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Abstract
We show that Griffiths’ multivariate Meixner polynomials occur as matrix coefficients of holomorphic

iscrete series representations of the group SU(1, d). Using this interpretation we derive several
fundamental properties of the multivariate Meixner polynomials, such as orthogonality relations and
difference equations. Furthermore, we also show that matrix coefficients for specific group elements
lead to degenerate versions of the multivariate Meixner polynomials and their properties.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper we study Griffiths’ [6] multivariate generalization of the Meixner polynomials.
he (univariate) Meixner polynomials Mn are named after Jozef Meixner who studied the
olynomials in [12], but the polynomials were introduced earlier by Ladislav Truksa in [13]
ho called them generalized Kummer polynomials. The Meixner polynomials can be defined

hrough their generating function by(
1 −

t
c

)x (1 − t)−x−β
=

∞∑
n=0

(β)n

n!
Mn(x; β, c)tn.
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These polynomials have many nice properties, e.g. they are of hypergeometric type,

Mn(x; β, c) = 2 F1

(
−n, −x

β
; 1 −

1
c

)
,

nd they are orthogonal with respect to the negative binomial distribution,
∞∑

x=0

Mn(x; β, c)Mn′ (x; β, c)
(β)x

x !
cx (1 − c)β = 0, if n ̸= n′,

here we assume β > 0 and c ∈ (0, 1). Here we use standard notation for shifted factorials
nd hypergeometric functions, see e.g. [1].

It is well known that the Meixner polynomials are related to the Lie group SU(1, 1),
hich is the group of complex 2 × 2-matrices

( a b
b a

)
with |a|

2
− |b|

2
= 1. To be more

precise, the Meixner polynomials occur as matrix coefficients of the holomorphic discrete series
representations defined as follows. For a positive integer σ , the Bergman space Aσ is the Hilbert
pace of holomorphic functions on the complex unit disc D with inner product

⟨ f1, f2⟩ =

∫
D

f1(z) f2(z)(1 − |z|2)σ dz.

he holomorphic discrete series are the irreducible unitary representations on Aσ given by

[π (g) f ](z) =
1

(a + bz)σ
f
(

b + az

a + bz

)
, g =

(
a b
b a

)
∈ SU(1, 1).

The monomials zn , n = 0, 1, 2, . . ., form an orthogonal basis for Aσ . Let πm,n(g) be the
oefficients in the expansion of π (g)zn in terms of this basis, i.e.

(b + az)n(a + bz)−σ−n
=

∞∑
m=0

πn,m(g)zm .

omparing this to the generating function of the Meixner polynomials, it follows that the
oefficients πm,n(g) are multiples of the Meixner polynomials Mm(n; σ, | b

a |
2
). From this

epresentation theoretic interpretation of the Meixner polynomials several useful properties of
he polynomials can easily be obtained: e.g. orthogonality relations, the three-term recurrence
elation and the second order difference equation.

In [6], Griffiths introduced multivariate Meixner polynomials as orthogonal polynomials
ith respect to the negative multinomial distribution. As such, they are closely related to the
ultivariate Krawtchouk polynomials [5] which are orthogonal on a finite set with respect

o the usual multinomial distribution. Iliev [7] showed that the multivariate Krawtchouk
olynomials occur as matrix coefficients for finite dimensional representations of SL(d,C),
nd using this interpretation bispectrality of the Krawtchouk polynomials is shown. In a similar
ashion Genest, Vinet and Zhedanov [4] used representation theory of SO(d + 1) to study the
ultivariate Krawtchouk polynomials. In the current paper we exploit a similar connection

or the Meixner polynomials. In [8] Iliev showed, without references to representation theory,
hat the multivariate Meixner polynomials have many properties that resemble those of
he Krawtchouk polynomials. A representation theoretic interpretation of Griffiths’ bivariate

eixner polynomials is obtained by Genest, Miki, Vinet and Zhedanov [3] by showing they
ppear as matrix coefficients of SO(2, 1) representations on oscillator states. In the same paper,
t is also indicated how the general multivariate Meixner polynomials arise similarly in the
epresentation theory of SO(d, 1). Furthermore, in [2] it is shown that the bivariate Meixner
172
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polynomials occur as wave functions for a two-dimensional quantum oscillator, which is a result
of the fact proved in [9] that orthogonal polynomials with respect to the negative multinomial
distribution, such as Griffiths multivariate Meixner polynomials, are eigenfunctions of a second
order partial difference operator.

