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SUMMARY

The two most common Post Consumer Recycled (PCR) plastics, isotactic polypropy-
lene (iPP) and high density polyethylene (HDPE), differ in composition and mechan-
ical behavior when compared to their virgin counterparts. This thesis focuses on un-
derstanding and modeling the mechanical performance of these two PCR plastics sep-
arately. Within this context, the present work implements three finite strain thermo-
elasto-viscoplastic constitutive models developed by Johnsen et al. [1], Mirkhalaf et al.
[2] and Anand et al. [3] proposed in the literature to predict the behavior of PCR-iPP and
PCR-HDPE. The models are compared and further developed to take into account the ef-
fects of recycling. All the models depend on the fully implicit return mapping algorithm
and associated state update procedures.

Given the complexity of the models, this thesis proposes the use of Bayesian optimiza-
tion to facilitate the material parameter calibration when provided with the experimen-
tal data. A two-step procedure is proposed where first the models are calibrated for
yielding, and then for post yielding behavior (strain softening and orientational hard-
ening).

The models are assessed considering different experimental tests, including standard-
ized specimens with different radius of curvature. A simple modification is suggested to
capture the strain hardening response at large deformations accurately. This work con-
cludes that the model developed by Mikhalaf et al. [2] is capable of accurately reproduc-
ing the experimental results obtained in the validation experiments of PCR-PP where as
the modified Anand model is capable of accurately reproducing the experimental results
of PCR-PE.
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1
INTRODUCTION

T hermoplastics are the important engineering materials used widely in many appli-
cations over the past few decades. Some examples are dampers, food packaging,

thermal insulation of pipelines, and electrical insulation of high-voltage cables. Among
the thermoplastics, polyethylene (PE) and polypropylene (PP) are the two most abun-
dantly produced plastics worldwide. More than 70 million and 50 million metric tons of
PE and PP are produced annually [4]. The two plastics (PP and PE) do not mix, limiting
the options for dealing with mixed waste and decreasing the value of recycled products.
Eagan et al. [4] reported the synthesis of multiblock copolymers of iPP and PE by us-
ing a selective polymer initiator. The high-molecular-weight blocks could be used to
reinforce the interface between iPP and PE and allow the blending of the two polymers
[4]. Interfacial compatibilization of phase-separated PE and iPP tetra block copolymers
enable morphological control, transforming brittle materials into mechanically tough
blends. Individually, pure iPP and PE display ductility and strain hardening when pulled
in tension at room temperature, as shown in figure 1.1. Blending the two components
leads to a phase-separated material and a marked reduction in the strain at the breaking
point.

Figure 1.1: Uniaxial tensile elongation of PE/iPP materials and blends [4]
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2 1. INTRODUCTION

The formation of iPP/HDPE composites opens up new design spaces previously unattain-
able with homogeneous polymers. To create the iPP/PE blend, it is important to individ-
ually understand the bulk material’s mechanical performance. The mechanical behavior
of iPP and HDPE is complicated because strain rate, temperature, and stress-triaxiality
have a significant impact. The stress-strain behavior of polymers is mainly highly non-
linear and related to the underlying microstructural deformation mechanisms. Hence,
it is challenging to create accurate constitutive models that can predict the mechanical
response of polymeric materials under different loading conditions.

The main objective of the present thesis is to implement state of the art plasticity con-
stitutive models, assess their predictive quality when modelling the post consumer re-
cycled polypropylene (PCR-PP) and post consumer recycled polyethylene (PCR-PE) and
improve them if needed. In addition, the work also aims at facilitating the calibration of
material properties for the constitutive models.

In chapter 2 the fundamental concepts of polymer science and the underlying deforma-
tion mechanisms are explained. The numerical implementation of the Johnsen model
[1], Mirkhalaf Model [2] and Anand model [3] are discussed briefly. The methods to cal-
ibrate the material properties are also reviewed in chapter 2. Description of material
parameter calibration procedure is discussed briefly in chapter 3. From the obtained
optimized parameters, The mechanical response of PCR-PP was examined under ten-
sile tests. In chapter 4 the simulations of PCR-PE are performed and compared with the
experimental results. Conclusions regarding the outcomes and recommendations for
development of the work are discussed briefly in chapter 5.



2
LITERATURE REVIEW

P OLYMERS are large molecules or macromolecules composed of repeating units. They
often have long chain, branched, and sometimes cross-linked. They are abundantly

found in nature, mainly in plants (cellulose) and tissues (proteins) and are primarily
composed of hydrocarbons with covalent carbon bonds. They are either single chains
or networks. Though single chains can be branched, the polymers are diluted into coils
called entanglements, and weak or Van der Waals forces exist between the chains. Poly-
mer chains slide over one another under external force, breaking the weak bonds. An
increase in the number of entanglements leads to an increase in the stiffness of the poly-
mers. Polymer flow is strongly hindered by the entanglements leading to high viscosity.
In the thermoset polymer networks, molecular chains are strongly connected by chemi-
cal cross-links. The polymer networks are formed as bridges between the single chains,
as in the case of vulcanization of rubber where sulfur bridges are formed [5].

2.1. THERMOPLASTICS AND THERMOSETTING POLYMERS

2.1.1. THERMOPLASTICS
Thermoplastics are long-chained and non-cross-linked polymers that flow at elevated
temperatures and harden when cooled. At high temperatures, the secondary bonds be-
tween the chains diminish, facilitating the relative motion of chains. These polymers are
often manufactured by the application of pressure and temperature simultaneously. The
two most common examples are shown in figure 2.1 and 2.2.

Figure 2.1: Polyethylene ((C2H4)n)
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Figure 2.2: Polypropylene ((C3H6)n)

2.1.2. THERMOSETTING POLYMERS
Thermosets are cross-linked polymers and cannot be remolded. These bonds anchor
the chains together during heat treatments to resist the vibrational and rotational chain
motions at high temperatures. Thus, the materials do not soften when heated. Ther-
moset polymers are generally stronger than thermoplastics and have better dimensional
stability. One of the examples is shown in figure 2.3.

Figure 2.3: Polyurethane

2.2. PHYSICAL STRUCTURE
After determining the chemical composition of polymers, there remains the question
on how molecular chains of the polymer are arranged in space. This has two different
aspects.

1. Rotational Isomerism

2. Orientation and crystallinity

2.2.1. ROTATIONAL ISOMERISM
The Rotational Isomerism explains the arrangement of a single chain without consider-
ing the effect of its neighbors. The arrangement of the single chain relates to that there
are possible conformations for the molecule because of the hindered rotation about sin-
gle bonds in the structure. The main reason for the flexibility in the polymers is due to the
torsion angles. To explain the rotational isomerism, consider the example of polyethy-
lene with neighboring three atoms Ci−2, Ci−1, Ci .
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Figure 2.4: a) Torsional angle for the sequence of three bonds b)Trans state c) Gauche
state d)Torsional angle dependence of energy [6]

The bond vector −→r i , between the atoms Ci−1 and Ci defines the axis of rotation for the
bond vector −→r i+1 at a constant bond angle θi . The zeroth value of the torsion angle ϕi

corresponds to the bond vector −→r i−1 collinear with the bond vector −→r i+1. This refers
to the trans-state of the torsion angle, which is the state of lowest energy conformation.
The change of the torsional angle leads to a change of energy conformations as vari-
ations occur in the distance leading to the change in interactions between the carbon
and hydrogen atoms. The secondary minima occur at the torsion angle of ±1200. This
refers to the gauche state. The energy difference between the trans and gauche state ∆ε
determines the relative probability of the torsion angle in the gauche state being in the
thermal equilibrium [6].

2.2.2. ORIENTATION AND CRYSTALLINITY
When cooled down from the polymer melt to become a solid, many polymers form a
disordered structure called an amorphous state. The amorphous state is considered
the random entanglement of polymers. Amorphous polymers have high stiffness and
yield strength at room temperature. Polymethyl methacrylate (PMMA), Polystyrene, and
quenched polyethylene terephthalate (PET) are examples of amorphous polymers. If
the amorphous polymers are stretched, the chains preferentially align along the direc-
tion of the applied load, reducing the system’s entropy. The molecular orientations due
to stretching can lead to the small region of three-dimensional order called crystallites.
The simple explanation of this behavior is that the orientation process has brought the
polymer chains into adequate juxtaposition to create the three-dimensional order. Many
polymers crystallize if they are cooled slowly from the melt. The degree of crystallinity
may vary from the completely amorphous state to 95%. Contrary to metals, which are
completely crystalline, and ceramics which are either wholly crystalline or amorphous,
polymers exist as semi-crystalline. Though they are not homogeneous in the micro-
scopic sense and often show spherulitic structure, such specimens are unoriented from



2

6 2. LITERATURE REVIEW

the macroscopic point of view, possessing isotropic material properties [7].

Figure 2.5: Ordered structure [8]

2.3. TENSILE STRESS-STRAIN CURVES
The mechanical properties of polymers are generally analyzed using standardized tests
such as uniaxial tensile and compressive tests. These tests allow us to determine sev-
eral mechanical properties of polymers to characterize the elastic, plastic, and damage
behavior. Three generally observed tensile test curves [9] are shown in figure 2.6.

2.3.1. THERMOSET POLYMER
Thermosetting polymers are generally brittle due to cross-linking (interchain covalent
bonds). The tensile response is mostly linear elastic and negligible plastic deformation,
as cross-linking restricts the chain sliding. Thermoset polymers have high stiffness and
yield strength.

2.3.2. THERMOPLASTICS
Thermoplastic polymers tensile curves are analogous to the tensile stress-strain curves
of metals. Thermoplastics undergo elastic deformation followed by plastic deformation
and geometrical softening.

2.3.3. ELASTOMERS
An elastomeric polymer stress-strain behaviour is totally elastic, generally exhibiting
very low tensile modulus (low stiffness) and high elongation up to fracture.
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Figure 2.6: Stress-Strain behaviour of polymers: A) Thermoset B) Thermoplastic C) Elas-
tomers [9]

2.4. MECHANICAL BEHAVIOUR OF THERMOPLASTICS
The stress-strain curve of the thermoplastics clearly exhibits three regions.1) elastic re-
gion 2) strain softening 3) strain hardening

Figure 2.7: Stress-Strain behaviour of polymers [9]
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The mechanisms of elastic, strain softening, and strain hardening of semi-crystalline
polymers are clearly shown in the figure 2.7 when the material is subjected to tensile
loading. The onset and the first stage of elastic deformation results in the elongation of
molecular chains present in the amorphous regions between adjacent spherulitic platelets
in the direction of the applied load. The nonlinear elastic response is controlled by in-
termolecular interactions combined with entropic contribution. Later the elastic defor-
mation results in a slight increase in the thickness of the crystalline platelets due to the
stretching of chain covalent bonds.

It is often the case that the macroscopic sample under tension displays a shape transfor-
mation just after yielding, known as strain softening (necking). Thereby, it becomes visi-
bly thinner at some point along its length. The consequence is that once necking occurs
in one location, the size of that region tends to grow while the original neck thickness is
more or less preserved. During this region, the engineering stress is roughly constant.
Eventually, this encompasses the entire specimen, and further extension leads to a more
uniform deformation along with the sample, accompanied by strain hardening. The in-
trinsic softening, observed during plastic flow in polymers, is closely related to physical
aging and rejuvenation. The key microstrctural feature controlling strain softening or
the yield peak is the change in free volume or deformation induced disordering of poly-
mers. The lower the free volume, the higher the yield peak. Annealed specimens have
lower free volume than quenched specimens, so annealed specimens show large stress
drop after yielding [10].

The onset of plastic deformation occurs when adjacent chains in crystalline platelets
slide past one another, which is resisted by relatively weak van der Waals bonds and leads
to tilting the platelets in the loading direction. As deformation continues, crystalline
block segments separate from the platelet while keeping attached by tying molecular
chains, which become highly aligned with the tensile direction. For further deformation,
the spherulitic structure is virtually destroyed. Because in crystalline regions, the molec-
ular chains are closely packed in an ordered and parallel arrangement, significant inter-
molecular forces result from forming large numbers of van der Waals interchain bonds.
Although such forces are much weaker than the primary covalent ones, it is nonethe-
less comprehensible that the tensile modulus increases significantly with the degree of
crystallinity. Moreover, the strength is generally enhanced, and the polymers tend to be-
come more brittle as they stiffen. The material strength, i.e., the resistance to plastic de-
formation, increases due to contributions that restrain molecular chains from stretching
and sliding between platelets and adjacent chains. Such restrain mainly depends on the
degree of chain entanglements and intermolecular bonding. It has also been observed
that tensile strength increases with molecular weight due to a corresponding increase in
chain entanglements. Based on the previous mechanisms, some standard techniques
are used to improve the mechanical properties of semi-crystalline polymers.

One of the most necessary stiffening and strengthening techniques is termed drawing. It
improves the tensile modulus and mechanical strength by permanently deforming the
polymer in tension until its structure becomes highly aligned, as described for the last
stage of plastic deformation. The degree of stiffening and strengthening depends on the
extent of deformation, and the properties of the resulting drawn polymers are highly
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anisotropic. When applied to undraw polymers, heat-treating or annealing of semi-
crystalline polymers can lead to an increase in the degree of crystallinity, and a conse-
quent increase in tensile modulus and yield strength and decrease of ductility [11].

2.4.1. YIELDING THEORIES
The simple definition of yield stress is the minimum stress required at which the mate-
rial undergoes permanent deformation. This definition is satisfactory for metals, where
a clear difference can be made between the elastic and plastic deformations, but it is
not straightforward in polymers. In many cases, such as the tensile tests, yield coincides
with observing a maximum load in the load–elongation curve. The yield stress can be
defined as the true stress at the maximum observed load. Because this stress is achieved
at a comparatively low elongation of the sample, it is often adequate to use the engi-
neering definition of yield stress as the maximum observed load divided by the initial
cross-sectional area. In some cases, there is no observed load drop, and another defi-
nition of yield stress is required. One approach is determining the stress where the two
tangents to the initial and final parts of the load–elongation curve intersect. An alter-
native is to define an initial linear slope on the stress-strain curve and then draw a line
parallel to this, offset by a specified strain, say 15% [12]. The intersection of this line with
the stress-strain curve then defines the offset or proof stress, which is the yield stress.
Yielding can be produced by a wide range of stress states, not just simple tension. In
general, it must therefore be assumed that the yield condition depends on a function of
the three-dimensional stress field. The components of the stresses areσ11, σ22, σ33, σ12,
σ13 and σ23. It is often convenient to use the principal stresses. The generally used yield
criteria are discussed below [12].

f (σI ,σI I ,σI I I ) = constant (2.1)

The yield criterion established indicates that plastic flow may occur when the uniaxial
stress attains a critical value. This principle could be expressed by means of a yield func-
tion that is negative when only elastic deformations are possible and reaches zero when
the plastic flow is imminent.

Φ(σ, A) = |σ|−σy ≤ 0 (2.2)

where Φ is the scalar yield function. The yield locus, means the set of stresses for which
plastic yielding may occur, is the boundary of the elastic domain, whereΦ(σ, A) = 0.

TRESCA YIELD CRITERIA

The earliest yield criterion to be suggested for metals was Tresca’s criteria that yield oc-
curs when the maximum shear stress reaches a critical value

1

2
(σI −σI I I ) = Y

2
(2.3)

where σI > σI I > σI I I .

VON MISES YIELD CRITERIA

The Von Mises yield criterion assumes that the yield behaviour is independent of hydro-
static pressure and that the yield stresses in simple tension and compression are equal.
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It is expressed most simply in terms of the principal components

1

2
((σI −σI I )2 + (σI −σI I )2 + (σI −σI I )2) = Y 2 (2.4)

Since the yield behaviour of polymers is temperature and strain rate dependent, phe-
nomenological models such as Eyring’s theory of polymers, which provide the informa-
tion of the yield behaviour at molecular level. The approach is temperature and strain
rate sensitive and also considers the molecular reorientation associated with plastic de-
formation.

