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Probing universal critical scaling with scan density matrix renormalization group

Natalia Chepiga
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
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We explore the universal signatures of quantum phase transitions that can be extracted with the density matrix
renormalization group (DMRG) algorithm applied to quantum chains with a gradient. We present high-quality
data collapses for the order parameter and for the entanglement entropy for three minimal models: transverse-
field Ising, three-state Potts, and Ashkin-Teller. Furthermore, we show that scan-DMRG successfully captures
the universal critical scaling when applied across the magnetic Wess-Zumino-Witten and nonmagnetic Ising
transitions in the frustrated Haldane chain. In addition, we report a universal scaling of the lowest excitation
energy as a function of a gradient rate. Finally, we argue that the scan-DMRG approach has significantly lower
computational cost compare to the conventional DMRG protocols to study quantum phase transitions.

DOI: 10.1103/PhysRevB.110.144401

I. INTRODUCTION

Understanding the nature of quantum phase transitions in
low-dimensional systems is a central topic of condensed mat-
ter physics [1,2]. To a large extent modern theory of phase
transitions relies on the concept of universality of the criti-
cal scaling insensitive to microscopic details of a particular
system. This allows to address quantum phase transitions in
real materials with simplified lattice models. Despite their
simplicity, these models very rarely can be solved exactly and
otherwise require advanced numerical techniques. The density
matrix renormalization group (DMRG) algorithm [3–6] is one
of the most accurate and widely used numerical tool for quan-
tum chains. The algorithm relies on the area law stating that
entanglement of a low-energy state of local Hamiltonians is
capped in one dimension (1D). However, at the critical point
the area law is violated and the entanglement entropy along
with the computational complexity grow with the system
size [7]. This makes the usage of either finite- or infinite-size
DMRG rather challenging in the context of quantum phase
transitions [5,8–12].

In this paper we present an alternative approach to study
phase transitions numerically at much lower computational
cost using scan-DMRG. In this method an external parame-
ter varies along a chain or a cylinder with a fixed gradient.
The scan-DMRG algorithm is traditionally used to probe
multiple phases at once—literally, to scan through the phase
diagrams [13–16]. It has also been used to qualitatively dis-
tinguish magnetic and nonmagnetic domain walls [17]. In this
study, focusing on the situation when two gapped phases are
connected through a continuous quantum phase transition, we
show how the universal signatures of the phase transition can
be extracted with scan-DMRG simulations.

Study of quantum chains with linearly varying coupling of
field has a long history that roots back to the local density
approximation (LDA) [18] that allows to treat the effect of
gradients in the system by assuming that the order parameter
is locally uniform. However, LDA cannot be applied near crit-
ical points where divergent correlation length is inconsistent
with locality constraints. Motivated by the nonhomogeneous

trapping potentials in cold atoms experiments, the effect of
gradients in Luttinger liquids has been intensely studied with
the integrable models and by means of conformal field the-
ory [19–22]. The study of gradients that runs through a single
transition point between two gapped phases is mainly limited
to the transverse-field Ising and XY chains [23–26]. In this
paper, we will show that the nature of isolated quantum critical
point can be captured with gradient chains in a generic case.

Typical numerical analysis of quantum phase transitions
relies on the critical scaling of three quantities: the order
parameter, the energy gap, and the entanglement entropy. In
this paper, we will show that in the scan-DMRG all three
observables obey the universal scaling. The rest of the pa-
per is organized as follows. In Sec. II, we will present the
scan-DMRG results for the three minimal models: Ising,
three-state Potts, and Ashkin-Teller describing the transition
between the paramagentic disordered phase and phases with
spontaneously broken Z2, Z3 and Z4 symmetries correspond-
ingly. In Sec. III, we will provide computationally more
challenging examples of the Ising and Wess-Zumino-Witten
(WZW) [27,28] transitions in a frustrated Haldane chain. In
Sec. IV, we will discuss the computational gain of the scan-
DMRG algorithm. Finally we summarized our results and
bring them into a perspective in Sec. V.