In the present paper we provide an alternative way to study the multivariate Meixner
olynomials by using holomorphic discrete series representations of SU(1, d), similar to the

above described representation theoretic interpretation of the univariate Meixner polynomials.
See also e.g. [10, Section 6.8] for the interpretation of the univariate Meixner polynomials in
SU(1, 1) representations. We expect that the results can be generalized to the more general
case of holomorphic discrete series representations of SU(n, m) (for n, m ≥ 2). This will be
the topic of a future paper.

The organization of the paper is as follows. First in Section 2 we recall the holomorphic
discrete series representation of SU(1, d). Then, in Section 3 we recall Griffiths’ definition of
the multivariate Meixner polynomials and show that the matrix coefficients of the holomorphic
discrete series corresponding to generic g ∈ SU(1, d) can be expressed in terms of these
Meixner polynomials. This immediately leads to several properties, such as orthogonality with
respect to the negative multinomial distribution, of the Meixner polynomials. In Section 4, we
consider the corresponding Lie algebra representations and derive difference equations for the
multivariate Meixner polynomials. Finally, in Section 5 we consider degenerate versions of
the multivariate Meixner polynomials, which correspond to the matrix coefficients for specific
elements g ∈ SU(1, d).

1.1. Notations

For x = (x1, . . . , xd ) ∈ Cd , we define

∥x∥ =

√
|x1|

2
+ · · · + |xd |

2,

|x| = x1 + · · · + xd ,

x = (x1, . . . , xd ).

e often consider elements in Cd as column vectors, which will be clear from the context. For
= (n1, . . . , nd ) ∈ Nd

0 and x = (x1, . . . , xd ) ∈ Cd , we set

n! = n1! · · · nd !, x±n
= x±n1

1 · · · x±nd
d .

We denote by Md the set of complex d × d-matrices. For A ∈ Md , At is the transpose of A
nd A† the conjugate transpose.

2. The holomorphic discrete series representations of SU(1, d)

SL(d + 1;C) is the group of complex (d + 1) × (d + 1)-matrices of determinant 1. SU(1, d)
is the subgroup of SL(d + 1;C) preserving the hermitian form associated with the matrix

J = diag(1, −1, −1, . . . ,−1),

hat is, a matrix g ∈ SL(d + 1;C) is in SU(1, d) if and only if the following equation holds:

g† Jg = J. (2.1)
173
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Throughout this paper it will be convenient to write g ∈ SU(1, d) in the form

g =

(
a bt

c D

)
,

where a ∈ C, b, c ∈ Cd and D ∈ Md . We will sometimes use notations such as a = a(g)
to stress the dependence on g. From the defining Eq. (2.1), it follows that the inverse of the
matrix g ∈ SU(1, d) is given by

g−1
= Jg† J =

(
a −c†

−b D†

)
, (2.2)

which implies identities such as

|a|
2
− ∥b∥

2
= |a|

2
− ∥c∥2

= 1,

D†D = Id + bbt , DD†
= Id + cc†,

abt
= c†D, ac†

= bt D†,

(2.3)

here Id is the identity matrix in Md .
SU(1, d) has a family of representations called the holomorphic discrete series, on the

eighted Bergman space Aα that we now introduce, see e.g. [11, Chapter VI]. Let α > −1. We
efinedvα to be the weighted Lebesgue measure on the open unit ball Bd = {z ∈ Cd

| ∥z∥ < 1}

iven by

dvα = cα(1 − ∥z∥2)αdv, (2.4)

with dv the standard volume measure on Bd and cα is the normalizing constant so that
vα(Bd ) = 1. A direct calculation shows that

cα =
(α + 1)d

d!
.

he Bergman space Aα is the space of holomorphic functions in L2(Bd ,dvα). Aα is a Hilbert
pace with inner product

⟨ f, g⟩ =

∫
Bd

f (z)g(z) dvα, f, g ∈ Aα.

n orthonormal basis for Aα is given by the monomials

em(z) =

√
(α + d + 1)|m|

m!
zm, m ∈ Nd

0 ,

ee e.g. Lemma 1.11 and Proposition 2.6 in [14].
Now we are ready to define the representation of SU(1, d) we are interested in this paper.

From here on, we assume α ∈ N0 and we set

σ = α + d + 1.