EYRING’S THEORY

Molecular approaches exist to gain a molecular understanding of the polymer’s viscosity
based on the thermally activated rate process theory. In the random thermal motion of
polymer chains, any energy will vary with time, occasionally it may be sufficient for the
chain to reach the activated state. This process is known as thermal activation. Accord-
ing to kinetic theory, the probability of the chain reaching the activated state is given by
e−(∆G/kT ) where k is Boltzmann’s constant and ∆G is known as the activation free energy
barrier. The rate at which the transformation occurs will depend on the frequency with
which atoms reach the activated state [13].

ν= ν0e−
∆H
RT (2.5)

where ∆H is the activation energy and ν0 considers both the fundamental vibration fre-
quency and entropy contribution to the Gibbs free energy. The basic molecular process
can be either intermolecular or intramolecular. Considering the case when no stress is
applied, there exists a dynamic equilibrium. When the stress is applied the chain seg-
ments moves with a frequency ν over the potential barrier in each direction where it is
assumed that the applied stressσ produces the linear shifts of the energy barriers byσV ,
where V is the activation volume. The frequency in the flow direction is

ν1 = ν0 exp
[
− (∆H −σV )

RT

]
(2.6)

The frequency of flow in the backward direction is

ν2 = ν0 exp
[
− (∆H +σV )

RT

]
(2.7)

The net flow is
ν= ν1 −ν2 = ν0e−

∆H
RT

[
e
σV
RT −e−

σV
RT

]
(2.8)

If we assume that the net flow in the forward direction is related to the strain rate (ϵ̇),
then

ė = ė0e−
∆H
RT sinh

[σV

RT

]
(2.9)

Therefore the shear yield stress in terms of strain rate is written as

σ= KB T

V
arcsinh

( ė

ė0
exp

[∆H

RT

])
(2.10)
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2.5. RECYCLABILITY
The growth in plastic production and replacement of other materials in many industry
sectors is leading to an increasing amount of plastic waste. Traditionally, many poly-
mers were disposed of in landfill sites, but the negative environmental impact has mo-
tivated more environmentally friendly options like recycling [14]. There are four main
approaches to plastics recycling: primary, secondary, tertiary, and quaternary. Primary
recycling focuses on clean, uncontaminated, single-type scrap from processing opera-
tions. Secondary recycling aims at the management of mixtures of plastic wastes. Ter-
tiary or chemical recycling has been defined as the cleavage of polymer chains to make
chemical products of lower molecular weight distribution or even to recover the orig-
inal monomer, which can be used for another complete cycle of polymerization. Fi-
nally, quaternary recycling comprises the utilization of plastic wastes as energy sources
[15].

Understanding the effect recycling has on properties, or the conditions under which no
degradation occurs can enable a larger percentage of plastics to be recycled. For exam-
ple, Aurrekoetxea et al. [15] showed that blends of recycled and virgin PP could demon-
strate higher strength and stiffness after multiple recycling cycles at the expense of elon-
gation at fracture and fracture toughness. This is partially due to the increasingly crys-
talline structure of the recycled polymers. Polymer flexibility depends on its segments’
ability to rotate. Crystalline structures hinder such rotations. Therefore, a crystalline ma-
terial is significantly stiffer than the equivalent plastic in its amorphous condition. Costa
et al. [16] showed that the rheological and physical properties of iPP were degraded after
reprocessing. In addition, they observed an increase in the melt flow index (MFI) and
the crystallinity rate, with a continuous reduction of the molar weight and the melting
temperature (Tm) when the number of extrusion runs augments.

The true stress-strain curves for pure and talc-filled polypropylene and their recycled
derivatives are shown in figure 2.9. Both materials exhibit a classical mechanical behav-
ior under tensile loading after a linear elastic response, a small visco-elastic response
appears before the yielding point. After the yield point, softening is observed, followed
by strain hardening. It can be observed that the recycling process decreases the yield
stress for both materials. However, it is seen that the failure stress and strain are quite
affected by several cycles. It seems that this property decreases linearly with recycling
[17].

2.6. GENERAL ELASTOPLASTIC MODEL
The general Elastoplastic constitutive model consists of the following components [18].

1. The Elastic and plastic strain decomposition

2. Elastic law

3. Yield criteria

4. Plastic flow rule to calculate the plastic strain

5. Hardening law
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(a) Effect of recycling on Young’s modulus (b) Effect of recycling on Yield stress

(c) Effect of recycling on failure strain (d) Effect of recycling on fracture toughness

Figure 2.8: The effect of recycling on key material parameters over a range of cycles [15]

(a) (b)

Figure 2.9: True stress-true strain curves for (a) pure (b) talc-filled polypropylene and
recycled derivatives [17].
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2.6.1. ADDITIVE DECOMPOSITION OF STRAIN
The additive decomposition of strain is generally obtained by splitting the total strain
into the elastic and plastic components.

ε= εe +εp (2.11)

The strain is calculated as the logarithm of stretch tensor (U)

ε= ln(U ) (2.12)

The decomposition of strain rates
ε̇= ε̇e + ε̇p (2.13)

MULTIPLICATIVE SPLIT OF DEFORMATION GRADIENT TENSOR

The main assumption of the large strain constitutive models is the hypothesis that the
deformation gradient tensor F can be multiplicatively split into elastic and plastic defor-
mation gradient tensors.

F = ∂x3

∂x1 = ∂x3

∂x2

∂x2

∂x1 (2.14)

F e = ∂x3

∂x2 ,F p = ∂x2

∂x1 (2.15)

F = F e F p (2.16)

The finite deformation plasticity models considers the both the contributions of the

Figure 2.10: Multiplicative Split of Deformation tensor

intermolecular(part A) describing the hyperelastic and viscoplastic behaviour and ori-
entational hardening due to the polymer network alignment. The deformation gradient
tensor is equal in both the parts.

F = FA = F e F p (2.17)
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ELASTIC AND PLASTIC POLAR DECOMPOSITION

Both the elastic and plastic gradient tensors are again can be decomposed as

F e = ReU e =V e Re (2.18)

F p = RpU p =V p Rp (2.19)

where Re is the elastic rotation tensor, U e is the right elastic stretch tensor, V e is the
left elastic stretch tensor, Rp is the plastic rotation tensor, U p is the right plastic stretch
tensor and V p is the left plastic stretch tensor.

DECOMPOSITION OF VELOCITY GRADIENT

The velocity gradient L can also be decomposed as

L = ∂v

∂χ
= Ḟ F−1 (2.20)

L = [Ḟ e
AF p

A +F e
A Ḟ p

A ](F p
A )−1(F e

A)−1 (2.21)

L A = Ḟ e
A(F e

A)−1 +F e
A Ḟ p

A F−1
A = Le

A +Lp
A (2.22)

where
Le

A = Ḟ e
A(F e

A)−1,Lp
A = F e

A Ḟ p
A F−1

A (2.23)

Le
A is the elastic velocity gradient and Lp

A is the plastic velocity gradient.

2.6.2. ELASTIC LAW
The dissipative models are generally developed in the framework of thermodynamics.
It is assumed that the free energy is function of total strain, plastic strain and internal
variables related to the hardening. The free energy can be split as

ψ(ε,εp ,α) =ψ(εe )+ψ(α) (2.24)

ψ(ε,εp ,α) =ψ(ε−εp )+ψ(α) (2.25)

The generalized elastic law is in the form of

σe = ρ ∂ψ(εe )

∂εe (2.26)

Assuming the elastic behaviour is isotropic and linear, the free energy can be defined
as

ρψ(εe ) = 1

2
εe : De : εe (2.27)

ρψ(εe ) =Gεe
d : εe

d + 1

2
K (εe

v )2 (2.28)

where G and K are shear modulus and bulk modulus respectively. The εe
d represents

deviotoric component of elastic tensor and εe
v represents the volumetric strain. Thus

the elastic law is
σe = De : εe (2.29)

σe = 2Gεe
d +K εe

v I (2.30)
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2.6.3. YIELD CRITERIA
The yield criterion established indicates that plastic flow may occur when the uniax-
ial stress attains a critical value. This principle could be expressed by means of a yield
function which is negative when only elastic deformations are possible and reaches zero
when plastic flow is imminent.

Φ(σ, A) = |σ|−σy ≤ 0 (2.31)

where Φ is the scalar yield function. The yield locus, means the set of stresses for which
plastic yielding may occur, is the boundary of the elastic domain, whereΦ(σ, A) = 0.

2.6.4. PLASTIC FLOW RULE
To characterize the plasticity of the material, the plastic strain needs to be calculated.
The plastic strain is generally computed using the plastic flow rule. It is defined as fol-
lows.

ε̇p = γ̇N (2.32)

where γ is the plastic multiplier and N is termed as the flow vector and defined as

N = ∂Ψ

∂σ
(2.33)

whereΨ is the plastic potential. For the case whenΨ=Φ, then it is called as the associa-
tive flow rule.

Figure 2.11: Flow vector [19]

2.6.5. HARDENING LAW
The hardening law is defined as

H(σ, A) =−∂Ψ
∂A

(2.34)

where H is the hardening modulus and A is the set of hardening thermodyamical forces.

ISOTROPIC HARDENING

A plasticity model is said to have isotropic hardening if the evolution of the yield surface
is such that, at any state of hardening, it corresponds to a uniform (isotropic) expansion
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of the initial yield surface, without translation as shown in figure 2.12. For a multiaxial
plasticity model with a von Mises yield surface, isotropic hardening corresponds to the
increase in radius of the von Mises cylinder in principal stress space. In the constitutive
description of isotropic hardening, the set α normally contains a single scalar variable,
which determines the size of the yield surface. The hardening internal state variable is
a suitably chosen scalar measure of strain. A typical example is the von Mises effective
plastic strain, also referred to as the von Mises equivalent or accumulated plastic strain,
defined as

εp =
∫ t

0

√
2

3
εp : εp d t (2.35)

The von Mises isotropic strain-hardening model is obtained by letting the uniaxial yield
stress be a function of the accumulated plastic strain

σy =σy (εp ) (2.36)

The model is said to have linear hardening if and only if the strain-hardening function is
linear such as

σy (εp ) =σy0 +Hεp (2.37)

The yield condition is written as

Φ(σ,εp ) = |σ|− (σy0 +Hεp ) (2.38)

Figure 2.12: Isotropic Hardening illustration[18]

KINEMATIC HARDENING

When the yield surfaces preserve their shape and size but translate in the stress space
as a rigid body, then the material undergoes kinematic hardening 2.13. It is frequently
observed in experiments that, after being loaded (and hardened) in one direction, many
materials show a decreased resistance to plastic yielding in the opposite direction. This
phenomenon is known as the Bauschinger effect and can be modelled with the intro-
duction of kinematic hardening. A simple phenomenological model that can capture
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this effect is by introducing another variable q called as back stress, which defines the
location of the center of the yield surface. The yield condition can be modified as

Φ(σ,εp ) = |σ−q |− (σy0 +Hεp ) (2.39)

The evolution of the back stress is defined as

q̇ = H ε̇p (2.40)

Figure 2.13: Kinematic Hardening [18]

2.6.6. NUMERICAL INTEGRATION ALGORITHM FOR ELASTOPLASTIC ANAL-
YSIS

In the case of path-dependent materials, such as elastoplastic materials, the update
scheme usually requires the formulation of a numerical algorithm for integration of the
corresponding rate constitutive equations. This requirement stems from the fact that
analytical solutions to the initial value problem defined by the elastoplastic equations
are generally not known for complex strain paths.

ELASTIC TRIAL STEP

Initially, we assume that plastic strain does not occur; that is, we assume that the step [tn ,
tn+1] is elastic. This is called as the elastic trial solution and will be denoted as

εe,tr i al
n+1 = εe

n +∆ε (2.41)

αtr i al
n+1 = εn (2.42)

The corresponding stress and hardening force will be called the elastic trial stress and
elastic trial hardening force, given by

σtr i al
n+1 = ρ ∂Ψ

∂εe

∣∣∣tr i al

n+1
(2.43)
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Atr i al
n+1 = ρ ∂Ψ

∂α

∣∣∣tr i al

n+1
(2.44)

The above variables are collectively called the elastic trial state. If

Φ(σtr i al
n+1 , Atr i al

n+1 ) ≤ 0 (2.45)

that is, if the elastic trial state lies within the elastic domain or on the yield surface, we
update the total strain and total stress as

εn+1 = εtr i al
n+1 (2.46)

σn+1 =σtr i al
n+1 (2.47)

PLASTIC CORRECTOR ALGORITHM

When the material is deforming plastically, then∆γ> 0, so the elastic strain is calculated
as

εe
n+1 = εtr i al

n+1 −∆γN (2.48)

αn+1 =αtr i al
n+1 −∆γH (2.49)

The ∆γ is calculated by solving the residual function using numerical methods.

Figure 2.14: Return Mapping Algorithm [18]
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2.7. CONSTITUTIVE MODELLING OF POLYMERS
Several constitutive models are developed to capture the nonlinear stress-strain behav-
ior of polymers. Eyring’s theory was initially developed to understand polymers’ vis-
coplastic flow [20]. The Eyring’s viscoplasticity rule is shown in equation 2.10. Later
Howard et al. [21] was the first to decouple the stress, one part where the elastic re-
sponse is modeled by Hookean elasticity and a single Eyring’s dashpot represents the
inelastic flow, and a second part concerning entropic strain hardening using a Langevin
spring derived from the non- Gaussian statistics as shown in figure 2.17. Argon [22] pro-
posed a theory of yielding for glassy polymers based on the concept that deformation at
a molecular level consists of forming a pair of molecular kinks. The shear yield stress (τ)
is defined as

τ= 0.102G

1−ν
[

1− 16(1−ν)

3πGω2a3 K T ln
( γ̇0

γ̇

)] 6
5

(2.50)

where G, ν are the shear modulus and Poisson’s ratio, a is the molecular radius, and ω is
the angle of rotation of the molecular segment.

Boyce et al. [23] observed a drop in yield stress upon initiation of plastic deformation,
a characteristic of both amorphous and semicrystalline polymers. Softening is accom-
panied by inhomogeneous deformation on a small scale in the form of shear bands. It
was also observed that softening curve is different for quenched and annealed samples.
The phenomenological evolution equation for the rate of drop accounting for the de-
pendence of strain rate, structure, and temperature is defined as

ṡ = h
(
1− s

Sss (T, γ̇p )

)
γ̇p (2.51)

Boyce et al. [23] developed the constitutive model considering the Argon viscoplas-
tic flow rule, incorporating polymers’ strain-softening behavior and pressure sensitivity.
Boyce et al. [24], assumed that to model the stress rise due to locking and stretching of
polymers at high strains, polymers behave like rubber and used entropic-network mod-
els. Further, Arruda and Boyce [25] developed the entropic strain hardening, well-known
as the eight chain model to capture the stress rise shown in equation 2.64. Another major
constitutive approach was proposed by Leonov [26], from which a compressible version
was developed by Baaijens [27] that, in turn, was later derived within a thermodynami-
cally consistent framework by Tervoort et al. [28]. To capture the typical characteristics
of the post-yield behaviour of glassy polymers, namely the phenomenon of strain soft-
ening and hardening, Timmermans [29] and Govaert et al. [30] extended Tervoort et al.
[28] model, leading to the generalized compressible Leonov model, currently known as
the Eindhoven Glassy Polymer (EGP) model. Inspired by this EGP model, Mirkhalaf et
al. [2] recently proposed a finite strain, elasto-viscoplastic constitutive model assuming
the isothermal deformation. The common factors in these models are stress-dependent
viscosity to capture deformation kinetics and rubber elasticity to model strain harden-
ing.