II. SPATIAL KIBBLE-ZUREK MECHANISM
IN MINIMAL MODELS

A. Idea

Interpolation from one phase to another along a chain with
a fixed gradient can be viewed as a spatial version of the
celebrated Kibble-Zurek mechanism [29–32]. In the original
formulation of the mechanism, the system is dynamically
driven through a transition and it turns out that the scaling as a
function of sweep rate of certain quantities including the num-
ber of topological defects (kinks) and the correlation length
are universal for a given type of the transition. For a constant
sweep rate τ , the characteristic time scale is t ∼ τ ν/(1+ν) and
ε ∼ t

τ
∼ τ

−1
1+ν is an effective distance to the transition [33].
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Here we deal only with conformal transitions and thus set the
dynamical critical exponent z = 1. By analogy, we define an
effective distance to the transition in the gradient chain:

x ∼ (g − gc)δ
−1

1+ν ⇒ (g − gc) ∼ xδ
1

1+ν . (1)

Here g is a parameter varying along the chain (on-site trans-
verse field or coupling constant) and gc mark the location of
the transition in the thermodynamic limit, and δ is the gradient
rate—the value that shows how much g changes between
two consecutive sites or bonds. In this paper we focus on
linear gradients, thus when gi corresponds to the on-site field
hi the gradient is δ = hN −h1

N−1 . The correlation length diverges
upon approaching the transition with the critical exponent ν

implying

ξ ∼ (g − gc)−ν ∼ x−νδ
−ν

1+ν . (2)

B. Models

Ferromagnetic Ising, three-state Potts and Ashkin-Teller
models form an ideal playground to explore quantum phase
transitions into Zn symmetry breaking phases. In the formula-
tion that we use below, the location of the transitions is known
exactly due to the self-duality of the models. Moreover, the
operator content and the set of critical exponents are also well
established by conformal field theory (CFT) [28].

Let us start with a ferromagnetic transverse field Ising
model:

H = −J
∑

i

Sx
i Sx

i+1 −
∑

i

hiS
z
i , (3)

where Sx,z are components of the spin-1/2 operator. We set
J = 1 and let the transverse field h to interpolate linearly be-
tween hst and hen. In the uniform case, the model is critical at
hc = 0.5 separating ferromagnetic phase with spontaneously
broken spin-flip symmetry for h < hc and a paramagnet for
h > hc. The critical point belongs to the 1+1D Ising univer-
sality class and is characterized by the central charge c = 1/2,
correlation length critical exponent ν = 1 and the order pa-
rameter critical exponent β = 1/8. In the gradient model, we
vary a field term hi.

Ferromagnetic Ising chain defined in the Eq. (3) in terms
of spin operators Sx,z can alternatively be defined in terms of
Pauli matrices σ x,z:

H = −J̃
∑

i

σ x
i σ x

i+1 −
∑

i

h̃iσ
z
i , (4)

in the present case the critical point is located at h̃c = J̃ .
Secondly, we formulate the ferromagnetic q-state Potts

model as a generalization of the Ising model to the case of lo-
cal Hilbert space d = q defined by the following microscopic
Hamiltonian:

HPotts = −J
N−1∑
i=1

q∑
μ=1

Pμ
i Pμ

i+1 −
N∑

i=1

hiPi, (5)

where Pμ
i = |μ〉ii〈μ| − 1/q tends to project the spin at site

i along the μ direction while Pi = |η0〉ii〈η0| − 1/q tends to
align spins along the direction |η0〉i = ∑

μ |μ〉/√q. Without
loss of generality, we set J = 1 and hst � h � hen. This model
is identical to the transverse-field Ising model of Eq. 4 when

q = 2. The three-state Potts model is realized with q = 3. In
the uniform case, its critical point is located at hc = 1. The
central charge is c = 4/5 and critical exponents are ν = 5/6
and β = 1/9. We introduce gradient through the on-site trans-
verse field term hi.

Further generalization of Ising and three-state Potts model
to the four-dimensional local Hilbert allows an additional
freedom. The corresponding minimal model is called the
Ashkin-Teller model [34] and is controlled by an asymmetry
parameter λ:

H = −
∑

i

Ji
(
R1

i R1
i+1 + R2

i R2
i+1 + λR3

i R3
i+1

) − h
∑

i

M, (6)

where the transverse field operator is defined

M(λ) =

⎛
⎜⎜⎝

0 1 1 λ

1 0 λ 1
1 λ 0 1
λ 1 1 0

⎞
⎟⎟⎠,

and R matrices are diagonal with entrees: R1 =
diag([1, 1,−1,−1]); R2 = diag([1,−1, 1,−1]); R3 =
diag([1,−1,−1, 1]). The parameter λ interpolates between
two decoupled Ising chains at λ = 0 and the fully symmetric
four-state Potts point at λ = 1 that up to a prefactor resembles
Eq. (5) with q = 4.

