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Abstract

Hydrogen, as an energy catrrier, is of paramount importance in the energy transition. At the
industrial level, it can be derived from various sources, including fossil fuels, biomass, or
electrolysis. In Alkaline Water Electrolysis (AWE), the growth of hydrogen bubbles directly
impacts system efficiency. Understanding and simulating this growth, attributed to the
diffusion of dissolved hydrogen in the supersaturated electrolyte near nucleation sites via
diffusive and convective mass transfer, is a crucial step towards advancing knowledge in
this field and unlocking new possibilities.

This research focuses on simulating the growth of a single hydrogen bubble in a super-
saturated domain, both far from and near the cathode, in a 30 wt% KOH solution. Bub-
ble growth, a mesoscale phenomenon, is investigated using the Lattice Boltzmann Method
(LBM). A comprehensive comparison of the Shan-Chen (5C), Colour Gradient (RK), and
Interface Tracking Phase-Field (HZC) methods was conducted to measure the intricacies
of the multiphase system accurately. The Laplace Law equation served as a benchmark,
demonstrating that the HZC method produced the most accurate results.

A continuous species transfer method is employed to track hydrogen transport from the
supersaturated electrolyte into the bubble, validated with Newman'’s analytical solution of
mass transfer controlled by pure diffusion inside a sphere. Two cases are then analyzed:
one of a single bubble far from an electrode in a supersaturated domain and another of a
single bubble near an electrode with a constant hydrogen flux. For the first case, bubble
growth follows a power law equivalent to R ~ t%-°, while in the second case, growth follows
R ~ t%7, matching results from previous studies. Finally, this method is extended to a 3D
model; however, the results cannot be directly compared to the 2D model due to the shorter
runtime resulting from computational cost.
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1. Introduction

The European Union’s commitment to reducing carbon emissions, as outlined in the Paris
Agreement, has prompted a significant shift towards cleaner energy sources. In 2022, the
EU generated 2,641 TWh of electricity, with a notable portion sourced from fossil fuels.
However, as part of the EU’s goal to achieve net-zero emissions by 2050, there’s a growing
emphasis on transitioning away from fossil fuels towards renewable energy sources [2].

Hydrogen, as one of the most promising clean and sustainable energy carriers, plays a piv-
otal role in this transition. Unlike traditional fossil fuels, hydrogen can be produced and
consumed without carbon emissions. However, current methods of hydrogen production,
primarily derived from fossil fuels like natural gas, pose challenges in terms of carbon emis-
sions. Despite these challenges, hydrogen remains a crucial element in various industries,
accounting for 2% of the total primary energy demand in 2018. Understanding the sources
of hydrogen production, particularly from natural gas through processes like steam methane
reforming, sheds light on the need for cleaner and more sustainable methods in line with
the EU’s emissions reduction goals.

Natural gas is the primary feedstock for approximately three-quarters of the annual global
dedicated hydrogen production, totaling around 70 million tonnes of Hp. This reliance on
approximately 205 billion cubic meters of natural gas annually accounts for 6% of global
natural gas usage. Following closely behind is coal, contributing to an estimated 23% of
global hydrogen production and consuming 107 Mt of coal annually, representing 2% of
global coal use.

However, the significant dependence on natural gas and coal comes at an environmental
cost. Presently, hydrogen production generates substantial carbon dioxide (CO,) emissions,
with emissions of approximately 10 tonnes of CO, per tonne of H, (t CO,/t Hy) from nat-
ural gas, 12 t CO,/t Hy from oil products, and 19 t CO,/t Hp from coal. This results in
approximately 830 Mt CO, annually. While various methods exist for hydrogen production,
including steam reforming of natural gas, gasification of coal or biomass, and electrolysis,
(see Fig. 1.1) it is essential to underscore the critical role hydrogen plays in the transition
to a cleaner energy future [3]. Beyond its environmental benefits, hydrogen holds signifi-
cant promise for addressing pressing energy challenges. Its versatility enables applications
across diverse sectors, including transportation, industry, and energy storage. For instance,
hydrogen fuel cells present a promising solution for decarbonizing transportation, offering
zero-emission mobility with fast refuelling times and long driving ranges [3].

Moreover, hydrogen serves as a crucial enabler of renewable energy integration by facili-
tating the storage and conversion of excess renewable energy into storable forms. Through
processes like electrolysis, surplus renewable electricity can be used to produce hydrogen,
which can then be stored and later converted back into electricity or used as a feedstock for
various industrial processes [3].

In addition to its role in decarbonizing energy systems, hydrogen holds strategic impor-
tance in enhancing energy security and fostering economic growth. As countries seek to
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Figure 1.1.: Conventional H, production pathways [3].

diversify their energy sources and reduce reliance on fossil fuels, investments in hydrogen
technologies can drive innovation, create jobs, and stimulate economic development [3].

Therefore, while discussing the various methods of hydrogen production provides valuable
context, it is crucial to emphasize the broader significance of hydrogen as a clean, versa-
tile, and strategically important energy carrier that can drive the transition to a sustainable
energy future through electrochemical production.

1.1. Elecrochemical Hydrogen Production

The electrochemical hydrogen (H,) production has been widely investigated for decades.
At this stage, there are three industrially proven and used ways to produce H,: Proton
Exchange Membrane electrolysis (PEM), Solid Oxide Electrolyser Cell (SOEC), and Alkaline
Water Electrolysis (AWE).

Proton membrane electrolysis uses a polymer membrane to separate the cell into an anode
and cathode region, allowing protons to pass selectively. Water undergoes electrolysis at the
anode, producing oxygen gas and hydrogen ions, which then move to the cathode through
the membrane to form hydrogen gas. PEM electrolysis operates optimally at 40 — 60°C, of-
fering a promising avenue for hydrogen production with minimal carbon emissions. SOEC
employ oxide-ion conducting ceramics as both the electrolyte and separator, operating at
higher temperatures of 700 — 1000°C. They offer high current densities and efficiencies,
with ongoing research focusing on understanding and controlling degradation and thermo-
mechanical stability. SOECs present a promising avenue for hydrogen production, particu-
larly from renewable electricity, with the potential to operate as either fuel cells or electrol-
yser [4, 5]. The structure of the PEM electrolyser and the SOEC are shown in Figure 1.2.

1.1.1. Alkaline Water Electrolysis (AWE)

Alkaline water electrolysis holds a pivotal role in hydrogen production, rooted in its long-
standing industrial application and enduring relevance in contemporary energy systems. At
its core, AWE operates on the fundamental principle of water electrolysis under alkaline
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Figure 1.2.: Schematics for the PEM and SOEC devices.

conditions, leveraging an electrolyte, typically an alkaline aqueous solution like potassium
hydroxide (KOH) at concentrations of 20 — 30 wt%, to enhance ionic conductivity while
mitigating electrode corrosion risks. The overall reactions of the system are shown (anode,
cathode, total) as,

1
20H™ — 502 +HyO 427,

2H,0O 4 2e~ — H, +20H, (1.1)

ZHzo — Oz + 2H5.

The electrolytic process in AWE involves the reduction of water molecules at the cathode,
yielding hydrogen gas, and the oxidation of hydroxyl ions at the anode, generating oxy-
gen. These half-cell reactions, known as the hydrogen evolution reaction (HER) and the
oxygen evolution reaction (OER) respectively, dictate the overall efficiency and performance
of the electrolyser. The equilibrium potentials, ¢ of these reactions are governed by thermo-
dynamic considerations, with the cathodic HER occurring at a potential of approximately
—0.828 V and the anodic OER at approximately 0.4011 V under standard temperature and
pressure [6]. Figure 1.3 shows the schematic of a AWE.

Nickel-based electrodes, typically porous to maximize interfacial surface area and reaction
sites, are commonly employed in AWE systems. Operating within a voltage range of 1.4 —
3.0 V, nominal current density range of 0.2 — 0.8 A/cm?, and electrode area range of 1 — 3 m?
industrial AWE can reach H, production rates of 1000 Nm?3/h [7, 8]. Production rates as
the previously mentioned, coupled with the utilization of non-noble metal electrodes and
the system’s long-term stability, positions AWE as a commercially preferable solution over
other electrolyser technologies. Nevertheless, AWE confronts challenges, notably its narrow
operating power band and susceptibility to disruptions from fluctuations in power supply,
particularly from renewable sources. The formation and evolution of hydrogen and oxygen
bubbles during electrolysis further impede efficiency, necessitating ongoing research efforts
to mitigate their impact and optimize AWE performance. Ultimately, advancements aimed
at reducing costs and increasing efficiency are imperative to unlock the full potential of
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Figure 1.3.: The working principle of a AWE [9].

AWE and facilitate its widespread adoption in the transition towards sustainable hydrogen
production [10].

1.2. Bubble dynamics in AWE

Hydrogen bubble growth in AWE occurs due to the diffusion of dissolved hydrogen in the
surrounding supersaturated electrolyte in the cathode. Figure 1.4 shows a schematic of this
process. The Hy bubble will grow as the dissolved gas diffuses from the electrolyte, reducing
the supersaturation of products in the electrolyte and distorting the equilibrium toward the
products, ultimately reducing the concentration overpotential. This process occurs after the
bubble nucleates and before the H, bubble detaches at a critical radius R;, where the bubble
growth is driven by mass transport caused by gradients in dissolved hydrogen concentration,
especially near the electrodes and also by bubble coalescence. The critical radius at which
the bubble detaches will vary, but generally, it is within 10 — 100 gm [11].

Bubbles detach after the buoyant forces surpass the adhesion force due to surface tension
between the bubble and the electrode. However, it is also believed that the Marangoni effect
also plays a role in the bubble detachment process, as concentration gradients will increase
bubble coalescing at the electrode-bubble interface for small overpotential regions [12]. After
the bubble has detached, some hydrogen will still diffuse into the gaseous phase, although it
is insignificant compared to the amount diffused into the gaseous phase before the bubbles
detach. A better understanding of bubble dynamics is paramount, as the performance of
electrolytic cells is heavily influenced by the formation of bubbles at higher current densities.
Bubbles attached to the cathode surface reduce the active electrode area by decreasing the
contact area between the electrode and electrolyte, thus increasing the Ohmic resistance and
overpotential [13]. During their growth, hydrogen bubbles have minimal contact area with
the electrode at low current densities since the bubbles shape will be more spherical, with
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Supersaturated
liquid electrolyte

Figure 1.4.: Hydrogen diffusion from the liquid electrolyte phase info the gaseous phase in
AWE schematic.

less spread on the electrode. As the current density increases -more hydrogen production
per unit area- the contact angle further decreases due to the reduced surface tension at the
metal-electrolyte interface. Additionally, the electric double layer may play an important
role, as it is expected that this layer will be gradually displaced [14]. Bubble remanence
time in the electrolyte also affects the electrical resistance. Nagai et al. [15] showed that
the increase of volume fraction of H, bubbles between electrodes increases the electric re-
sistance in the electrolyte, resulting in AWE inefficiency. The interaction between bubbles
in the aqueous solution near the electrode or the bulk flow is also essential. Bubble coa-
lescence was explored by Bashkatov et al. [16], and showed the contactless interaction that
opposes buoyant forces are electric and hydrodynamic forces, which act over distances equal
to 5 times the diameter of a nucleated bubble. These forces can paradoxically oppose the
direction to which the buoyant forces act.

1.3. Computational methods for bubble dynamics in AWE

Experimentally, measuring individual bubble behaviour is a challenge. Particle tracking
velocimetry (PTV) is effective for bubbles larger than 30 ym but fails to capture smaller
bubbles [17]. The shortcomings of experimental techniques can be overcome using compu-
tational modelling, which will adequately capture the intricate details of bubble dynamics
near the liquid and gas interface and also the mesoscale dynamics of the bubbles. The dis-
tinct features of Hy bubble dynamics in AWE can occur on scales ranging from microns
to millimetres, requiring a modelling method to capture these mesoscale phenomena ade-
quately.

Conventional computational fluid dynamics (CFD) models focus on the macroscale. Other
approaches, such as Molecular Dynamics, have been developed for the microscale; how-
ever, the computational cost is high. For mesoscale modelling, a relatively recent method
has developed from the Boltzmann Equation called the Lattice Boltzmann Method (LBM).
Several works of literature will be explored later, and the benefits of investigating bubble
dynamics in AWE via LBM will be discussed. This suitability stems from LBM’s capacity
to effectively model multicomponent, multiphase physics. Different multiphase and multi-
component models have been copiously developed. However, the main ones are known as
the Colour-Gradient model, the Shan-Chen model, the Free Energy model, and the Interface
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Tracking model. Additionally, the rapid growth in the LBM has seen a surge of open-source
code for porous media, making the use and implementation of new models available to
a wide range of audiences. Codes such as Lattice Boltzmann Methods for Porous Media
(LBPM) allow for further development and easy parallelization, a must for the computation-
ally expensive models for bubble dynamics in AWE.

1.4. State of the art

The lattice Boltzmann method has emerged as a powerful tool for simulating complex multi-
phase flows, including immiscible fluid dynamics and interfacial phenomena [18-22]. Origi-
nating from cellular automata principles, the LBM provides a mesoscopic approach, bridging
fluid dynamics” microscopic and macroscopic scales [18, 22]. This method has applications
in various scenarios, such as bubble formation, droplet coalescence, rising bubbles, and
flows in porous media [18-20].

As mentioned before, to model immiscible multiphase flows accurately, different LBM-
based models have been developed, including the Rothman—Keller (RK); who developed the
Colour-Gradient method, Shan-Chen (SC), Free Energy (FE) and interface tracking (HCZ)
[18, 22]. Each model has advantages and limitations, offering varying levels of parameter
flexibility, simplicity, and numerical stability, which will be discussed in Chapter 3.

