
Bayesian Structure Learning for the Locating
of an Unknown Number of Static Objects

by

Mink Verschure

In partial fulfilment of the requirements for the degree of

Master of Science
at Delft University of Technology,

to be defended publicly on 23-7-2025.

Faculty: Mechanical Engineering
Department: Cognitive Robotics

Mentors / Supervisors: Martijn Wisse

Graduation committee: Martijn Wisse
Reza Sabsevari
Arkady Zgonnikov

An electronic version of this thesis is available at http://repository.tudelft.nl

http://repository.tudelft.nl/

Keywords:
Bayesian
Structure Learning
Object Locating

Abstract
This paper presents a method which is capable of creating an object centered world
description based upon consecutive measurements about an unknown number of
static objects using Bayesian inference. The objects are represented by a two
dimensional position, with the aim of adding more attributes in future works. This
objective is reformulated into a clustering problem which is then solved using a
structure learning method. It is implemented using RxInfer [1] which uses the
message passing algorithm in combination with factor graphs to perform Bayesian
inference. The results indicate a promising performance of the structure learning
model, but also show signs that the object representation has been over simplified.
The future works section provides guidance on how the model complexity can be
increased by adding additional attributes in order to improve performance.

Bayesian Structure Learning for the Locating of an
Unknown Number of Static Objects

Report
Master Thesis

TU Delft, 15-07-2025

Author
Mink Verschure

4906020

Supervisor
Martijn Wisse

Abstract—This paper presents a method which is capable of
creating an object centered world description based upon consec-
utive measurements about an unknown number of static objects
using Bayesian inference. The objects are represented by a two
dimensional position, with the aim of adding more attributes in
future works. This objective is reformulated into a clustering
problem which is then solved using a structure learning method.
It is implemented using RxInfer [1] which uses the message
passing algorithm in combination with factor graphs to perform
Bayesian inference. The results indicate a promising performance
of the structure learning model, but also show signs that the
object representation has been over simplified. The future works
section provides guidance on how the model complexity can be
increased by adding additional attributes in order to improve
performance.

I. INTRODUCTION

Labour shortages are on the rise due to an ageing society.
In the Netherlands, it is expected that the labour force will
shrink with 7% in the period 2015-2035 [2]. Already these
shortages are visible in branches such as construction and
healthcare. The field of robotics proposes a partial solution
to this problem. Well developed robots can assist workers
to improve their productivity or autonomously perform jobs
for which no labour is available. For example, the warehouse
industry has proven to be a place where robots can efficiently
be deployed [3]. However, the environment of a warehouse is
altered to better suit the behaviour of the robots in operation.
Sometimes to such a degree that human workers face unsafe
conditions [4]. In industries like construction and healthcare,
the environments cannot be adapted to suit the robotic needs,
and it is the complexity of these environments that proves
to be problematic in the development of robotics for these
industries. A good example of this is the limited success in the
development of self-driving cars despite the enormous effort
from numerous car manufacturers [5]. In contrast, humans can
operate almost effortlessly in all of these environments. Thus,
the advancement of robotics in certain fields might be inspired
by the operating mechanism of humans.
For some time now, neuroscientists have been describing the
human brain as a Bayesian statistical inference machine [6].
This model formulates a variational Bayesian process that
explains the two fundamental occupations of any organic
system: interpreting observations and performing actions.
Within the context of robotics, this variational approach,
also known as active inference, has already been used to
construct an adaptive controller for robotic manipulators

[7]. However, the field of robotics has yet to adapt active
inference inspired Bayesian methods for the interpretation of
observations. Here a method is formulated to perform the
cognitive task associated with interpreting observations from
multiple objects.

The goal of this paper is to present a method which is
capable of creating an object centered world description based
upon consecutive measurements about an unknown number of
static objects using Bayesian inference. The objects considered
here will only have two attributes, namely a two dimensional
position, with the aim of adding more attributes in future
works. The presented method will therefore need to be of
flexible nature, such that complexity can be added when
desired.
Scientific relevance can be motivated by a principle first
design approach. The only constraint on the method is the
use of Bayesian inference and the only assumption is in the
description of the objects. This results in a sensor agnostic
solution which can be modified for different intentions.

This paper will contain the following elements. Section II
will show the analogy between the goal stated above and
a clustering problem. This allows the problem formulation
to be rewritten as a clustering problem. Following this, a
Bayesian inference method called message passing will be
explained in section III. Section IV will continue to expand
the mathematical context needed to understand the method by
introducing a structure learning method. The exact clustering
method as well as the process used to evaluate this method
are given in section V. Section VI presents the results and the
discussion is written in section VII. The paper is wrapped up
in sections VIII and IX containing some possible guidance for
future works as well as the conclusion.

II. PROBLEM FORMULATION AND DATA CREATION

This section discusses how the presented method is solving
a clustering problem. This is best visualized by the structure
of the data used to access the performance of the presented
method. A robot gathering information about a limited region
of their surroundings can be modeled by considering a small
patch of an image as a measurement about that image. Thus,
the concept of surroundings, or scene, is approximated with a
single image.

Figure 1 is an example of a scene that will be used to obtain
the results given in section VI. Patches are cropped from
this image, on which YOLO11 [8] is used to perform object
detection. This is visualized in figure 2. The center from each
of these object detections is interpreted as a measurement.
A number of these measurements from multiple patches can
be visualized over the original image, resulting in what is
shown in figure 3. Note that this visualization requires there to
be a known transformation between coordinates in the patch
frame and coordinates in the original image frame. Since these
patches are generated, this transformation is known. Section
V-B will specify how the transform was obtained during the
evaluation of the method.

Fig. 1. An image that will serve as a scene for testing the method.