There is also an alternative definition of the model in terms
of Pauli matrices σ x,z and τ x,z:

HAT = − h
N∑

j=1

(
σ x

j + τ x
j + λσ x

j τ
x
j

)

−
N−1∑
j=1

Ji
(
σ z

j σ
z
j+1 + τ z

j τ
z
j+1 + λσ z

j τ
z
j σ

z
j+1τ

z
j+1

)
, (7)

Formulated this way, one can easily see that the model is self-
dual and in the uniform case its critical point is located at h =
J for any value of 0 � λ � 1.

The Ashkin-Teller universality class is a family of univer-
sality classes (also know as a weak universality class) with
some critical exponents continuously varying as a function of
the control parameter λ. For instance, the correlation length
critical exponent ν is given by [34,35]

ν = 1

2 − π
2 [acos(−λ)]−1 , (8)

while the order parameter critical exponent β = ν/8. The
central charge at the critical point and the scaling dimension
d = β/ν are universal for any λ and equal to c = 1 and
d = 1/8 [36] correspondingly. As a main example we will
use the Ashkin-Teller model with λ = 0.6. This corresponds
to ν ≈ 0.7748 and β ≈ 0.0969. This point is away from spe-
cial symmetry points Ising (λ = 0), four-state Potts (λ = 1),
and parafermions (λ = 0.75) and therefore provides a generic
view on the problem.

C. Order parameter

In all three models. we describe the symmetry broken
ferromagnetic phase using a local polarization as an order

144401-2
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FIG. 1. Local order parameter in quantum chains with a fixed gradient. (a) Raw data for local magnetization as a function of on-site

transverse field hi in the Ising model. (b) Same data rescaled according to Eq. (10): x = (hi − hc )δ
−1

1+ν and Õ(x) = Oiδ
−β
1+ν with Ising critical

exponents ν = 1 and β = 1/8. [(c) and (d)] Local order parameter rescaled according to Eq. (10) in (c) the gradient three-state Potts chain with
gi ≡ hi, β = 1/9, and ν = 5/6; and (d) the Ashkin-Teller gradient model with λ = 0.6, gi ≡ Ji, ν ≈ 0.7748, and β ≈ 0.0969. The intervals
over which the gradients run are indicated in the legends, different colors correspond to different system sizes ranging between N = 200 and
10 000 sites for the Ising, between N = 100 and 2000 for the Potts, and N = 400 and 2000 for the Ashkin-Teller models. For all presented
results, we use fixed-free boundary conditions (fixed in the ordered phase). Insets: zoom over indicated areas.

parameter.1 According to the field theory the order parameter
is expected to vanish upon approaching the transition as O ∝
(g − gc)β . In Fig. 1(a), we show the raw data for the gradient
version of the transverse field Ising model where the left and
the right edges of the chain are in the ferromagnetic and
paramagnetic phases correspondingly, the critical point is at
hc = 0.5. One can see that the gradient δ blurs the power-law
decay of the order parameter. The qualitative effect is quite
intuitive—the smaller is the gradient step δ the closer is the
curve to the continuous field theory prediction. Relying on
Eq. (1), we expect

O ∼ xβδ
β

1+ν . (9)

Similar expression has been obtained for a chain where the
gradient runs only through one phase starting with the critical
point at one of the edges [37]. Equation (9) implies that upon
rescaling the axes to

x = (gi − gc)δ
−1

1+ν and Õ(x) = Oiδ
−β

1+ν , (10)

and gi ≡ hi, one might expect a perfect data collapse in the
critical region. We demonstrate this in Fig. 1(b) where the data
presented in (a) are rescaled assuming the Ising critical expo-
nents β = 1/8 and ν = 1. We use three different windows for
the transverse field gradient |hi − hc| � 0.01, 0.05, 0.1 and
various system sizes ranging from N = 200 to 10 000 sites.

1In order to break the symmetry between the components, we add a
boundary field that favors one of the local states at the edge, e.g.,
Oi = 〈Sz

i 〉 as a local order parameter for the Ising transition with
−hBSz

1 boundary field.

We present similar analysis for the Z3 transition in the
three-state Potts model defined by Eq. (5). We simulate two
windows of the gradient |hi − hc| � 0.02, 0.1 using system
sizes between N = 100 and 2000. After rescaling the axes
according to Eq. (10) with Potts critical exponents β = 1/9
and ν = 5/6, we obtain a spectacular collapse presented in
Fig. 1(c). Magnetization profiles prior to rescaling are pro-
vided in the Appendix A.

