
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-MS-2015-01

M.Sc. Thesis

Scalable Network Based Clock
Synchronization for Digital PET System

Martijn Bijwaard B.Sc.

Abstract

Typically in synchronous digital systems time-based tasks are syn-
chronized using hard-wired clock distribution networks. However in
the growing application of large (wireless) sensor networks it is not
always feasible to connect each sensor node to a hard-wired clock dis-
tribution network. Generally in such systems the sensor nodes are
only connected via a (wireless) communication network, hence there
have been implementations where clocks are synchronized via the net-
work nodes, in general these solutions synchronize the network nodes
in the range of milliseconds up to microseconds. Though some appli-
cations, like SPADnet, demand a network based clock synchronization
in the range of picoseconds.

Currently the SPADnet system is equipped with a hard-wired
clock distribution network, this clock network does not scale well.
Since one of the goals of SPADnet is to create a scalable system, a
network based clock synchronization solution is a better alternative.

In this thesis a hybrid solution is presented, where a hard-wired
clock synchronization network is combined with a network based clock
offset estimator. This combination enables scalability while maintain-
ing high precision. A novel least squares synchronization algorithm
is optimized and implemented in hardware equipped with a delayline
FPGA TDC, allowing picosecond clock synchronization.

Scalable Network Based Clock Synchronization for
Digital PET System

a picosecond hardware implementation for SPADnet

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Embedded Systems

by

Martijn Bijwaard B.Sc.
born in Assendelft, The Netherlands

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Copyright © 2015 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Scalable Network Based Clock Synchronization for Digital PET
System” by Martijn Bijwaard B.Sc. in partial fulfillment of the requirements for
the degree of Master of Science.

Dated: 13-03-2015

Chairman:
prof.dr.ir. E. Charbon

Advisor:
ir. C. Veerappan

Committee Members:
prof.dr.ir G. Leus

dr. ir. S. Wong

iv

Abstract

Typically in synchronous digital systems time-based tasks are synchronized using hard-
wired clock distribution networks. However in the growing application of large (wire-
less) sensor networks it is not always feasible to connect each sensor node to a hard-wired
clock distribution network. Generally in such systems the sensor nodes are only con-
nected via a (wireless) communication network, hence there have been implementations
where clocks are synchronized via the network nodes, in general these solutions syn-
chronize the network nodes in the range of milliseconds up to microseconds. Though
some applications, like SPADnet, demand a network based clock synchronization in the
range of picoseconds.

Currently the SPADnet system is equipped with a hard-wired clock distribution
network, this clock network does not scale well. Since one of the goals of SPADnet is
to create a scalable system, a network based clock synchronization solution is a better
alternative.

In this thesis a hybrid solution is presented, where a hard-wired clock synchroniza-
tion network is combined with a network based clock offset estimator. This combination
enables scalability while maintaining high precision. A novel least squares synchroniza-
tion algorithm is optimized and implemented in hardware equipped with a delayline
FPGA TDC, allowing picosecond clock synchronization.

v

vi

Acknowledgements

I am using this opportunity to express my gratitude to everyone who supported
me throughout the course of this Master thesis project. Especially I would like
to thank Edoardo Charbon for providing me the chance to work on this fascinat-
ing project, and Chockalingam Veerappan for his daily guidance throughout this thesis.

Also I want to thank the members of the Circuits and Systems group for inviting
me to join the group activities, which I really enjoyed.

Finally I would like to thank my parents, brother and girlfriend for their support
during my complete master study.

Martijn Bijwaard B.Sc.
Delft, The Netherlands
13-03-2015

vii

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1

1.1.1 SPADnet requirements . 1
1.1.2 Thesis goals . 1

1.2 Contribution . 2
1.3 Related work . 3
1.4 Application: SPADnet . 3
1.5 Positron emission tomography . 3

2 Clock synthesizers 5
2.1 Clock synthesizer imperfections . 5

2.1.1 Quartz clock synthesizers . 5
2.1.2 Short-term clock stability . 6
2.1.3 Long-term clock stability . 7

2.2 Clock synthesizer model . 8

3 Clock synchronization 9
3.1 Hard-wired clock distribution . 9
3.2 Network based clock synchronization 9

3.2.1 Timestamp exchange protocols 10
3.3 Clock synchronization algorithms . 11

3.3.1 Least squares . 12
3.3.2 Pairwise least squares . 12
3.3.3 Global least squares . 13
3.3.4 Asymmetrical time-stamping and passive listening 15
3.3.5 Performance . 16
3.3.6 Cramer-Rao lower bound . 16
3.3.7 Complexity . 17
3.3.8 Conclusion . 17

4 SPADnet system 19
4.1 Sensor tile . 19
4.2 Data processing communication unit 19
4.3 Network architecture . 20
4.4 SPADnet system clock synthesizers . 22

4.4.1 LMK04906 Ultra low noise clock jitter cleaner 22
4.4.2 ICS8534-01: 1-to-22 fanout buffer 23

ix

5 Hard-wired clock distribution networks 25
5.1 Distribution topography . 25

5.1.1 Ring clock distribution network 26
5.1.2 Star clock distribution network 26

5.2 Characterization . 28
5.2.1 Jitter . 28
5.2.2 Multi node jitter . 29
5.2.3 Phase difference star distributed clock network 30
5.2.4 Phase difference ring distributed clock network 30

5.3 Conclusion . 31
5.3.1 Ring network . 31
5.3.2 Star network . 32

6 SPADnet solution 33
6.1 Allan variance measurement . 33
6.2 Hybrid clock synchronization solution 34
6.3 Phase synchronization protocol . 36

6.3.1 Broadcasting . 37

7 Hardware implementation 39
7.1 Phase estimator . 39

7.1.1 Hardware implementation . 40
7.1.2 Coarse timer overflow . 41
7.1.3 Simulation results . 43

7.2 High resolution time-stamper . 44
7.2.1 FPGA Time-to-digital converter 45
7.2.2 TDC simulation . 45
7.2.3 FPGA TDC implementation . 46

7.3 Time synchronization module . 49
7.3.1 Hardware implementation, normal node 49
7.3.2 Hardware implementation, reference node 51

8 Verification 53
8.1 Phase estimator stability . 53
8.2 Resolution (LSB) . 55
8.3 Scalability study . 58
8.4 Hybrid synchronization versus hard-wired synchronization 59

9 Conclusion 61
9.1 Summary . 61

9.1.1 Characterization of hard-wired clock distribution networks . . . 61
9.1.2 Network based clock synchronization 61
9.1.3 Hybrid solution . 62

9.2 Future work . 63

10 List of my Publications 69

x

A Verilog Phase Estimator 71
A.1 Verilog source . 71
A.2 Synthesis report . 72

B Aurora 8B/10B 73
B.1 8B/10B encoding . 73
B.2 GTP transceivers . 73
B.3 Clock correction . 74
B.4 Deterministic communication . 74
B.5 Communication latency . 76

xi

xii

List of Figures

1.1 SPADnet system . 3
1.2 Annihilation of electron-positron pair, detected by the SPADnet modules 4
1.3 Example of functional neuroimaging, showing transaxial slice of the hu-

man brain recovered with PET. Blue regions indicate low accumulated
tracer, red regions indicate show higher accumulated tracer. The tracer
marks the active sections of the brain. 4

2.1 Comparison of ideal clock versus a real clock. 5
2.2 A complete clock system. 6

3.1 Example of typical hard wired clock distribution networks for digital
systems. 9

3.2 Conventional two-way timestamp exchanges between a pair of nodes. . 10
3.3 Reference broadcast protocol in a four node network. Node 0 trans-

mits broadcast messages to the complete network, while capturing the
transmission and reception times. 11

3.4 Passive listening protocol in a four node network. 11
3.5 four node network for the PLS solution. 13
3.6 Example configurations of four node networks, where the GLS algorithm

can be applied to . 14
3.7 four node network for ATPL solution. The dotted arrows indicate the

nodes passive listening to other nodes two-way timestamp exchange. . . 15
3.8 Construction of the matrices for the ATPL solution from [11] 15
3.9 Estimation of the clock parameters using PLS in a two node system,

for different transmissions and observation windows. The algorithm was
performed with MATLAB, with an observation noise of 22 ns, and infi-
nite clock resolution. 16

4.1 SPADnet ring system and photonic module. 19
4.2 Schematic of the DPCU, the connector to the sensor tile is located at

the backside of the DPCU (not shown in this figure). 20
4.3 SPADnet network hierarchy. Each circle represents a photonic module . 20
4.4 Coincidence packet and data transfer architecture. 21
4.5 The LMK04906 and its clock outputs. 22
4.6 Simplified functional block diagram of the LMK04906 in 0-delay mode.

Obtained from [21] . 23

5.1 Clock distribution network: ring topography. 26
5.2 Clock distribution network: star topography. 27
5.3 Simplified schematic of the SPADnet FPGA modules. 28
5.4 Normalized histogram of period jitter analysis, shows the period devi-

ation of the clock signal over a short period of time. The histogram
contains 10.000 samples and 100 bins. 29

xiii

5.5 Phase difference between two adjacent nodes, using the star distributed
clock network. 30

5.6 Phase difference between two adjacent nodes, using the ring distributed
clock network. 31

6.1 Hardware setup used to perform the Allan variance measurement. . . . 33

6.2 Result of the Allan variance measurement. 34

6.3 Clock distribution network: Ring topography. The phase of the clock
will be different at each node, because of the distribution network. The
phase will be estimated using pairwise least squares. 35

6.4 Final two-way timestamp exchange protocol 36

6.5 Two-way packet construction . 36

6.6 Stages of the synchronization protocol. 37

6.7 The use of broadcast messages to obtain timestamps. The reference node
broadcasts a message to all nodes, while the individual nodes reply to
the broadcast, while recording the transmission and reception times . . 37

7.1 Two-way timestamp exchange protocol, with node i = 1 and node j = 2. 42

7.2 Verification of the fixed point phase estimator implementation, using
ISim and Matlab. 43

7.3 Combination of the fine delayline TDC and coarse counter. 44

7.4 General single delayline time-to-digital converter. In the case of the
FPGA TDC the delay elements are carry units. 45

7.5 Timing simulation of the FPGA TDC. 45

7.6 transfer function of the implemented FPGA TDC. 46

7.7 Floor plan of the TDC, between every 16 slices there is a gap. In the
middle of the 16 slices there is a clock domain crossing. These gaps and
crossings introduce delays, affecting the non-linearities of the TDC. . . 47

7.8 Differential non-linearity of the implemented TDC. 47

7.9 Integral non-linearity of the implemented TDC. 48

7.10 Simplified architecture of the normal node 50

7.11 Simplified architecture of the reference node 51

8.1 2000 Executions of the hardware implemented phase estimation, 4096
two-way timestamp exchanges, 328 ms observation window, 124 ps stan-
dard deviation. For a fixed phase between two adjacent nodes 53

8.2 Estimation stability, standard deviation, of 2000 estimations. For fixed
k = 2048 two-way messages, and increasing observation window (8−328
ms). 54

8.3 Estimation stability, standard deviation, of 2000 estimations. With in-
creasing k two-way messages and fixed communication interval of 40
microseconds. 55

8.4 Transfer function of the phase estimator. 56

8.5 Transfer function of the estimated distance. 56

xiv

8.6 Transfer function of the phase estimator, showing the average of 25 es-
timations per injected phase offset. Using k = 4096 two-way timestamp
exchanges over a observation window of 328 ms. 57

8.7 Estimation error compared to ideal transfer function. Presenting the
average of 25 estimations per injected phase offset. Using k = 4096
two-way timestamp exchanges over a observation window of 328 ms. . . 57

8.8 Three node ring system . 58

B.1 Generic block diagram of a SERDES 73
B.2 Simplified Spartan-6 FPGA GTP transceiver block diagram 75
B.3 After reconfiguring the FGPA a non-deterministic phase is introduced

in the GTP transceiver. This random phase can be corrected by using
the GTP transceivers dedicated phase-alignment circuits. 76

B.4 Communication latency between two adjacent nodes, using a 2.5 GB/s
Aurora 8b/10b network link . 77

xv

xvi

List of Tables

3.1 Operation sizes of each least squares operation. With K number of
messages, K‘ = K1 + K2 + KN , L = 2N + M − 2, M the number of
unique links in the network and with N nodes. 17

4.1 Specifications SPADnet system clock synthesizers. 22

5.1 Jitter measurement in a four node ring system. 29
5.2 Phase difference in a four node system. 31

6.1 Alternative stable clock oscillators. Obtained from [23]. 34

7.1 Two-way timestamp exchange, the transmission and reception times are
marked using a 22 bit 100 MHz counter. Overflowing of the counter
sometimes needs to be corrected, as we can see from the results of the
first steps of the algorithm. 41

7.2 Three possible moments of overflow generating a fault. The expected
outcome of the first steps of the algorithm should be -108 and -124. . . 42

7.3 Corrected timestamps, using the overflow correction. 42

8.1 Phase estimation in a three node network for five different injected phase
offsets. Results are obtained from about 2000 estimations per injected
phase offset, with 2048 two-way timestamp exchanges over an observa-
tion window of 165 ms. ABS: absolute, SD: standard deviation. The
injected phase does not match the estimated phase due to the error dis-
cussed in Section 8.2, this fault has been resolved. 58

8.2 Comparison of the hybrid solution versus the hard-wired clock synchro-
nization solution. 59

9.1 Comparison of the hybrid solution versus the hard-wired clock synchro-
nization solution. 62

xvii

xviii

Introduction 1
1.1 Motivation

In systems like wireless sensor networks (WSN) [1], SPADnet [2] and OLFAR [3] clock
synchronization is of great importance. In these systems time-based tasks for instance:
data sampling, time-stamping of data, data fusion, sleep and wake-up coordination
and synchronized communication, requires that the clocks of each individual node are
synchronized. Typically in synchronous digital systems the clock is distributed via a
hard-wired clock distribution network to each component. But in (wireless) network
based systems, it is not always feasible to connect each node to a hard-wired clock
distribution network. In these systems each node will operate on their own local clock.
However, to perform time-based tasks, the clocks of these nodes require to be synchro-
nized [4]. The only way to do so is to synchronize via the network. Implementations
exist for network based synchronization, in general these solutions synchronize the net-
work nodes in the range of milliseconds up to microseconds [5] [6] [7] [8].