Many studies observed that viscous behavior contributes to self-heating in a material,
where deformation is adiabatic. In the studies performed by Adams and Farris [31] and
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Boyce et al. [32], it was found that about 50 to 80% of the total mechanical work was
converted into heat in glassy polymers. On the other hand, studying a semicrystalline
high-density polyethylene (HDPE), Hillmansen et al. [33] and Hillmansen and Haward
[34] observed that almost the entire mechanical work was converted into heat. A similar
observation was also done by Johnsen et al. [35] on a crosslinked low-density polyethy-
lene (XLPE). Since heating of the polymer material will introduce thermal softening, it is
evident that a correct prediction of heat generation during deformation is crucial for the
constitutive model to capture the material behavior over a range of strain rates.

Consequently, taking thermomechanical coupling into account is essential in this sit-
uation, mainly accounting for heat conduction within the material and heat convec-
tion to the surroundings. Arruda et al. [36] and Boyce et al. [37] combined an elasto-
viscoplastic and kinematic hardening based on the alignment of the polymer chains,
including self-heating of polymers. Adopting a similar approach, Richeton et al. [38]
presented a model able to span the glass transition temperature. Anand et al. [39] and
Ames et al. [3] presented a thermomechanically coupled constitutive model describing
the finite deformation behavior of amorphous polymers considering the self-heating of
the polymers. Back stress evolution law is also considered to capture the effect of the
nonlinear kinematic-hardening. In the study by Srivastava et al. [40] the model pre-
sented by Ames [3] was extended to span the glass transition temperature. However, the
model introduces many material parameters, making the calibration process complex.
More recent developments were made by Gonzalez et al. [41], who extended the isother-
mal model proposed by Loria et al. [42] to include thermomechanical coupling. This
model combines an elastic Neo-Hookean response with rate-dependent yielding and
plastic flow governed by the Raghava yield function and kinematic hardening modeled
by an eight-chain spring.

Hachour et al. [43] examined the mechanical behavior of HDPE on round notch spec-
imens with different stress triaxiality ratios and verified the classical yield criteria such
as von-Mises, Tresca, and Raghava yield functions through the measurement of a bi-
axial yield envelope. Timmermans [29] implemented the EGP model for polypropylene.
Popa et al. [44] proposed a homogenization approach for the numerical implementation
of the visco-elastic visco-plastic behavior of semicrystalline polymers at large deforma-
tions. The approach describes the two material phases of a semicrystalline polymer,
amorphous and crystalline, and provides the means of relating them to the macroscopic
scale of the material by describing a representative mesostructure (RMS) and by defin-
ing the set of variables that influence the model. Manaia et al. [45] analyzed the yielding
response of high-density polyethylene (HDPE) under different stress states and strain
rates and examined the ability of Von Mises and Drucker-Prager yield criteria to capture
their deformation. Bergstorm et al. [46] developed a hybrid model inspired from Arruda
et al. [47] and Hasan et al. [48] to predict the behaviour of ultra-high molecular weight
polyethylene (UHMWPE) under tensile and cyclic loading. Seden et al. [49] concluded
that the tensile yield stress at a single strain rate and across a wide range of tempera-
tures contributes to the β relaxation process. Later the constitutive model developed by
Johnsen et al. [1] extended this considering the two Eyring’s dashpots representing both
α and β relaxations to analyze the tensile behavior of LDPE and polypropylene. Ries
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et al. [50] studied the tensile behavior of PCR-HDPE, concluding that temperature and
strain rate greatly influence the mechanical response of the recycled HDPE. The stress-
strain behavior of PCR-HDPE is captured using a viscoelastic model. Wang et al. [51]
experimentally investigated and modeled the effect of reprocessing on the quasi-static
uniaxial tensile behavior of two commercial unfilled and talc-filled polypropylene-based
composites. From the experimental results, they observed that Young’s modulus (E) and
failure strain (ϵb) continuously decrease with the reprocessing number Np . The effect of
E and ϵb on reprocessing number developed to model the behavior of PCR-PP is given
as

E(Np , ϵ̇) = (K1Np +E0)
(
1+ (ζ1Np +λE ) ln

( ϵ̇
ϵ̇0

))
(2.52)

ϵb(Np , ϵ̇) = (K2Np +ϵb0)
(
1+ (ζ2Np +λϵb ) ln

( ϵ̇
ϵ̇0

))
(2.53)

where Np is the number of reprocessing and K1 and K2 are the reprocessing strength-
ening coefficient of Young’s modulus and failure strain, respectively. ζ1 and ζ2 are the
recycling strengthening coefficient of the strain rate.

The experimental results of PCR-PP and PCR-PE shown in the figure 3.1 and 4.1 pro-
vided by a research patner Lyondell Basel demonstrates the need for a robust constitu-
tive model that can be tuned for a wide range of applications. The selection of the bulk
phase constitutive models requires a model with the following qualities: 1) finite strain
2) strain rate and temperature-dependent yield strength 3) strain-softening, which oc-
curs due to deformation-induced disordering or change in free volume 4) strain-hard-
ening due to alignment of the polymer chains at large strains 5) temperature rise due to
plastic dissipation at high strain rates. 6) able to capture deformation behavior at differ-
ent stress tri-axialities.

After reviewing state-of-the-art polymer constitutive models, the models developed by
Johnsen et al. [1], Mirkhalaf et al. [2], and Anand et al. [3] were selected to model the
tensile behavior of PCR-PP and PCR-PE. The constitutive model developed by Johnsen
et al. [1] is considered because of its ability to accurately predict the behavior of low-
density crosslinked polyethylene (XLPE) [1] and polypropylene [35]. The model consid-
ers Eyring’s viscoplastic flow rule to capture temperature and strain rate-dependent yield
stress. In addition the model considers Arruda and Boyce’s eight chain model to capture
the strain hardening behavior. The model also incorporates the effect of thermal soft-
ening. Mirkhalaf model [2] is a finite strain elasto-viscoplastic constitutive model de-
veloped to predict the non-linear behavior of polymeric-based materials incorporating
pressure and softening effects to characterize the post-yield response properly, which is
not implemented in the Johnsen model. However, the model assumes isothermal de-
formation ignoring the thermal softening. Another model developed by Anand et al. [3]
that was developed to predict the behavior of PC, PMMA, and Zenox material. Similar
to the Mirkhalaf model, the model considers pressure dependence and strain softening
effect. In addition, the model also considered the effect of self-heating due to plastic
dissipation. Since it considers many fitting parameters, the model accurately captures
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the yield and post-yield response. Note that all models were manually optimized by the
authors to obtain a correct description of the post-yield response.

In the current thesis, the suitability of the three models predicting the mechanical be-
haviour of PCR-PE, and PCR-PP is assessed. The models also should account for multi-
axial loading conditions. However, the applicability of these models to non-trivial load-
ing conditions has not been explored. To achieve this, simulations will be generated
and compared with the standardized three-dimensional tensile test results and different
stress triaxiality ratios. Finally, given the complexity of the models, material parameter
calibration is performed using Bayesian optimization coupled with ABAQUS when pro-
vided with the experimental data. In the next sections 2.7.1, 2.7.2 and 2.7.3, the major
aspects of the general constitutive theories of models are outlined and implementation
details of the models are described in appendix A. In section 2.8 the calibration methods
are reviewed briefly.

2.7.1. JOHNSEN MODEL
The Thermo-elasto-viscoplastic constitutive model of polymers proposed by Johnsen et
al. [1] is developed to study the non-linear mechanical behavior of low-density cross-
linked polymers. The constitutive model also describes the effect of self-heating of the
polymers at higher strain rates. The proposed model is schematically represented in
figure 2.15 and consists of two parts. Part A of the model captures the thermo-elastic and
thermo-viscoplastic responses of the polymers. The two Ree-Eyring dashpots represent
the effects of both α relaxation and β relaxation on the plastic response. The α and β

relaxation of the polymers represents the relaxation of the carbon atoms in the main
chain and relaxation of the side group atoms, respectively. Finally, part B of the model
captures the orientational hardening of the polymers due to the alignment of the chains
during deformation.

Figure 2.15: Rheological model of Johnsen Model [1]

HYPERELASTIC CONSTITUTIVE LAW

The specific free energy of the material is a isotropic scalar function generally. The dif-
ferent specific energy functions are considered based on the response of the material
during the deformation. Later the Kirchoff stress tensor can be calculated from the free
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energy function as shown in the equation below.

τA = 2ρ
∂ΨA

∂B e
A

B e
A (2.54)

where B e
A is the left Cauchy-Green elastic deformation tensor. In the present model the

elastic response is defined using the Hencky free energy function. The Hencky elastic
theory captures the elastic response well for large deformations.

ρΨA =µA(T )Tr[(ln(V e )2] (2.55)

Where ρ is the density T is the absolute temperature. The shear moduls of the elastic
region is defines as

µA(T ) =µA,r e f exp[−aA(T −Tr e f )] (2.56)

The Kirchoff stress tensor τ is calculated from the Hencky free energy function as

τA = 2µA(ln(V e
A )) (2.57)

From the above equation it can be observed that Kirchoff stress and logarithmic strain
have the linear relationship. The Cauchy stress tensor is defined as

σA = 1

J
τA (2.58)

VISCOPLASTIC CONSTITUTIVE LAW

From the rheological model the contribution from each dashpot is additive to capture
both α and β relaxation. Hence the viscous stress equation is shown below.

σV = ∑
x=α,β

KB T

Vx
arcsinh

( ṗ

ṗ∗
0,x

exp
[∆H

RT

])
(2.59)

where ṗ is the equivalent plastic strain rate, ∆H is the activation enthalpy, Vx is the ac-
tivation volume and R is the gas constant. Further p∗

0,x is the deformation dependent
reference equivalent plastic strain rate given by

ṗ∗
0,x = ṗ0,x exp

[
−

√
2

3
bx ||ln(V p

A )||2
]

(2.60)

To define the plastic flow rule, the plastic potential is defined assuming the yield stress is
approximately equal in both tension and compression and using von Mises equivalent
stress to get

g (σD ) =
√

3

2
σD :σD (2.61)

The plastic rate deformation tensor is calculated from the associated flow rule as

Dp
A = Lp

A = λ̇∂g (σD )

∂σD
(2.62)

The direction of the plastic flow N is calculated from the gradient of the plastic potential
function

N = ∂g (σD )

∂σD
= 3

2

σD

g (σD )
(2.63)
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Figure 2.16: Numerical Implementation of Johnsen model
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ORIENTATIONAL HARDENING

Orientational hardening of the polymers occurs due to the alignment of the polymer
chains. The eight chain model is considered leading to the Kirchoff stress equation

τB ,n+1 = µB (T )λlock

3λc,n+1

L−1
(λc,n+1

λl ock

)
BD,n+1 −κB ln(Jn+1I −3κBα(Tn −T0)I (2.64)

where λlock is the locking stretch, λc = p
tr (B)/3 is the average chain stretch, α is the

thermal expansion and κB is the bulk modulus. The inverse Langevin function is defined
as

L−1 =χ 3−2.6χ+0.7χ2

(1−χ)(1+0.1χ)
(2.65)

SELF HEATING

During the plastic deformation, the heat dissipation increases the temperature. The en-
ergy balance is expressed as

ρ0u̇ = τ : D + r −di v(q) (2.66)

where r is the external heat sources and q is the heat flux. The heat equation gives the
temperature rise

ρ0C v Ṫ = τD : Dp
A +τB : D −TaAτA : De

A −κB [ln J +3αT0]tr (D)+ r −di v(q) (2.67)

2.7.2. MIRKHALAF MODEL
The elasto-viscoplastic constitutive model of polymers proposed by Mirkhalaf et al. [2],
[52] was developed for studying the non-linear mechanical behavior of glassy polymers.
The constitutive model also describes and captures the strain-softening behavior of the
polymers. The proposed model is schematically represented in figure 2.17. Part A of
the model captures the elastic and viscoplastic responses of the polymers. Part B is
represented by the Langevin spring and captures the hardening of the polymers dur-
ing deformation. Finally, the polymer considers a single relaxation mode and assumes
that deformation is isothermal, considering no temperature rise during plastic deforma-
tion.

Figure 2.17: Rheological model of Mirkhalaf model [2]
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HYPERELASTIC CONSTITUTIVE LAW

The specific free energy of the material is a isotropic scalar function generally. The dif-
ferent specific energy functions are considered based on the response of the material
during the deformation. Later the Kirchoff stress tensor can be calculated from the free
energy function as shown in the equation below.

τ= ρ ∂Ψ
∂εe (2.68)

where εe is the logarithmic strain tensor. In the present model the elastic response is
defined using the Hencky free energy function. The Hencky elastic theory captures the
elastic response well for large deformations. The relation between the Kirchoff stress and
Cauchy stress is as follows

τ= Jσ (2.69)

where J is the determinant of the deformation gradient. The Hencky strain energy func-
tion in terms of the principal stretches is defined as

ρΨ(λe
1,λe

2,λe
3) =G[(λe

1)2 + (λe
2)2 + (λe

3)2]+ 1

2

(
K − 2

3
G

)
[ln(λe

1λ
e
2λ

e
3)]2 (2.70)

where λe
1,λe

2,λe
3 are the principal stretches and K is the bulk modulus and G is the shear

modulus of the material. The Kirchoff stress and logarithmic strain relation is defined
as

τ= De : εe (2.71)

where De represents the fourth order isotropic elastic tensor

De = 2G Is +
(
K − 2

3
G

)
I ⊗ I (2.72)

The symbol Is represents the fourth order Identity tensor and I represents the second
order identity tensor.

VISCOPLASTIC FLOW RULE

The one dimensional flow rule described in Eyring’s theory as

γ̇p = 1

A
sinh

( τ
τ0

)
(2.73)

where A and τ0 are material constants depends on temperature, τ is the shear stress and
γ̇p is the rate of the plastic multiplier. The material constants are defined as a function
of temperature

A = A0 exp
(∆H

RT

)
,τ0 = RT

V
(2.74)

where ∆H is the activation energy, V is the shear activation volume. The scalar A0 is the
constant related to the fundamental vibration and T is the absolute temperature. From
the definition of Newton law of viscosity, the shear stress can be written as

τ= η(γ̇p )γ̇p (2.75)
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From the trivial algebraic manipulations the equation (2.73) can be written as

τ= γ̇pτ0(arcsinh(Aγ̇p )/γ̇p ) (2.76)

on comparing with the equation (2.75).

η(γ̇p ) = τ0(arcsinh(Aγ̇p )/γ̇p ) (2.77)

where η is the viscosity function of the plastic multiplier rate. The Eyring’s flow rule
described in three dimensions can be written as the following relation.

γ̇eq = 1

A
sinh

(τeq

τ0

)
(2.78)

where τeq is the equivalent stress defined as

τeq =
√

1

2
τd : τd (2.79)

where τd is the deviatoric part of the stress tensor. The associated flow rule to determine
the rate of plastic deformation tensor

d p = γ̇eq N (2.80)

where N is the flow vector, represents the direction of plastic flow and defined as

N = ∂Ψ

∂τ
(2.81)

Ψ is the dissipation potential defined as the convex scalar function.