Then, πσ given by

πσ

(
a bt

c D

)
f (z) =

(
a + ct z

)−σ f
(

b + Dt z
a + ct z

)
, (2.5)

defines a family of unitary representation of SU(1, d) on A labeled by σ ∈ N .
α ≥d+1

174
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3. Matrix coefficients and multivariate meixner polynomials

In [6,8], the multivariate Meixner polynomials are defined through their generating function.
he generating function is given by

G(x, t, U, β) =

⎛⎝1 −

d∑
j=1

t j

⎞⎠−β−|x|
d∏

i=1

⎛⎝1 −

d∑
j=1

Ui, j t j

⎞⎠xi

, x, t ∈ Cd ,

here β ∈ C \ (−N0), U = (Ui, j ) ∈ Md , and the principal branch of the power function is
sed. Then the polynomials Mn(x; U, β) are defined by

G(x, t, U, β) =

∑
n∈Nd

0

(β)|n|

n!
Mn(x; U, β)tn, (3.1)

or t sufficiently close to 0. They have an explicit expression as a Gelfand–Aomoto hypergeo-
etric series given by

Mn(x; U, β) =

∑
(ai, j )∈Md (N0)

∏d
j=1(−n j )∑d

i=1 ai, j

∏d
i=1(−xi )∑d

j=1 ai, j

(β)∑d
i, j=1 ai, j

d∏
i, j=1

(1 − Ui, j )ai, j

ai, j !
,

(3.2)

here Md (N0) denotes the subset of Md consisting of matrices with entries in N0. The
multivariate Meixner polynomials are the polynomials Mn(x; U, β) with conditions imposed on
the matrix U to ensure orthogonality with respect to the negative multinomial distribution [6,8].
We will show that the multivariate Meixner polynomials occur as matrix coefficients for the
holomorphic discrete series representation of SU(1, d). In this interpretation, the parameter
matrix U depends on a g ∈ SU(1, d), which implies conditions for U that are closely related
to the conditions imposed in [8], see the discussion at the end of this section.

Let g ∈ SU(1, d). The function πσ (g)en is holomorphic on Bd , hence it must equal its
Taylor series which we can consider as the expansion in the basis {em | m ∈ Nd

0}. We consider
the corresponding matrix coefficients πσ

m,n(g) which are determined by

πσ (g)en(z) =

∑
m∈Nd

0

πσ
m,n(g)em(z), z ∈ Bd , (3.3)

or equivalently

πσ
m,n(g) = ⟨πσ (g)en, em⟩. (3.4)

Theorem 3.1. Let g =

(
a bt

c D

)
∈ SU(1, d) with a, bi , ci ̸= 0 for i = 1, . . . , d, then

πσ
m,n(g) =

√
(σ )|m|(σ )|n|

m! n!
(−1)|m|a−σ p̃mpn Mm(n; U, σ )

with p = p(g) = (p1, . . . , pd ), p̃ = p̃(g) = ( p̃1, . . . , p̃d ) and U = U (g) = (Ui, j ) given by

pi =
bi

, p̃i =
ci

, Ui, j =
aD j,i

.

a a bi c j

175



W. Groenevelt and J. Vermeulen Indagationes Mathematicae 36 (2025) 171–187

i

I

P
a

C

Before we prove the theorem let us remark that the identities

|a|
2
− ∥b∥

2
= |a|

2
− ∥c∥2

= 1,

mply

|a|
2

=
1

1 −
∑d

i=1 |pi |
2

=
1

1 −
∑d

i=1 | p̃i |
2 .

t is convenient to write |a|
−2

= |p0|
2

= | p̃0|
2, so that

d∑
i=0

|pi |
2

=

d∑
i=0

| p̃i |
2

= 1.

roof. Assume g is as given in the theorem, then we can write out the left-hand side of (3.3)
s follows:

πσ (g)zn
=

⎛⎝a +

d∑
j=1

c j z j

⎞⎠−σ
d∏

i=1

(
bi +

∑d
j=1 D j,i z j

a +
∑d

j=1 c j z j

)ni

= a−σ−|n|bn

(
1 −

d∑
i=1

−ci zi

a

)−σ−|n| d∏
i=1

⎛⎝1 −

d∑
j=1

aD j,i

bi c j

(
−c j z j

a

)⎞⎠ni

.

omparing with the generating function for Meixner polynomials (3.1) we see that

πσ (g)zn
=

∑
m∈Nd

0

(σ )|m|

m!
a−σ−|m|−|n|bn(−c)m Mm(n; U, σ )zm,

where the parameter matrix U is given by Ui j =
aD j i
bi c j

. From this the result follows.