Fig. 2. A patch of the image displayed in figure 1. YOLO11 is used to detect
objects and visualize their bounding boxes.

Figure 3 should convince the reader that the objective as
formulated in the introduction translates to a clustering prob-
lem. Each object in a scene can be thought of as radiating
observations which end up in close proximity, forming clusters
as result. Therefore, to achieve the goal of this paper, a method
is required that is capable of assigning a measurement to an
existing cluster or introduce a new cluster if the measurement
originated from a previously unobserved object.

III. BAYESIAN INFERENCE AND MESSAGE PASSING

The solution to the clustering problem is programmed using a
package called RxInfer. RxInfer implements a Bayesian infer-
ence method which relies on factor graphs and the message

Fig. 3. This is the original image overlaid with data points gathered from
multiple patches. Each data point represents the center of a bounding box as
detected by YOLO11.

passing algorithm to perform inference [1]. To understand the
workings of RxInfer, both of these concepts will briefly be
introduced.

A. Factor Graphs

Factor graphs are a form of graphical models which explicitly
represent how the joint probability of a probabilistic model
decomposes into a product of factor functions [9]. In the par-
ticular notation used here, each factor function is represented
by a node on a graph. The edges of this graph that link these
factor functions together then represent the random variables
present in the probabilistic model. Figure 4 is an example of
such a factor graph. It represents a simple probabilistic model
composed of two latent variables s1 and s2 and an observable
variable y.

Fig. 4. An example of a factor graph consisting of two latent variables s1
and s2 and an observable variable y. These variables are associated with the
edges of the graph that connect the factor functions fa, fb and fc together.
The small black square represents a special kind of factor function introduced
when a specific value y = ŷ is observed. Its factor function is of the form
δ(y − ŷ).

In general, the joint distribution of a factor graph is given by
[9]:

p(x1, . . . , xn) =
1

Z

∏
a

fa(xa) (1)

In this equation, Z is a normalization constant such that
the resulting distribution is normalized and xa represents the
subset of random variables that fa is a function over. Thus the
joint distribution of the factor graph depicted in figure 4 can
be written as

p(s1, s2, y) ∝ fa(s1)fb(s1, s2)fc(s2, y) (2)

One thing still unexplained is the small black square in figure
4. Technically it also represents a factor function just like
fa and fb. It represents a special kind of factor function
indicating that the random variable y has been observed [10].

If ŷ represents the observed value, the black square will have
a factor function of the form δ(y− ŷ). This clamps the random
variable y to the observed value ŷ. Effectively, this changes
the unobserved probabilistic model p(x, y) into an observed
probabilistic model, with a factorization as

p(s1, s2|ŷ) ∝ fa(s1)fb(s1, s2)fc(s2, y)δ(y − ŷ) (3)

B. Message Passing

Message passing, as implemented by RxInfer, uses these
factor graphs to provide a scalable Bayesian inference method
[1]. To motivate its advantages, a brief introduction of
Bayesian inference is needed.

In a probabilistic model of the form p(s, y) = p(s)p(y|s),
Bayesian inference is concerned with finding the posterior
probability p(s|ŷ). Here s represents a set of latent variables
present in the model. Bayesian inference revolves around the
well-known rule of Bayes. [10]

p(s|ŷ)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(ŷ|s)

prior︷︸︸︷
p(s)

p(ŷ)︸︷︷︸
model evidence

(4)

Bayes’ rule describes how the posterior is related to the like-
lihood, the prior and the model evidence. Though simplistic
in form, a practical direct implementation of Bayes’ rule can
prove to be troublesome for two reasons. Firstly, where the
likelihood and the prior are often known within a probabilistic
model [10], the model evidence has to be calculated through
the following integral

p(ŷ) =

∫∫
p(ŷ|s)p(s)ds (5)

This describes a integral over all possible values of the latent
states s which often becomes intractable for higher dimensions
of s [7]. Secondly, often the interest is not in obtaining a full
posterior over s, but over a marginal posterior over a single
latent variable si [11]. From p(s|ŷ) the marginal posterior can
be calculated as

p(si|ŷ) =
∫∫∫

p(s|ŷ)ds\idy (6)

It may be evident that equation 6 suffers from the same
problems due to the dimensionality of s as equation 5.

The message passing algorithm provides a method for cal-
culating these marginal posteriors which only relies on low
dimensional integrals over local variables [11]. Conceptually
it does this by sending messages over the edges of a factor
graph as discussed in section III-A. Mathematically, it is the
factorization presented in equation 1 that allows for equation 6
to be simplified [11]. For example, with the factorization given

in equation 3, the marginal posterior p(s2|ŷ) can be calculated
as

p(s2|ŷ) ∝
∫

fa(s1)fb(s1, s2)fc(s2, y)δ(y − ŷ)ds1dy

=

∫ −−→µs1︷ ︸︸ ︷
fa(s1) fb(s1, s2)ds1︸ ︷︷ ︸

−−→µs2

·
∫

fc(s2, y)

←−µy︷ ︸︸ ︷
δ(y − ŷ) dy︸ ︷︷ ︸
←−−µs2

(7)
The groupings highlighted by the braces in this equation can
be interpreted as messages being sent over a factor graph as
is visualized in figure 5. Equation 7 shows that the marginal
posterior of s2 can be written as p(s2|ŷ) ∝ −→µs2

←−µs2 , i.e. the
product of two messages travelling in opposite direction over
the same edge. Here it is important to realize that messages
are always a function of the variable corresponding to the edge
they are travelling over [12]. In general, the calculation of a
marginal posterior over any latent variable si can be written
as [10]

p(si|ŷ) =
−→µsi
←−µsi∫ −→µsi
←−µsidsi

(8)

Figure 5 below expands the previously used example of a
factor graph with the messages that are send over the graph.