Recent advancements in LBM modelling have focused on enhancing the accuracy and sta-
bility of simulations. For instance, the integration of recolouring algorithms, such as Latva-
Kokko’s recolouring operator, has shown promise in reducing spurious currents at inter-
faces, leading to improved simulation accuracy [18]. Additionally, models proposed by Lee
et al. have demonstrated increased stability, enabling simulations of systems with high-
density ratios, such as the gas-liquid systems of interest in the present study [22].

Experimental validation is crucial in refining LBM models and assessing their reliability.
Numerical experiments closely aligned with established frameworks, such as those proposed
by Reis and Phillips, provide valuable insights into the performance of LBM-based models
across different scenarios.

Furthermore, the lattice Boltzmann approach has been extended to study interfacial convec-
tion phenomena, such as Rayleigh and Marangoni convection, which are essential in under-
standing mass and heat transfer processes across fluid interfaces. These studies shed light
on the complex interplay between fluid properties, surface tension, and buoyancy forces,
contributing to advancements in chemical engineering and related fields [21, 22].

The applications of multiphase models extend beyond academic research to practical do-
mains such as inkjet printing, microfluidics, power engineering, and chemical engineering
industries. These models are instrumental in optimising processes, understanding flow be-
haviour, and designing efficient devices for various applications, including bubble disper-
sion, drop formation, and interfacial mass transfer [20, 21].

More recent studies have investigated the invasion patterns of oxygen in water-saturated
anodic porous transport layers in polymer electrolyte membrane water electrolyser, using a
Shan-Chen multi-component LB model [23, 24]. Currently, the effects of H, bubbles at the
cathode in AWE using multiphase lattice Boltzmann Methods is not well documented and
is a clear area for development. The present work looks to address this gap.



1.5. Research objectives
1.5. Research objectives

The main objective of the present work will be to implement a multiphase lattice Boltzmann
method, allowing for species diffusion from the liquid phase of the electrolyte into the
gaseous hydrogen phase, and track the consequent bubble growth. Secondary objectives
are set to ensure the completion of the main objective, which work as stepping stones. The
secondary objectives are:

® Develop and implement a "toy code" in Python to simulate a static bubble using
the Shan-Chen, Colour Gradient with enhanced equilibria and Phase-field interface
tracking multiphase models. This step will serve as a comparative analysis to identify
the most suitable and stable method for handling high-density ratios.

* Investigate the species balance at the bubble interface and propose an appropriate
distribution function to accurately model the species flux.

e Explore bubble growth under a constant flux boundary condition in supersaturated
and unsaturated domains.

¢ Validate the implementation of the multiphase model by comparing the results with
those from Khalighi et al. and Brandon and Kelsall in a supersaturated stagnant fluid,
ensuring the correctness and reliability of the LBM implementation.

¢ Extend the 2D model to a 3D model.

These objectives collectively aim to advance the understanding and simulation capabilities of
the LBM simulations, particularly concerning multiphase transport phenomena in alkaline
water electrolysis.

1.6. Report outline

The following chapter, Lattice Boltzmann Method, will briefly discuss the Lattice Boltzmann
Method basics such as the different velocity sets, relaxation times and stability conditions
for LBM simulations. Chapter three will then delve into three different multi-component
and multiphase methods. A two-dimensional static bubble validation case is compared
with Young-Laplace equation for a static bubble, substantiating the implementation of a the
Phase-Field method for further bubble growth simulations. The methodology to capture
the mass diffusion from the supersaturated electrolyte into the gaseous hydrogen phase is
discussed in the fourth chapter. Implementing a multiple relaxation time (MRT) scheme is
explored to enhance the stability of the concentration distribution function. As an approx-
imation to a system which solves the Butler-Volmer kinetics at the electrode, a constant Hj
flux is implemented to compare with the supersaturated case, in chapter five. The sixth
chapter consolidates the findings of the previous work in an endeavour to achieve the re-
search objectives and proposes further work to improve the model.






2. Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is a mesoscopic, particle-based approach that employs
a simplified kinetic description rooted in classical statistical physics. In contrast to conven-
tional numerical methods, which rely on discretizing macroscopic continuum equations, the
LBM is founded on developing streamlined kinetic models to capture essential physics gov-
erning mesoscopic processes. This ensures that macroscopic averaged properties conform to
specified macroscopic equations. The fundamental premise supporting the adoption of these
simplified kinetic-type approaches in studying macroscopic fluid flows lies in the recog-
nition that macroscopic fluid dynamics emerge from the collective behavior of numerous
microscopic particles in the system. Furthermore, it asserts that macroscopic dynamics are
minimally influenced by intricate details inherent in microscopic physics. Formulating sim-
plified kinetic equations avoids the complexity of dealing with intricate equations like the
full Boltzmann equation, thereby eliminating the need for molecular dynamics simulation
that tracks each particle [27].

Electrochemical systems exhibit inherent multi-physics complexity, with their performance
intricately governed by physical phenomena occurring at interfaces. Moreover, these sys-
tems involve the intricate coupling of various physics, encompassing processes such as the
transport of ion/neutral species and electrochemical reactions. Therefore, to accurately pre-
dict the operation and performance of the system, the computational model must adeptly
incorporate these diverse physics. The LBM’s capacity to link mesoscopic quantities with
macroscopic properties adds substantial value as a CFD tool, making it a preferred choice
for developing this project.

2.1. Lattice Boltzmann Equation

The Lattice Boltzmann Equation (LBE) is represented by the continuous particle probability
distribution function f(x,¢, t), which specifies the probability of encountering a particle at
position x at time ¢ with velocity §. The evolution of these distributions due to interactions
at the microscopic scale is described by [28]:

of 2 9f _
S+ = =Q(f). @1)

The left-hand side, which resembles an advection-type expression, describes the force-free,
free-streaming of particles, while the right-hand side contains the collision operator Q(f).
The collision operator describes the changes in the probability distribution function f(x, ¢, t)
induced by inter-particle collisions. While being very hard to solve analytically, the Boltz-
mann equation is relatively simple to solve numerically. The introduction of discretised
microscopic particle velocities ¢; = (cjy, Ciys ci;) offers a mean to discretize the porbability
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distribution function f; from its continuous version f. This leads to the discretized Boltz-
mann equations,

dofi ofi /s
of +8i- aixl = Ql(fl)‘ (22)

The velocity space discretization will be dependent on the dimensions that are being consid-
ered, but also the amount of velocity spaces. More information regarding the velocity space
discretization is discussed in Section 2.3. By discretising Eq.2.2 in velocity space, physical
space, and time, a fully discretised version of the lattice Boltzmann equation is obtained:

fi(x+ciAt,t+At) *fl'(x,f) = 0;(x, 1), (2.3)

where At represents the time step, which represents the time resolution in any set of units.
The most common set of units used is lattice units, a simple artificial set of units such that
At = 1. This is also generally applied with the spatial discretization, Ax. The discretised
collision operator (); has different methods of being approximated. The most simple ap-
proximation is given by the single relaxation time approximation developed by Bhatnagar,
Gross and Krook (BGK) [29]:

T (fi —ffq), (2.4)

T

where T is known as the relaxation factor and f* as the local equilibrium distribution func-
tion, which is determined from the Maxwell distribution function, via Eq.2.5, where it is
worth noting that the local equilibrium function depends on macroscopic quantities such as
the density p, velocity u and temperature T.

2
—u)
“llo,u,T,¢) = — P ex —L) (2.5)
To discretise the equilibrium distribution function, the series expansion of the Hermite Poly-
nomial up to the third term is enough to recover the macroscopic laws for hydrodynamics.
By doing so, the discrete form of the equilibrium distribution reads as,

2
e _ oo (1 WG (u-c)” wu-u 06
Ji sz( * 2 * 2ct 2¢2 )’ @6

where ¢; = &;/+/3 is a further simplification to introduce the particle velocity and w is its
respective velocity set weights. The link between the LBE and the Navier-Stokes equations
is established through the Chapman-Enskog analysis [30], which yields the kinematic shear
viscosity dependent on the relaxation time, as shown by Eq. 2.7:

V= cg (T — Azt) . (2.7)

The macroscopic components of the flow, such as density and momentum (and hence ve-
locity), are determined by the zeroth and first-order moments, as shown in Eqgs. 2.8 - 2.9,
respectively,

P(x't) = Zfi(xf t), (2.8)

10



2.2. Forces in LBE

pu(x,t) = ) cifi(xt). (2.9)

2.2. Forces in LBE

In most hydrodynamic problems, forcing terms are present and require proper evaluation.
The continuous Boltzmann equation with a forcing term is given by [31]:

of  0f  Fof _
g*’é‘g ;&*Q(f) (2.10)

The discretised form of this equation is expressed as:
fi (x +ciAt, t+ At) = fi(x,t) + [Qi(x, ) + Si(x,1)] At. (2.11)
A full spatial and temporal discretisation of the LBE with forcing, achieving second-order

accuracy, is provided by Equation 2.11, where f; is a modified distribution function ensuring
second-order accuracy [31]. The modified distribution function is defined as:

fi=fi— w (2.12)

When employing the BGK collision operator, the lattice Boltzmann equation simplifies to:

. = At - At
fi (x +cipt, t 4+ At) — fi(x, t) = —— (fi —ffq) + (1 — ) EAt. (2.13)
T 2T
Here, the relaxation parameter is redefined as T = 7+ % and the source term S; =

( — %) F,At. The force term F; will be case-dependent; however, in many multiphase

flows, this force term consists of pressure, bo_dy, and surface tension forces. For convenience
from now onwards, the redefined variables f; and 7, will be dropped.

To ensure that the LBE can be solved using a second-order method, the macroscopic velocity
must be given by Eq. 2.14, regardless of the forcing scheme. Various forcing schemes exist;
however, the most commonly used is the one developed by Guo et al., as they recover the
continuity and momentum equations by removing undesired derivatives resulting from time
discretisation artefacts [32].

1 FAt
_ 15, FAL 2.14
u 0 ;czf it 20 (2.14)
The equilibrium velocity, using Guo et al.’s proposed method, will assume that u = u*l.
Additionally, the force term F; in Eq. 2.13 will be given by Eq. 2.15:

E=w <ci_” + <Ci'")ci> .F. (2.15)

2 4
CS CS

11
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2.3. Velocity space configurations

The discrete velocities, denoted as c;, along with their corresponding weighting coefficients
w;, collectively constitute velocity sets represented as {c¢;, w;}. These velocity sets are con-
ventionally designated as DdQq, where ‘d’ represents the number of spatial dimensions
covered by the velocity set, and 'q” denotes the set’s number of velocities.

2.3.1. 1-D Velocity sets

The 1-D lattice configurations for this problem include D1Q2, D1Q3, and D1Q)5, as illus-
trated in Fig. 2.1. Each node within the lattice possesses a unique distribution function and
corresponding velocity vectors. Taking D1Q5 as an example, the velocity vectors are ¢y, cq,
¢z, ¢3 and ¢4, while the distribution functions are represented by fo, f1, f2, f3 and f4. In
LBM simulations it is recommended to discretise both the spatial and temporal dimensions
using equal stepping values, denoted as Ax = At. In both D1Q3 and D1Q5, the central node
(Oth) remains stationary with zero velocity, resulting in its distribution function not being in-
volved in the streaming process. The distribution of the central node for higher dimensions
(D2 and D3 lattices) is not streamed either.

2 1 2 0 1 4
O« " »O O= »O O

0 3
, O——O0—O
D1Q2 DIQ3 DIQS

Ok

a

Figure 2.1.: Lattice arrangement for 1-D velocity sets [33].

2.3.2. 2-D Velocity sets

Predominant velocity sets utilized in two-dimensional scenarios encompass D2Q4, D2Q)5,
and D2Q9. While alternatives like D2Q7 exist, the former configurations hold greater rele-
vance [34]. Figure 2.2 depicts the lattice configurations for D2Q4, D2Q5, and D2Q9, respec-
tively.

O O Q= O =0
2 2 2
1 1 1
O O O ()0 O O O
3 3 3 0
7 8
4 4 4
O O O O O
D1Q4 D1Q5 D1Q9

Figure 2.2.: Lattice arrangement for 2-D velocity sets.

D2Q5 and D2Q)9 lattice Boltzmann models differ in boundary complexities, with D2Q5 prov-
ing more robust for convection-diffusion equations under conditions of weak convection.

12



2.3. Velocity space configurations

The influence of porosity on the performance of different lattice Boltzmann schemes in mass
transport simulations showcases greater differences with higher complexity geometries. The
D2Q9 outperforms the D2Q4 and D2Q5 lattice configurations [35, 36]. The former aligns
with the fact that including more velocity sets utilizes additional distribution functions, en-
suring Galilean invariance.

2.3.3. 3-D Velocity sets

Figure 2.3.: Lattice arrangement for 3-D velocity sets [33].

Fig. 2.3 visually presents prevalent three-dimensional lattice configurations, notably D3Q15
and D3Q19. While lower configurations like D3Q7 and D3Q6 exist, it is recommended
to choose at least D3QQ15 to maintain system isotropy [31]. Additionally, there are lattice
configurations, such as D3Q27, incorporating more distribution functions; however, they
tend to be computationally expensive.

The current study will focus mainly in 2D systems however, a 3D case will also be im-

plemented. The velocity sets used will be D2Q9, D3Q7 and D3Q19, which have weights,
velocity vectors and speeds of sound shown in Tab. 2.1-2.3, respectively.

