
successive energy-efficient driving phases. For each switching point is it specified the 
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driving regime (drivingRegime), and the optimal speed in km/h (optimalSpeed), that must 
be reached at the curvilinear abscissa position (in metres) at the given time.

4.11 The Web Service-Oriented Architecture 
The web service-oriented architecture enables the communication among the different 
modules of the framework. This is an event-based architecture where the data to be 
transferred from one module to another are considered as an event. The architecture 
identifies every event by means of a unique “type” identifier. Each module of the 
framework can link to the architecture as a “subscriber” or “publisher” for one or more 
type of event. A module is a publisher for a given event type when it produces that event 
as output. Instead it is a subscriber when it needs to receive that type of event as input. If a 
module is subscriber to a given event type it cannot receive events of different types 
unless it is also subscribed to them. We give a simple example to clarify the concept. The 
current traffic state produced by the TSM is seen by the architecture as an event of a given 
type, say type A. In this case the TSM is a publisher for the events of type A. The PMM 
instead is a subscriber for type A events since it takes the current traffic state as input. If 
an event of a given type cannot be dispatched to one or more of its subscribers, it is stored 
in a queue and transferred as soon as possible. The storage is realized by using the open-
source non-relational database MongoDB [18] while events are routed by means of the 
message broker Rabbit MQ [23]. The modules interact with the architecture using a REST 
service interface, exposed by a .NET module. Stress-tests showed that more than hundreds 
of millions of messages per day can be efficiently handled by our architecture without any 
message being lost. The architecture is scalable since all its components are capable of 
scaling by adding new modules in the network. Since message payloads are not processed, 
this gives flexibility in adding new event types or modifying existing ones on the fly.  

Data exchanged between modules is represented using the RailML standard. Such a 
feature allows faster integration of new modules and immediate applicability of the 
framework to any network that uses the RailML format. 

5 Application to the Iron Ore Line in Sweden 

The ON-TIME framework for the real-time management of traffic perturbations has been 
applied to real case studies.  

Figure 3: Narvik-Svappavaara corridor on the Iron Ore line. 
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As follows, we provide an illustrative example of the framework when applied to 
solve the case of a heavily delayed train on the Swedish Iron Ore line. 

We refer in particular to the Narvik-Svappavaara corridor whose microscopic 
configuration is illustrated in Figure 3, together with its geographical location. This is a 
single track line crossing the border between Sweden and Norway. Twenty meet-pass 
points are distributed over the network, where trains moving in opposite directions can 
overtake each other. A total of 31 interlocking areas are present on the network, including 
the stations of Narvik (at the northern border), Kiruna, Kirunavaara, Svappavara (at the 
south-eastern border) and Sjiskja (at the southern border). 

A mixed traffic pattern runs on this corridor, with a prevalence of freight trains over  
passenger ones. There are freight trains running between Kiruna and Narvik (and vice 
versa), which are 750 metres long and run at a max speed of 60 km/h, when loaded. Other 
freight trains run instead between Svappavaara and Narvik via Kiruna, and have a length 
of 600 metres with a maximum cruising speed of 100 km/h, when loaded. The local 
passenger trains operate on the corridor Narvik-Kiruna and vice versa, and run at a 
maximum cruising speed of 160 km/h. Some of the meet-pass points are shorter than the 
freight trains’ length. For this reason, freight trains cannot meet trains running in the 
opposite direction at these points, otherwise deadlocks can occur.  

We analyse a perturbed scenario which assumes that freight train 9904 from Kiruna to 
Narvik has an entrance delay of 40 minutes in Kiruna. This train enters the network at 
03:09 a.m. instead of 02:29 a.m., as originally scheduled. We observe traffic for a total 
period of 7 hours from midnight to 07:00 in the morning. In this period a total of 15 trains 
are scheduled on the line, including 7 freight and 2 passenger trains directed towards 
Kiruna, as well as 5 freight and 1 passenger trains directed towards Narvik. 

Figure 4: ON-TIME framework operating on the Iron Ore line. 
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By simulating the mentioned perturbed scenario in HERMES we observe that 
deadlocks occur when no specific dispatching action is taken and trains operate according 
to a simple First Come First Served rule. For this reason we apply our ON-TIME 
framework to optimally manage the perturbation, while allowing conflict-efficient and 
deadlock-free train operations. Given the prevalence of freight trains, no train connection 
is scheduled in the observed period. For this reason the CCDR module is not activated in 
this case. Our application mainly focuses on solving deadlocks and conflicts by means of 
optimal control measures; that is why we disregard energy efficiency by deactivating the 
TPEC and the DAS modules. 

Figure 4 shows our ON-TIME framework actively working to solve the defined 
perturbed scenario on the Iron Ore line. Traffic is controlled in a closed-loop according to 
a rolling horizon approach with a replanning interval and a prediction horizon that we set 
to 2 minutes and 1 hour, respectively.  This means that every 2 minutes the TSM (shown 
at the top-right) estimates the current traffic state, and a new RTTP is computed for the 
next hour, by the PMM (in the centre). The RTTP is then automatically implemented by 
the ARS (at the top-right corner) and followed by the traffic simulated in HERMES (on 
the left). The web-service architecture (at the bottom-right) enables the communication 
among all the modules, which are identified by means of an alphanumeric ID, as shown in 
the picture.  

