
CodeFeedr
Connecting streaming jobs
J. Kuijpers
J. Quist
W. Zorgdrager

Te
ch

ni
sc

he
Un

ive
rs
ite

it
De

lft

CodeFeedr
Connecting streaming jobs

by

J. Kuijpers
J. Quist

W. Zorgdrager
to obtain the degree of Bachelor of Science in Computer Science

at the Delft University of Technology,

to be defended publicly on Monday July 2, 2018 at 11:00 AM.

Project duration: April 23, 2018 – July 2, 2018
Thesis committee: Dr. ir. T. Abeel, TU Delft, supervisor

Dr. ir. G. Gousios, TU Delft, client
Dr. ir. H. Wang, TU Delft, coordinator

Preface

This report has been written to fulfill the requirements of the Bachelor Project TI3806. This project marks the
end of the undergraduate Computer Science program at Delft University of Technology. In this project, we
created a framework on top of the open-source stream processor Apache Flink. This framework allows for
pipelining of Flink stream processing jobs.

We would like to thank a few people which helped us throughout the project. First of all, Georgios Gousios for
his dedicated support and mentoring. Secondly, we would like to thank Thomas Abeel for his advisory role
especially with regard to the report. Lastly, we would like to thank the people that we did not mention above
but who did contribute to the project.

Jos Kuijpers, Joris Quist, Wouter Zorgdrager
Delft, June 2018

i

Summary

CodeFeedr is a research project at the software engineering division of the Delft University of Technology
in collaboration with the Software Improvement Group. The research focuses on a software infrastructure
which serves software practitioners in utilizing data-driven decision making [18].

Currently, frameworks like Apache Flink are capable of high-performance data streaming. However, these
frameworks have a lot of overhead in setting up, and adding new streaming queries takes a lot of time.
They also have several limitations in combining real-time data with historical data and doing aggregations
on streams from multiple sources.

The developed product is a plug-in framework on top of Apache Flink, that provides a pipelining system for
streaming queries. This product includes abstractions for well-known sources like GitHub, TravisCI and Twit-
ter as well as support for historical data in mongoDB. With this framework the users can spend their efforts on
actually writing streaming queries instead of setting up environments, input sources and output destinations.
The product also includes orchestration tools for running streaming jobs on a distributed system.

In the future the framework can be extended to include more streaming sources and extra tools can be de-
veloped to improve usability. There are also some opportunities to do fine-tuning and fault tolerance test-
ing.

ii

Contents

Preface i
Summary ii
List of Figures v
1 Problem Statement 1

1.1 Problem Context . 1
1.2 Problem Definition . 1
1.3 Requirements . 2

2 Design 4
2.1 Core framework . 4

2.1.1 Pipeline . 4
2.1.2 Buffers . 5
2.1.3 Pipeline builder . 6
2.1.4 Utilities . 7

2.2 Plugins . 7

3 Final product 8
3.1 Core. 8
3.2 Plugins . 8

3.2.1 RSS and weblogs . 8
3.2.2 MongoDB . 8
3.2.3 ElasticSearch. 9
3.2.4 GitHub . 9
3.2.5 TravisCI . 9
3.2.6 Twitter . 9

3.3 Orchestration . 9
3.4 Testing . 10

3.4.1 Continuous Integration . 10
3.4.2 Coverage Tracking . 10

3.5 Documentation . 10

4 Evaluation 12
4.1 Product . 12
4.2 Process . 12

4.2.1 SCRUM . 13
4.2.2 Planning . 13

4.3 Ethical Implications. 13
4.4 Recommendations . 14

A Project Description 15
B Research report 16

B.1 Problem Statement . 16
B.1.1 Problem Context . 16
B.1.2 Problem Definition . 16
B.1.3 Requirements . 17
B.1.4 Scala . 18
B.1.5 Documentation . 18
B.1.6 Testing . 18

iii

Contents iv

B.2 Stream Processing. 19
B.2.1 Apache Flink . 19
B.2.2 Alternatives . 19

B.3 Message Brokers . 19
B.3.1 Kafka. 20
B.3.2 RabbitMQ . 21
B.3.3 Conclusion. 21

B.4 Serialization. 21
B.5 Key Manager . 21

B.5.1 ZooKeeper . 22
B.5.2 Redis . 22
B.5.3 Conclusion. 23

B.6 Containerization and orchestration . 23
B.6.1 Containerization . 23
B.6.2 Orchestration . 24
B.6.3 Conclusion. 24

B.7 Discussion . 24

C Roadmap 25
D Software Improvement Group 26

D.1 First Feedback (Dutch) . 26
D.2 Adjustments made based on the feedback . 26
D.3 Second Feedback (Dutch) . 27

E Code examples 28
E.1 Simple stages . 28
E.2 Pipelines . 28

E.2.1 Simple pipeline . 28
E.2.2 Complex pipeline . 29

E.3 Using plugins . 29

F Implementation challenges 30
F.1 Type system limitations . 30
F.2 Serializability . 30
F.3 Avro support . 31
F.4 New serializer . 31

Info Sheet 32
Bibliography 33

List of Figures

2.1 A visualization of a simple pipeline consisting of an Input Stage, two Transform Stages and an
Output Stage. 4

2.2 Simple input stage. 5
2.3 A visualization of the same pipeline as in figure 2.1, but now as a system. Dashed arrows rep-

resent data being written to the buffer and the solid arrows represent data being read from the
buffer. 5

2.4 Interactions of stages with (Kafka) buffer. 6
2.5 Simple pipeline. To view the complete code example see Appendix E.2.1 6
2.6 Complex pipeline. To view the complete code example see Appendix E.2.2 6

3.1 A screenshot of one of the pages of the Codefeedr documentation website. 11

B.1 A visualization of Flink compared to Spark and Storm as given in [17]. 20
B.2 A visualization of the Kafka APIs[7]. 20
B.3 Speed comparison of two-way serialization of a 8kb record (in nanos) 22
B.4 Compression comparison of a 8kb record (in kb) . 22
B.5 A graph that plots the throughput of Zookeeper against the percentage of requests that are

reads.[10] . 23

C.1 Roadmap of our project. 25

v

1
Problem Statement

1.1. Problem Context
In 2016 the CodeFeedr research was founded by our client, Dr. Georgios Gousios. In the original vision [18],
this research project is described as "a novel software analytics infrastructure supporting for a combination
of three requirements to serve software practitioners in utilizing data-driven decision making". Those three
requirements, as defined in [18], are (1) giving real-time insight, (2) offering a query model, and (3) providing
data summarization. On the website of CodeFeedr [20] this vision is made more explicit. It describes an
architecture in which (real-time) data streams are first processed by a stream processor like Apache Flink [6] to
store in a data silo like mongoDB. These streams are then processed by a query engine being able to combine
both historical and real-time data. The result of the query is then used to serve a real-time summarization
framework. This architecture will be used to provide streaming analytics in the field of software engineering
[18].

In our project we will mostly focus on providing the streaming processor functionality for the CodeFeedr
research. Moreover, we will develop an architecture in which a user can easily create a stream processing job
in the context of CodeFeedr.

1.2. Problem Definition
Streaming systems are designed to perform continuous queries on data streams within a small period of time
from receiving the data. Consider a temperature sensor, which sends its temperature every millisecond. A
streaming system could query the data and send an alert when the temperature gets below a certain point.
This process is called a streaming job.

Powerful streaming frameworks like Apache Flink [6], Apache Spark [8] and Apache Storm [9] already exist.
However, while these frameworks are powerful in processing streams they lack the ability to pipeline multiple
streaming jobs. Pipelining means that the output of one streaming job is used as input for other streaming
jobs. These frameworks do not allow multicasting, only one output sink can be defined per streaming job. In
the temperature sensor example the data gets discarded after the alert is sent, but it might be useful to process
the output data with a different query. To pipeline streaming jobs efficiently, a message broker like Apache
Kafka [7] is necessary. A message broker works as data queue in between multiple jobs and also enables
multicasting. One streaming job can write to the queue and multiple other jobs can read from it. However,
the use of a message broker will require the user to know how to work with different platforms and integrate
all of them. It also results in a lot of boilerplate code and will cost a lot of time which can be better spent on
writing actual streaming jobs.

Most streaming frameworks lack functionality to connect with data sources or sinks which are useful in the
CodeFeedr context. For instance, Flink offers no functionality to connect with data stores like mongoDB.
Using these stores is necessary in a situation where it is needed to (re-)process historical data. In addition,

1

1.3. Requirements 2

the CodeFeedr research is meant to develop streaming analytics tools in the field of software engineering. For
that purpose, having connectors to API’s like the GitHub API and TravisCI API is useful.

Whereas most streaming frameworks offer many ways to run the streaming job in a clustered setup actual
configuration files or scripts are not available. Additionally, their documentation is often focused on running
one streaming job instead of a pipeline of jobs. This means that developers, once again, lose a lot of time
writing boilerplate configuration files for their orchestration.

The problems defined above can be split in roughly 3 sub-problems: pipelining streaming jobs, additional
connectors and orchestration tools. Solving these will result in a powerful development kit in which develop-
ers can:

1. Easily write and pipeline streaming jobs

2. Use additional (data) connectors

3. Run jobs in a clustered fashion in only a few steps

1.3. Requirements
In this section we will elaborate on the requirements of our product. Using the MoSCoW method we specified
and prioritized a set of requirements. In the MoSCoW method there are four levels of priority: must haves,
should haves, could haves and won’t haves. The must haves contain the requirements that make up the
absolute bare minimum that is needed for a product to be functional. Then there are the should haves, which
consists of the requirements that are still important, but which without there would still be a working product.
Could haves are non-essential requirements which should only be implemented in case extra time is available
after implementing the should haves and must haves. There are no explicit won’t haves for this project.

