
Towards a Swarm of Robots
for Detecting Breaches in Social
Distancing

Thesis Report

Serge Saaybi

Towards a Swarm of Robots
for Detecting Breaches in

Social Distancing
Thesis Report

by

Serge Saaybi
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday January 19, 2022 at 08:00.

Student number: 4999517
Project duration: April 1, 2021 – January 19, 2022
Thesis committee: Prof. dr. R. V. Prasad, TU Delft, supervisor

Prof. dr. ir. C. Verhoeven, TU Delft
Dr. A. Y. Majid, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

Working on this thesis project has been extremely enriching to me on both a professional and a personal level.
My time at Delft has been unforgettable and has helped shape me into the person I am today. I am extremely
grateful to have been able to pursue a master’s degree at TU Delft, which was for me the opportunity of a
lifetime.

My time at TU Delft would not have been the same had it not been for the people that supported me
throughout it all. I would like to start by expressing my gratitude towards my thesis daily supervisor, Dr.
Amjad Majid. His guidance and mentorship were instrumental in aiding me towards the completion of this
project. He was always available for any questions, offering his advise and expertise every step of the way. He
encouraged me and kept pushing me up until the last minute to get the best possible outcome, and for that I
am eternally grateful. I would also like to thank Dr. Ranga Rao Venkatesha Prasad for his valuable input and
advice.

I would not have been able to get through this without my family and friends who were always there
for me, offering encouragements and support whenever I needed them. I would like to thank my family and
especially my parents and sister, who have accompanied me throughout all the ups and downs of my journey,
always available to offer me their counsel. I was extremely lucky to have met some wonderful people at Delft,
Belkassem Becetti, Mohammed El-Hayek, Avinash Kalloe and Habib El-Kassis. You have made this experience
fun and unforgettable. I would also like to thank my friends who helped me execute the experiments for this
thesis. Thank you for your patience and help, which was essential for the completion of this project. I would
not have been able to do it without you. Finally, I am incredibly thankful for Mariane Bacha, who helped me
at every step during this Master, and always encouraged me to overcome the challenges I would face.

i

Abstract

Robotic agents can continuously provide feedback to people based on their behaviors. For instance, a robot
swarm can remind a group of people to respect social distancing guidelines during a pandemic or discourage
unwanted behavior such as littering. However, developing a swarm robot to operate in realistic situations is
challenging: a robot requires significant resources to operate in the real world, yet costs need to be kept low
to produce the robots en masse.

To develop a swarm robot for encouraging social distancing, we, therefore, compare the performance of
different deep reinforcement learning algorithms for robot navigation and various vision sensors and algo-
rithms for detecting social distances breaches.

The resulting robot features a novel compound vision system that enables it to detect social distancing
breaches up to +12m away, and is able to navigate using a hybrid navigation stack that combines Deep
Reinforcement Learning (DRL) and a probabilistic localization method. We built the complete system and
evaluated our robot’s performance through extensive sets of experiments both in simulated and realistic en-
vironments

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Background . 1
1.2 Vision and Applications . 1
1.3 Challenges . 2
1.4 Research Focus & Objectives . 2
1.5 System Design . 2

1.5.1 Requirements & System Architecture . 2
1.6 Contribution . 3
1.7 Thesis Outline and structure . 3

2 Related Work 4
2.1 Social Distancing Breach detection . 4
2.2 Robotic navigation . 4

2.2.1 Classical navigation methods: . 4
2.2.2 Reinforcement learning: . 5

3 System Overview 6
3.1 Simulator . 6
3.2 Hardware . 8

3.2.1 Processors . 8
3.2.2 Vision Sensors . 8
3.2.3 Laser Sensors . 9
3.2.4 Robot Body . 9

3.3 Software . 10
3.3.1 Breach Detection Algorithms . 10
3.3.2 Robot Navigation Algorithms . 12

4 Results 17
4.1 Vision System . 17

4.1.1 Experiment setup . 17
4.1.2 Person Location Estimation . 17
4.1.3 Breach Detection Accuracy . 20
4.1.4 Hardware Performance . 22

4.2 Navigation System . 23
4.2.1 Experiment setup . 23
4.2.2 Training performance . 24
4.2.3 Simulation . 24
4.2.4 Reality . 25

5 Conclusion & Future Work 26
5.1 Recommendations & Suggestions for Future Work . 27

6 Appendix 32
6.1 Appendix A: RGB-D ROS nodes . 32
6.2 Appendix B: RGB ROS nodes . 32
6.3 Appendix C: Hybrid navigation ROS Nodes . 32

iii

1
Introduction

1.1. Background
Robotic technology is improving rapidly and new opportunities for the application of robots within our soci-
ety keep emerging. The current COVID-19 pandemic has significantly impacted daily life and caused millions
of fatalities around the world. Various guidelines have been proposed to control the spread of the virus in-
cluding measures such as social distancing and wearing face masks. The degree to which people follow these
regulations has a significant influence on how well the virus can be contained and to what extent its negative
effects can be minimized. If human individuals are tasked with ensuring that others are adhering to these
regulations, they themselves risk contracting and spreading the virus. Thus, a technological solution that
does not involve human contact is more desirable.

Different solutions have been proposed to monitor, analyze, and encourage people to follow the social-
distancing guidelines. Closed-circuit television (CCTV) [1–3], cellular networks [4, 5], wearable devices and
smartphones [4, 5], are examples of such systems. However, CCTVs can only be utilized for monitoring as
they cannot give feedback to people. The smartphones and wearables-based solution can alert individuals,
but this would require some form of tracking which poses privacy concerns for users.

Mobile robots with the ability to interact with humans can be suitable for desired social behavior encour-
agement (e.g., a robot can collect empty bottles if people throw them on ground and encourage them not to
do so next time). However, using a single robot (e.g., spot from Boston Dynamics [6]) would be insufficient
in most cases as it can only give feedback to a limited number of people within a certain time frame. An ob-
vious solution to eliminate this limitation is to use multiple robot units or a swarm of robots. However, the
main challenges of employing a swarm of robots for desired social behavior encouragement are the associ-
ated costs of manufacturing and maintenance. Therefore, this thesis analyzes the performance of a variety of
hardware modules and algorithms to provide guidelines on designing such systems in a cost-effective man-
ner with minimal resources. Towards this end, we developed a low-cost robot that has a unique vision system
and a hybrid navigation stack.

1.2. Vision and Applications
The trend of Miniaturizing hardware and advances in artificial intelligence (think of your smartphone) give
hope to designing low-cost robotic swarms. Swarm systems are meant to be scalable, robust, and easily de-
ployable for various applications. These characteristics make them suitable for encouraging a desired social
behavior in groups of people, as multiple robots can be deployed in a certain area allowing for a large scale of
monitoring and feedback. To mass-produce robots, however, their design needs to be done in a cost-effective
manner. In simple terms, a swarm designer needs to design the cheapest robot that meets the requirements.
In this paper, we analyze and profile the performance of different processors and vision sensors to design
a swarm robot for monitoring social distancing and giving people feedback (as an example of encouraging
desired social behaviors).

1

1.3. Challenges 2

1.3. Challenges
Developing such a system entails various challenges. Designing a swarm system that encourages social dis-
tancing requires balancing two conflicting requirements: (i) Social robots that interact with people and navi-
gate in dynamic environments are often sophisticated and need costly hardware (ii) Forming a fleet of robots
and mass producing them requires the individual robots to be cost-effective and simple.
Other challenges relate to the performance of our system. The robot should detect social distancing breaches
in real-time and up to an acceptable range. Additionally, it should autonomously navigate towards breaches
in a dynamic environment. However, traditional robot navigation usually requires appropriately configuring
and tuning several packages (Figure 3.6) to effectively reach the target, rendering it challenging, especially
when planning to deploy the navigation stack on various robots.

1.4. Research Focus & Objectives
This thesis project looks into the design, development and testing of an autonomous robot that encourages
social distancing. The developed robot should efficiently detect breaches in social distancing, and navigate
towards those breaches, encouraging people to respect the measures in place. The aim of this work is to com-
plete a significant first step in the development of a swarm of such robots that would cover larger distances,
hence providing a safer environment. To achieve our principal objective, the following research questions
need to be answered:

• What does it take to develop a swarm robot to encourage desirable social behaviors in a cost-effective
way?

• How can we design a long-range, low-cost vision system that can estimate the 3D coordinates of people
in the scene?

• How can we develop a navigation stack that is generalizable and easily deployable?

It is important to note that the scope of this thesis project is bound to the design, development and testing
of a single robot able to detect breaches in social distancing. The swarm system design is hence not included.

1.5. System Design
The first step in developing a robotic system consists of defining its mission profile and design. The mission
profile will help in identifying the hardware and software requirements necessary to develop and deploy a
robot able to encourage a desired social behavior. The following list outlines the different phases of the robot’s
journey:

• Phase 1: The robot is on standby in an indoor area, at position A (the origin), and is continuously
checking the area for social distancing breaches.

• Phase 2: The robot detects a breach once it locates a group of people standing too close to each other
(less than 1.5m apart).

• Phase 3: Once the breach is detected, its coordinates are processed by the robot. In case multiple
breaches are detected, the robot locks onto the largest breach.

• Phase 4: The robot autonomously navigates towards the detected breach in the environment, while
avoiding static and dynamic obstacles

• Phase 5: The robot reaches its target destination, letting the group know that they should disperse.

• Phase 6: The robot goes back to its original location, and resumes detecting social distancing breaches.

1.5.1. Requirements & System Architecture
Having defined the mission profile of our robot, we looked into the necessary requirement to accomplish the
robot’s intended objectives. A main aspect of the proposed approach is to have a scalable, modular and easily
deployable robotic solution, with the ability to generalize across different platforms and environments. The
main functionalities of this novel robot are the detection and navigation systems.

1.6. Contribution 3

Breach Detection Requirements:- We suggest the use of Computer Vision (CV) algorithms for detecting so-
cial distancing breaches in an environment. Since we will be considering a relatively cheap robot, with limited
capabilities, not all CV systems can be deployed on its processor. Consequently, it is important to analyze the
requirements and performance of several detection algorithms as to find the most suitable one for our robot.
The detection system should also be able to detect breaches in real-time and provide efficient detection for
both short and long ranges in front of the robot, all the while being cost-efficient.