Finally, in Fig. 1(d), we show the data collapse for the
gradient Ashkin-Teller model defined in Eq. (6). Aiming for
a generic realization of the Ashkin-Teller transition, we focus
on λ = 0.6 that corresponds to ν ≈ 0.7748 and β ≈ 0.0969.
In Appendix A, we also provide results prior to the rescaling
and for other values of λ. To further stress the universality of
our approach in this model, we put a gradient in the ferromag-
netic interaction (gi ≡ Ji) while keeping the transverse field
uniform. As in the case of Ising and three-state Potts model,
the collapse presented in Fig. 1(d) is really spectacular.

D. Energy gap

Relying on the equivalence of the energy and length scales
at conformal critical points � ∝ ξ−1, we get

� ∼ δ
ν

1+ν . (11)

This scaling2 resembles the form of the energy gap in
the Kibble-Zurek mechanism [23]. We compute excitation

2Here we target the lowest excitation energy over the entire chain
and thus omit the dependence on x.

144401-3
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FIG. 2. Scaling of the excitation energy for the two lowest lying
excited states in [(a) and (b)] Ising and [(c) and (d)] Ashkin-Teller
models as a function of gradient step δ. (a) and (c) present a linear
scaling with the inverse of the effective length in agreement with
Eq. (11). In (b) and (d), we show excitation energy as a function
of a gradient in a log-log scale. Linear fits (red lines) give critical
exponents ν/(1 + ν ) ≈ 0.4995 for the Ising model and ≈0.4411 for
the Ashkin-Teller one that are in excellent agreement with theory
predictions 0.5 and 0.4366 correspondingly. For the Ising model, we
present results for systems ranging between N = 80 and 800; for the
Ashkin-Teller, the range is 80 � N � 500. The windows over which
the field/coupling runs are indicated in the legends.

energies in a gradient chain by targeting multiple states in
DMRG [38].

In Fig. 2, we present the scaling of the excitation energy
for two low-lying excited states: in the panels (a) and (b), we

present numerical results for Ising model and in panels (c)
and (d), those for the Ashkin-Teller model with λ = 0.6. The
agreement with Eq. (11) is spectacular: performing a linear fit
in the log-log scale gives a numerical estimate of the critical
exponent ν

1+ν
agreeing with the theory prediction within 0.1%

for the Ising and within 1% for the Ashkin-Teller models.
Interestingly enough, for the Ising model the prefactor A

of the lowest excitation �1 = Aδ
ν

1+ν is equal to one with a
very high precision. This might indicate that for the lowest
excitation the boundary conditions are approximately equal to
polarized at one edge and free at another one, resulting in the
conformal tower σ .

E. Entanglement entropy

Entanglement entropy is extracted numerically using the
Schmidt values sα: S(i) = −∑D

α1
s2
α ln(s2

α ), where i is the site
index and the size of the subsystem; D is a bond-dimension
that controls the accuracy of DMRG simulations. In the ther-
modynamic limit the entanglement entropy diverges at the
critical point. In scan-DMRG the divergence is bounded by
both, the finite-size of the (sub)system as well a finite gradient
δ. By either increasing the system size or refining the gradient
one approaches the continuum limit. This results in a more
pronounced peak as shown in Fig. 3(a) for the Ising model.

According to the study of nonhomogeneous Luttinger liq-
uid [20] the gradient δ produces the logarithmic corrections to
the entanglement entropy. We thus define a reduced entangle-
ment entropy as

S̃(x) ∼ S(i) + c

12
ln δ − aCi, (12)

FIG. 3. Entanglement entropy in a gradient chains. (a) Entanglement entropy of the gradient transverse field Ising model. Peak of
entanglement entropy approaches the critical point hc = 0.5 upon refining the gradient. (b) Same results rescaled according to Eqs. (12)
and (1) with Ising central charge c = 0.5 leading to a perfect data collapse in the critical region. [(c) and (d)] Similar data collapse of the
entanglement entropy for (c) the three-state Potts transition with c = 4/5 and (d) the Ashkin-Teller transition with c = 1. The intervals over
which the gradients run are indicated in the legends, different colors correspond to different system sizes ranging between N = 200 and
N = 10000 sites for the Ising, between N = 100 and 2000 for the Potts, and N = 400 and 2000 for the Ashkin-Teller models.