• Must Haves

– The product must support pipelining multiple Flink jobs: use the output of one Flink job as input
for multiple other Flink jobs.

– The product must be easily extensible with plugins, which provide streaming jobs related to a
context.

– The product must include a plugin which allows (re-)processing of historical data.

– The product must include orchestration tools to deploy pipelines on a cluster.

– The product must be implemented in Scala.

– The product must be easily maintained and extended by other developers.

• Should Haves

– The product should have a knowledge base or guide.

– The product should have an example project that contains the right build files and a streaming
job that is ready to be deployed on a cluster.

– The product should have a GitHub plugin which streams data using the GitHub API.

– The product should have a Travis plugin that makes it possible to get builds from the TravisCI API.

– The product should have API key management to allow users to use API keys in a distributed
environment.

– The product should be easy to use by the end user.

• Could Haves

– The product could have a Twitter plugin which streams Twitter statuses.

– The product could have plugins to support simple data sources.

1.3. Requirements 3

– The product could have schema exposure to expose the data type(s) of a streaming job to an ex-
ternal service.

There are only a few requirements given by the client related to the use of existing technologies. First of all, we
need to use the Apache Flink [6] streaming platform. Mainly because this is also used by other contributors
of the CodeFeedr project. Inherent to the use of Flink, we will be working with Scala. Flink is both written in
Java and Scala but we have chosen Scala. This is because Java code is quite verbose and we wanted to focus
on less boilerplate code.

2
Design

In this chapter we will elaborate on the design of the product. Based on the requirements, the design is split
into two parts. First, a core framework which is a single Scala library that implements the pipelining system.
It also includes utilities like API key management. Secondly, we worked on a set of plugins. A plugin is a
simple library that relies on the core framework. Each plugin provides streaming jobs and data connectors
related to a certain context.

2.1. Core framework

2.1.1. Pipeline

We define a pipeline as a directed acyclic graph in which a node is a Flink job and edges are queues in a
message broker. The nodes in these pipelines are called stages and the edges are named buffers. The purpose
of this pipeline is to flow data from one stage to another using the buffers.

We distinct three type of stages, each one having different interactions with a buffer. All the stages execute a
Flink streaming job using the DataStream API1.

1. Input stage: does not read from a buffer, but writes to one.

2. Transform stage: reads from one or more buffers and also writes to one.

3. Output stage: reads from one or more buffers but does not write to any.

A simple pipeline is shown in Figure 2.1.

Figure 2.1: A visualization of a simple pipeline consisting of an Input Stage, two Transform Stages and an Output Stage.

Data that is written or read from a buffer needs a type. This means that if a stage is created, the input and
output type of that stage should be defined. Only input stages do not have an input type and output stages do
not have an output type because they do not interact with a buffer. Besides, for each stage a Flink streaming
job is specified. This is a transformation of the input type to the output type using operations of the Flink

1https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/datastream_api.html

4

https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/datastream_api.html

2.1. Core framework 5

DataStream API. See 2.2 for a code example of an input stage. To view code examples of all the different
stages see Appendix E.1.

case class SimpleData(str: String)

class SimpleInputStage() extends InputStage[SimpleData]() {

override def main(): DataStream[String] = {
environment
.fromCollection(Seq(SimpleData("Simple"), SimpleData("data"), SimpleData("set")))

}
}

Figure 2.2: Simple input stage.

When talking about pipelines, there are two distinct views. First, the view of the data flow where an elements
comes in from a source (for example an RSS feed, a file or a REST endpoint) and exits the pipeline at a sink
(for example Elastic Search or a console). Secondly, the view of the underlying setup of the software and the
communication between the services. Even though each stage has a buffer to another stage, all those buffers
exist on a message broker. Each stage runs in Flink and communicates with the message broker. See Figure
2.3.

Flink

Input Stage Transform
Stage

Transform
Stage Output Stage

Message Broker

Buffer 1 Buffer 2 Buffer 3

Figure 2.3: A visualization of the same pipeline as in figure 2.1, but now as a system. Dashed arrows represent data being written to the
buffer and the solid arrows represent data being read from the buffer.

2.1.2. Buffers

A buffer is a short-term storage that can be written to and read from by stages. A buffer implementation has
to meet some requirements to work. To enable multicasting the buffer should allow multiple subscribers to
read the contents of the buffer independently. To maintain the guarantees that Flink gives, the buffer system
should also be low latency, fault tolerant and scalable. If there is no Flink source and sink available it needs to
be implemented.

Internally, the Flink source and sink of a buffer are wrapped around the Flink streaming job defined in a stage.
Currently there are two buffer implementations: Apache Kafka [7] and RabbitMQ [3]. A pipeline can only be
configured to use one buffer implementation. Figure 2.4 shows how each stage interacts with a (Kafka) buffer
implementation. For example the TransformStage reads from a Kafka source, executes a Flink job and then
writes to a Kafka sink.

Data inside a buffer is stored in binary format. This means that the data needs to be (de)serialized after
reading or before writing. Depending on the application different types of serialization might be preferred. If
the buffer will be read by external software, a JSON format might be favored over a highly-optimized binary
representation. The core framework supports a set of configurable serializers. These include JSON, Kryo
and BSON. JSON is a human-readable format but serialization is slow. Kryo has the best compression and

2.1. Core framework 6

Figure 2.4: Interactions of stages with (Kafka) buffer.

performance but provides poor readability. BSON is in between those two, it is faster than JSON but less
readable. Only one type of serialization can be configured per pipeline.

Buffers are essentially stand-alone message brokers which make the pipelines powerful. Buffers scale and in
combination with Flinks scaling features2 the whole pipeline is scalable. Additionally, if a stage crashes no
data is lost. Stages that generate input for a crashed stage still continue to do so by just writing to the buffer.
Data that was already processed by the crashed stage is either written to a buffer or a different output. Data
still in memory at the moment of the crash can be restored by Flinks checkpointing mechanism 3. If a crashed
stage is restarted it will proceed processing where it left off and no data is missed.

2.1.3. Pipeline builder

A pipeline is created using the pipeline builder. This builder ensures pipelines to be immutable and assures
there are no synchronization issues between Flink jobs and stages. Besides creating the pipeline, the builder
is also used to configure properties of the pipeline. These properties are for example the serializer or buffer
type. The easiest pipeline is a sequential one, with no joins or splits in the graph. A code example of building
such a sequential pipeline can be seen in figure 2.5. To create a more complex pipeline, edges can be added
from one stage to another. Any graph can be created this way as long as it is acyclic. The builder disallows
adding edges that cause because this would allow the stream size to increase infinitely. A code example of
building such a pipeline can be seen in figure 2.6.

new PipelineBuilder()
.append(new SimpleInputStage)
.append(new SimpleTransformStage)
.append(new SimpleOutputStage)
.build()

Figure 2.5: Simple pipeline. To view the complete code example see Appendix E.2.1

val inputStage = new SimpleInputStage
val outputStage = new SimpleOutputStage
val transformStage = new SimpleTransformStage
val otherTransformStage = new SimpleOtherTransformStage

new PipelineBuilder()
.edge(inputStage, transformStage)
.edge(inputStage, otherTransformStage)
.edge(transformStage, outputStage)
.edge(otherTransformStage, outputStage)
.build()

Figure 2.6: Complex pipeline. To view the complete code example see Appendix E.2.2

2https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/parallel.html
3https://ci.apache.org/projects/flink/flink-docs-release-1.5/dev/stream/state/checkpointing.html

2.2. Plugins 7

A pipeline can be started in three modes: mock, local and clustered. The mode is specified as argument
when running an application with a built pipeline. In mock mode each stage in the pipeline is linked without
buffers in between. This is mainly for testing purposes and only supports sequential pipelines. In local mode
all stages are started on the same thread in one Flink execution environment. In clustered mode, only one
stage will be started. Although stages rely on each other in terms of data flow, they can all be run as stand-
alone Flink jobs because of the (stand-alone) buffers in between. Therefore, this mode allows to add, remove
or modify stages already running in a pipeline. When running in clustered mode, the stage id needs to be
specified.

2.1.4. Utilities

The core framework also provides utilities which can be used by stages in a pipeline. These utilities include
key management and schema exposure.

Key Manager When retrieving data via an API a rate limit is almost always used by the provider to prevent
abuse. This means the client can only do a certain amount of calls in a certain time. Usually they require
a key to be sent with each request so that they can identify who is making the request and check if they are
allowed to make the call. In a streaming setup it might be necessary to do more calls than the rate limit of one
key provides. In that situation, multiple keys needs to be shared and managed in a distributed environment.
This requires a centralized store accessible by all the stages. We provide key managers which can either store
in Redis or in mongoDB. Only one type of key manager can be defined per pipeline and each stage has access
to this manager.

Schema Exposure By default no centralized information is available for the datatypes in the buffers. This
means that, apart from stages that read and write to that particular buffer, no one knows what type of data is
stored there. Therefore, a schema exposer can be configured for a pipeline. This exposer sends the data type
in the form of an Avro schema to a centralized store. This allows external parties to easily identify the types of
data per buffer. The schema exposer can either be configured to expose to Redis or Zookeeper.