Navigation Requirements:- Developing a navigation system for an autonomous robot requires several con-
siderations, especially when running it on a robot with limited resources. We should first avoid computation-
ally demanding algorithms. Additionally, the system should be generalizable as to cope with unseen environ-
ments, and allow the robot to navigate while avoiding static and dynamic obstacles. Finally, the navigation
should be easily deployable, without the need to manually fine-tune a large number of parameters.

1.6. Contribution
This thesis makes the following key contributions:

• We built a robotic platform for detecting social distancing violations.

• We experimented with different vision sensors and algorithms and developed a compound algorithm
that doubles the effective range of the Intel RealSense depth camera for detecting social distancing
breaches.

• We developed a hybrid navigation stack that combines the power of Deep Reinforcement Learning and
a probabilistic localization system.

• We conducted extensive simulated and real-world experiments to evaluate the performance of our
robot.

1.7. Thesis Outline and structure
The thesis report is outlined as follows:

• Chapter 2 presents the related work, for social distancing breach detection and robot navigation

• Chapter 3 shows the hardware and software stack of our social distancing tracker robot

• Chapter 4 evaluates and compares the performance of the robot’s vision and navigation systems

• Chapter 5 concludes this thesis and proposes several recommendations for future research into this
topic

• Chapter 6 is the appendix, and shows our overall ROS implementation of the system

2
Related Work

2.1. Social Distancing Breach detection
Following the worldwide increase in COVID-19 cases, measures such as social distancing have been found
necessary to limit the spread of the virus [7, 8]. This brought forth recent research [4, 5] discussing how
emerging technologies such as wireless and artificial intelligence (AI) can encourage social distancing to mit-
igate the impact of COVID-19.

Advancements in Deep Learning (DL) have made identifying social distancing violations using computer
vision systems easier. Examples include using cameras to monitor social behaviors such as social distancing
or wearing face masks [1–3]. Generally, such approaches often use CCTV cameras placed at specific locations,
with predefined settings, along with the YOLO object detection algorithm [9] to identify breaches. They also
leverage tracking algorithms such as SORT [10] and DeepSORT [11] to keep track of the identified pedestrians.
Although such methods take advantage of an already deployed system, they do not encourage pedestrians to
follow social distancing rules, but rather act as monitoring tools.

Other methods leveraging smartphones and wearables [12, 13] have also been proposed and are designed
to warn people when they get too close to others. Yet, despite their potential positive contribution, these
devices and applications often prompt privacy-related questions, discouraging people from using them.

Another line of research proposes using robots to limit viruses’ spread [6, 14], by encouraging, for exam-
ple, social distancing practice [15]. Social robots are flexible and easy to deploy systems meant to interact
with humans and other robots to perform a specific task. Autonomous robots for detecting social distancing
breaches have therefore been proposed. Fan et al. [16] introduced an autonomous surveillance quadruped
robot that can promote social distancing in complex environments using LiDAR readings. However, the high
cost of this system prevents its mass production. A cheaper option is presented by Sathyamoorthy et al. [17].
It combines the output from an RGB-D camera placed on an autonomous mobile robot with a CCTV camera
placed in a room. Also, a thermal camera is used to detect COVID symptoms such as a fever. However, the
range of the mounted depth camera in this robot is limited to 4m, and that of the CCTV camera to 3m, which
severely limits the range, and thus the effectiveness, of the proposed mobile system.

Finally, in this work, we propose a compound low-cost vision system that can detect social distancing
violations up to +12m away from the robot.

2.2. Robotic navigation
2.2.1. Classical navigation methods:
Classical robotics navigation has benefitted from several advancements over the past few years. It is catego-
rized into two types: deliberative and reactive navigation [18]. Deliberative navigation depends on a map of
the environment and creates a global path for the robot to follow. As for reactive navigation, it consists of iden-
tifying a collision-free path based on the robot’s instantaneous perception of the environment [18] and can
therefore account for dynamic obstacles. Hence, robot navigation in static and dynamic environments often
consists of several software packages working together, specifically, global planning (deliberative navigation)
based on a static map, followed by local planning (reactive navigation) for dynamic collision avoidance [19].
However, the classical navigation approaches often require substantial tuning [20] to achieve a reliable per-

4

2.2. Robotic navigation 5

formance and tend to deteriorate when deployed on different robot models with other characteristics [18,
19].

2.2.2. Reinforcement learning:
Motivated by the success in the Reinforcement Learning domain [21], many researchers have started exam-
ining such techniques for mobile robots navigation by mapping input sensory data (images or LiDAR scans)
to the output steering commands [22–24]. This is driven by the potential of having a navigation stack that
can easily be ported to different robots, along with the possibility for online learning.

Tai et al. [22] were one of the first researchers to develop a mapless motion planner based on the Deep
Deterministic Policy Gradient (DDPG) method, and to deploy it in the real world. As a result, the robot could
navigate virtual and real unseen environments while avoiding obstacles using LiDAR scans as input. Long et
al. [25] utilized the Proximal Policy Optimization (PPO) algorithm [26] and developed a safe and efficient col-
lision avoidance policy for multiple robots. They also validated the policy in various simulated environments.
However, being an on-policy algorithm has a significant impact on the robot learning with respect to sample
efficiency. Off-policy learning algorithms are therefore typically seen as more suitable for complex robotics
tasks due to their improved sample efficiency [27, 28]. Jesus et al. [29] replaced the DDPG with the Soft Actor-
Critic [28] (SAC) DRL algorithm and showed its efficacy in simulation. Additionally, instead of using LiDAR
for navigation, Kulhánek et al. [30] developed a camera-based navigation system. They extended a version
of the batched A2C algorithm [21] and validated the system performance on a real robot [31]. However, con-
sidering the novelty of this approach (first attempt to move DRL visual navigation onto a real robot), it is still
very limited: the robot was trained to move in a grid, using a discrete set of actions, and collision avoidance
methods were also not considered.

In this work, we focused on off-policy DRL methods since they allow for better sample efficiency [28,
32]. We hence decided to train the off-policy DDPG algorithm, one of the most used algorithms for robot
navigation. Then, we used the Soft Actor-Critic (SAC) algorithm to navigate our robot in simulation and
reality. Compared to other methods, SAC seems to provide many advantages for moving a navigation system
to the real world. Its stochastic policy encourages exploration and increases sample efficiency [28, 33]. In
SAC, the actor aims to maximize the expected reward while maximizing entropy [28], hence learning various
actions that can provide near-optimal behavior.

3
System Overview

Our robot must detect social distancing breaches in real-time and execute safe collision-free navigation to-
wards the offending pedestrians. Figure 3.1 shows the hardware and software stack of our social distancing
tracker robot.

RGB Camera
Social Distancing
Breach Detector

Social Distancing
Breach Localizer

Social Distancing
Breach Tracker

Software Stack

Navigator

Feedback People

RGBD Depth Camera

RPLidar

Jetson Processor

Power Distribution

WiFi Antenna

Figure 3.1: Hardware and software overview of a swarm robot.

3.1. Simulator
A simulator provides controlled environments for comparing different hardware modules and algorithms.
As a result, it has become an essential part of developing robotics and deep learning applications. Using a
robotics simulator thus provides many advantages [34] such as:
Providing large amounts of annotated data for AI tasks: The recent increase in the use of deep learning
(DL), provided a major push towards using simulators for collecting large amounts of data in different envi-
ronments.
Training Deep Reinforcement Learning algorithms: Considering that DRL training requires a large number
of "trial and error" episodes where the robot interacts with its environment to learn a policy, training DRL
agents is much faster in simulation, and requires less effort compared to the real world.

6

3.1. Simulator 7

Accelerating the design cycle and reducing costs: Developing a robot requires going through a series of
prototypes, whether using different hardware parts, or different algorithms, before reaching an acceptable
one. This iterative process is time-consuming and expensive. However, when testing in simulation, we can
try out different robot models and sensors in various environments without the costs and time needed for
actual physical changes.
Providing a safe and controlled virtual environment for testing: Simulation plays a major role in providing
insights into the system by testing its limitations, corner cases, and how it acts for different scenarios. En-
suring that testing is done in a safe environment, with complete control over the experiments, and without
damaging the hardware. In our case, it allows us to check on the performance of our breach detection system,
its limits, the safety of our navigation system, how the robot navigates in static and dynamic obstacles, etc.

There are many simulators to choose from, each with different levels of performance and realism. Table
3.1 summarizes the metrics that we used to select a simulator (in our case, Gazebo). In general, Gazebo seems
to be the most adequate simulator for our use case. It is closely integrated with ROS and has a large and active
community. It also supports a wide variety of robot models, whether by default or from third parties, and is
often used by researchers when planning on training Reinforcement Learning tasks to be deployed in reality
[35]. For an in-depth comparison we refer the reader to [35–39].

Simulator Physics engine ROS Integration Robotic models Documentation
Gazebo Bullet, DART, ODE,

Simbody can be
added when build-
ing from source.
Only the ODE
physics engine is
available by default

Default simula-
tor used in ROS,
with a large base
of community-
developed plugins
and code

A diverse library of
default robots that
mainly includes
wheeled and flying
robots. Third-party
robot models are
available

A comprehensive
documentation,
step by-step tuto-
rials and a large
user community are
available.

Argos A 2D and a 3D cus-
tom built physics
engines available by
default

Complex and not
properly documented
and requires the use
of 3rd party plugins
such as "argos-
bridge"

A relatively small
library of robot(e-
puck , eyebot ,
Kilobot , marXbot
and Spiri)

Good documenta-
tion, but a small
user community.
Irregular develop-
ment

Unity PhysX by NVIDIA Needs external in-
tegration packages,
such as "ROS-TCP-
Connector" and
"ROS-TCP-Endpoint"

Relatively small li-
brary of robots

Well documented.
Large community.
The documenta-
tion for robotics
development is still
low, compared to its
game development
one.

Vrep Bullet 2.78, Bullet
2.83, ODE, Vortex
and Newton and
Newton

Highly complex inte-
gration. Tools and
libraries are needed
such as "ROS Inter-
face" , "V-Rep ROS
Bridge".

Large variety of
robots, including
bipedal, hexapod,
wheeled, flying and
snake-like robots.
Provides a large
number of robot ac-
tuators and sensors

Good documenta-
tion, a large library
of tutorials and a
large user commu-
nity

Webots Customized ODE
version

Using the standard
ROS controller avail-
able by default or
using a custom ROS
controller for more
flexibility

Variety of hu-
manoid, mobile
and multi-legged
robots

Good documenta-
tion and tutorials
available on the
Webots website

Table 3.1: Robotics Simulator Selection.