Fig. 5. This figure represents the same factor graph as displayed in figure 4,
but the messages travelling over the edges of the graph are added.

In general, message are of the form [10].

−→µsi =

∫
fa(sa)

∏
j∈ε(a)
j ̸=i

←−µsjdsa\i (9)

Where −→µsi represents an outgoing message of factor fa over
edge si and ε(a) is the set of all edges connected to node a.
This allow

∏
j∈ε(a)
j ̸=i

←−µsj to be interpreted as the product of

all incoming messages on factor fa except for the incoming
message travelling over edge si. Since equation 9 defines one
message based upon other messages, they display a recursive
behaviour. This recursion finds natural termination points in
factors describing prior distributions and factors describing
observed variables.

This method of message passing is often called Believe Prop-
agation or Sum Product message passing [13]. Under strict
conditions, such a acyclic factor graph and factors belonging
to the same family of exponential functions, the messages
will have analytic form and the method described here will
result in an exact Bayesian inference solution [14]. In practice
it might be difficult to find these analytical solutions, such
that numerical integration is needed. In this case, the message

passing algorithm can be reformulated to minimize the Bethe
free energy [15].

IV. STRUCTURE LEARNING

To deal with scenes that contain an unknown number of
objects, an adaptive solution is required. Structure learning
is such a solution. In the context of clustering, it is capable
of assigning new measurements to existing clusters or initiate
new clusters [16]. The structure learning method used here
relies on the message passing algorithm in addition to a
mixture node. Before further discussing structure learning, the
working of this mixture node must be explained.

A. The Mixture Node

The mixture node is introduced in [17] with the goal of
performing automated model comparison in factor graphs.
Conceptually, the mixture node combines K probabilistic
models which all contain similar, or overlapping, factors and
variables fo(so, yo). These K models are referred to individual
model. A variable m is introduced to perform the selection
over the indiviual models. m is a normalized vector of length
K with every element mk ∈ {0, 1}. The individual models
are indexed and represented as p(sk, yk|mk = 1). A mixture
model, containing all individual models is then defined as [17]

p(s, y,m) = p(m)

K∏
k=1

p(sk, yk|mk = 1)mk

= p(m)fo(so, yo)

K∏
k=1

(
p(sk, yk|mk = 1)

fo(so, yo)

)mk

(10)
This equation indicates that the overlapping part of all the
individual models can be isolated and treated separately. The
step taken in equation 10 can be visualized as is done in figure
6. The left part indicates the overlapping part of K individual
models which are combined in the right part using the mixture
model.

Fig. 6. The left part indicates the overlapping part of K individual models
which are combined in the right part using the mixture model. This figure is
inspired by a figure presented in [17].

The exact definition of the messages sent along this factor
graph are not given here. They can be found in [17].
Conceptually, the message sent over sj to fo is a weighted
sum of the messages sent over sj |mk=1 to the mixture node.
The weights in this sum are the values of mk. The real power
of the mixture model is that messages are also defined such
that m is adjusted to give greater weights to models that

provide a better explanation of the variable sj .

On its own, the mixture node can be used to formulate a model
capable of performing inference in a setting where the number
of objects is known. Such a model, capable of inferencing
over two one-dimensional objects, is constructed below. The
resulting model serves as a base model which is extended with
structure learning to deal with an unknown number of objects.
In this model a measurement will only contain information
about the position of one object and it is unknown from
which object this measurement originated. The factorization
of an individual probabilistic model for a single object can be
written as p(xi, y) = fa(xi)fb(xi, y), where xi represents the
position of object i and y a measurement about this position.
If then fa(xi) is taken to represent a prior believe about
the position of an object p(xi), and fb(xi, y) describes the
likelihood distribution p(y|xi), the individual models can be
described as

p(x1, y|m1=1) = p(y|x1,m1=1)p(x1)

p(x2, y|m2=1) = p(y|x2,m2=1)p(x2)
(11)

Note that thus far there are no shared factors, as should be
the case for a system where neither the objects themselves,
nor the measurements influence each other. The shared factor
is introduced by the act of taking the measurement, and the
uncertainty it introduces about the origins of the measurement.
Including the factor function responsible for describing this
measurement, the observed individual models can be written
as

p(x1|m1 = 1, ŷ) ∝ δ(y − ŷ)p(y|x1,m1 = 1)p(x1)

p(x2|m2 = 1, ŷ) ∝ δ(y − ŷ)p(y|x2,m2 = 1)p(x2)
(12)

These models have an overlapping observation factor. The
mixture model as defined in equation 10 also require a prior
belief about our selection variable. In this case, the selection
variable models the probabilities of the measurement belong-
ing to either object 1 or 2. Since it is unknown from which ob-
ject the measurement originated p(m1=1) = p(m2=1) = 0.5.
This prior can be described by a categorical distribution as
p(m) = Cat([0.5, 0.5]) such that m1 = m2 = 0.5. Following
equation 10, the probabilistic mixture model for this example
can be formulated as.

p(x1, x2,m|ŷ) ∝ δ(y − ŷ)p(m)[(p(y|x1,m1 = 1)p(x1)]
m1

· [p(y|x2,m2 = 1)p(x2)]
m2 (13)

A factor graph of this mixture model is presented in figure
7. This mixture model is capable of inferring the likelihood
of a measurement belonging to a certain objects through the
calculation of p(m|ŷ), as well as calculating the posterior
believes about the positions of the objects p(x1|ŷ) and p(x2|ŷ).

Fig. 7. This figure displays a factor graph which utilizes a mixture node to
relate a single measurement to two objects.

B. Infinite Mixture

In general, structure learning allows not only for inferencing
about individual model parameters, but it additionally allows
for the inferencing of the model structure itself [16]. What
will follow is an explanation that is limited to the conceptual
workings of a structure learning method as presented in [16].