2.2. Plugins
A plugin is a library which relies on the core framework and contains stages related to a certain context.
Plugins have individual dependencies and are kept out of core to lower the amount of bloat for simple appli-
cations.

An example of a plugin could be a news plugin which gets a stream of all news articles from a website. A stage
in the news plugin could retrieve those articles to turn it into a Flink stream. A second stage reads from those
articles and summarizes the content. A third stage also reads from those articles and filters on the popular
ones. These stages could be used separately or connected to create a pipeline. Custom stages can be put in
between as well, giving high flexibility.

In Chapter 3 a more detailed description of the plugins is given.

3
Final product

According to our design the product consists of two separate parts: the core, and the plugins. This chapter
will elaborate on the final design of those two parts as well as the way we documented and tested them. It
will also explain the orchestration tools created for running pipelines on a remote computer or cluster of
computers.

3.1. Core
The core framework is mostly in line with the design that was created beforehand. Some small things were im-
proved or changed throughout the project, such as configurability and the serialization options. In Appendix
F we describe some of the issues we have faced when implementing our design and ideas.

It appeared to be easy to add a new buffer into the core framework, as we did with RabbitMQ. It was just as
easy to add new serializers, as both BSON and Kryo were added in the later stages of the project.

3.2. Plugins
We have implemented a large group of plugins for the core framework, differing in complexity and context.
These plugins can directly be used by an application or be used as demonstration. In the subsection below
each plugin will be discussed briefly.

3.2.1. RSS and weblogs

The first two plugins that were created are proof of concepts. RSS polls from a feed and filters duplicates and
then turns that into a stream. The weblogs plugin consists of a basic Flink job that turns a log into a finite
stream. They were made to demonstrate how plugins fit into the framework.

3.2.2. MongoDB

MongoDB is a persistent document store. The plugin provides an input and output stage to write stream
elements to a collection and to create a stream filled with elements from a collection. It automatically prop-
agates stream event time by writing it to a special document key. It also supports streaming with a filter or
starting from a certain time. The plugin also adds support for using mongoDB as key manager. It uses a single
document per key and automatically updates keys of a target when a new key is requested.

8

3.3. Orchestration 9

3.2.3. ElasticSearch

The ElasticSearch plugin provides a simple output stage that wraps the ElasticSearchSink provided by the
Flink project. It adds a default server at localhost for the simplest cases. It simply serializes an input stream
element to JSON and sends it to an Elastic Search index.

3.2.4. GitHub

The GitHub plugin provides streaming jobs around the GitHub Events API 1. The ’main’ stage in this plugin
creates a real-time stream of GitHub events. The other stages revolve around this event stream by doing
some basic filtering. For example, one stage is able to transform an event stream into a stream of only push
events.

3.2.5. TravisCI

The Travis plugin makes it possible to get a stream of builds on TravisCI from a stream of push events from
Github. The Travis plugin includes two transformation stages. One that filters push events to only keep the
ones that are from repositories that are active on Travis. The other stage takes these push events and requests
the build information from Travis.

3.2.6. Twitter

The Twitter plugin provides some simple input stages for the Twitter API2. This plugin makes use of an exter-
nal library, twitter4s3, which handles all the connections with the Twitter API. The first input stage streams
twitter statuses based on a set of filters. These filters include locations, keywords, languages and specific
users. Another input stage streams twitter statuses based on the current trending topics. It refreshes the
trending topics after a configurable time.

3.3. Orchestration
The pipelines created by our framework should easily be deployed on remote servers or even clusters. To
support this, we created a sample configuration for Docker. This configuration consists of all services nec-
essary to run a whole pipeline. This includes Flink, a message broker and optional services like mongoDB.
A single Docker command deploys all those services and makes it ready to use. The use of Docker allows for
easy scaling of all the separate services.

To start a pipeline, every stage needs to run as a Flink job. Therefore, we created a simple Python script
which manages and deploys pipelines on a cluster. To use this script, the user has to assemble its pipeline
application to a .jar file (a sample application can be found in Appendix E.2.1). Using this jar the script is
able to start, stop and scale pipelines or stages. Furthermore, it can also give an overview of already running
pipelines.

To make it easy to use both our core framework and plugins we created a project template4. This template
allows a user to create their own pipeline with their preferred plugins. The template also includes the orches-
tration tools to run the created pipeline on a cluster. Using the default Scala build tools this template project
can be generated.

With the help of the template it is possible to create and deploy a pipeline using the following steps:

1. Generate project from template

2. Import plugins (optional)

3. Create custom stages (optional)

1https://developer.github.com/v3/activity/events/
2https://developer.twitter.com/en/docs.html
3https://github.com/DanielaSfregola/twitter4s
4https://github.com/Jorisq/bep_codefeedr-project.g8

https://developer.github.com/v3/activity/events/
https://github.com/Jorisq/bep_codefeedr-project.g8

3.4. Testing 10

4. Create pipeline

5. Assemble project into .jar

6. Setup cluster using provided Docker configuration

7. Deploy pipeline using provided Python script

3.4. Testing
Testing is vital for creating a reliable and maintainable software product. Naturally, we unit tested almost all
our code. Furthermore, we also added integration tests for most parts of the software.

Pipelines were tested using integration tests, but due to the use of buffers there was a lot of overhead in run-
ning these tests. This additional overhead is not necessary if the pipeline in question is a sequential pipeline.
Therefore we added a mock run mode that does not add buffers in between stages, but instead just connects
all stages directly to each other. This improved the speed of the integration tests.

Input stages usually make use of external dependencies, for instance a GitHubEventsInput stage reads events
from the GitHub API. When testing, external dependencies are undesired because the result of the test would
not be deterministic. Besides, a test could fail because a request timed out. To solve this, we mocked the
external dependencies in our test setup. This both improved the speed as well as the consistency of the
test. However, the pitfall of this method is that the mocked responses should correctly correspond to all the
potential responses of the external dependency.

Streaming jobs are normally not meant to run for a short amount of time. In essence, streaming jobs are
unbounded and run forever. For this reason there is not really a clean way to gracefully stop Flink jobs. In
a testing scenario this is disadvantageous. Therefore, we created some testing utils to force a streaming job
shutdown and collecting the results.

3.4.1. Continuous Integration

To improve and standardize our work-flow we use the continuous integration system Travis CI. This auto-
matically builds and runs the tests every time a new update is pushed to a code branch. We used pull-based
development and these builds made it possible to add extra constraints to a pull request to be able to merge.
The pull request had to be reviewed by at least on team member and the build had to pass in the TravisCI
environment.

3.4.2. Coverage Tracking

Using the automated building and testing from Travis CI we also added automated test coverage for pull
requests. This allowed us to check if the changes that were made in the branch were thoroughly tested. This
allowed us to add the constraint that a pull request can only be merged when to overall test coverage is at
most 1% lower than originally. Furthermore, per pull request it gave a coverage report of the changes in that
branch. After creating coverage for the initial project, we never got below 94% line coverage, according to
Coveralls.

3.5. Documentation
Documentation is an important step to make a framework accessible for new users. It is generally the first
thing to read. We decided to use the documentation to both describe how the framework works and how it
can be used. That also includes information on each plugin.

The documentation was first written on the GitHub wiki but a special documentation service was found that
gave nicer documentation. It also offered an option to put the documentation within the repository, putting it
in alignment with the changes being made in the actual code. It can now be found on https://codefeedr.
readthedocs.io. In Figure 3.1 a screenshot of the documentation is shown.

https://codefeedr.readthedocs.io
https://codefeedr.readthedocs.io

3.5. Documentation 11

On top of the documentation we also supplied Scaladoc comments to all public interfaces. This is ideal for
looking up functions and works great in combination with an integrated development environment.

Figure 3.1: A screenshot of one of the pages of the Codefeedr documentation website.

4
Evaluation

This chapter will be used to evaluate the different aspects of the entire project. This includes the final prod-
uct, the software and management process and the ethical implications. At the end of the chapter some
recommendations are made about how the client can follow up on this project.

4.1. Product
With the examples in Appendix E.3 and the tests we have written we have shown that is is now very easy
to write a more complex stream processor with just a few lines of code. It is now possible to attach multiple
streaming jobs to each other and pipeline events with ease. The project has a set of plugins implemented with
interesting data sources and has support for reading and writing to a long term storage, usable for historical
data, testing, and creating data copies. Lastly, tools have been provided to run a pipeline on a cluster or
powerful computer.

All of the functional requirements as stated in Chapter 1 have been implemented in the final product. The first
prototype already consisted of most ’must-haves’. We tried to rapidly implement most of the requirements
still keeping the quality in mind. Therefore, we had more time for optimization in the end.

It is hard to measure if we met the non-functional requirements like documentation and ease-of-use. How-
ever, we tried to be critical and set standards. Besides, we discussed these requirements also with our client
who gave feedback on them throughout the project. This helped us to judge if, for instance, our code was
indeed maintainable and sufficiently documented.

We have implemented a couple of plugins that were not set in the requirements, such as Apache httpd log
parsing and ElasticSearch. These implementations were mainly as a proof-of-concept for the plugin sys-
tem.

4.2. Process
The client gave us quite some freedom in decision making. This allowed us to have a lot of influence in the
final design of the product. We did not have major development struggles nor did we have issues within the
team. We enjoyed working together and were motivated to make this project a success.