3.2. Hardware 8

Specifications Raspberry Pi 4
and
Intel Movidius

Raspberry Pi 4
and Coral
Accelerator

Jetson Nano Jetson Xavier NX

GPU performance Up to 150 GFLOPs Up to 4 TOPs
(INT8)

472 GFLOPs
(FP32)

21 TOPS (INT8)

HW accelerator Broadcom Video
Core VI (32-bit) +
Myriad X VPU

Broadcom Video
Core VI (32-bit) +
Google Edge TPU
coprocessor

128-core NVIDIA
Maxwell GPU

384-core NVIDIA
Volta GPU with 48
Tensor Cores

CPU Quad-core ARM
CortexA72 64-bit
@ 1.5 GHz

Quad-core ARM
CortexA72 64-bit
@ 1.5 GHz

Quad-core ARM
Cortex-A57 MP-
Core processor

6-core NVIDIA
Carmel ARM v8.2
64-bit CPU 6MB
L2 + 4MB L3

Memory 8 GB LPDDR4 + 4
GB LPDDR3

8 GB LPDDR4 4 GB 64-bit
LPDDR4 25.6
GB/s

8 GB 128-
bit LPDDR4x
@ 1866MHz
59.7GB/s

Storage Micro-SD Micro-SD Micro-SD or 16 GB
eMMC 5.1 flash

16 GB eMMC 5.1

Price 100 € 100 € 100 € 326 €

Table 3.2: The main specifications of the embedded hardware for edge AI taken into account.

3.2. Hardware
3.2.1. Processors
To respect swarm design principles (e.g., simplicity) and meet the application requirements, we considered
a variety of hardware modules starting from the lowest cost options before expanding to more expensive and
powerful platforms. Although Arduino can run simple machine learning (ML) models, it is not fit for process-
ing images and detecting social distancing breaches. The Raspberry Pi is much more powerful, but lacks a
hardware accelerator (e.g., GPU or TPU) that can significantly speed up DL calculations. This limitation can
be eliminated by adding a hardware accelerator such as Coral [40] from Google or Movidius [41] from Intel.
While the Jetson Nano [42] from NVIDIA has similar performance to the Raspberry Pi with hardware acceler-
ator, it is also a part of the Jetson family that offers other more advanced processors such as Jetson Xavier NX
and AGX [42] allowing for manageable up-scaling. From a developer’s perspective having the ability to easily
port the code to more capable processors is a very valuable feature and in our case is the determinant factor.
Table 3.3 puts these processor side by side highlighting the differences and important considerations.

3.2.2. Vision Sensors
An RGB-depth (RGB-D) camera captures RGB images, and their depth information on a per-pixel basis [43].
Therefore, it is a natural choice to be considered when estimating the 3-dimensional (3D) coordinates of
objects in images. Examples of such cameras include Stereolabs ZED 2 [44], Asus Xtion Pro [45], Microsoft
Kinect [46], and Intel RealSense [47]. However, despite their accurate depth estimation, depth cameras have
several shortcomings compared to standard RGB cameras (e.g., a Raspberry Pi camera). For example, they
have limited depth range and field of view. They are also more expensive. Consequently, researchers have
proposed algorithms that estimate depth information from regular RGB images. For example, MonoPSR [48]
and Monoloco [49] algorithms show promising 3D coordinates estimation of people in images captured by
relatively low-cost RGB cameras. To figure out the most suitable camera for our robot, we show in Table 3.3 a
list of various RGB and RGB-D cameras.

From Table 3.3, the Intel RealSense D435i and Stereolabs Zed2, appear to be the most suitable depth cam-
eras for our system, as they provide a high measuring range. The Zed2 is based on passive stereo vision,
meaning that it doesn’t emit any laser or IR light like active sensors, unlike the D435i which is based on active
stereo vision. Since we are planning on deploying our robot in an indoor environment, an active stereo vision
has proven to be less sensitive to indoor textures and is often the preferred choice for the 3D perception of
indoor scenes [50, 51]. Finally, we decided to use the Intel RealSense D435i for our robot. The advertized mea-

3.2. Hardware 9

Camera Measuring range (m) FPS Depth FoV (H°×V °) Cost (€)
Xtion PRO Live 0.8–3.5 60 58×45 199
Kinect v2 0.5–4.5 30 70.6×60 200
RealSense D435 0.2–10.0 90 91.2×65.5 179
RealSense D435i 0.11–10.0 90 85×58 199
Stereolabs Zed 2 0.2-20 60 110×70 400
Raspberry Pi camera - 30 - 35

Table 3.3: Vision sensors comparison.

LiDAR Detection range (m) Scanning
method

Angular
range

Scanning
Freq. (Hz)

Cost (€)

Slmatec-RPLiDAR
A2M8

0.15-8 2D 360° 5-15 333

Slamtec-RP LiDAR S1 Black Object: 0.2-10
White Object: 0.2-40

2D 360° 5-15 569

Hokuyo-UST-20LX 0.2-20 2D 270° 40 2280
Robosense-RS-LIDAR-
16

0.2-150 3D 360° 5-20 3440

Table 3.4: Laser sensors comparison.

suring range of 10m is high compared to other alternatives, and is based on active stereo vision. Additionally,
it gives a high FPS count, along with a large Depth Field of View (FoV). Overall, it seems more cost-efficient
than the two times more expensive Zed2.

3.2.3. Laser Sensors
Based on the literature on robotic navigation, LiDARs are becoming an increasingly popular component for
autonomous navigation using DRL, for detecting the environment and autonomously positioning the robot
within it. Several considerations should be kept in mind when choosing a LiDAR for our system. For example,
detection range, depth requirements (2D vs 3D LiDARs), angular range and scanning frequency. Table 3.4
shows some of the LiDARs which could potentially be used for our navigation system.

In addition to detecting objects, 3D LiDARs produce a detailed point cloud that could determine an ob-
ject’s shape and depth, as opposed to 2D LiDARs, which restrict the detection of obstacles up to a single
plane, and do not detect objects below or above that plane [52]. However, 3D LiDAR systems are expensive
and hence not scalable for a swarm of robots, while 2D LiDARs may not provide robust navigation due to
their detection limitations. Considering that breaches are detected using a camera and that camera-based
navigation systems using DRL are a relatively growing field, relying on the camera for navigation would be
the most suitable solution for our robot in the future to decrease costs further.

In this thesis, the robot will be navigating in a flat environment (indoor setting), and we are only con-
sidering navigation in a 2D plane. Hence, using a 2D LiDAR for navigation seemed sufficient to prototype
our robot as an intermediate step towards visual navigation. There are various types of 2D LiDARs, and they
often increase in price when the detection distance and scanning frequency increase. Therefore, considering
the significant price difference between the Slmatec-RPLiDAR A2M8, the RPLiDAR S1, and the Hokuyo UST-
20LX, and taking into account the detection range, the Slmatec-RPLiDAR A2M8 seemed like a good choice for
our system.

3.2.4. Robot Body
We selected the JetBot AI kit for developing our AI robotic system due to its low price (≈ 300 €) and its growing
usage for AI tasks [53–55] . This differential drive vehicle consists of two wheels in the front and two caster
wheels. It has two motors that can be independently driven in both directions. The JetBot also includes
an IMX219 8MP camera mounted to the front. It is powered by an NVIDIA processor, allowing it to run AI
tasks such as facial recognition, object tracking, auto line following, and collision avoidance. Additionally, it

3.3. Software 10

supports the Robot Operating System (ROS) and comes with existing ROS 1 and ROS 2 Software Development
Kit (SDK)s to collect images from the camera and teleoperate the robot.

3.3. Software
The software architecture of our robot can be divided into two main modules: the breach detection and track-
ing module and the navigation module. Each module is constituted of sub-modules that are implemented as
ROS (Robotic Operating System) nodes.

3.3.1. Breach Detection Algorithms
We implemented three methods for detecting social distancing breaches. The first one uses an RGB-D image,
the second leverages an RGB one, and finally, a combination of both approaches for a higher detection range.

Breach Detection from an RGB-D image:-
Our method starts by detecting the 2D coordinates of pedestrians identified in an image. Considering that
different DL models are available for object detection, we decided to rely on YOLOv3[9], a real-time object
detection algorithm, often used with mobile robots. YOLOv3 consists of a feed-forward convolutional neural
network, which takes an RGB image as input. It then outputs a set of bounding boxes around the detected
objects, along with their respective categories (people in our case) and accuracy scores. YOLOv3 has 53 con-
volutional layers, in successive layers of size 3 x 3 and 1 x 1, along with residual blocks [9].

To integrate the YOLO detection into our ROS system, we used the YOLOv3-ROS package [9, 56]. This
package implements a wrapper for YOLOv3 and takes RGB images from the robot’s camera as input. YOLOv3
ROS subsequently publishes three different topics: an array of bounding boxes that gives information on
the position and size of the bounding box in pixel coordinates, the category of the detected object, and its
confidence score.

Once we identify the pedestrians, we need to determine their actual positions in the 3D space. This is
done by fusing the RGB image with the 3D point cloud information extracted from the depth image. A point
cloud is a large set of 3D measurements representing an object. Each point is identified by its x,y, and z
coordinates. The Intel Realsense provides an organized point cloud dataset, which resembles an image, and
has a structure similar to a matrix, making it easily accessible. Taking the point cloud data and the 2D boxes
as input, we start by iterating over the bounding boxes, calculating the center of each. We then iterate over
the point cloud data and choose the points closest to the center of the current bounding box, meaning 3D
localization depends on the center of an identified human. The final identified point cloud provides us with
the needed information on each pedestrian: detection accuracy and 3D coordinates.

Once we generate the 2D bounding boxes around the identified pedestrians and compute their 3D po-
sitions, we use the Simple Online And Real-time Tracking (SORT) algorithm [10] to track them. First, SORT
takes as input the 2D bounding boxes. Starting with the first image is receives, it detects the identified pedes-
trians and gives a unique ID for each. SORT then propagates these detections onto each new frame and uses
a Kalman filter [57] with a linear constant velocity model to predict the new positions of the tracked people.
Once SORT receives the new 2D bounding boxes predictions for the current frame, it compares them to the
people it is tracking and creates a cost matrix consisting of the Intersection over Union (IoU) between each
new detection and the previously tracked people. The IoU is an evaluation metric that specifies the amount
of overlap between the predicted and ground truth bounding box. New detections are then associated with
the previous tracks using the Hungarian algorithm [58]. SORT creates a new track whenever a new object is
detected.