Table 2.1.: The D2Q)9 velocity set, which has a speed of sound of ¢; =1/ V3.

i | 0] 1 2 /34| 5 6 | 7|8
111 T T T 1T L1111 ZL
Wilg| g 9 | 9 | 9 |3 |3 |3 | 36
Cix |O|+1] 0 |10 |+1]-11|-1]+1
Gy |00 |41 ] 0 -1 +1]+1]-1)-1

Table 2.2.: The D3QY7 velocity set, which has a speed of sound of ¢; = 1/2.

i |0 1|23 |45/ 6
w | T T T T T 11T1T1T711
il 4| 8 | 8|8 | 8|38 |8
¢y |O]+1]-1] 0 ]0] 01O
cy |00 ]0][+1|-1]0]0
¢, |0 00| 0 |O0]+1]-1

13



2. Lattice Boltzmann Method

Table 2.3.: The D3Q19 velocity set, which has a speed of sound of ¢; = 1/+/3.

i|0|] 123 |4 |5|6|7 |89 10|11 |12]13|14 |15 |16 | 17| 18
[S7P0 A U W A A O A N W A A A R O A [ A
i | 3118 |18 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36
¢y |O|+1 {1000 |O0O|+1|-1|+1|-1]0]0|+1|-1|+1|-1]0]0
Gy |0/ 0] 0 [+ )-1]0]0]|+1}-1]0]0|+1]-1]-1]+41]0 0 |+1] -1
¢, | 0] 0 0 0 O |+1|-1] 0 O |+1|-1|+1|-1|0 0 |-1|+1]-1]+1

2.4. Stability

The LBM, like any other numerical scheme, faces two major challenges: numerical stability
and accuracy. Instability is typically caused by truncation errors and ill-posed time evolu-
tion. The stability of LB simulations hinges on the magnitude of the relaxation factor. In the
case of the BGK collision operator, stability depends solely on one relaxation factor, denoted
as 7. For the Two Relaxation Time (TRT) collision operator, the stability relies on two relax-
ation factors, denoted as (7", 7). Similarly, for Multiple Relaxation Time (MRT) collision
operators with g relaxation times 7; and a DdQq velocity set [31].

Analysing stability criteria analytically in the bulk, away from boundaries, is a common
practice in LB. It is crucial to assess stability on a case-by-case basis for different simulations
to ensure adaptability and robustness. The Lattice-BGK (LBGK) stability conditions exhibit
four possible behaviours based on the ratio of the relaxation factor to the time step, T/At:
under-relaxation, over-relaxation, full-relaxation, and instability. Instability occurs when
7/At < 1/2. Under-relaxation happens when 7/At > 1, causing exponential decay of f;
towards fieq, resembling the behaviour in the continuous-time BGK equation. Full relaxation
is observed at T/At = 1, causing f; to directly decay to ffq . Over-relaxation is evident in the
range 1/2 < v/At < 1, inducing oscillations of f; around fle 1 with exponentially decreasing
amplitude [37]. The three latter cases are represented in Fig. 2.4, where the case when
T/At < 1/2 results in an oscillating increasing exponential distribution function f; around
its equilibrium position fle 7, increasing exponentially.

-e-T/At=2 ——71/At=1 ——71/At=0.6 ---71/At=0.51
1.14 .
g A\ "/“ /,\ ’ » .
~ ., 0 i \ N p
; \“L//;\*“ / ' ’/ \ / ! \ \\ \
= \~'_"'/‘\‘\':‘- o~ —p—————o0— 00— o -
RN \\\ / \ g \ I N
\ / \ / ! /‘ / vy
\\‘/<’ \ , ‘/ v
0.9 L— I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t/At

Figure 2.4.: Evolution of the distribution functions for the BGK collision operator for different
ratios of /At [31].

Concerning the BGK collision operator, a sufficient stability condition is when all equilib-
rium populations remain non-negative. This condition holds true for any 7 value where

14



2.4. Stability

T/At > %. Additionally, for the BGK collision operator, an optimal stability condition for
the range 7/A > 1 is the non-negativity of the rest equilibrium population [37]. The mag-
nitude of the velocity of the simulation can be used to identify stability as well, leading to

lu| </ z—-. (2.16)

For the BGK collision operator, using the conventional definition of the equilibrium distri-
bution population (Eq. 2.6), the maximum allowable velocity magnitude can also serve as a
stability condition. The maximum allowable velocity magnitude for different velocity sets is
shown in Eq. 2.17,

2Ax Ax Q
|tmax| < \/;/T)f ~ 0.816 AJ; for D1Q3 (2.17)
max ' '
%ﬁf ~ 0.577% for D2Q9, D3Q15, D3Q19, D3Q27

Analytical results can be obtained for the bulk LBE of a flow that provides stability, as
depicted in Fig. 2.5a. LBM simulations, which include boundaries, may encounter stability
issues when |umax| — 0 with the viscosity also going to zero. This issue is identified through
linear stability analysis (von Neumann Analysis) or the non-negativity of the discrete distri-
bution functions f; [37]. Niu et al. [38] conducted von Neumann linearised stability analysis
under a uniform flow condition for an LBM simulation with a D2Q9 velocity set. They
found that the maximum velocity is related to the relaxation time via Eq. 2.18, as illustrated
in Fig. 2.5b. However, this relation does not hold for any flow, as it heavily depends on the
boundary conditions of the analysed problem.

8(&—4)4F for§ <055
|Umax]| (T) < { N o (2.18)
, 0.5 T T T T T
| uns;able | unstable
ok | 041
stable
2 06l ] % 03F 8
E 04 | § 02F .
- stable -
02 1 0.1 .
0 1 1 1 O | 1 1 L 1
0.5 0.75 1 125 L5 05 055 06 065 07 075 08
T/At T/At
(a) Sketch of the analytical sufficient and (b) Stability regions for a D2Q9 velocity
optimal stability regions for 2D and set, analyzed via a Von Neuman linear
3D simulations [31]. stability by Niu et al [31, 38].

Figure 2.5.: Stability for LBM.
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2. Lattice Boltzmann Method
2.5. MRT collision operator

The fundamental concept behind the Multiple-Relaxation-Time (MRT) collision operator is
the transformation of the distribution functions (populations) into moment space using a
transformation matrix M. This approach enables the relaxation of moments, rather than
populations, at distinct rates governed by a relaxation matrix S. After the moments are
relaxed, they are transformed into population space, where the standard streaming process
is applied; mathematically, this means that

f(x+ciht t+At) = f(x,t) — MTISM[f (x,t) — f(x, t)] At. (2.19)

The process to employ an MRT collision operator is to first compute the conserved mo-
ments—density p and momentum j = pu— from the pre-collision distribution functions.
These are obtained through the following expressions:

p=Y.fi pu=} fi: (2.20)

After determining the conserved moments, the next step involves transforming the distri-
bution functions f; into moment space. This is achieved using a transformation matrix M,
leading to the calculation of the moments 11, where k represents the moment, as,

m — Mf, mj = ZMkifi. (221)

With the moments in hand, the equilibrium moments m®1 are computed. These can either
be directly obtained from the relation m®? = Mf®1 or more precisely constructed from the
known conserved quantities p and pu using a general polynomial representation:

miq =p Z ak,lmnuﬁcuyug. (2.22)

Lmmn

The coefficients ay j,,,, used in this polynomial representation can be determined using ap-
proaches such as the Hermite polynomial or the Gram-Schmidt orthogonalization. Once
both the moments m and their equilibrium counterparts m®1 are available, the collision step
is performed in moment space. This involves relaxing the moments toward their equilibrium
values according to the BGK-type relaxation:

mp = my — wy (mk — miq> At. (2.23)

It is important to note that during this collision process, the conserved moments p and j
remain unchanged, except in cases where external forces or sources are present. After the
collision, the post-collision distribution functions f* are reconstructed by transforming the
moments back to population space using the inverse of the transformation matrix:

=Y M'm. (2.24)
k

Finally, the process concludes with the streaming step, where the populations are advected
according to the LBM algorithm. The MRT collision operator, briefly described above, shows
how it handles different relaxation rates for different physical quantities, enhancing stability
and accuracy in lattice Boltzmann simulations.
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2.6. Boundary Conditions
2.6. Boundary Conditions

In conventional numerical methods, boundary conditions are typically known and applied
at their corresponding geometrical locations. Consider a planar Couette flow as an example.
To generate a numerical solution for this flow, two boundary conditions are required. Both
of these boundary conditions are always no-slip conditions to ensure that the discretized
elements touching the plate move with the same velocity as the plate, regardless of whether
the plate has velocity or not.

In LBE simulations, boundary conditions are applied at boundary nodes (x;), which are
nodes that connect the fluid and solid nodes. Specifying boundary conditions in LBE sim-
ulations is a non-trivial task, as it involves applying relevant conditions to the mesoscopic
populations (f;), which have higher degrees of freedom. There are three general types in
which boundary conditions are applied: Dirichlet, Neumann, and Robin (or mixed) bound-
ary conditions.

2.6.1. Dirichlet boundary condition

The classical mathematical definition of a Dirichlet boundary condition is a specific value
that the solution of a differential equation should take along a boundary. In LBE, this is also
the case; however, the value being specified is directly related to the mesoscopic populations.
For a 1-D problem using D1Q2 or D1Q3, with a known scalar ¢, the boundary condition can
be defined as:

¢=f+f. (2.25)

At the left-hand side of the domain, the value of f, is obtained from the streaming process,
leaving f; as the only unknown [33]. Alternatively, a detailed flux balance can be realized at
the boundary, as follows (only shown for D1Q2):

T—fA+f"-fH=0. (2.26)

By rearranging the equation, the value of f; can be found using the definition of the equi-
librium distribution function:

="+ fo (2.27)

The previous explanation was shown for 1-D problems, but the same logic applies to higher
dimensions. In cases where there are diagonal distribution functions, such as in the D2Q9
velocity sets, there will be more unknowns. The distribution populations f5 and fg will also
be unknowns, found with their outward inverse streaming distribution functions f7 and fs,
respectively, and their equilibrium distribution functions.

2.6.2. Neumann boundary condition
A Neumann boundary condition specifies the value of the derivative of a differential equa-
tion (Eq. 2.28), where « is a coefficient. To translate this into LB simulations, the derivative

of the equation is discretised.

de _
5o = (2.28)
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2. Lattice Boltzmann Method

Taking a known scalar in a 1-D problem using a D1Q2 velocity set, a Neumann boundary
condition is employed as seen below:

p(i+1)— o) _
e = (2.29)

Knowing that ¢ = f1 + fo:

f (l) +f2(i) + aAx = fl(l + 1) +f2(i + 1). (2.30)

By equating the distribution functions and splitting the coefficient equally, it is rational to
assume that f1(i) = fi(i+1) —aAx/2 and f,(i) = fo(i +1) — aAx/2. Once again, this
procedure also applies to higher dimensions.

2.6.3. Robin boundary condition

A Robin boundary condition is a specification of a linear combination of the values of a
function and the values of its derivative at the boundary. The generic form of a Robin
boundary condition is:

99

5 = b. 2.31

ox T (2.31)
For a D1Q2 velocity set with a flux in the positive x-direction, the unknown distribution
function will be:

fi—=fa=alfi+f2) +b, (2.32)
A= W a1 (2.33)

It is essential to perform a proper conversion of physical space parameters to lattice space.
The relaxation parameter, or multiple relaxation parameters, and the distribution functions
are modeled from the macroscopic equation that describes the physics. In LB, the Chapman-
Enskog analysis is used to derive the relation of the macroscopic transport properties and
the simulation parameters.
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3. Multiphase flows in LBM

The LBM has experienced significant success in simulating single-phase flows over the past
few decades. In recent years, there has been a notable surge in the development of multi-
phase LBM, resulting in various approaches to analysing multiphase flows. LBM’s popu-
larity in simulating multiphase and multicomponent flows can be attributed to its ability to
automatically maintain sharp interfaces, eliminating the need for explicit interface tracking
[34].

Numerous LBM models have been proposed for multiphase and multicomponent prob-
lems. The colour-gradient model, also known as the RK model, represents the pioneer-
ing model based on the Rothman-Keller multiphase lattice gas model [39]. Subsequently,
the Shan-Chen pseudopotential model emerged, incorporating attractive or repulsive forces
that induce phase separation [40]. The Free-energy and Interface tracking models followed
suit (HZC) [1, 41]. The upcoming chapter will offer an introduction and assessment of the
Shan-Chen, Colour Gradient and Interface Tracking model. The assestment will be done by
analysing a static bubble scenario and comparing the results of each method with analytical
results. On the basis of this comparison, an appropriate multiphase model will be chosen to
simulate bubble growth through further development.

3.1. Shan-Chen (SC) Pseudopotential model

The Shan-Chen (SC) pseudopotential method is a bottom-up approach, where the micro-
scopic interactions between fluid elements are postulated first, and then the macroscopic
interactions. The intrinsic simplicity and mesoscopic approach of the SC model are its main
advantages. In the SCMP system, the SC model incorporates a forcing term in the LBE
by replacing the ideal gas equations of state in the single-phase LBM with a non-ideal,
non-monotonic equation of state. Meanwhile, in the MCMP model, each component is rep-
resented by its distribution function. The key idea behind the SC model is the addition of a
simple interaction force at the nodes.