Fundamentally, the structure learning method describes an
infinite mixture model. It combines this mixture model over
an infinite amount of clusters with the update rule associated
with the Dirichlet process and a constraint upon the selection
variable. To make it feasible to handle an infinite amount of
clusters, all the clusters are considered either active or inactive.
This categorization allows for all the inactive clusters to be
grouped together and be treated as a single cluster. In this
context, the process of structure learning can be thought of as
moving a cluster from the inactive group to the active group,
thereby increasing the number of detected clusters by one.

The first part central in the ability to increase the number of
active clusters is the Dirichlet process. The model discussed in
[16] reformulates the selection variable into a cluster assign-
ment probability cn. It is modelled by a categorical distribution
given some event probabilities π: p(cn|π) = Cat(cn|π).
These event probabilities π are in turn distributed according
to a Dirichlet distribution. The update rules of the Dirichlet
distribution effectively turn π into an occurrence counter. An
example value of π could be [2, 1, α]. This would indicate
that the cluster associated with the first index was observed
twice and the cluster associated with the second index is
only observed once. Special attention is needed for the value
represented by α. This is a concentration parameter related to
the chance of a measurement belonging to the group of inactive
clusters. The value of α therefore influences how likely the
model is to activate a new cluster. Should a measurement
activate another cluster, the value of π would change to
[2, 1, 1, α].

The second important part of the structure learning model
is a constraint which describes that each measurement is
only capable of being assigned to a single cluster. This is
enforced by setting a constraint on the approximate marginal

distribution q(cn)

q(cn) = δ[cn − ek]

s.t. k = argmax
k

−→µcn(cn = ek)
←−µcn(cn = ek) (14)

This constraint ensures that inference is only performed for the
cluster which best explains the measurement. It is a necessary
constraint to limit the complexity of the clustering problem
with an unknown number of objects. Should it not be enforced,
the non-zero probability of any measurement belonging to
the group of inactive clusters would be enough to activate
a new cluster. One would end up with just as many clusters
as measurements.
Finally, to make inference possible, a prior over the parameters
of inactive clusters must be defined. This prior is sometimes
called the base distribution and is notated as G.

V. METHOD

The previous sections discussed most of the necessary prior
knowledge to the model that will be introduced here. This
model comprises of two structure learning models linked by a
single cluster assignment variable. The model will be evaluated
by comparing its performance on different scenes. This section
will provide a detailed description of the model as well as
elaborate on the test process.

A. The Model

As briefly stated, the current implementation of the model con-
sists of two structure learning models side by side. This means
that one cluster selection variable is used for both models.
Each individual structure learning model handles a different
attribute of the objects, in this case the two coordinates of the
objects on our image plane u and v. A full factor graph of the
model with K activated clusters is visualized in figure 8.

Fig. 8. This figure is a factor graph of the model that will be used for
clustering when K clusters are activated. It is composed from two structure
learning models as discussed in section IV, which share the selection variable
cn. In this graph uk and vk belong to the two coordinates of the same cluster
k.

In this model, uk and vk represent the two coordinates of
the same cluster k. Prior believes about these coordinates
are written as p(uk) and p(vk). The base distributions are
marked by Gu and Gv . The likelihood functions p(ynu|u) and
p(ynv|v) are of the form N (u, zu) and N (v, zv) respectively.
Here, N is taken to be a normal distribution defined by a

mean and variance. Lastly, the cluster selection variable cn
has the same definition and dependency on α as explained in
section IV-B. The specific values of zu, zv and α, as well as
the distributions Gu and Gv will be given in section V-B.
Two distinct design choices need some motivation. To start,
the comparison of a sub graph containing a single mixture
node from figure 8 and the graph presented in figure 7,
reveals a slight discrepancy. As mentioned, figure 7 represents
a mixture model to infer the positions of two one-dimensional
objects. The observation was made that the overlapping part
of the individual models is the factor function describing the
observed value. However, figure 8 displays a graph where
the location of the mixture node in the graph serves as an
indication of overlapping likelihood functions in the individual
models. This seems to be in contradiction with the claims
made in section IV-A. To clarify, it is the enforcement of the
constraint formalized in equation 14 that effectively causes the
mixture node to collapse into a single individual model. As
mentioned, this ensures that a measurement only affects the
selected cluster. It is this behaviour that makes it possible to
consider an overlapping likelihood function and in doing so
simplify the model.
A second design choice that needs motivation is the use of
two structure learning models. The two models share identical
graphs, for they describe two identical phenomena: each rep-
resents the inference over a single coordinate. If multivariate
versions of the distributions were used this would greatly
simplify the graph. This is how the original paper introduced
the structure learning method [16]. In order to demonstrate the
flexibility of the method, the choice was actively made not to
do this. If a single cluster selection variable is able to be used
for two structure learning models, each representing a distinct
attribute of an object, future works have a straight forward
method of increasing the number of attributes. Section VIII
will continue with this train of thought.

B. Test Process

A description of the test process requires the discussion of
four different elements: the scene selection, data generation,
model parameters and performance metrics. This section
provides the details for these elements in addition to a fifth
section which describes the additional testing done to evaluate
the model behaviour for increased levels of noise.