We end up with unique IDs for each identified pedestrian. After tracking the identified pedestrians for 20
frames, we average out their 3D coordinates and calculate the distance between them using the Euclidean
distance. Assuming two pedestrians Pa and Pb , the Euclidean distance function is given by:

di st (Pa ,Pb) =
√

(P Pa
x −P Pb

x)2 + (P Pa
y −P Pb

y)2

In case the distance dist(Pa , Pb), between the centers of the bounding boxes is < 1.5m , the robot reports a
breach for that pair of individuals. We repeat this process pairwise for all the detected individuals. As a result,
we obtain a list of breaches containing the different groups of non-compliant pedestrians. We choose the
largest group, compute its middle coordinates, and send it to the robot navigation module (Figure 3.2).

3.3. Software 11

RGB image

Depth image

YO
LO

-
ob

je
ct

de
te

ct
io

n

SO
R

T-
 tr

ac
ki

ng Tracked People
average coordinates
ID: 1 (2.2,2.9)
ID: 2 (1.5,2.6)

Su
pe

rim
po

se
 th

e
de

pt
h

im
ag

e

Breaches detected

Breach 1:
ID1 and ID2

Eu
cl

id
ia

n
di

st
an

ce

Figure 3.2: RGB-D breach detection

Breach Detection from an RGB image:-
The second method approximates pedestrians’ 3D coordinates from monocular RGB images [49] . It also
outputs their body orientation which can be an important metric for analyzing social distancing breaches.
Bertoni et al. [59] proposed this approach in "Perceiving Humans: from Monocular 3D Localization to Social
Distancing". It uses a low-cost RGB camera to extract humans’ 3D locations, along with their body orienta-
tions, and identify social distancing breaches accordingly.

The overall detection system takes as input a monocular RGB image. It processes it into a set of 2D
joints using two pose detectors: Mask R-CNN [60], which works top-down, and OpenPifPaf [61], which works
bottom-up. The 2D pose detectors can be thought of as independent modules from the rest of the detec-
tion system, since 2D joints from any pose detector can work. Then, the MonoLoco [49] algorithm takes
these 2D joints as input and outputs the 3D locations, orientations, and dimensions of the detected people
together with the localization uncertainty. For that, the algorithm uses a deep, fully-connected neural net-
work (DNN) with six linear layers of 256 output features. The DNN uses dropout after every fully connected
layer and includes batch normalization and residual connections. The output values are analyzed to discover
F-formations (spatial patterns constructed during interactions between two people or more) and evaluate
social distancing breaches. Finally, the system publishes an approximation of each pedestrian’s x,y,z coordi-
nates identified in the image, along with its status (breaching social distancing or not). The overall system
architecture is presented in Figure 3.3.

Considering that this system is to be deployed on a robot and that there may be more than one social dis-
tancing violation in an environment, we extended this method to fit our needs. Once all the social distancing
violations are detected, the breaching pedestrians are grouped based on their coordinates. We then compute
the middle coordinates of the largest group identified (the one with the most social distancing violations),
and send it to the robot navigation module.

Po
se

 d
et

ec
tio

n-
Pi

fP
af

 a
lg

or
ith

m

M
on

oL
oc

o
al

go
rit

hm 3D coordinates,
orientation

and dimensions

F-
fo

rm
at

io
n

al
go

rit
hm

Figure 3.3: RGB breach detection [59]

3.3. Software 12

Compound vision system:-
The RGB-D detection system depends on an RGB-D camera, with an effective range of ≈ 6m based on our
experiments. From Figure 3.4, only the two pedestrians standing at 4m away from the camera are detected
by the depth sensor. As for the RGB detection system, based on the literature, it can detect breaches between
5 and 30m [59]. Hence, we proposed a method that combines both approaches to effectively detect social
distancing breaches without depending on more expensive vision hardware. Our vision system scans the
scene for people twice: (i) Using RGB-D images, the robot localizes nearby people, and (ii) using pure RGB
images, it estimates the localization of people that cannot be detected in the first stage (Figure 3.5).

Figure 3.4: RGB-D limited detection range

 RGB

 RGB-D
RGB-D
Camera

 3D Positions Yolo + 3D
Finder SORT (Tacking)

 No

 Yes

Breaches

= 0
Navigate Towards

BreachersMonoLoco Yes

 No

Breaches

> 0

 3
D

 P
os

iti
on

s

Figure 3.5: Proposed vision system structure

3.3.2. Robot Navigation Algorithms
Autonomous navigation is an essential aspect of mobile robotics. Building an autonomous mobile robot
requires a reliable self-localization system, robust navigation, and static and dynamic obstacles avoidance.
Once our robot detects social distancing breaches, it must navigate autonomously towards the identified co-
ordinates. As such, we decided to assess several robotics navigation methods and identify the most suitable
one for our system.

Odometry:-
To properly navigate, a robot needs to self-allocate and keep track of its position and orientation over time.
Self-localization is traditionally done using the Global Positioning System (GPS). However, while it can often
provide accurate positioning, GPS is not always reliable, especially for indoor navigation since walls and other
objects attenuate radio signals [62]. Therefore, the research community has been investigating self-contained
odometry approaches. Different methods exist for self-contained odometry based on the data used to esti-
mate the position. Considering that we are already using a LiDAR for navigation and a camera for detecting
breaches and aiming to reduce our costs to a minimum, we decided to either use laser or visual odometry.

LiDAR odometry approximates the position and orientation of a robot by tracking the laser patterns re-

3.3. Software 13

Figure 3.6: ROS Navigation stack setup [67].

flected from surrounding objects [63]. It computes the LiDAR’s motion between two consecutive sweeps and
uses the Iterative Closest Point (ICP) algorithm to align the newest LiDAR scan with the previous ones.The
main drawback of LiDAR odometry is that it is difficult to implement on a resource-constrained platform
[64]. Moreover, getting an accurate scan from transparent objects such as glass, is very challenging.

Visual odometry estimates the position and orientation of a robot by examining the variations caused
by the camera’s movement over a series of images [63]. Visual odometry presents many challenges. It is
computationally expensive; it also depends on the image condition and quality: lighting, blurriness, etc. [65].
Finally, it suffers from drifting since it works by incrementally computing the camera’s path, which leads to
incremental errors between frames.

For our robot,we first tested the "rtabmap_ros" package [66], which outputs the robot’s visual odome-
try from RGB images. However, computing the visual odometry was computationally heavy. The computed
odometry was off and did not align with the robot’s actual position. As for the LiDAR odometry, packages such
as "Hector-SLAM" and "rtabmap_ros", seemed often used for robots. Therefore, after testing, we were able to
estimate the robot’s position and orientation using either of these laser odometry packages, even when using
the Jetson Nano.

Classical ROS Navigation Stack:-
The ROS Navigation stack [67] consists of several software packages to safely navigate a robot from point A
to B (Figure 3.6). It includes mapping, localization, and path planning. First, the environment map is built
using ROS packages such as "gmapping" [68] or "hector_slam" [69]. Then, the map_server package pub-
lishes the map to other ros nodes. The Navigation Stack leverages the "amcl" [70] package to track the 2D
pose of a robot against the map. AMCL [71] is a probabilistic localization system for robots, based on the
Adaptive Monte Carlo Localization (AMCL) algorithm. Finally, planning is performed via packages such as
"move_base", which consists of a global and a local planner. The global planner builds a path towards the
given target over the static map. As for the local planner, it recalculates the path to avoid dynamic obstacles
[72].

Mapless Autonomous Navigation:-
Our robot has to navigate crowded environments with static and dynamic obstacles, so finding a collision-
free path is necessary to reach its target. As previously mentioned, we decided first to train the off-policy
DDPG algorithm [22], one of the most used for robot navigation. Then, we used the Soft Actor-Critic (SAC)
[29, 73] to navigate our JetBot in simulation and reality.

State Space:- The environment is observed through 10 laser range findings emitted from -90°to 90°in front of
the robot. These measurements are combined with the angular and linear velocity and the relative position
and angle of the robot to the target, and form the input state to the DRL agents. Figure 3.7 shows the input
and output of the DDPG agent.

3.3. Software 14

Figure 3.7: DRL state space when running inference on the Jetson processor.

Action Space:- Both the DDPG and SAC agents have actor-critic network architectures that act in a continu-
ous action space [74]. The action space has two dimensions: the angular and linear velocities. The angular
velocity is limited to [-2,2] rad/s, while the linear velocity is limited in the range [0,0.2] m/s.

Deep Deterministic Policy Gradient Network (DDPG):- The DDPG [74] network consists of three fully-connected
neural networks layers with 512 nodes each. The rectified linear unit (ReLU) activation follows each layer. The
output layer produces two action parameters representing the robot’s linear velocity a1 and angular velocity
a2. A hyperbolic tangent t anh activation function is applied to the angular velocity to limit it in the range
[-2,2] rad/s, and a si g moi d activation function is applied to the linear velocity output layer to limit it in the
range [0,0.2] m/s. The critic-network evaluates the Q value of the state-action pair Q(s, a). The critic first uses
a pair of the state s and action a vectors as input to two fully connected networks, and concatenates their
outputs. This is followed by two fully-connected neural network layers, which output the corresponding Q
value. The full network architecture is visualized in Figure 3.8. The network configuration used for DDPG is
initially proposed in [22, 29], with minor modifications to the critic, as shown in Figure 3.8.

Soft Actor-Critic Network (SAC):- SAC consists of three networks: an actor and two critic networks, trained
independantly for computing the Q-value. The minimum Q-value is then used to update the policy [75].
The network structure of SAC is shown in Figure 3.9. The actor is composed of 2 fully connected neural net-
work layers with 510 nodes each, and generates the mean and the log standard deviation, used to output the
angular and linear velocities sent to the robot. A hyperbolic tangent t anh activation function and the clip
operation are applied to limit the linear velocity output layer in the range [0,0.2] m/s, and the angular veloc-
ity in the range [-2,2] rad/s. The critic network outputs the Q-value for the current state and action. It uses
three fully-connected neural networks layers to process the inputs. The network configuration used for SAC
is initially proposed in [73], however, the value network was omitted, as mentioned in [75].