This thesis focusses on the SPADnet system [2]. This system uses a network of
modules for photon-starved biomedical applications, such as positron emission tomog-
raphy (PET). Each module relies on a hard-wired clock distribution network, driven
by a single clock oscillator, to allow the execution of time-based tasks. One of the
main goals of SPADnet is to construct a scalable system. Since the hard-wired clock
distribution is not scalable, this thesis investigates if the SPADnet clock distribution
network can be made scalable using network based approach.

1.1.1 SPADnet requirements

The requirements for the clock synchronization depends on the configuration of SPAD-
net. Three types of PET configurations exist: pre-clinical, brain and clinical. In time-
of-flight brain and clinical systems clock synchronization better than 50 ps is required.
For pre-clinical systems that do not use time-of-flight information, clock synchroniza-
tion around 500 ps is sufficient.

1.1.2 Thesis goals

The goal of this thesis is to answer the following questions:

1. What is the performance of the hard-wired clock network of SPADnet?
2. Can a network based solution improve the scalability of SPADnet?

1

1.2 Contribution

The thesis presents a survey on various clock synchronization techniques (hard-wired
and network based) for SPADnet. The existing hard-wired clock distribution network
is characterized. Then it is investigated if network based clock synchronization can
improve the scalability of SPADnet. For this the performance of novel clock synchro-
nization techniques are examined, and a study is done on how to apply these techniques
to SPADnet.

A hybrid clock synchronization solution is invented and implemented in a field pro-
grammable gate array (FPGA). This solution combines a hard-wired clock distribution
circuit with a network based phase estimator, enabling scalability while maintaining
picosecond performance. The performance of this hybrid solution is compared to the
existing hard-wired clock distribution network of SPADnet, and tested in a three node
system.

Although this thesis focusses on the SPADnet system, the findings can be used as
a guideline for other systems as well.

The main contributions of this thesis are:

1. Characterization of the hard-wired clock distribution network of SPADnet.

2. Survey on network based clock synchronization techniques.

3. Implementation and verification of a hybrid synchronization solution.

4. Comparative study on hard-wired versus network based clock synchronization
solution for SPADnet.

2

1.3 Related work

Probably the most used network based time synchronization protocol is the network
time protocol (NTP) [9]. NTP is an internet protocol that synchronizes computers to
within a few milliseconds of coordinated universal time (UTC). NTP is based on mea-
suring the round-trip delay between the client and, preferably multiple, time-servers.

The growing interest of collecting physical and environmental data on a large scale
using Wireless Sensor Networks (WSN), demands network based clock synchronization.
Without synchronized sensor modules, time-stamping of data, data fusion, sleep and
wake-up coordination and synchronized communication would fail. Multiple solutions
for synchronization in WSN are available [5] [6] [7] [8]. In general these solutions
synchronize the clocks in the range of milliseconds up to microseconds.

However some applications, for example SPADnet, demand more precise synchro-
nization of the clocks. One of the most novel clock synchronization algorithms are
presented in [10] and [11]. It is stated that these solutions approach the theoretical
limits of clock synchronization. This thesis will investigate if they are applicable for
SPADnet.

1.4 Application: SPADnet

The SPADnet FP7 European project aims to develop a new generation of smart, large
area networked image sensors, based on a conventional CMOS fabrication technology,
for photon-starved biomedical applications. SPADnet will build ring-assembly modules
for positron emission tomography (PET) medical imaging, and carry out performance
tests in a PET system evaluation test bed [2].

Figure 1.1: SPADnet system

1.5 Positron emission tomography

PET is a technique to create a three dimensional image of functional processes in the
body. The patient is injected with a positron-emitting radionuclide on a biologically
active molecule, also called a tracer. There are different kinds of biologically active
molecules that can be used for different tissue of interest. For PET fludeoxyglucose

3

(FDG) is commonly used as an active molecule, FDG marks certain types of tissues
metabolism for example: heart, lungs, brain and tumours.

Tissue

SPADnet
module

Electron–positron
annihilation

Figure 1.2: Annihilation of electron-positron pair, detected by the SPADnet modules

When the emitted positron of radionuclide collides with an electron, the two particles
annihilate, the resulting energy is converted in to a pair of gamma rays. The gamma
rays can be detected by the SPADnet modules. The pair of gamma rays are emitted
back-to-back, using this property and time information of the detections, the origin of
the annihilation can be determined. By recovering many events a three dimensional
image can be reconstructed. The resolved image will only show the regions marked by
the radionuclide. An example of an image recovered with PET of a human brain is
shown in Figure 1.3.

Figure 1.3: Example of functional neuroimaging, showing transaxial slice of the human brain
recovered with PET. Blue regions indicate low accumulated tracer, red regions indicate show
higher accumulated tracer. The tracer marks the active sections of the brain.

4

Clock synthesizers 2
The characteristics of the applied clock synthesizers are important factors for the even-
tual performance of the network based synchronization algorithm. The most important
characteristic is the clock synthesizer stability. The stability will limit the maximum
achievable synchronization resolution and the interval rate, at which the synchroniza-
tion needs to be performed.

In this chapter the characteristics of quartz clock synthesizers are investigated. And
a clock model is presented, that expresses the clock correction parameters.

2.1 Clock synthesizer imperfections

Ideally the output of a clock synthesizer would not change over time, and has the exact
required frequency. Unfortunately, real clock synthesizers have phase output errors
[12]. Clock synthesizers will not generate the exact specified frequency, and over time
this frequency will drift. Besides drift, clock synthesizers suffer stationary noise on the
frequency, know as jitter.

Time

C
lo

ck
 o

u
tp

u
t

Ideal clock

Real clock

Frequency offset

Drift

Figure 2.1: Comparison of ideal clock versus a real clock.

2.1.1 Quartz clock synthesizers

Quartz clock synthesizers are the most commonly used clock synthesizer, because of
their low-cost and small size[13]. The SPADnet system also utilizes quartz oscillators.

Typically, a quartz clock synthesizer has an output frequency tolerance of 5-100 ppm.
A quartz clock of 1 MHz with a frequency tolerance of 10 ppm, has an output frequency
error of at most 10 Hz. The error in output frequency is the result of imperfections in
the clock synthesizer.

5

The clock synthesizer frequency is also influenced by changes in environmental con-
ditions. Clocks are affected by temperature, pressure, mechanical stress and humidity
[14]. Typical quartz clock synthesizer frequency outputs change 20-100 ppm over 40
to +85 �. There exist solutions to compensate for temperature changes, two examples
are: temperature compensated crystal oscillators (TCXO) and oven controlled crystal
oscillators (OCXO). TCXO includes a temperature compensation circuit, and corrects
to about 1 ppm error over the operating temperature range. OCXO oscillators are
oscillators placed in temperature controlled chambers and achieve a temperature sta-
bility of 50-500 ppb over -55 to +85 �. The influences of the pressure, mechanical
stress and humidity are controlled by packaging and the manufacturing process of the
crystal oscillator.

Crystal oscillators undergo a slow gradual change of the frequency with time, known
as ageing. This ageing process originates from small and slow changes of the physical
aspects of the quartz crystal. Over time the ageing effect slowly decreases, for example
the ageing effects in the first life year can be ± 3 ppm and the drift over 15 years life
time a total ± 10 ppm.

Note that changes in the power supply, load, and other electrical interference will
have an influence on the oscillator output.

2.1.2 Short-term clock stability

Besides the error introduced by ageing and environmental conditions on the output
frequency, oscillators suffer from short-term variations of their signal, this is called
jitter. Jitter comprises of two primary components: random jitter and deterministic
jitter.

Random jitter is directly related to phase noise, the aggregate result of stochastic
noise processes (thermal, shot and flicker noise). Random jitter typically shows a
Gaussian distribution and can be quantified by its standard deviation (rms) value [15].

Deterministic jitter behaves predictably and repeatedly. The sources are generally
related to imperfections in the behaviour of the device, transmission media, power
supply noise and cross-talk. The range of the maximum phase deviations of this type
of jitter can be bounded and expressed as a peak-to-peak value.

Not only the oscillator introduces jitter on the clock, but the clock interface also
introduces phase noise. The analog clock signal is converted to digital by the clock
interface. This clock interface does this by checking if the input signal is above or below
a threshold value. Fluctuations in this threshold value, adds noise to the digital clock.
The fluctuations are mainly induced by temperature and power supply instabilities. In
this thesis it is assumed that this noise is random and has a zero mean.

Clock
interface

Clock
synthesizer

Figure 2.2: A complete clock system.

6

There are three commonly used methodologies for the measurement of different
types of jitter, namely: period jitter, cycle to cycle jitter and time interval error mea-
surement [16].

With period jitter, the deviation in period is measured with respect to the aver-
age period, with a random number of cycles between each measurement. From this
measurement the RMS value is easily derived by taking the standard deviation of the
measured data set.

Cycle to cycle jitter is the variation in cycle time of a signal between adjacent
cycles. Cycle to cycle jitter is usually expressed as a peak value, defining the maximum
deviation between the edges of two consecutive cycles.

Another methodology of jitter measurement is time interval error (TIE). TIE is a
measure for the time deviation of a signal edge from its ideal position compared to a
reference point. For this measurement an ideal signal is needed to compare the actual
signal with. This signal is often created using software.

2.1.3 Long-term clock stability

Allan Variance [17] (AVAR), also called two-sample variance, is a technique to deter-
mine the long-term stability of a clock (or other types of signals, where stability is of
interest) . Variance normally used in statistics is defined by the expected value of the
squared deviation from the mean.

Var = σ2 = E
[
(X − E [X])2

]
. (2.1)

In contrast, AVAR calculates the variance based on the difference of adjacent
fractional frequency measurements, calculating the two-sample variance. The AVAR
method is shown in Equation 2.2.

σ2
y(τ) = E

[
(∆y)2

]
, (2.2)

where ∆y denotes the difference of adjacent fractional frequency measurements and
τ the coherence time (space between measurements). So AVAR gives insight on the
variation of two adjacent τ spaced samples. If we apply AVAR on a clock signal we can
see how stable the clock is for a given coherence time. For clock synchronization this is
of great interest, since it determines the maximum achievable performance of the clock
synchronization solution.

In order to determine the interval time of the clock synchronization algorithm the
long-term stability of the clock oscillators needs to be known. One way to infer the
long-term drift is with the use of Allan variance. A Quartz crystal synthesizer has a
frequency drift of 10−11 − 10−12 [17] per second. So the RMS error after 1 second is
1-10ps.

7

2.2 Clock synthesizer model

To be able to correct clocks a clock model is needed. This clock model will define
the parameters that will be used to correct a clock. The short-term (< 100s) relation
between local time and global time can be modelled by a first order clock model [10]:

ti = wit+ φi, (2.3)

where ti is the local time at node i, t the reference clock, wi the clock skew and φi the
clock offset. The conversion from local time to global time can be written as:

t = αiti + βi, (2.4)

where α = w−1i and β = w−1i φi are the parameters needed to correct the local time of
node i. These clock correction parameters will be used throughout the thesis.

8

Clock synchronization 3
This chapter first shortly covers the basic principles of hard-wired clock distribution
networks. After that the basics of network based clock synchronization are addressed.
Three novel network based clock synchronization algorithms will be covered. This chap-
ter concludes with which of these three solutions can be best applied to the SPADnet
system.

3.1 Hard-wired clock distribution

Typically, in synchronous digital systems the clock is distributed using a hard wired
network. In these digital systems the clock originates from a single clock source and is
distributed via a clock network to each component. There are different types of clock
distribution networks, the simplest form is where the clock is daisy chained from each
component to the next. A more sophisticated system, is the clock tree. In a clock tree
the distance between the clock origin and each component is the same, and therefore the
clocks are perfectly aligned at the leaves. In the daisy chained system on the contrary,
the distance between the clock and component is not the same. Therefore there will be
a clock offset at each node, which for some applications is not highly undesirable. The
phase difference can be compromised by correcting the phases, with phase adjustment
logic.

(a) Daisy chained clock network. (b) Tree clock distributed network.

Figure 3.1: Example of typical hard wired clock distribution networks for digital systems.

3.2 Network based clock synchronization

In certain network based systems it is sometimes impossible to connect each node
to a hard-wired clock distribution network. For example in wireless sensor networks

9

(WSNs). A WSN containing standalone modules, who are connected only via a wireless
communication network, might need to fulfil synchronous tasks, and therefore need a
way to synchronize each module in the system. Generally this is done by time-stamping
of data packets.

3.2.1 Timestamp exchange protocols

To gain time information of each node data packets are used in network based synchro-
nization. Time-stamping of data packets is the solution to get information about the
clock drift and skew at each node. There are numerous timestamp exchange protocols.

Two-way timestamp exchanges

Most clock synchronization algorithms are based on two-way timestamp exchanges.
Figure 3.2 shows the two-way timestamp exchange between a pair of nodes. Node 1
initiates the timestamp exchange, by sending a message to node 2. The message is
marked with timestamp T1,2(1). Immediately when the message is received by node 2,
the reception time is marked R2,1(1). Node 2 replies, again recording the transmission
and reception times. This goes on until K two-way messages have been achieved.

Ø

Clock Node 2

Clock Node 1

…

T1,2
(1) T1,2

(2) T1,2
(k)

T2,1
(1)

T2,1
(2)

T2,1
(k)

R1,2
(1)

R2,1
(1)

R2,1
(2)

R2,1
(k)

R1,2
(2) R1,2

(k)

Figure 3.2: Conventional two-way timestamp exchanges between a pair of nodes.

After K two-way timestamp exchanges an algorithm can be applied to find the clock
correction parameters [10].

Reference broadcast exchange

In the reference broadcast exchange protocol [18] one node transmits a broadcast mes-
sage, marking the transmission time. The other nodes mark the reception times of this
broadcast. After executing multiple broadcasts, this timing information can be used to
estimate the clock drift and skew, assuming the distance is known.

10

Node 0

Node 1

Node 3

Node 2

Figure 3.3: Reference broadcast protocol in a four node network. Node 0 transmits broadcast
messages to the complete network, while capturing the transmission and reception times.

Passive listening protocol

The passive listening protocol is based on two-way timestamp exchanges, while the
other nodes listen to this interaction of messages between the two nodes. The passive
listening nodes also timestamp these overheard messages, which increases the amount of
data collected which can contribute to a better estimation. A synchronization algorithm
that uses passive listing is presented in [11].