1) Scene Selection & Data Generation: Testing the method
is done using the five different scenes presented in figure
9. These scenes where chosen to represent a wide range of
challenges for the model. Scene 1 is chosen as an easy scene.
The objects are well separated and all lie on a 2D plane
orthogonal to the viewing direction. Scenes 2 and 3 are chosen
for the variety in object sizes they contain with different levels
of object sparsity. Scene 4 is included to present a chaotic
scene with many overlapping objects. Finally, the fifth scene
is included for the many objects it contains.
From these scenes, the data is generated as described in section
II. The data generation method requires a transformation

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

(e) Scene 5

Fig. 9. The five different scenes used for evaluating the model.

to be known between the patch coordinates and the scene
coordinates. Within the context of robotics, this is analogous to
transforming measurements to a world frame using odometry
data. To mimic uncertainties in the odometry data, three
different levels of Gaussian distributed noise are added to the
known and exact transformation during data creation. These
levels are: no noise, noise with a standard deviation of 20px
and noise with a standard deviation of 50px. Any future
reference of ”added noise” refers to this process of adding
noise to the transform between coordinates in the patch frame
and coordinated in the original image frame. The data for each
scene was created using 100 randomly located patches.
2) Model Parameters: To allow for a more general definition
of the parameters mentioned in section V-A, the coordinates
of the scene are scaled such as to have values in the range
[0, 1]. Then Gu = Gv = N (0.5, 1) for the uninitialized
clusters. A uniform distribution on the interval [0, 1] would
be a more appropriate choice for Gu and Gv , but using a
normal distribution allows for the solution to be an exact
Bayesian solution as mentioned in III. The measurement noise
parameters zu and zv are adjusted for performance depending
on the scene without added noise. The discussion in section
VII provides a motivation for why this is done. The parameter
α as introduced in section IV was set at a value of 10

1
100 .

Some pretesting indicated that this value yielded good results.
The scene did not seem to matter for a good value of α.
3) Performance Metrics: To measure the performance of the
model, the inference results are compared to the objects

detected by running YOLO over the entire image. These
detected objects are considered to be the ground-truth objects.
The comparison between the inference results and the ground-
truth objects is done in two steps. Firstly, subsets of centers
from inferred clusters and ground-truth objects are categorized
in three categories: ”correct”, ”merged” and ”split”. A correct
cluster indicates that a corresponding pair is found between
the inference results and the ground-truth. A merged cluster
indicates that measurements originating from two or more
ground-truth objects are inferred to belong to a single cluster.
This setting is scored by counting one correct cluster and one
or more merged clusters. A split cluster indicates that mea-
surements form one ground-truth object resulted in multiple
clusters during inference. This setting is scored by counting
one correct cluster and one or more split clusters. The relative
occurrences of these categories are presented. In the second
step, the distance between each pair of inferred cluster center
and ground-truth object is calculated. The distribution of these
distances is presented with a boxplot and serves as a secondary
indication of model performance.
4) Noise Dependency: In addition to what is described above
in section V-B1, the performance metrics are evaluated for
additional settings to observe how the model performs for
different levels of added noise. To this end scenes 3 and 4 are
scored with the additional noise levels of 75, 100, 125, 150
and 200px. The hypothesis is that adding noise will gradually
decrease the performance of the model.

VI. RESULTS

The results consists of three parts. To start, the inference
results for four scenes is presented. These inference results
contain the inferred clusters as well as a visualization of
which data points are assigned to which clusters. Secondly, the
performance metrics are visualized for each setting mentioned
in section V. To aid in the interpretation of these performance
metrics, additional figures which include ground-truth detec-
tions are provided. Finally, the results for testing the noise
dependency of the model are visualized.

A. Inference Results

Figures 10 to 13 display the results of the clustering method on
the four selected scenes. Each figure contains the data points,
coloured such that points assigned to the same cluster have
the same colour. The center of each cluster is marked with a
black cross. Each figure has an additional black cross in the
exact center of the image with no points assigned to it. This
marks the center of the distribution describing the uninitiated
clusters. The reported number of identified clusters will not
include this uninitiated cluster.
Figure 10 shows a scene of some parked cars along a street.
It can be seen that 6 distinct clusters are identified. The three
closest cars as well as a traffic sign above the third car are
clustered correctly. All measurements originating from cars
further down the street are assigned to the same cluster. This
is an example of merged clusters.

Fig. 10. A scene of parked cars along a street. The added noise on the
transform between the patch coordinates and the scene coordinates has a
standard deviation of 50px. The measurement uncertainty during inference
is set at 1/1400 relative to the image size. 6 Clusters are identified during
inference.

Figure 11 displays a scene of some dishes next to a sink.
During inference 12 clusters are found. Remarkably, the spoon
sticking out from the bowl is correctly assigned a separate
cluster from the bowl itself. The fork and spoon lying on the
counter are separated less well and measurements originating
from the glass are split into two clusters. The cluster identified
by the yellow points in the bottom right corner belong to the
sink.

Fig. 11. A scene of some dirty dishes next to a sink. The added noise on the
transform between patch coordinates and scene coordinates has a standard
deviation of 20px. The measurement uncertainty during inference is set at
1/2000 relative to the image size. 12 Clusters are identified during inference.

Figure 12 shows the scene of a dinner table as seen from
the top down. 13 Clusters are identified during inference.
Firstly, no measurements seem to originate from the left plate.
Secondly, a lot of measurements seem to be centered in
the middle of the image. This can be explained by YOLO
detecting an entire patch as a ”dinner table”. Data points
originating from this ”dinner table” are split over six clusters.
Finally, Some clusters seem to be sharply defined such that

only measurements originating form objects associated with
these clusters are assigned to them. This seems to be the
case for the fork, cup and knife located in the upper part
of the figure. Other clusters seem to be less sharp. They
seem to include measurements belonging to other objects than
the object with which the cluster is associated. This can be
observed for the knife, bowl, cup and spoon located in the
bottom part of the figure.

Fig. 12. A scene of a set dinner table as seen from the top down. The added
noise on the transform between patch coordinates and scene coordinates has
a standard deviation of 20px. The measurement uncertainty during inference
is set at 1/800 relative to the image size. 13 Clusters are identified during
inference.