We had regular contact with our client, which included a meeting every two weeks and contact on Slack or
GitHub as necessary. In those meetings we showed our progress, discussed issues and exchanged feedback.
With our supervisor we had two official meetings, one at the beginning of the project and one midterm meet-
ing. In the first meeting we discussed the project and he explained some requirements. At the midterm
meeting, we demoed our product and got some feedback. Additionally, the supervisor gave feedback on the
report a few times.

12

4.3. Ethical Implications 13

4.2.1. SCRUM

During our project we made use of the SCRUM methodology to have an agile framework for managing our
work. We always worked together at the university so there was little communication overhead. Therefore, it
was easy to have daily SCRUM meetings and tackle issues instantly. We set our sprint length to one week and
evaluated this every Monday. With the help of GitHub projects we organized the tasks and assigned them in
a SCRUM board. We also used this to set our milestones according to our planning. We did not have specific
roles in our team. Everyone took a fair share in writing code, documentation, tests and the report.

We made extensive use of the issues system of GitHub. We created some useful labels to categorize our issues
according to priority, feature and type. Each time we came across a bug, a new feature, an improvement or
just a simple note we created a new issue and assigned it to one of us. We integrated this with our SCRUM
board, so that we could work on it in the current or a next sprint. This was a perfect way to keep track of all
our tasks, but also to keep the client informed about our current progress. Regularly, the client commented
on one of the issues to give some feedback.

To ensure the quality of the code we used pull-request driven development. Each feature, improvement or
bug fix was implemented on a separate branch. Build and coverage checks had to pass before this could be
merged. Besides, we used a simple checklist to ensure the branch was properly documented. Using pull-
requests is in line with the SCRUM paradigm, because at all times there is a working product on the master
branch. Each pull-request improves this product.

4.2.2. Planning

Beforehand we made a rough planing in the form of a roadmap. This helped us plan our sprints and set our
milestones. This roadmap can be found in Appendix C.

In the first two weeks we worked on the research and designed the core framework prototype. In the two
weeks after we completely fleshed out the framework, spending a lot of hours on making it work as fast as
possible so we had a working product to show at our midterm meeting with our supervisor in week 5. This
goal was achieved and gave us some flexibility in the last weeks of the project.

This also meant that we ended up having more time than we needed to implement all the features we wanted.
The core framework was mostly done in week five, together with some basic plugins. The orchestration was
finished in a couple of days. The real time-saver was in the historic data: we planned two weeks for this as
it was a very important requirement but it ended up being just an input and output stage. This only took
three man-days, allowing us to focus more on fine-tuning details of the code and improving documenta-
tion. We ended up having enough time to focus on the report, fix small issues and work out some improve-
ments.

4.3. Ethical Implications
The essence of the project is a development kit that provides tools that make it easier to do more complex
stream processing. From this system itself, no ethical issues arise. However, stream processing systems can
be used for processing immense amount of data. As with other fields within big data, the ethical implications
depend on what kind of data is being used as well as what kind of information is being extracted from this
data. When processing data from sensors of the machines in a factory to monitor performance the ethical
considerations are not as important as when processing sensitive user data. An example of this is Cambridge
Analytica, they collected the Facebook profiles of 50 million Americans without permission to create targeted
political advertisements[1]. So the ethical implications depend mainly on what the end user will use the
framework for. Research has been done into how ethical theories can be applied to big data processing[21]. If
a user is in doubt about whether or not the data processing that they are doing is considered ethically wrong,
they can use these theories to verify this.

It is however important to distinct that this project created a framework and does not provide any tools for
mining non-public data. For example, GitHub data is already free to access, and the parts that are not (private
repositories) can’t be accessed with the GitHub API used. The only possible sensitive information that can
be collected from this API are email addresses from the authors of commits. These addresses are already

4.4. Recommendations 14

publicly available on the website of Github, but this plugin would allow users to mine the email addresses of
all developers that commit to public repositories. In theory we could remove this field from the data that is
received from Github, but this would not help that much because the framework is open source. Anyone who
really wants to collect the email addresses could just fork the project and change the code. The same holds
for the other plugins.

So in short, the framework enables the user to process large amounts of data, but it has no control over what
data is being processed or how it is processed. Therefore the user has the responsibility to think about the
ethical consequences of the way they use the framework.

4.4. Recommendations
All requirements that were set at the beginning of the project are implemented. However, there are still rec-
ommendations we can make with regard to this product as well as the CodeFeedr research.

The project could use some fault tolerance testing and bench marking. We mainly focused on creating the
framework and not explicitly on performance. On top of that, long term testing would be useful; does a
pipeline survive for a month of normal production traffic?

We suggest two improvements for the core framework: making external buffers possible, and make the schema
expose format configurable. Now the buffers are all have to be implemented inside the core, but ideally they
could be in their own plugins. Schema exposure is currently always using Avro schemas. Making this con-
figurable to allow the use of, for example, JSON schemas, would be a useful addition. Additionally, we rec-
ommend to extend the current plugins and create new ones as well. We implemented a few plugins, mainly
to show the capabilities of the framework. These plugins could use some fine tuning and additions to make
them more powerful.

The orchestration tools of CodeFeedr could use an interactive web interface, allowing management of a
pipeline, with visual information such as the stages and their connections. This could be a great improve-
ment on the barebones script tool. Adding Kafka configuration and other tools could be helpful as well. This
would be perfect for a student project. The CodeFeedr research talks about a REPL system on top of the
system we have created. We think there are a few difficulties into creating such a system, especially when
attempting to generate, compile and assembly Scala code on the fly. Creating a useful, helpful interface is
also never easy. This on itself could be another project.

A
Project Description

Currently, frameworks like Apache Flink and Kafka are capable of high-performance data streaming. How-
ever, these framework have a lot of overhead in setting up and adding new streaming queries takes a lot of
time. These frameworks also have some limitations in combining real-time data with historical data and
doing aggregations on streams from multiple sources.

In the context of CodeFeedr, the goal of the proposed project is to create a simple plug-in infrastructure on
top of Apache Flink and Kafka, that removes this overhead and makes it possible to combine real-time and
historical data as well as the aggregation of multiple data sources. This includes making some abstraction
for well-known sources like GitHub, TravisCI and Twitter. This way the user can spend its efforts on actually
writing streaming queries instead setting up environments, input sources and output.

Some use cases might be:

1. Plot the amount of issues opened per hour for your whole (GitHub) organization in real time.

2. Plot the files that are frequently updated the last week within a repository.

3. Output the user which opened the most pull request last month.

4. Plot the average time between the opening and closing of an issue.

15

B
Research report

In our initial research phase we tried to answer a set of questions to help us find what problem we are trying
to solve, what is possible, what isn’t, and what we should look out for when designing our product. These
questions are based off the project description and first talk with the client.

1. What is the problem we are trying to solve?

2. Are there any existing solutions, and if so, how do they work?

3. What are best practices and guides on making a good framework?

4. How does the streaming ecosystem look; are there systems similair to Flink and Kafka?

5. What services exist that can be used for solutions with our project?

6. How can a set of software be managed on a (set of) remote server(s)?

B.1. Problem Statement

B.1.1. Problem Context

In 2016 the CodeFeedr research was founded by our client, Dr. Georgios Gousios. In the original vision [18],
this research project is described as "a novel software analytics infrastructure supporting for a combination
of three requirements to serve software practitioners in utilizing data-driven decision making". Those three
requirements, as defined in [18], are (1) giving real-time insight, (2) offering a query model, and (3) providing
data summarization. On the website of CodeFeedr [20] this vision is made more explicit. It describes an
architecture in which (real-time) data streams are first processed by a stream processor like Apache Flink [6] to
store in a data silo like mongoDB. These streams are then processed by a query engine being able to combine
both historical and real-time data. The result of the query is then used to serve a real-time summarization
framework. This architecture will be used to provide streaming analytics in the field of software engineering
[18].

In our project we will mostly focus on providing the streaming processor functionality for the CodeFeedr
research. Moreover, we will develop an architecture in which a user can easily create a stream processing job
in the context of CodeFeedr.

B.1.2. Problem Definition

Streaming systems are designed to perform continuous queries on data streams within a small period of time
from receiving the data. Consider a temperature sensor, which sends its temperature every millisecond. A
streaming system could query the data and send an alert when the temperature gets below a certain point.
This process is called a streaming job.

16

B.1. Problem Statement 17

Powerful streaming frameworks like Apache Flink [6], Apache Spark [8] and Apache Storm [9] already exist.
However, while these frameworks are powerful in processing streams they lack the ability to pipeline multiple
streaming jobs. Pipelining means that the output of one streaming job is used as input for other streaming
jobs. These frameworks do not allow multicasting, only one output sink can be defined per streaming job. In
the temperature sensor example the data gets discarded after the alert is sent, but it might be useful to process
the output data with a different query. To pipeline streaming jobs efficiently, a message broker like Apache
Kafka [7] is necessary. A message broker works as data queue in between multiple jobs and also enables
multicasting. One streaming job can write to the queue and multiple other jobs can read from it. However,
the use of a message broker will require the user to know how to work with different platforms and integrate
all of them. It also results in a lot of boilerplate code and will cost a lot of time which can be better spent on
writing actual streaming jobs.

Most streaming frameworks lack functionality to connect with data sources or sinks which are useful in the
CodeFeedr context. For instance, Flink offers no functionality to connect with data stores like mongoDB.
Using these stores is necessary in a situation where it is needed to (re-)process historical data. In addition,
the CodeFeedr research is meant to develop streaming analytics tools in the field of software engineering. For
that purpose, having connectors to API’s like the GitHub API and TravisCI API is useful.