144401-4
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FIG. 4. Extraction of (a) the critical exponent β

1+ν
, (b) the central

charge c. At hi = hc, the logarithm of the order parameter Oi and
the entanglement entropy Si after removing the Friedel oscillations
scale linearly with the logarithm of the gradient rate δ (diamonds,
blue, red, and yellow colors state for the gradient ranges |hi − hc| �
0.01, 0.05, 0.1). The slope corresponds to (a) the critical exponent
β/(1 + ν ) and (b) the fraction of the central charge c/12. Critical
exponent β

1+ν
≈ 0.0629 extracted numerically by fitting the slope in

(a) agrees with the theory prediction for Ising transition 1/16 within
0.7%. The central charge extracted from the slope in (b) is in excel-
lent agreement with the CFT prediction c = 1/2. Away from critical
point (circles and squares), the scaling demonstrate a pronounced
curvatures, critical point appears as the separatrix in both plots.

where c is the central charge; Ci is a nearest-neighbor cor-
relations. The last term is introduced to remove Friedel
oscillations (when applicable) from the entanglement entropy
profile [39,40], this is done by optimizing the nonuniversal
constant a. The rescaled data as a function of rescaled dis-
tance to the transition x are presented in Fig. 12(b) across
Ising, (c) across three-state Potts, and (d) across Ashkin-Teller
transitions characterized by the central charges 1/2, 4/5 and 1
correspondingly. Apart from the boundary effect, the collapse
looks perfect in the critical region of all models. We believe
that small deviation in the ferromagnetic phase of the Ashkin-
Teller model in Fig. 3(d) is due to boundary entanglement
entropy that comes from the specific fixed boundary condi-
tions that we use. Further progress of boundary field theory in
the context of gradient chains are needed to fully clarify and
quantify this effect.

F. Numerical extraction of critical exponents
and the central charge

The data collapses like those presented in Figs. 1 and 3
provide excellent tests when the underlying universality class
can be guessed, for instance, from symmetry arguments. In
reality, however, the location of the critical point as well as
the exact values of the critical exponents might not be known
beforehand. In Figs. 2(b) and 2(d), we have already demon-
strated how the critical exponent ν can be extracted from the
scaling of the energy gap. In this section, we show how to
complete the analysis by extracting the critical exponent β and
the central charge c simultaneously identifying the location of
the critical point. Let us take the Ising model as an example.
From Eqs. (9) and (10), it follows that at the critical point

h = hi
3 the order parameter scales with the gradient rate as

Oi ∝ δ
β

1+ν . It implies that at the critical point the scaling will
be linear in the log-log scale while the slope would give β

1+ν
. A

typical scaling is presented with diamonds in Fig. 4(a) where
different colors corresponds to different start and end points.
Important, that away from the critical point the scaling is not
linear but concave in the disordered phase and convex in the
ordered one. The critical point is thus appears as a separatrix
ensuring a highly accurate location of the critical point. By
combining these results with previously critical exponent ν

extracted from the scaling of the energy gap, one can calculate
the critical exponent β.

In addition, the entanglement entropy (after removing the
Friedel oscillations) at h = hi scales linearly with the ln δ with
the prefactor proportional to the central charge according to
Eq. (12). An example presented in Fig. 4(b) demonstrates an
excellent accuracy in the numerically extracted value of the
central charge. Again, the critical point appears as a separatrix
providing an alternative route to locate the transition.

III. SCAN-DMRG FOR THE FRUSTRATED
HALDANE CHAIN

In this section, we will demonstrate the robustness of the
presented scan-DMRG approach beyond the simplest minimal
models. As an example we consider dimerization transitions
in the frustrated Haldane chain: (1) nonmagnetic Ising transi-
tion and (2) magnetic Wess-Zumino-Witten (WZW) SU(2)2

transition. Both have been realized in the spin-1 chain with
bilinear-biquadratic interaction [41–43] and in the J1-J2-J3

model [8] that we will use here and for which the location of
the critical points is known with a good accuracy. The J1-J2-J3

model is defined by the following microscopic Hamiltonian:

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2

+
∑

i

J3i[(Si · Si+1)(Si+1 · Si+2) + H.c.], (13)

where the first two terms describe Heisenberg interactions
on nearest- and next-nearest-neighbors; J3 term appears in
the next-to-leading order expansion of the two-band Hub-
bard model and known to produce the dimerized phase with
spontaneously broken translation symmetry and a twofold
degenerate ground state [44]. Here we set J1 = 1.

As a local order parameter, we use the dimerization
O(i) = |Si · Si+1 − Si+1 · Si+2| that we further rescale follow-
ing Eq. (10). For the Ising transition that takes place at
J2 ≈ 0.7 and J3 ≈ 0.058 [8], we observe a perfect collapse
of the order parameter in Fig. 5(a); edge effects are noticeably
stronger in the disordered - next-nearest-neighbor Haldane -
phase than those that we have observe in the Ising model in
Fig. 1(b). Collapse of the entanglement entropy presented in
Fig. 5(c) is very good in the critical region close to x = 0, but
we also see a systematic deviation in the disordered phase.
Similar to the results of the Ashkin-Teller model we believe

3In the rescaled version h = hi corresponds to x = 0, but here one
does not have to perform the rescaling.