Ψ=
√

1

2
τd : τd (2.82)

So, the flow vector can be rewritten as

N =
√

1

2

τd

||τd ||
(2.83)

On substituting N in the associative flow rule, d p can be rewritten as

d p = γ̇eq

√
1

2

τd

||τd ||
(2.84)

On substituting the relations (2.78) and (2.79) in associative plastic flow rule and written
as

d p = τd

2A
[

τeq

sinh

(
τeq
τ0

)] (2.85)

which can be represented as

d p = τd

2η(τeq )
(2.86)

where the viscosity function is rewritten as

η(τeq ) = A
[ τeq

sinh
(
τeq

τ0

)]
(2.87)
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EFFECT OF PRESSURE AND SOFTENING

The material parameter introduced above is purely deviatoric. Pressure and softening
effects need to be considered in order to characterize the post-yield response properly.
So the material parameter A is generalized as

A = A0 exp
[∆H

RT
+ µP

τ0
−D

]
(2.88)

The material parameter µ represents the pressure coefficient and is defined as the ratio
of the shear activation volume to the pressure activation volume.

µ= Ω
V

(2.89)

and P is the total hydrostatic pressure defined as the sum of atmospheric pressure (p0)
and hydrostatic pressure(p)

p =−1

3
Tr(τ), P = p +p0 (2.90)

The phenomenological law proposed to consider the effects of softening is [53]

Ḋ = h
(
1− D

D∞

)
γ̇eq (2.91)

where D∞ is the saturation value of the softening parameter and h influences the soft-
ening slope. By algebraic manipulations and substituting the equations (2.88) and (2.91)
in equation (2.87), the following viscosity function is obtained.

η= A0 exp
[∆H

RT
+ µP

τ0
−D∞+D∞ exp

(−h
p

3εp

p
2D∞

)][ τeq

sinh
(
τeq

τ0

)]
(2.92)

where εp is the equivalent accumulated strain.
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Figure 2.18: Numerical implementation of Mirkhalaf model
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HARDENING LAW

In the final phase of the deformation behavior, which typically occurs at large strains,
softening reaches its saturation value and the true stress increases with increasing strain.
This phase is known as hardening. The hardening stress is evaluated using the equa-
tion

τhar deni ng = Hεd (2.93)

The total Kirchoff stress is the sum of the driving stress and hardening stress

τtot al = τdr i vi ng +τhar deni ng (2.94)

Total Cauchy stress can be written as

σtot al = 1

J
(τdr i vi ng +τhar deni ng ) (2.95)

2.7.3. ANAND MODEL
Another important constitutive model for polymers is proposed by Ames et al. [3] further
developed in [54] to study the nonlinear mechanical behavior of polycarbonate, PMMA
and zenox. The constitutive model also describes the effect of strain softening and self-
heating of the polymers at higher strain rates. The derivation of the stiffness matrix is
shown in appendix A.

Figure 2.19: Rheological model of Anand model [3]

FREE ENERGY FUNCTIONS

We consider the free energy to have a separable form

Ψ=Ψe(1) +Ψp(1) +Ψ(2) (2.96)

With

U e =
3∑

i=1
λe

i r e
i ⊗ r e

i (2.97)
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denoting the spectral representation of U e , and with

E e =
3∑

i=1
E e

i r e
i ⊗ r e

i ,E e
i = lnλe

i (2.98)

where E e denotes an elastic logarithmic strain measure, We adopt the following special
form for the free energy.

Ψe(1) =G|E e |2 + 1

2

(
K − 2

3
G

)
(tr (E e ))2 − (T −T0)(3Kα)(Tr(E e )) (2.99)

The temperature-dependent parameters G, K and α are the shear modulus, bulk modu-
lus, and coefficient of thermal expansion, respectively, and T0 is a reference temperature.
Furthermore, with

A =
3∑

i=1
ai Ii ⊗ Ii (2.100)

denoting the spectral representation of A, we adopt a free energyΨp(2) of the form

Ψp(1) = 1

4
B [(ln a1)2 + (ln a2)2 + (ln a3)2] (2.101)

where the positive-valued temperature-dependent parameter B is a back-stress modu-
lus. We adopt the following special form for free energy

Ψ(2) =−1

2
µIm ln

(
1− I1 −3

Im

)
(2.102)

Im and µ are two temperature-dependent material constants. In particular, µ represents
the rubbery shear modulus of the material in the ground state, and Im represents the
upper limit of (I1 - 3), associated with limited chain extensibility.

STRESS

Corresponding to the special free energy functions considered above, the Cauchy stress
is given by

σ=σ(1) +σ(2) (2.103)

with
σ(1) = J−1Re M e Re T (2.104)

where
M e = 2GE e

d +K (tr E e )I −3Kα(T −T0)I (2.105)

M e is the Mandel stress. The symmetric and deviatoric backstress is defined by

Mback = B ln A (2.106)

The driving stress for plastic flow is the effective stress given by

M e
e f f = M e

d −Mback (2.107)
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The corresponding equivalent shear stress and mean normal pressure are given by

τ= 1p
2
|(M e

e f f )d , p =−1

3
tr (M e ) (2.108)

respectively. Also,

σ(2) = J−1µ
(
1− I1 −3

Im

)−1

(Bdi s,d ) (2.109)

The internal variables of the theory ϕ > 0,Sa > 0,Sb > 0, represent aspects of the inter-
molecular shear resistance to plastic flow. The parameter ϕ is a dimensionless order-
parameter representing a local measure of disorder of the polymeric glass. Sa and Sb

have dimensions of stress, respectively, and represent the aspects of a transient shear re-
sistance accompanying microstructural disordering, and the aspects of increased shear
resistance to plastic flow as the chains are pulled taut between entanglements at large
strains.

FLOW RULE

The evolution equation for the plastic deformation gradient tensor (F p ) is

Ḟ p = Dp F p (2.110)

where Dp rate of plastic strain tensor

Dp = ν
( (M e

e f f )d

2τ

)
(2.111)

The consistency equation is

τe = τ−Sa −Sb −αp p (2.112)

where τe denotes a net shear stress for thermally activated flow, αp is a pressure sensi-
tivity parameter.

νp = ν0 exp
[
− Q

KB T

][
sinh(

τeV

2KB T
)
] 1

m
(2.113)

ν0 is a preexponential factor with units of 1/time; Q is an activation energy, KB is Boltz-
mann’s constant, V is an activation volume, and m is a strain rate sensitivity parame-
ter.
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Figure 2.20: Numerical implementation of Anand Model
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EVOLUTION EQUATIONS FOR THE INTERNAL VARIABLES

The internal variables Sa andϕ are taken to obey the coupled evolution equations.

Ṡa = ha ∗ (S∗
a −Sa)νP (2.114)

S∗
a = b ∗ (ϕ∗−ϕ)νP (2.115)

ϕ̇= g ∗ (ϕ∗−ϕ)νP (2.116)

ϕ∗=ϕr

[
1+

(Tc −T

k

)r ](νp

νr

)s
(2.117)

where

Tc = Tg +n ln
νp

νr (2.118)

The evolution of sb is assumed to be governed by

Ṡb = hb(λ−1)(S∗
b −Sb)νp (2.119)

Also, the evolution equation for A is taken as

Ȧ = Dp A+ ADp −γA ln Aνp (2.120)

where γ≥ 0 is a constitutive parameter which governs the dynamic recovery of A.

2.8. CALIBRATION OF MATERIAL PROPERTIES
The ability of a constitutive model to predict the deformation behavior of a specific
material strongly depends on the values selected for the flexible material parameters.
Therefore, an essential prerequisite for exploiting the full predictive capabilities of physics-
based models lies in identifying the set of parameters within defined physical bounds.
Identifying constitutive parameters requires solving an inverse problem, i.e., adjusting
material parameters until the simulation results match the experimental data. It is often
possible to calibrate simple constitutive models with a small number of material pa-
rameters using a trial-and-error or regression approach. However, it is impractical for
complex constitutive models with many material parameters. Therefore, using an ap-
propriate optimization methodology to determine the constitutive model parameters is
crucial for both existing and developing new constitutive laws [55].

Gradient-based optimization methods, such as Newton’s methods, have often been used
for this calibration. Mahnken and Stein [56], Saleeb et al. [57] used a gradient-based
method to identify the material parameters for viscoplastic material models. Yang and
Elgamal [58] used a gradient-based method to determine material parameters for a mul-
tisurface plasticity sand model. However, one of the main drawbacks of gradient-based
methods is their sensitivity to the choice of the initial guess. In other words, the con-
verged solution and the convergence rate are highly dependent on the initial guess. This
is particularly challenging for complex constitutive laws with nonlinear response.

For direct search methods such as genetic algorithms (GA), a substantial number of eval-
uations of the objective functions are needed to determine the quality of potential solu-
tions. Therefore, the efficiency of these methods is directly dependent on the compu-
tational costs of the functions evaluated. Andrade-Campos et al. [59], ; Qu et al. [60],
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Furukawa et al. [61] evaluated the material parameters of viscoplastic models using
a genetic algorithm. To get convergence, GA requires large number of simulations to
fit material parameters, extracting the outputs, and comparing them with the experi-
mental data. The computational costs of plasticity simulations are generally too high
[62].

To overcome this intrinsic difficulty, inverse optimization techniques which build up a
surrogate model (Zhou et al. [63] Sedighiani et al. [55]) of the objective function turn
out to be helpful. Such a surrogate model serves as an approximation of the true objec-
tive function. Bayesian optimization constructs regression model usually from Gaussian
processes seeking the optimum solution in fewer iterations than competing algorithms.
Kuhn et al. [62] proposed Bayesian optimization framework to calibrate the the material
properties for crystal plasticity models and compared to the investigated evolutionary
algorithm. The comparison proved that BO turned out to be consistently faster, and fea-
tured a smaller dispersion. In this work, we propose using Bayesian optimization with
Gaussian processes for calibrating material parameters inversely based on tensile test
experiments.

2.8.1. GAUSSIAN PROCESS REGRESSION
Gaussian process regression can serve as a valuable tool for performing inference both
passively (for example, describing a given data set as best as possible, allowing one to
also predict future data) as well as actively (for example, learning while choosing input
points to produce the highest possible output [64].

In Gaussian process regression, we assume the output y of a function f at input x can be
written as

y = f (x)+ϵ (2.121)

In the Gaussian process regression, we assume that f(x) is distributed as the Gaussian
process.

f (x) ≈GP (m(x), k(x, x ′)) (2.122)

The Gaussian process is fully specified by the mean m(x) and covariance or kernel k(x,x ′)
functions:

m(x) = E[ f (x)] (2.123)

k(x, x ′) = E[( f (x) − m(x))( f (x ′) − m(x ′))] (2.124)

The kernel models the joint variability of random variables. The kernel sets prior infor-
mation about the distribution and affects the convergence of the process. It usually as-
sumes more similarity between close points and less between distant ones. A commonly
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used kernel for smooth and stationary functions is the radial basis function (RBF) kernel
with hyper parameters in the form of variance of the noise signal σ2

f and length-scale l
[64].

k(x, x ′) =σ2
f exp

(
− ∥ x −x ′ ∥2

2l 2

)
(2.125)

The posterior predictions from GP are calculated using Baye’s theory.

posterior = prior ∗ likelihood

marginal likelihood
(2.126)

The posterior distribution is denoted as:

f∗|X t , yt , X∗ ≈GP (K (X∗, X t )[K (X t , X t )+σ2
ϵ I ]−1 yt ,

K (X∗, X t )−K (X∗, X t )[K (X t , X t )+σ2
ϵ I ]−1K (X t , X∗) (2.127)

Figure 2.21: Samples from a Gaussian process prior and posterior. Grey lines indicate
samples from the GP. Black dots mark empirical observations. The dark grey line marks
the current mean of the GP. The red triangle shows the prediction for the new input point.
[64]

The left side of the figure presents an initial belief about expected functions as a proba-
bility distribution. The average of functions presented in the figure is zero due to a lack
of additional information. If it becomes available, the knowledge about functions and,
therefore, the probability is updated. When new points become known, the prior proba-
bility function is combined with the likelihood, and a posterior distribution is obtained
for which the functions pass through the known points.
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2.8.2. BAYESIAN OPTIMIZATION
Bayesian optimization has become a common way of finding the optimal solutions in
cases such as hyperparameter tuning for machine learning applications or constrained
experiment design, for example, in the world of Materials Science. Typical global op-
timizers usually reach the minimum of the given function at the expense of multiple
function evaluations. Bayesian optimization is applicable in situations where the cost
of probing the values repeatedly is prohibitive, and one desires to reach the optimum
quickly and at low expense [65].

The Bayesian approach towards optimization evaluates the black-box functions sequen-
tially, meaning that data is evaluated and sampling continues until a satisfying result is
obtained without a necessary predetermination of exact sample size. One may want to
utilize the Gaussian Process (GP) surrogate model with an unknown function that is ex-
pensive to probe.

Bayesian optimization solves a problem by minimizing the objective function f(x). The
Gaussian process updates the prior belief about the function to pick the best location
x∗ for the next sample. The function is evaluated at the point x∗, and the posterior be-
lief about it is updated with the Gaussian process. The next-point choice described is
taken based on an acquisition function. An acquisition function which balances explo-
ration and exploitation is the expected improvement. This expected improvement (EI)
method tries to maximize the gain in the objective function. The expected improvement
is defined by [66]

E I (x) = (µ(x)− f (x∗)−ξ)ψ
(µ(x)− f (x∗)−ξ

σ(x)

)
+σ(x)φ

(µ(x)− f (x∗)−ξ
σ(x)

)
(2.128)

where µ(x) and σ(x) are the mean and variance of the regressor at x, f is the function
to be optimized with estimated maximum at x∗, ξ is a parameter controlling the degree
of exploration and ψ(z), φ(z) denotes the cumulative distribution function and density
function of a standard Gaussian distribution [66].
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Figure 2.22: Bayesian optimization flow chart
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THERMO VISCOPLASTIC ANALYSIS

OF PCR-PP

I n the current chapter, the mechanical response of PCR-PP was examined under tensile
tests. The present investigation is particularly focused on the implementation robust-

ness of the original three finite strain Thermo elasto-viscoplastic constitutive models [1],
[2], [3] through its application to tensile tests. The Bayesian optimization approach pre-
sented here is used to determine an optimal set of parameters. It is especially suitable for
complex models with a large number of parameters. The proposed approach also helps
develop a comprehensive understanding of the relative influence of the different consti-
tutive parameters and their interactions. With the optimal set of parameters obtained,
the stress-strain response of PCR-PP is predicted for three different temperatures and
strain rates. The results obtained are compared with the experimental results.

3.1. EXPERIMENTAL RESULTS
In this study, uniaxial tension tests were performed at three temperatures (T = 273 K,
T = 296 K and T = 319 K) and three different cross-head velocities (v = 2 mm/min, v =
20 mm / min, and v = 200 mm/min). Assuming that all deformation happens over the
parallel section of the tensile specimen, these cross-head velocities correspond to initial
nominal strain rates (ϵ̇ = 1.667∗10−3 s−1, ϵ̇ = 1.667∗10−2 s−1 and ϵ̇ = 0.1667 s−1).

39
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(a) T = 296 K (b) T = 273 K

(c) T = 319 K

Figure 3.1: Uniaxial tensile test results of PCR-PP

The stress-strain behaviour of PCR-PP (QCP 300) reported in figure 3.1. The experimen-
tal results show that an increase in temperature has a similar impact on young’s modu-
lus and the flow stress as a decrease in strain rate. The increase of temperature results
in decrease of yield stress and young’s modulus. The increase of strain rate results in
the increase of yield stress, as the time required to slide over another will be less at the
higher strain rates. The probability of forming knots increases. The higher strain rates,
the higher the dissipation of energy, which in turn increases the temperature of the poly-
mers, thereby reducing the stress value at large strains. It is observed that the strain
hardening region also depends on the strain rate and temperature.