Whereas most streaming frameworks offer many ways to run the streaming job in a clustered setup actual
configuration files or scripts are not available. Additionally, their documentation is often focused on running
one streaming job instead of a pipeline of jobs. This means that developers, once again, lose a lot of time
writing boilerplate configuration files for their orchestration.

The problems defined above can be split in roughly 3 sub-problems: pipelining streaming jobs, additional
connectors and orchestration tools. Solving these will result in a powerful development kit in which develop-
ers can:

1. Easily write and pipeline streaming jobs

2. Use additional (data) connectors

3. Run jobs in a clustered fashion in only a few steps

B.1.3. Requirements

In this section we will elaborate on the requirements of our product. Using the MoSCoW method we specified
and prioritized a set of requirements. In the MoSCoW method there are four levels of priority: must haves,
should haves, could haves and won’t haves. The must haves contain the requirements that make up the
absolute bare minimum that is needed for a product to be functional. Then there are the should haves, which
consists of the requirements that are still important, but which without there would still be a working product.
Could haves are non-essential requirements which should only be implemented in case extra time is available
after implementing the should haves and must haves. There are no explicit won’t haves for this project.

• Must Haves

– The product must support pipelining multiple Flink jobs: use the output of one Flink job as input
for multiple other Flink jobs.

– The product must be easily extensible with plugins, which provide streaming jobs related to a
context.

– The product must include a plugin which allows (re-)processing of historical data.

– The product must include orchestration tools to deploy pipelines on a cluster.

– The product must be implemented in Scala.

– The product must be easily maintained and extended by other developers.

• Should Haves

– The product should have a knowledge base or guide.

B.1. Problem Statement 18

– The product should have an example project that contains the right build files and a streaming
job that is ready to be deployed on a cluster.

– The product should have a GitHub plugin which streams data using the GitHub API.

– The product should have a Travis plugin that makes it possible to get builds from the TravisCI API.

– The product should have API key management to allow users to use API keys in a distributed
environment.

– The product should be easy to use by the end user.

• Could Haves

– The product could have a Twitter plugin which streams Twitter statuses.

– The product could have plugins to support simple data sources.

– The product could have schema exposure to expose the data type(s) of a streaming job to an ex-
ternal service.

There are only a few requirements given by the client related to the use of existing technologies. First of all, we
need to use the Apache Flink [6] streaming platform. Mainly because this is also used by other contributors
of the CodeFeedr project. Inherent to the use of Flink, we will be working with Scala. Flink is both written in
Java and Scala but we have chosen Scala. This is because Java code is quite verbose and we wanted to focus
on less boilerplate code.

B.1.4. Scala

The Scala programming language allows for many constructs, including any known for the Java ecosystem,
but also from functional programming. Scala also allows the creation of new operators and has a lot of syn-
tactic sugar to give way to new notations of intent [19].

The trait system of Scala allows for maximum code reuse. Interfaces can be defined as traits to make them
re-implementable by the user of the framework. When subclassing is allowed, custom behaviour is possible.
After all, not everything can be thought of when building such framework. Scala also implements type alias-
ing. This is very useful for giving new names to types of external packages. The user of the framework would
not need to import those external packages anymore, or even know what package the type originated from
[26].

On top of all of this, Scala allows various ways to give information to the type checker, eliminating the need
to ever use a non-specific type. These techniques include its generics, traits, case classes and implicits
[27].

B.1.5. Documentation

The framework will be used by other developers, therefore it needs proper documentation. Both to inform
the users about its usage, and to help new and existing developers to understand the internals of the system.
For the former, a quick start guide and code examples are very helpful. For both an API documentation is very
useful as well. For the latter, design documents come in handy, especially if it documents the choices made
to come to the current design [14].

On top of documentation that can be written separately from the code, Scala had API documentation support
using Scaladoc. The Scala developers describe an exhausting style guide at [28]. Scaladoc also supports
writing extra formatted pieces of text with packages, making it possible to put nearly all documentation inside
the code. This has as big advantage that there is a single source of truth, and only a single documentation
generator (in this case Scaladoc).

B.1.6. Testing

The programming language for this project, Scala, has an excellent testing framework named ScalaTest. It
has eight different test styles to choose from, fitting any project and team [11]. It even allows testing of pri-

B.2. Stream Processing 19

vate methods [12]. ScalaTest is an extendable system. New testing systems can be added on top of the core
elements of ScalaTest to fulfill special testing requirements. This might be useful when working with way
streams work. ScalaTest also has integration with many development tools and Scala related systems. There
does not seem to be any other usable testing framework for Scala.

Automated builds and testing using TravisCI is ideal: it detects when builds start to break and can also auto-
matically create artifacts such as test reports, coverage reports and product files. It can also give feedback on
the tests during all stages of the product lifetime and code life-cycle.

Code coverage analysis tools detect the code that is run when running all tests, computing what code is tested
and what code is not. It is not a complete analysis but it is close. For Scala a single coverage library exists,
named scoverage. It is a plugin for the Scala compiler. It has integration into TravisCI and coverage visualizers
as well.

B.2. Stream Processing
The project will mostly revolve around a stream processor. As described in [29], stream processing is getting
more and more popular these days, because processing big volumes of data on itself is not enough. Data
has to be processed fast, so that decisions can be made in near real-time. A stream processor analyzes real-
time data making use of continuous queries. Stream processing frameworks are often designed to handle
big volumes of data, be scalable, fault tolerant and highly available [29]. As required by our client, we will
be using Apache Flink [6] as stream processing framework. In Section B.2.1 the features of Apache Flink will
be discussed briefly. In Section B.2.2 some alternative stream processing frameworks are mentioned and we
discuss the reasons why these are less optimal for this project.

B.2.1. Apache Flink

Apache Flink[13] is an open-source large-scale streaming analytics platform. It offers functionality of pro-
cessing both streams and batches, which is necessary if we want to support historical (batch) data. Flink is
also scalable, because it runs on clusters. If more processing power is needed, it is always possible to add new
computers to the cluster. It also has an easy to use programming interface in both Scala and Java using the
functional programming paradigm. Lastly, Flink is part of the open-source data processing ecosystem. This
allows easy integration with frameworks like Apache Kafka [7]. More information and detailed descriptions
of Flink features can be found on their project website 1.

B.2.2. Alternatives

There are also other popular streaming frameworks like Spark Streaming [8] and Apache Storm [9], but these
are not as powerful as Flink or have other disadvantages. For instance, Spark Streaming provides a high-
throughput using micro-batches, which comes at cost of introducing high latency. However, Storm provides
low latency but does not offer high-throughput, and does not support restoring state after failures [17]. In
Figure B.1 a visualization of this comparison is made showing the capabilities of the three frameworks.

Whereas the other stream processors only give a exactly-once guarantee, Flink is able to offer both exactly-
once and at-least-once guarantees. These guarantees can be given because it makes use of a checkpoint and
replay mechanism [16].

B.3. Message Brokers
In order to combine multiple streaming jobs the framework should support that output of stream jobs can be
used by multiple other stream processing jobs as input. To implement this in a scalable manner, a distributed
message broker is necessary. A message broker can be used to decouple two stream processing jobs by using
a publish-subscribe pattern. The first stream job can just publish its output without needing to know who or
how many are going to read it and subsequent jobs in the pipeline can subscribe to the output and the mes-
sage broker will forward messages to all subscribers. It is not necessary for use to stick to one message broker,

1http://flink.apache.org/features.html

B.3. Message Brokers 20

Figure B.1: A visualization of Flink compared to Spark and Storm as given in [17].

since we can design our framework in such a way that the broker between streaming jobs is configurable.
However, the rest of this section will focus on two popular message brokers; Kafka and RabbitMQ [30].

B.3.1. Kafka

There are several reasons why Kafka is a good choice for our project. Flink has built-in support for Kafka, so
that makes it less work to implement them together. Its messaging system has very little overhead which re-
sults in a very high througput compared to its competitors [25]. Kafka also stores the records in a fault-tolerant
way, so even in the event of a crash no messages are lost. Lastly it both supports exactly once guarantees and
transactional messaging. These last three points make it possible for us to offer the exactly once guarantee
throughout the whole pipeline.

Kafka has two APIs that are useful for our framework. The Producer API and the Consumer API. In figure B.2
you can see these APIs visualized.

Figure B.2: A visualization of the Kafka APIs[7].

We want to use Kafka as a buffer in between streaming jobs. The first streaming job in the pipeline will get a

B.4. Serialization 21

stream from a certain source (e.g. Github, Travis, etc) and use the Producer API to push the stream to a Kafka
topic. Subsequent jobs will use both the Producer API and the Consumer API to pull from a certain topic and
then push to a new topic and the last object will only consume a stream and output to a log or some other
external output.

Doing this enables the user to reuse the output of a streaming job for multiple other streaming jobs. This is
even possible for streaming jobs that were already running or jobs that haven’t even started yet.

Another reason to choose for Kafka is that it is scalable. We want our framework to be scalable, so if the
messaging system in between two streaming jobs would not be scalable than that would become a bottleneck
for the rest of the pipeline. This would mean that the entire framework would not be scalable anymore.

B.3.2. RabbitMQ

RabbitMQ is a more matured message broker compared to Kafka. It is a generic message broker with ’queues’,
as opposed to the ’topics’ in Kafka [3]. It has connectors for many languages so integration with other software
is quite easy.

RabbitMQ has built in support for high availability and is easier to set up than Apache Kafka together with
Zookeeper. It has built in mechanisms for clustered running and federation. It’s througput is however lower
than that of Kafka [22].