144401-5
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FIG. 5. Scaling of [(a) and (b)] the order parameter and [(c) and (d)] the entanglement entropy across [(a) and (c)] nonmagnetic Ising
transition and [(b) and (d)] the Wess-Zumino-Witten transition in the frustrated spin-1 chain. The linear gradient is applied to the J3 coupling
such that [(a) and (c)] at the left edge J3 = 0.04 and at the right one J3 = 0.07; [(b) and (d)] at the left edge J3 = 0.05 and at the right one
J3 = 0.12. For both transitions, we see an extremely accurate collapse of the order parameter—the dimerization O(i) = |Si · Si+1 − Si+1 · Si+2|.
All results are performed with free boundary conditions.

that there might be an additional contribution due to a specific
boundary conditions in the next-nearest-neighbor Haldane
phase. In the Appendix B we also present these results prior
to the rescaling.

To explore the spatial Kibble-Zurek mechanism across
the WZW transition we run a gradient through the critical
point J2 ≈ 0.12, J3 ≈ 0.087 where logarithmic corrections
vanish [8]. After the rescaling the order parameter shows
a spectacular collapse with some minor edge effects in
the dimerized phase [see Fig. 5(b)]. Entanglement en-
tropy presented in Fig. 5(d) is collapsed in the vicinity of
the transitions, though it shows a strong finite-size effects in
the domains of the gapped phases far form the critical region.
The nonrescaled data as well as the results for the WZW
transition in the presence of the logarithmic corrections are
reasonably good and are presented in Appendix B.

With the scan-DMRG one can also very naturally identify
the nature of domain walls. For instance, the domain wall
between topologically nontrivial Haldane phase and topologi-
cally trivial dimerized one hosts a spinon [45,46]. This spinon
at the boundary of two domains is clearly visible in the local
magnetization profile across the WZW transition presented in
Fig. 6. By contrast, numerically extracted local magnetization
in the gradient spin-1 chain crossing a nonmagnetic Ising
transition at J2 = 0.7 never exceeds 10−10.

IV. COMPUTATIONAL GAIN

The main advantage of the scan-DMRG technique in the
context of quantum criticality is its significantly lower compu-
tational cost. Intuitively, this is very natural—the chain almost
entirely is inside one of the two gapped phases that obey the

area law. Although the area law is violated in the critical
region and the entanglement grows it is still capped by the
gradient due to spatial Kibble-Zurek mechanism. Let us now
quantify possible computational advantage. In the DMRG the
entanglement entropy is directly related to the bond dimen-
sion D ∝ exp(S), while the leading computational complexity
scales as D3. In Fig. 7, we present the bond dimension needed
to keep all singular values exceeding 10−8 for a given system
size of (a) N = 100 and (b) 400 and for a variety of couplings
that range around its critical value for the Ashkin-Teller point
with λ = 0.6. For a uniform system without a gradient [light

FIG. 6. Appearance of spinons at the edges of the domain of
topologically nontrivial Haldane phase in scan-DMRG that runs
through the WZW transition in J1-J2-J3 model with J2 = 0.12. Leg-
end specifies the window of the J3 coupling. These results were
obtained with N = 500. One spin-1/2 is localized at the left edge of
the chain. The second spin-1/2 appears as a magnetic domain wall
between the Haldane and the dimerized phases.
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FIG. 7. Bond dimension along a finite size chain with (a) N =
100 and (b) 400 sites for the Ashkin-Teller model with λ = 0.6 and
with gradient in the coupling around its critical point Jc = 1. The
range of the gradient is indicated for each curve, 0 means uniform
case without gradient. We choose asymmetric free-fixed boundary
conditions necessary to extract the order parameter with local opera-
tors. One can see that the bond dimension and associated complexity
of the scan-DMRG that scales as D3 is significantly reduced with the
gradient window. Presented bond dimension reflects the number of
singular values above 10−8.

blue curve in Fig. 7(a)], the entanglement along with the bond
dimension D are the largest. Slight asymmetry in the dome
comes from the asymmetric free-fixed boundary conditions
that for consistency, we keep the same as for the gradient case.
One can see that gradient ranging within Ji − Jc ∈ [−0.1, 0.1]
reduces the maximal bond dimension by a factor of ≈ 2, and
thus the complexity is reduced by a factor of 8. Computational
gain is even larger for longer chains.

