
1

Optimal Management of Railway Perturbations by Means
of an Integrated Support System for Real-Time Traffic
Control

Egidio Quaglietta a, i, 1, Rob M.P. Goverde a, Thomas Albrecht b,h, Birgit Jaekel
b, Grégory Marlière c, Paola Pellegrini c, Joaquin Rodriguez c, Twan Dollevoet d,

Bruno Ambrogio e, Daniele Carcasole e, Marco Giaroli f, Gemma Nicholson g
a Department of Transport & Planning, Delft University of Technology, The Netherlands

b Dresden University of Technology, Germany
c IFSTTAR, Université de Lille Nord de France, France

d Erasmus University Rotterdam, The Netherlands
e NTT Data, Rome, Italy

f Ansaldo STS, Genoa, Italy
g Centre for Railway Research and Education, University of Birmingham, UK

h CSC Deutschland GmbH, Dresden, Germany
i Control Command & Signalling division, Network Rail Ltd, Milton Keynes, UK

1 E-mail:e.quaglietta@tudelft.nl, Phone: +31 (0)15 27 82761

Abstract
Automatic real-time control of railway traffic perturbations has recently received the
attention of practitioners. The aim is to make use of mathematical algorithms to maintain
the required service availability during unplanned disturbances to operations. In the
literature many tools for real-time traffic control are proposed, but their effects on traffic
have never been studied neither in real life nor in realistic simulation environments. We
can mention only a few pilot tests and a unique installation in the Lötschberg Base tunnel
in Switzerland, which is in any case an ad-hoc implementation not extendible to other
case studies. In this paper we present the ON-TIME framework for the real-time
management of railway traffic perturbations. The main innovation is a standard web
service-oriented architecture that ensures scalability and flexibility. A standard RailML
interface is used for the input/output data of the modules, allowing immediate
applicability of the framework to any network having a RailML representation. The
scalability makes the framework independent from the number of modules and the amount
of data exchanged. The flexibility permits any module to be replaced with others having
similar features. The framework is tested in a closed-loop with the simulation
environment HERMES for a perturbed traffic scenario on the Swedish Iron Ore line. Tests
are performed for two different replanning algorithms (ROMA and RECIFE) used as
conflict detection and resolution modules of the framework. The analysis represents a
proof-of-concept to confirm the effectiveness of our framework in automatically solving
conflicts and deadlocks during perturbed traffic conditions.

Keywords
Railway traffic control, real-time replanning, traffic optimization, standard
communication architecture.

033-1

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

2

1 Introduction

The recent growth in the demand for railway transportation has resulted in a high traffic
density and heavily used networks, which are sometimes working in saturated
conditions. In this context, perturbations to traffic (e.g. extensions of running and/or
dwell times) can lead to track conflicts, i.e. situations where two or more trains request
the same block section in overlapped time periods. Track conflicts force trains to slow
down or even stop at unplanned restricted signal aspects, thereby deviating train services
from the original plan.

Slight perturbations can still be absorbed by time allowances in the timetable,
but larger disturbances need to be specifically managed by replanning the service in real-
time. Real-time replanning means adjusting the space-time trajectory of trains based on
the current traffic information, with the aim of mitigating the impact of perturbations as
much as possible. Basically a train can be replanned with control measures such as:
changing the passage order at a given station or junction (reordering), modifying the
arrival/departure times at a station (retiming), or even detouring the train over a different
route (rerouting). The set of control measures that is planned to be taken in a given time
period ahead is called the Real Time Traffic Plan (RTTP). A RTTP therefore contains
the list of passage orders, arrival/departure times and/or routes that are planned to be
respected by trains in the next time period. In other words the RTTP is the microscopic
train path plan resulting when control measures are taken.

So far, the control measures contained in the RTTP are decided by human
dispatchers on the basis of their own experience and/or rules-of-thumb. Nevertheless, it
is very difficult for a human being to understand the effects of his/her decisions on
traffic, especially in the case of large networks or heavily congested areas. This can
sometimes result in control measures that may be not effective or even
counterproductive. To this end advanced decision support systems have been proposed
that automatically compute a set of control measures (i.e. a RTTP) that optimizes given
traffic performance (e.g. minimizes the total delay, maximizes the punctuality) while
ensuring conflict-efficient train operations. Conflict-efficient means that we aim to
remove all track conflicts, but we cannot guarantee that trains will run without any
conflicts once these measures are put into operation. Some trains could indeed still
encounter restricted signal aspects during real operations. Train operations are optimized
by a Conflict Detection and Resolution module (CDR), which consists of mathematical
models for both detecting and solving track conflicts. Briefly, the Conflict Detection
element considers current traffic information to predict future traffic conditions and
detect potential track conflicts. The Conflict Resolution part solves the detected
conflicts by identifying a set of control measures that optimizes a given objective
function and allows conflict-efficient train operations.

Although several CDR models are proposed in literature ([3], [8], [20], [25])
nothing more than pilot tests can be mentioned ([14], [15], [17]). Automatic replanning
tools have not been seriously applied into practice yet, mostly because infrastructure
managers are afraid of implementing systems whose impacts on traffic are blurry and not
well known. On the other hand, it is not clear yet how these systems can interface with
real traffic, whether a standard communication interface can be defined and if these tools
work for any traffic condition.

A concrete reply to these issues is provided by the European FP7 funded project
ON-TIME [19]. A relevant part of this project focussed on designing, developing and
testing an integrated framework for the optimal real-time management of railway traffic

033-2

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

3

perturbations. This paper describes the main outcomes of this research explaining the
different modules of the framework and their interactions. A proof-of-concept is given
that shows how traffic perturbations can be optimally and automatically managed by
mathematical algorithms connected to operations through standard software interfaces.
Many are the contributions to the literature provided by this paper, specifically:
 A perturbation management framework has been developed that integrates

algorithms for traffic state monitoring, prediction, track and connection conflict
detection and resolution, automatic route setting, driver advisory system.

 The algorithms of the perturbation management framework have been interfaced
and tested within simulated operations in a closed-loop control.

 A web service-oriented architecture is realized which lets the algorithms
communicate with each other and with simulated operations, in a standard, flexible
software interface. Modularity allows replacement of any module with similar ones.

 A standardization of the data flow communicated among the different modules and
with the simulated operations have been realized by using RailML [24].

 A novel formalisation has been developed for a XML representation of the current
traffic state, the RTTP and the Train Path Envelope.

 A touch screen Human-Machine Interface has been connected via the architecture to
both the framework and the simulated operations allowing dispatchers to visualize
current and replanned traffic operations.