Figure 13 shows the scene of some football-sized balls stored
in racks. During inference 39 clusters were identified. This
figure shows inference in scene with a much larger number
of objects than the other scenes. What is interesting in this
particular figure, is that some partially occluded balls in the
rack are also correctly clustered.

Fig. 13. A scene of two racks filled with football-sized balls. There is no noise
added to the transform between patch coordinates and the scene coordinates.
The measurement uncertainty during inference is set at 1/5000 relative to the
image size. 39 Clusters are identified during inference.

B. Performance Metrics

The performance metrics evaluated for each of the five scenes
with the discussed three levels of noise are given in figure
14. The relative occurrences of clusters marked ”correct”,
”merged” or ”split” are displayed in the top graph. The bottom
graph contains several box-plots to represent the distribution
of distances between inferred clusters marked ”correct” and
the corresponding ground-truth objects. It can be observed
that each scene obtains similar scores, seemingly not directly
correlated with the amount of noise added. The best results
were obtained for scenes 4 and 5. The model scored worst on
scenes 2 and 3. To aid in the interpretation of figure 14 as will
be done in section VII, figure 15 displays both the locations
of inferred clusters, represented by the blue dots, as well
as the location of ground-truth detected objects, represented
by the red dots. Most pairs of inferred clusters and ground-
truth objects are in close proximity of each other. There are
some inferred clusters for which no corresponding ground-
truth object is detected.

C. Noise Dependency

The results of tests done to determine the performance of the
model for different amounts of noise added are presented in
figure 16. For both scenes, performance metrics start to worsen
for added noise with a standard deviation greater than 50px.
The relative occurrences of clusters labelled ”correct” decrease
with a simultaneous increase in the number of clusters labelled
”split”. In addition to this, the distributions describing the
distances between clusters labelled ”correct” and ground-truth
objects seem to gravitate to higher values as the amount of
added noise is increased.

VII. DISCUSSION

The results from section VI showcase the method being
applied to a broad range of scenes. Considering this method
performs 2 dimensional clustering about objects placed in a 3
dimensional world, the results can be interpreted to be surpris-
ingly good. Figures 10 to 13 show that obvious clusters are
correctly identified. Evidently the model is capable of handling
scenes with multiple objects, proving the usefulness of the
structure learning model. Some remarks on the performance
indicated by the results are worth discussing. The results of
the noise dependency tests are discussed at the end of this
section.
The first remark is about the effect of hallucinated objects
on the model. It is known that YOLO sometimes hallucinates
the existence of objects [18], and more obviously, sometimes
misses them. Though missed object detections are hard to
identify and possibly easily solved by multiple observation
over roughly the same area, hallucinations are harder to detect
and solve. These hallucinations are present in the data and
lead to the activation of new clusters or are assigned to
existing clusters. Figure 11 shows an example of a cluster
being initiated due to hallucinations in the left part of the figure
between the knife and the modern style teapot. Something
similar happens in figure 13 with the most right clusters in

Fig. 14. The performance metrics evaluated for each scene and noise level as indicated by the labels on the horizontal axis. The top graph visualizes the
relative occurrence of correctly inferred clusters as well as merged and split clusters. A merged cluster indicates that two ground-truth objects are inferred to
belong to a single cluster. This setting is scored by counting one correct cluster and one merged cluster. A split cluster indicates that one ground-truth object
is resulted in multiple clusters during inference. This setting is scored by counting one correct cluster and one split cluster. The bottom graph displays the
distributions of distances between pairs of corresponding ground-truth objects and clusters marked ”Correct”. The distance is presented relative to the image
size.

Fig. 15. The inference results of scene 4 together with the ground-truth
object detection. The centers of the inferred clusters are represented by blue
dots. The centers of the ground-truth detected objects are presented in red.
The add added noise on the transform between patch coordinates and scene
coordinates has a standard deviation of 20px. An additional blue dot is present
in the center of the scene. This dot represents the uninitiated clusters.

the figure. Since these hallucinations originate from YOLO,
the model technically still does a good job when clustering
them together. Section VIII will briefly discuss the desirable
behaviour of the model to be able to distinguish hallucinated

cluster from actual objects.

The second point worth discussing relates the definition of
measurement uncertainty with object size in combination with
occlusion. Traditionally, measurement uncertainty is a measure
describing a statistical upper bound on the difference between
a reported value and an actual value [19]. But within the
context of the method and application described in this paper,
some ambiguity seeped in. A traditional interpretation still
holds: when YOLO detects an object, creates a bounding
box and then reports the center of this bounding box, the
reported center of the object will deviate from the actual
center of the object. Consecutive measurements, each with
minor insignificant changes, will report a value close to,
but not exactly the same as the previous reported value.
But with the introduction of partial observations and when
dealing with finitely small objects, a second interpretation of
measurement uncertainty is introduced. This is best explained
by an example. Lets look at figure 10 and specially the car on
the left. In some patches the entire car will be visible, with
a reported center located roughly in the middle of the car.
In other patches either the front or the rear of the car will
be occluded, resulting in the reported centers being shifted
to one of both sides. Thus introducing a secondary, much
greater, spread of measurements which is directly related to
the apparent size of the object. The current implementation

Fig. 16. The performance metrics evaluated for scenes 3 and 4 were noise is added to the transform with a standard deviation varying between 0−200px. The
top graph visualizes the relative occurrence of correctly inferred clusters as well as merged and split clusters. A merged cluster indicates that two ground-truth
objects are inferred to belong to a single cluster. This setting is scored by counting one correct cluster and one merged cluster. A split cluster indicates that
one ground-truth object is resulted in multiple clusters during inference. This setting is scored by counting one correct cluster and one split cluster. The bottom
graph displays the distributions of distances between pairs of corresponding ground-truth objects and clusters marked ”Correct”. The distance is presented
relative to the image size.

sets one measurement uncertainty for all measurements within
a scene, which imposes a limitation that is clearly visible in
figure 12. The dinner table in figure 12 is much larger than any
other object in the scene, thus the spread in its measurements is
much greater. When setting the measurement uncertainty such
that the smaller objects are well clustered, the measurements of
the table are incorrectly spread over multiple clusters. Section
VIII will provide a conceptual solution to the problem this
poses.