Each time that a new RTTP is produced, its “infrastructure view” is used by the ARS 
to implement the routes in HERMES, in the same order as given by the CDR solution. 
The “train view” is instead employed by the HMI to graphically visualize the RTTP on 
the screen.  

Figure 5: HMI showing the train path diagram and the network layout (at the bottom) 
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The HMI is illustrated in Figure 5 where the time is reported on the vertical axis and the 
distance is reported on the horizontal axis together with a schematic representation of the 
network (at the bottom). The thin green lines represent the time-distance trajectories of 
each train as scheduled by the RTTP. These trajectories will therefore be updated each 
time the CDR computes a new RTTP. The thicker green lines instead depict the time-
distance trajectories actually realized by the trains until the current time. This information 
is derived directly from track occupation/release events sent by the simulation 
environment through the architecture. The HMI highlights that when the ON-TIME 
framework is applied to the perturbed traffic, trains run smoothly without any deadlock or 
conflict.  

Figure 6: Train path diagram obtained by using ROMA (top) or RECIFE (bottom) as CDR. 
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We analyse the behaviour of the ON-TIME framework for two different configurations of 
the CDR module. The first configuration uses the ROMA algorithm, while the second 
employs the RECIFE algorithm. The perturbed scenario has been managed therefore by 
using each one of the configurations. Figure 6 shows the train path diagram obtained 
when the perturbed traffic scenario is managed by using ROMA or RECIFE as CDR of 
the framework. The vertical axis represents the distance while the horizontal axis reports 
the time. The dashed lines depict the time-distance trajectories as originally scheduled by 
the timetable. The solid lines are the time-distance trajectories realized when trains are 
controlled by the framework. The delayed train 9904 is reported in red and its entrance 
delay is underlined by the red arrow. As can be seen the ON-TIME framework is able to 
effectively tackle conflicts and avoid deadlocks independently from the CDR algorithm 
used. In this particular case the two algorithms manage the perturbation in a similar way. 
The main substantial difference stays in the meeting point between the delayed train 9904 
and 9171, which runs in the opposite direction. With ROMA this meeting occurs at 
Stordalen (Soa) where train 9171 has a short planned stop. RECIFE instead establishes the 
meeting at Abisko Astra (Ak) where 9171 does not have any planned stop. 

While ROMA prefers to keep on time train 9905 by forcing train 9904 to wait for it at 
Straumnsnes (NoSms), RECIFE avoids this meeting and delays the departure of 9905. 
Analogously, this happens for trains 45902 and 9176 which are delayed by RECIFE in the 
meeting with train 9171 running in the opposite direction. 

Remark that, as mentioned in Section 4.4, the two algorithms optimize with respect to 
different criteria. Furthermore, in the closed-loop, both ROMA and RECIFE keep 
optimizing traffic until the end of the simulated time. Hence, in the last optimization 
performed, all the traffic between 6:58 and 7:58 is tackled by the algorithms, which then 
might tackle conflicts which are not observable in the train path diagrams shown. 

6 Conclusions and Further Research 

In this paper we present an innovative framework for the closed-loop control of railway 
traffic during perturbations. Several interacting modules compose the framework. The 
Traffic State Monitoring collects traffic information from the field to estimate the current 
traffic state. This latter is used by the Perturbation Management Module to compute 
optimal Real-Time Traffic Plans, based on traffic predictions made over a given 
prediction horizon. These plans are shown for acceptance to the human dispatcher by 
means of a Human Machine Interface. In case of acceptance the plans are then 
automatically implemented into the field by the Automatic Route Setting module, which 
sets train routes in the same order as established by the computed plan. Speed advice for 
energy-efficient driving is also produced and communicated to the trains by the Driver 
Advisory System module. 

The main contribution our framework gives to both practice and to the literature, is the 
way the different modules communicate among each other. A standard, scalable and 
flexible web service architecture is responsible for storing and transferring data within the 
framework. The input/output data of every module have been standardized by expressing 
them in RailML format. Static data (e.g. infrastructure, rolling stock) uses the standard 
RailML language, while specific XML schemes are built up for expressing dynamic data 
(e.g. current traffic information and RTTP). This feature permits the immediate 
application of the framework to any railway network already represented in RailML. 
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Scalability ensures independence from the number of modules and the amount of data 
exchanged, while flexibility allows replacement of any module with another having 
similar characteristics. Thanks to this latter characteristic we were able to test the 
framework with different Conflict Detection and Resolution algorithms. Specifically the 
ROMA and RECIFE models have been adopted. 

During the ON-TIME project the framework has been tested in a closed-loop with the 
traffic simulation environment HERMES for several European networks and perturbed 
scenarios. The tests show the general applicability of our framework, independently from 
the network topology, the traffic pattern and the perturbation considered. As an illustrative 
example this paper reports the test made on the Swedish Iron Ore line for a perturbed 
traffic scenario. The analysis performed constitutes a proof-of-concept to confirm that our 
framework is able to automatically solve conflicts and deadlocks during perturbations. 

Future research aims at including in the control loop also the interaction with the 
human dispatcher by means of the HMI. Further developments will enable the 
implementation of the framework in real life. 
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