3.3. Software 15

Input (st) | 14

Linear | 512 | ReLU

Linear Vel | 1 | Sigmoid

Linear | 512 | ReLU

Linear | 512 | ReLU

Concatenation (at) | 2

Angular Vel | 1 | Tanh

Input (st) | 14 Input (at) | 2

Linear | 256 | ReLU Linear | 256 | ReLU

Linear | 512 | ReLU

Linear | 512 | ReLU

Linear (Q) | 1

Actor Network Critic Network

Figure 3.8: DDPG network structure [22].

Input (st) | 14

Linear | 510 | ReLU

Linear | 510 | ReLU

Input (st) | 14 Input (at) | 2

Linear | 510 | ReLU

Linear | 510 | ReLU

Linear | 510 | ReLU

Linear (Q) | 1

Actor Network Critic Network

Linear (μ) | 2 Linear (σ) | 2

Output (a) | 2 | tanh, Clip

Figure 3.9: SAC network structure [73, 75].

Reward function:- A common reward function is used for both DRL methods, as to enable the agent to learn
desired behaviors in given situations.

r (st , at) =

ra if D t < T

rc if mi nc < Lt

rd1(D t−1 −D t) if (D t−1 −D t) > 0

rd2 if (D t−1 −D t) ≤ 0

There are four different rewards possible for our robot. First, if the robot reaches its goal within a specific dis-
tance threshold T , it receives a large positive reward. If the LiDAR reading Lt is smaller than a set minimum
mi nc , the robot has collided or is about to collide; therefore, it gets a big negative reward. The remaining
rewards depend on the robot’s distance to the target coordinates. If the robot gets closer to its target in a sin-
gle step, it receives a positive reward, proportional to its progress. Otherwise, it is penalized with a negative
reward.

Hybrid Autonomous Navigation:-
When deploying the mapless DRL navigation methods into the real world, we noticed that the LiDAR odom-
etry often gets lost. Whenever this happens, the navigation fails and the robot is unable to reach its target.
Hence, we developed a hybrid system, which combines navigation using a map and mapless navigation using
DRL. We proposed this alternative as a middle ground between both approaches to solve the limitations we

3.3. Software 16

Environment
map

OL~OA No AMCL pose- OA

X=20
steps

 No X=+1X=0

Run
AMCL

Environment

DRL networks
(Actor and

Critic)

LiDAR scans
(10)

Distance to
goal (2)

Angle to goal
(2)

Odometry- OL

Reset odometry

Actions (2)

LiDAR

AMCL Node

DRL Node

Figure 3.10: Hybrid navigation structure

encountered in each. Our approach first consists of the robot navigating towards a target using mapless DRL
navigation and localizing itself using LiDAR odometry. Then, for every X step (in our case, X = 20), the robot
compares its LiDAR odometry to its pose estimated using the Adaptive Monte Carlo Localization (AMCL) [71]
method. If the difference between the two positions is higher than a preset threshold, the robot reinitializes
its pose and orientation using AMCL and the given map of the environment. The overall structure of the hy-
brid navigation stack is shown in Figure 3.10.

4
Results

In this section, we evaluate and compare the performance of the different configurations of our robot’s vision
and navigation systems.

4.1. Vision System
This set of experiments compares the performance of a depth camera (RGB-D) and a standard RGB camera
in estimating the location of people in the scene and detecting social distancing breaches.

4.1.1. Experiment setup
We conduct these experiments in both a simulated and real environment. For the person’s location estima-
tion, we moved the person away from the camera by 1m for every new experiment and took 50 pictures at
each location. Additionally, we sampled a few other coordinates by moving the pedestrian vertically by 0.8m.
We repeated this experiment until the camera could not detect any pedestrian, i.e., 23m for the RGB camera
in simulation with 15m in reality and 5m for the RGB-D camera in simulation with 7m in reality. The red
circles in Figure 4.1 show the exact coordinates at which our pedestrian was standing.
For the breach detection accuracy, we placed two pedestrians at various coordinates in the scene while en-
suring they were in the camera’s FOV and took 50 pictures at each location. When placing the pedestrians, we
confirmed they breached social distancing rules in half of these locations to get an equal number of breaches
and non-breaches readings. For detecting people using the RGB-D camera, we used the YOLOv3 model [9]
trained on the COCO dataset [76]. As for the standard RGB camera, we used the Monoloco model [59], trained
on the KITTI dataset [77].
Finally, we profiled the execution of these algorithms on different processors, namely, the Jetson Nano and
Jetson Xavier NX.

4.1.2. Person Location Estimation
This experiment examines the accuracy of estimating the 3D location of a person using the RGB-D and RGB
cameras. We compare the accuracy of each used vision system by calculating the average localization error
(ALE) between the actual and estimated locations. Figure 4.1 showcases the ground truth locations of the
identified pedestrians plotted as red circles, along with the corresponding heatmap of their estimated loca-
tions. As for Figure 4.2, it shows the ALE, along with its confidence interval for each of the RGB-D and RGB
breach detection algorithms.

17

4.1. Vision System 18

2 0 2
X [m]

1

2

3

4

5

Y
[m

]

0

10

20

30

40

50

60

(a) RGB-D simulation

5 0 5
X [m]

5

10

15

20

25

Y
[m

]

0

20

40

60

(b) RGB simulation

2 0 2
X [m]

2

3

4

5

6

7

8

Y
[m

]

0

10

20

30

40

50

(c) RGB-D reality

2.5 0.0 2.5
X [m]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Y
[m

]

0

10

20

30

40

50

(d) RGB reality

Figure 4.1: Heatmap showcasing the ground truth measurements (red circles) versus the approximated ones
(blue squares).

4.1. Vision System 19

(a) RGB-D simulation (b) RGB simulation

(c) RGB-D reality (d) RGB reality

Figure 4.2: Average localization error (ALE) with confidence interval as a function of distance: RGBD and
RGB based system.

Simulation:-
From Figures 4.1a and 4.1b, we observe that the RGB camera allows our robot to detect people up to 23 m
in simulation, as opposed to the RGB-D camera, which only allows detecting pedestrians up to 5m. When
analyzing Figures 4.2a and 4.2b, the RGB-D system provides accurate coordinates approximation starting
from a minimum threshold of ≈ 2.5m, while the RGB one starting from ≈ 4 m. It is important to note that
before the 5 m mark, it seems that the RGB system has nearly double the ALE of the RGB-D one.

We generally observe that the RGB-D detection system is optimal when people are between 2.5 and 5 m,
as the ALE is at its lowest. As for the RGB system, its ALE increases up to 2.0 m when pedestrians are at 23m.
Hence, if we assume that an ALE of 1m is still acceptable for selecting the target towards which a robot should
navigate, the RGB algorithm would best suit people standing between ≈ 5 and 12m.

Reality:-
From Figure 4.1c, we notice that the RGB-D system can detect and approximate pedestrian coordinates up
to 6m. In comparison, the RGB system can estimate coordinates up to 15m. When assessing the ALE from
Figures 4.2c and 4.2d, it seems that the RGB-D camera can detect pedestrians standing at less than 5m, with
an ALE< 0.4m. As for the RGB system, it starts with an ALE of≈ 0.4m when pedestrians are standing at 5m and
goes up to 2.5m when the pedestrians are at ≈ 15m. Additionally, the variation in the coordinates estimation
is high in the RGB system when compared to the RGB-D one as seen in Figures 4.1d and 4.2d, especially for
distances above ≈ 12m. A wide confidence interval means that the dispersion is high and that the algorithm
approximates the 3D coordinates of pedestrians with more uncertainty and larger error margins.

As conjectured in the simulation, at short distances from the robot ≤ 5m, the RGB-D detection algorithm
is the better choice for approximating the 3D coordinates of pedestrians. And from ≈ 5m onwards, the RGB
detection is a better fit. Considering our assumption that an acceptable ALE is ≤ 1m, both algorithms could
be leveraged in one system, providing us with a detection ranging from 2 to 12m.

4.1. Vision System 20

4.1.3. Breach Detection Accuracy
This experiment compares the performance of the RGB-D and RGB-based vision systems in detecting social
distancing violations. We treat the problem as a binary classification task and evaluate the detection accuracy,
recall, and precision. Figure 5.1 represents the confusion matrices for the RGB-D and RGB breach detection.
As for Table 4.1, it compares the accuracy, precision, and recall between each of the two methods.

Simulation:-
From Table 4.1, we notice that the accuracy is equal to 96% and 92% for the RGB-D and RGB systems, re-
spectively, all the while having high precision and recall. Both classifiers can, therefore, accurately classify
social distancing breaches in simulation. However, the RGB detection system seems to classify a relatively
large number of breaches as safe compared to the RGB-D one, meaning its recall is somewhat lower. A reason
for this is the significant increase in the ALE for the RGB system, along with the widening of the confidence
interval for large distances (> 13m - Figure 4.2b). Hence, when running the experiments, we noticed that a
large number of false negatives were detected for distances above 15m.

Reality:-
Similarly as in simulation, the classification precision is high in the real environment (≥ 90%) (Table 4.1).
However, the accuracy and recall fall off. This decrease is first due to the negative effect of the real environ-
ment and its surrounding on the performance of our systems. Additionally, when experimenting, we noticed
that a large amount of misclassification happens at the limits of the cameras’ FOV, meaning when the ALE
from Figure 4.2 is relatively high. Comparing the accuracy and recall we got to the ones from the original
paper [59] (84.0% accuracy and 75% recall), it seems that both results are very close.
Overall, both algorithms maintained an accuracy equal to 82%. Qualitative results of both methods are shown
in Figure 4.3a and 4.3b. Combined, these results show the promising ability of these approaches in recogniz-
ing breaches in social distancing.

4.1. Vision System 21

Algorithm Accuracy (%) Precision (%) Recall (%)
RGB-D detection Sim. 96 98 95
RGB detection Sim. 92 96 88
RGB-D detection Reality 82 90 72
RGB detection Reality 82 93 70

Table 4.1: Classifying social distancing breaches: Precision, Recall and Accuracy

(a) RGB-D detection simulation (b) RGB detection simulation

Figure 4.3: Example of our robot’s vision modules (i.e., RGB and RGB-D) breaches detection accuracy in
reality.