It is reasonable to assume that intermolecular forces act pairwise and are cumulative. The
strength of the interaction between fluid elements at x and & # x is proportional to p(x)p(%).
This interaction is also influenced by the spatial separation between the fluid elements,
introducing a kernel function G(x, ¥) to encapsulate the spatial dependence of the force [31].
The discretized interaction force density at x for multicomponent, multiphase systems can
be written as

FCO @) = —p® (x) DG o (x4 cint) eidt (3.1)
k i

In Eq. 3.1, we can have different components k, ranging up to S components. For this model,
the sum is over all pseudopotential interactions between the nearest lattice neighbors within
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3. Multiphase flows in LBM

the same fluid and for other components. Here, G,z is a scalar denoting the strength of the
molecular interaction between different fluid components, and 1(p) is the pseudopotential,
used instead of density for greater numerical stability. Shan and Chen used Eq.3.2 as the
pseudopotential function, where pg is a reference density that, in most simulations, is set to
unity [40, 42],

¥(p) = po [l —exp(—p/po)]- (32)

To implement an LB simulation using the MCMP Shan-Chen model, changes are made to
the LBM. The distribution function for the k' fluid using the BGK collision operator is given
by Eq. 3.3:

FE (x4 et t+ AL = fF(x,1) [ o t) — f7(x, t)] ) (3.3)

1
Tk
where the equilibrium distribution function ( fl.k’gq) is expressed as:

k 2 k 2
k,eq 1 Ci ) uk’eq (Ci U ,eq) (u /eq) 3 4
fit? = wipe |14 c2 + 2c4 22 ' 34)

The individual macroscopic density oy and momentum pgu; for the k' fluid are defined
asy; fik and Y, flkci, respectively (its zeroth and first-order moments). The velocity of each
component will be given by,

SC(k)
W i 3.5)
Pk

where ' is a common velocity to conserve momentum given by Eq.3.6, and F5%) is the net
force, accounting for both fluid-fluid cohesion F k.ff and fluid-solid adhesion F¥/s.

®
Y Pxt

W= ——. (3.6)
Yk

To implement fluid-fluid cohesion interactions, the nearest lattice nodes are used, being
described as:

F/F (x,t) = —Geyre(x, t) Y wiyg (x +ciddt, ) ¢, (3.7)

where G, controls the cohesive force. Repulsive interactions between components (G, > 0)
model partly miscible or immiscible fluid mixtures. This approach has been shown to be
equivalent to adjusting the system’s free energy explicitly [43]. Additionally, a force exerted
by a surface interaction can be introduced as shown in Eq. 3.8,

FAFS (x, 1) = —Goas (%, 1) Y wis (x + ¢;At) ;. (3.8)
7

Goas k represents the strength of interaction between fluid k and the solid. Note that for this
case, s (x + ¢;At) is an indicator function that will be equal to 0 or 1 depending on whether
it is a fluid or solid node respectively.

20



3.1. Shan-Chen (SC) Pseudopotential model

Given that there is more than one set of populations, it is not immediately clear which
velocity u¥°1 to use for the equilibrium distribution to find the macroscopic components.
The bulk velocity of the fluid is defined by Eq. 3.9, which includes the effect of the interactive
force [44]:

3.9

1% (s

Fsc k)At>

SC Validation

The formulation of the SC, RK and HZC models will be for an SCMP system and imple-
mented in Python. All the simulations will use a D2Q9 velocity set, with a domain size of
Ny = Ny = 100 Iu, where Ax = Ay = 1 lu. Additionally, the bubble for the three models
will be initialised with a radius of 20 lu, and have a sharp interface. The simulation is left
to iterate for 100,000 iterations or until the maximum difference between the distribution
functions (tolerance) is less than 1019, deemed sulfficient conditions for convergence. The
edges of the domain are considered as periodic. Lastly, for the SC implementation, a BGK
collision operator is used to carry out the relaxation.

The SC model for SCMP systems is highly dependent on G,;, which controls the interparticle
force, resembling a temperature-like dependence for SCMP systems. Both Kriiger et al. and
Datadien [20] show the dependence of the density ratio on the value of G,;. Figure 3.1 shows
that the implementation of the SC model in the present work is accurate as the density ratio
dependence matches the results obtained by Datadien for the same test case. Additionally,
it can be observed that the SC implementation can achieve density ratios (p;/pg) of up to

O(10?) for the current implementation with lower values of G,;.

3.04 O  p, present work

X pg, present work
—— pi, Datadien
—— pg, Datadien

2.5 A

2.0 A

1.51

pl-1

1.01

0.5 -

0.0 4 X X

—6.5 -6.0 -55 -5.0 -5
Gk [-]

Figure 3.1.: Non-dimensionalised density of the fluid (red) and gaseous (black) phases of an
SCMP system. [20, 31].
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3. Multiphase flows in LBM

3.2. Colour-gradient (RK) model

The Rothman—Keller (RK) model is a two-component model, where, historically, one com-
ponent is the blue coloured fluid and the other is the red colour fluid. Two distribution
functions are used to represent the fluids. This model modifies the LBM by an additional
collision term and a re-colouring step. Given the two distribution functions, this allows the
colour-gradient method to independently adjust the surface tension and the ratio of the vis-
cosities. The RK model has one major drawback: it is limited in its ability to achieve stable
density ratios for dynamics simulation, i.e., a moving interface. To increase stability for dy-
namic simulations, a modified RK model called the RK model with enhanced equilibrium is
proposed. This model follows the same logic as the traditional RK model. However, accord-
ing to Leclaire et al. [45] and Datadien, the distribution function and the collision operator
are modified as shown in Eq. 3.10 and Eq. 3.11,

fRrtet) = fiee ) +0f (fxh), (3.10)

of = (af) " [(a)"+ (o) 7). =

Here k can either be R for the red fluid and B for the blue fluid region. The total particle
distribution function will be the addition of these two.

filx,t) = fR(x,t) + fP(x,1) (3.12)

The collision operator depends on three sub-operators, which must be applied sequentially
to the distribution function. The three steps are the single-phase collision, a perturbation,
and a recolouring step denoted by Eq. 3.13, 3.14, and 3.15, respectively,

f ) = () (). 613
) = (af) (fan), (3.14)
fFery = () (Frem). (3.15)

1
The collision operator for both fluids, (Qk) , will be carried out using a single relaxation

1
time (SRT), which takes an identical form for each fluid like Eq 2.4. The equilibrium distri-
bution function is modified to enhance the dynamical stability of the method[45], given by:

FE (o, ) = 0 [ (- Vi) + & (Gr s € ® 7)) +
) <C+w u-ci  (u-c)? u-u]) (3.16)
k| Ci +w; ,

+ —
c? 2ct 22
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3.2. Colour-gradient (RK) model

where C; ; accounts for the density difference in kth which for a D2Q9 velocity set is given
by Eq. 3.17,

Xk, i=0,
Cix=14 5%, i=1234 (3.17)
D&, i=5,6,7,8,

and «y is a free parameters that affects the density of the fluids as,

_PiR_lf’XB

= = T ar (3.18)

In the modified equilibrium distribution function ¢; and ¢; are weights depending on the
chosen velocity set, which can be found in literature [45]. The tensor Gy is defined as:

Gy = (u® Vpr) + (@ Vpp) " (3.19)

2
The perturbation operator (Qi‘ ) , takes the form given by Eq. 3.20, imposes surface tension
by,

2 A (ci - V)?
kK\° _ ¢k / 2k b _B:
(0F)" = £ (e t) + £Vl [w e B (3.20)
where Ay is a tuning parameter that can be set by imposing surface tension as,
o= (3.21)
9weff

where the effective relaxation parameter w,f is a function of the kinematic viscosity at the
interface 7, where both parameters are found as,

(3.22)

Welf = Gp 11/

e 1, s 2 (323)

7 PrR+PBVR PRTPBVB
Additionally in Eq. 3.20, B; are constant for each distribution and their values will depend
on the velocity set chosen. For a D2Q9 velocity set the values of B; are By = —24—7,Bi = 22—7
fori=1,2,3,4, and B; = % fori =5,6,7,8. Lastly, ¢ is the phase field which is computed
with Eq. 3.24,

_ pr(x) —pp(x)
P(x) = —PR(X) n PB(x)I (3.24)

This implies that |¢| < 1, and that ¢ = 1 is a purely red fluid region and ¢ = —1 is a purely
blue fluid region. The gradient of the phase field V¢, is determined with a fourth-order-
accurate isotropic finite difference scheme[46, 47],

1
V¢ = @ ;wicifp(x +c;, t). (3.25)
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3. Multiphase flows in LBM

3
The recolouring operator, (Qf) , implemented by Latva-Kokko and Rothman to achieve

phase separation and maintain the sharpness of the interface modifies the post-collision
distribution functions as:

3 e
(0F) = E4fi + BEGE A (o = 0) cos (),

s g orp (3.26)
(0F)" = B = BEE A (o = 0) cos (),

where B is the separation parameter, which can take a value between 0 and 1, and ¢ is the
angle between the phase field and the lattice velocity vector as 3.27,

cos(¢p;) = |ch (|P¢| (3.27)

Additionally, in Eq. 3.26, f = Y ff*. After the recolouring step, the particle distribution
functions stream to the neighboring lattice by,

fE(x + et b+ ML) = fE7(x, 1), (3.28)

The density per component, the total density, and the momentum are determined respec-
tively by, respectively,

e =21 (3:29)
p=Y 0K (3.30)
k

ou = ;Zfikci. (3.31)

RK Validation

To validate the RK-enhanced equilibria model for a static bubble, the Laplace law can be
used to determine the pressure jump analytically as,

E/
where ¢ is the surface tension and R is the radius of the bubble. The analytical values can
then be compared with Eq. 3.33, which determines the pressure difference across the bubble
interface in the simulation.

pe = 11(1 —ap)px (3.33)

In Eq. 3.33,  will be a parameter dependent on the velocity set used, where for the D2Q9
case, § = 3/5. The tunable parameter f = 0.7 will reduce the interface thickness as much
as possible, and the density ratio will have a value of pr/pp = 10 and will remain con-
stant for the validation. As all other parameters in a LBM simulation, surface tension will
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3.3. Interface Tracking and Mass Transfer Across the Interface

be dimensionless lattice units. The corresponding lattice units of o are mu/tu?, where the
numerator is mass units and the denominator is time units. The relationship between pres-
sure difference, surface tension, and radius of the bubble is plotted in Figure 3.2a, which
is consistent with the Laplace law. For small bubble radii, R < 15, the relative deviation
is more significant than 15% as the interface width becomes almost the same size as the
radius (w ~ 7 lu). Additionally, as the surface tension increases, so does the relative error
d0 = (0 — Onum) /0 % 100, as shown in Figure. 3.2b This occurs as the immiscibility between
the fluids increases and the artificial forces acting around the interface increase, generating
more pronounced spurious velocities.

3.3. Interface Tracking and Mass Transfer Across the
Interface

In the interface tracking model, also known as the He-Chen-Zhang (HCZ) model, interfacial
dynamics are modelled by incorporating molecular interactions, which are done by intro-
ducing two distribution functions: one for the pressure and, another generally, for the order
parameter. These will recover the N-S and Cahn-Hilliard (CH) interface tracking equations.
However, using the CH equation causes tiny droplets to disappear once their radius falls
below a critical value [1]. Additionally, as the CH equation involves the Laplacian of the or-
der parameter, 4M-order derivatives have to be calculated to compute the chemical potential.
Consequently, another class of interface tracking was proposed, called the phase-field equa-
tion, where, at maximum, 2"4-order derivatives would need to be determined. The primary
advantage of the HCZ model proposed by Fakhari et al. [48] is that it was later modified by
Tan et al. to incorporate a mass flux term between two phases. The following sub-section
will describe the LBM proposed by Tan et al., Fakhari et al..

Phase-Field evolution equations

According to Fakhari et al., the conservative phase-field (¢) in an incompressible two-phase
flow reads as:

A B 1-4(¢— pavg)’
S T

ar

} o (3.34)

where W is the width of interface, M is the mobility of the interface, pavg = (¢ + ¢y) /2 =
0.5 is always used to indicate the location of the interface, n = (V¢)/|V¢| is the unit
vector normal to the interface. The last term in Eq. 3.34 is a source term that will account for
species transfer across the interface. To couple the phase-field method with the concentration
evolution, Tan et al. made four assumptions: the bubble is filled by a single component with
constant concentration, the concentration field is considered as a passive scalar, there are no
temperature gradients in the system, and at the interface Henry’s Law is assumed for the
mass transfer phenomena.

Diffusion mechanisms are responsible for the mass transfer rate and volume change for the
different phases. For continuous species transfer, the velocity near the interface u#; and the
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3. Multiphase flows in LBM

concentration gradients will be the principal reasons why the mass flux g across the interface
varies. According to Maes and Soulaine, the mass flux will be given by:

it VC + Deg 7CV¢ u =0,
g = { ) S L) (3.35)

vepti-9Hecy
_ Degf eﬁ]f) ¢ u # 0.

where C is the concentration mixture of the multicomponent/multiphase system, D, is
the harmonic mean diffusion coefficient averaged between the different phases, given re-
spectively by:

C=¢C+(1—¢)Cq, (3.36)

N DiDy
7 Di(1 = ¢) + Dgg

(3.37)

Additionally, He is the distribution coefficient at the interface, which Henry’s Law gives as
the ratio of the gaseous to liquid concentration (i.e., He = C¢/C;). This value is constant and
for the system in question. For AWE at 80°C, it will have a value of He ~ 309.82 [50]. The
source term can be found as the integral of the mass flux over the interface:

= [(a-mas = [ (@-nvghda = [ (g-Vg)d0, (339)
where S is the interfacial area and Q) the control volume. As the control volume in lattice

units is one, the value through which the integral is realised becomes one, thus substituting
Eq.3.38 into Eq.3.34 the phase field equation becomes:

2
a¢+V (u4>)_V-{M [ng—l_él(q)_%vg) n

ot 14

} 41 Ve (3.39)
O1

As the LBE equation is inherently conservative, the phase field equation can be solved by
applying the collision and streaming operation of the LBM as shown by Eq.3.40 and Eq.3.41.