B.3.3. Conclusion

Both Kafka and RabbitMQ have their strength and weaknesses, picking one depends on the context and use
case of a user’s application. Kafka is more appropriate for streaming events, stream processing and stream
history. It is however much harder to set up correctly than RabbitMQ [22].

We plan to design our framework in such a way that the message broker is configurable. Next to that, adding
a new message broker should be easy so that users are not limited to either Kafka or RabbitMQ.

B.4. Serialization
Our goal is to pipeline multiple streaming jobs using a message broker, which means we need a serialization
framework in between the broker and the streaming job. In the stream processing jobs we are limited to the
data types of Flink, which in the case of Scala revolves mostly around case-classes. There are a lot of serial-
ization frameworks out there, like Jackson (JSON) [15], Avro [5], Thrift [4], Protobuf [2] and Kryo. However,
we are bound to the implementations of these frameworks in Scala which means that we can not use some of
those. Since we are working with big data we judge these frameworks based on speed and compression. Next
to that, we should consider their ease-of-use since we also envision that for our framework.

In this article [24] many of those Scala serialization frameworks are compared based on the criteria men-
tioned above. In Figure B.3 and B.4 the results of some of those benchmarks are shown. These benchmarks
show that, apart from Jackson, these frameworks achieve quite similar results. BooPickle appears to be the
fastest, however it does not support backwards compatibility [24]. BooPickle is followed by ProtoBuf and
Thrift, but those two frameworks require user’s to define their data schemas in advance and then generate
a (case) class from that in Scala. This is a huge drawback, if we want our framework to be easy to use. To
conclude, same as for the message broker we will probably support multiple serialization frameworks. Next
to that, our framework should be easily extended with a new serializer.

B.5. Key Manager
When creating an automated script to get data via an API a rate limit is almost always used by the provider.
That means the client can only do n calls per time unit (interval). To be able to track which keys are avail-
able and how much calls are left on each of them, they need to be stored somewhere. For a standard non-
distributed application this could simple be done with some sort of map. However since this framework is
build for distributed applications a different solution is needed.

B.5. Key Manager 22

BooPickle

Pro
to

Buf

Thrif
t

Kry
o

Ja
ckso

n
0.4

0.6

0.8

1

1.2

·105

Figure B.3: Speed comparison of two-way serialization of a 8kb
record (in nanos)

BooPickle

Pro
to

Buf

Thrif
t

Kry
o

Ja
ckso

n

2,200

2,400

2,600

Figure B.4: Compression comparison of a 8kb record (in kb)

Putting the keys in a central places solves this problem. Basically, a simple list of keys on a key-value store
could do. However, there are more requirements: Keys have rate limits and those limits reset after a while.
This has to be handled as well, and preferably atomically: there should be no inconsistency between the data
used by one client and the data used by another. Such conditions make it very hard to reason about the data
and also very hard to find issues, especially when there are race conditions.

We look at two pieces of software that can provide storage for such key manager, with their advantages and
disadvantages; ZooKeeper and Redis.

B.5.1. ZooKeeper

Zookeeper is a centralized service for keeping configuration data and other key-based values. A great advan-
tage of Zookeeper is that it is already supported by other elements of the CodeFeedr ecosystem. However, for
shared-state utilities like API key management it seems to be insufficient: the process to get a key and update
the number of calls the key can do is very long with multiple calls to Zookeeper and no guaranteed atomicity
unless full locking is applied which causes an even slower process and more issues.

Zookeeper is an excellent solution for storing configurations and storing where servers are located: it is very
read-oriented. Reads are very fast while writes are very slow. Zookeeper is also an excellent solution for leader
selection systems (such as Flink and Kafka). Performance of Zookeeper can be seen in Figure B.5.

B.5.2. Redis

Redis2 is a lightweight in-memory data structure store, mostly key-value based, that can be used as cache,
message broker and as database. It has some great features such hash sets, sorted sets and custom script
support. It does not have automatic failover so for maximal uptime it is not the best choice. It is however
extremely fast.

As Zookeeper is required for both Flink and Kafka, using a new service for key management with Code-
Feedr is not ideal. However, it is very lightweight, easy to use and not required to make a Codefeedr project
work.

2https://www.redis.io

https://www.redis.io

B.6. Containerization and orchestration 23

Figure B.5: A graph that plots the throughput of Zookeeper against the percentage of requests that are reads.[10]

B.5.3. Conclusion

As a key manager is a relative simple concept: only asking for a key when needed, it ought to be possible
to make it a generic system and allow implementations for Redis, Zookeeper and even systems like mon-
goDB. It seems however that Zookeeper has quite some disadvantages over Redis, so a built-in Redis-only
implementation might be desirable. However we will make our system configurable allowing for multiple
implementations.

B.6. Containerization and orchestration
When spreading a piece of software across a cluster and scaling it, it is ideal to have the software in a format
that is easily configurable and can run on any machine with any operating system. The software can then run
on a developers machine or on any machine that can be found to add more power to the cluster. A simple
’start’ command is much preferable over a long, specific, installation process.

These problems are solved with containers. Before the existence of containers this was solved with a much
heavier format: virtual machines. The issue of scheduling containers on the cluster and placing them on
servers is solved by container orchestration. In Subsection B.6.1 containerization will be discussed. Lastly,
orchestration will be explained in Subsection B.6.2

B.6.1. Containerization

Docker

Docker is currently the market leader of containerization systems and has a large ecosystem of existing con-
tainer images, management and monitoring tools, and user guides 3. Docker containers are much better
than virtual machines in terms of performance [23]. It is easy to get started but allows for complex setups as
well.

The ability to build Docker images and run them on a Docker infrastructure has been requested by the client.
It is a very good solution for setting up a group of services, as most of the more popular services have a ready-
to-use image available on Docker Hub.

Other container systems

There are other container implementations such as rkt 4. Rkt is a container system used on CoreOS based on
the same standards as Docker is using (and building). Together with other projects it is part of open initiatives
to standardizing containers and runtimes. However, it does not have the ecosystem Docker has and requires
more technical knowledge to get working.

3https://www.docker.com
4https://coreos.com/rkt/

https://www.docker.com
https://coreos.com/rkt/

B.7. Discussion 24

B.6.2. Orchestration

Running a set of services on a local computer is easy. It becomes more complex once these programs need
to spread on a cluster and scale. Especially when resources need to be optimized. Orchestration issues are,
for example: scale a certain service but keep them close together (within the data center). Or always keep
an instance of a certain service on every node. Orchestration systems can also automatically scale applica-
tions.

Docker Compose/Swarm

Docker compose is a way to set up a whole network of services, connect them, and manage them from the
command line. The compose tools comes built-in with Docker and has been used a lot by providers of Docker
images as well. Docker Compose allows for running the whole orchestration locally on a computer with
nothing more than the compose file.

Docker swarm mode, previously a separate system called Docker Swarm, is used to connect multiple ma-
chines and use them as if they were a single one. Using a network layer the machines act as if being one. It
can be used to scale services across machines. It automatically handles service discovery and load balancing.
Swarm mode is integrated in the Docker engine and readily available and supported. It has full integration
in Docker Compose as well, allowing a single file to completely define a whole set of services across a bigger
cluster.

Kubernetes

Kubernetes is an open source system for container orchestration. It is more capable than Docker but connects
to the Docker ecosystem by using Docker containers. It is however much more complex to set up as well
and is overly complex for using locally on a development machine. Kubernetes is mostly used by big SaaS
providers.

B.6.3. Conclusion

Kubernetes is a big, complex system, mostly used for bigger cluster setups. As one of our goals is to make a
simple framework, Docker Compose fits with this goal. The client has requested for a Docker set-up as well.
Both arguments combined gives a good reason to use Docker with Docker Compose for the orchestration
part of the project.

B.7. Discussion
We found various technologies which can be used to solve the problem statement. For most technologies
there is simply not one way to go. Therefore we will first focus on creating a framework which is not specif-
ically bound, apart from Flink, to a certain technology. This means that switching or adding elements like a
message broker or serialization framework should be easy. The same holds for centralized state technologies
necessary for key management. In terms of orchestration there is also a lot available, but functionality often
goes at cost of complexity. Therefore, we will focus on using Docker in our product.

C
Roadmap

Figure C.1: Roadmap of our project.

25

D
Software Improvement Group

D.1. First Feedback (Dutch)
De code van het systeem scoort 3.9 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Unit Interfacing en Unit Size vanwege de lagere deelscores als
mogelijke verbeterpunten.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld aantal
parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan abstractie. Daar-
naast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van de methode en in de
meeste gevallen ook tot langere en complexere methoden.

In jullie project hebben een aantal constructors, zoals bijvoorbeeld TravisBuild, wel erg veel parameters. Dat
is in Scala bij een case class een stuk minder erg dan bij een "gewone" class, maar desondanks zou wat meer
abstractie en wat minder primitives helpen om deze datastructuren begrijpelijk te houden.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het opsplitsen van dit
soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen en daar-
door eenvoudiger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals bijvoorbeeld, zijn
aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte methodes.

Bij jullie zijn er niet zo heel veel lange methodes, maar er zijn nog een aantal voorbeelden die je nog iets
verder zou kunnen aanscherpen. Zo zou je in getRSSAsString() in RSSSource.scala het retry-mechanisme van
de daadwerkelijke logica kunnen scheiden. Die twee lopen nu door elkaar heen, wat de leesbaarheid zou
kunnen verlagen op het moment dat de hoeveelheid functionaliteit gaat groeien.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de
ontwikkelfase te realiseren.