4.1. Vision System 22

Embedded HW Status CPU1(%) CPU2(%) CPU3(%) CPU4(%) Memory
(GB)

GPU(%)

Idle 15 15 13 13 2.5/8 1
Xavier NX RGB detection 44 42 36 34 7.2/8 59

RGB-D detection 60 50 56 65 3.3/8 15
RGB + RGB-D 76 63 70 75 7.4/8 63
Idle 18 15 15 14 1.6/4.1 3

Nano RGB detection NA NA NA NA NA NA
RGB-D detection 99 98 99 99 2.7/4.1 83

Table 4.2: Breach detection algorithms performance comparison

no breaches breaches
predicted

br
ea

ch
es

no
 b

re
ac

he
s

ac
tu

al

25 475

490 10 200

400

(a) RGB-D detection simulation

no breaches breaches
predicted

br
ea

ch
es

no
 b

re
ac

he
s

ac
tu

al

60 440

482 18 200

400

(b) RGB detection simulation

no breaches breaches
predicted

br
ea

ch
es

no
 b

re
ac

he
s

ac
tu

al

138 362

459 41 200

400

(c) RGB-D detection reality

no breaches breaches
predicted

br
ea

ch
es

no
 b

re
ac

he
s

ac
tu

al

152 348

472 28 200

400

(d) RGB detection reality

Figure 4.4: Breaches Detection Accuracy in reality: RGB and RGB-D based breach detection system.

4.1.4. Hardware Performance
After testing the accuracy of the two breach detection systems, we deployed them on the identified edge
devices to profile their execution on different processors. We tested the performance in terms of CPU, GPU,
and memory usage.

Firstly, we measured the resources utilization levels at an idle condition, and then we executed the model
for a few minutes to reach steady-state behavior and took 100 performance measurements that we averaged
out. The results are presented in Table 4.2. Starting with the Jetson Nano, it was able to run the RGB-D
system based on YOLOv3 [9]. As seen in Table 4.2, when running the RGB-D detection system, the CPU
resource consumption is maximal (≥ 98%), and the GPU utilization is very high. Additionally, the RGB
breach detection did not run on the Jetson Nano due to its high resource requirements (i.e., it consists of three
different deep learning models to detect breaches: Mask R-CNN [60] and OpenPifPaf [61] for pose detection
and MonoLoco for 3D coordinates approximation).

On the other hand, both systems ran individually on the more expensive Jetson Xavier NX, with appro-

4.2. Navigation System 23

(a) Scenario 1: No obstacles (b) Scenario 2: Static obstacles

(c) Scenario 3: Static and dynamic obstacles

Figure 4.5: Training environments.

priate resource utilization. The RGB breach detection system noted the highest GPU utilization of 59%, while
the RGB-D system had the highest CPU utilization equal to 65% . However, the memory consumption of the
RGB system seemed to be very high and averaged 7.2 GB RAM out of the eight available. Finally, considering
that the individual performances were favorable, we tested our compound vision system on the Xavier NX.
Again, the overall performance seemed promising, with the highest average CPU utilization being equal to
76%, along with a 63% GPU utilization, and 7.4 GB of RAM usage.

Overall, the Jetson Nano has very limited performance and does not leave much room to run the overall
system composed of three Deep Learning detection algorithms. However, the Xavier NX seems to provide
more resources and could be leveraged to ensure a functional design.

4.2. Navigation System
An essential aspect of our autonomous robot revolves around the navigation system. Therefore, we mea-
sured the robustness of our navigation solutions by assessing three main metrics: success rate, failure rate
(whenever the robot collides or cannot reach its goal within a specific time limit), and average speed.

4.2.1. Experiment setup
We trained the DRL models on a computer equipped with an NVIDIA GeForce GTX 1060, 16 GB of RAM, and
an Intel Core i7-8750H processor. We used the three virtual environments shown in Figure 4.5, to train and
test our DRL algorithms using the Jetbot robot model. The environments consist of a 4×4m2 room-like en-
vironment with no obstacles, static obstacles, and dynamic obstacles. The DRL models are trained for 4000
episodes by navigating a Jetbot robot model in these environments. We tested the models capabilities in sim-
ulation and reality by sampling 35 random configurations for each environment type.

4.2. Navigation System 24

Algorithms Success rate [/100] Failure Rate (collisions
rate / deadlocks rate)

Average Speed [m/s]

ROS navigation stack 97 3 (3 / 0) 0.077
DDPG 87 13 (8 / 5) 0.125
SAC 92 8 (6 / 2) 0.17
Hybrid navigation 93 7 (7 / 0) 0.046

Table 4.3: Comparison of the four different navigation approaches in simulation. Results are averaged over
100 episodes.

Algorithms Success rate [/100] Failure Rate (collisions
rate / deadlocks rate)

Average Speed [m/s]

DDPG 74 26 (11 / 15) 0.099
SAC 80 20 (8 / 12) 0.13
Hybrid navigation 90 10 (10 / 0) 0.057

Table 4.4: Comparison of the three different navigation approaches in reality. Results are averaged over 100
episodes.

4.2.2. Training performance
Figure 4.6 shows the cumulative rewards obtained by DDPG and SAC during training in an environment with
static and dynamic obstacles where each data point represents the average reward over 25 episodes. After
≈ 350 episodes, SAC surpasses DDPG in performance constantly. SAC reached a maximum average reward
of approximately 3000, double that of DDPG. We hypothesize that as SAC is a stochastic policy, it is able to
explore better the environment and therefore collect higher rewards.

0 1000 2000 3000 4000
Episodes

0

1000

2000

3000

4000

Av
er

ag
e

re
wa

rd

SAC
DDPG

Figure 4.6: Training in environment with varying obstacles.

4.2.3. Simulation
From table 4.3, we observe that the four different methods assessed perform well in the different environ-
ments and rarely collide with static and dynamic obstacles with success rates higher than ≥ 87%. However,
both mapless navigation approaches were stuck due to a position loss and could not recover, leading to a
deadlock rate equal to 5% and 2% for DDPG and SAC, respectively. On the contrary, our hybrid model seems
to fix this issue, with no noted deadlocks in simulation. It, therefore, appears to provide a solution for our

4.2. Navigation System 25

self-localization problem.
Another main difference between the analyzed methods is the average speed. Methods leveraging a map,

i.e. the SLAM and hybrid approaches, are nearly two to three times as slow as the DDPG and SAC methods,
with the hybrid approach being the slowest, averaging a speed of 0.046 m/s. This behavior is expected as the
robot would need to keep track of its position on the given map.

4.2.4. Reality
Similarly as in simulation, we notice from table 4.4 that the mapless methods (DDPG and SAC) fail on mul-
tiple occasions due to the loss of odometry (15% and 12% deadlock rates for the DDPG and SAC algorithms,
respectively). Considering that we took 100 measurements, these rates are relatively high. On the contrary,
using the hybrid approach mitigates this failure, and our DRL agent reaches its target successfully 90% of the
time.

The hybrid method is, however, twice as slow as both mapless solutions, with an average speed of ≈
0.057m/s, compared to the average speed for DDPG (≈ 0.099m/s), and that of SAC (≈ 0.13m/s). Moreover,
SAC is faster than DDPG in reaching the target: we suspect that the stochastic nature of SAC provides better
exploration and allows the model to find an optimal path, whereas DDPG is deterministic.

In general, we observe that the hybrid approach can be considered a viable alternative to mapless DRL
navigation whenever the odometry fails. However, it favors robustness over speed. Finally, the DRL algo-
rithms, and our hybrid method seemed to effectively generalize to unseen real-world environments using
the model trained on the environment with static and dynamic obstacles. They hence performed well, with-
out the need to change any of the DRL parameters previously defined in the simulation. This further shows
the potential of using DRL autonomous navigation methods for robot navigation in the real world.

5
Conclusion & Future Work

Designing and deploying a robot swarm that encourages social distancing is a challenging task that requires
many considerations to ensure that the robots can effectively detect violations while being scalable. Single
robot systems have already been proposed for detecting social distancing violations between pedestrians.
However, the aforementioned systems are either not effective enough to detect breaches or very expensive
and thus not scalable enough to form a swarm.

Hence, in this work, we developed an end-to-end cost-efficient robotic system using the JetBot AI robot
from NVIDIA, which aims at encouraging social distancing. Our solution leverages computer vision to detect
breaches and DRL for robot navigation.

For breach detection, we assessed the individual performance of the RGB-D and RGB detection systems.
Based on the reality measurements, the RGB-D vision system accurately approximated the 3D coordinates
of pedestrians for short distances, ranging from 2 to 5m, while the RGB system best estimated 3D people
coordinates from ≈ 5 to 12m. In general, both methods seemed to detect breaches accurately (Table 4.1).
This was further demonstrated in the qualitative results we got in Figure 4.3. Finally, using our compound
solution deployed on the Jetson Xavier NX, and running both the RGB-D and RGB detection systems, we
were able to accurately detect breaches up to 12m.

As for navigating our robot, we first utilized the mapless SAC actor-critic DRL algorithm, which success-
fully reached the targets more than 80% of the time. However, considering that the LiDAR odometry, respon-
sible for self-localizing the robot in its environment, failed on multiple occasions, we developed a hybrid
navigation stack. The latter is designed to overcome this limitation and performs best with respect to the
failure rate at the cost of slower navigation. This proposed solution proved to be successful 90% of the time
and is a good fit for our robot.

Jetson processor

RGB detection
system

RGB-D detection
system

Ground Station

Mapless DRL
navigation

AMCL

Self-localization
module

Reset odometry

Breach
coordinates

O
dom

etry

RGB-D camera

LiDAR

Sc
an

s

RGB
image

RGB-D
image

Figure 5.1: Overall architecture of our system.

26

5.1. Recommendations & Suggestions for Future Work 27

Our final system runs the compound detection on the Jetson processor. A ground station runs the LiDAR
odometry computations and the hybrid navigation system. The ground station and the Jetson processor are
connected to each other via ROS communication. Figure 5.1 shows the overall architecture of the robot. Each
component runs individually as a ROS node, and all the nodes communicate with each other by publishing
and subscribing to topics. A more in depth view of the nodes is available in the appendix.