Node 0

Node 1

Node 3

Node 2

Figure 3.4: Passive listening protocol in a four node network.

3.3 Clock synchronization algorithms

There are various solutions to synchronize clocks in networks. In this section three novel
clock synchronization solutions will be presented. The best solution for this application
will be selected, based on the performance, complexity and scalability.

In [10] two solutions for clock synchronization for wireless networks are presented:
pairwise least squares (PLS) and global least squares (GLS). The solutions efficiently
estimate the first order clock parameters, clock skews (ω), clock offsets (φ) and pairwise
distances (d). Both solutions are based on timestamp exchanges via two-way messages
and least squares. In PLS, pairs of nodes are synchronised per pair. GLS aims to find

11

the global optimal solution for all unknown clock parameters and pairwise distances of
the entire network.

The remaining novel clock synchronization algorithm is the asymmetrical time-
stamping and passive listening (ATPL) protocol [11]. The ATPL solution uses passive
listening and least squares in order to find all unknown clock parameters and pairwise
distances of the entire network.

3.3.1 Least squares

All three novel clock synchronization algorithms use least squares to find the clock
correction parameters. In general, least squares can be applied to problems where there
are more equations than unknowns and, in general no solution exists [19]. Assume we
have the set of linear equations

Ax = b, (3.1)

where A is a n×m matrix and x is an m-dimensional vector containing unknowns. In
the case m < n, an arbitrary vector b cannot be represented as a linear combination
of the columns of matrix A. So the coefficients in vector x must be found, who will
result in the best approximate of b.

b̂ =
m∑
i=1

xiai. (3.2)

The least squares solution minimizes the norm of the error:

‖ e ‖2 = ‖ b−Ax ‖. (3.3)

This minimization problem has a unique solution, provided that the columns of the
matrix A are linearly independent, given by solving the normal equations

x̂ =
(
ATA

)−1
ATb. (3.4)

3.3.2 Pairwise least squares

The pairwise least squares (PLS) solution synchronizes a pair of nodes, one node being
the reference. For networks with N > 2 nodes the PLS solution needs to be applied
N − 1 times to synchronize all nodes. PLS can exploit only one link per pair. In
Figure 3.5 a network of four nodes is shown, with node 0 as reference node. In this
network the pairs where PLS is applied to are {Node0, Node1}, {Node0, Node2} and
{Node0, Node3}.

12

Node 0

Node 1

Node 3

Node 2

Figure 3.5: four node network for the PLS solution.

To synchronize a node pair, for example node 0 and node 1, first K two-way times-
tamp exchanges are executed, which results in time recordings at node 0 (t12) and node
1 (t21). Then, the time recordings of node 1 are sent to node 0. After that, node 0 can
perform the PLS algorithm, Equation 3.5. Subsequently, node 0 sends the clock cor-
rection parameters [α2 β2] to node 1. Finally node 1 corrects its clock with the received
parameters. The same holds for the other node pairs. More explicitly, we obtain

θ̂j =
(
AT

jiAji

)−1
AT

jitij, (3.5)

with

Aji = [tji 12K e]T ∈ R2K×3,

θj = [αj βj τij]
T ∈ R3×1,

where tij, tji ∈ R2K×1 are the timestamps recorded at node i and j for all the two-way

communications respectively, e = [−1,+1,−1, · · · ,+1]T ∈ R2Kx1, 12K ∈ R2K×1 is a
vector of ones with length 2K, and αj, βj are the correction parameters for the clock
skew ω and the clock offset φ of node j.

3.3.3 Global least squares

Global least squares (GLS) is an extended version of the pairwise model. The GLS
solution is capable of estimating all the clock correction parameters of all nodes in the
network at once. GLS can make use of every link available in the network, as shown
in Figure 3.6. GLS can be applied on any network configuration, as long as each node
has atleast one link connected to the network. In GLS, on each link K timestamp
exchanges are executed. When the message exchanges are completed, the timestamps
are send to the reference node, and the clock correction parameters for each node are
calculated, using Equation 3.6.

13

Node 2

Node 1 Node 4

Node 3

Node 1

Node 2

Node 4

Node 3

Node 2

Node 1

Node 4

Node 3

Figure 3.6: Example configurations of four node networks, where the GLS algorithm can be
applied to

The global least squares solution is obtained by minimizing the least squares norm

θ̂ =
(
Ā

T
Ā
)−1

Ā
T
t̄1, (3.6)

with

Ā =
[
T̄ Ē1 E2

]
∈ R2KM×L,

θ =
[
ᾱ β̄ τ

]
∈ RL×1,

where L = 2N + M − 2 and T̄, Ē1 ∈ R2KM×(N−1) are submatrices of T and E1

respectively, excluding the corresponding first columns. ᾱ,β̄ ∈ R(N−1)×1 represent
the unknown clock parameters of all the nodes excluding node 1 (reference node).
t̄1 ∈ R2KM×1 is the first column of matrix T which contains the timing markers recorded
at node 1.

The matrix T ∈ R2KM×N contains all the timing vectors from all N nodes, M =
(
N
2

)
number of unique pairwise distances, E1 ∈ R2KM×N , E2−IM⊗e ∈ R2KM×N . For N = 4
T and E1 are of the form

T =


t12 −t21
t13 −t31
t14 −t41

t23 −t32
t24 −t42

t34 −t43

 , (3.7)

E1 =


+12K −12K

+12K −12K

+12K −12K

+12K −12K

+12K −12K

+12K −12K

 . (3.8)

14

3.3.4 Asymmetrical time-stamping and passive listening

Asymmetrical time-stamping and passive listening (ATPL) [11] exploits the broadcast
property to estimate the clock parameters. During communication between a pair
of nodes timestamps are recorded and exchanged, like in the PLS and GLS solution.
Besides this, the remaining nodes in the network passively listen and record the times-
tamps with their individual clocks. In this way more information is obtained to solve
the unknown clock parameters. Figure 3.7, shows how the other nodes listen, while a
two-way timestamp exchange is done between a pair of nodes.

In the ATPL there are no constraints on the sequence of forward links and reverse
links, hence the reverse link does not always need to follow the forward link. This means
that a node does not need to respond to the request from another node immediately.
In the ATPL protocol the two-way communication always occurs between node i and
the central node, where node i initiates the two way communication. The other nodes
in the network passively listen and timestamp the messages.

Node 0

Node 1

Node 3

Node 2

Figure 3.7: four node network for ATPL solution. The dotted arrows indicate the nodes
passive listening to other nodes two-way timestamp exchange.

The clock parameters can be estimated using least squares as

θ̂ =
(
Ā

T
Σ−1Ā

)−1
Ā

T
Σ−1x̄, (3.9)

The construction of the matrices are presented in Figure 3.8; more information
about this can be found in [11].

Figure 3.8: Construction of the matrices for the ATPL solution from [11]

15

3.3.5 Performance

The performance of the presented algorithms is bounded by the stability of the local
clocks. Ideally, the two-way timestamp exchanges would be performed in the region
where the clocks are most stable, to estimate the clock correction parameters. As shown
in Figure 6.2 on page 34 the window where the clock is most stable is 2-16 seconds with
a stability of 22 ns. No algorithms can compensate for this random noise on the clock
output.

The performance of PLS, GLS and ATPL is the same, they all follow the Cramer-
Rao lower bound, shown to approach the theoretical limits. Because GLS, and espe-
cially ATPL, can exploit more communication links they can be more efficient, and
reach the lower bound faster than PLS.

The number of timestamp exchanges, K, has a strong influence on the performance.
The more timestamp exchanges, the better the estimation. Not only the amount of mes-
sage exchanges, but also the length of the observation window wherein the exchanges
take place, effect performance. The estimation will be better for longer observation
windows. Figure 3.9 show how the estimation is affected by the number of timestamp
exchanges and length of the observation window.

10 20 30 40 50
10

-10

10
-9

10
-8

10
-7

No.cofctransmissionscpercnode

R
M

S
E

c
[s

]

RMSEcclockcskewc()

1.3s

1.7s

2.2s

5.1s

15.8s

Ω

(a) Estimation of the clock skew.

10 20 30 40 50

1

2

3

4

5

6

7

8

9

10
x[10

-8

No.[of[transmissions[per[node

R
M

S
E

[
[s

]

RMSE[clock[offset[()

1.3s

1.7s

15.8s

Φ

(b) Estimation of the clock offset.

Figure 3.9: Estimation of the clock parameters using PLS in a two node system, for different
transmissions and observation windows. The algorithm was performed with MATLAB, with
an observation noise of 22 ns, and infinite clock resolution.

3.3.6 Cramer-Rao lower bound

The algorithms follow the Cramer-Rao lower bound (CRLB), which defines the smallest
variance of any unbiased estimator. If an estimator is found that achieves the CRLB,
we call this a minimum variance unbiased estimator (MVUE).

In the case of PLS, GLS and ATPL the CRLB is most influenced by the noise on
the time-stamping of the messages, this noise is called observation noise. This noise
originates from the instability of the clock, used for time-stamping of the two-way
message exchanges, and communication latency uncertainty of the network.

16

With simulations, using infinite clock resolution and averaging, it is possible to reach
below the observation noise. In a practical situation, the random clock noise, cannot
be compensated for by the algorithm, and therefore the estimation will be bound by
the observation noise. The algorithm only estimates the first order clock parameters,
which does not include any compensation for the clock noise.

3.3.7 Complexity

Table 3.1 shows the sizes of the operations needed to compute the least squares so-
lution, as presented in Equation 3.4. To solve the least squares problem, one matrix
multiplication, one matrix inversion and two matrix vector multiplications are neces-
sary.

The most complex operation is the matrix inversion. For PLS a 3x3 matrix needs
to be inverted, whereas for ATPL a 3Nx3N matrix needs to be inverted. Clearly we
see that PLS has the lowest complexity, GLS having a moderate complexity and ATPL
the highest complexity.

Table 3.1: Operation sizes of each least squares operation. With K number of messages,
K‘ = K1 + K2 + KN , L = 2N + M − 2, M the number of unique links in the network and
with N nodes.

C = AA d = Ab E = C−1 Ed

PLS (3x2K)(2Kx3) (3x2K)(2Kx1) 3x3 (3x3)(3x1)

GLS (Lx2KM)(2KMxL) (Lx2KM)(2KMx1) LxL (LxL)(Lx1)

ATPL (3NxK‘N)(K‘Nx3N) (3NxK‘N)(K‘Nx1) 3Nx3N (3Nx3N)(3Nx1)

3.3.8 Conclusion

For SPADnet PLS will be applied for clock synchronization for a number of reasons.
First, PLS estimates the clock parameters per pair, which is easier to scale, since when-
ever an extra node is added, only an extra synchronization of a pair of nodes has to be
executed. Also, PLS has the lowest complexity and will therefore be simpler to imple-
ment in hardware. PLS has the same eventual performance as GLS and ATPL. First,
it will be shown that PLS can be implemented for SPADnet, in the future techniques
like GLS or ATPL might be applied for a more efficient solution.

17

18

SPADnet system 4
The SPADnet system is composed of photonic modules. Each module, shown in Figure
4.1, contains scintillator crystals, sensor tiles and a data processing communication unit
(DCPU). In this chapter each component will be explained.

Figure 4.1: SPADnet ring system and photonic module.

4.1 Sensor tile

When the scintillator crystal is struck by a gamma photon, generated by the positron-
electron annihilation, the energy is absorbed and a shower of visible photons is gen-
erated. The sensor tile detects this light emission in the scintillator crystal using dig-
ital silicon photo-multipliers (SiPMs). A digital SiPMs is an array of single-photon
avalanche diodes (SPADs) whose individual outputs are combined digitally.

4.2 Data processing communication unit

As discussed earlier, every module in the SPADnet systems has its own data processing
communication unit. The DPCU timestamps the gamma events received from the
sensor tile. Then, using the timing information, a coincidence is identified by searching
the packets in the network. These packets are known as coincidence packets. When a
pair is identified, the pair information is send off the network to a remote computer.
This computer uses the event pairs information to recreate a 3D image (tomography).

Because the pairs are created by means of their timing information, it is of most
importance that the time-stamping at all nodes is synchronized, else wrong pairs of
events could be combined, resulting in a false recovered 3D image.

A schematic of the DPCU is shown in Figure4.2. The core of the DPCU is the
XC6SLX150T Spartan-6 FPGA from Xilinx. The connectors J3, J4, J5 and J6 are the
connections to the SPADnet network. There are three available sources for the clock of

19

the DPCU system: clock distributed via the network (J3), a local quartz oscillator or
the hard-wired through coaxial cables (connectors J8 and J9). All clock sources, expect
the local quartz oscillator, are cleaned by the LMK04906 clock jitter cleaner/multiplier.

J5

J4J3

J6
J8

east

west

J10

northsouth

XC6SLX150T

Spartan-6

LMK04906

J9

20MHz
VCXO

trigger

clock

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\System_overview.dsn

1.0 5

Figure 4.2: Schematic of the DPCU, the connector to the sensor tile is located at the backside
of the DPCU (not shown in this figure).

4.3 Network architecture

The main purpose of the SPADnet network is to distribute the coincidence packets and
transfer data out off the network. The SPADnet network is constructed out of rings of
photonic modules, as can be seen in Figure 4.3.

Figure 4.3: SPADnet network hierarchy. Each circle represents a photonic module

For distributed coincidence detection to occur, all network nodes are required to
perform coincidence detection simultaneously, by comparing locally detected gamma
events with those detected in other nodes, and across rings. This operation needs to
handle up to 0.5 million gamma events per second [20].

20

To reduce the complexity of the search of pairs that needs to be performed simulta-
neously in every node, the search space is reduced by optimizing the network at system
level, thereby achieving lower packet latency.

At system level, a two-stage data transfer approach was implemented, whereas in
the first stage smaller data packets (32 bit) carrying gamma event timestamps, known
as coincidence packets, are circulated in a dedicated network channel called coincidence
network. In the second stage, coincidence packets are paired to form true-event pack-
ets and then transferred to the data-acquisition PC, using another network channel
called data transfer network. These 64 bit packets contain node and scintillation ener-
gy/timing/position information, enabling to recover the positron-electron annihilation
location.