3.2. FINITE ELEMENT MODEL
The tensile test simulations were made in commercial finite element software program
ABAQUS/standard, with the constitutive model implemented through the user mate-
rial(UMAT) subroutine [67]. Due to the symmetry of the tensile specimen, symmetric
boundary conditions were used to save computation time, as indicated in figure 3.2.
Eight three-dimensional node elements with reduced integration and one thermal de-
gree of freedom (C3D8RT) were used in all the simulations with an element size of 0.5
mm. The velocity of the testing machine is applied as the velocity boundary condition.
In addition to the mechanical boundary conditions, a surface film with a heat transfer
constant is applied on the free surface of the tensile specimen. The surface film sim-
ulates the convection of plastic dissipation energy to the environment. To analyze the
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behavior of the material at different temperatures. The temperature is defined as a pre-
defined field in ABAQUS, as the Johnsen and Anand models consider the self-heating of
the material, the temperature rise is added to the previous step.

Figure 3.2: Finite Element Model with mesh (5A specimen)

3.3. CALIBRATION OF MATERIAL MODEL

Step 1: Bayesian optimization (BO) 

for calibrating parameters affecting 

the elastic region.

• Three values of shear modulus or 

Young’s modulus.
• Objective function: minimize෍𝑻 (𝑮𝒆𝒙𝒑 − 𝑮𝒑𝒓𝒆𝒅)𝟐

Step 2: Bayesian optimization for 

calibrating parameters affecting 

Yield stress.

• Optimizing Ree-Erying’s flow 

model coefficients.

Step 3: Bayesian optimization for 

calibrating parameters affecting Post 

yield response.

• 9 yield stress values (three 

temperatures and three strain rates).

• Objective function: minimize෍𝑻, 𝜺 𝝈𝒚, 𝒆𝒙𝒑𝑻 − 𝝈𝒚, 𝒑𝒓𝒆𝒅𝑻 𝟐

• BO process at T = 296 K and u = 2 

mm/Min.

• Objective function: minimizing

Mean square error(Experimental and 

simulation curve)

Figure 3.3: Procedure followed to calibrate material properties for the three models
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The values of the material parameters of different constitutive models are calibrated
from the experimental tensile test results using Bayesian optimization (BO). A brief overview
of the calibration procedure is given in this section. The first step in the optimization is to
determine the optimized temperature sensitivity parameters of the shear modulus. Fi-
nally, we optimize the material parameters that affect the yield stress in the second step
using the viscoplastic flow stress equations. In the third step, the optimized parameters
that affect the post-yield response are determined by coupling the BO tool (GPyOpt) and
FEM software (ABAQUS) [68].

3.3.1. ELASTIC MATERIAL PROPERTIES
The values of shear modulus at different temperatures are estimated from the experi-
mental data. As shown in figure 3.4, the experimental results clearly show that the shear
modulus (G) is dependent on the strain rate and temperature. However, the strain rate
dependence is not incorporated into the analysis, while the temperature dependence is
considered in the three models. The objective function used to determine the temper-
ature sensitivity parameters is the distance (d) between the experimentally determined
shear modulus and the predicted shear modulus at three different temperatures. The
shear modulus values are predicted using equations (3.3 - 3.5) for three temperature val-
ues.

d =
√∑

T
(Gexp(T, ϵ̇)−Gpred(T, ϵ̇))2 (3.1)

or

d =
√∑

T
(Eexp(T, ϵ̇)−Epred(T, ϵ̇))2 (3.2)

To capture the temperature-dependent shear modulus (G), Johnsen et al. [1] considered
an exponential relation developed by Arruda et al. [36]. The relation is shown in Equa-
tion 3.3.

G(T ) =Gr e f exp[−aA(T −Tr e f )] (3.3)

where aA is the temperature sensitivity factor.

Mirkhalf et al, [2] incorporated a temperature dependence relation developed by Melick
et al. [69] assuming the ratio of Young’s modulus at certain temperature to Young’s mod-
ulus at reference temperature has the linear dependence on temperature.

E(T ) = Er e f (aT +b) (3.4)

Ames et al. [3] suggested that the approximate change of the shear modulus has a linear
dependence on temperature.

G(T ) =Gr e f −M(T −Tg ) (3.5)
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The reference material properties are considered at room temperature (Tref = 296 K) and
the strain rate ϵ̇ = 0.001667 s−1. The Poisson’s ratio is assumed to be constant for all
temperatures and strain rates.

Figure 3.4: Temperature and strain rate dependence on the Young’s modulus of the ma-
terial.

The bounds of material parameters and the optimized temperature sensitivity parame-
ters are mentioned in table 4.1.

Table 3.1: Temperature sensitivity parameters of Elastic properties after calibration

Material model Properties Units Bounds of parameters Values

Johnsen model aA K −1 [-5, 5] 0.015

Mirkhalaf model a (-) [-1, 0] -0.01365

b K −1 [1, 6] 5.144

Anand model M K −1 [2, 8] 5.023

3.3.2. FLOW STRESS
The coefficients in the Eyring flow model were estimated using the yield stress value
obtained from the tensile stress-strain data for nine different configurations (three tem-
peratures and three strain rates). Material properties affecting the peak yield stress are
estimated by minimizing the error function

d =
√∑

T,ϵ̇

(σy,exp

T
− σy,pr ed

T

)2
(3.6)

The prediction of yield stress (σy,pr ed ) is made using the viscoplastic flow rule. The flow
rules considered in the three models are mentioned in this section.
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Figure 3.5: Temperature and strain rate dependence on the yield stress of the material
PCR-PP.

The Johnsen rheological model considers two Eyring’s dashpots representing bothα and
β relaxations. The flow stress contribution from each dashpot is considered to be addi-
tive. Thus, flow stress equation becomes

σy (ṗ,T )

T
= ∑

x=α,β

KB

Vx
arcsinh

( ṗ

ṗ0,x
exp

[∆Hx

RT

])
(3.7)

At the yield point, it is assumed that the plastic strain rate (ṗ) is equal to the total strain
rate (ϵ̇).

The flow rule described by Mirkhalaf et al. [2], is mentioned in Equation (2.93). At yield,
the plastic logarithmic strain rate can be made approximately equal to the total nominal
strain rate. Since the beginning of plastic flow, no intrinsic softening has developed.
During the uniaxial tensile test, the hydrostatic pressure is given by (p = − 1

3σy ). The
incorporation of these considerations into equation (2.93), flow rule, leads to

σy (T, ϵ̇)

T
= 3Rp

3V +Ω
(
ln

[
A0ϵ̇

]
+ ∆H

RT
− ln

[p3

6

])
(3.8)

where V is the shear activation volume and Ω is the pressure activation volume. The
pressure coefficient (µ) and characteristic stress (τ0) are defined as

τ0 = RT

V
(3.9)

µ= Ω
V

(3.10)
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The flow function considered in the model developed by Ames et al. [3] to capture yield
stress is a modified Eyring’s flow rule, developed by assuming probability of a successful
cooperative event involving the simultaneous occurrence of m transitions which means
that the yield point is reached when m segments of polymers move simultaneously [70],
[71], that is in a cooperative way. The flow rule given in equation (2.112) denotes a net
shear stress for thermally activated flow. The shear stress equation is converted to ten-
sile assuming (τ= σp

3
) as yield stress values pf PCR-PP and PCR-PE are estimated using

tensile tests. Similarly to the Mirkhlaf model, the contribution of internal variables Sa

and Sb associated with the strain softening behavior is neglected. Substituting equation
(2.113) in (2.112) and performing simple algebraic manipulations, the flow stress equa-
tion becomes

σy (T, ϵ̇)

T
= 2Kb

V

(
1− αp

3

)−1
arsinh

[( ϵ̇
ϵ̇0

)m]
(3.11)

where V is the shear activation volume, Q is the activation, αp is the pressure coefficient
and ϵ̇0 is the reference plastic strain.

3.3.3. POST YIELD RESPONSE
The post-yield response of polymers includes strain softening and orientational harden-
ing. The experimental results in the figure 3.1 show that PCR-PP has no strain-softening
effect. So, material parameters that affect the softening have little impact on the op-
timization process. Bayesian optimization was implemented with the GPyOpt mod-
ule [72] due to its simplicity and ease of connection with the FEM simulation software.
Based on the review of the acquisition function summarized earlier, the Expected Im-
provement function was chosen for its trade-off in exploration and exploitation. The
bounds of the material parameters of the three models that affect the post-yield response
of PCR-PP are mentioned in Tables 3.2 - 3.4. The stress-strain curves of each model are
calculated for values of material parameters at the maximum of the acquisition func-
tion and the objective function is evaluated. The process is repeated until the number
of iterations is equal to the maximum number of iterations. The maximum number of
iterations considered in the analysis 125. The value of a maximum number of iterations
is selected based on the convergence of the respective models. Convergence is defined
as the value of the objective function (MSE) at which it is not affected by the number of
iterations. Optimization of these parameters is performed at room temperature (T = 296
K) and low strain rate (ϵ̇= 0.001667s−1), where isothermal conditions were met, resulting
in an increase in low temperature rise due to plastic dissipation.

MSE = 1

n

n∑
i=1

(σexp,i −σsi m,i )2 (3.12)
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Figure 3.6: Bayesian optimization procedure for materials parameters affecting post
yield response

After optimization, the material parameters of PCR-PP used in the subsequent simula-
tions are presented in Tables 3.2 - 3.4.

Table 3.2: Material Properties of PCR-PP after calibration of Johnsen model

Properties Units Bounds of parameters PCR-PP
Elastic G MPa (-) 380

aA K −1 [-5, 5] 0.015
Yield stress ∆Hα KJ/mol [180, 230] 226.368

Vα nm3 [3, 7] 4.27
ṗ0,α s−1 [1∗1027, 3∗1027] 2.238∗1027

∆Hβ KJ/mol [190, 240] 218.34
Vβ nm3 [3, 7] 3.35

ṗ0,β s−1 [5∗1038, 6∗1038] 5.65∗1038

Hardening bα (-) [6, 10] 10
bβ (-) [11.5, 15] 12

µB ,r e f MPa [2,5] 2
κB MPa [1400, 1550] 1423.72
λlock (-) [3.5, 5] 3.75
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Table 3.3: Material Properties of PCR-PP after calibration of Mirkhalaf model

Properties Units Bounds of parameters PCR-PP
Elastic E MPa (-) 950

ν (-) (-) 0.45
Yield stress ∆H J/mol [1∗105, 4∗105] 212501.6

A0 s−1 [1∗1029, 1∗1025] 1.46∗10−26

V m3/mol [1∗10−4, 1∗10−2] 0.00354
Ω m3/mol [1∗10−5, 1∗10−3] 0.000961

Softening h (-) [120, 150] 149.91
D∞,0 (-) [0.1,0.8] 0.66

Hardening H MPa [-5, -0.01] -3.91
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Table 3.4: Material Properties of PCR-PP after calibration of Anand model

Properties Units Bounds of parameters PCR-PP
Elastic Tg K (-) 260

ρ K g /m3 (-) 900
α K −1 (-) 7∗10−5

G0 MPa (-) 570
M MPa K −1 (-) 5.02
νpoi (-) (-) 0.43

Back stress X MPa K −1 (-) 0
γ (-) (-) 0

Yield stress αp (-) [0.3, 0.75] 0.326
ν0 s−1 [1∗1017, 1∗1020] 1.273∗1019

m (-) [0.3, 0.5] 0.32
Q J [1∗10−21, 1∗10−18] 2.799∗10−19

V m3 [1∗10−27, 1∗10−25] 3.65∗10−27

Softening h1 (-) (-) 0
b MPa (-) 0
g1 (-) (-) 0
g2 K −1 (-) 0
φr (-) (-) 0
k K (-) -0.16
r (-) (-) 0
s (-) (-) 0
νr s−1 (-) 0
n (-) (-) 0
h2 (-) (-) 0
l1 MPa (-) 0
l2 MPa K −1 (-) 0

Hardening µ0 MPa [2, 5] 4.438
N MPa K −1 (-) 0
Im (-) [25, 60] 44.5326

thermal c0 J K g−1 K −1 (-) 2120
c1 J K g−1 K −2 (-) 8
κ0 W at t m−1 K −1 (-) 0.467
κ1 (-) (-) 0.46
ω (-) (-) 0.8

3.4. RESULTS

3.4.1. TENSILE TESTS
The comparison of the numerical and experimental results of PCR-PP are presented in
this section. All the numerical and experimental results are obtained from the uniaxial
tension tests shown in the figures 3.7, 3.8 and 3.9. Nine different configurations of tem-
perature and strain rates were investigated in total: three temperatures 296 K, 273 K and
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319 K for each temperature three nominal strain rates of 1.667∗10−3 s−1, 1.667∗10−2 s−1

and 0.1667 s−1.

(a) (b)

(c)

Figure 3.7: Comparison of the experimental and simulation results of PCR-PP at T = 296
K. Curves at ϵ̇= 0.00167 s−1 are used for calibration.

Table 3.5: Mean square errors of PCR-PP at T = 296 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Johnsen Model 0.58 0.69 1.12

Mirkhalaf Model 0.612 1.16 1.47

Anand Model 0.606 0.31 2.05
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(a) (b)

(c)

Figure 3.8: Comparison of Experimental and simulation results of PCR-PP at T = 273 K

Table 3.6: Mean square errors of PCR-PP at T = 273 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Johnsen Model 7.905 16.77 18.84

Mirkhalaf Model 2.36 9.76 10.76

Anand Model 5.11 3.54 15.89
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(a) (b)

(c)

Figure 3.9: Comparison of experimental and simulation results of PCR-PP at T = 319 K

Table 3.7: Mean square errors of PCR-PP at T = 319 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Johnsen Model 3.13 1.71 2.12

Mirkhalaf Model 0.32 0.34 1.94

Anand Model 4.38 4.88 3.96
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(a) T = 296 K (b) T = 273 K

(c) T = 319 K

Figure 3.10: Comparison of Mean square error values of PCR-PP for different models

The uniaxial tensile test simulations are performed at strain rates ϵ̇= 1.667∗10−3, 1.667∗
10−2, 0.1667 at temperatures T = 273 K, 296 K and T = 319 K. The corresponding simu-
lation results are presented in figures 3.7, 3.8 and 3.9 and the parameters employed in
the simulations are shown in Table 5.1. From figure 3.7 it is observed that all three mod-
els accurately capture material behavior at room temperature (T = 296 K) at three strain
rates. From figure 3.8 it is seen that the model’s capability to capture the real material
behavior diminishes when the temperature T = 273 K and at a high strain rate. The expo-
nential relation of the shear modulus (G) considered by Johnsen et al. [1] cannot predict
elastic behavior accurately. This inaccuracy is also observed by Johnsen et al. [1]. The
slopes of strain hardening is accurately predicted over all temperatures and strain rates.
At temperature T = 319 K, the models overestimated the yield stress, as the viscoelastic
effects are ignored in the models. However, the model developed by Mirkhalaf et al. [2]
captures the overall behavior accurately at T = 319 K. From the mean square error val-
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ues, it is concluded that among the three models considered, the model developed by
Mirkhalaf et al. [2] predicts the real material behavior of PCR-PP accurately.

CONCLUDING REMARKS

In this chapter, the mechanical response of PCR-PP is analyzed using the elasto-viscoplastic
models developed by Johnsen et al. [1], Mirkhalaf et al. [2], and Anand et al. [3] through
tensile tests. The Bayesian optimization technique is used to calibrate the material prop-
erties of PCR-PP. The simulation results show that Mirkhalaf model predicts the behav-
ior accurately compared to other models. In comparison, the Mirkhalaf model takes less
computational time. The Johnsen model takes large computational time as the Jaco-
bian is calculated numerically. The numerical implementation of the stiffness matrix is
discussed in appendix A.