From Theorem 3.1 we immediately obtain several properties of the multivariate Meixner
polynomials:

Theorem 3.2. The Meixner polynomials Mm(n; U, σ ) from Theorem 3.1 have the following
properties.

(i) Orthogonality relations:∑
n∈Nd

0

(σ )|n|

n!
pnpn Mm(n; U, σ )Mm′ (n; U, σ ) = δm,m′

m!p̃−mp̃
−m

(σ )|m||p0|
2σ

,

∑
m∈Nd

0

(σ )|m|

m!
p̃mp̃

m
Mm(n; U, σ )Mm(n′; U, σ ) = δn,n′

n!p−np−n

(σ )|n||p0|
2σ

.

(ii) Integral representation:

(−1)|m|p̃m Mm(n; U, σ ) =

(σ − d)d

d!

∫
Bd

(
1 +

d∑
i=1

p̃i zi

)−σ−|n| d∏
i=1

⎛⎝1 +

d∑
j=1

Ui, j p̃ j z j

⎞⎠ni

zm(1 − ∥z∥2)σ−d−1dv.

(iii) Duality: M (n; U, σ ) = M (m; U t , σ ).
m n

176
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(iv) Sum identity:(
a(g1)a(g2)

a(g1g2)

)σ

p̃(g1g2)mp̃(g1)−mp(g1g2)np(g2)−n Mm(n; U (g1g2), σ ) =∑
k∈Nd

0

(−1)|k|p(g1)kp̃(g2)k (σ )|k|

k!
Mm(k; U (g1), σ )Mk(n; U (g2), σ ),

where g1, g2 ∈ SU(1, d) such that g1, g2, g1g2 satisfy conditions as in Theorem 3.1.

roof. The integral representation follows directly from Theorem 3.1 and (3.4). The duality
roperty follows from unitarity of πσ , which implies that πσ

m,n(g) = πσ
n,m(g−1), and from

g−1
= ( a −c†

−b D† ), see (2.2). The identity πσ (g1)πσ (g2) = πσ (g1g2) leads to

πσ
m,n(g1g2) =

∑
k∈Nd

0

πσ
m,k(g1)πσ

k,n(g2).

riting this in terms of the Meixner polynomials gives the sum identity. Taking g−1
2 = g1 = g

nd using πσ
m,n(g) = πσ

n,m(g−1) we obtain the orthogonality relation

δm,n =

∑
k∈Nd

πσ
m,k(g)πσ

n,k(g).

The first orthogonality relation now follows from Theorem 3.1, and the second orthogonality
relation follows from the first one and the duality property. □

Remark 3.3. Since the monomials {en} form an orthonormal basis for Aα , it follows from
Parseval’s identity that the set {πm,·(g) | m ∈ Nd

0} is an orthonormal basis for ℓ2(Nd
0 ). As a

onsequence, the set of Meixner polynomials {Mm( · ; U, σ ) | m ∈ Nd
0} is an orthogonal basis

for the weighted L2-space ℓ2(Nd
0;

(σ )|k|

k!
pkpk). This gives another proof of Griffiths’ [6] result

on completeness of the Meixner polynomials.

Next, we obtain an identity for the Meixner polynomials which corresponds to the fact that
the tensor product of several representations πσ contains a specific πσ ′

as a subrepresentation.
The case N = 2 in the following theorem corresponds to the Runge-type identity in [6].

Theorem 3.4. Let N ∈ N≥2, σ1, . . . , σN ∈ N≥d+1 and σ =
∑N

i=1 σi . Define the linear map
: Aσ1−d−1 ⊗ · · · ⊗ AσN −d−1 → Aσ−d−1 on basis elements by

Λ(em1 ⊗ · · · ⊗ emN ) = Cm1,...,mN em1+···+mN , m1, . . . , mN ∈ Nd
0 ,

ith

Cm1,...,mN =

√ (m1 + · · · + mN )!
(σ )|m1+···+mN |

N∏
i=1

(σi )|mi |

mi !
,

then Λ intertwines πσ1 ⊗· · ·⊗πσN with πσ . As a consequence, the Meixner polynomials satisfy

(σ )|m|

m!
Mm(n; U, σ ) =

∑
m1,...,mN ∈Nd

0
m1+···+mN =m

N∏
i=1

(σi )|mi |

mi !
Mmi (ni ; U, σi ),

where m, n , . . . , n ∈ Nd and n =
∑N n .
1 N 0 i=1 i

177
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Proof. We write eσ
m for a basis vector of Aσ−d−1. Using zm1 · · · zmN = zm, with m =

m1 + · · · + mN , we have
N∏

i=1

eσi
mi

(z) = Cm1,...,mN eσ
m(z).