For the frustrated Haldane chain and WZW transition
the computational advantage of scan-DMRG is even more
evident. In Fig. 8, we present the DMRG bond dimension
required to keep all singular values above 10−6. One can

FIG. 8. Bond dimension along a finite size chain with N = 500
for the J1-J2-J3 model with J2 = 0.12 and with gradient in three-site
coupling J3 around its critical point Jc

3 ≈ 0.087. The range of the
gradient is indicated for each curve: 0.05 means the range 0.037 �
J3i � 0.127; 0 means uniform case without a gradient. Presented
bond dimension reflects the number of singular values above 10−6;
for the uniform case, we cannot keep sufficient number of states and
cut the bond dimension at Dmax = 1027.

immediately see that in the uniform case, the bond dimension
grows so fast and actually exceeds our cut-off Dmax ≈ 103.
By contrast, for the gradient that deviates only by ∓0.01 from
the transition, the bond dimension hardly reaches D ≈ 800. In
Figs. 5(b) and 5(d), we present a scan-DMRG results for the
gradient with an approximate range ±0.035.

V. SUMMARY AND OUTLOOK

In this paper, we have introduced the scan-DMRG algo-
rithm as a numerical tool to investigate universal signatures
of quantum phase transitions. We have provided convincing
evidence of the universal scaling of the order parameter,
excitation energy, and entanglement entropy across various
continuous transitions between gapped phases in quantum
chains. We benchmarked our method with three paradigmatic
examples of conformal field theory and quantum many-body
lattice models: Ising, three-state Potts, and Ashkin-Teller. Fur-
thermore, we have demonstrated the robustness of the spatial
Kibble-Zurek mechanism as a tool to probe quantum phase
transitions by applying it to the dimerization transitions in the
frustrated Haldane chain. We have shown that a convincing
data collapse can be produced even when the location of the
critical point is not exact; the interval of the gradient is not
centered around the critical point; the translation symmetry
broken in one of the phases induces strong Friedel oscillations
of the entanglement entropy.

The main advantage of scan-DMRG as a tool to study
quantum phase transitions is the significantly reduced compu-
tational cost. Compare to the techniques based on the scaling
at the quantum critical points, including, for instance, ex-
traction of the central charge with finite-size entanglement
scaling, the scan-DMRG method allow to reduce the com-
putational cost by an order of magnitude. The scan-DMRG
also provides a systematic access to the exponents β and ν

describing the critical scaling away from the transition. Al-
though with the uniform DMRG algorithm the convergence
away from the criticality is typically not an issue, the pro-
cess of fitting the numerical data in order to extract critical
exponents is usually associated with compromises between
taking enough points within the critical region (i.e., not too far
from the transition) yet to have correlation length and bound-
ary effects sufficiently small compare to the available system
sizes (i.e., also not too close to the transition). Typically this
requires a dozens of data points on each side of the transition.
Scan-DMRG allows an elegant solution to the problem giving
a simultaneous access to both sides of the transition, while the
quality of the collapse can be assessed even with a very few
samples.

Although scan-DMRG appears as a ready-to-use technique
for many practical applications, in this work we limit our-
selves to the simplest scenario of a direct continuous transition
between two gapped phases. This naturally poses the num-
ber of relevant questions that are left for future exploration.
How and whether scan-DMRG algorithm can be used for the
cases when transition goes through a two-step process with a
(possibly narrow) intermediate phase and two distinct transi-
tions? Whether scan-DMRG is suitable to probe continuous
transitions where the relevant order parameter is nonlocal,
including, in particular, the commensurate-incommensurate
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transitions. Whether scan-DMRG is suitable to distinguish
between continuous and first-order transitions [47]. Could
scan-DMRG capture the transition when at least one phase
is critical, the paradigmatic example could be the Kosterlitz-
Thouless transition [48]? And if yes, whether there still will be
a reasonable advantage in the computational costs? We hope
that this study will further stimulate analytical and numerical
investigation of gradient quantum systems and their applica-
tions in the context of cold atom experiments.
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APPENDIX A: ADDITIONAL DATA FOR GRADIENT
POTTS AND ASHKIN-TELLER MODELS

In this section, we provide some additional data for the
three-state Potts and Ashkin-Teller models. Firstly, in Fig. 9,
we present local magnetization profiles without rescaling as
a function of local field hi [in Fig. 9(a) [or a coupling Ji [in
Fig. 9(b)]. The corresponding data collapses are presented in
Figs. 1(c) and 1(d).