N e gilx ) —gl(xt)
8i(x, 1) = gi(x, ) 705 (3.40)

gi (x +ciAt, t+ At) = $i (x, 1) (3.41)

In the previous equations, Ty is the relaxation time given by 7, = M/(c 2At), where M

is the mobility which is a tuning parameter. The equilibrium distribution g;(x, t) will be
determined as Tan et al. proposes:

c

eq _
U, t) = wiep |1 _
S =wig |14 ==+ =g~ 5 W

S

ciou (ci-u)? u-u] M[1—4(¢—¢avg)2]wici.n, (3.42)
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3.3. Interface Tracking and Mass Transfer Across the Interface

The second term on the right-hand side is introduced to appropriately modify the flux at
the interface, ensuring the interface is as sharp as possible. The zeroth order macroscopic
component that is recovered is the Phase Field, as shown by,

9 =Yg (3.43)

However, to ensure that the mass source is recovered with a second-order accuracy we first
define the population sources as

Q = wy 6.4

Performing a Chapman-Enskog analysis with the additional terms Q;, we find that the
macroscopic Advection Diffusion Equation (ADE) becomes

2 .
&I)Jrv-(uq;):v-{MlV(p—1_4(¢_¢avg) n”er—Ataq (3.45)

ot 144 01 2 ot
To remove the unphysical —%g—? term, the relaxation time is redefined as Ty = 75 + At/2,
which then redefines the macroscopic moments as,

Q;At 1
¢ = Zi;gi T Qi = <1 - 274>> w;q. (3.46)

It is worth noting that the redefined relaxation time should also be used in the collision step,
Eq. 3.40.

Concentration evolution equation

The phase field is a diffuse interface model, where the interface between components/phases
contains a designated number of grid points over which the physical properties change
smoothly. A single-field approach can be adopted in which the unified concentration equa-
tion of the different species is established by a conditional volume average technique [19].
At the interface, it is considered that there is thermodynamic equilibrium, and thus the
concentration equation will be governed by:

a£+u'VCZV'(DeffVC)—V' |:Deff

1— He
o eCVﬂ . (3.47)

¢+ (1-¢)H

The distribution function corresponding to the ADE for concentration proposed by Tan et al.
can then be expressed as:

I (% + €A+ AE) = hy(x,£) — Tl [, £) — 192, 1)), (3.48)
h

where 7, is the relaxation time and h%(x, t) is given by,

2
ci-u  (ci-u)” u-u

h(x,t) = w,C |1+ 2 l -
i (%1 = + c2 + 2ct 2c2

Deff |: 1— He
¢ ¢+ (1—9)

HeC|V(P| wic; - Nn. (349)
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3. Multiphase flows in LBM

However, to enhance the stability of the system and allow a greater range of values of
diffusivities to be used, an MRT collision operator will be proposed in the present study.
Thus, Eq. 3.48 will be modified as follows,

By (% 4 €M £+ At) = Iy(x,t) — MZ'ScMc [hi (x,t) — 1S%x, t)} ) (3.50)

where M is the transformation matrix and S¢ is the diagonal relaxation matrix. Both these
matrices will be velocity set dependent and, in the case of S¢, the relaxation rates for each
moment as well, and the values of these will be discussed further on. The concentration
macroscopic quantity can be recovered as,

C=)_h (3.51)

Pressure evolution equation

The governing equations for the fluid’s behaviour will be given by the continuity and NS
momentum equations, Eq.3.52 and Eq.3.53, respectively. These equations are recovered by
a Chapman-Enskog analysis of the modified pressure evolution as shown by Fakhari et al.
and Tan et al..

P oV ou=o, (3:52)
)
1Y (altl +u- Vu) =—-Vp+ V- [u(Vu+uV)|+F,+F,. (3.53)

Here, F; denotes a body force and Fs a force source term related to the surface tension o
between the gas and liquid, where it is expressed in a continuum from Fs = pyV¢. The
chemical potential i can then be determined by:

48 3cW
Ho = T (9= 00) (9= 91) (9~ fuvg) — 2= V9. (3:54)

The term V2¢ will be determined using a lattice generalisation that ensures factorizability
and isotropy of the scalar in question. The Laplacian for a generic DdQq velocity set will be
determined by [51],

V2<p = C% [; wip + (wg — 1) 47] (3.55)
§ Li#0

The distribution function is modified as f; = fic2 + w;(p — pc?) and so is the equilibrium
distribution function ffq’* = fchg + w;(p — pc?). The local density p will be determined by
Eq. 3.56. From now on, the asterisk in the distribution functions will be dropped, but it
is important to keep in mind these transformations for the implementation of the current
method.

p = pg+¢lor — pg)- (3.56)
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3.3. Interface Tracking and Mass Transfer Across the Interface

To carry out the collision, Fakhari et al. and Tan et al. utilise an MRT collision operator,
which ensures greater stability, allowing for high-density ratios for low Mach numbers. The
collision operation will be given by:

filx ) = Filx,t) = My S, My [ Fi(x, 1) = 7 (x, 1) | + AT (¢ — u) - Fot

N (3.57)
At [(Ti —wi) (p1 = pg) €5 +1"i14¢} (ci—u)-V¥¢,
where
2
ci-u  (ci-u)” u-u
Ii=w; |1+ 5=+ - (3.58)
' ' c2 2c4 2c2 ]

Fakhari et al. proposed the transformation given by Eq. 3.59 to ensure that the collision
scheme remains explicit.

fi=fi+ % (fi —ffq) - % {(Ti —wj) (o1 — pg) C§+ri#¢] (ci—u)- V¢ — g (3.59)

A similar transformation for the equilibrium distribution functions leads to,

- At At

fil=f"- 2 [(ri —w;) (o1 — pg) €& + Fi”‘/’} (e —u)- V¢ - 2 b (€ —u)-F, (360
The streaming is then carried out as,

fi(x +cit, t+ At) = fi(x,t) (3.61)

It is worth noting that VM¢ and V¢ are the gradient operators based on mixed and central
finite differences respectively, given by:

" —¢ (x +2ciAt t) +5¢ (x +ciAL 1) — 3¢(x, 1) — ¢ (x — €L )
?= CZAt 1;)“’ i 4Ax ,
vl = Y wier ¢ (x +ciALt) — ¢(x,t) (3.62)
Ly l 2Ax

i#0

The zeroth and first moments can be found by employing Eq.3.63, which will determine the
pressure and the velocity, respectively.

At
p=2fi+>5 (o1 —pg)ciu- V<,

At (3.63)
[Zfzcz + (Vq;VC(P + Fb)

"2
Phase-Field validation

The Laplace pressure jump across the interface will be measured to corroborate the imple-
mentation of the HZC model discussed in the previous section. The transformation matrix
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3. Multiphase flows in LBM

for the D2QQ9 velocity set is given by,

101 1 1 1 1 1 1 1
4 -1 -1 -1 -1 2 2 2 2
4 2 2 2 21 1 1 1
o 1 0 -1 0 1 -1 -1 1
M,=|{0 -2 0 2 0 1 -1 -1 1 (3.64)
o 0 1 0 -11 1 -1 -1
o 0 -2 0 2 1 1 -1 -1
o 1 -1 1 =10 0 0 0
0 0 0 0 0 1 -1 1 -1

While the diagonal relaxation matrix is S = diag (1,1,1,1,1,1,1,s,,s,), wheres, = 1/ (v/cg +
0.5), the denominator being the relaxation time.

The pressure can be recovered from the distribution function, as shown from 3.63. However,
this recovers the whole field. In order to determine the pressure jump across the interface,
the pressure inside pi, and outside poyt are measured as:

Pin = <P |4>>0.999999>

(3.65)
Pout = (P lp<0.000001)

Figure 3.2a shows the pressure difference across the interface, showing even better accor-
dance with the theoretical values for different surface tension values. Figure 3.2b shows the
relative error of surface tension when the computed pressure difference and respective ra-
dius are used to determine the surface tension. Additionally, Figure 3.2b shows that relative
error increases for both RK and HZC models with increasing surface tension values. When
the radius of the bubble decreases, the relative error also shows an increasing tendency.
It is worth noting that even for small bubble radii and considerable surface tensions, the
HZC model has a relative error smaller than 10%, significantly smaller than that of the RK
model.

A sensitivity analysis was conducted on the width parameter W for a system with a radius
R = 201lu and surface tension ¢ = 0.01[mu/tu?]. Table 3.1 shows the results obtained. A
width of W = 4 was chosen for future simulations to balance sharp interface and accuracy
while minimizing spurious velocities.

Table 3.1.: Sensitivity analysis of width W, relative error, and maximum magnitud of the
spurious velocities.

W lu] | ¢ [%] | Umax [lu/tu]
2 1.56 0.00189
3 2.27 0.00039
4 2.53 0.00018

3.4. Model comparison

The presence of (unphysical) spurious currents—mainly close to the bubble interface—is
common in all LBM multiphase schemes. To illustrate the phenomenon of spurious currents
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Figure 3.2.: Bubble radius, surface tension and pressure difference relation for a static bubble
for the RK (empty characters) and the HZC (filled characters) models.

and show that the HZC and RK models have smaller spurious currents than the SC model,
the velocity field is shown in Figure 3.3. The input parameters used are reported in Table
3.2 Note that the areas with the most significant spurious currents are closer to the bubble
interface in the RK simulation than in the SC and HZC simulations, as these latter two are
diffuse methods. Furthermore, we see that the maximum spurious current in the RK and
HZC simulations is an order of magnitude smaller than those present in the SC results. The
spurious velocities are the smallest in the HZC method, attributed mainly to the interface
potential force form and the stable discretization, which estimate various derivatives [34,
48]. On the other hand, implementing this model is quite complex and computationally
expensive, requiring around two times more CPU computation per time-step than the RK
model for a stationary bubble case with density ratios of O(10?) [52]. It is computationally
expensive as the numerical implementation involves the discretization of many directional
derivatives, which need to be evaluated in every lattice direction.

Table 3.2.: Input parameters for the static bubble simulations for the RK, HZC, and SC cases.
For the RK p; = p4 and pg = pp.
Method p; P T T o G B ap M

RK 1.0 010 1.0 1.0 0.01 - 07 02 -
HzC 1.0 010 1.0 1.0 0.01 - - - 0.167
SC 172 015 1.0 1.0 - -48 - - -

To simulate bubble growth in AWE the multiphase method should handle density ratios of
O(10%). The implemented SC method, therefore, is not an option as it would not comply
with this requirement. Both RK and HZC methods can handle large density ratios. While the
RK method is computationally less taxing than the HZC, its superior velocities are slightly
higher. The HZC model, by having smaller spurious velocities, the mass transport around
the liquid-gas interface will be less affected by unphysical convection. The HZC method is
preferred over the SC and RK methods to develop an LBM method for AWE that can track
bubble growth. In Appendix A, a qualitative comparison of the three methods and the Free
Energy method can be found.
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4. Bubble Growth in a Supersaturated
Domain

Bubble dynamics, particularly bubble growth, are deeply intertwined with the transport
mechanisms described in the following chapter. The growth or shrinkage of a bubble at-
tached to an electrode provides valuable insights into the chemical potential in its vicinity. If
the dissolved H, concentration exceeds the supersaturation level, the bubble will grow; con-
versely, if the surrounding electrolyte is undersaturated, the bubble will shrink [53]. While
not conventional, the system in the present work will be considered as SCMP. H, will be con-
sidered as the only component in the bulk liquid, which will transfer into the gaseous phase.
This can be justified as locally near the bubble, H, will be highly supersaturated. Having
a single component H system serves as a simplification to avoid coupling other electro-
chemical LB solvers such as the Nernst-Planck (for mass transport) and Poisson solvers (for
electric field).

This chapter presents a brief discussion of the different bubble growth regimes, followed by
a grid sensitivity study. The modified HZC model, as presented previously, is implemented,
and the mass transfer across the interface is then validated using Newman analytical solution
for a spherical bubble in pure diffusive regimes. Bubble growth is then analysed under
supersaturated conditions.

4.1. Bubble growth regimes

There are three recognised growth regimes for bubble evolution in AWE. Each stage of
growth can be described by:

R(t) = Bt*. (4.1)

Here, R(t) represents the time-dependent radius of the bubble, t is the time, B is a growth
coefficient primarily dependent on the current density, and x is the time exponent that
determines the growth rate [26]. The first growth stage is hydrodynamically controlled and
lasts up to t = 10ms. This process is governed by the inertia of the liquid surrounding the
bubble and can be described by the Rayleigh equation:

0.5
R(t) = < ;ﬁ?) t. (4.2)

In this equation, p.l. is the density of the electrolyte. During this period, bubble growth
is driven by high internal excess pressure, which is related to the surface tension of the
liquid-vapor interface.

The second stage is governed by diffusion-controlled growth, occurring when the liquid
surrounding the bubble becomes saturated, facilitating the diffusion of dissolved gas from
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4. Bubble Growth in a Supersaturated Domain

the bulk electrolyte towards the bubble. This stage takes place from 10ms < ¢ < 100 ms and
is described by:

R(t) = C (D12, (4.3)

where D is the diffusion coefficient, and C is an experimentally determined coefficient.

In the third stage, bubble growth is limited by the electrochemical reaction rate, and the
growth can be represented as:

R(t) = pt'/3 (4.4)

In this case, the time exponent x = 1/3 reflects the constant rate of gas addition to the
bubble. This final mode of growth becomes dominant as the bubble-to-electrode diameter
ratio increases. Deviations from reaction or diffusion-governed growth are observed when
an underdeveloped dissolved gas boundary layer is present.

4.2. Physical to LB quantities

Adequate conversion factors are essential to map the physical properties of the system in
question to the lattice units and back again to physical units for postprocessing. Three funda-
mental dimensions are sufficient to generate the dimension of any mechanical quantity; thus,
three independent conversion factors are required to define a unique non-dimensionalisation
framework. For the present study, the three quantities used will be length, time, and mass.
To create a link between physical variables and simulation variables, the parameters previ-
ously mentioned will be non-dimensionalised as:

At

At = —,
C

Ax

Ax* = =%,
x .
%

=
Co

The non-dimensionalised variables have a subscript *, and C denotes the conversion factors.
In lattice units, the values Ax* = 1 lu,At* = 1 tu, and p; = 1 mu are assigned. Table
4.1 shows the physical and lattice values of the parameters used for all simulations in the
present study.