The framework executes closed loop control of railway traffic by following a
rolling horizon approach. Current traffic information (e.g. train positions and speeds) is
gathered from the field at regular time intervals (called Replanning Interval, RI) to
automatically compute an optimal RTTP which tackles all conflicts detected in a certain
time period ahead (called Prediction Horizon, PH). The resulting RTTP is then shown to
the dispatcher for acceptance by means of a Human-Machine Interface. In cases where
the dispatcher accepts the RTTP, this latter is implemented into the field and followed by
train services.

The framework is tested versus real test cases within the simulated traffic
environment HERMES. The ON-TIME project considered three railway networks across
Europe: the East Coast Main line in the United Kingdom, the Iron Ore line in Sweden
and the Utrecht-Eindhoven-Tilburg-Nijmegen corridors in the Netherlands. For each
network several disturbed scenarios have been examined, including train entrance delays
and infrastructure limitations such as temporary speed limit restrictions. Obtained results
prove that our framework for real-time traffic management works effectively regardless
of the network or the traffic conditions analysed. For the sake of brevity, this paper
illustrates how the framework works when applied to a case in which a train is heavily
delayed on the Iron Ore line.

The paper is structured as follows: a review of methods for replanning railway
traffic in real-time is given in Section 2, while a description of our framework is
provided in Section 3. Section 4 gives more details on each module composing the
framework, while Section 5 illustrates how the framework works when applied to a real
case study on the Swedish Iron Ore line. Conclusions and directions for future research
are provided in Section 6.

2 Literature Review

In the literature several models for real-time replanning of railway traffic can be found.

033-3

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

4

We can mention macroscopic models such as those introduced by Carey and Lockwood
[4], or Higgins et al. [11] to reduce train tardiness and/or energy consumption. Meng and
Zhou [16] present a macroscopic stochastic programming approach to study the
robustness of a meet-pass plan for a disrupted single track line. Chen et al. [5] introduce
a macroscopic mixed-integer programming approach to reschedule trains at junctions
and bottlenecks by means of a differential evolution algorithm. All these macroscopic
models represent the network with a low level of detail, which is why they solve
conflicts at the level of corridors between two consecutive stations or junctions. More
accurate are instead microscopic approaches that detect and solve conflicts at the level of
block sections taking into account constraints deriving from the signalling and
Automatic Train Protection (ATP) systems as well as those regarding the detailed
network topology (e.g. switches, platform layout). Microscopic models can be
distinguished according to the formulation and the algorithm used to solve the
replanning problem. Some authors such as D’Ariano and Pranzo [8] or Mazzarello and
Ottaviani [15] base their models on alternative graphs. Törnquist [25], Pellegrini et al.
[20] or Caimi et al. [3] adopt instead a Mixed-Integer Linear Programming approach.

The main limitation with all these approaches is that they have scarcely been
tested in a closed-loop interface with real operations, nor with simulation environments
that reproduce realistic traffic dynamics. Lüthi [13] defines in a schematic way how
these replanning models could be integrated with real traffic to achieve closed-loop
control. Such a scheme has been applied by Quaglietta et al. [21], [22] who interfaced
the replanning model ROMA with the traffic simulation model EGTRAIN to study the
stability and the quality of optimal RTTPs. The framework applied is however not
scalable for implementation in real-life. To the best of the authors’ knowledge the only
real-life installation of a system for the automatic closed-loop control of railway traffic is
the one in the Lötschberg Base tunnel in Switzerland [17]. This system builds on an ad-
hoc framework that has the limitation of not being extendible to different networks or
traffic conditions. Other real-life implementations do not go beyond pilot tests such as
those described by Mannino and Mascis [14] or Mazzarello and Ottaviani [15]. It is clear
that the gap between literature and practice stays on one hand in the definition of a
standard framework for real-time traffic control that could be applied to any railway
network and traffic conditions. On the other hand there is the necessity of proving by
means of experiments in simulation that such a framework leads towards a perturbation
management that is better than current practice. Filling this gap would motivate
infrastructure managers to implement these systems into practice. This paper mainly
contributes to filling this gap, providing a proof-of-concept, proving that such a system
works and is implementable into real-life.

3 The ON-TIME Framework for the Optimal Real-Time Control of
Railway Traffic

The ON-TIME framework developed for the optimal real-time management of railway
traffic perturbations is illustrated schematically in Figure 1.

The modules of the framework communicate with each other by means of a web
service-oriented architecture that works according to the principle of event
publishing/subscription. This means that the output events from each module are
published and queued in the architecture. An event stored in the architecture is then sent
as input to all the modules that subscribed to that specific event. For instance if a module

033-4

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

5

returns as output an event type A this is published and queued in the architecture where it
is then dispatched as input to all the modules that subscribed to the event type A. In the
figure, the events published by each module are represented by the arrow directed towards
the architecture, while those in input are depicted by the arrows in entrance to the module.

Railway traffic is represented by the microscopic simulation environment HERMES.
This simulation model accurately reproduces all the dynamic interactions among the
trains, the signalling/ATP systems (e.g. signals, braking behaviour), the infrastructure
elements (platforms, switches) and the interlocking (e.g. dependencies between switch
positions and signal aspects). Each time that a train occupies or releases a track detection
section (e.g. track circuit) the corresponding event is published to the architecture. Each
“track occupation/release” event is then forwarded to the Traffic State Monitoring (TSM),
which elaborates these events to produce the current traffic state as output, i.e. the current
position and speed of every train on the network. The current traffic state is transferred
under the form of RailML to the architecture and then communicated to the Perturbation
Management Module (PMM). The PMM is the core of the framework since it provides
the control measures that allow the optimal real-time control of traffic perturbations. As
can be seen the PMM is composed of three interacting sub-modules, namely the Traffic
State Prediction (TSP), the Conflict Detection and Resolution (CDR) and the Connection
Conflict Detection and Resolution (CCDR).

Figure 1: The ON-TIME framework for the real-time management of railway traffic perturbations.

Traffic State
Monitoring

(TSM)
Web‐service

Web‐service

Web‐service
architecture

Connection
Conflict
Det.&Res.
(CCDR)

Traffic State
Prediction

(TSP)

Conflict
Detection&
Resolution

(CDR)

Tr
af
fic

 P
re
di
ct
io
n

RTTP

Are connections
changed?