5.1. Recommendations & Suggestions for Future Work
Developing a robot swarm is a complex process, and many considerations should be taken into account as to
optimize the cost and performance. In this thesis, we took a bottom-up approach and started by building a
single robot that could constitute the first step towards a swarm. As such, in this section, we present some of
the suggestions for future work to improve our system:

• Deploying a swarm of robots:- Developing a complete swarm of robots that leverages our compound
vision system and hybrid navigation, thus covering more range for detecting breaches and encouraging
social distancing. Additionally, we could target other applications such as alerting littering individuals,
finding objects of interest, e.g., security of airports.

• Vision-based navigation:- Developing a pure vision based navigation system for our robot would allow
us to forgo the LiDAR which is an expensive sensor. As previously mentioned, visual robot navigation
using DRL is still a relatively new approach [31], with several limitations: it uses a discrete set of actions,
and does not account for obstacles while navigating.

• Account for privacy concerns:- Preserving the privacy of the detected people is necessary when iden-
tifying breaches. While the RGB detection system [59] approximates 3D coordinates from a 2D pose
(a low-dimensional representation that respects privacy concerns), the RGB-D detection using YOLO
requires an RGB-D image as input which may contain sensitive data. Solutions have been proposed
in the literature for detecting people while preserving their privacy, such as blurring their faces [78], or
altering the pixels of the images (producing alterations in saturation, contrast, brightness, etc.) [79].

• Improve the detection accuracy of the RGB system:- Based on our experiments, the RGB detection system
is best suited for detecting breaches between 5 and 12m. However, considering the cost of an RGB
camera (10x cheaper than the RGB-D one), it would be beneficial to leverage it for both short range and
long range detection if we are able to improve on its accuracy for short range distances, thus forgoing
the RGB-D camera.

Bibliography

[1] M. Rezaei and M. Azarmi, “Deepsocial: Social distancing monitoring and infection risk assessment in
covid-19 pandemic,” Applied Sciences, vol. 10, no. 21, p. 7514, Oct. 2020, ISSN: 2076-3417. DOI: 10.
3390/app10217514. [Online]. Available: http://dx.doi.org/10.3390/app10217514.

[2] I. Ahmed, M. Ahmad, J. Rodrigues, G. Jeon, and S. Din, “A deep learning-based social distance moni-
toring framework for covid-19,” Sustainable Cities and Society, vol. 65, p. 102 571, Nov. 2020. DOI: 10.
1016/j.scs.2020.102571.

[3] N. S. Punn, S. K. Sonbhadra, S. Agarwal, and G. Rai, Monitoring covid-19 social distancing with per-
son detection and tracking via fine-tuned yolo v3 and deepsort techniques, 2021. arXiv: 2005.01385
[cs.CV].

[4] C. T. Nguyen et al., “A comprehensive survey of enabling and emerging technologies for social distanc-
ing—part i: Fundamentals and enabling technologies,” IEEE Access, vol. 8, pp. 153 479–153 507, 2020,
ISSN: 2169-3536. DOI: 10.1109/access.2020.3018140. [Online]. Available: http://dx.doi.org/
10.1109/ACCESS.2020.3018140.

[5] S. Agarwal et al., Unleashing the power of disruptive and emerging technologies amid covid-19: A de-
tailed review, 2021. arXiv: 2005.11507 [cs.CY].

[6] H.-W. Huang et al., Agile mobile robotic platform for contactless vital signs monitoring, 2020.

[7] C. Sun and Z. Zhai, “The efficacy of social distance and ventilation effectiveness in preventing covid-19
transmission,” Sustainable Cities and Society, vol. 62, p. 102 390, 2020, ISSN: 2210-6707. DOI: https:
//doi.org/10.1016/j.scs.2020.102390.

[8] Z. Voko and J. Pitter, “The effect of social distance measures on covid-19 epidemics in europe: An inter-
rupted time series analysis,” GeroScience, vol. 42, Jun. 2020. DOI: 10.1007/s11357-020-00205-0.

[9] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, 2018. arXiv: 1804.02767 [cs.CV].

[10] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” 2016 IEEE
International Conference on Image Processing (ICIP), Sep. 2016. DOI: 10.1109/icip.2016.7533003.
[Online]. Available: http://dx.doi.org/10.1109/ICIP.2016.7533003.

[11] N. Wojke, A. Bewley, and D. Paulus, Simple online and realtime tracking with a deep association metric,
2017. arXiv: 1703.07402 [cs.CV].

[12] A. Channa, N. Popescu, J. Skibinska, and R. Burget, “The rise of wearable devices during the covid-19
pandemic: A systematic review,” Sensors, vol. 21, no. 17, p. 5787, 2021.

[13] S. Sun et al., “Using smartphones and wearable devices to monitor behavioral changes during covid-
19,” Journal of Medical Internet Research, vol. 22, no. 9, e19992, Sep. 2020, ISSN: 1438-8871. DOI: 10.
2196/19992. [Online]. Available: http://dx.doi.org/10.2196/19992.

[14] Y. Shen et al., “Robots under covid-19 pandemic: A comprehensive survey,” Ieee Access, 2020.

[15] C. McCaffrey, A. Taylor, S. Roy, S. B. Banisetty, R. Mead, and T. Williams, “Can robots be used to encour-
age social distancing?,” ser. HRI ’21 Companion, Boulder, CO, USA: Association for Computing Machin-
ery, 2021, pp. 475–478, ISBN: 9781450382908. DOI: 10.1145/3434074.3447217. [Online]. Available:
https://doi-org.tudelft.idm.oclc.org/10.1145/3434074.3447217.

[16] T. Fan et al., Autonomous social distancing in urban environments using a quadruped robot, 2020. arXiv:
2008.08889 [cs.RO].

[17] A. J. Sathyamoorthy, U. Patel, M. Paul, Y. Savle, and D. Manocha, “Covid surveillance robot: Monitoring
social distancing constraints in indoor scenarios,” PLOS ONE, vol. 16, pp. 1–20, Dec. 2021. DOI: 10.
1371/journal.pone.0259713. [Online]. Available: https://doi.org/10.1371/journal.pone.
0259713.

28

https://doi.org/10.3390/app10217514
https://doi.org/10.3390/app10217514
http://dx.doi.org/10.3390/app10217514
https://doi.org/10.1016/j.scs.2020.102571
https://doi.org/10.1016/j.scs.2020.102571
https://arxiv.org/abs/2005.01385
https://arxiv.org/abs/2005.01385
https://doi.org/10.1109/access.2020.3018140
http://dx.doi.org/10.1109/ACCESS.2020.3018140
http://dx.doi.org/10.1109/ACCESS.2020.3018140
https://arxiv.org/abs/2005.11507
https://doi.org/https://doi.org/10.1016/j.scs.2020.102390
https://doi.org/https://doi.org/10.1016/j.scs.2020.102390
https://doi.org/10.1007/s11357-020-00205-0
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://arxiv.org/abs/1703.07402
https://doi.org/10.2196/19992
https://doi.org/10.2196/19992
http://dx.doi.org/10.2196/19992
https://doi.org/10.1145/3434074.3447217
https://doi-org.tudelft.idm.oclc.org/10.1145/3434074.3447217
https://arxiv.org/abs/2008.08889
https://doi.org/10.1371/journal.pone.0259713
https://doi.org/10.1371/journal.pone.0259713
https://doi.org/10.1371/journal.pone.0259713
https://doi.org/10.1371/journal.pone.0259713

Bibliography 29

[18] K. Rana, B. Talbot, V. Dasagi, M. Milford, and N. Sünderhauf, “Residual reactive navigation: Combining
classical and learned navigation strategies for deployment in unknown environments,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 11 493–11 499.

[19] B. Cèsar-Tondreau, G. Warnell, E. Stump, K. Kochersberger, and N. R. Waytowich, “Improving autonomous
robotic navigation using imitation learning,” Frontiers in Robotics and AI, vol. 8, 2021.

[20] K. Zheng, “Ros navigation tuning guide,” in Robot Operating System (ROS), Springer, 2021, pp. 197–226.

[21] A. Y. Majid, S. Saaybi, T. van Rietbergen, V. Francois-Lavet, R. V. Prasad, and C. Verhoeven, “Deep rein-
forcement learning versus evolution strategies: A comparative survey,” arXiv preprint arXiv:2110.01411,
2021.

[22] L. Tai, G. Paolo, and M. Liu, Virtual-to-real deep reinforcement learning: Continuous control of mobile
robots for mapless navigation, 2017. arXiv: 1703.00420 [cs.RO].

[23] H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ardani, Deep reinforcement learning for
real autonomous mobile robot navigation in indoor environments, 2020. arXiv: 2005.13857 [cs.RO].

[24] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-supervised deep reinforcement learning
with generalized computation graphs for robot navigation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 5129–5136.

[25] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, Towards optimally decentralized multi-robot colli-
sion avoidance via deep reinforcement learning, 2018. arXiv: 1709.10082 [cs.RO].

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algorithms,
2017. arXiv: 1707.06347 [cs.LG].

[27] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine, “Deep reinforcement learning for vision-
based robotic grasping: A simulated comparative evaluation of off-policy methods,” in 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2018, pp. 6284–6291. DOI: 10.1109/ICRA.
2018.8461039.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor, 2018. arXiv: 1801.01290 [cs.LG].

[29] J. Costa de Jesus, V. Kich, A. Kolling, R. Grando, M. Cuadros, and D. F. Gamarra, “Soft actor-critic for
navigation of mobile robots,” Journal of Intelligent Robotic Systems, vol. 102, Jun. 2021. DOI: 10.1007/
s10846-021-01367-5.

[30] J. Kulhánek, E. Derner, T. De Bruin, and R. Babuška, “Vision-based navigation using deep reinforcement
learning,” pp. 1–8, 2019.

[31] J. Kulhanek, E. Derner, and R. Babuska, Visual navigation in real-world indoor environments using end-
to-end deep reinforcement learning, 2020. arXiv: 2010.10903 [cs.RO].

[32] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[33] T. Haarnoja, S. Levine, M. Dalal, A. Zhou, K. Hartikainen, and V. Pong, Soft actor critic-deep reinforce-
ment learning with real-world robots, Dec. 2018. [Online]. Available: https://bair.berkeley.edu/
blog/2018/12/14/sac/.

[34] H. Choi et al., “On the use of simulation in robotics: Opportunities, challenges, and suggestions for
moving forward,” Proceedings of the National Academy of Sciences, vol. 118, no. 1, 2021.