4.3. Grid independency study

In LB simulations, as in other standard CFD methods, the computational domain that discre-
tises the physical domain can affect the numerical results. A grid independence study must
be performed to determine the optimal number of lattice nodes required for simulation. As
in most LB simulations, the spatial discretisation is equal to unity (i.e.,, Ax* = 1lu), so the
node resolution will depend on a reference scale, which will be case-dependent. However,
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4.3. Grid independency study

Table 4.1.: Relevant physical variables for AWE at 80°C and 5 bar [25]. Unless specified
otherwise, all the parameters remain constant for all the simulations.

Parameters | Lattice value [ Lattice unit] | Physical value  [SI unit]
Ax 1.0 [lu] 1.0 x 107 [m]
At 1.0 [tu] 45x1077 [s]
o1 1258 mu/u’ 1258 [ kg/m®]
Pg 1.0 mu/lu’ 1.0 [ kg/m?]
vy 3.02 x 1073 [lu? /tu] 6.7 x 1077 [m?/s]
Vg 146 x 107! [lu?/tu] 324 x107° [m?/s]
D, 2,61 x 107° [lu?/tu] 58 x 1077 [m?/s]
D, 115 x 1071 [lu?/tu] 2.56 x 1075 [m?/s]
Ch,,1 100 [mu/Iu’] 49603 [mol/m?]
Chy, ¢ 3.24 x 107* [mu/Iu’] 0.16 [mol/m?]
o 0.891 [mu/tu?] 0.044 [N/m]

for most simulations in the present study, the bubble radius will be R = 20 y m unless speci-
fied otherwise. The present work will use a D2Q9 velocity set to carry out all 2D simulations.
Figure 4.1 shows the computational domain, illustrating the dependence of the domain size
on the bubble radius. The domain sizes are Ly = Ly, = 5R to ensure bubble growth without
the bubble interacting with itself, as periodic boundary conditions are imposed for the three
distribution functions: pressure, phase field and concentration. Three resolutions are used
which can be seen in Table 4.2. A final simulation time of + = 0.000225 s an arbitrarily
chosen time, which is long enough to see the systems resolution dependence.

Table 4.2.: Grid resolution and their respective spatial, temporal, radial and simulation run-
time values.

Resolution Ax [um] At[ns] R[lu] Runtime

1X 1.0 4.5 20 30 min
2X 0.5 1.125 40 4 hours
3X 0.333 0.5 60 2.5 days

Figure 4.2 illustrates the bubble radius growth for each grid resolution. The radius of the
bubble is determined as the average value of the distance between the center of the bubble
and the interface (given by the condition ¢ = 0.5). As expected, increasing the grid reso-
lution results in a more refined representation of the bubble interface, leading to smoother
mass transport from the liquid to the gaseous phase. The maximum bubble radius varies
between grids, with a difference of 0.1377 ym between the 1X and 2X grids and 0.0924 ym
between the 2X and 3X grids. The decrease in the difference between the 2X and 3X grids
compared to that of the 1X and 2X grids shows that the domain becomes more resolved as
the spatial and temporal discretisations increase, as expected.

Since the current implementation is realised in Python and uses a single CPU core to run the
simulations, extending the current method to open-source GPU/multicore-enabled codes
such as LBPM! is essential to obtain the best results. Thus, for the current study, the 1X grid
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Figure 4.1.: Boundary and initial conditions for the super saturated domain simulations.

resolution was used for most of the simulations. The aim of this grid dependency study
was to highlight the existence of grid-resolution dependency of the results when using the
1X grid due to the limitations in computational power. The 1X grid was chosen to be able
to run simulations for longer, in order to reach longer physical times as the computational
demand would be much lower.

It is worth noting that the value of Cy,, is very large, which was required to ensure bubble
growth for shorter physical times given the computational cost of the current LB model.

4.4. Validation

4.4.1. Mass transfer across the interface

The mass transfer within a bubble is validated under a purely diffusive regime, where the
bulk electrolyte remains a stagnant fluid, i.e., #; = 0. Newman [54] proposed an analytical
solution for the normalised concentration inside a gas bubble, by deriving a solution for
mass transfer controlled by pure diffusion within a sphere. The time evolution of the Sher-
wood number Sh, can be determined for a fixed concentration at the surface and a uniform
initial concentration within the sphere. The instantaneous radial profile of the normalised

More information about the parallelised/GPU enable open source code Lattice Boltzmann Methods for Porous
Media (LBPM) can be found at https:/ /lbpm-sim.org/
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Figure 4.2.: Radius growth of a bubble in a supersaturated domain for different grid resolu-
tions.

concentration is given by:

ri= nm
d, ) = . (4.5)
1+2) (—1)"exp (—[nn]zt/) , for ¥ = 0.
n=1

The corresponding instantaneous Sherwood number is expressed as:

22 L5 exp (—[nm)?t")
3 T Texp (— [t

n=1 n2

Sh(t) = (4.6)

Figure 4.3 shows the instantaneous Sh plotted against the dimensionless time . The data
used to set up the simulation is listed in Table 4.3.

Table 4.3.: Input parameters used to validate Eq. 4.6. The chosen parameters are based on
those used by Zheng et al..
pl/pg 1/1/1/3 Dl/Dg Cl/Cg He o M W R
10.0 1.0 0.05 50 02 0.005 0.167 4.0 60.0

Numerically, the Sherwood number can be determined by:

Sh(t') = k;jﬂ, 7
I

where D, = 2Ry, is the diameter of the bubble, and k; is the average mass transfer coefficient.
The mass variation of the bubble between two consecutive time steps is calculated as follows
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4. Bubble Growth in a Supersaturated Domain
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Figure 4.3.: Instantaneous Sherwood number versus ¢'. The blue dots are the results obtained
using the HZC model implemented in this study, the red dots are data from Zheng et al.
[1], and the black line is Eq. 4.6.

[1, 55]:

k — Zn Ct+1Vt+1 - En Ctvt
! S,AtAC ’

(4.8)

where C;y1 is the gas concentration in the volume V;; at time step t + 1, S, is the bubble
surface area for mass transfer, and AC is the concentration difference between the interface
concentration Cj,;;, and the gas phase concentration, ég. The average concentration of the
interface and the gas phase is determined using ¢ = 0.5 and ¢ < 0.5, respectively.

The results obtained oscillate around the analytical value since the relaxation times for both
fluids for the hydrodynamic equation make the system over-relaxed (i.e., 7,,; = 7,4 = 0.85).
The relaxation time for the concentration distribution for the liquid, also enforce the system
to be over-relaxed as 17, = 0.53. The simulation exhibits substantial oscillations at the
beginning; however, for larger values of t/, the amplitude decreases compared to the initial
amplitude. The discrepancy in the results is attributed to the discretisation of the Laplacian
operator in Eq.3.54. Neither Zheng et al. nor Fakhari et al. specify how this Laplacian
operator is discretised, hence the choice of 3.55 may differ from what they actually used.
The initial value of Sh differ as the Laplacian operator is highly sensitive to large values
of the phase field gradient at the beginning of the simulation. However, for #' > 0.02, the
numerical results oscillate about the analytical result.

The results obtained by Zheng et al. follow a similar trend, where for t' < 0.04, the Sh is
overpredicted, and for ' > 0.05, it is underpredicted. It is worth noting that Zheng et al. do
not specify how they sampled the data, potentially aligning the data to the analytical solution
to show better agreement. These results validate that the implementation of the HZC model
is correct. An MRT collision operator for the concentration distribution function was also
implemented, however for this comparison it was not included, to validate the data using
the same relaxation scheme.
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4.4. Validation

4.4.2. Bubble growth

To validate the diffusive growth regime explored in the section 4.1, a single 5.045ym bubble
is placed in a supersaturated domain far away from the cathode. The spatial and temporal
resolutions are Ax = 0.0901ym and At = 1.001ns, respectively. The present simulation will
correspond to a 2.8X resolution. The lattice bubble size radius is set to 56lu with a domain
size of L, = Ly = 280lu. Furthermore, the solubility and concentration far from the bubble
are assumed constant. Figure 4.1 shows the boundary and initial conditions of the system.

The growth of the bubble is shown over time in Figure 4.4 with a power law fit representing
a diffusion-controlled growth of R ~ t%5 [26, 56]. The predicted radius and the power law
coincide, showing that implementing the current LB method to track mass transfer across a
multiphase interface is adequate.

5.7 1 Rpresent work
-==- R~ t0.5
5.6

5.51

5.2 1

5.1

0.000000 0.000025 0.000050 0.000075 0.000100 0.000125 0.000150 0.000175 0.000200

t[s]

Figure 4.4.: Bubble growth in a supersaturated domain. The blue line shows the simulated
data, while the red line shows a fit corresponding to a power law type R ~ %5,

The concentration field of the bubble at t = 0.2ms is shown in Figure 4.5 with the initial
size of the bubble denoted by the black line. The concentration field shows some darker
spots that arise due to instabilities present because of the large differences in magnitudes
of the physical parameters of liquid and gas, mainly D; and D,. The spatial and temporal
resolutions ensure that all four relaxation times are as close to or larger than 0.51. The
downside of such small Ax and At is that this increases the conversion factor for surface
tension, which causes instabilities due to the increase in unphysical spurious velocities at
the interface.

Concentration and pressure evolution

The pressure inside the bubble must be analysed to ensure a correct pressure and concentra-
tion coupling via the phase field source term (last term on the right of Eq.3.35). The bubble
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Figure 4.5.: Cy, contour at t = 0.2 ms. Instabilities arise after 0.2 ms as the surface tension
generates significant unphysical spurious currents that in the liquid domain.

radius, spatial, and temporal resolutions are changed to those shown in Table 4.1 to: i) en-
sure the stability of the simulation because smaller dx and 6t lead to large surface tension
but also large spurious velocities, ii) allow the simulation to run for longer physical time by
reducing the computational cost.

One of the main assumptions of Zheng et al. for coupling the Phase-field method to the
concentration evolution is that the gas-liquid interface follows Henry’s Law. Inside the
bubble, the gas will behave like an ideal gas; the pressure will be,

PCu, = Cu,RuT, (4.9)

where 6H2 is the concentration of the gas in mol/ m3, T the temperature in K and R, is the
universal gas constant. The average value of concentration in the gas is taken as,

Ch, = (Ca, lp<0.000001) (4.10)

The pressure can also be determined using the zeroth order moment of the pressure distri-
bution function, as shown by Eq. 3.63, we denote it as pr. Table 4.4 shows the pressure,
determined via both methods, at different time steps. The values of pressure deviate from
the initial condition of 5 bar, since the solution has not reached equilibrium. However, the
values obtained using the ideal gas law and the zeroth order moment produce similar re-
sults. The highest deviation is at + = 20 ms, where the value obtained via the pressure
distribution and the ideal gas law are 1.609 and 1.198, respectively. It is worth noting that
pressure values have an increasing tendency for both methods. The simulation should have
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4.4. Validation

been run for longer physical times to determine whether the system reached an equilibrium
pressure of 5 bar- the initial condition specified.

Table 4.4.: Input parameters used to validate Eq. 4.6. The chosen parameters are those used

by Zheng et al..

Time [ms] R[uym] Cy, [kmol/m>] pg [bar] PC,, [bar]

0 20.00 0.110 0.049 0.053
1 20.76 155.056 0.380 0.455
2 21.35 312.746 0.678 0.918
4 22.51 548.173 1.198 1.609

Concentration profiles

The interface of the gas-liquid system is analysed using the two-resistance model proposed
by Lewis and Whitman [57]. Lewis and Whitman state that diffusion rates control the
species transfer through each phase. Additionally, the diffusion rate through the gas-liquid
interface will be instantaneous, thus maintaining equilibrium at all times, thanks to Henry’s
Law. Figure 4.6 shows how a supersaturated liquid with H, will guide the mass transport.
At the interface, there will be no resistance to transport, the two concentrations will remain
in equilibrium, and their values can be related by Henry’s law [58],

C
He = 2 @.11)
Cg/ H;
The H, concentration profile is shown in Figure 4.7 at different times. After ¢ > Oms,

Gas Interface Liquid

Figure 4.6.: Theoretical concentration profile around the interface, where J, and 4; are the
interfacial film thickness of the gas and liquid, respectively.

the interface dynamics develop as the concentration starts to follow Henry’s Law. At
t = 1,2and 4 ms, the jump at the interfaces has values of 2.09, 2.95 and 4.58, respectively.
These values do not correspond to the specified He = 310 for H; at 5 bar and 80°C. How-
ever, they do show an increasing tendency, which implies that the system has not reached
equilibrium.
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Figure 4.7.: Concentration profile at different time steps for a Hy bubble in a supersaturated
domain. The inset represents the cross section at which the concentration is being sam-

pled. Jp is the diffusive boundary layer of the bubble and w; is the width of the dip
shown inside the bubble.

The concentration dip, observed inside the bubble corresponds to the numerical reaction of
a sharp increase at the interface. The dip width w,; decreases as at t = 1 ms, the number of
voxels following a convex curve is six; meanwhile, at ¢ = 4 ms, only four.

Diffusive boundary layer

The diffusive boundary layer thickness ép, in Figure 4.7, is shown on the outer regions of
the plotted curves. The boundary layer thickness around the bubble is defined by,

(Crlgp—05 — Ci, 0l9=05) (4.12)

5D(t) - <aCH2/ax|¢:0.5> s

where Cy, o is the initial concentration profile. This relation is plotted against time in Figure
4.8, which shows a constant slope for t < 0.004s. This indicates that the system has not
reached equilibrium as the gradient of ép is only starting to decrease for t > 0.004s [25, 59].
When the system reaches equilibrium, dp should approximate a constant value given that
the system does not have any H; sources.