The use of two dedicated network channels, along with the smaller data packet
for coincidence detection, results in packet latency reduction. Furthermore, to lower
the statistical variance on packet latency, a static packet routing technique was used
along with the oldest-packet-first flow control algorithm. This approach to flow control
was realized using a virtual channel in hardware. The architecture of these network
channels are shown in Figure 4.4.

Coincidence

Engine Unit

CP-

network

Input

packet

controller

CP-

network

Output

packet

controller

Event

History

Coincidence

Packet

Generator

DT - network

Input packet

controller

DT

Output

packet

controller

Rawdata

Packet

Generat

or

Clock

syncronizati

on logic

True packet

buffer

Tx1 Tx2 Tx3 Tx4 Rx1 Rx2 Rx3 Rx4

Figure 4.4: Coincidence packet and data transfer architecture.

In the network architecture there is space reserved for the network based clock
synchronization solution. The clock synchronization logic has the highest priority on
the network. Whenever the clock synchronization logic requires to send a packet on
the network, the coincidence and true data channels are disabled to send any data.
The packets received by the module are directly available for the clock synchronization
logic.

21

4.4 SPADnet system clock synthesizers

The modules of the SPADnet system run on a central clock source. The clock signal
from a single quartz oscillator is spread with a 1-to-22 low skew buffer (ICS8534-01)
to each module. The clocks are either distributed in a star hierarchy or daisy chained
through each module. Each module has a local quartz oscillator, that is used during
the power up sequence of the module. The specifications of these oscillators are shown
in Table 4.1

Table 4.1: Specifications SPADnet system clock synthesizers.

Frequency (MHz) Frequency stability (ppm) Type

Central clock oscillator 100 ± 20 Quartz

Local clock oscillator 20 ± 50 Quartz

All of the clocks, except for the initialization clock, are buffered by a LMK04906
clock cleaner.

4.4.1 LMK04906 Ultra low noise clock jitter cleaner

Every DCPU module is equipped with a LMK04906 [21]. This device cleans the noise
from the hard-wired clock distribution networks. And it is also used to create different
kinds of clock signals. The buffer generates five clock signals, as shown in Figure 4.5.
CLKOUT0: clock for the next node in the ring system. CLKOUT1: easy accessible
clock signal used for diagnostics. CLKOUT2: clock used for coincidence mode. CLK-
OUT3: user clock for the FPGA. CLKOUT5: clock signal that drives the embedded
network transceivers, used for the communication network. The MICROWIRE bus
is used to program the LMK04906. Either the buffer uses the clock from the ring or
star configuration, for generation of the five clock outputs. All clock outputs have a
frequency of 100 MHz, except for the 125 MHz Aurora clock (CLKOUT5).

CLK_NODE_NEXT

CLK_DIAGNOSTIC

BIN_CLK

CLK_CNODE

N.C

CLKOUT0

CLKOUT1

CLKOUT2

CLKOUT3

CLKOUT4

AURORA_CLKCLKOUT5

μWIRE

CLK_RING

CLK_STAR

VCXO

CPOUT

OSCIN

CLKIN2

CLKIN0

μWIRE

LMK04906

Figure 4.5: The LMK04906 and its clock outputs.

22

In the system the LMK04906 is used in 0-delay mode, in this mode the feedback of
the first PLL is driven by a clock output. This loop-back ensures a deterministic phase
between the clock in- and outputs. The functional block diagram of the LMK04906 in
0-delay mode is shown in Figure 4.6. The first phase locked loop (PLL) cleans the jitter
with an external VCXO by using a narrow loop bandwidth. PLL1 serves as a reference
for PLL2, this internal VCO drives the six divide/delay blocks which generate the six
clock outputs.

�

�

������
��	�
	��
�

�

��	�����
���

�����

�

�����	�

�����	��

�������

����	�

���	����!�
��	�"��	�#�

��$�%��	��

 &'()*()+

,-	������

��$�%��	��

.��/

 &01'23+

4&'()*()+

������
�
5��	6

�
5��	6�

�
��7�#��

��"�	�������!
8����"�����!

9:;<=>?
:;<=>?@

A

BCDEFA
GFHFIHJK
B;;L

MNHFK>DOAP:?QA
JKARS>DTOFA
:KUEHDO

9

V

BCDEFA
GFHFIHJK
B;;W

X>HFK>DO
P:Q

MNHFK>DO
;JJYAZ=OHFK

X>YSHA
[S\\FK

A:
B
J
S
HL

Q]:JSĤ

Q]:JSĤ@

_̀ abcdbe

:BJSHW

BDKH=DOOUA
X>HFfKDHFgA
;JJYAZ=OHFK

ehijkljkm

MNHFK>DOA
;JJYAZ=OHFK

n__o n__p

ehqristm

ohijkljk

uhvwljkm

V

Q
]
:
=>

X>HFK>DOAJKAFNHFK>DOAOJJYTDIxyASEFKAYKJfKDzzDTOF

:;<JSH?

:;<JSH?@

A
G={=gFK

G=f=HDOAGFODU
|>DOJfAGFODU

}~������

�������������������������������� ����������

�� ¡¢£��¤��¥¦�§�£̈ �¡©����©ª¦«¦��¬­�ª ¢ª�§�¢�®̈£¦ª̄ ­¡ª¦}��¥~�̈£

¤�© ¦£°}}

±²³́µ¶�²··̧́ ¹µº¹¶̧ ¹»¶´̧¶¼º̧¶½¾̧²¿³·¶ÀÁÁÂ½Ã¶Ä�¿ ²̧¿³·¶ÀÁÁÂ½Ã¶½¿·ÅÀÁÁ�²̧´̧¶Ãº¿ÃÀÁÁ�²̧Æ½Ç¶µ¶Ã
Ã½Ç¿ÄÈ�É²¿²̧´̧¶Ãº̧ ¹»¶µ¶¾¶µ¶¿¼¶²¿Ǽ¹ÄÊ»¶²¿¹¶µ¿º·�ÉÈÃµ²Ë¶̧ Ǽ¹½ÌÃ²Ë²Ã¶ÍÃ¶·ºÅÎ·½¼Ï̧ Ç»²¼»Ãµ²Ë¶Ì
¼·½¼Ï½́¹Ǽ¹̧ÄÊ»¶µ¶¾¶µ¶¿¼¶º¹È�É²¿¼º¿Î¶´̧¶Ã¹½Ãµ²Ë¶¹»¶È�É½́¹�Æ½µ¹ÄÈ�É²¿¼º¿º·̧½½Æ¹²½¿º··ÅÃµ²Ë¶
Ǽ¹½�½¾¹»¶¼·½¼Ï½́¹Ǽ¹̧Ä

�¹²̧º·̧½Æ½̧ ²̧Î·¶¹½´̧¶º¿¶Ð¹¶µ¿º·�ÉÈ²¿Æ·º¼¶½¾ÀÁÁ�Ņ̃²¿¹¶µ¿º·�ÉÈÄ

�� ¡¢£Ò�¤��¥¦�§�£̈ �¡©����©ª¦«¦��¬­�ª ¢ª�§�¢¤�© ¦£}��¥~�̈£

�®̈£¦ª̄ ¤�© ¦£°}}

±²³́µ¶Ì²··̧́ ¹µº¹¶̧ ¹»¶´̧¶¼º̧¶½¾�ÓÃ¶·ºÅ ²̧¿³·¶ÀÁÁÂ½Ã¶ÄÊ»²̧¼½¿¾²³́µº¹²½¿²̧Ë¶µÅ ²̧Â²·ºµ¹½�²¿³·¶ÀÁÁ
¶Ð¼¶Æ¹¹»º¹¹»¶¾¶¶ÃÎº¼Ï¹½ÀÁÁ�¼½Â¶̧ ¾µ½Âº¼·½¼Ï½́¹Ǽ¹ÄÊ»²̧¼º́ ¶̧̧ ¹»¶¼·½¼Ï½́¹Ǽ¹̧¹½Î¶²¿Æ»º̧¶Ç²¹»
¹»¶µ¶¾¶µ¶¿¼¶²¿Ǽ¹Ä�²¿¼¶º··¹»¶¼·½¼Ï½́¹Ǽ¹̧¼º¿Î¶ Å̧¿¼»µ½¿²Ô¶Ã¹½³¶¹»¶µÕº··¹»¶¼·½¼Ï½́¹Ǽ¹̧¼º¿Î¶²¿
Æ»º̧¶Ç²¹»¹»¶¼·½¼Ï²¿Ǽ¹̧²³¿º·ÄÊ»¶¾¶¶ÃÎº¼Ï¹½ÀÁÁ�¼º¿Î¶Æ¶µ¾½µÂ¶Ã²¿¹¶µ¿º··Åº̧ »̧½Ç¿Õ½µ¶Ð¹¶µ¿º··Å
´̧²¿³±ÖÉÁ×²¿ØÉÁ×²¿�Ùº̧ º¿²¿Ǽ¹Æ½µ¹Ä

�¹²̧º·̧½Æ½̧ ²̧Î·¶¹½´̧¶º¿¶Ð¹¶µ¿º·�ÉÈ²¿Æ·º¼¶½¾ÀÁÁ�Ņ̃²¿¹¶µ¿º·�ÉÈÄ

Ú ÛÜÝÞßàáâãÜÞäåàæàßâåçääèÝæãé É½ÆÅµ²³»¹ê���������ÕÊ¶Ðº̧ �¿̧¹µ́Â¶¿¹̧�¿¼½µÆ½µº¹¶Ã

Àµ½Ã́¼¹±½·Ã¶µÁ²¿Ï̧ëìíîïðñïò

Figure 4.6: Simplified functional block diagram of the LMK04906 in 0-delay mode. Obtained
from [21]

The, programmable, divider blocks scale down the output to a desired frequency.
Delay blocks allow to adjust the output phase. There are two mechanisms to delay the
output. A fine analog delay with a resolution of 25 ps and a range of 500 - 975 ps. The
digital delay resolution depends on the VCO divider and VCO frequency. In this case
the resolution is 400 ps as calculated in:

Digital Delay Resolution =
V CO DIV

2 x V CO frequency
=

2

2 x 2500 MHz
= 400 ps. (4.1)

The LMK04906 is connected with the FPGA via a MICROWIRE Serial Interface.
Via this interface the settings of the LMK04906 are programmed, including the analog
and digital delay. During the start-up sequence of the FPGA the initial settings are
loaded into the LMK04906.

4.4.2 ICS8534-01: 1-to-22 fanout buffer

The clock distribution network is driven by the ICS8534-01 fanout buffer. This buffer
takes in a single clock signal and generates 22 clock outputs. This buffer adds a phase
jitter of 0.04 ps and the skew between the outputs is 100 ps maximum [22]. In the
SPADnet system 20 of the outputs are used for the star clock distribution. The other
two clock outputs are used for the ring configuration. The printed circuit board, pro-
vided during this thesis, can support up to two rings of SPADnet modules.

23

24

Hard-wired clock distribution
networks 5
5.1 Distribution topography

The SPADnet system has two hard-wired clock distribution options, a ring and star
topography. In the ring configuration the clocks are daisy chained from each module to
the next module. In the star configuration the clocks are wired from a single point to
every module. In this section these hard-wired clock distribution networks are analysed
and characterized.

25

5.1.1 Ring clock distribution network

In Figure 5.1 the schematics for a three node network, with a ring distributed clock,
is shown. In this configuration the clock follows the same path as the communication
network, and is physically placed on the same flat-cable. Due to this configuration
the clock signal will not arrive at the same time at each node, because the distance
to the clock origin (snooper) increases for every following node. Hence there will be
a phase difference at each node. This phase difference can be compensated for by
the LMK04906, this circuit is capable of delaying the clock outputs by programmable
values.

If the user would like to extend the network with one or more nodes, the phase
difference needs be measured for each extra node and adjusted by programming the
LMK04906. This is not convenient since the user needs to have the appropriate mea-
suring equipment. Measuring and aligning the phases can be time consuming, when
multiple nodes are added to the network, and especially when the system is set up for
the first time.

EL-23-77-00

J1J3

J2J4

EL-24-16-00

J5

J4 J3

J6J8 J9

JP73

12VDC

J10

DPCU

Snooper

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9

east

west

J1
0

north south

D
P

C
U

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9
J1

0

D
P

C
U

Communication channel

100 MHz clock

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\System_overview.dsn

1.0 2

Figure 5.1: Clock distribution network: ring topography.

5.1.2 Star clock distribution network

The star clock distribution network is shown in Figure 5.2. In this configuration the
clocks are connected from the snooper to each node using coaxial cables. If all the

26

cables would have exactly the same length there would be zero phase offset in the clock
signal at each node.

When the network is extended when using the star clock distribution network, the
user needs to add the coaxial wires to distribute the clock. The number of connectors on
the clock distribution module limits the maximum number of nodes in the network. The
coaxial cables should have the exact same length, else a phase error will be introduced.
The clocks are generated using the ICS8534-01 1-to-22 fanout buffer, as discussed in
Section 4.4.2. This buffer introduces a maximum clock offset of 100 ps on its outputs
[22].

EL-23-77-00

J1J3

J2J4

EL-24-16-00

J5

J4 J3

J6J8 J9

100 MHz clock

JP73

12VDC

J10

DPCU

Snooper

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9

east

west

J1
0

north south

D
P

C
U

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9
J1

0

D
P

C
U

Communication channel

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\System_overview.dsn

1.0 1 of 1

Figure 5.2: Clock distribution network: star topography.

27

5.2 Characterization

The performance of SPADnet partially depends on how good the module clocks are syn-
chronized. Jitter and phase measurements were done to give insight on the performance
of the hard-wired clock distribution networks. The jitter and phase measurements were
measured after the jitter cleaner (LMK04906). The measurement point was the minia-
ture RF connector J10 shown in Figure 5.3.

J5

J4J3

J6
J8

east

west

J10

northsouth

XC6SLX150T

Spartan-6

LMK04906

J9

20MHz
VCXO

trigger

clock

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\System_overview.dsn

1.0 5

Figure 5.3: Simplified schematic of the SPADnet FPGA modules.

5.2.1 Jitter

For the jitter measurements a LeCroy WavePro 760Zi-A oscilloscope was used. This
oscilloscope has a sampling rate of 40 GS/s and sampling jitter of 100 fsrms for an
acquired time range up to 10 µs.