Finally, two main observations can be made from figure 14:
performance varies greatly between scenes and there is hardly
any difference in performance for the same scene at different
noise levels. Coincidently, the previous topic of discussion
provides a suitable explanation for both of these observations.
The first observation leads to the belief that the performance in
a scene is related to the variance in object size present within
this scene. The scenes that resulted in the worst performance,
scenes 3 and 4, were the scenes with the greatest variance
in objects. In contrast, scenes 4 and 5 resulted in the best
performance and contained much less variance in object sizes.
The second observation might be a sign that the added noise
in the transform is relatively small compared to the variance
in measurements introduced due to the size of objects.

A. Noise Dependency

The results form figure 16 fall in line with the expectation
of gradually decreasing performance as the amount of added
noise increases, but only partially. As is discussed previously
and already visibly in figure 14, the performance seems
to be steady for the first 2 or 3 settings of each scene.
Only after this does the performance start to degrade. The
results of this experiment are inconclusive. Further research
is warranted for a more comprehensive understanding of the
models performance in the presence of noise.

VIII. LIMITATIONS AND FUTURE WORKS

Looking back on the method discussed in this paper in com-
bination with the obtained results, nothing more than a critical
review and suggestions for improvement are suitable. This
section will facilitate this review and provide some speculation
on how dynamics might be introduced to this model.

A. Model Complexity

A clear limitation in the method as described in section V is
the fact that only the two dimensional position of the objects
is taken into account for clustering. Rather unsurprisingly,
and verified by the results, objects cannot be abstracted down
in to a two dimensional position and still be consistently
separated into distinct objects. As discussed in section VII,

this clustering method clearly struggles when objects vary in
size or get to close to one another. The argument that is made
here, is that both of these issues might be solved by increasing
the model complexity.
To start, increasing the number of attributes which define an
object might directly correlate to a better performance. In the
clustering sense, every added attribute would add another axis
over which objects can be different. This could increase the
distance between cluster centers allowing for a more accurate
reconstruction. Some obvious attributes to add would be the
size, type and colour of an object. During the work on the
results presented in this paper, extensive efforts were made to
allow for the inference over discretely distributed attributes.
This would allow for the model to be extended with an
attribute for the objects’ class. The results of these efforts are
presented in the appendix.
In addition to this, the likelihood function can be adjusted
for better performance when dealing with objects of different
sizes. The observations in section VII clearly state that there
is a relation between object size and the spread of the
measurements. If the size attribute is added to the model,
the likelihood models for the position measurements could be
adjusted to take into account the believe about the size of the
object.

B. Dynamics

The inclusion of dynamics might come with some challenges.
A question that arises might be: if in the stationary case the
problem is about identifying clusters, how would this translate
to a dynamic environment? These clusters would become
traces describing a trajectory throughout the space created by
the span of all considered attributes. There would need to be
a prior believe about where the trace is expected to go which
would depend on where the trace has been observed and on
other traces around it.
This may paint a mental image of how the problem is altered
by the addition of dynamics, but it does not provide any
practical guidance on how to approach it. For this, work done
in the field active inference might prove useful. The active
inference framework, as described in [6], already implements
dynamic systems using generalized coordinates [21]. With
the use of multi variate distributions, the mathematics of
generalized coordinates might be applied in a factor graph
based solution.

IX. CONCLUSION

This paper set out to provide a method which is capable
of creating and object centered world description based
upon consecutive measurements about an unknown number
of static objects using Bayesian inference. This was
successfully achieved to a varying degree. The results show
that the structure learning model discussed in section IV is
fundamentally the right tool for the job as obvious clusters
are often correctly inferred. This also implies that the analogy
between the problem statement and a clustering problem
seems to hold. The conclusion can be drawn that the structure

learning model provides an elegant Bayesian technique for
this inference problem due to the usage of the message
passing algorithm. However, a more critical analysis of the
results, as is performed in section VII, seems to indicate that
the specific implementation of the structure learning model
evaluated in this paper has oversimplified the representation
of objects. Using only two dimensional coordinates as the
measurements results in mediocre performance when objects
are located in close proximity of each other or when the
apparent size of the objects differs to much. The value of
this paper is therefore in the predicted ease of expanding this
model to accommodate for more attributes associated with
objects. Finally, section VIII shares some thoughts on how
model complexity can be increased with the expected result
of improved performance.

REFERENCES

[1] Bagaev, D., Podusenko, A., & De Vries, B. (2023). RxInfer: A Julia
package for reactive real-time Bayesian inference. Journal of Open
Source Software, 8(84), 5161.

[2] Vermeulen, M. (2020, May 21). Dit is een oplossing voor vergrijzing,
armoede én mensensmokkel. Maar bijna niemand wil eraan. De
Correspondent. https://decorrespondent.nl/11262/dit-is-een-oplossing-
voor-vergrijzing-armoede-en-mensensmokkel-maar-bijna-niemand-wil-
eraan/d846ef45-05a5-0f72-359e-5e4ecea4a6d6

[3] Bogue, R. (2016). Growth in e-commerce boosts innovation in the
warehouse robot market. Industrial Robot: An International Journal,
43(6), 583-587.