Connection
list

YES NO

RTTP

Perturbation Management Module (PMM)

Web‐service

HERMES/Real Traffic

Automatic
Route Setting

(ARS)
Web‐service

Train Path
Envelope

Computation
(TPEC)Web‐service

Driver
Advisory
System
(DAS)

Web‐service

Human‐Machine Interface (HMI)

Web‐service

033-5

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

6

The TSP receives as input from the architecture the current traffic state in order to
forecast the traffic behaviour in a given time period ahead (the Prediction Horizon, PH).
The traffic prediction is then set as input to the CDR module. Specifically, the Conflict
Detection uses the prediction to identify track conflicts potentially occurring within the
Prediction Horizon. If conflicts are detected the Conflict Resolution algorithm determines
a set of control measures (i.e. reordering, retiming and/or rerouting), which optimizes
certain traffic performance while guaranteeing conflict-efficient train operations. The
control measures are printed out in the form of a Real-Time Traffic Plan expressed by
means of a specifically designed XML scheme. This XML scheme has been appositely
elaborated within the ON-TIME project to standardize the way in which dynamic railway
data are expressed. The CCDR analyses the RTTP received as input, to identify all those
connections that should be removed because they are critical in terms of delay
propagation. The output of the CCDR is therefore a list containing all the connection
constraints that should be removed to avoid delays. If no connection is cancelled, then the
RTTP can be sent to the architecture. Otherwise, a new traffic prediction must be
performed, taking into account the new list of connection constraints and a new RTTP
must consequently be computed. The RTTP is communicated together with the traffic
prediction to the Human-Machine Interface, which graphically shows to the dispatcher the
optimal control measures computed by the CDR. If the dispatcher accepts these measures
then the RTTP is implemented into the field.

Within the ON-TIME project we did not focus on the interaction with the human
dispatcher, so we consider that every RTTP is automatically put into operation without the
acceptance of the dispatcher. The implementation of the RTTP into the field is realized by
the Automatic Route Setting (ARS). This module automatically implements train routes in
the HERMES simulator, in the same order as established by the RTTP. In this way, trains
running on the network follow the passage orders, the arrival/departure times and the
routes contained in the real-time traffic plan. The route setting commands are sent to the
simulator via the architecture, in the form of events. Based on the RTTP, the Train Path
Envelope Computation (TPEC) calculates the buffer times between trains that can be
exploited to fine-tune train speed-distance trajectories in an energy-efficient fashion. The
train path envelopes are received as input by the Driver Advisory System (DAS), which
determines energy-efficient train speed-distance trajectories that minimize the energy
consumption while guaranteeing the respect of the scheduled arrival/departure times. The
output of the DAS is then transferred through the architecture to HERMES where trains
will follow the energy-efficient trajectories provided as input.

The real-time control of railway traffic follows a rolling horizon approach; this means
that after every Replanning Interval the current traffic state is sent to the PMM and a new
RTTP is computed and implemented into the field.

The adopted web-service architecture ensures independence amongst the
modules and scalability with respect to the amount of data exchanged. This allows
replacement of any module with another having similar characteristics. Such a
framework can be straightforwardly applied in real-life if we replace the HERMES
simulator with a real railway network. A relevant innovation is given by the standard
communication interface achieved by expressing all the input/output data in standard
RailML format. This feature enables immediate application of the framework to any
railway network and traffic condition as long as the infrastructure, rolling stock,
timetable and interlocking data are available in RailML.

033-6

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

7

4 Functional Description of the Modules

In the following we provide a concise description of all the modules composing the
presented framework for real-time replanning. For each module we describe the input and
output data, as well as the underlying mathematical models.

4.1 HERMES: A Microscopic Simulation Model of Railway Traffic
HERMES [10] is an object-oriented microscopic model for the simulation of railway
traffic, developed in Java by the British company GRAFFICA. The model is based on six
integrated components respectively representing the infrastructure, the rolling stock, the
timetable, the signalling/ATP systems, the interlocking and the train driver behaviour. The
infrastructure is described at a high level of detail and formalized as a directed graph. The
nodes of the graph can represent signals, stop posts, the joints in between two track
detection sections or the points of a switch. The arcs instead constitute track detection
sections of the network. The rolling stock is modelled by considering all the
characteristics of the vehicles such as the length, the mass, the number of coaches, the
tractive effort-speed curve, the braking rate, and the resistance parameters. The timetable
contains all the scheduled arrival/departure times at stations as well as the passage times at
relevant signals and/or junctions. The signalling/ATP systems are modelled by
considering the aspects of every signal and the corresponding ATP speed codes, which
ensure a safe braking of the trains at red signals. The interlocking describes each route by
means of the start and target signals, the sequence of track detection sections to be
traversed and the direction required by the switches to set that route. The
interdependencies between signal aspects and switch direction are also considered to
avoid the simultaneous setting of conflicting routes. The driver behaviour component
allows the specification of different parameters which enable a more aggressive rather
than a more cautious driving style. This component has additional features that let the
trains drive according to the scheduled speed-distance trajectories or follow energy-
efficient driving advice provided by DAS algorithms. The simulation is performed by
means of a hybrid approach where some components (e.g. trains) follow a time-driven
simulation, while others (e.g. signals, switches, routes) are simulated on an event-driven
basis. In particular, train movements are reproduced by integrating over time Newton’s
differential equations of motion. The integration is made numerically by using Simpson’s
quadrature rule [26]. The outputs consist of train speed-distance or time-distance
trajectories as well as simulated train delays at stations. The HERMES simulator has an
interface for the RailML export of all the network data. Moreover it is equipped with an
open set of APIs that allow the user to introduce traffic disturbances, infrastructure
disruptions and/or customise functions relative to the driver behaviour or the route setting.

4.2 The Traffic State Monitoring
The Traffic State Monitoring aims to collect all the track occupation/release data from the
simulated traffic environment in order to estimate the current traffic state, i.e. the current
position and speed of each train on the network. The estimation of the current traffic state
is performed by adopting the approach of Albrecht et al. [1] who use the kinematic
equations of motion to reconstruct train speed-distance trajectories based on track
occupation data. The algorithm uses a least-squares optimization approach to estimate the
train speed at each track section border and has been specially fitted for real-time
application. It uses the last five section occupation events of a train (if available) but not
less than three. If a planned or unplanned stop is detected (average speed on a track circuit

033-7

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

8

smaller than 10 km/h), the current speed is estimated as 0. If no speed estimation is
possible, the speed is estimated to be 50% of the maximal permitted speed value. An
extension of the algorithm has been made, which improves its behaviour in iterative calls
like in our framework. Here, the information that a train has not yet entered the next track
detection section at a given time could be an indicator that a train might have to brake.
This is considered using an extension of the objective function of the optimizer. The
whole module has been implemented in Java using the Apache math implementation of
the Levenberg-Marquardt algorithm for least squares optimization.