Secondly, we present the nonrescaled data for the en-
tanglement entropy in the gradient three-state Potts and

FIG. 9. Local magnetization of (a) the in-homogeneous three-
state Potts with linear gradient in the transverse field and (b) the
in-homogeneous Ashkin-Teller model with λ = 0.6 and linear gradi-
ent in the couplings constant. As presented in Figs. 1(c) and 1(d) after
rescaling these sets of data demonstrate spectacular collapses.

FIG. 10. Entanglement entropy of (a) the in-homogeneous three-
state Potts with linear gradient in the transverse field and (b) the in-
homogeneous Ashkin-Teller model with λ = 0.6 and linear gradient
in the couplings constant. Peak of entanglement entropy approaches
the critical points upon refining the gradient. The rescaled data are
presented in Figs. 3(c) and 3(d).

Ashkin-Teller models in Fig. 10. The rescaled data are pre-
sented in Figs. 3(c) and 3(d). In both cases, the peak of
entanglement grows with 1/δ. For three-state Potts model,
the gradient runs within the window |hi − hc| < 0.02 (dash-
dotted line) and |h−hc| < 0.1 (solid lines). We perform
simulations on chains with the lengths ranging from 100 and
up to 2000 sites. For the Ashkin-Teller model the two param-
eter windows we use are |Ji − Jc| < 0.05 and 0.1 and system
sizes ranging between 400 and 2000 sites.

We also present a systematic study of the collapse of the
order parameter and the entanglement entropy for various
values of λ to ensure that our analysis is generic and valid for
any critical point of the Ashkin-Teller weak universality class.
These results are summarized in Fig. 11, where in addition
to the results for λ = 0.6 presented in the main text, we also
show the results for λ = 0.2, 0.8, and 1. The results for the
four-state Potts point at λ = 1 are of special interest because
at this point, the critical Ashkin-Teller theory has logarith-
mic corrections. From the collapses presented in Figs. 11(f)
and 11(i), we see that for accessible system sizes the effect of
these corrections is not visible and the collapses are still very
clean.
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FIG. 11. Data collapse for various Ashkin-Teller transitions with (top) λ = 0.2, (middle) λ = 0.8, and (bottom) λ = 1 (the four-state Potts).
[(a)–(c)] Nonrescaled local order parameter Oi as a function of distance to the critical Ashkin-Teller point Jc = 1; [(d)–(f)] same data rescaled
according to Eq. (10) with indicated critical exponents. [(g)–(i)] Collapse of the rescaled entanglement entropy.

FIG. 12. Nonrescaled [(a) and (b)] dimerization and [(c) and
(d)] entanglement entropy across [(a) and (c)] Ising and [(b) and
(d)] WZW transitions in spin-1 J1-J2-J3 chain [8]. There are strong
oscillations in entanglement entropy in the dimerized phase due to
broken translation symmetry. [(a) and (c)] For the Ising transition the
system sizes range from 500 (blue) to 1400(green). [(b) and (d)] For
the WZW transition we show results between N = 300 (blue) and
2000 (purple). The rescalled data are presented in the Fig. 5 of the
main text.

FIG. 13. Rescaled (a) local dimerization and (b) entanglement
entropy as a function of the rescaled three-site coupling constant
J3i of J1-J2-J3 model with J1 = 1 and J2 = 0. The start and end
points are fixed to J3,st = 0.09 and J3,en = 0.13; the critical point is
located at Jc

3 ≈ 0.111 [44]. At this point, the transition is expected
to be in WZW SU(2)2 universality class with some logarithmic
corrections.
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APPENDIX B: ADDITIONAL DATA
FOR FRUSTRATED SPIN-1 CHAIN

In the Fig. 5 of the main text, we presented a data collapse
for the Ising and WZW transitions in the J1-J2-J3 model. The
nonrescaled data are presented in Fig. 12. One can see, in
particular, large oscillations of the entanglement entropy in
the dimerized phase.

In the main text, we probe a special end point of the WZW
critical line located at J2 ≈ 0.12 and J3 ≈ 0.087; at this point,
logarithmic corrections generically present in the critical the-
ory due to marginal operator vanish. Here we also present

the data collapse for J2 = 0 where the logarithmic corrections
are present. We can see that for the entanglement entropy the
collapse is still spectacular. For the order parameter, we see
significant deviations. This is not surprising: the measured
effective scaling dimension at J2 = 0 is deff ≈ 0.43 almost
15% larger than the field theory prediction d = 3/8 and the
value extracted at the end point [8]. If we allow the critical
exponents in the rescaling functions of Eq. (10) to deviate
within 15% from the CFT values, we again recover a perfect
collapse as shown in Fig. 13. Further detailed field-theory
analysis is needed to incorporate logarithmic corrections into
gradient spin chains.
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