[4] U.S. Department of Labour (2023). US Department of Labor finds
Amazon exposed workers to unsafe conditions, ergonomic haz-
ards at three more warehouses in Colorado, Idaho, New York.
https://www.dol.gov/newsroom/releases/osha/osha20230201-0

[5] De black box van Tesla - Zembla - BNNVARA. (n.d.). Zembla.
https://www.bnnvara.nl/zembla/artikelen/de-black-box-van-tesla

[6] Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle
for the brain. Journal of physiology-Paris, 100(1-3), 70-87.

[7] Pezzato, C., Ferrari, R., & Corbato, C. H. (2020). A novel adaptive
controller for robot manipulators based on active inference. IEEE
Robotics and Automation Letters, 5(2), 2973-2980.

[8] Khanam, R., & Hussain, M. (2024). Yolov11: An overview of the key
architectural enhancements. arXiv preprint arXiv:2410.17725.

[9] Wainwright, M. J., & Jordan, M. I. (2007). Graphical models, expo-
nential families, and variational inference. Foundations and Trends® in
Machine Learning, 1(1–2), 1-305.

[10] Bagaev, D. V. (2022). Reactive Probabilistic Programming for Scalable
Bayesian Inference.

[11] Bagaev, D., & de Vries, B. (2023). Reactive message passing for scalable
Bayesian inference. Scientific Programming, 2023(1), 6601690.

[12] Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2003). Understanding belief
propagation and its generalizations. Exploring artificial intelligence in
the new millennium, 8(236–239), 0018-9448.

[13] Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Constructing free-
energy approximations and generalized belief propagation algorithms.
IEEE Transactions on information theory, 51(7), 2282-2312.

[14] Winn, J., Bishop, C. M., & Jaakkola, T. (2005). Variational message
passing. Journal of Machine Learning Research, 6(4).

[15] Winn, J. M. (2004). Variational message passing and its applications.
[16] van Erp, B., Nuijten, W. W., & de Vries, B. (2024, September). Online

Structure Learning with Dirichlet Processes Through Message Passing.
In International Workshop on Active Inference (pp. 91-104). Cham:
Springer Nature Switzerland.

[17] van Erp, B., Nuijten, W. W., van de Laar, T., & de Vries, B. (2023).
Automating model comparison in factor graphs. Entropy, 25(8), 1138.

[18] He, W., Wu, C., Cheng, C. H., Huang, X., & Bensalem, S. (2025).
Mitigating hallucinations in YOLO-based object detection models: A
revisit to out-of-distribution detection. arXiv preprint arXiv:2503.07330.

[19] Hughes, I., & Hase, T. (2010). Measurements and their uncertainties: a
practical guide to modern error analysis. OUP Oxford.

[20] Lee, M. D., & Cummins, T. D. (2004). Evidence accumulation in
decision making: Unifying the “take the best” and the “rational” models.
Psychonomic bulletin & review, 11(2), 343-352.

[21] Balaji, B., & Friston, K. (2011). Bayesian state estimation using general-
ized coordinates. Signal processing, sensor fusion, and target recognition
XX, 8050, 716-727.

APPENDIX

This appendix describes the steps taken to expand the model
to handle objects that contain a discretely distributed attribute
such as the objects’ class. Before adding a new mixture node
to the structure learning model, individual models capable
of performing inference over a single discretely distributed
variable have been explored. Two such models will be dis-
cussed. One model represents a naı̈ve approach, where as the
other describes a more complex approach capable of modelling
structured class confusion.
In its most basic form, a measurement about the class of an
object contains a single value, i.e. measuring either ”bike”
or ”chair”. A categorical distribution can be used to describe
distribution over possible measurement. The shape of this
categorical distribution is of course determined by the class
of the measured object.
This is the extent of the naı̈ve model. A variable l is used to
describe the class, or label, of the object, which influences the
measurement yl as p(yl|l) = Cat(yl|l). A prior is needed for
the variable l. This prior is modelled by a Dirichlet distribu-
tion, for this is a natural prior of a categorical distribution.
Figure 17 shows the factor graph of the naı̈ve model.

Fig. 17. The factor graph of the naı̈ve model for inference over discretely
distributed variables. The observable variable yl represent a measurement of
the l. In turn, the variable l represents the discrete variable of interest, possibly
associated with the class, or label, of an object.

This model is considered naive for it does not explicitly model
the variance introduced by the means of measurement. Say
for example that the method used for measuring the class
of the objects is known to confuse the classes ”bicycle” and
”motorbike”. Then measuring ”bicycle” should simultaneously
make it more likely to assume that the object is a ”bicycle”
or a ”motorbike”.
The second model is capable of taking into account this
structured class confusion. It achieves this by implementing
a mixture node over the variables β1, . . . , βN as is seen
in figure 18. Each βn describes the expected distribution of
measured classes if the true class is identified by index n.
Together, all these variables effectively describe the confusion
matrix of the class detection model. As a whole, the mixture
node can be though of as to produce the expected spread of
measurements given the selection variable l. This selection
variable can then be interpreted as the class of the objects.

Fig. 18. The factor graph of a more complex model for inference over
discretely distributed variables. It utilizes a mixture node over the variables
β1, . . . , βN to allow for the modelling of the confusion matrix of the method
used to make observation yl. Each βn describes what the model might confuse
the class identified by n with. The mixture node can be though of as to
produce the expected spread of measurements given the selection variable l.
This selection variable can then be interpreted as the class of the objects.

Implementation of these models was successful, but the addi-
tion of them to the structure learning model was not. At the
time of writing, RxInfer appears to not yet have the necessary
infrastructure for the specific factor graph required. However,
an extensive documentation and a helpful community are
available to aid in the task of the creation of this infrastructure.