D.2. Adjustments made based on the feedback
The feedback consisted of two points: Unit Interfacing and Unit Size. We have used the SIG-built tool called
BetterCodeHub to identify the code that needed changes in more detail as it seemed to mostly match the
feedback we got.

The Unit Interfacing has mostly stayed the same. Most of the classes with many constructors parameters are
stages. Important here is that constructor parameters are the only way to pass information to stages, because
of our immutability requirement (needed for distributed computing with more confidence). This means we
can’t more parameters to setters. To make it easier on the user we have given most of these parameters default
values and put the required parameters in the front. Putting the parameters in some kind of attributes or
configuration object would only have moved the problem.

26

D.3. Second Feedback (Dutch) 27

Many other classes that were noted were actually case classes with direct mappings onto a REST API (for
example the TravisBuild class). Splitting those is detrimental to readability and understanding. They are also
never created by a programmer but only by (de)serializers.

The feedback on the Unit Size has mostly been addressed. All methods that had gotten too long were refac-
tored to multiple smaller methods to make them easier to read and understand, unless it was detrimental to
the understanding. Methods with a very clear process were kept as is (for example the mongoDB key manager
key refreshing).

D.3. Second Feedback (Dutch)
In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onderhoudbaarheid
is in vergelijking met de eerste upload gestegen.

In de feedback op de eerste upload werden twee mogelijke verbeterpunten genoemd: Unit Size en Unit In-
terfacing. Bij allebei zien we een duidelijke stijging, die zowel door refactoring van bestaande code als door
verbeterde standaarden in de nieuwe code komt. Bij Unit Size is de stijging zelfs zeer groot, complimenten
daarvoor.

Zoals jullie per email hebben aangegeven hadden jullie in de eerste upload wel degelijk testcode, dus die
opmerking uit de feedback op de eerste upload komt te vervallen. Naast de toename in de hoeveelheid pro-
ductiecode is het goed om te zien dat jullie ook nieuwe testcode hebben toegevoegd. De hoeveelheid tests is
wel wat lager uitgevallen dan bij de eerste upload, probeer hier in de toekomst op te letten.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload zijn
meegenomen tijdens het ontwikkeltraject.

E
Code examples

E.1. Simple stages

case class SimpleData(str: String)
case class SimpleDataReduce(str: String, amount: Int)

class SimpleInputStage() extends InputStage[SimpleData]() {

override def main(): DataStream[String] = {
environment
.fromCollection(Seq(SimpleData("Simple"), SimpleData("data"), SimpleData("set")))

}
}

class SimpleTransformStage() extends TransformStage[SimpleData, SimpleDataReduce]() {

override def transform(input: DataStream[SimpleData]): DataStream[SimpleDataReduce] = {
input
.map(x => (x.str, 1))
.keyBy(0)
.sum(1)
.map(x => SimpleDataReduce(x._1, x._2))

}
}

class SimpleOutputStage() extends OutputStage[SimpleDataReduce]() {

override def main(input: DataStream[SimpleDataReduce]): Unit = {
input.print()

}
}

E.2. Pipelines

E.2.1. Simple pipeline

object Main {
def main(args: Array[String]) {
new PipelineBuilder()
.append(new SimpleInputStage)
.append(new SimpleTransformStage)

28

E.3. Using plugins 29

.append(new SimpleOutputStage)

.build()

.start(args)
}

}

E.2.2. Complex pipeline

object Main {

def main(args: Array[String]) {
val inputStage = new SimpleInputStage
val outputStage = new SimpleOutputStage

val transformStage = new SimpleTransformStage
val otherTransformStage = new SimpleOtherTransformStage

new PipelineBuilder()
.edge(inputStage, transformStage)
.edge(inputStage, otherTransformStage)
.edge(transformStage, outputStage)
.edge(otherTransformStage, outputStage)
.build()
.start(args)

}
}

E.3. Using plugins
The following code gets events from GitHub, splits them into push events, issue events, and issue comments.
It sends all these events separately to ElasticSearch indices.

object Main {
val eventSource = new GitHubEventsInput(-1, 5000, true)
val pushEvents = new GitHubEventsToPushEvent
val issuesEvent = new GitHubEventToIssuesEvent
val issueCommentEvent = new GitHubEventToIssuesCommentEvent

val pushEventSink = new ElasticSearchOutput[PushEvent]("push_events")
val issuesEventSink = new ElasticSearchOutput[IssueEvent]("issues")
val issueCommentEventSink = new ElasticSearchOutput[IssueCommentEvent]("issue_comments")

def main(args: Array[String]) = {
new PipelineBuilder()
.setKeyManager(new RedisKeyManager())
.edge(eventSource, issuesEvent)
.edge(eventSource, issuesCommentEvent)
.edge(eventSource, pushEvents)
.edge(pushEvents, pushEventSink)
.edge(issuesCommentEvent, issueCommentEventSink)
.edge(issuesEvent, issuesEventSink)
.build()
.start(args)

}
}

F
Implementation challenges

We describe some of the problems we run into that caused us to change design or drop features all together.
It is a useful read for those that want to contribute to the core framework. If you are interested in why some
features were dropped this can be interesting as well.

F.1. Type system limitations
We had many adventures with the Scala type system. One of the problems is that Scala runs on the JVM which
has no generics, so Scala erases those types. To use any type information at runtime (needed for serialization),
we had to indicate that we wanted Scala to keep that type attached to the class. This is done using context
bounds (a sugar on implicits), but they only work locally and do not propagate to subclasses. This means we
have to annotate every stage with both ClassTag and TypeTag.

For representing a pipeline, we created a small data structure for a directed acyclic graph. It has some custom
functionality for testing for sequentiality and parent ordering, needed for binding the buffers to the input
types of a stage. However, it was not possible to make the DAG class use generics, and uses AnyRef as content
type instead. This is because PipelineObjects can’t be cast without their input and output types being covari-
ants. If they are covariants (which would be valid in our case because of the way we use the types) the type
checker fails because the elements of Flink DataStreams are invariant in the Scala type definitions. We have
asked some Scala experts for ideas or solution but none work in our situation. Thus we decided to stick to
AnyRef and cast instead. This is only done internally.

F.2. Serializability
Apache Flink serializes objects in order to send them to job managers, which in turn execute that object. It
is their technique for distributing and scaling the streaming process. This requires many parts of the code
surrounding Flink to be serializable. This was quite an issue when using services for plugins or when passing
special objects like LocalDateTime, which could not be serialized by Flink.

Whenever such a problem appeared we needed to circumvent it by either executing the code on each node
by making it lazy, or not using those types at all. When using a lazy class property, the value will be created on
the job runner instead of on the task manager. Its contents don’t need serialization. This is not possible when
you have state you need shared (a big reason to circumvent any changing state such as key management).
Such state can also be the constructor arguments. We have also used strings to pass information where a type
would have been better but the type was not serializable (see the date format in the RSS input stage).

Note: Not everything is made serializable in libraries because once a class is made serializable is becomes
incompatible with any version that changes the contents.

30

F.3. Avro support 31

F.3. Avro support
Initially, we planned to support Avro serialization before reading and writing to buffers. Especially, since Avro
offers schemas for datatypes which could be exposed and used by external parties. Unfortunately, Avro does
not have native Scala support. There are some frameworks out there like: avro4s 1 and shapeless-datatype 2

which try to support Avro using macro conversion of case classes. They both gave us some problems:

1. To use this serializer in a generic way, we had to give context bounds or pass implicits to every class
which specified or forwarded the type of the data. This made compiling the code extremely slow (a few
minutes for simple case classes), because all the generics were type checked and expanded on compile
time. Complex case classes took even longer and recursive case classes compiled infinitely.

2. If types were not supported by the library like ’java.util.Date’, we could not support it throughout the
whole framework even if you would not use the Avro serializer. This was caused by the use of context
bounds, which were still defined even if you did not use them.

3. It limited us in only allowing case classes (no tuples, no primitives etc.), because they were not sup-
ported by both libraries.

Due to these issues we decided to drop the Avro support and focus on serializers which did not require
compile-time macro expansions and type checking nor limited type support.

F.4. New serializer
After implementing the mongoDB stages into a plugin, we discovered that its BSON implementation is quite
easy to work with. We decided to add it as a new serialization option. It is a smaller and faster format than
JSON but not directly readable by humans and less supported.

1https://github.com/sksamuel/avro4s
2https://github.com/nevillelyh/shapeless-datatype

Info Sheet

A plug-in infrastructure for the CodeFeedr project

Client organization: Delft University of Technology
Presentation date: July 2, 2018

Description

CodeFeedr is a research project at the software engineering division of the Delft University of Technology
in collaboration with the Software Improvement Group. The research focuses on a software infrastructure
which serves software practitioners in utilizing data-driven decision making [18].

Currently, frameworks like Apache Flink are capable of high-performance data streaming. However, these
frameworks have a lot of overhead in setting up and adding new streaming queries takes a lot of time. These
frameworks also have some limitations in combining real-time data with historical data and doing aggrega-
tions on streams from multiple sources.

The product that has been developed is a plug-in framework on top of Apache Flink, that removes the over-
head on setting up stream processing jobs and makes it possible to combine real-time and historical data as
well as the aggregation of multiple data sources. This product includes abstractions for well-known sources
like GitHub, TravisCI and Twitter. This way the user can spend its efforts on actually writing streaming queries
instead setting up environments, input sources and output. The product also includes orchestration tools for
running streaming jobs on a distributed system.