4.3 The Traffic State Prediction
The aim of the Traffic State Prediction is to forecast time-distance and speed-distance
trajectories of trains within the Prediction Horizon. Input data to this module are both
static and dynamic. Static data describe the characteristics of the infrastructure (e.g.
switches, platforms, track length and gradient), the timetable (e.g. scheduled
arrival/departure times at stations), the rolling stock (e.g. mass, tractive effort-speed
curve), the signalling/ATP systems (positions of signals, signal aspects and braking
behaviour) and the interlocking. The dynamic data is the current traffic state produced by
the TSM. The static input data are provided in standard RailML format, while the current
traffic state is expressed with an XML appropriately defined. Time-distance and speed-
distance trajectories of each train are predicted by numerically integrating Newton’s
equations of motion, considering current train speeds and positions as boundary
conditions. The outputs are time-distance and speed-distance trajectories of each train
running within the Prediction Horizon. The TSP module is written in Java and is generally
separated from the Conflict Detection and Resolution module. In such a case the traffic
prediction must be transferred as input to the CDR in order to detect and solve potential
conflicts. Some CDR algorithms such as ROMA instead have the TSP directly integrated
with the Conflict Detection model. In the case of ROMA, the TSP is coded in C++ and the
predicted train operation times (running, headways and dwell times) are directly used for
the conflict detection process.

4.4 The Conflict Detection and Resolution
This module is composed of two components: the Conflict Detection and the Conflict
Resolution. The former detects the presence of potential track conflicts within the
Prediction Horizon. The latter instead solves detected conflicts by identifying a set of
control measures that optimize a given objective function while allowing conflict-efficient
and deadlock-free train operations. We consider two different CDR models, namely
ROMA [8] and RECIFE [20], which have been alternatively tested within our ON-TIME
framework. The modularity of the framework allows the substitution of modules with
similar characteristics; that is why we could separately test one or the other CDR model,
just by plugging one or the other into the framework. Input data of both ROMA and
RECIFE are the current traffic state and the microscopic characteristics of the
infrastructure (e.g. positions of switches, platforms, track detection sections), the rolling
stock, the signalling/ATP and the interlocking systems as well as the timetable.

The ROMA model uses alternative graphs to formulate both the conflict detection and
the conflict resolution problems. More details about the mathematical formulation can be
found in [8]. In particular, track conflicts are detected by means of blocking time theory
[9], which considers a track conflict as an overlap between the blocking times of two
different trains over the same block section. The conflict resolution instead is defined as
an iterative two-step optimization problem. The first optimization problem considers train

033-8

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

9

routes as fixed and uses a truncated Branch and Bound algorithm [7] to identify the train
passage orders and the shifts in departure/arrival times that minimize the maximum
consecutive delay on the network. This latter is indeed the objective function adopted by
the ROMA model. Once the optimal orders and times are found, the second optimization
problem employs a tabu search [6] to identify possible alternative routes able to further
reduce the maximum consecutive delay. If more convenient routes are found, another
iteration of the two-step optimization is performed until no further improvement of the
objective function is found or a computation time threshold is reached.

The RECIFE module tackles the conflict detection and resolution problems through
the solution of a mixed-integer linear programming formulation [20]. This solution can be
obtained through any integer programming solver. Namely, IBM ILOG CPLEX (version
12) showed extremely good performances on rather different case studies. The two
problems of conflict detection and resolution are considered concurrently: if no conflict is
detected, RECIFE immediately returns the original traffic plan. If conflicts are detected,
they are solved to optimality, for what concerns both the rerouting and the rescheduling
problems. If the optimality proof is not possible within a computation time threshold, the
best traffic plan found within this time is returned. The quality of a traffic plan is assessed
in terms of total delay of all trains at any station where they have a scheduled stop, plus
the trains’ delay at their exit from the network. This sum is the objective function
optimized by RECIFE. The network is represented by taking into account the microscopic
data up to the level of detail of track detection sections. Such a representation allows the
modelling of both the route-lock-route-release and the route-lock-sectional-release
interlocking systems. In our experiments, we considered the route-lock-sectional-release.

Both ROMA and RECIFE are developed in C++. The output of the CDR models is a
Real-Time Traffic Plan containing the train passage orders, the shifts in the
departure/arrival times and the routes that optimize the objective function.

4.5 The Connection Conflict Detection and Resolution
Train delays might severely affect the travel times of passengers in the system. This holds
particularly for passengers who have to transfer from a so-called feeder train to a
connecting train as part of their journey. When the feeder train is delayed and the time
between the arrival of the feeder train and the departure of the connecting train is short,
passengers might miss the connecting train. As a consequence, they have to wait for the
next train to their destination, which significantly increases their travel time. In such
cases, it can be beneficial to delay the departure of the connecting train, too, to allow these
passengers to catch the connecting train. The aim of the Connection Conflict Detection
and Resolution module is: to detect such connection conflicts and decide for each
connection conflict whether the connecting train should wait for the delayed passengers or
should depart on time.

The CCDR module takes the RTTP as input from the CDR and information about the
travel plans of all passengers in the system. It then detects any connection conflicts that
might be present and solves a mathematical optimization model to determine which
connections can be dropped. The objective of this module is to minimize the total delay of
all passengers in the system. The CCDR module is written in Java. The output of the
module is a list of connections that can be dropped.

4.6 The Human-Machine Interface
The Human-Machine Interface (HMI) is a module written in Java composed of two sub-
modules, the Line Describer (LD) and the Train Graph (TG). The LD uses the

033-9

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

10

infrastructure data expressed in RailML to visualize on the screen the network topology
including all the infrastructure elements like platforms, switches and signals. The user is
also allowed to stretch or rotate graphical elements on the screen for adjusting the network
visualization to his/her specific needs.

The TG instead illustrates both the planned and actual time-distance diagram of all
train services. The planned time-distance diagrams can be given by either the RTTP or the
original timetable (when no RTTP has been computed yet by the framework). Both the
RTTP and the timetable must be expressed in RailML format.

The actual time-distance diagrams realized by trains until the current time are instead
obtained directly from track occupation/release events provided by the simulated
environment HERMES. Planned and actual time-distance diagrams are respectively
represented with a thin and a thicker line.

4.7 The Automatic Route Setting
This Java module implements the routes in the simulation environment by issuing route
setting commands in the same order as established by the RTTP. Route setting commands
are issued at the “most suitable” time. On one hand, this time is early enough to prevent
trains meeting restricted signal aspects due to too late a route setting. On the other hand it
is late enough to be capable of changing route orders for as long as possible, so as to allow
more flexibility in the traffic management. Figure 2 shows the time-distance diagram
predicted by the TSP (blue solid line), the start signal S0 of route R0, the automatic block
signals S2 and S1, as well as the predicted arrival times at these signals, t2 and t1. The
most suitable time t0 to set route R0 is obtained by subtracting from time t1 the signal sight
time tS, the driver’s reaction time and the time to set the route TRD.