4
THERMO VISCOPLASTIC ANALYSIS

OF PCR-PE

I n he current chapter, PCR-PE’s mechanical response was examined under tensile tests.
The present investigation is particularly focused on two finite strain thermo-elasto-

viscoplastic constitutive models, [2] and [3]. The experimental results shown in figure
4.1, the PCR-PE exhibits strain softening behaviour and failure strain is 1100%. As the
Johnsen model does not consider the effect of strain softening in the model, it is ig-
nored. The Bayesian optimization approach presented in chapter 3 is used to calibrate
the material parameters. With the optimal set of parameters obtained, the stress-strain
response of PCR-PE is predicted for three different temperatures and strain rates. The
results obtained are compared with the experimental results. To analyse the predictive
capabilities of the model under different stress triaxiaties, the simulations are made for
round notch specimens with different radius of curvature and results obtained are com-
pared with the experimental results made by Hachour et al [73].

4.1. EXPERIMENTAL RESULTS
In this study, similar to PCR-PP uniaxial tension tests of PCR-PE were performed at three
temperatures (T = 273 K, T = 296 K and T = 319 K) and three different cross-head velocities
(v = 2 mm/min, v = 20 mm/min and v = 200 mm/min).

55
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(a) ϵ̇= 0.001667s−1 (b) ϵ̇= 0.01667s−1

(c) ϵ̇= 0.1667s−1

Figure 4.1: Uni-axial tensile test results of PCR-PE

The stress-strain behaviour of PCR-PE (QCP 5603) reported in 4.1. The experimental
results shows that an increase in temperature has a similar impact on Young’s modulus
and the flow stress as a decrease in strain rate. The increase of temperature results in
decrease of yield stress and young’s modulus. Unlike to PCR-PP, the PCR-PE exhibits the
strain softening (necking) behaviour after yield stress. The reduction in stress value is
different for different temperatures and strain rates. The consequence of necking is that
necking region tends to elongate, and value of engineering stress is constant.

4.2. MODIFICATION OF ANAND MODEL: UPDATE OF ORIENTA-
TIONAL HARDENING OF POLYMERS

Boyce et al. [24], Gissen et al. [74], Anand et al. [75], Johnsen et al. [1], and many other
models assumed that to model the stress rise due to locking and stretching of polymers
at high strains, polymers behave like rubber and used entropic-network models. In the
Anand model, a Gent theory [76] has been employed to capture stress increase at large
strains. On analyzing the PCR-PE stress-strain behavior using the Anand model, it is
found that the model works for the strain up to 700 %. Later the model exhibits con-
vergence issues. From the experimental results, it is observed that PCR-PE has a failure
strain greater than 1100 %. The Gent theory employed in the Anand model-derived the
strain energy equation assuming that each molecule segment between successive points
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of cross-linkage is considered as Gaussian chain. The commonly used Arruda Boyce
hardening model makes a different assumption as shown in figure 4.2. At large strains,
Arruda Boyce model considers that each molecule segment between successive points of
crosslinking is a non-Gaussian chain. The free energy is derived from the non-Gaussian
probability distribution.

Therefore, the orientational hardening of the material due to the alignment of the poly-
mer chains is captured by the eight chain model [25].

ρΨ = κ

2
(ln(J ))2 −3καT ln(J )(T −T0)+µB (T )λ2

lock

[( λ

λl ock

)
ξ+ ln

( ξ

sinhξ

)]
(4.1)

where

µB =µB ,r e f
T

Tr e f
(4.2)

Figure 4.2: Typical stress–stretch relationship for an elastomer [77]

To implement Arruda Boyce eight chain model, the σ(2) term in the equation (2.109) is
replaced as

σ(2) = 1

J

[µB (T )λl ock

3λc,n+1

L−1
(λc,n+1

λlock

)
BD,n+1 −κB ln(Jn+1I −3κBα(Tn −T0)I

]
(4.3)

The simulation results of the modified Anand model with Arruda-Boyce eight-chain hard-
ening law in comparison with the experimental results are shown in the next sections.
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4.3. CALIBRATION OF MATERIAL MODEL
The same procedure mentioned in the previous chapter is used to calibrate the material
properties of PCR-PE. The shear modulus temperature sentivity parameters and Eyring’s
flow stress parameters are calibrated using equations 3.1 and 3.6 respectively. The tem-
perature dependence of Young’s modulus and yield stress are shown in figure 4.3.The
material properties of PCR-PE after calibration are mentioned in table 4.2 and 4.3.

(a) Young’s Modulus (b) Yield stress

Figure 4.3: Temperature and strain rate dependence of Young’s modulus and Yield stress
PCR-PE

Table 4.1: Temperature sensitivity parameters of Elastic properties after optimization

Material model Properties Units Bounds of parameters Values

Mirkhalaf model a (-) [-1, 0] -0,00462

b K −1 [1, 6] 2.3823

Anand model M K −1 [1, 5] 1.363

Table 4.2: Material Properties of PCR-PE after calibration of Mirkhalaf model

Properties Units Bounds of parameters PCR-PE
Elastic E MPa (-) 950

ν (-) (-) 0.43
Yield stress ∆H J/mol [105, 4∗105] 191817

A0 s−1 [10−29, 10−25] 5.19∗10−26

V m3/mol [10−4, 10−2] 0.00248
ω m3/mol [10−5, 10−3] 0.00062

Softening h (-) [50, 150] 52.18
D∞,0 (-) [3, 7] 5.387

Hardening H MPa [0.0001, 0.0008] 0.0001
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Table 4.3: Material Properties of PCR-PE considered for Anand Model with Arruda Boyce
Orientational Hardening after optimization

Properties Units Bounds of parameters PCR-PE
Elastic Tg K (-) 173

ρ K g /m3 (-) 930
α K −1 (-) 7∗10−5

G0 MPa (-) 469
M MPa K −1 (-) 1.363
νpoi (-) (-) 0.42

Back stress X MPa K −1 (-) 0.0017
γ (-) (-) 6.92

Yield stress αp (-) [0.2, 0.8] 0.534
ν0 s−1 [1015, 1020] 5.27∗1017

m (-) [0.1, 0.5] 0.32207
Q J [10−23, 10−18] 2.186∗10−19

V m3 [10−33, 10−25] 1.936∗10−27

Softening h1 (-) [13, 17] 15.1
b MPa [650, 800] 690.41
g1 (-) [0.4, 1] 0.504
g2 K −1 (-) 0
φr (-) (-) 0.00072
k K [-0.5, -0.3] -0.45
r (-) [0.25, 0.45] 0.256
s (-) (-) 0.03
νr s−1 (-) 0.00288
n (-) (-) 1.6
h2 (-) (-) 0.39
l1 MPa [300, 400] 325.39
l2 MPa K −1 [0.5, 1.1] 0.869

Hardening µB ,r e f MPa [0.1, 0.3] 0.11
κB MPa [8000, 9000] 8532
λl ock (-) [7, 10] 9.14

thermal c0 J K g−1 K −1 (-) 3546
c1 J K g−1 K −2 (-) 0
κ0 W at t m−1 K −1 (-) 0.46
κ1 (-) (-) 0
ω (-) (-) 0.8

4.4. RESULTS

4.4.1. TENSILE TESTS
The comparison of the numerical and experimental results are presented in the follow-
ing section. Similar to PCR-PP, nine different configurations of temperature and strain
rates were investigated in total: three temperatures 296 K, 273 K and 319 K and for each
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temperature three nominal strain rates of 1.667∗ 10−3 s−1, 1.667∗ 10−2 s−1 and 0.1667
s−1. From the work of Mirkhalaf et al. [2] it is observed that D∞ is highly dependent on
temperature. The temperature dependence relation of D∞ is calculated and the relation
is D∞ = D∞,0(0.01699T +5.9771).

(a) (b)

(c)

Figure 4.4: Comparison of Experimental and simulation results of PCR-PE at T = 296 K.
Curves at ϵ̇= 0.00167 s−1 are used for calibration.

Table 4.4: Mean square error values of PCR-PE at T = 296 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Mirkhalaf Model 5.25 5.38 11.1

Anand Model(Arruda

-Boyce Hardening Model) 0.4 3.41 14.26
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(a) (b)

(c)

Figure 4.5: Comparison of Experimental and simulation results of PCR-PE at T = 273 K

Table 4.5: Mean square error values of PCR-PE at T = 273 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Mirkhalaf Model 4.95 4.44 17.37

Anand Model(Arruda

-Boyce Hardening Model) 0.83 17.679 18.21
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(a) (b)

(c)

Figure 4.6: Comparison of Experimental and simulation results of PCR-PE at T = 319 K

Table 4.6: Mean square error values of PCR-PE at T = 319 K

Model ϵ̇= 1.667∗10−3 s−1 ϵ̇= 1.667∗10−2 s−1 ϵ̇= 0.1667 s−1

Mirkhalaf Model 1.347 5.8 9.45

Anand Model(Arruda

-Boyce Hardening Model) 0.82 1.2 3.2
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(a) T = 296 K (b) T = 273 K

(c) T = 319 K

Figure 4.7: Comparison of Mean square error values of PCR-PE for different models

Similar to PCR-PP, the uniaxial tensile test simulations of PCR-PE are conducted at strain
rates ϵ̇= 1.667∗10−3, 1.667∗10−2, 0.1667 at the temperatures T = 273 K, 296K and T = 319
K. The corresponding simulation results are presented in figures 4.4, 4.5 and 4.6 and the
parameters employed in the simulations are shown in Table 4.2 and 4.3. The simulation
shows that the capability of two models to capture the stress-strain behavior diminishes
when the strain rate is increased. The simulation results from the Mirkhalaf model show
that the stress drop takes place abruptly. Note that the saturation value of the soften-
ing parameter (D∞) that captures the stress drop only depends on temperature in the
model. However, from the experimental results it can be observed that D∞ is also strain
rate dependent, which explains the stress drop is not captured properly. The simulation
results obtained from the Anand model capture the post yield response of the material
accurately at low strain rates for different temperatures. Though the Anand model ac-
curately captures the stress drop and strain hardening behavior at high strain rates, the
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model fails to capture softening region accurately for those conditions. Overall the com-
parison of simulation and experimental results shows that the Anand model captures the
real material behavior of PCR-PE accurately compared to the Mirkhalaf model.

4.4.2. TRIAXIALITY TESTS
In the previous section, the convention mechanical loading experiment such as tensile
test results are investigated using both experiments and simulations. It is also very im-
portant to analyse the predictive capabilities of the model under different numerical ex-
amples such as round notch specimens, when the multiaxial stress state is observed.
The multiaxial stress state is quantified using stress triaxiality ratio (T) defined as ratio
of hydrostatic stress (σh) and von-mises equivalent stress (σeq ).

T = σh

σeq
(4.4)

where σh and σeq defined in terms of principal stresses are

σh = 1

3
(σ1 +σ2 +σ3) (4.5)

σeq = 1

2

(
(σ1 −σ2)2 + (σ1 −σ3)2 + (σ3 −σ2)2

) 1
2

(4.6)

At the center of the median cross-section the stress triaxiality ratio T was determined
using the Bridgman formula [78]:

T = 1

3
+ ln

(
1+ D

4Rc

)
(4.7)

where D is diameter and Rc is radius of curvature. Experimental results for HDPE under
four different radius of curvatures R80, R10, R4 and R2 are taken from Hachour et al [43].
The dimensions of the round notch specimens used in the simulations are shown in the
figure 4.8.

Figure 4.8: Dimensions of notched round specimens [43]
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The stress triaxiality ratio values for four different curvatures calculated using the Bridg-
man formula are shown in table 4.7.

Table 4.7: Stress triaxiality ratio

radius of curvature (mm) Stress triaxilty ratio

80 0.33

10 0.44

4 0.6

2 0.8

The calibration of the material properties of the notch specimens is performed using
the procedure mentioned in chapter 3 for the test case of R80 specimen and the stress
strain curves of the remaining triaxiality cases are predicted. The properties of calibrated
materials are shown in Table 4.8 - 4.10.

Table 4.8: Material Properties of HDPE after calibration of Johnsen model

Properties Units Bounds of parameters HDPE
Elastic G MPa (-) 320

aA K −1 (-) 0
Yield stress ∆Hα KJ/mol [180, 230] 221.0683

Vα nm3 [3, 7] 4.38
ṗ0,α s−1 [1∗1027, 3∗1027] 1.51∗1027

∆Hβ KJ/mol [190, 240] 201.351
Vβ nm3 [3, 7] 3.747

ṗ0,β s−1 [5∗1038, 6∗1038] 5.05∗1038

Hardening bα (-) [6, 10] 9.912
bβ (-) [11.5, 15] 11.898

µB ,r e f MPa [0.1,1] 0.311
κB MPa [2200, 2750] 2492.78
λl ock (-) [3, 5] 3.403
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Table 4.9: Material Properties of HDPE after calibration of Mirkhalaf model

Properties Units Bounds of parameters HDPE
Elastic E MPa (-) 910

ν (-) (-) 0.43
Yield stress ∆H J/mol [105, 4∗105] 195554.7

A0 s−1 [10−29, 10−25] 3.88∗10−26

V m3/mol [10−4, 10−2] 0.00248
ω m3/mol [10−5, 10−3] 0.00062

Softening h (-) [50, 150] 80.11
D∞,0 (-) [0.1, 1.5] 0.41

Hardening H MPa [8, 16] 12.85
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Table 4.10: Material Properties of HDPE after calibration of Anand model

Properties Units Bounds of parameters PCR-PP
Elastic Tg K (-) 173

ρ K g /m3 (-) 1000
α K −1 (-) 7∗10−5

G0 MPa (-) 320
M MPa K −1 (-) 0
νpoi (-) (-) 0.43

Back stress X MPa K −1 (-) 0
γ (-) (-) 0

Yield stress αp (-) [0.3, 0.75] 0.228
ν0 s−1 [1∗1017, 1∗1021] 5.67∗1019

m (-) [0.3, 0.5] 0.458
Q J [1∗10−21, 1∗10−18] 7.24∗10−19

V m3 [1∗10−27, 1∗10−25] 3.702∗10−27

Softening h1 (-) (-) 0
b MPa (-) 0
g1 (-) (-) 0
g2 K −1 (-) 0
φr (-) (-) 0
k K (-) -0.16
r (-) (-) 0
s (-) (-) 0
νr s−1 (-) 0
n (-) (-) 0
h2 (-) (-) 0
l1 MPa (-) 0
l2 MPa K −1 (-) 0

Hardening µB ,r e f MPa [0.5, 2.5] 1.15
κB MPa K −1 [2000, 3000] 2498.3
λLock (-) [2, 65] 3.05

Thermal c0 J K g−1 K −1 (-) 3546
c1 J K g−1 K −2 (-) 0
κ0 W at t m−1 K −1 (-) 0.19
κ1 (-) (-) 0
ω (-) (-) 0.8
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(a) Radius of curvature R = 80 mm (b) Radius of curvature R = 10 mm

(c) Radius of curvature R = 4 mm (d) Radius of curvature R = 2 mm

Figure 4.9: Comparison of Experimental and simulation results of round notch speci-
mens. Curves at R = 80 mm are considered for calibration.

The experimental results show that the yield stress and strain hardening slope increases
as the specimens’ radius decreases. The comparison of experimental and simulation
results shows that the accuracy of the models diminishes as the stress triaxiality ratio in-
creases. The model Mirkhalaf et al. [2] developed cannot accurately capture the strain
hardening region, as linear hardening law is considered to capture the hardening behav-
ior. The Johnsen model over-predicted the stress values in the strain hardening region.
Anand model can accurately capture HDPE’s stress-strain behavior at low values of stress
triaxilties. However, the deviations are large at high triaxility ratios.



5
CONCLUSION

T HIS chapter summarises the achievements and limitations, and then provides sug-
gestions on potential improvements.