With the oscilloscope the average period of the signal is measured, with a random
number of cycles between each measurement. Then the deviation per sample is cal-
culated. This deviation was accumulated in to a histogram of 10.000 samples. This
histogram is shown in Figure 5.4. This measurement follows the JEDEC Standard 65B
[16].

28

-2 -1 0 1 2

x 10
-11

0

1

2

3

4

5

Period deviation (s)

O
c
c
u
rr

e
n
c
e
s
 (

%
)

Jitter measurement

Figure 5.4: Normalized histogram of period jitter analysis, shows the period deviation of the
clock signal over a short period of time. The histogram contains 10.000 samples and 100 bins.

The RMS value (standard deviation) of the jitter was calculated to be 5.52 ps. The
data fits a Gaussian distribution and has a zero mean. There is no difference between
the jitter with the star and the ring clock distribution network.

5.2.2 Multi node jitter

The presented jitter measurement was only for a single node system. In this section
the jitter measurement is repeated in a system of four nodes. For the estimation, it
is of great importance that the jitter does not increase significantly when the number
of nodes in the system increases. The same measurement setup was used as in the
previous case, only a different oscilloscope was used. This oscilloscope has slightly
lower bandwidth (20 GS/s). The results are shown in Table 5.1, the jitter on the clock
does not increase when the number of nodes increases.

Table 5.1: Jitter measurement in a four node ring system.

Node Jitter (ps)

1 5

2 5

3 5

4 5

29

5.2.3 Phase difference star distributed clock network

The phase difference between two nodes was measured using the same oscilloscope used
for the jitter measurement. The phase difference of two nearest clock edges (from the
clock signals at each node) where accumulated in to a histogram of 10.000 samples and
100 bins.

The result of the phase difference measurement, of the star distributed clock network
is shown in Figure 5.5. This small phase difference is introduced by the coaxial cables,
that do not have exactly the same length. The center of the histogram lies at 191 ps,
with a standard deviation of about 10 ps. This is about 2 times the standard deviation
measured at a single node, as shown in Figure 5.4.

1.6 1.8 2 2.2

x 10
-10

0

1

2

3

4

5

Phase difference (s)

O
c
c
u
rr

e
n
c
e
s
 (

%
)

Two node phase difference
star clock network

Figure 5.5: Phase difference between two adjacent nodes, using the star distributed clock
network.

5.2.4 Phase difference ring distributed clock network

For the ring distribution network the same measurement was performed. The histogram
is shown in Figure 5.6. The center of the histogram lies at 4.47 ns, with a standard
deviation of about 11 ps.

30

4.42 4.44 4.46 4.48 4.5 4.52

x 10
-9

0

1

2

3

4

5

Phase difference (s)

O
cc

u
rr

e
n
c
e
s
 (

%
)

Two node phase difference
ring clock network

Figure 5.6: Phase difference between two adjacent nodes, using the ring distributed clock
network.

Multi nodes ring

Table 5.2 shows the result of phase difference measurements in a system of four nodes.
The noise on the phase slightly increases when the number of nodes increases.

Table 5.2: Phase difference in a four node system.

Node Mean (ns) SD (ps)

1-2 5.529 9

1-3 1.225 11

1-4 6.9548 14

To compensate for phase differences the LMK04906 can be used. It is capable of
correcting the clock phase, with a resolution of 25 ps.

5.3 Conclusion

The network clock has a jitter of less than 6 ps, this jitter does not increase when the
number of nodes increases.

5.3.1 Ring network

The phase jitter between two nodes, in the ring configuration is about 11 ps measured
on two adjacent nodes, the phase jitter slightly increases (2-3 ps per node) when the
system is scaled up. At each node there exists phase offset, that is depended on the
modules position in the network. The phase offset difference can be compensated by
the LMK04906, with 25 ps precision.

31

Adding an extra node to the system, while using the ring clock network, the phase
difference of the added node needs to be manually measured and corrected.

5.3.2 Star network

The ring configuration has a phase jitter of about 10 ps between two nodes. The clock
offset between two nodes is 191 ps, this phase difference is introduced by the output
skew of the ICS8534-01 1-to-22 fanout buffer (max 100 ps) and the applied coaxial
cables.

Whenever the system is extended with an extra node, a pair of coaxial cables needs
to be connected between the added node and the clock distribution board. The amount
of nodes is limited by the number of connections on this clock distribution boar. The
coaxial cables can, and the ICS8534-01 1-to-22 fanout buffer will introduces a phase
offset.

32

SPADnet solution 6
As discussed in Section 3.3.8, pairwise least squares (PLS) is considered to be the best
solution for SPADnet for now. Also it was stated that the performance of the algorithms
depends on the stability of the clock oscillators. In this chapter first the Allan variance
will be measured, to see how stable the clock oscillators are. The chapter ends with a
discussion of how the algorithm is mapped to the SPADnet network.

6.1 Allan variance measurement

As discussed in Section 2.1.3 the long-term stability of a signal can be measured using
the Allan variance (AVAR). The AVAR was measured using the setup shown in 6.1. A
64 bit counter runs on the local clock oscillator. At fixed intervals an external clock
generator triggers, this causes the system to store the current value of the counter in
memory. After enough triggers, the counter values are sent to the PC via the serial
network. This will be done for interval times from 0.01 s till 64 s.

64bit counter

clk_p

clk_n

.........................

clock oscillator
20MHz

trigger

SPADnet DPCU board

Spartan 6 FPGA

Memory block

snooper boardethernetPC

SRS MODEL CG635

Trigger

Aurora 8B/10B

.........................

ML605

Ring network

Clock Generator

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\allan_variance\allan_var.dsn

1.0 1 of 1

Figure 6.1: Hardware setup used to perform the Allan variance measurement.

33

The results of the Allan variance using the setup resented in Figure 6.1 are shown in
Figure 6.2. The Allan variance is calculated as presented in Equation 2.2. The window
where the clock is most stable is 2-16 s, with a stability of about 22 ns.

10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−7

10
−6

10
−5

AllanTDeviationT20MHzTquartzTcrystal

A
lla

nT
D

ev
ia

tio
n

CoherenceTtime:TTauT(s)

2.1980e−08

Figure 6.2: Result of the Allan variance measurement.

To compete with the hard-wired clock distribution approach, this lower bound of
22 ns is clearly unacceptable. The hard-wired clock distribution has 11 ps of jitter, and
can compensate the phase up-to with 25 ps of accuracy. Therefore either the modules
need to be equipped with more stable clock oscillators or another ingenious solution
needs to be found. Table 6.1 shows alternative clock oscillators that have a much higher
stability. An oven controlled crystal oscillator (OCXO) would be a good solution, even
though this is the smallest in size, it is still too large for the SPADnet modules. The size
of the PCBs of the modules are limited by the size of the sensor tiles, the sensor tiles of
each module need to be as close as possible to each other, to decrease the blind spots
in the system. The larger the gaps between each module, the lower the probability of
detecting a gamma event pair.

Table 6.1: Alternative stable clock oscillators. Obtained from [23].

Stabillity (τ = 1s) Aging/year size (cm3) Power (W) price ($)

OCXO 1 ps 5 ppm 20 - 200 0.6 200 - 2000

Rubidium 3 ps 0.2 ppm 200 - 800 20 2000 - 8000

Cesium 50 ps 0 ppm 6000 30 50000

6.2 Hybrid clock synchronization solution

Since we cannot rely on the local clocks of the module, which are too unstable to achieve
satisfactory performance, another solution is required. First, let us recall why network

34

based clock synchronization is needed.

One of the goals of SPADnet is to create a scalable product. In order to achieve
this, network based clock synchronization would help. In the current situation, either
an extra cable needs to be added (in case of the star distributed clock synchronization
topography), or the phase has to be measured, and compensated for (in case of the
ring clock distribution), whenever a module is added. With a network based clock
synchronization, this process can be suppressed, thus making the system easy to scale.

The ring distributed clock, shown in Figure 6.3 has the interesting property that
only the phase needs to be corrected, and since all modules run on the same clock
we do not have to worry about the clock stability any more. The clock correction
algorithms therefore can be used to estimated the phase, and with the LMK04906 the
phase can even be physically corrected. The clock is available on the same flat-cable
as the communication network. With this hybrid solution, of hard-wired distributed
clock and network based phase estimation, the scalability issue can be resolved. PLS
will be used to estimate the phase differences.

EL-23-77-00

J1J3

J2J4

EL-24-16-00

J5

J4 J3

J6J8 J9

JP73

12VDC

J10

DPCU

Snooper

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9

east

west

J1
0

north south

D
P

C
U

E
L
-2

4
-1

6
-0

0

J
5

J
4

J
3

J
6

J8
 J

9
J1

0

D
P

C
U

Communication channel

100 MHz clock

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\schematics\System_overview.dsn

1.0 2

Figure 6.3: Clock distribution network: Ring topography. The phase of the clock will be
different at each node, because of the distribution network. The phase will be estimated
using pairwise least squares.

35

6.3 Phase synchronization protocol

Each ring of the SPADnet system will have one reference node, where all the other
nodes of that ring synchronize with. The reference node only replies back, with the
captured timestamps, to the caller. Two messages are sent back, one containing the
reception marker, and the other the transmission time. All the other nodes in the ring,
initiate the two-way timestamp exchange messages with the central node, and perform
the PLS algorithm to estimate the phase difference. Figure 6.4 shows the two-way
timestamp exchanges of a node with the reference node.

Ref. node

Node 1
T1,C

(1) T1,C
(2) T1,C

(k)

TC,1
(1) T2,1

(2) TC,1
(k)

R1,C
(1)

RC,1
(1) RC,1

(2) RC,1
(k)

R1,C
(2) R1,C

(k)

2x31bit

{RC,1
(k) , TC,1

(k) }

…

Figure 6.4: Final two-way timestamp exchange protocol

The network supports the transmission of single packets with 32 bits of data. Each
timestamp will consist of a 22 bits coarse value and 9 bit fine value. The most significant
bit indicates if the packet holds a reception or transmission time marker. This bit is
also used, to ignore the time-stamping of the second reply of the reference node.

Rx/Tx coarse

03031

fine

8

Figure 6.5: Two-way packet construction

The phase estimation protocol is mapped on to the SPADnet in two stages. Each
node in the system, has four network interfaces that can be individually operated (two
links to the previous and next node in the same ring, and two links to the adjacent
nodes of the other rings), this allows to synchronize multiple nodes to a single reference
in parallel.

In the first stage of the synchronization, the individual nodes in the rings will
synchronize to a reference node in that ring. Two nodes, one on the left hand and
on on the right hand side of the reference node, will simultaneous synchronize to the
reference node each interval, when the two nodes are synchronized the next two nodes
start to synchronize with the reference node.

Figure 6.6 shows 2 nodes synchronizing with the reference node. The synchroniza-
tion of all the nodes in the rings, will be done in parallel for each ring. When all the
rings have synchronized their nodes, the central nodes will synchronize with each other.
The time it takes to synchronize is equal to (R/2 + N/2) · t where N is the number
of nodes in one ring, R the number of rings and t the average amount of time needed
to synchronize a pair of nodes. This time depends on the observation window. The

36

amount of messages sent is 3K ·N .

REF. Node

N1

N2

N3

N4

N5

N6

N7

(a) Stage 1: nodes synchronization.

REF. Node

N1

N2

N3

N4

N5

N6

N7

(b) Stage 2: rings synchronization.

Figure 6.6: Stages of the synchronization protocol.

6.3.1 Broadcasting

The SPADnet network currently does not support broadcast messages. However if
broadcasting messages would be enabled a more efficient synchronization scheme can
be applied. Then instead of synchronizing per pair of nodes, the reference node could
send broadcast messages around the network, while each node replies to the broadcasts.
Using broadcasts reduces the amount of messages needed to synchronize the nodes.

REF. Node

N1

N2

N3

N4

N5

N6

N7

broadcast

reply

Figure 6.7: The use of broadcast messages to obtain timestamps. The reference node broad-
casts a message to all nodes, while the individual nodes reply to the broadcast, while recording
the transmission and reception times

37

38

Hardware implementation 7
In this chapter the implementation of the network based phase estimator is presented.
The pairwise least squares (PLS) algorithm is simplified to only estimate the phase
offset and distance. After that the phase estimator is adjusted to be implemented
in hardware. In addition, the top-level module, that handles the two-way timestamp
exchanges, controls the phase estimator and interfaces with the LMK04906, will be
discussed in the second part of this chapter.

7.1 Phase estimator

For the estimation of the phase offset and distance between two nodes the PLS algo-
rithm will be used. The distance estimation is solely used for debugging. The PLS
algorithm 7.1 finds an estimate for the clock skew, phase and distance between pairs of
nodes.

θ̂j =
(
AT

jiAji

)−1
AT

jitij, (7.1)

where

Aji = [tji 12K e]T ∈ R2K×3,

θj = [αj βj τij]
T ∈ R3×1.

Because the ring distributed clock network is used there will not be any clock drift
in the system. Therefore we do not need to find an estimate for the clock skew αj.

With αj = 1 we can simplify 7.1 to

θ̂′j =
(
A′Tji A

′
ji

)−1
A′Tji (tji − tij), (7.2)

where

A′ji = [12K e]T ∈ R2K×2,

θ′j = [βj τij]
T ∈ R2×1.

Now the elements of A′ji all become constants, only the matrix size depends on k,

39

the number of timestamp exchanges. A′Tji A
′
ji simplifies to

A′Tji A
′
ji =


−1 −1
−1 −1
...

...
1 −1
1 −1


(
−1 −1 . . . 1 1
−1 −1 . . . −1 −1

)
=

(
2k 0
0 2k

)
. (7.3)

The inverse of this 2 by 2 matrix is easily found using its determinant

(
A′Tji A

′
ji

)−1
=

1

4k2

(
2k 0
0 2k

)
=

(
1
2k

0
0 1

2k

)
. (7.4)

Working out the multiplication of A′Tji times the matrix inverse from Equation7.4,
reduces the least squares to

θ̂′j =
(
A′Tji A

′
ji

)−1
A′Tji tij =



−1
2k

−1
2k

−1
2k

−1
2k

...
...

1
2k

−1
2k

1
2k

−1
2k


(tji − tij). (7.5)

If the number of timestamp exchanges is k = 2i, for a given i, solving the least
squares only requires 2k logical shifts, 3k additions and 2k subtractions.