Figure 2: Calculation principle of the most suitable route setting time.

A route can be set if this is available on the infrastructure side (Condition A) and if the
most suitable time t0 is passed (Condition B). Both conditions are checked by algorithms
running in parallel and lead to any of the following three states of a route: i) not all route
elements are available (State 0); ii) all route elements are available (State 1); iii) the route
is actually set for a train (State 2).

S0S1S2

Automatic Block Signals

time

Entrance Signal

positiont2

t1

Time when signal S0 should be set

t0

Signal sighting
distance

Route setting and
driver reaction time TRD

tS

Start signal of route R0

route R0

033-10

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

11

Condition A is fulfilled for a route when no train occupies a track detection section
belonging to this route and no train has reserved the route. As soon as condition A is
fulfilled, the state of the route switches from 0 to 1 and condition B is checked. If
condition B is also satisfied, the route passes immediately to state 2, otherwise it remains
in state 1.

When the RTTP is updated by the CDR module all routes that are in state 2 will be
reset to state 1 and condition B will be checked again.

4.8 The Train Path Envelope Computation
A Train Path Envelope (TPE) is a sequence of time windows in which trains can drive in
an energy-efficient way without hindering the next train and/or being hindered by the
previous one. In order to avoid conflicting train operations, the DAS must define energy-
efficient train paths that are contained in these windows. For a given train, the TPE is
computed by taking into account the buffer times with the previous and the next train.
This requires the computation of blocking times for all trains, considering the sequence of
train services and the running times scheduled by the RTTP. Inputs to this module are the
RTTP, from which train sequences for all track detection sections are extracted, and a
database containing information about the energy consumption of different train types on
the track detection sections. We first combine all subsequent track detection sections
being traversed by the same sequence of trains (CTDS) in order to lower the number of
variables in the computation. Then the TPE computation is performed in three steps: i)
train movements are microscopically simulated for each CTDS of each train; ii) energy
optimal train paths are computed for each train considering as constraints the train
sequence on the CTDS and the driving times given by the previous step; iii) blocking
times on every track detection section are computed for each train assuming the train
paths provided at step ii).

The output of this module is an XML dataset that contains for each train the time
windows that can be exploited for every track detection section to minimize energy
consumption while avoiding track conflicts. The whole module is developed in Java. A
more detailed description of this module is given in [12].

4.9 The Driver Advisory System
The concept of centrally guided train control has been defined in the ON-TIME project,
which has as its main component a driver advisory system that enables the driver to
follow the train path envelope along an energy-optimal trajectory computed therein.
The main algorithmic component of such a concept is the computation of energy-optimal
train trajectories that are drivable by a human driver, i.e. that contain a limited number of
changes. Furthermore, the algorithm should cover a wide range of applications; therefore
traction specifics like engine efficiency or energy recovery from braking are not
considered. Here, an existing algorithm based on the regimes obtained through application
of the maximum principle and the application of an iterative gradient method [2] has been
extended to consider the additional restrictions of the train path envelope. The extensions
mainly consider the introduction of a new kind of optimization entity (target window
section limited by two consecutive target windows) and the process to find the optimal
times and speeds at the position of these target windows (within the restrictions given by
the perturbation management). This algorithm delivers the trajectory of the train as a
sequence of points along the train run that contain information about time, speed, distance
and driving regime. The implementation of this module is realized in Java. Different
architecture alternatives have been developed, where the computation of the trajectory can

033-11

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

12

either be directly on-board or in a central unit and then be transmitted using XML data
formats to the on-board unit.

4.10 Standardized Static and Dynamic Input/Output Data
Static and dynamic input/output data exchanged among the different modules have been
expressed in a standard format. Standardization makes data independent from the
modules, allowing easy substitution of a module with others with similar characteristics.
Having standard input/output interfaces also allows immediate applicability of the
framework to any network whose data are expressed with the same standard. Specifically,
static data regarding the infrastructure, the timetable, the rolling stock and the interlocking
are input to the framework and are represented in the standard RailML version 2.2. The
XML schemes of each one of these data types can be seen on the RailML official website
[24]. Dynamic data like the current traffic state, the RTTP, the TPEC and the energy-
efficient driving regimes of the DAS are represented with specifically designed XML
developed during the ON-TIME project. These XML schemes are respectively
represented in Table 1, Table 2, Table 3 and Table 4.

Table 1: Snippet of the standard representation of the current traffic state.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<trafficState currentTime="2013-10-21 01:02:00.000 CEST" xmlns="be.jdb.jaxb.model" >
<trainStateInArea>
 <trainID trainNumber="T00009919B"/>
 <trainPosition trackID="SEC_3" travelDirection="-1" posOnTrack="170.0"

currentTrackVacancyDetectionSection="TDS00013"
previousTrackVacancyDetectionSection="TDS00011" astOccupationTime="01:01:30 CEST"/>

 <speed>0.0</speed>
</trainStateInArea>
<trainStateInArea>
 <trainID trainNumber="T00009922B"/>
 <trainPosition trackID="SEC_58" travelDirection="1" posOnTrack="50.0"

currentTrackVacancyDetectionSection="TDS00156"
 previousTrackVacancyDetectionSection="TDS00152" lastOccupationTime="01:01:20 CEST"/>
 <speed>27.0</speed>
</trainStateInArea>

Table 2: Snippet of the standard representation of the RTTP.
<rTTP>
 <rTTPTrainView>
 <rTTPForSingleTrain trainId="T00004005">
 <tDSectionOccupation tDSectionID="TDS00120" trainID="T00004005" occupationStart="01:02:00
 CEST" routeId="routeR00095"/>
 <tDSectionOccupation tDSectionID="TDS00112" trainID="T00004005" occupationStart="01:08:37
 CEST" routeId="routeR00081"/>
 <tDSectionOccupation tDSectionID="TDS00111" trainID="T00004005" occupationStart="01:08:59
 CEST" routeId="routeR00081"/>
 </rTTPForSingleTrain>
 </rTTPTrainView>
 <rTTPInfrastructureView>
 <rTTPForSingleTDSection tDSectionId="TDS00081">
 <tDSectionOccupation tDSectionID="TDS00081" trainID="T00009926B" occupationStart="01:02:07
 CEST" routeId="routeR00050"/>
 <tDSectionOccupation tDSectionID="TDS00081" trainID="T00009921B" occupationStart="01:39:49
 CEST" routeId="routeR00052"/>
 <tDSectionOccupation tDSectionID="TDS00081" trainID="T00004005" occupationStart="01:57:58
 CEST" routeId="routeR00052"/>
 </rTTPForSingleTDSection>
 </rTTPInfrastructureView>
 </rTTP>

The current traffic state reports the current time (CurrentTime) and represents each
train on the network with the tag <trainStateInArea> specifying the train number
(trainNumber), the section (trackID) and the track detection section currently occupied
(CurrentTrackVacancyDetectionSection), as well as the track detection section occupied
previously (PreviousTrackVacancyDetectionSection).