5.1. CONCLUSION
The main objective of the present work is to understand the mechanical performance
of the PCR-PP and PCR-PE. The tensile test results of PCR-PP and PCR-PE shows tem-
perature and strain rate dependent yield stress followed by strain hardening. After re-
viewing the state of the art polymer constitutive models, three plasticity models devel-
oped by Johnsen et al. [1], Mirkhalaf et al. [2], and Anand et al. [3]) are identified and
implemented to assess if they could capture the intrinsic features of the macroscopic
stress–strain response of these polymers. The models were calibrated using the Bayesian
optimization, and then finite element analysis of tensile tests under different loading
conditions are performed aiming at assessing the predictive ability of three constitutive
models.

PCR-PP’s experimental and simulation results are in good agreement for different tem-
peratures and strain rates, especially when considering the model developed by Mirkha-
laf et al. [2] because it does not have a noticeable softening region after yielding.

However, tensile test results of PCR-PE shows formation of necking after yield stress. The
models developed by Mirkhlaf et al. [2] and Anand et al. [3] are considered to predict the
behaviour of PCR-PE. Anand model exhibited some convergence issues for large defor-
mations greater than 700 % engineering strain. To overcome this limitation, the orienta-
tional hardening law was modified with Arruda Boyce eight chain model. The compari-
son of experimental and simulation results shows that both the models have limitations
in accurately predicting the behavior. However, the modified Anand model is able to
predict the behaviour accurately at small strain rates and high temperatures.

In addition, the predictive capabilities of the constitutive models under multi-axial load-
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ing were also investigated. In order to investigate the behaviour and implementation
robustness of the constitutive models, numerical results obtained from Johnsen et al.
[1], Mirkhalaf et al. [2] and modified Anand model for different stress triaxilty ratios are
compared with the experimental results obtained by Hachour et al. [73]. The simula-
tion results obtained from Anand model with Arruda Boyce hardening law are in good
agreement with experimental results for four tri-axility ratios.

Current work has following limitations:

1. The three models considered are developed to analyze the mechanical behaviour
of pure thermoplastics, so they do not consider the effect of the number of recy-
cling cycles on material properties.

2. The considered models do not account for viscoelastic behaviour of polymers.

3. The model developed by Johnsen et al. [1] does not consider the effect of pressure
and strain softening of polymers.

4. The model developed by Mirkhalaf et al. [2] considers linear hardening law, which
limits capturing the true stress-true strain curves accurately for different stress tri-
axiality ratios. The model also does not consider the effect of self-heating due to
plastic dissipation.

5. Bayesian optimization is efficient in tuning few hyper-parameters but its efficiency
degrades a lot when the search dimension increases.

5.2. FUTURE RESEARCH
Although the constitutive modeling goals defined in the present work are achieved, there
are several relevant aspects that can be addressed in future research. These are stated
below together with some brief comments:

1. Effect of recycling. The models can be extended considering the effects of recy-
cling cycles and inclusions.

2. Experimental validation. critical comparison with the numerical results over dif-
ferent loading cases such as bi-axial loading with butterfly specimen would strengthen
the assessment of models.

3. Viscoelastic behaviour. The models’ accuracy can undoubtedly be enhanced by
accounting for the viscoelastic behaviour characteristic of polymers, improving
the prediction of the material behaviour prior to the yield point.
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A
STIFFNESS MATRIX

A.1. STIFFNESS MATRIX
The derivation stiffness matrix of Anand Model is shown in this section.

The stiffness matrix is derived as the following:

D = 1

J

∂(M e +M h)

∂E e,tr i al
(A.1)

∂M e

∂E e,tr i al
= ∂(M e,tr i al −2G∆tDp

n+1)

∂E e,tr i al
(A.2)

from the equation it is known that

M e,tr i al = 2GE e,tr i al
d +K tr (E e,tr i al )I −3KαT (T −T0)I (A.3)

∂M e,tr i al

∂E e,tr i al
= 2G(Is − I ⊗ I )+K I ⊗ I (A.4)

From the equation it is known that

Dp
n+1 =

1p
2

N p
n+1ν

p
n+1 (A.5)

and

N p
n+1 = N p,tr i al (A.6)
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then the above equation can be rewritten as the

Dp
n+1 =

1p
2

N p,tr i alν
p
n+1 (A.7)

∂Dp
n+1

∂E e,tr i al
= 1p

2

[
ν

p
n+1

∂N p,tr i al

∂E e,tr i al
+N p,tr i al

∂ν
p
tr i al

∂E e,tr i al

]
(A.8)

The non-residual equation defined in the equation

f = τ̄tr i al −∆tGνp
n+1 − (S1 +S2 +αp p̄ +τe ) = 0 (A.9)

on derivating the above equation with E e,tr i al , and simple algebraic manipulations it
can be written as

∂ν
p
n+1

∂E e,tr i al
=

∂τ̄tr i al

∂E e,tr i al

∆tG + ∂(S1+S2+αp p̄+τe )

∂ν
p
n+1

(A.10)

In the denominator of the above equation [∆tG+ ∂(S1+S2+αp p̄+τe )

∂ν
p
n+1

], all the terms are scalar

quantities, So the numerical derivation is the feasible and simple way.

∂τ̄tr i al

∂E e,tr i al
=p

2GN p,tr i al (A.11)

∂N p,tr i al

∂E e,tr i al
= 1p

2

[ 1

τ̄tr ai l
[Is − I ⊗ I ]− 2G

τ̄tr ai l
N p,tr i al ⊗N p,tr i al

]
(A.12)

on substituting the equations

∂D
p
n+1

∂E e,tr i al =
ν

p
n+1

2τ̄tr i al [ 1p
2

[ 1
τ̄tr ai l [Is − I ⊗ I ]− 2G

τ̄tr ai l N p,tr i al ⊗N p,tr i al ]]

+ GN p,tr i al ⊗N p,tr i al

∆tG + ∂(S1+S2+αp p̄+τe )

∂ν
p
n+1

(A.13)

On substituting the equation in the above

∂M e

∂E e,tr i al = 2G(Is − I ⊗ I )+K I ⊗ I −2G∆t [
ν

p
n+1

2τ̄tr i al [ 1p
2

[ 1
τ̄tr ai l [Is − I ⊗ I ]

− 2G

τ̄tr ai l
N p,tr i al ⊗N p,tr i al ]]+ GN p,tr i al ⊗N p,tr i al

∆tG + ∂(S1+S2+αp p̄+τe )

∂ν
p
n+1

] (A.14)
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The stiffness matrix of the orientational hardening part is:

∂M h

∂E e,tr i al
= ∂M h

∂C
:

∂C

∂En+1
:
∂En+1

∂E e,tr i al
(A.15)

where
C = F T F (A.16)

from the equation above

∂M h

∂C
=µR [(1− I1 −3

Im
)−1](Cdi s )0 (A.17)

where
Cdi s = J

−2
3 C (A.18)

and (Cdi s )0 is the deviotoric part of Cdi s .

On devrivating and making the few algebraic manipulations the

∂M h

∂C =µR J
−2
3 [((1− I1−3

Im
)−1)[Is − 1

3 (C−1)T ⊗C − 1
3 I ⊗ I + 1

9 tr (C )(C−1)T ⊗ I ]

+ 1

Im
(1− I1 −3

Im
)−2[I ⊗ (Cdi s )0 − tr (C )C−T ⊗ (Cdi s )0]] (A.19)

on substituting in the above equation

∂M h

∂E e,tr i al
= ∂M h

∂C
:
∂exp(2En+1)

∂En +1
: Is (A.20)

The derivative of the exponential of the matrix is evaluated using the procedure men-
tioned in the suzo neto book.

So the total stiffness matrix is calculated as:

D = 1

J

∂(M e +M h)

∂E e,tr i al
(A.21)

A.2. NUMERICAL CONSISTENT TANGENT OPERATOR
Consistent tangent operator, Ct , is found by numerical differentiation. The deformation
gradient is perturbed in such a way that only one of the six unique components of the
rate-of-deformation tensor is changed at the time, i.e.,

F kl
± =± ϵ

2
[(ek ⊗el )F + (el ⊗ek )F ] (A.22)
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where ϵ is the perturbation coefficient set equal to 10−8 and ek for k = 1, 2, 3 are the Carte-
sian base vectors. The perturbed deformation gradient, F (kl ), is then obtained as

F kl
± = F ±∆F (A.23)

For each of the twelve deformation gradients thus obtained, the Cauchy stress tensor
σ(F kl ) is calculated. Using a central difference scheme, the consistent tangent operator
Ct is estimated as

C t
i j (kl ) =

σ(F kl+ )−σ(F kl− )

2ϵ
(A.24)

In Voigt notation this means that for each plus-minus perturbation of the deformation
gradient, we obtain column (kl) in the 6 × 6 tangent operator Ct with row indices i j = 11,
22, 33, 12, 13, 23.

A.3. NUMERICAL INTEGRATION SCHEME OF JOHNSEN MODEL
In the constitutive time integration scheme, it is known that

d t ,Fn ,Fn+1,F p
n ,Tn ,Tn+1,σn (A.25)

at time tn . To compute
σn+1,F p

n+1, ṗ (A.26)

at tn+1. The evolution equation to calculate the plastic gradient tensor considered here
is

Ḟ p
n+1 = Dp

n+1F p
n+1 (A.27)

F p
n+1 = F p

n +∆tDp
n+1F p

n+1 (A.28)

By substituting the Dp from the equation 2.62 as Dp
n+1 = ∆p

∆t ∗N in the above equation
A.28 leads to

F p
n+1 = F p

n +∆pN F p
n+1 (A.29)

By making the trivial algebraic calculations, the inverse of plastic deformation gradient
tensor is calculated as

(F p
n+1)−1 = (1−∆pn+1(Fn+1)−1NnFn+1)(F p

n )−1 (A.30)

where Nn can be calculated from the equation 2.63. The elastic deformation gradient
tensor can be calculated as

F e
n+1 = Fn+1(F p

n+1)−1 (A.31)

Using the elastic deformation gradient and its polar decomposition the von Mises equiv-
alent stress can be calculated using the equations 2.61. The constitutive relations for
the two dashpots gives the residual equation as the function of the plastic strain rate as
shown below

f (ṗn+1) = fn+1 =σvm
D,n+1 −σv,n+1 (A.32)
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where σv,n+1 is the viscous stress calculated using the Eyrings equation (5.16). The up-
dated value of the equivalent plastic strain rate is estimated using the secant numerical
method.

ṗ i+1
n+1 = ṗ i

n+1 − f i
n+1

ṗ i
n+1 − ṗ i−1

n+1

f i
n+1 − f i+1

n+1

(A.33)

The numerical iteration procedure continues until the criteria of convergence is fulfilled.
So the value of stress (σe

A,n+1) contribution from part A is

σe
A,n+1 =

2

J
µA(T ) ln(V e ) (A.34)

The value of the stress (σB ,n+1 in part B is explicitly dependent on the deformation gra-
dient Fn+1 and Tn and is estimated as

σB ,n+1 = 1

J
(
µB (T )λlock

3λc,n+1

L−1(
λc,n+1

λlock
)BD,n+1 −κB ln(Jn+1I −3κBα(Tn −T0)I ) (A.35)

So the total stress
σn+1 =σe

A,n+1 +σB ,n+1 (A.36)

A.4. NUMERICAL INTEGRATION ALGORITHM OF MIRKHALAF MODEL
In the constitutive time integration scheme, it is known that

d t ,Fn ,Fn+1,εp
n ,εp

nσn (A.37)

at time tn . To compute
σn+1,εp

n+1,εp
n+1 (A.38)

at tn+1. The evolution equation to calculate the accumulated plastic strain considered
here is

ε̇
p = 1p

3
γ̇ (A.39)

The incremental accumulated plastic strain is obtained as

ε
p
n+1 = ε

p
n + ∆tp

3
∆γ (A.40)

From the viscoplastic flow rule, the plastic strain rate is obtained from the equation
2.86.

ε̇p = τd

2η
(A.41)

It is considered that the viscoplastic flow rule is purely deviotoric and the incremental
plastic strain obtained from the above equation as

ε
p
d ,n+1 = ε

p
d ,n + ∆t

2ηn+1
τd ,n+1 (A.42)
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From the equation 2.78 and 2.79 the plastic multiplier can be written as

γ̇=
p

2d p : d p (A.43)

By replacing d p with the equation 2.86 yields

γ̇= 1

2η

√
2τd : τd (A.44)

On substituting the equation A.45 in equation A.41 the accumulated plastic strain is ob-
tained as

ε
p
n+1 = ε

p
n +

p
3∆t

3ηn+1
τ

eq
n+1 (A.45)

where viscosity is

ηn+1 = A0exp[
∆H

RT
+ µPn+1

τ0
−D∞+D∞exp(

−h
p

3εp
n+1p

2D∞
)][

τ
eq
n+1

si nh(
τ

eq
n+1
τ0

)
] (A.46)

As the explained in the chapter 3, the trial strain is obtained as

εtr i al
n+1 = εn+1 −εp

n (A.47)

The deviotoric stress tensor can be expressed as

τd ,n+1 = 2Gεe
d .n+1 = 2G(εd .n+1 −εp

d .n+1) (A.48)

on substituting the equation (6.41) in the above equation, and by straightforward alge-
braic manipulations

τd ,n+1 =
ηn+1

ηn+1 +∆tG
τtr i al

d ,n+1 (A.49)

where
τtr i al

d ,n+1 = 2Gεtr i al
n+1 (A.50)

The equivalent deviotoric stress can be written in terms of trial stress as

τ
eq
n+1 =

√
1

2
τd ,n+1 : τd ,n+1 =

√
1

2

ηn+1

ηn+1 +∆tG
||τtr i al

d ,n+1|| (A.51)

The accumulated plastic strain and plastic are rewritten in terms of the trial stress as

ε
p
n+1 = ε

p
n + 1p

6

∆t

(ηn+1 +∆t )
||τtr i al

d ,n+1|| (A.52)

ε
p
n+1 = ε

p
n + ∆t

2(ηn+1 +∆t )
τtr i al

d ,n+1 (A.53)

On substituting the equations A.52 and A.53 in the equation A.47 and reduced to a single
scalar non-linear residual equation as

R = ηn+1 −C1
C2

C3
(A.54)
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where

C1 = A0exp[
∆H

R ∗T
+ µPn+1

τ0
−D∞+D∞exp[−

√
3

2

h

D∞
C4]] (A.55)

C2 =
√

1

2
(

ηn+1

ηn+1 +∆tG
)||τtr i al

d ,n+1|| (A.56)

C3 = sinh
1

τ0

√
1

2
(

ηn+1

ηn+1 +∆tG
)||τtr i al

d ,n+1|| (A.57)

C4 = εp
n + 1

3

√
3

2

∆t

ηn+1 +∆tG
||τtr i al

d ,n+1|| (A.58)

The ηn +1 solved using the Newton-Raphson method.

ηk
n+1 = ηk−1

n+1 −
Rk−1

∂Rk−1

∂ηk−1
n+1

(A.59)

The derivative of residual is trivial and given as

∂R

∂η
= 1− C2

C3

∂C1

∂η
− C1

C3

∂C2

∂η
+ ∂C3

∂η

C1C2

C 2
3

(A.60)

After the estimation of the viscosity the accumulated plastic strain, plastic strain tensor
and Cauchy stress are calculated using the equations mentioned above.