7.1.1 Hardware implementation

To efficiently implement the algorithm in hardware, the parameters need to be converted
to fix point. The smallest value that needs to be represented is 1

2k
, for 8192 timestamp

exchanges the smallest number is therefore

1

2k
=

1

8192
= 2−13. (7.6)

To represent this value in two’s complement fix point format, at least 13 fractional
bits are required. The largest number that needs to be represented depends only on
the communication latency between two nodes (expressed in clock ticks)

2k∑
i=1

(
tji(i)− tij(i)

) 1

2k
. (7.7)

The communication latency between two SPADnet nodes is about 100 coarse clock
ticks, for a 100 MHz time-stamping clock, and 1.25 GB/s line rate. With 25 integer
bits, a network of more than 500 nodes can be handled. In the implemented phase
estimator registers of maximum 48 bits are used.

40

The phase estimator is implemented in a iterative fashion, whenever a new pair
of timestamps is available, the phase estimator executes an iteration. After enough
iterations the phase estimator returns the discovered phase offset.

The phase estimation algorithm is scheduled into 3 stages. In stage 1 the timestamps
are subtracted from each other. In stage 2 and stage 3 the matrix vector multiplica-
tion, from Equation 7.5, is performed using logical shifts and additions. The Verilog
implementation of the phase estimator is placed in Appendix A.1.

The synthesis report of the phase estimator is printed in Appendix A.2, it can be
concluded that the phase estimator uses low amount of resources and can operate at
high speed (161 MHz).

7.1.2 Coarse timer overflow

Since the coarse counters only has a limited number of bits, they will overflow during
the two-way timestamp exchanges. In this design 22 bits were used, for a 100 MHz clock
this holds that about every 40 ms the counters overflow. In Table 7.1 the timestamps
of two-way timestamp exchanges are executed between two nodes. The overflowing of
the counters will once in a while create an large error in the estimation algorithm. To
overcome this fault, overflow correction logic is required.

Table 7.1: Two-way timestamp exchange, the transmission and reception times are marked
using a 22 bit 100 MHz counter. Overflowing of the counter sometimes needs to be corrected,
as we can see from the results of the first steps of the algorithm.

Timestamps Algorithm

Rij Tij Rji Tji Rji −Rij −Tji + Tij
207 5 99 129 -108 -124

40435 40232 40326 40356 -109 -124
...

...
...

...
...

...

4187909 4187704 4187799 4187830 -110 -126

33832 33631 33724 33755 -108 -124

74059 73858 73951 73982 -108 -124
...

...
...

...
...

...

4154099 4153895 4153990 4154020 -109 -126

23 4194125 4194219 4194249 4194196 -124

40250 40048 40142 40172 -108 -124
...

...
...

...
...

...

103 4194205 4194299 25 4194196 4194180

To detect and correct for such overflow faults, the following property of the two-way
timestamp exchange is used

Rij > Rji,

Tji > Tij.
(7.8)

41

This property should always hold, as can be derived from the two-way timestamp
exchange protocol, shown in Figure 7.1. If this property is violated, then overflow
requires correction.

Ø

Clock Node 2

Clock Node 1

…

T1,2
(1) T1,2

(2) T1,2
(k)

T2,1
(1)

T2,1
(2)

T2,1
(k)

R1,2
(1)

R2,1
(1)

R2,1
(2)

R2,1
(k)

R1,2
(2) R1,2

(k)

Figure 7.1: Two-way timestamp exchange protocol, with node i = 1 and node j = 2.

There are three incorrect overflows possible, violating the property of Equation 7.8,
as shown in Table 7.2.

Table 7.2: Three possible moments of overflow generating a fault. The expected outcome of
the first steps of the algorithm should be -108 and -124.

Timestamps Algorithm

Rij Tij Rji Tji Rji −Rij −Tji + Tij
123 4194225 15 45 -108 4194180

103 4194205 4194299 25 4194196 4194180

23 4194125 4194219 4194249 4194196 -124

The timestamps can be corrected using the maximum coarse counter value (222 =
4194304)

Rij < Rji → R′ij = Rij +MaxCounterV alue,

Tji < Tij → T ′ij = Tij −MaxCounterV alue.
(7.9)

Table 7.3, shows the timestamps after applying the overflow correction.

Table 7.3: Corrected timestamps, using the overflow correction.

Timestamps Algorithm

R′ij T ′ij Rji Tji Rji −Rij −Tji + Tij
123 -79 15 45 -108 -124

4194407 -99 4194299 25 -108 -124

4194327 4194125 4194219 4194249 -108 -124

42

7.1.3 Simulation results

The phase estimator was simulated with ISim simulator v. 14.7. Real timestamps
were used, obtained by two-way timestamp exchanges using a two node network. The
results are compared with the floating point PLS Matlab simulation, shown in Figure
7.2. There is no difference between the fix point implementation and the floating point
Matlab simulation, hence enough fractional bits are used.

100 200 300 400
2.15

2.2

2.25

2.3

2.35

2.4

2.45
xM10

−8

No.MofMtransmissionsMperMnode

φ
(s

)

EstimatedMclockMoffsetsM

FloatingMpointM(Matlab)
FixedMpointM(ISim)

Figure 7.2: Verification of the fixed point phase estimator implementation, using ISim and
Matlab.

The fix point implementation only gives a solution for k = 2i for any i, with k being
the number of timestamp exchanges. Therefore the implementation only can give a
solution for a limited amount of points, whereas the floating point Matlab solution can
give an estimator for any number of timestamp exchanges.

43

7.2 High resolution time-stamper

The resolution of the phase estimator is the smallest phase offset that it can detect. The
resolution of the phase estimation algorithm depends on the time-stamping precision.
The Spartan-6 field programmable gate array (FPGA) can operate at a maximum
frequency of 400 MHz (period of 2.5 ns). Since the goal is to compete with the hard-
wired clock distribution network, a higher resolution is required then this maximum
clock frequency. With interpolation it is possible to reach sub-clock resolution, in [24]
a 100 ps resolution is achieved using interpolation of a counter in a FPGA. Still this is
not enough, since the hard-wired clock distribution can correct a resolution of 25 ps.

In application-specific integrated circuits (ASICs) it is possible to reach a resolution
in the order of a few picoseconds, for example in [25] a time-to-digital converter (TDC)
is presented with a resolution of 1.12 ps. In those solutions a delayline is used to convert
a time to digital code. This delayline is typically constructed out of delay elements,
typically inverters, since they are the fastest logic elements in CMOS. The resolution of
a delayline TDC depends on the propagation delay of that delay element. The time is
measured by counting the number of switched delay elements, a start signal enables the
signal propagation through the delayline. When a stop signal is given, the propagation
is disabled, the number of switched elements is a scale for the time between the start
and stop signal.

In the case of a FGPA the carry chain has the lowest propagation delay to speed
up arithmetic operations. An FPGA implementation of a single delayline TDC, using
the carry chain, is presented in [26]1. This TDC has a resolution of about 21 ps and
a range of 10 ns. This design will be used in this thesis. To increase the range of
the time-stamping the fine delayline TDC is combined with a coarse counter. The
coarse counter runs on a 100 MHz clock signal, and stores its current value in a register
whenever the trigger is presented. The fine TDCs stop signal is driven by the same
clock signal as the coarse counter, the trigger is used as the start signal for the fine
TDC. The fine TDC measures the time between the trigger and the first rising edge of
the coarse counter (tf).

Fine TDC

Coarse counter
trigger

clk

clk

trigger

tf tf

Figure 7.3: Combination of the fine delayline TDC and coarse counter.

1This design is available on: http://cas.tudelft.nl/fpga_tdc/

44

http://cas.tudelft.nl/fpga_tdc/

7.2.1 FPGA Time-to-digital converter

The FPGA TDC makes use of the carry structure embedded in the FPGA, the carry
chain is used as the delay element of the delayline.

The single delayline structure is shown in Figure 7.4, the resolution of this TDC
depends on the propagation delay (t) of the delay element. The thermometer code
output of the TDC (Q1−Qn) is converted to binary using a thermodecoder.

...

Figure 7.4: General single delayline time-to-digital converter. In the case of the FPGA TDC
the delay elements are carry units.

7.2.2 TDC simulation

To compute the resolution of the TDC, a timing simulation (post place-and-route) was
performed. This type of simulation takes into account of the timing delay information
of the design. The input delay was increased with a step size of 1 ps over a range of 0
to 10 ns. The result of this simulation is shown in Figure 7.5.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

input delay (ps)

T
D

C
 o

u
tp

u
t

c
o

d
e

Figure 7.5: Timing simulation of the FPGA TDC.

The resolution of the TDC was computed by applying a linear fit and calculating
its slope. The simulated resolution turned out to be 20.4 ps.

45

7.2.3 FPGA TDC implementation

After implementation, the actual transfer function of the TDC was verified. Although
the post place-and-route simulations includes timing information, clock jitter is not
taken into account for, imperfections in the FPGA and other system noise components
are also not modelled. Unfortunately, it is not possible to characterize the TDC using
a step size of 1 ps (like during the simulation). For the characterization the fine analog
delay of the LMK04906 was used, this can generate phase differences with a resolution
of 25 ps (the accuracy is unknown).

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

Input phase (ps)

T
D

C
 o

u
tp

u
t
c
o
d

e

TDC Characterization

Figure 7.6: transfer function of the implemented FPGA TDC.

Using a linear fit and recovering its slope, the resolution of the TDC is computed to
be 18.4 ps. The main contribution of this error, compared to the simulated resolution,
is in the uncertainty of the accuracy of the injected phase.

non-linearities

Because of the structure of the FPGA the TDC has large linearity deviations. The
main contribution to this is the gaps the carry4 elements, Figure 7.7. This repartition
appears in the non-linearity as can been seen in Figure 7.8 and Figure 7.9.

46

Figure 7.7: Floor plan of the TDC, between every 16 slices there is a gap. In the middle
of the 16 slices there is a clock domain crossing. These gaps and crossings introduce delays,
affecting the non-linearities of the TDC.

Differential non-linearity (DNL) was calculated using

DNL = |[(TD+1 − TD)/TLSB−IDEAL − 1]| where 0 < D < 2N − 2. (7.10)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

15

Input phase (ps)

D
N

L
 e

rr
o

r
(L

S
B

)

DNL TDC

Figure 7.8: Differential non-linearity of the implemented TDC.

47

The integral non-linearity (INL) discribes the deviation of the transfer function from
the ideal transfer function. INL is the integral of DNL, and is formulated as

INL = |[(TD − TZERO)/TLSB−IDEAL −D]| where 0 < D < 2N − 1. (7.11)

0 2000 4000 6000 8000 10000
-15

-10

-5

0

5

10

Input phase (ps)

IN
L
 e

rr
o
r

(L
S

B
)

INL TDC

Figure 7.9: Integral non-linearity of the implemented TDC.

The INL and DNL of the implemented TDC are quite high, this non-linearity will
increase the noise on the time-stamping of the two-way messages, this will effect the
performance of the estimation. However this noise can be compensated by increasing
the number of timestamp exchanges.

48

7.3 Time synchronization module

The time synchronization module handles two-way timestamp exchanges, and controls
the phase estimation module. This module has two configurations, reference and nor-
mal. The modules are build out of general blocks.

The packet decoder, decodes the received messages. Depending on the header of the
messages a trigger is send to the counters, and the time marker embedded in the packet
is stored in the timestamp register. The transmission packets are constructed by the
packet encoder. The coarse counter and fine counter are triggered whenever a message
is received or transmitted, the outcomes of these counters are stored in the timestamp
register. When, in the normal node, all timestamps of one two-way timestamp exchange
iteration are collected, the phase estimator is updated. With the LMK adjuster the
LMK04906 registers can be programmed, the LMK adjuster was mainly used to inject
known phase offsets to the 100 MHz clock. The flow of data and control is handled by
the status and control block.

7.3.1 Hardware implementation, normal node

The normal nodes initiate the two-way timestamp exchanges with the reference node.
When the network is free the node sends a message to the reference. Then, it waits
on the reply of that node. When the node does not answer within a given amount
of time, it is assumed that a packet is lost in the network, the initiation is repeated.
When a reply is received, the phase estimator is updated. Afterwards either enough
two-way timestamp exchanges are fulfilled, or the complete sequence is repeated till
enough timestamps are collected. These nodes are also capable of interfacing with the
LMK04906 clock buffer. During this thesis this feature was mainly used to generate
known phase offsets. But in the final system they could be used to physically correct
the phase of the clocks, using the estimated clock correction parameters.

49

Coarse counter

clk

nw_trigger timestamp_coarse

Fine counter (TDC)

stop_clk

nw_trigger

timestamp_fine

Phase estimator

clock_parameter[2]

done

update

timestamp[4]

Timestamp reg

rx_local

tx_local

rx_remote

tx_remote100 MHz clock

4

Packet decoder

rx_valid

rx_data timestamp_fine

timestamp_coarse

nw_trigger

Rx/Tx

Status and Control

k

Packet encoder

tx_enable

tx_data

node_id

tx_packet

tx_packet_valid
TX

RX

lmk_adjuster

next_step

microwire interface

MICROWIRE

current_phase

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\implementation\framework\framework.dsn

1.0 2

Figure 7.10: Simplified architecture of the normal node

50

7.3.2 Hardware implementation, reference node

The reference nodes are a simplified version of the normal node, they only reply with two
messages whenever it has received a messages from a node. The received messages are
timestamped. Just before replying the first message the transmission time is marked.
The first message is filled with the reception timestamp, the second reply contains the
transmission time of the first reply.

Coarse counter

clk

nw_trigger timestamp_coarse

Fine counter (TDC)

stop_clk

nw_trigger

timestamp_fine

Timestamp reg

rx_local

tx_local
100 MHz clock

2

Packet decoder

rx_valid

rx_data

nw_trigger

Rx/Tx

Status and Control

Packet encoder

tx_enable

tx_data

node_id

tx_packet

tx_packet_valid
TXRX

Title

Author

File

Revision

Document

Date Sheets

C:\Users\Martijn.Martijn-PC\Dropbox\thesis_SPADnet\implementation\framework\framework.dsn

1.0 3

Figure 7.11: Simplified architecture of the reference node

51

52

Verification 8
In this chapter the performance of the phase estimator will be verified. First, the
stability of the phase estimators will be verified. Later, the resolution of the phase
estimator will be measured. And finally the hybrid solution will be evaluated.