Members of the project team

Jos Kuijpers
Interests: Computer languages, pragmatic programming and code design.
Role: Mostly worked on the initial framework design and implementation. Focused on Redis and Mongo
services and orchestration.
Contact: jos@kuijpersvof.nl

Joris Quist
Interests: Big data processing, software engineering and software testing
Role: Mostly worked on plugin implementations and general issues with the core framework.
Contact: jorisquist@gmail.com

Wouter Zorgdrager
Interests: Software engineering, big data, data science and project management
Role: Mostly worked on framework internals like the buffer system and serialization as well as several plugins
like GitHub and Twitter.
Contact: zorgdragerw@gmail.com

Client: Dr. ir. G. Gousios, Software Engineering, Delft University of Technology
Department: Dr. ir. T. Abeel, Delft Bioinformatics Lab, Delft University of Technology

The final report for this project can be found at: http://repository.tudelft.nl

32

Bibliography

[1] The cambridge analytica files: the story so far. https://www.theguardian.com/news/2018/mar/26/
the-cambridge-analytica-files-the-story-so-far, 2018. Accessed: 21-06-2018.

[2] Protocol buffers | google developers, 2018. URL https://developers.google.com/
protocol-buffers/. Accessed: 06-06-2018.

[3] Rabbitmq, 2018. URL https://www.rabbitmq.com/. Accessed: 12-06-2018.

[4] Apache thrift, 2018. URL https://thrift.apache.org/. Accessed: 06-06-2018.

[5] Apache Avro. Apache avro, 2018. URL https://avro.apache.org/. Accessed: 30-04-2018.

[6] Apache Flink. Scalable stream and batch data processing, 2018. URL https://flink.apache.org/.
Accessed: 26-04-2018.

[7] Apache Kafka. Apache kafka, 2018. URL http://kafka.apache.org/. Accessed: 26-04-2018.

[8] Apache Spark. Apache spark™ - unified analytics engine for big data, 2018. URL https://spark.
apache.org/. Accessed: 26-04-2018.

[9] Apache Storm. Apache storm, 2018. URL http://storm.apache.org/. Accessed: 26-04-2018.

[10] Apache ZooKeeper. Zookeeper 3.2 performance. https://wiki.apache.org/hadoop/ZooKeeper/
Performance, 2018. Accessed: 02-05-2018.

[11] Artima. Selecting testing styles for your project. http://www.scalatest.org/user_guide/
selecting_a_style, 2018. Accessed: 30-04-2018.

[12] Artima. Using privatemethodtester. http://www.scalatest.org/user_guide/using_
PrivateMethodTester, 2018. Accessed: 30-04-2018.

[13] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[14] Adam DuVander. 8 great examples of developer documentation. https://zapier.com/engineering/
great-documentation-examples/, 2017. Accessed: 30-04-2018.

[15] FasterXML. Fasterxml/jackson, 2018. URL https://github.com/FasterXML/jackson. Accessed: 06-
06-2018.

[16] Apache Flink. Apache flink - checkpointing, 2018. URL https://ci.apache.org/projects/flink/
flink-docs-release-1.4/dev/stream/state/checkpointing.html. Accessed: 01-05-2018.

[17] Ellen Friedman and Kostas Tzoumas. Introduction to Apache Flink. OReilly, 2016.

[18] Georgios Gousios, Dominik Safaric, and Joost Visser. Streaming software analytics. In Proceedings of the
2nd International Workshop on BIG Data Software Engineering, BIGDSE@ICSE 2016, Austin, Texas, USA,
May 16, 2016, pages 8–11. ACM, 2016. doi: 10.1145/2896825.2896832. URL http://doi.acm.org/10.
1145/2896825.2896832.

[19] Li Haoyi. Old design patterns in scala. http://www.lihaoyi.com/post/
OldDesignPatternsinScala.html, 2016. Accessed: 30-04-2018.

[20] Joseph Hejderup. Codefeedr project website. https://codefeedr.github.io/, 2018. Accessed: 26-
04-2018.

33

https://www.theguardian.com/news/2018/mar/26/the-cambridge-analytica-files-the-story-so-far
https://www.theguardian.com/news/2018/mar/26/the-cambridge-analytica-files-the-story-so-far
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.rabbitmq.com/
https://thrift.apache.org/
https://avro.apache.org/
https://flink.apache.org/
http://kafka.apache.org/
https://spark.apache.org/
https://spark.apache.org/
http://storm.apache.org/
https://wiki.apache.org/hadoop/ZooKeeper/Performance
https://wiki.apache.org/hadoop/ZooKeeper/Performance
http://www.scalatest.org/user_guide/selecting_a_style
http://www.scalatest.org/user_guide/selecting_a_style
http://www.scalatest.org/user_guide/using_PrivateMethodTester
http://www.scalatest.org/user_guide/using_PrivateMethodTester
https://zapier.com/engineering/great-documentation-examples/
https://zapier.com/engineering/great-documentation-examples/
https://github.com/FasterXML/jackson
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/state/checkpointing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/stream/state/checkpointing.html
http://doi.acm.org/10.1145/2896825.2896832
http://doi.acm.org/10.1145/2896825.2896832
http://www.lihaoyi.com/post/OldDesignPatternsinScala.html
http://www.lihaoyi.com/post/OldDesignPatternsinScala.html
https://codefeedr.github.io/

Bibliography 34

[21] Richard Herschel and Virginia M. Miori. Ethics & big data. Technology in Society, 49:31 – 36, 2017. ISSN
0160-791X. doi: https://doi.org/10.1016/j.techsoc.2017.03.003. URL http://www.sciencedirect.
com/science/article/pii/S0160791X16301373.

[22] Pieter Humphrey. Understanding when to use rabbitmq or apache kafka, April 2017. URL https://
content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka.

[23] Babu Kavitha and Perumal Varalakshmi. Performance analysis of virtual machines and docker con-
tainers. In Shriram R and Mak Sharma, editors, Data Science Analytics and Applications, pages 99–113,
Singapore, 2018. Springer Singapore. ISBN 978-981-10-8603-8.

[24] Dmitry Komanov. Scala serialization, Jun 2016. URL https://medium.com/@dkomanov/
scala-serialization-419d175c888a. Accessed: 06-06-2018.

[25] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log processing. In
Proceedings of the NetDB, pages 1–7, 2011.

[26] Age Mooij. From a to l: Designing scala libraries. https://speakerdeck.com/agemooij/
from-a-to-l-designing-scala-libraries, 2013. Accessed: 30-04-2018.

[27] Martin Odersky and Lex Spoon. The architecture of scala collections. https://docs.scala-lang.
org/overviews/core/architecture-of-scala-collections.html, 2017. Accessed: 30-04-2018.

[28] Scala Community. Scaladoc. https://docs.scala-lang.org/style/scaladoc.html, 2018. Ac-
cessed: 30-04-2018.

[29] Kai Wähner. Real-time stream processing as game changer in a big data world with hadoop and
data warehouse, 2014. URL https://www.infoq.com/articles/stream-processing-hadoop. Ac-
cessed: 03-05-2018.

[30] Peter Zaitsev. Exploring message brokers: Rabbitmq, kafka, activemq, and kestrel - dzone integra-
tion, Jun 2014. URL https://dzone.com/articles/exploring-message-brokers. Accessed: 12-
06-2018.

http://www.sciencedirect.com/science/article/pii/S0160791X16301373
http://www.sciencedirect.com/science/article/pii/S0160791X16301373
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://medium.com/@dkomanov/scala-serialization-419d175c888a
https://medium.com/@dkomanov/scala-serialization-419d175c888a
https://speakerdeck.com/agemooij/from-a-to-l-designing-scala-libraries
https://speakerdeck.com/agemooij/from-a-to-l-designing-scala-libraries
https://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html
https://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html
https://docs.scala-lang.org/style/scaladoc.html
https://www.infoq.com/articles/stream-processing-hadoop
https://dzone.com/articles/exploring-message-brokers

	Preface
	Summary
	List of Figures
	Problem Statement
	Problem Context
	Problem Definition
	Requirements

	Design
	Core framework
	Pipeline
	Buffers
	Pipeline builder
	Utilities

	Plugins

	Final product
	Core
	Plugins
	RSS and weblogs
	MongoDB
	ElasticSearch
	GitHub
	TravisCI
	Twitter

	Orchestration
	Testing
	Continuous Integration
	Coverage Tracking

	Documentation

	Evaluation
	Product
	Process
	SCRUM
	Planning

	Ethical Implications
	Recommendations

	Project Description
	Research report
	Problem Statement
	Problem Context
	Problem Definition
	Requirements
	Scala
	Documentation
	Testing

	Stream Processing
	Apache Flink
	Alternatives

	Message Brokers
	Kafka
	RabbitMQ
	Conclusion

	Serialization
	Key Manager
	ZooKeeper
	Redis
	Conclusion

	Containerization and orchestration
	Containerization
	Orchestration
	Conclusion

	Discussion

	Roadmap
	Software Improvement Group
	First Feedback (Dutch)
	Adjustments made based on the feedback
	Second Feedback (Dutch)

	Code examples
	Simple stages
	Pipelines
	Simple pipeline
	Complex pipeline

	Using plugins

	Implementation challenges
	Type system limitations
	Serializability
	Avro support
	New serializer

	Info Sheet
	Bibliography