033-12

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

13

The RTTP contains the solution of the CDR as observed from two different points of
view, namely the train and the infrastructure. The RTTP is indeed composed of two parts
called “train view” and “infrastructure view”, respectively. The “train view” is identified
by the tag <rTTPTrainView>. For each train (trainID) it reports the chronological
sequence of track detection sections to be crossed, specifying the ID (tDSectionID), the
time when the train is expected to enter them (occupationStart) and the route (routeID)
the sections belong to. The “infrastructure view” instead is identified by the tag
<rTTPInfrastructureView>. For each track detection section (tDSectionID), it gives the
chronological sequence of the trains (trainID) crossing it, the corresponding entrance time
(occupationStart) as well as the route (routeID) the section belongs to.

It is clear that these two parts of the RTTP are nothing but two different standpoints
of the same CDR solution.
The “infrastructure view” is a more suitable representation to use for the ARS module,
while the “train view” is preferred by the HMI for the visualization of train time-distance
trajectories on the screen.

Table 3: Snippet of the standard representation of the TPE.
<tpe xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <corridor train_service_id="S3521" timestamp="10/12/2018 07:28:20">

<corridorWindow position_id="startd15e30_Ut_Gdm40" time_min="90,00" time_max="90,00"
vel_min="0" vel_max="50" nonCommercialStop="false" reason="reason:StartOfEnvelope" />

 <corridorWindow position_id="TDS0_Ht0026d15e1562_41080" time_min="1243,11" time_max="6901,83"
vel_min="20" vel_max="80" nonCommercialStop="false" reason="reason: trainBeforeLeaves" />

 <corridorWindow position_id="TDS0_Ht0038d15e911_2205" time_min="1263,41" time_max="6957,06"
vel_min="40" vel_max="120" nonCommercialStop="false" reason="reason: hostTrainGoSlower" />

 <corridorWindow position_id="TDS0_NHt111d15e1433_41090" time_min="1291,26" time_max="7023,06"
vel_min="40" vel_max="120" nonCommercialStop="false" reason="reason: endOfEnvelope" />

 </corridor>
 <corridor/>
</tpe>

Table 4: Snippet of the standard representation of the DAS energy-efficient advice.
<trajectory id="traj1_S3523" obuId="127.0.0.1" timeStamp="07:31:54.832" trainId="S3523">
 <samplingPoint drivingRegime="ACCELERATION" optimalSpeed="0" position="193"

reasonCode="energyOptimisation" reasonText="Ht" time="07:52:01.000"/>
 <samplingPoint drivingRegime="CONSTANTSPEED" optimalSpeed="40" position="298"

reasonCode="energyOptimisation" reasonText="Ht" time="07:52:19.836"/>
 <samplingPoint drivingRegime="ACCELERATION" optimalSpeed="40" position="921"

reasonCode="energyOptimisation" reasonText="Ht" time="07:53:15.892"/>
 <samplingPoint drivingRegime="CONSTANTSPEED" optimalSpeed="80" position="1657"

reasonCode="energyOptimisation" reasonText="Ht" time="07:53:56.799"/>
 <samplingPoint drivingRegime="COASTING" optimalSpeed="80" position="2254"

reasonCode="energyOptimisation" reasonText="Ht" time="07:54:23.625"/>
</trajectory>

The Train Path Envelope reported in Table 3 gives for each train service
(train_service_id) the current time (timestamp) and the sequence of time windows
computed for each corridor (corridorWindow). Corridors correspond to track detection
sections, identified by means of the id of their borders (position_id). The time window
relative to a track detection section is determined by the lower (time_min) and the upper
(time_max) bounds, both expressed in seconds. Also the lower (vel_min) and the upper
(vel_max) bounds of the energy-efficient speed advice are given to the DAS algorithm,
together with the information on the presence of non commercial train stops
(nonCommercialStop).

The XML scheme in Table 4 provides the energy-efficient speed advice as output from
the DAS module. For each train (trainId) it is reported the current time (timestamp), the
ID of the on-board unit (obuId) and the list of switching points (samplingPoint) among
successive energy-efficient driving phases. For each switching point is it specified the

033-13

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

14

driving regime (drivingRegime), and the optimal speed in km/h (optimalSpeed), that must
be reached at the curvilinear abscissa position (in metres) at the given time.

4.11 The Web Service-Oriented Architecture
The web service-oriented architecture enables the communication among the different
modules of the framework. This is an event-based architecture where the data to be
transferred from one module to another are considered as an event. The architecture
identifies every event by means of a unique “type” identifier. Each module of the
framework can link to the architecture as a “subscriber” or “publisher” for one or more
type of event. A module is a publisher for a given event type when it produces that event
as output. Instead it is a subscriber when it needs to receive that type of event as input. If a
module is subscriber to a given event type it cannot receive events of different types
unless it is also subscribed to them. We give a simple example to clarify the concept. The
current traffic state produced by the TSM is seen by the architecture as an event of a given
type, say type A. In this case the TSM is a publisher for the events of type A. The PMM
instead is a subscriber for type A events since it takes the current traffic state as input. If
an event of a given type cannot be dispatched to one or more of its subscribers, it is stored
in a queue and transferred as soon as possible. The storage is realized by using the open-
source non-relational database MongoDB [18] while events are routed by means of the
message broker Rabbit MQ [23]. The modules interact with the architecture using a REST
service interface, exposed by a .NET module. Stress-tests showed that more than hundreds
of millions of messages per day can be efficiently handled by our architecture without any
message being lost. The architecture is scalable since all its components are capable of
scaling by adding new modules in the network. Since message payloads are not processed,
this gives flexibility in adding new event types or modifying existing ones on the fly.

Data exchanged between modules is represented using the RailML standard. Such a
feature allows faster integration of new modules and immediate applicability of the
framework to any network that uses the RailML format.

5 Application to the Iron Ore Line in Sweden

The ON-TIME framework for the real-time management of traffic perturbations has been
applied to real case studies.

Figure 3: Narvik-Svappavaara corridor on the Iron Ore line.

033-14

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

15

As follows, we provide an illustrative example of the framework when applied to
solve the case of a heavily delayed train on the Swedish Iron Ore line.