4.5. Three Dimensional Bubble Growth

To extend the work of Zheng et al., a three-dimensional model is developed using two
different velocity sets: D3Q7 and D3Q19. For ADEs, lower-order isotropic lattices such as
D2Q5 and D3Q7 are sufficient as ADE only requires the zeroth and first moments to be
recovered [31]. However, Memon [60] found that a D3Q7 velocity set has too few stencils
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Figure 4.8.: Concentration boundary layer thickness p in a supersaturated domain.

to be isotropic; the leading error term will only be second-order accurate when calculating
the Laplacian of a scalar. Higher-order velocity sets, such as D3Q19, which offer up to
fourth-order accuracy for the leading term, are preferred for determining the Laplacian of a
scalar.

The pitfall of using D3Q19 for all distribution functions in the present model is the increase
of 24 more velocity set computations per time step, which drastically hampers the simulation
runtime. Nevertheless, to test whether using a D3Q7 velocity set is possible for the concen-
tration and phase field, a 3D method is developed such that either velocity set, D3Q7 and
D3Q19, can be chosen to be used for the aforementioned distributions. To ensure symmetry,
the third dimension will also be equal in length to the others, i.e. Ly = L, = L, = 100 lu.

Figure 4.9 shows the phase field for the D3Q19 and D3Q7 velocity sets. At a physical time of
t = 10us the D3Q7 case shows a lack of isotropy in the diagonal directions, a phenomenon
not evidenced in the D3Q19 case. The velocity magnitude contours, shown in Figure 4.10 for
all three different planes corroborates the previous observations, as high velocity magnitudes
are seen along the stencil directions for the D3Q7 case. On the other hand, the D3Q19 case
shows lower velocity magnitude and radial symmetry as there is a region of high velocity
around the bubble interface.

The D3Q19 method implementation also shows bubble growth, as shown in Figure 4.11,
albeit the physical time simulated is short. Simulating for extended periods was impossible
as the single core implementation took 1.5 days to run only 20us. Therefore, no further
development was realised in the 3D implementation in the present investigation.
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Figure 4.9.: Thee dimensional ¢ at different times. The three images on the left columns use
a D3Q19 stencil for all distribution functions, while the right column images use a D3Q7
stencil for the concentration and phase fields. Non-isotropic behaviour is observed for the
D3QY7 case.
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5. Bubble Growth near an electrode

In the previous chapters, while the dynamics of Hy bubbles in AWE were analysed, the
presence of the cathode and electrochemical reactions and their consequences on bubble
growth were omitted. Electrochemical reactions are the heart of the operation of any elec-
trochemical device. The main idea behind these reactions is the movement of ions due
to diffusion, convection and migration, while oxidation and reduction reactions facilitate
the production of these ions. The potential difference between the electrodes and the elec-
trolytic solution influences the interplay of reactions and ion transfer. The mass transport
phenomena, the thermodynamics of the systems, and the reaction kinetics also affect the
latter. A brief description of the driving force of electrochemical reactions and some relevant
electrolyte-electrode physics is explored in Appendix B.

The present chapter will explain the mass transport mechanism in AWE, followed by the
implementation of a constant H, boundary condition. The latter part of the chapter will
focus on the results of implementing the constant flux boundary condition.

5.1. Transport mechanism

The transport of ions in an electrolyte is governed by three primary factors: electric fields
(migration), concentration gradients (diffusion), and fluid motion (convection). All these
mechanisms play significant roles in determining the net flux of ions in the present study
[13, 61]. Hence, the collective effects of migration, diffusion, and convection are vital con-
siderations.

5.1.1. Migration

Migration is driven by an electric field induced by gradients in electric potential. This field
prompts cations to move against the potential gradient and anions to move with the potential
gradient. The velocity of ions in response to this electric field is termed the migration velocity
(u; p1), as defined by:

um = —Zil/iFVCD, (51)

where v; is the mobility which is a proportionality factor that relates how fast an ion moves
in response to an electric field. It has units of cm?mol/Js. The migration velocity and the
concentration of each species determine the flux density using the Nernst-Einstein equation,
which relates the diffusion coefficient D; and the ionic mobility of a species,

Di = RTVi. (5.2)
The migration flux is therefore given by,
CiZi DiP Vo

Nim = Ciutim = ——

(5.3)
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5.1.2. Diffusion

For any multicomponent system, concentration gradients will exist, which induces mass
transport through diffusion (Fick’s equation for a dilute solution), as described by the flux
density equation:

N;p = —~D;VC;. (5.4)

5.1.3. Convection

Bulk fluid movement can occur through natural or forced convection. Natural convection
arises from density gradients, while forced convection results from mechanical stirring or
pressure gradients. The species flux density due to convection (N ¢) is given by:

Nic = Cuy, (5.5)

where u,, is the bulk velocity. While bulk convection alone cannot generate a net current in
an electrically neutral solution, it aids in solution mixing and facilitates reactant transport
toward and products away from the electrode interface.

The overall flux density considering all three transport mechanisms is given by Eq. 5.6,
which is also commonly known as the Nernst-Planck equation.

. CiZiDiFV(I)

Ni = RT

— D;V G + Ciuy,. (5.6)

5.2. Constant hydrogen flux at an electrode

The domain will remain the same, albeit the boundary conditions are modified. The new
boundary conditions will be implemented using a wet node approach, which assigns suit-
able values for the unknown boundary populations such that the known and constructed
populations reproduce the intended physics at the boundary. Figure 5.1 shows a diagram
of a wet node approach at the cathode. The equilibrium scheme is used to determine the
unknown populations. The equilibrium scheme is possibly the simplest way to specify LB
boundary conditions. It enforces the equilibrium distribution on the post-streaming bound-
ary populations, where the equilibrium distribution populations are determined using the
macroscopic quantities at the boundary as [62],

fi(xp, t) = fieq(l’tw uy),

e (5.7)
i (xp, t) = giq (Pw, Uw) -

For the h; (x}, t), the unknown populations will be determined differently, as will be ex-
plained in a later section.
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Pressure and phase no-slip boundary condition

The boundaries for the different distribution functions are modified in the following section.
The top and bottom sides of the domain will remain as periodic boundaries for all the
distribution functions. The left boundary is the cathode, where a no-slip boundary condition
is imposed for the pressure and phase field distributions. For each distribution function at
the boundary node, the incoming distribution from direction 7 (the opposite direction of 7)
is reflected:

fi(xp, t+A) = f;(xp, 1),

5.8
Qi (xp, t+At) = g5 (xp, t). (5.8)

This ensures that the fluid at the boundary node experiences no net momentum or phase
field transfer. The membrane (right boundary) will have all velocity components equal to
zero, virtually acting as a no-slip boundary condition [25].

Concentration flux boundary condition

For the concentration field, the right boundary will be dCy, /dx = 0, with no flux, while
the left will have a constant flux. The present scheme sets total flux normal through the
boundary to the projection of the first-order moment of distribution functions on the surface
normal [63]. The known distribution functions are post-collision populations, while the
unknown distribution functions are the post-streaming populations as

j-n:Zhici-n: Z hic; -n+ 2 hic; - n,
i

¢;:n>0 ¢;'n<0
unknown known (5 9)
e
= Z hiq(Cw,uw)ci-n—l— Z hic; - n,
c;-n>0 ¢;-n<0
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where j is the flux and Cy is the unknown concentration at the wall, and the unknown
populations are found by ; = h? (Cy,u;). Rearranging Eq. 5.9 and using the population
arrangement shown in Figure 5.1, Cy, will be given by,

i = —¢ (b + ho + hy) ¢ (W3 + BT+ 15T,

¢;'-n<0

c¢;'n>0
jx = —C (h3 + he + h7) +c (wlcw + wsCy + w8cw) ’ (5.10)
_ jx +h3 + he + hy

w1 + ws + ws

w

The H, flux imposed will be j, = 7.9 x 107 1mols/s, the same value that Khalighi et al.
uses. Additionally, the Hy concentration will be lowered by a factor of ten compared to
the supersaturated case discussed in the previous chapter, to 49,603 mol/m? in the liquid.
This ensures that the constant flux of H; at the electrode affects the growth profile of the
bubble.

5.2.1. Bubble radius and concentration boundary layer thickness

The parameters given in Table 4.1 are again used to simulate the system with a constant
hydrogen flux. The domain will be the same as that of Figure 4.1 with the boundaries
modified as mentioned earlier in the present chapter.

Khalighi et al. states that diffusion-controlled growth still happens even when the exponent
of Eq. 4.3 is larger than 0.5. Their results show that diffusion-controlled growth occurs for
values of b = 0.8. Bernts observed a growth exponent of b = 0.7 in stagnant flow, using an
axisymmetric method. These results match that of Figure 5.2a where the fitted exponent of
the data obtained from the present study is also b = 0.7. The physical time at the end of the
simulation is t = 44.95ms, allows for a clearer visualisation of this trend, than in the case of
a bubble in a supersaturated domain only, as the later was run only until 4.495ms.

The diffusive boundary layer of the electrode Jg and the bubble Jp are plotted in Figure 5.2b.
Figure 10b in the work of Khalighi et al., the behaviour of Jg for different conditions. While
the numerical values do not compare to those seen in Figure 5.2b, the trend is comparable.
Both sets of results have a concave curve where for t < 0.02s, the diffusive boundary layer
thickness at the electrode is increasing and, for the remaining physical time, has a slightly
decreasing trend.
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Figure 5.2.: Bubble radius and relevant diffusive boundary layer thickness of the system.
While 6 remains somewhat constant, dp increases similarly to R(t).

5.2.2. Concentration profile evolution

The concentration profile evolution of the system is shown in Figure 5.3. At t = 2.25ms,
the interface already shows an increase in the local concentration thanks to a combination
of diffusion, which brings H; to the surface, and Henry’s Law, which sets the concentration
inside the bubble. The concentration boundary layer thickness at the electrode (Jr) shows
a change in shape from a constant thickness at t = 2.25ms to a curved, somewhat parabolic
shape at t = 44.95ms. The parabolic profile of ¢ shown in Figure 5.2b occurs as the bubble
grows, and so does Jp. Visualy the increase in Jp is shown in Figure 5.3, but only after
t > 11.25 ms we see Jp affect the instantaneous profile of ér. This explains the decrease in
the average thickness shown in Figure 5.2b for the latter half of Jg. At all times in the system,
the diffusive boundary layer around the bubble remains radially symmetrical. Intuitively,
one could expect that the region near the cathode shows a H, accumulation. However, the
system is diffusion-limited, implying that even when the bubble is “bombarded” with Hj,
the diffusion of this species will have a threshold imposed by ép which will only allow a
limited quantity of H, to diffuse near the interface.
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Figure 5.3.: Concentration field in kmol/m? for a single bubble at different times. The black
circle denotes the bubble’s radius.

A simulation based on fictitious physical variables was set up to show a non-diffusion-
limited system. The parameters used are shown in Table 5.1. Figure 5.4 shows the con-

Table 5.1.: Parameters used for “test” simulation to prove the system is diffusion limited.

Ax[um| Aflns] R pi/pe  Dim?%/s]  Delm?/s|  vm?/s]  vgm?/s] _o[N/m]

1 10 20 1000 1.08x107°® 1.08x 10> 145x107° 129x10°° 0.0044
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centration profile at different times. The concentration boundary layer for this case is not
radially symmetrical, showing that this system is not diffusion-limited. Furthermore, an
accumulation of Hy on the left side of the bubble is observed, a characteristic not seen in
Figure 5.3.
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Figure 5.4.: Concentration profile for a single bubble with test physical parameters.

Figure 5.5 shows the concentration profile along the bubble at L, /2 at different times. The
lack of concentration accumulation at different times shows that Hy diffuses from the bulk
liquid into the gas symmetrically around the bubble. A slight difference is observed at
t = 44.95ms. The concentration jump at the interface, a condition imposed via Henry’s Law,
shows an increasing tendency at later times. At t = 2.25 ms the average value obtained
is of Henum = 2.93, while at t = 44.95 ms this value corresponds to Henym = 16.13. The
increasing tendency shows that the system is still evolving and that the imposed value for
Henry’s constant has not been reached.
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Figure 5.5.: Concentration profile along the centre line of the bubble cross section for a
constant Hy flux boundary condition on the electrode surface.

The boundary layer thickness of the electrode and the bubble are also quasi-qualitatively
observed in Figure 5.5. At any time, a slight difference is seen near the electrode, which
resembles Jp. The diffusive boundary layer thickness for the bubble is observed at the lower
concentration regions around the bubble interface (to the left and right of the filled dots for
each line); however, it is difficult to quantify from Figure 5.5, especially given the diffuse
multiphase method that is being used in the present work.

Both in Figure 5.3 and Figure 5.5, a dip inside the bubble is observed right after the filled
markers. This dip in concentration occurs as the bubble interface grows, and its wake leaves
a region of depleted Hj. The high concentration of H, in the middle of the bubble then dif-
fuses towards the depleted region as the system tries to level out the concentration gradients
inside the bubble.

5.2.3. Hydrogen diffusion across the interface

To further identify the behaviour of the mass flux across the interface, the mass source term
q for the phase field (Eq. 3.35) is analysed at t = 44.95 ms. Figure 5.6 shows a vector plot of
q. The q vectors inside the bubble point towards the interface. Meanwhile, the mass source
vectors at the interface that are situated just inside the bubble point towards the centre,
while the vectors just outside the interface point in the opposite direction. The difference in
the direction can be attributed to Equation 3.35, which is composed of two terms: the first
one is driven by concentration gradients (DogVC), while phase gradients drive the second
DegV.
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Figure 5.6.: Total mass transport vector plot for the bubble, where the red circle denotes the
bubble, and the inset is a zoomed image at the interface.