8.1 Phase estimator stability

The stability of the estimator will give information about the estimation error. To
measure the stability of the implemented phase estimator, the estimator was run 2000
times with a fixed phase difference between two adjacent nodes. The estimated phases
were accumulated in a histogram, see Figure 8.1. The estimation was performed us-
ing 2048 two-way timestamp exchanges and an observation window of 328 ms. The
standard deviation of the 2000 estimations is 124 ps.

8.7 8.75 8.8 8.85

x 10
-8

0

10

20

30

40

50

60

70

80

estimated phase (s)

F
re

q
u
e

n
cy

Histogram estimation

Figure 8.1: 2000 Executions of the hardware implemented phase estimation, 4096 two-way
timestamp exchanges, 328 ms observation window, 124 ps standard deviation. For a fixed
phase between two adjacent nodes

As mentioned in Section 3.3.5, the performance of the pairwise least squares (PLS)
algorithm depends on the number of two-way timestamp exchanges and the observation
window. To give insight on the performance of the phase estimator, the estimator was
executed for a fixed number of two-way timestamp exchanges and increasing observation
window(0.8−33 ms). The result is shown in Figure 8.2, the estimator reaches a stability

53

of 182 ps (standard deviation) with 2048 two-way timestamp exchanges and 329 ms
observation window.

0 100 200 300 400
10

2

10
3

10
4

Observation window (ms)

E
st

im
a

ti
o

n
 s

ta
b

ili
ty

 
 (

p
s
)

Estimation stability

Figure 8.2: Estimation stability, standard deviation, of 2000 estimations. For fixed k = 2048
two-way messages, and increasing observation window (8− 328 ms).

The performance of the algorithm is also influenced by the number of k two-way
timestamp exchanges as can been seen in Figure 8.3. In this graph k was increased from
64 to 4096 with a fixed communication interval. Because of the fixed communication
interval, also the observation window increases when k increases. With k = 4096 and
observation window of 33 ms a stability of 124 ps standard deviation is reached.

54

0 1024 2048 3072 4096
10

2

10
3

10
4

number of k messages

E
st

im
a
ti
o
n

 s
ta

b
ili

ty
 

 (
p
s
)

Estimation stability

Figure 8.3: Estimation stability, standard deviation, of 2000 estimations. With increasing k
two-way messages and fixed communication interval of 40 microseconds.

By the central limit theorem (CLT) [27], it is defined that when the sample size (n)
increases the estimated sample mean gets closer to the true mean. And the distribution
of this average will approximate a normal distribution, while the standard deviation
gets smaller when the sample size increases. Since we use an unbiased estimator, and
our process is assumed to be independent and identically distributed (IID) the estimator
will follow this theorem. The standard deviation should follow the slope

σn =
1√
n
. (8.1)

This slope was plotted in Figure 8.3, the estimator indeed approaches this slope.
Therefore we can conclude that when k, sample size, gets increased further the stability
of the estimator would increase following the slope from Equation 8.1.

8.2 Resolution (LSB)

In this section the resolution, or least significant bit (LSB), of the phase estimator
is verified. The resolution of the phase estimator depends on the precision of the
timestamping of the 2-way timestamp exchange messages. The timestamping has a
resolution of 18.4 ps (resolution of the FPGA TDC).

The resolution was verified by estimating the phase difference between two nodes,
while the coarse clock was shifted with steps of 25 ps over a range of 10 ns. The
injection of this 25 ps phase offset was realized by the LMK04906 clock jitter cleaner.
The transfer function of the phase estimator is plotted in Figure 8.4.

55

0 2000 4000 6000 8000 10000
0

5000

10000

15000

Injected phase offset(ps)

e
s
tim

a
te

d
 p

h
a

se
 o

ff
se

t


(p
s
)

Phase estimator transfer function

Figure 8.4: Transfer function of the phase estimator.

There are five large glitches in the transfer function of the phase estimator. The
same pattern is also visible in the distance estimation (communication latency), see
Figure 8.5, of the phase estimator.

0 2000 4000 6000 8000 10000
2.15

2.152

2.154

2.156

2.158

2.16

Injected phase offset(ps)

E
st

im
a
te

d
 d

is
ta

n
ce

 
 (

u
s)

Estimated distance 

Figure 8.5: Transfer function of the estimated distance.

It was discovered that these glitches originate from the frequency difference between
the coarse clock (100 MHz) and the network clock (125 MHz). The network clock is
used for the high speed GTP transceivers, see Appendix A. Since these frequencies
are not an integer multiple of each other, there is an uncertainty in the phase relation
between these two clocks. Changing the frequency of the coarse clock to 125 MHz
resolved this issue.

The transfer function of the phase estimator, with the 125 MHz coarse clock, is
presented in Figure 8.6. The glitches now no longer appear. The resolution of this
transfer function is 18.4 ps, matching the resolution of the FPGA TDC found in Section
7.2.

56

0 2000 4000 6000 8000
0

2000

4000

6000

8000

10000

Injected phase offset (ps)

E
st

im
a
te

d
 p

h
a

se
 o

ff
s
e
t

 (

p
s
)

Phase estimator transfer function (125MHz)

Figure 8.6: Transfer function of the phase estimator, showing the average of 25 estimations
per injected phase offset. Using k = 4096 two-way timestamp exchanges over a observation
window of 328 ms.

The error, with respect to the fitted transfer function, is shown in Figure 8.7. The
maximum absolute error is 137 ps. This error corresponds to the stability of the estima-
tor, as discussed in Section 8.1. Hence by increasing the number of two-way timestamp
exchanges the error can be reduced.

0 2000 4000 6000 8000
-150

-100

-50

0

50

100

150

Injected phase offset (ps)

E
st

im
a
te

d
 p

h
a

s
e
 o

ff
s
e
t

e
rr

o
r

(p
s
)

Phase estimator error (125MHz)

Figure 8.7: Estimation error compared to ideal transfer function. Presenting the average of
25 estimations per injected phase offset. Using k = 4096 two-way timestamp exchanges over
a observation window of 328 ms.

57

8.3 Scalability study

In all previous measurements a two node system was used, and a stability of 124 ps was
reached, with 4096 two-way timestamp exchanges. In this section the phase estimator
will be tested in a three node system, as shown in Figure 8.8.

N2N1 N3

Figure 8.8: Three node ring system

The phase between node 1 and node 3 was estimated for different phase offset, gen-
erated by the LMK04906. The two-way messages traversed through node 2. During
this experiment the number of two-way timestamp exchanges was 2048 with a obser-
vation window of about 165 ms. The result of this measurement is shown in Table
8.1.

In the case of a two node system, with the same settings, a stability of 187 ps was
achieved, introducing a node in between decreased the stability to 233 ps. This extra
instability, about 50 ps, is introduced by the forwarding of the messages in node 2,
this process adds uncertainty to the latency of the message between node 1 and node
3, hence increasing the observation noise. The extra error can be compensated by
increasing the number of samples. The latency uncertainty can be improved by using
deterministic communication, as described in Appendix B.4.

Table 8.1: Phase estimation in a three node network for five different injected phase offsets.
Results are obtained from about 2000 estimations per injected phase offset, with 2048 two-way
timestamp exchanges over an observation window of 165 ms. ABS: absolute, SD: standard
deviation. The injected phase does not match the estimated phase due to the error discussed
in Section 8.2, this fault has been resolved.

Injected phase Estimated phase Error (ABS) SD Units

25 3 22 240 ps

200 515 315 239 ps

400 228 172 237 ps

425 234 191 233 ps

825 737 88 216 ps

Average 158 233 ps

58

8.4 Hybrid synchronization versus hard-wired synchroniza-
tion

The hybrid solution uses network based clock synchronization to automatically estimate
the phase offsets, in the ring hard-wired clock distribution network of SPADnet. This
solution reduces the user proceedings whenever system is extended with extra nodes,
compared to the hard-wired clock synchronization.

Before, the phases where only measured and corrected once, during the installation
of the system, or when the system is extended. The presented solution enables the
option to regularly monitor the phase offsets, this allows to compensate for temperature
changes, ageing of the electronics and other sources that might affect the phase offsets
in the system.

The presented solution achieves a resolution for phase offset estimation of 18.4 ps.
The estimation error for a two node system is 124 ps, and for a three node system 233
ps, this error can be lowered by further increasing the two-way timestamp exchanges.
Implementing deterministic communication, as presented in Appendix B.4, will further
improve the performance.

The comparison of the presented hybrid solution versus the hard-wired synchroniza-
tion is summarized in Table 8.2.

Table 8.2: Comparison of the hybrid solution versus the hard-wired clock synchronization
solution.

Hybrid solution Hard-wired solution

Phase offset calibration Automatic (18.4 ps) Manual

Clock Jitter (SD) <6 ps <6 ps

Online phase monotoring Yes No

Scalable Yes No

59

60

Conclusion 9
9.1 Summary

Recapitulating, this thesis investigated if the hard-wired clock distribution network of
SPADnet can be made scalable, using a network based clock synchronization solution.

9.1.1 Characterization of hard-wired clock distribution networks

First, in Chapter 5, the hard-wired clock distribution network of SPADnet was char-
acterized. The clock jitter was measured in a four node system, and was found to be
better than 6 ps (standard deviation).

9.1.1.1 Ring clock distribution network

In the ring clock distribution network, the clock is daisy chained from each node to the
next. At each node the clock is cleaned using a LMK04906. Because of the daisy chained
clock, there is an clock offset at each node. The clock offsets can be compensated, with
a precision of 25 ps, by the LMK04906. However to do this the user needs to measure
the phase offset and program the LMK04906. This operation can be time-consuming
for large systems, and also the appropriate measuring equipment is required.

9.1.1.2 Star clock distribution network

By using the star clock distribution network, the phase offset at each node is minimized.
The number of nodes is limited by the amount of available clock outputs on the clock
distribution board, and therefore restricts the scalability. The coaxial cables, used to
distribute the clock, can, and the ICS8534-01 1-to-22 fanout buffer will introduces a
phase offset. The fanout buffer introduces a maximum phase offset error of 100 ps [22].
Depending on the quality of the coaxial cables, the phase needs to be measured and
compensated, for satisfying results.

9.1.2 Network based clock synchronization

Three novel network based clock synchronization algorithms presented in [10] [11] where
analysed in Chapter 3. It is stated that these algorithms reach the theoretical limit
of network based clock synchronization. The eventual performance of network based
synchronization is, however, bounded by the stability of the applied local clock synthe-
sizers. In the case of SPADnet low-cost quartz oscillators are used. The best stability
of these oscillators was measured to be 22 ns for the 2-16 s region (Chapter 6). This
performance is unacceptable for SPADnet. The local quartz oscillators could be re-
placed by more stable clock synthesizers, for example oven controlled crystal oscillator

61

(OCXO). However OCXO oscillators are to large to be applied in the SPADnet system.
Therefore clock synchronization solely based on network based clock synchronization
is not possible for SPADnet.

9.1.3 Hybrid solution

This thesis presents a hybrid clock synchronization solution, this solution is presented
in Chapter 6. The hybrid clock synchronization solution uses the ring hard-wired
clock distribution network in combination with a network based phase estimator. This
combination enables scalability while maintaining high precision.

The scalability of the ring clock distribution is improved by reducing the user pro-
ceedings whenever system is extended with extra nodes. Heretofore the user needed
to measure the phase offsets at each node and correct this phase offset, using the pro-
grammable registers of the LMK04906. These operations can be time consuming, and
appropriate measuring equipment is required. The hybrid solution makes these user
operations unnecessary.

The phase estimator is based on the novel pair wise least squares (PLS) algorithm
[10]. The algorithm was optimized and implemented in Spartan-6 FGPAs. A delayline
FPGA TDC was deployed to enable high resolution phase estimation. The presented
solution reaches a resolution of 18.4 ps. The stability, or error, of the phase estimator
is 233 ps for a three node system. The estimation error can easily be improved by
increasing the sample size parameter of the estimator.

For the brain and clinical SPADnet system a clock jitter of less than 50 ps is required.
The hybrid solution makes use of the hard-wired clock distribution network, which has
a clock jitter of less than 6 ps at each individual node. The worst-case phase jitter
between two nodes, in a four nodes system, was measured to be 14 ps (Chapter 5).

Before, the phase offsets where only measured and corrected once, during the instal-
lation of the system, or when the system is extended. The presented hybrid solution
enables the option to regularly monitor the phase offsets, this allows to compensate for
temperature changes, ageing of the electronics and other sources that might affect the
phase offsets in the system.

Table 9.1: Comparison of the hybrid solution versus the hard-wired clock synchronization
solution.

Hybrid solution Hard-wired solution

Phase offset calibration Automatic (18.4 ps) Manual

Clock Jitter (SD) <6 ps <6 ps

Online phase monitoring Yes No

Scalable Yes No

62

9.2 Future work

To further improve the hybrid clock synchronization solution, the following work has
to be done.

1. Enable dedicated phase-alignment of the GTP transceivers. This ensures fixed
phase offset in the transceiver. Currently, after each programming of the FPGA
a random phase offset is introduced in the GTP transceiver. See Appendix B.4.

2. Enable low-latency and deterministic communication as described in Appendix
B.4. This will improve the performance of the hybrid solution.

3. Improve non-linearities of the FPGA TDC, to lower the observation noise, in-
creasing the stability of the phase estimator.

4. Exploit the possibility of using, broadcasts, GLS or ATPL, to improve the effi-
ciency of estimating the phase offsets in a large network at once.

5. Test the hybrid solution in a many node system.

63

64

Bibliography

[1] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network
survey. Computer Networks, 52, April 2008.

[2] Edoardo. Charbon, Claudio Bruschini, Chockalingam Veerappan, Leo Huf Campos
Braga, et al. Spadnet: A fully digital, networked approach to mri compatible pet
systems based on deep-submicron cmos technology. Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC), pages 1–5, 2013.

[3] R.T. Rajan, M. Bentum, and A.-J. Boonstra. Synchronization for space based
ultra low frequency interferometry. Aerospace Conference, March 2013.

[4] Nikolaos M. Freris, Hemant Kowshik, and P. R. Kumar. Fundamentals of large
sensor networks: Connectivity, capacity, clocks and computation. IEEE, (11),
November 2010.