[35] M. Körber, J. Lange, S. Rediske, S. Steinmann, and R. Glück, “Comparing popular simulation environ-
ments in the scope of robotics and reinforcement learning,” arXiv preprint arXiv:2103.04616, 2021.

[36] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, “Feature and performance comparison of the v-
rep, gazebo and argos robot simulators,” in Annual Conference Towards Autonomous Robotic Systems,
Springer, 2018, pp. 357–368.

[37] S. Ivaldi, V. Padois, and F. Nori, “Tools for dynamics simulation of robots: A survey based on user feed-
back,” arXiv preprint arXiv:1402.7050, 2014.

[38] L. Nogueira, “Comparative analysis between gazebo and v-rep robotic simulators,” Seminario Interno
de Cognicao Artificial-SICA, vol. 2014, no. 5, 2014.

[39] A. Ayala, F. Cruz, D. Campos, R. Rubio, B. Fernandes, and R. Dazeley, A comparison of humanoid robot
simulators: A quantitative approach, 2020. arXiv: 2008.04627 [cs.RO].

https://arxiv.org/abs/1703.00420
https://arxiv.org/abs/2005.13857
https://arxiv.org/abs/1709.10082
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/ICRA.2018.8461039
https://doi.org/10.1109/ICRA.2018.8461039
https://arxiv.org/abs/1801.01290
https://doi.org/10.1007/s10846-021-01367-5
https://doi.org/10.1007/s10846-021-01367-5
https://arxiv.org/abs/2010.10903
https://bair.berkeley.edu/blog/2018/12/14/sac/
https://bair.berkeley.edu/blog/2018/12/14/sac/
https://arxiv.org/abs/2008.04627

Bibliography 30

[40] Frequently asked questions. [Online]. Available: https://coral.ai/docs/edgetpu/faq/.

[41] Intel movidius vision processing units (vpus).

[42] Nvidia embedded systems for next-gen autonomous machines. [Online]. Available: https : / / www .
nvidia.com/en-us/autonomous-machines/embedded-systems/.

[43] Z. Lv, J. L. Mauri, and H. Song, “Editorial rgb-d sensors and 3d reconstruction,” IEEE Sensors Journal,
vol. 20, no. 20, pp. 11 751–11 752, 2020. DOI: 10.1109/JSEN.2020.3015417.

[44] Zed 2 ai stereo camera. [Online]. Available: https://www.stereolabs.com/zed-2/.

[45] Asus xtion pro. [Online]. Available: http://xtionprolive.com/asus-xtion-pro-live.

[46] Microsoft kinect. [Online]. Available: https : / / developer . microsoft . com / en - us / windows /
kinect/.

[47] Intel realsense camera. [Online]. Available: https : / / www . intel . com / content / www / us / en /
architecture-and-technology/realsense-overview.html.

[48] A. Simonelli, S. R. R. Bulò, L. Porzi, M. López-Antequera, and P. Kontschieder, Disentangling monocular
3d object detection, 2019. arXiv: 1905.12365 [cs.CV].

[49] L. Bertoni, S. Kreiss, and A. Alahi, Monoloco: Monocular 3d pedestrian localization and uncertainty es-
timation, 2019. arXiv: 1906.06059 [cs.CV].

[50] J. Zhong, M. Li, X. Liao, and J. Qin, “A real-time infrared stereo matching algorithm for rgb-d cameras’
indoor 3d perception,” ISPRS International Journal of Geo-Information, vol. 9, no. 8, p. 472, 2020.

[51] S. Liu, D. Gao, W. Peng, X. Guo, J. Xu, and D.-X. Liu, “A depth-based weighted point cloud registration
for indoor scene,” Sensors, vol. 18, p. 3608, Oct. 2018. DOI: 10.3390/s18113608.

[52] A. N. Catapang and M. Ramos, “Obstacle detection using a 2d lidar system for an autonomous vehicle,”
in 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE),
IEEE, 2016, pp. 441–445.

[53] S. Kawakura and R. Shibasaki, “Deep learning-based self-driving car: Jetbot with nvidia ai board to
deliver items at agricultural workplace with object-finding and avoidance functions,” European Journal
of Agriculture and Food Sciences, vol. 2, no. 3, 2020.

[54] A. Raman, V. Krovi, and M. Schmid, “Empowering graduate engineering students with proficiency in
autonomy,” Aug. 2018, V05AT07A080.

[55] R. M. Garcıa, D. H. de la Iglesia, J. F. de Paz, V. R. Leithardt, and G. Villarrubia, “Urban search and rescue
with anti-pheromone robot swarm architecture,” in 2021 Telecoms Conference (ConfTELE), IEEE, 2021,
pp. 1–6.

[56] M. Bjelonic, Yolo ros: Real-time object detection for ros, 2018.

[57] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[58] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly,
vol. 2, no. 1-2, pp. 83–97, 1955.

[59] L. Bertoni, S. Kreiss, and A. Alahi, Perceiving humans: From monocular 3d localization to social distanc-
ing, 2021. arXiv: 2009.00984 [cs.CV].

[60] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask r-cnn, 2018. arXiv: 1703.06870 [cs.CV].

[61] S. Kreiss, L. Bertoni, and A. Alahi, Pifpaf: Composite fields for human pose estimation, 2019. arXiv: 1903.
06593 [cs.CV].

[62] M. Mozaffari, A. Broumandan, K. O’Keefe, and G. Lachapelle, “Weak gps signal acquisition using an-
tenna diversity,” in 2014 Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS),
2014, pp. 11–18. DOI: 10.1109/UPINLBS.2014.7033705.

[63] S. A. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and J. Plosila, “A survey
on odometry for autonomous navigation systems,” IEEE Access, vol. 7, pp. 97 466–97 486, 2019.

[64] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and N. Ismail, “Review of visual odometry: Types, ap-
proaches, challenges, and applications,” SpringerPlus, vol. 5, 2016.

https://coral.ai/docs/edgetpu/faq/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://doi.org/10.1109/JSEN.2020.3015417
https://www.stereolabs.com/zed-2/
http://xtionprolive.com/asus-xtion-pro-live
https://developer.microsoft.com/en-us/windows/kinect/
https://developer.microsoft.com/en-us/windows/kinect/
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://arxiv.org/abs/1905.12365
https://arxiv.org/abs/1906.06059
https://doi.org/10.3390/s18113608
https://arxiv.org/abs/2009.00984
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1903.06593
https://arxiv.org/abs/1903.06593
https://doi.org/10.1109/UPINLBS.2014.7033705

Bibliography 31

[65] R. González, F. Rodríguez, J. L. Guzmán, C. Pradalier, and R. Y. Siegwart, “Control of off-road mobile
robots using visual odometry and slip compensation,” Advanced Robotics, vol. 27, pp. 893–906, 2013.

[66] Rtabmap_ros ros package. [Online]. Available: http://wiki.ros.org/rtabmap_ros.

[67] Ros navigation stack. [Online]. Available: http://wiki.ros.org/navigation.

[68] Gmapping ros package. [Online]. Available: http://wiki.ros.org/gmapping.

[69] Hector_slam ros package. [Online]. Available: http://wiki.ros.org/hector_slam.

[70] Amcl ros package. [Online]. Available: http://wiki.ros.org/amcl.

[71] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization: Efficient position estimation for
mobile robots,” Jan. 1999, pp. 343–349.

[72] P. Marin-Plaza, A. Hussein, D. Martin, and A. d. l. Escalera, “Global and local path planning study in a
ros-based research platform for autonomous vehicles,” Journal of Advanced Transportation, vol. 2018,
2018.

[73] J. Xiang, Q. Li, X. Dong, and Z. Ren, “Continuous control with deep reinforcement learning for mobile
robot navigation,” in 2019 Chinese Automation Congress (CAC), 2019, pp. 1501–1506. DOI: 10.1109/
CAC48633.2019.8996652.

[74] T. P. Lillicrap et al., Continuous control with deep reinforcement learning, 2019. arXiv: 1509.02971
[cs.LG].

[75] T. Haarnoja et al., Soft actor-critic algorithms and applications, 2019. arXiv: 1812.05905 [cs.LG].

[76] T.-Y. Lin et al., Microsoft coco: Common objects in context, 2015. arXiv: 1405.0312 [cs.CV].

[77] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” International
Journal of Robotics Research (IJRR), 2013.

[78] P. He et al., Privacy-preserving object detection, 2021. arXiv: 2103.06587 [cs.CV].

[79] I. Rodriguez-Conde, C. Campos, and F. Fdez-Riverola, “On-device object detection for more efficient
and privacy-compliant visual perception in context-aware systems,” Applied Sciences, vol. 11, no. 19,
p. 9173, 2021.

http://wiki.ros.org/rtabmap_ros
http://wiki.ros.org/navigation
http://wiki.ros.org/gmapping
http://wiki.ros.org/hector_slam
http://wiki.ros.org/amcl
https://doi.org/10.1109/CAC48633.2019.8996652
https://doi.org/10.1109/CAC48633.2019.8996652
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2103.06587

6
Appendix

6.1. Appendix A: RGB-D ROS nodes

Figure 6.1: RGB-D ROS nodes.

6.2. Appendix B: RGB ROS nodes

Figure 6.2: RGB ROS nodes.

6.3. Appendix C: Hybrid navigation ROS Nodes

32

6.3. Appendix C: Hybrid navigation ROS Nodes 33

Figure 6.3: Hybrid navigation ROS nodes.

	Acknowledgements
	Abstract
	Introduction
	Background
	Vision and Applications
	Challenges
	Research Focus & Objectives
	System Design
	Requirements & System Architecture

	Contribution
	Thesis Outline and structure

	Related Work
	Social Distancing Breach detection
	Robotic navigation
	Classical navigation methods:
	Reinforcement learning:

	System Overview
	Simulator
	Hardware
	Processors
	Vision Sensors
	Laser Sensors
	Robot Body

	Software
	Breach Detection Algorithms
	Robot Navigation Algorithms

	Results
	Vision System
	Experiment setup
	Person Location Estimation
	Breach Detection Accuracy
	Hardware Performance

	Navigation System
	Experiment setup
	Training performance
	Simulation
	Reality

	Conclusion & Future Work
	Recommendations & Suggestions for Future Work

	Appendix
	Appendix A: RGB-D ROS nodes
	Appendix B: RGB ROS nodes
	Appendix C: Hybrid navigation ROS Nodes