Figure 5.6 can be decomposed into the concentration and phase gradient terms of Eq. 3.35,
as seen in Figure 5.7. Figure 5.7a shows the behaviour of the mass because of concentration
gradients. The high concentration at the bubble’s centre diffuses from the centre towards
the interface. However, as seen in the interface inset, the behaviour differs. From the con-
centration profiles shown in the previous section, it is evident that at the interface, the
concentration is the highest and thus —D,V C points towards lower concentration regions.
The depletion region of Hj near the interface (but inside of the bubble) can be seen by the
insignificant vector magnitude upholding what was said in the previous subsection.

Figure 5.7b shows the vector plot for the phase field mass transfer term. This term is respon-
sible purely for the mass transfer across the interface. The magnitude of the vectors through
the whole plot is small. However, the interface inset shows that the mass is being trans-
ported across the interface as all the vectors point towards the bubble’s centre. The inset of
Figure 5.7a and Figure 5.7b are both scaled by the same factor; thus, by visual inspection of
the interface, the vector direction is towards the centre of the bubble. Both terms account for
the additional mass that will make the bubble grow

55



5. Bubble Growth near an electrode

1 - He
—DerVC Deftgrirte -CV$
1001 100 A

801 80

o

o
@
=)

y-axis [um]
y-axis [um]

N

I=)
L
N
o

204 [ 201

0 20 40 60 80 100 0 20 40 60 80 100
X-axis [um] x-axis [um]

(a) Vector plot of the concentration gradient (b) Vector plot of the phase gradient term of
term of the mass source term in Eq. 3.35 at  the mass source term in Eq. 3.35 at t =
t = 44.95ms. 44.95ms.

Figure 5.7.: Mass transport vector plot of the bubble. The red line denotes the bubble, and
the inset denotes a zoomed-in image at the interface.
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6. Conclusion and Outlook

This study aimed to implement a multiphase lattice Boltzmann method to allow for species
diffusion from the liquid phase of the electrolyte into the gaseous phase, while tracking
bubble growth. This goal was achieved by addressing the secondary objectives of the project
sequentially.

The first step was to understand the different multiphase models in lattice Boltzmann sim-
ulations and their limitations, particularly for high-density ratio multiphase models. A
single-component Shan-Chen, a Colour Gradient with enhanced equilibria, and a Phase-
Field method were implemented in Python and compared. The Shan-Chen method con-
firmed the density ratio dependency on the strength of the molecular interaction G;;. While
simple to implement and computationally efficient, the Shan-Chen SCMP simulation could
only reach two orders of magnitude of the density ratio and exhibited large spurious veloc-
ities. The Colour Gradient with enhanced equilibria appeared to be an attractive solution
for this study, as it could adequately capture the pressure jump across the interface and
allow for independent surface tension tuning, aiding in simulating static bubbles with up
to three orders of magnitude. However, the downside of the Colour Gradient scheme was
the challenge of implementing a mass transport term dependent on the concentration field,
which remains an area of ongoing research. Lastly, the Phase-Field interface tracking SCMP
model developed by Zheng et al. was initially validated using the Laplace law, similar to
the Colour Gradient method. The results showed less deviation from the analytical solution
than the Colour Gradient and had smaller spurious velocities. Although the Phase-Field
method was computationally expensive, it produced the best results of the three models,
and Zheng et al. had already developed a coupling between the concentration, pressure,
and phase field, enabling mass transfer from the gas to the liquid phase.

The analytical solution of the Sh proposed by Newman validates the coupling of concentra-
tion, pressure, and phase distribution functions. The results qualitatively matched those of
Zheng et al., correctly solving continuous species transfer. This was followed by a simula-
tion of a growing H; bubble in a supersaturated domain. Due to the large diffusivity ratios
of up to four orders of magnitude, an MRT scheme for the concentration field was devel-
oped. Even with the MRT scheme, instabilities were observed, highlighting the importance
of adequately assigning spatial and temporal conversion factors. Nevertheless, diffusion-
controlled bubble growth (R ~ bt*%) was observed, as reported in the literature [25]. The
assumption of thermal equilibrium at the interface posed a challenge, as it required the
system to first reach equilibrium to correctly determine whether the imposed He would be
achieved, affecting the system’s pressure. A three-dimensional version of the Phase-Field
interface tracking model was implemented with a D3Q19 velocity set to simulate bubble
growth. However, its computational cost was extremely high, making it infeasible for fur-
ther development in this study.

The next logical step was to implement a constant flux of Hj at one of the domain’s bound-
aries to analyse bubble growth in a supersaturated domain. A wet node approach was
chosen, which determined the concentration at the boundary (electrode) using known and
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unknown populations [63]. The bubble growth exponent increased from 0.5 to 0.7 when the
left boundary has a constant hydrogen flux. The presence of H; flux at the electrode intro-
duced a diffusive boundary layer near the surface, which grew until the bubble’s diffusive
boundary layer began affecting that of the electrode. The condition of imposing a constant
flux of H, implies that the system will never reach equilibrium as, meaning that the bubble
will grow continuously. This simulation, run at a low spatial resolution (1X), took over a
week to simulate 45 ms of physical time, demonstrating the need for parallelisation of the
code.

The saturated hydrogen concentration for the conditions of the system is 0.16 mol/m?. This
value is given as the initial concentration for the bubble, while substantial concentration
values are given as the initial condition for the liquid. While unphysical, the values given
to the liquid are essential for the present work since they ensured that bubble growth is
observed for shorter times due to the large concentration gradients. However, the upside
of using vast concentration differences between the liquid and gaseous phases is that the
method proved to handle it appropriately, showing that the implementation of an MRT
collision operator in the concentration distribution is adequate.

6.1. Outlook

Due to the limited time and scope of the present study, the relevant electrochemical physics
of alkaline water electrolysis was not thoroughly analysed. Additionally, parallelising the
code in Python or using an open-source platform should be considered. Another recom-
mendation is to explore the extension of mass transport in other multiphase models, such
as the Colour Gradient.

6.1.1. Poisson-Nernst-Planck coupling

The transport mechanism of all species: Hy, H,O, OH™ and K* has not been resolved in
this study. Extending this to a MCMP model is feasible using the current Phase-Field in-
terface tracking model by adding a Poisson-Nernst-Planck coupling. Models such as those
developed by Murugesan [10] would provide deeper insight into the electrochemical produc-
tion of hydrogen at the cathode and the species transport dynamics in AWE. Other physical
phenomena like detachment are important realistic phenomenology that have not been in-
vestigated in the present work, which should also be considered for future work. Bubble
coalescence, another important physical process, while not analysed, can be realised with
the current LB multiphase method. All of the suggestions above would significantly increase
computational costs, making parallel computing essential for further development.

6.1.2. Parallel computing

The lattice Boltzmann Method, at the mesoscale, outperforms traditional methods such as
Finite Volume and Finite Differences, especially when dealing with MCMP electrochemical
systems, such as the analysed in this study. The downside of the LBM is its significant
memory requirements with higher velocity set stencils. However, one key advantage of
LBM is that the discretisation of individual particles can be handled simultaneously using
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multiple CPU or GPU cores, significantly speeding up calculations. Its highly localised
update process, requiring information only from neighbouring nodes, makes it particularly
efficient for parallel processing in shared and distributed memory systems. Open-source
codes such as LBPM for porous media, a robust C++ code with many physical models
implemented, enable CPU and GPU multi-core calculations and should be the next extension
of the current model.

6.1.3. Colour Gradient mass transfer implementation

Currently, there is a research gap in the development of Colour Gradient methods that
involve mass transfer from a liquid phase into a gaseous phase or vice versa. Mora et al.
developed a model to simulate two-phase flow with a new distribution function to model
the concentration profile of a substance. While not entirely analogous to the current study, it
could serve as a foundation for further implementation of a mass transfer term in the Colour
Gradient multiphase model. Implementing this in the Colour Gradient model is promising
due to its ability to handle large viscosity ratios, a wide range of surface tensions, and its
accuracy and convenience in setting the wetting angle.
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A. LBM multiphase model qualitative comparison

Table A.1.: Summary of advantages and disadvantages of lattice Boltzmann multiphase mod-

els.
Model Advantages Disadvantages
Colour Gradient (RK)
Accurate Mathematical insta-
. bilities in dynamic
Efficient

Allows specification
of wetting condition

Can achieve density
ratios up to O(103)

simulations

High computational
cost

Shan-Chen (SC)

Very efficient

Can achieve density
ratios up to O(10%)

Allows specification
of wetting condition

Less accurate than
other models

Large spurious veloc-
ities

Adjustment of pa-
rameters needed for
accuracy

Free-Energy (FE)

Accurate

Thermodynamically
consistent

No wetting condition
required

Interface thickness
tunable

Not efficient for mul-
tiphase systems

Limited density ratio
(0(10))

Spurious  velocities
due to surface tension

Interface Tracking (HCZ)

Accurate

Can simulate density
ratios up to O(103)

Small spurious veloc-
ities

Complex implemen-
tation

High computational
cost

Dissolution of small
droplets/bubbles
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B. Electrochemistry basics in AWE

B.1. Thermodynamics and Potentials

To evaluate electrochemical systems, as well as most other reactions, the Gibbs free energy is
very useful as it provides a criterion for predicting the direction of chemical or electrochem-
ical reactions and the composition of the system under conditions of constant pressure and
temperature. To measure the potential energy that exists within a system, electrochemical
potentials are used as these measure the distribution of electric charge and charge separation
across the system. In a half-cell, randomly assigned the sub index of 1 and 2 to the other,
electrochemical potentials are used to determine the energy change due to the reaction in
the system through change in the system Gibbs free energy AG:

AG = (251,%) - (Zﬂ#i) , (B.1)
i 1 i 2

where pi; is the electrochemical potential of species i and s; is its stoichiometric coefficient.
The Gibbs free energy of a system in which no current flows is determined via Eq. B.2,
where U is the potential at which no current flows and is known as equilibrium or open-
circuit potential and F is the Faraday constant which has a value of F = 96.4853 kCmol .
The equilibrium potential is related to the Gibbs Free energy by [66]:

AG = —nFU, (B.2)

where #n is the number of moles of transferred electrons. The equilibrium potential is thus a
function of the intrinsic nature of the species present, as well as their concentrations and, to
a lesser extent, temperature. The electrochemical potential can be related to the molality m;
and activity coefficient ; by [66],

pi = u + Ry Tlnmyy;, (B.3)

where 3 is a reference electrochemical potential independent of concentration, R, is the
universal gas constant (8.3143 J/mol - K), and T is temperature in kelvin. Assuming the
systems behave ideally (i.e. all activity coefficients are unity), the potential U can be found,
from a reference potential U®, by re-arranging Eq. B.2 to find a relation between the con-
centrations of the reactant and products [66],

R, T s
T In <H mi> . (B.4)

2

R, T ,
U=u®——=n (Hmf) +
1 1

By connecting an electrode to an external power source, the electrochemical potential of
electrons within the electrode can be controlled, disrupting equilibrium and prompting a
reaction. Applying a negative potential increases electron energy, leading to a reduction of
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B. Electrochemistry basics in AWE

species in the adjacent electrolyte, occurring at the cathode. Conversely, a positive potential
decreases electron energy, causing oxidation at the anode, where electrons are transferred
from the reactants to the electrode. Applying a positive potential drives the reaction toward
oxidation, while a negative potential drives it toward reduction.

In AWE at 1 bar and 25°C operating conditions, the free energy values for the anode, cath-
ode, and the overall cell are

AGanode = 774K /mol, AGeuhode = —159.8 KJ/mol, AGe = 237.2 kJ/mol.

Hence, 237.2 kJ /mol is the minimum energy required for hydrogen production. At these op-
erating conditions the electrode reaction is inherently slower and an over-potential # which
is above the equilibrium cell potential is essential. The over-potential enables to start off
the reaction surmounting the activation energy barrier, thereby increasing the reaction rate
[67].

B.2. Kinetics and Rates of Reaction

A driving force is essential for initiating an electrochemical reaction, known as the surface
overpotential #s. The macroscopic relation that exists between the current density, surface
overpotential, and composition of the electrolytic solution near the electrode surface is of
paramount importance [61].

B.2.1. Current Density on the Electrodes

The determination of electrode reaction kinetics hinges on understanding the current den-
sity, which is governed by the Butler-Volmer equation. This equation illustrates how the
current density varies with the voltage difference between the electrodes (the overpotential)
and the electrolyte concentration near the surface. The Butler-Volmer equation is given by:

L. a Frg a.Frng
=o{os[53]-on[52]}

In Eq. B.5, jy represents the exchange current density, while «, and «, denote the charge
transfer coefficients for the anode and cathode, respectively. The first term on the right side
of the equation signifies the rate of the anodic reaction, whereas the second term repre-
sents the rate of the cathodic reaction. It is important to note that j, depends on various
factors such as reactant and product concentrations, temperature, and electrode-electrolyte
characteristics.

Julius Tafel introduced a relationship between the current density and surface overpotential

in 1905. For large values of #s, one of the terms in Eq. B.5 dominates, leading to the following
expression for the overall rate:
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. F
joexp (127,175) for agFnys > R, T

o F (B.6)
—joexp <—RMT;75> for acFrjs < —R, T

j:

However, Eq. B.6 does not fully consider the concentration gradients near the electrode due
to the electric double layer. To account for these effects, Dukovic and Tobias proposed Eq.
B.7, which incorporates the local concentrations of different species throughout the electrode
as,

1
. CH, ) 2 cxoH (Ocal:?]5> CH,O (—acF175>
= ex — ex B.7
=0 [(CHZ,O ckorto P\ RuT oo T\ RT (B2)
where jj is the reference current density at the surface of the electrode, C; is the concentra-

tion of species i at the surface of the electrode (but outside the EDL) and Cj is the bulk
concentration.
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