We refer in particular to the Narvik-Svappavaara corridor whose microscopic
configuration is illustrated in Figure 3, together with its geographical location. This is a
single track line crossing the border between Sweden and Norway. Twenty meet-pass
points are distributed over the network, where trains moving in opposite directions can
overtake each other. A total of 31 interlocking areas are present on the network, including
the stations of Narvik (at the northern border), Kiruna, Kirunavaara, Svappavara (at the
south-eastern border) and Sjiskja (at the southern border).

A mixed traffic pattern runs on this corridor, with a prevalence of freight trains over
passenger ones. There are freight trains running between Kiruna and Narvik (and vice
versa), which are 750 metres long and run at a max speed of 60 km/h, when loaded. Other
freight trains run instead between Svappavaara and Narvik via Kiruna, and have a length
of 600 metres with a maximum cruising speed of 100 km/h, when loaded. The local
passenger trains operate on the corridor Narvik-Kiruna and vice versa, and run at a
maximum cruising speed of 160 km/h. Some of the meet-pass points are shorter than the
freight trains’ length. For this reason, freight trains cannot meet trains running in the
opposite direction at these points, otherwise deadlocks can occur.

We analyse a perturbed scenario which assumes that freight train 9904 from Kiruna to
Narvik has an entrance delay of 40 minutes in Kiruna. This train enters the network at
03:09 a.m. instead of 02:29 a.m., as originally scheduled. We observe traffic for a total
period of 7 hours from midnight to 07:00 in the morning. In this period a total of 15 trains
are scheduled on the line, including 7 freight and 2 passenger trains directed towards
Kiruna, as well as 5 freight and 1 passenger trains directed towards Narvik.

Figure 4: ON-TIME framework operating on the Iron Ore line.

PMM

HERMES simulation
environment

TSM & ARS log

Web‐service
Architecture

ID of connected
modules

033-15

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

16

By simulating the mentioned perturbed scenario in HERMES we observe that
deadlocks occur when no specific dispatching action is taken and trains operate according
to a simple First Come First Served rule. For this reason we apply our ON-TIME
framework to optimally manage the perturbation, while allowing conflict-efficient and
deadlock-free train operations. Given the prevalence of freight trains, no train connection
is scheduled in the observed period. For this reason the CCDR module is not activated in
this case. Our application mainly focuses on solving deadlocks and conflicts by means of
optimal control measures; that is why we disregard energy efficiency by deactivating the
TPEC and the DAS modules.

Figure 4 shows our ON-TIME framework actively working to solve the defined
perturbed scenario on the Iron Ore line. Traffic is controlled in a closed-loop according to
a rolling horizon approach with a replanning interval and a prediction horizon that we set
to 2 minutes and 1 hour, respectively. This means that every 2 minutes the TSM (shown
at the top-right) estimates the current traffic state, and a new RTTP is computed for the
next hour, by the PMM (in the centre). The RTTP is then automatically implemented by
the ARS (at the top-right corner) and followed by the traffic simulated in HERMES (on
the left). The web-service architecture (at the bottom-right) enables the communication
among all the modules, which are identified by means of an alphanumeric ID, as shown in
the picture.

Each time that a new RTTP is produced, its “infrastructure view” is used by the ARS
to implement the routes in HERMES, in the same order as given by the CDR solution.
The “train view” is instead employed by the HMI to graphically visualize the RTTP on
the screen.

Figure 5: HMI showing the train path diagram and the network layout (at the bottom)

033-16

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

17

The HMI is illustrated in Figure 5 where the time is reported on the vertical axis and the
distance is reported on the horizontal axis together with a schematic representation of the
network (at the bottom). The thin green lines represent the time-distance trajectories of
each train as scheduled by the RTTP. These trajectories will therefore be updated each
time the CDR computes a new RTTP. The thicker green lines instead depict the time-
distance trajectories actually realized by the trains until the current time. This information
is derived directly from track occupation/release events sent by the simulation
environment through the architecture. The HMI highlights that when the ON-TIME
framework is applied to the perturbed traffic, trains run smoothly without any deadlock or
conflict.

Figure 6: Train path diagram obtained by using ROMA (top) or RECIFE (bottom) as CDR.

033-17

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

18

We analyse the behaviour of the ON-TIME framework for two different configurations of
the CDR module. The first configuration uses the ROMA algorithm, while the second
employs the RECIFE algorithm. The perturbed scenario has been managed therefore by
using each one of the configurations. Figure 6 shows the train path diagram obtained
when the perturbed traffic scenario is managed by using ROMA or RECIFE as CDR of
the framework. The vertical axis represents the distance while the horizontal axis reports
the time. The dashed lines depict the time-distance trajectories as originally scheduled by
the timetable. The solid lines are the time-distance trajectories realized when trains are
controlled by the framework. The delayed train 9904 is reported in red and its entrance
delay is underlined by the red arrow. As can be seen the ON-TIME framework is able to
effectively tackle conflicts and avoid deadlocks independently from the CDR algorithm
used. In this particular case the two algorithms manage the perturbation in a similar way.
The main substantial difference stays in the meeting point between the delayed train 9904
and 9171, which runs in the opposite direction. With ROMA this meeting occurs at
Stordalen (Soa) where train 9171 has a short planned stop. RECIFE instead establishes the
meeting at Abisko Astra (Ak) where 9171 does not have any planned stop.

While ROMA prefers to keep on time train 9905 by forcing train 9904 to wait for it at
Straumnsnes (NoSms), RECIFE avoids this meeting and delays the departure of 9905.
Analogously, this happens for trains 45902 and 9176 which are delayed by RECIFE in the
meeting with train 9171 running in the opposite direction.

Remark that, as mentioned in Section 4.4, the two algorithms optimize with respect to
different criteria. Furthermore, in the closed-loop, both ROMA and RECIFE keep
optimizing traffic until the end of the simulated time. Hence, in the last optimization
performed, all the traffic between 6:58 and 7:58 is tackled by the algorithms, which then
might tackle conflicts which are not observable in the train path diagrams shown.

6 Conclusions and Further Research

In this paper we present an innovative framework for the closed-loop control of railway
traffic during perturbations. Several interacting modules compose the framework. The
Traffic State Monitoring collects traffic information from the field to estimate the current
traffic state. This latter is used by the Perturbation Management Module to compute
optimal Real-Time Traffic Plans, based on traffic predictions made over a given
prediction horizon. These plans are shown for acceptance to the human dispatcher by
means of a Human Machine Interface. In case of acceptance the plans are then
automatically implemented into the field by the Automatic Route Setting module, which
sets train routes in the same order as established by the computed plan. Speed advice for
energy-efficient driving is also produced and communicated to the trains by the Driver
Advisory System module.