[5] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol
for sensor networks. Networked and Embedded Systems Lab, November 2003.

[6] Kyoung-Lae Noh, Qasim Mahmood Chaudhari, Erchin Serpedin, and Bruce W.
Suter. Novel clock phase offset and skew estimation usingtwo-way timing message
exchanges for wireless sensor networks. IEEE TRANSACTIONS ON COMMU-
NICATIONS, 55(4), April 2007.

[7] K. Arvind. Probabilistic clock synchronization in distributed systems. IEE
TRANSACTIOS ON PARALLEL AND DISTRIBUTED SYSTEMS, 5(5), May
1994.

[8] Hui Dai and Richard Han. Tsync : A lightweight bidirectional time synchroniza-
tion service for wireless sensor networks. Mobile Computing and Communications
Review, 8(1), January 2004.

[9] David L. Mills. Internet time synchronization: The network time protocol. IEEE
TRANSACTIOS ON COMMUNICATIONS, 39(10), October 1991.

[10] Raj Thilak Rajan and A-J. van der Veen. Joint ranging and clock synchroniza-
tion for a wireless network. Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2011.

[11] Sundeep Prabhakar Chepuri, Raj Thilak Rajan, Geert Leus, and Alle-Jan van der
Veen. Joint clock synchronization and ranging: Asymmetrical time-stamping and
passive listening. Signal Processing Letters, IEEE, pages 51–54, 2013.

[12] Alper Demir, Amit Mehrotra, and Jaijeet Roychowdhury. Phase noise in oscil-
lators: A unifying theory and numerical methods for characterization. IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMSI: FUNDAMENTAL THE-
ORY AND APPLICATIONS, 47(5), May 2000.

65

[13] John R. Vig. Introduction to quartz frequency standards, research and develop-
ment technical rept:. Army Lab Command Forn Monmouth NJ Electronics Tech-
nology and Devices Lab, page 55, March 1992.

[14] Fred L. Walls and Jean-Jacques Gagnepain. Environmental sensitivities of quartz
oscillators. IEEE TRANSAUIONS ON ULTRASONICS, FERROELECTRICS.
AND FREQUENCY CONTROL, 39(2), March 1992.

[15] Alper Demir. Phase noise and timing jitter in oscillators with colored-noise sources.
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSI: FUNDAMENTAL
THEORY AND APPLICATIONS, 49(12), December 2002.

[16] SiTime. Report: Clock jitter definitions and measurement methods, Januari 2014.

[17] David W. Allan. Time and frequency(time-domain) characterization, estimation,
and prediction of precision clocks and oscillators. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, 34(6):647–654, 1987.

[18] Jeremy Elson, Le wis Girod, and Deborah Estrin. Fine-grained network time syn-
chronization using reference broadcasts. Symposium on Operating Systems Design
and Implementation, December 2002.

[19] MONSON H. HAYES. BOOK: STATISTICAL DIGITAL SIGNAL PROCESS-
ING AND MODELING. JOHN WILEY & SONS, INC., 1996.

[20] Claudio Bruschini. Nss-mic special focus workshop towards 10ps single soft photon
detectors. 2014.

[21] Taxes instruments. Datasheet: Lmk04906 ultra low noise clock jitter cleaner/mul-
tiplier with 6 programmable outputs, May 2013.

[22] IDT. Datasheet: Ics8534-01 low skew, 1-to-22 differential-to-3.3v lvpecl fanout
buffer, December 2007.

[23] Hui Zhou. Frequency accuracy & stability dependencies of crystal oscillators.
Technical Report SCE-08-12, page 15, November 2008.

[24] Ryszard Szplet, Jozef Kalisz, and Rafal Szymanowski. Interpolating time counter
with 100 ps resolution on a single fpga device. IEEE TRANSACTIONS ON IN-
STRUMENTATION AND MEASUREMENT, 49(4), August 2000.

[25] KwangSeok Kim, Wonsik Yu, and Seong Hwan Cho. A 9 bit, 1.12 ps resolution
2.5 b/stage pipelined time-to-digital converter in 65 nm cmos using time-register.
Solid-State Circuits, IEEE, 49(4):1007 – 1016, April 2014.

[26] Harald Homulle, Francesco Regazzoni, and Edoardo Charbon. 200 ms/s adc im-
plemented in a fpga employing tdcs. Proceedings of the 2015 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, March 2015.

[27] David J. Goodman Roy D. Yates. Probability and Stochastic Processes. Wiley,
2005.

66

[28] A.X. Widmer and P.A. Franaszek. A dc-balanced, partitioned-block, 8b/10b trans-
mission code. IBM Journal of Research and Development, 27(5):440–451, Septem-
ber 1983.

[29] Raffaele Giordano and Alberto Aloisio. Fixed-latency, multi-gigabit serial links
with xilinx fpgas. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 58(1),
Februari 2011.

67

68

List of my Publications 10
1. M. Bijwaard, et al. Scalable Network Based Clock Synchronization for Digital

PET Systems. Journal of Instrumentation (JINST). 2015.

2. C. Veerappan, M. Bijwaard, et al. Distributed Coincidence Detection Architecture
in Digital PET Sensor Network. Journal of Instrumentation (JINST). 2015.

3. C. Veerappan, M. Bijwaard, et al. Data Acquisition in Digital PET Sensor Net-
work. Journal of Instrumentation (JINST). 2015.

The publications are under preparation

69

70

Verilog Phase Estimator A
A.1 Verilog source

Verilog implementation of the phase estimator.

1 always@ (posedge clock) begin

if (reset) begin

x <= 0 ;
c [0] <= 0 ;
c [1] <= 0 ;

6 end else if (markers_valid && i<k) begin
//start update sequence

x <= 1 ;
end

if (x == 1) begin

11 a [0] <= ((Rji − Rij)) ;
a [1] <= ((−Tji + Tij)) ;
x <= 2 ;

end else if (x == 2) begin

b [0] <= (a [0] − a [1]) <<<(precision−shift) ;
16 b [1] <= (a [0] + a [1]) <<<(precision−shift) ;

x <= 3 ;
end else if (x == 3) begin

c [0] <= c [0] + b [0] ;
c [1] <= c [1] + b [1] ;

21 x <= 4 ; //Stall the SM

end

end

26 endmodule

71

A.2 Synthesis report

Synthesis report of the phase estimator for the Spartan-6 FPGA, created with Xilinx
ISE 14.7.

1 ===
Advanced HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 8
6 32−bit subtractor : 2

47−bit subtractor : 1
48−bit adder : 3
48−bit subtractor : 2

Counters : 1
11 13−bit up counter : 1

Registers : 388
Flip−Flops : 388

Comparators : 1
32−bit comparator greater : 1

16 # Multiplexers : 5
4−bit 2−to−1 multiplexer : 2
96−bit 2−to−1 multiplexer : 3

Logic shifters : 2
48−bit shifter logical left : 2

21
===
Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −3

26
Minimum period : 6 .191 ns (Maximum Frequency : 161 .513 MHz)
Minimum input arrival time before clock : 9 .512 ns
Maximum output required time after clock : 3 .634 ns
Maximum combinational path delay : No path found

31 ==

72

Aurora 8B/10B B
SPADnet uses the Aurora 8B/10B protocol for the network, enabling high-speed serial
communication. Aurora 8B/10B is a link-layer protocol that makes use of the high-
speed serial transceivers embedded in the FPGAs. The protocol uses 8B/10B encoding
to achieve DC-balance.

B.1 8B/10B encoding

The 8B/10B transmission code was published by IBM in 1983 [28]. The transmission
code transforms 8 bit characters in to 10 bits. The two extra bits are used to keep
the long-term ratio of ones and zeros transmitted equal, this is called DC-balance. De
encoding also limits the maximum run length to five, this means that there will never
be more than five successive ones or zeros. This increases the reliability of the link and
allows easier clock recovery from the data. The protocol includes special characters to
establish byte synchronization, indicated the beginning and end of packets and other
signal control functions. The 8B/10B transmission code has an overhead of 25%. It is
also possible to use 64B/66B transmission code which has less overhead and functions
similar.

B.2 GTP transceivers

The Spartan-6 FPGAs are equipped with GTP transceivers, the transceivers act like
serializer/deserializer (SERDES). The SERDES serializes the data on to the link, and
recovers the serial data from the link. The general block diagram of a SERDES is
shown in Figure B.1.

Figure B.1: Generic block diagram of a SERDES

73

Data enters the transmit FIFO buffer and gets encoded by the line encoder. In our
case a 8B/10B encoder is used. The encoded data is converter to a serial stream by
the serializer. The serializer runs on a clock generated by the clock manager, the clock
speed depends on the line rate. The tx line interface maps the serial stream on the
physical line.

The differential signal is converted to a single signal, this stream is deserialized and
decoded. The decoded data is stored in a elastic buffer. This buffer is used to cross the
data from the SERDES clock domain and the user clock domain. Clock correction is
used to align the data correctly with the user clock, for this special characters are used
called K-characters. Optionally channel bonding can be used to align multiple lanes.

B.3 Clock correction

The RX elastic buffer can also be used to compensate for frequency differences, between
the PMA (physical medium attachment sub-layer) clock and the PCS (physical coding
sub-layer) clock domains, by performing clock correction. Clock correction involves
a unique character or unique sequence of characters who does not occur in the data
stream. Typically K-characters are used for this. Clock correction works by monitoring
the data in the RX elastic buffer, and preventing the RX elastic buffer from getting
too full or too empty by deleting or replicating special idle characters in the data
stream. Clock correction can be avoided when the frequency source for transmission
and receiving and are the same.

B.4 Deterministic communication

To be able to estimate the clock parameters a deterministic delay in the communication
is necessary. It was verified that the latency of the aurora 8B/10B protocol was constant
during power on. However the latency randomly changes after reprogramming the
device, therefore the latency is non-deterministic. The non-deterministic latency is
due to a random phase difference between the PMA (physical medium attachment sub-
layer) clock and the PCS (physical coding sub-layer) clock, the PMA and PCS domains
of the Spartan-6 GTP transceiver are shown in Figure B.2.

74

Figure B.2: Simplified Spartan-6 FPGA GTP transceiver block diagram

The GTP transceiver has dedicated phase-alignment circuits to match or adjust the
phase difference between the PMA clock domain and the PCS clock domain, and will
therefore be deterministic. The phase alignment should be performed every time the
GTP is reset or after a power down sequence.

When using phase alignment there is no need to use the RX elastic buffer and
therefore can be bypassed, this will lower the latency and create a deterministic RX
datapath. Therefore the performance of the clock synchronization solution will increase,
because there is less observation noise. However by bypassing the RX elastic buffer clock
correction and channel bonding are not available. Therefore external logic is required
to allow reliable communication. In [29] such a solution is presented. The creation of
this external logic is beyond the scope of this research, and that is why the RX buffers
are not bypassed in this design.

75

1 2 3 4 5
8

8.2

8.4

8.6

8.8

9

Reconfiguration

E
s
ti
m

a
te

d
 p

h
a
s
e
 o

ff
se

t
(c

lo
ck

 t
ic

ks
)

Random phase

Figure B.3: After reconfiguring the FGPA a non-deterministic phase is introduced in the GTP
transceiver. This random phase can be corrected by using the GTP transceivers dedicated
phase-alignment circuits.

B.5 Communication latency

For proper clock synchronization using the Aurora 8b/10b protocol, constant latency
is required. Without constant communication latency, the algorithms performance will
drastically drop. To check if the communication latency is deterministic, the trans-
mission and reception times where marked, while transmitting messages between two
nodes. Using these markers the communication latency was calculated. Figure B.4
shows the communication latency between two nodes. The latency is either 0.976 µs
or 0.96 µs, the difference between these two is exactly one user clock cycle (16 ns).
This clock cycle is a result of jitter on the clock used to timestamp the reception and
transmission times.

76

0 100 200 300 400 500
0.95

0.96

0.97

0.98

message

co
m

m
u

n
ic

a
ti
o

n
 l
a

te
n

c
y
 (


s)

Communication latency

Figure B.4: Communication latency between two adjacent nodes, using a 2.5 GB/s Aurora
8b/10b network link

77

	Abstract
	Acknowledgements
	Introduction
	Motivation
	SPADnet requirements
	Thesis goals

	Contribution
	Related work
	Application: SPADnet
	Positron emission tomography

	Clock synthesizers
	Clock synthesizer imperfections
	Quartz clock synthesizers
	Short-term clock stability
	Long-term clock stability

	Clock synthesizer model

	Clock synchronization
	Hard-wired clock distribution
	Network based clock synchronization
	Timestamp exchange protocols

	Clock synchronization algorithms
	Least squares
	Pairwise least squares
	Global least squares
	Asymmetrical time-stamping and passive listening
	Performance
	Cramer-Rao lower bound
	Complexity
	Conclusion

	SPADnet system
	Sensor tile
	Data processing communication unit
	Network architecture
	SPADnet system clock synthesizers
	LMK04906 Ultra low noise clock jitter cleaner
	ICS8534-01: 1-to-22 fanout buffer

	Hard-wired clock distribution networks
	Distribution topography
	Ring clock distribution network
	Star clock distribution network

	Characterization
	Jitter
	Multi node jitter
	Phase difference star distributed clock network
	Phase difference ring distributed clock network

	Conclusion
	Ring network
	Star network

	SPADnet solution
	Allan variance measurement
	Hybrid clock synchronization solution
	Phase synchronization protocol
	Broadcasting

	Hardware implementation
	Phase estimator
	Hardware implementation
	Coarse timer overflow
	Simulation results

	High resolution time-stamper
	FPGA Time-to-digital converter
	TDC simulation
	FPGA TDC implementation

	Time synchronization module
	Hardware implementation, normal node
	Hardware implementation, reference node

	Verification
	Phase estimator stability
	Resolution (LSB)
	Scalability study
	Hybrid synchronization versus hard-wired synchronization

	Conclusion
	Summary
	Characterization of hard-wired clock distribution networks
	Network based clock synchronization
	Hybrid solution

	Future work

	List of my Publications
	Verilog Phase Estimator
	Verilog source
	Synthesis report

	Aurora 8B/10B
	8B/10B encoding
	GTP transceivers
	Clock correction
	Deterministic communication
	Communication latency