CONSISTENT TANGENT OPERATOR

The spatial tangent modulus is estimated as

ai j kl =
1

2J
[D : L : B]i j kl −σi lδ j k (A.61)

where D is the elastic-viscoplastic consistent tangent operator. The fourth order tensor
L is estimated as

L = ∂ ln[B e,tr i al
n+1 ]

∂[B e,tr i al
n+1 ]

(A.62)

and the fourth order tensor B is defined as

Bi j kl = δi k [B e,tr i al
n+1 ] j l +δ j k [B e,tr i al

n+1 ]i l (A.63)

The closed form of the elasto-viscoplastic consistent tangent operator D is defined as

Dev p = [ ∆tG
(ηn+1)2 ( ∂R

∂ηn+1
)−1F1(1−F2 −F3)τd ,n+1 ⊗τd ,n+1 − ∆tG

ηn+1(ηn+1+∆tG)

(
∂R

∂ηn+1
)−1C1

C2

C3

µK

τ0
τd ,n+1 ⊗ I + ηn+1

ηn+1 +∆tG
2G ID +K I ⊗ I +H ID ] (A.64)
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A.5. NUMERICAL INTEGRATION ALGORITHM OF ANAND MODEL
In the constitutive time integration scheme, it is known that

d t ,Fn ,Fn+1,F p
n ,Sa,n ,Sb,n ,νp

n ,σn (A.65)

at time tn . To compute
σn+1,F p

n+1,Sa,n ,Sb,n ,νp
n (A.66)

at tn+1. The evolution equation to determine the plastic deformation gradient tensor
using the exponential map is

F p
n+1 = exp(∆tDp

n+1)F p
n (A.67)

The trial deformation gradient is calculated using the equation

F tr
n+1 = Fn+1(F p

n )−1 (A.68)

From the multiplicative split of deformation gradient tensor, the elastic gradient can be
written as

F e
n+1 = Fn+1(F p

n+1)−1 (A.69)

on substituting the plastic deformation gradient evolution equation in the above equa-
tion the relation between the trial deformation gradient and elastic deformation gradient
is obtained as

F e
n+1 = F tr exp[−∆tDp

n+1] (A.70)

Re
n +1 = R tr (A.71)

U e
n +1 =U tr exp[−∆tDp

n+1] (A.72)

On applying the logarithm on both sides, the relation between the trial strain and elastic
strain is obtained as

E e
n+1 = E tr −∆tDp

n+1 (A.73)

since Dp
n+1 is deviotoric all the time, the above equation can be written as

E e
d ,n+1 = E tr

d −∆tDp
n+1 (A.74)

On multiplying with 2G the above equation can be rewritten as

M e
d ,n+1 = M tr

d −2G∆tDp
n+1 (A.75)

Since the effective stress is the driving flow for the plasticity, the deviotoric effective stress
is defined as

(M e
d ,n+1)e f f = (M tr

d )e f f − (Mback )n −2G∆tDp
n+1 (A.76)

then defining the rate of deformation gradient tensor

Dp
n+1 =

1p
2
ν

p
n+1N p

n+1 (A.77)
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N p
n+1 =

(M e
d ,n+1)e f fp

2τn+1
(A.78)

τn+1 =
||(M e

d ,n+1)e f f ||p
2

(A.79)

The effective trial stress is defined as

(M tr
d )e f f = (M tr

d )− (Mback )n (A.80)

(N p )tr = (M tr
d )e f fp
2τtr (A.81)

It is assumed that

(N p )tr = N p
n+1 (A.82)

as the direction of plastic flow is equal.

p
2N p

n+1τn+1 =
p

2(N p )trτtr −p
2∆tGνp

n+1N p
n+1 (A.83)

This leads to the important relation as

τn+1 = τtr −∆tGνp
n+1 (A.84)

EVOLUTION EQUATION FOR INTERNAL VARIABLES

The value of the deformation resistance is estimated as

Sa,n+1 =
Sa,n +hab∆tνp

n+1(ϕ∗
n+1 −ϕn+1)

1+∆thaν
p
n+1

(A.85)

where

ϕn+1 =
ϕn +∆t gνp

n+1ϕ
∗
n+1

1+∆t gνp
n+1

(A.86)

ϕ∗
n+1 =ϕr [1+ (

Tc,n+1 −Tn+1

k
)r ](

ν
p
n+1

νr
)s (A.87)

The value of deformation resistance Sb is estimated as

Sb,n+1 =
Sb,n +hb∆tνp

n+1(λn+1 −1)

1+∆thbν
p
n+1(λn+1 −1)

(A.88)

The evolution equation for the internal variable A is defined as

An+1 = An +∆t (Dp
n+1 An + AnDp

n+1 −γAn ln Anν
p
n+1) (A.89)
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SOLUTION OF IMPLICIT EQUATION ν
p
n+1

From the flow rule

ν
p
n+1 = ν0 exp(− Q

KB T
)[sinh[

(τe )n+1V

2KB T
]]

1
m (A.90)

on rearranging the above term the shear stress is calculated as

τe = 2KB Tn+1

V
si nh−1[(

ν
p
n+1

ν∗
)m] (A.91)

where

ν∗ = ν0 exp(− Q

KB T
) (A.92)

The non-linear residual function in terms of plastic multiplier is developed from shear
yielding theory is

F = τn+1 −Sa,n+1 −Sb,n+1 −αp p −τe,n+1 (A.93)

The νp
n+1 is solved using the newton raphson method. On substituting the equations

2.104 and 2.109 The total stress is calculated using the equation

σ=σ(1) +σ(2) (A.94)



B
MATERIAL PARAMETER

CALIBRATION

In the present chapter the parametric study of the three models developed by Johnsen et
al. [1], Mirkhalaf et al. [2] and Anand et al. [3] is made. The study is important to select
the bounds of the material parameters in the Bayesian Optimization.

B.1. ROLE OF MATERIAL PROPERTIES IN JOHNSEN MODEL
The implemented finite strain elasto-viscoplastic constitutive model accounts for a total
of 9 material properties. For the purpose of understanding the influence of each material
property on the predicted elasto-viscoplastic behaviour, a systematic parametric study
on the tensile test at T = 298 K, ε̇ = 10−3 s−1 has made.

In the following parametric studies, the properties of Low density polyethylene men-
tioned in the table B.1 are taken as reference [1]. Each material property is then changed
in turn, while keeping the remaining constant, in order to ascertain its effect on the pre-
dicted material behaviour. From the results obtained in the clearly show that the mate-
rial properties can be classified in three categories as:

• Properties affecting the Elastic behaviour: G

• Properties affecting the Yield point: ∆Hα, ∆Hβ, Vα, Vβ, ṗ0,α and ṗ0,β

• Properties affecting the post yield behaviour: bα, bβ, µB ,r e f , κB and λl ock
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Table B.1: Material Properties considered for parametric study of Johnsen Model [1]

Properties LDPE
µA,r e f 46 MPa

aA 0.028 K −1

∆Hα 179.5 KJ/mol
Vα 4.72 nm3

ṗ0,α 2.36∗1025 s−1

bα 3 (-)
∆Hβ 196.1 KJ/mol
Vβ 3.19 nm3

ṗ0,β 6.13∗1036 s−1

bβ 10 (-)
µB ,r e f 2 MPa
κB 1500 MPa
λlock 5.2 (-)

B.1.1. ELASTIC BEHAVIOUR
Concerning the elastic behaviour, it is only verified the influence of the shear modulus,
G. In Figure B.1, the true stress - true strain and force - displacement curves are shown
for four different values of the shear modulus. As expected, an increase of G leads to a
corresponding increase of the slope in the elastic domain, consistent with an increase of
the material stiffness.

(a) (b)

Figure B.1: Variation of G: (a) True stress-true strain curves (b) Force-displacement
curves

B.1.2. YIELD POINT
Concerning the yield point, the material properties such as activation energy of α re-
laxation (∆Hα) and of β relaxation(∆Hβ) both similarly affects the yield point. As the
the value of activation energy increases the value yield strength of the material also in-
creases. As the material property activation volume of α relaxation (Vα) increases the
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yield strength of the material decreases. It also been observed that the activation volume
of β relaxation does not affect the yield point significantly. The reference plastic strain
rates of the bothα relaxation(ṗ0,α) and β relaxation (ṗ0,β) affects the yield strength simi-
larly. As the value of reference plastic strain rate value increases, the yield strength of the
material decreases. The parametric study of the material properties affecting the yield
strength are clearly shown in the figures B.2 to B.7.

(a) (b)

Figure B.2: Variation of ∆Hα: (a) True stress-true strain curves (b) Force-displacement
curves

(a) (b)

Figure B.3: Variation of Vα: (a) True stress-true strain curves (b) Force-displacement
curves
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(a) (b)

Figure B.4: Variation of ṗ0,α: (a) True stress-true strain curves (b) Force-displacement
curves

(a) (b)

Figure B.5: Variation of ∆Hβ: (a) True stress-true strain curves (b) Force-displacement
curves

(a) (b)

Figure B.6: Variation of Vβ: (a) True stress-true strain curves (b) Force-displacement
curves
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(a) (b)

Figure B.7: Variation of ṗ0,β: (a) True stress-true strain curves (b) Force-displacement
curves

B.1.3. POST YIELD BEHAVIOUR
Concerning the post-yield behaviour, As the value of bα, Bulk modulus(κB ) and locking
stretch (λlock ) increases, both the true stress and force values increases as shown in the
figures B.8 to B.10

(a) (b)

Figure B.8: Variation of bα: (a) True stress-true strain curves (b) Force-displacement
curves
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(a) (b)

Figure B.9: Variation of µB ,r e f : (a) True stress-true strain curves (b) Force-displacement
curves

(a) (b)

Figure B.10: Variation of λl ock : (a) True stress-true strain curves (b) Force-displacement
curves

B.2. ROLE OF MODEL MATERIAL PROPERTIES IN MIRKHALAF

MODEL
The implemented finite strain elasto-viscoplastic constitutive model accounts for a total
of 9 material properties. For the purpose of understanding the influence of each material
property on the predicted elasto-viscoplastic behaviour, a systematic parametric study
on the tensile test at T = 293K , ε̇ = 10−3s−1 and atmospheric pressure p = 105Pa.The
dimensions of the tensile test specimen are shown in the figure 3.2. The specimen is
discretized in 2544 C3D8R elements as shown in the figure 3.2.

In the following parametric studies, the properties of PS are taken as reference ??. Each
material property is then changed in turn, while keeping the remaining constant, in
order to ascertain its effect on the predicted material behaviour. The results obtained
clearly show that the material properties can be classified in three categories as:

• Properties affecting the Elastic behaviour: E and ν

• Properties affecting the Yield point: ∆H , A0, τ∗ and µ.
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• Properties affecting the post yield behaviour: h, D∞ and H

B.2.1. ELASTIC BEHAVIOUR
Concerning the elastic behaviour, it is only verified the influence of the Young modulus,
E. In Figure the true stress - true strain and force - displacement curves are shown for
four different values of the Young modulus. As expected, an increase of E leads to a
corresponding increase of the slope in the elastic domain, consistent with an increase of
the material stiffness.

(a) (b)

Figure B.11: Variation of E (a) True stress-true strain behaviour (b) Force-displacement
curves

B.2.2. YIELD POINT
Concerning the yield point, all four material properties (activation energy, ∆H , funda-
mental vibration temperature factor, A0, characteristic stress τ0, and pressure coeffi-
cient, µ) seem to have a similar effect on the material behaviour, as can be clearly seen
in Figures. An increase of any of these properties results in a upward translation of both
true stress - true strain and force - displacement curves, keeping the elastic and post
yield behaviours essentially unchanged.

(a) (b)

Figure B.12: Variation of∆H (a) True stress-true strain behaviour (b) Force-displacement
curves
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(a) (b)

Figure B.13: Variation of A0 (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.14: Variation of τ0 (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.15: Variation of µ (a) True stress-true strain behaviour (b) Force-displacement
curves
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B.2.3. POST YIELD BEHAVIOUR
Regarding the post yield behaviour, the two material properties related with the strain
softening phenomenon (softening slope, h, and softening saturation, D∞) have the ex-
pected influence from the physical point of view. Observation of figure B.16 shows that
the softening slope parameter, h, essentially affects the stress drop region resultant from
the strain softening, after which the curves tend to converge as the strain hardening
evolves. An increase of h leads to an increase of the curve concavity and a more pro-
nounced stress drop. In turn, Figure shows that an increase of the softening saturation
parameter, D∞ also leads to a more pronounced stress drop by increasing the material
susceptibility to strain softening. However, the curves no longer tend to converge as the
strain hardening evolves, exhibiting a translational pattern instead. In what concerns the
hardening modulus, H, the influence is evident and physically consistent. An increase
of H leads to an increase of the material strain hardening and the associated increase of
the tangent modulus on the hardening region, as shown in figure B.12.

(a) (b)

Figure B.16: Variation of h (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.17: Variation of D∞ (a) True stress-true strain behaviour (b) Force-displacement
curves
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(a) (b)

Figure B.18: Variation of H (a) True stress-true strain behaviour (b) Force-displacement
curves

B.3. ROLE OF MODEL MATERIAL PROPERTIES IN ANAND MODEL
The implemented finite strain elasto-viscoplastic constitutive model accounts for a total
of 9 material properties. For the purpose of understanding the influence of each ma-
terial property on the predicted elasto-viscoplastic behaviour, a systematic parametric
study on the tensile test at T = 298K , ε̇ = 3∗10−4s−1.The dimensions of the tensile test
specimen are shown in the figure previous chapter. The specimen is discretized in 2544
C3D8RT elements as shown in the figure 3.2.

In the following parametric studies, the properties of zenox 690R are taken as reference
[3]. Each material property is then changed in turn, while keeping the remaining con-
stant, in order to ascertain its effect on the predicted material behaviour. The results
obtained clearly show that the material properties can be classified in three categories
as:

• Properties affecting the Elastic behaviour: G and ν

• Properties affecting the Yield point: Q, m, V, αp and ν

• Properties affecting the post yield behaviour: h, b, g1, φr , k and X

B.3.1. ELASTIC BEHAVIOUR
Concerning the elastic behaviour, it is only verified the influence of the Shear modulus,
G. In Figure the true stress - true strain and force - displacement curves are shown for
four different values of the shear modulus. As expected, an increase of G leads to a cor-
responding increase of the slope in the elastic domain, consistent with an increase of the
material stiffness as shown in the figure B.1

B.3.2. YIELD POINT
Concerning the yield point, sensitivity study of all five material properties (activation
energy, Q, pre-exponential factor, ν0, pressure sensitivity factor αp , activation volume
V and strain sensitivity parameter, m) is made. It seems that an increase in the activa-
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tion energy and strain sensitivity parameter leads the results to translate in the upward
direction of both true stress - true strain and Force - displacement curves and increase
of parameters such as activation volume, pre exponential factor and pressure sensitivity
factor leads to the downward translation, keeping the elastic and post yield behaviours
essentially unchanged.

(a) (b)

Figure B.19: Variation of Q: (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.20: Variation of m: (a) True stress-true strain behaviour (b) Force-displacement
curves



B

98 B. MATERIAL PARAMETER CALIBRATION

(a) (b)

Figure B.21: Variation of V: (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.22: Variation ofαp : (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.23: Variation of ν0: (a) True stress-true strain behaviour (b) Force-displacement
curves
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B.3.3. POST-YIELD RESPONSE
Concerning the post-yield response, sensitivity study of all six material properties (b,
h, φr , g1, k, Back stress (X)) is made. It is observed that increase of b, h, φr and Back
stress leads the results to translate in the upward direction of both true stress - true strain
and Force - displacement curves and increase of parameters such as G1 and k leads to
the downward translation, keeping the elastic and post yield behaviours essentially un-
changed.

(a) (b)

Figure B.24: Variation of b: (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.25: Variation of g1: (a) True stress-true strain behaviour (b) Force-displacement
curves
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(a) (b)

Figure B.26: Variation of h: (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.27: Variation ofφr : (a) True stress-true strain behaviour (b) Force-displacement
curves

(a) (b)

Figure B.28: Variation of k: (a) True stress-true strain behaviour (b) Force-displacement
curves
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(a) (b)

Figure B.29: Variation of Back stress (X) : (a) True stress-true strain behaviour (b) Force-
displacement curves
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