The main contribution our framework gives to both practice and to the literature, is the
way the different modules communicate among each other. A standard, scalable and
flexible web service architecture is responsible for storing and transferring data within the
framework. The input/output data of every module have been standardized by expressing
them in RailML format. Static data (e.g. infrastructure, rolling stock) uses the standard
RailML language, while specific XML schemes are built up for expressing dynamic data
(e.g. current traffic information and RTTP). This feature permits the immediate
application of the framework to any railway network already represented in RailML.

033-18

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

19

Scalability ensures independence from the number of modules and the amount of data
exchanged, while flexibility allows replacement of any module with another having
similar characteristics. Thanks to this latter characteristic we were able to test the
framework with different Conflict Detection and Resolution algorithms. Specifically the
ROMA and RECIFE models have been adopted.

During the ON-TIME project the framework has been tested in a closed-loop with the
traffic simulation environment HERMES for several European networks and perturbed
scenarios. The tests show the general applicability of our framework, independently from
the network topology, the traffic pattern and the perturbation considered. As an illustrative
example this paper reports the test made on the Swedish Iron Ore line for a perturbed
traffic scenario. The analysis performed constitutes a proof-of-concept to confirm that our
framework is able to automatically solve conflicts and deadlocks during perturbations.

Future research aims at including in the control loop also the interaction with the
human dispatcher by means of the HMI. Further developments will enable the
implementation of the framework in real life.

Acknowledgement
The research leading to this paper was funded by the European Union's Seventh
Framework Programme (FP7/2007-2013) in the ON-TIME project under Grant
Agreement SCP1-GA-2011-285243.

7 References

[1] Albrecht T., Goverde R.M.P., Weeda V.A., Van Luipen J., Reconstruction of
train trajectories from track occupation data to determine the effects of a
Driver Information System, Computer in Railways X, pp. 207-216, WIT
Press, 2006.

[2] Albrecht, T., Binder, A., Gassel, C.,: Applications of real-time speed control
in rail-bound public transportation systems, IET Intelligent Transport
Systems, Vol. 7 (3), pp. 305-314, 2013.

[3] Caimi G., Fuchsberger M., Laumanns M., Lüthi M., A Model Predictive
Control Approach For Discrete-Time Rescheduling In Complex Central
Railway Station Areas, Computers & Operations Research, Vol. 39, pp.
2578-2593, 2012.

[4] Carey, M., Lockwood, D., A model, algorithms and strategy for train pathing,
Journal of the Operational Research Society, Vol. 46 (8),pp. 988–1005,
1995.

[5] Chen, L., Schmid, F., Dasigi, M., Ning, B., Roberts, C., Tang, T., Real-time
train rescheduling in junction areas, Proceedings of the IMechE: Part F –
Journal of Rail and Rapid Transit, 224(6), pp. 547-557, 2010.

[6] Corman F., D'Ariano A., Pacciarelli D., Pranzo M., A tabu search algorithm
for rerouting trains during rail operations, Transportation Research Part B,
Vol. 44 (1), pp. 175-192, 2010.

[7] D’Ariano A., Pacciarelli D., Pranzo M., A Branch And Bound Algorithm For
Scheduling Trains In A Railway Network, European Journal of Operational
Research, Vol. 183(2), pp. 643–657, 2007.

[8] D’Ariano, A., Pranzo, M., An advanced real-time train dispatching system for
minimizing the propagation of delays in a dispatching area under severe

033-19

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

20

disturbances. Networks and Spatial Economics, 9(1), pp. 63-84, 2008.
[9] Hansen I.A., Pachl J., Railway Timetable and Traffic, Eurailpress, 2008.
[10] HERMES Simulator, http://graffica.co.uk/rail-traffic-

management/simulation/, last accessed November, the 1st, 2014.
[11] Higgins, A., Kozan, E., Ferreira, L., Optimal scheduling of trains on a single

line track, Transportation Research Part B, Vol. 30 (2), pp. 147–161, 1996.
[12] Jaekel B., Albrecht T., Interfacing Conflict Resolution and Driver advisory

Systems in Railway Operations, Proceedings of the 3rd international
Conference on Models and Technologies for ITS, pp. 333-343,TUD Press,
Dresden, 2013.

[13] Lüthi M., Improving the efficiency of heavily used railway networks through
integrated real-time rescheduling, PhD thesis, ETH Zurich, 2009.

[14] Mannino C., Mascis A., Real-Time Traffic Control in Metro Stations,
Operations Research 57(4), pp. 1026-1039, 2009.

[15] Mazzarello, M., Ottaviani, E., A traffic management system for real-time
traffic optimisation in railways. Transportation Research B, 41(2), pp. 246–
274, 2007.

[16] Meng L., Zhou X., Robust Single-Track Train Dispatching Model Under A
Dynamic And Stochastic Environment: A Scenario-Based Rolling Horizon
Solution Approach, Transportation Research Part B, Vol. 45, pp. 1080-1102,
2011.

[17] Metha, F., Roessiger, C., Montigel, M., Latent energy savings due to the
innovative use of advisory speeds to avoid occupation conflicts. Computers in
Railway XII, WIT Press, pp. 99-108, 2010.

[18] MongoDB, http://www.mongodb.org/, last accessed, November, 12th, 2014.
[19] ON-TIME, http://www.ontime-project.eu/, last accessed July, 24th , 2014.
[20] Pellegrini, P., Marlière, G., Rodriguez, J., Optimal train routing and

scheduling for managing traffic perturbations in complex junctions.
Transportation Research Part B: Methodological, 59, pp. 58-80, 2014.

[21] Quaglietta E., Corman F., Goverde R.M.P., Analysis of a closed-loop control
framework in a realistic railway traffic environment, Proceedings of the 3rd

international Conference on Models and Technologies for ITS, pp. 407-
418,TUD Press, Dresden, 2013.

[22] Quaglietta E., Corman F., Goverde R.M.P., Stability of railway dispatching
solutions under a stochastic and dynamic environment, Journal of Rail
Transport Planning & Management, vol. 3(4),pp. 137-149, 2013.

[23] RabbitMQ, www.rabbitmq.com, last accessed 5th November 2014.
[24] RailML website, www.railml.org, last accessed 30th October, 2014.
[25] Törnquist J., Railway traffic disturbance management: An experimental

analysis of disturbance complexity, management objectives and limitations in
planning horizon. Transportation Research Part A 41(3), pp. 249-266, 2014.

[26] Ujevic N., New error bounds for the Simpson’s quadrature rule and
applications, Computers & Mathematics with Applications, Vol. 53(1), pp.64-
72, 2007.

033-20

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015