Let n1, . . . , nN ∈ Nd
0 such that

∑N
i=1 ni = n. Then, using the expansion πσi (g)eni =

mi
π

σi
mi ,ni (g)emi , we find

Λ
(

πσ1 (g)eσ1
n1

⊗ · · · ⊗ πσN (g)eσN
nN

)
(z)

=

∑
m1,...,mN ∈Nd

0

πσ1
m1,n1

(g) · · · πσN
mN ,nN

(g)Cm1,...,mN eσ
m1+···+mN

(z)

=

N∏
i=1

∑
mi ∈Nd

0

πσi
mi ,ni

(g)eσi
mi

(z)

=

N∏
i=1

πσi (g)eni (z)

= Cn1,...,nN πσ (g)eσ
n (z),

where the last step follows from the obvious identity
N∏

i=1

(a +

∑
l

cl zl)−σi −|ni |
∏

k

(bk +

∑
l

Dl,k zl)ni,k =

(a +

∑
l

cl zl)−σ−|n|
∏

k

(bk +

∑
l

Dl,k zl)nk .

his proves the intertwining property of Λ. Taking the inner product with em shows that∑
m1,...,mN ∈Nd

0
m1+···+mN =m

Cm1,...,mN πσ1
m1,n1

(g) · · · πσN
mN ,nN

(g) = Cn1,...,nN πσ
m,n(g),

nd then the stated identity for Meixner polynomials follows from Theorem 3.1. □

We conclude this section by having a closer look at the parameter matrix U of the
ultivariate Meixner polynomials. The fact that U comes from a matrix g ∈ SU(1, d) imposes

onditions on U that ensure orthogonality of the Meixner polynomials with respect to a positive
eight function, namely the weight of the negative binomial distribution, see Theorem 3.2.
et us compare the conditions on U with the conditions on U given in [6,8]. The Meixner
olynomials as defined by Iliev [8], and similarly the ones defined by Griffiths [6] after an
ppropriate change of parameters, depend on a parameter β and on the following parameters:
= (c1, . . . , cd ), c̃ = (c̃1, . . . , c̃d ) ∈ Cd and U = (Ui j ) ∈ Md . These parameters relate to each
ther as follows: let C = diag(1, −c), C̃ = diag(1, −c̃), Û = ( 1 1t

1 U ) ∈ Md+1 with 1 the vector
n Cd with every entry equal to 1, then

Û t CÛC̃ = c0 Id+1, (3.5)

ith c0 = 1 − |c|. In other words, given c and U , the vector c̃ is determined by (3.5).
In our approach, the matrix U together with the matrices C := diag(1, −|p1|

2, . . . ,−|pd |
2)

nd C̃ := diag(1, −| p̃ |
2
, . . . ,−| p̃ |

2) are obtained from a matrix g =
(

a bt )
∈ SU(1, d) as
1 d c D

178
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follows: g = a P̃Û t P with P = diag(1, p) = diag(1, b
a ), P̃ = diag(1, p̃) = diag(1, c

a ) and
ˆ = ( 1 1t

1 U ) with Ui, j =
aD j,i
bi c j

. Then C = P† J P and C̃ = P̃† J P̃ , and the condition g† Jg = J
is equivalent to

Û †CÛC̃ = |p0|
2 Id+1,

with |p0|
2

= |a|
−2

= 1 −
∑

i |pi |
2. In particular, the only difference with condition (3.5) is

he use of the complex transpose of Û instead of just the transpose. This means that, given c
nd U , the vector c̃ is defined in a slightly different way. Because of this small difference,
he orthogonality relations obtained in this paper, and also the difference equations in the
ext section, look slightly different from the results from [8] even though they are the same
esults. Note that in [8] the parameters β, c1, . . . , cd are allowed to be non-real, thus allowing
non-real-valued weight function, whereas these parameters are real-valued in our setting.

. The Lie algebra su(1, d) and multivariate meixner polynomials

The Lie algebra of SU(1, d) consists of matrices X ∈ Md+1 with trace zero such that X† J =

−J X , where (recall) J = diag(1, −1, . . . ,−1). We denote by su(1, d) the complexification of
the Lie algebra of SU(1, d), i.e. sl(d + 1,C), equipped with the ∗-structure defined by

X∗
= J X† J.

A basis of su(1, d) is given by

B =

{
Ei, j | i, j = 0, . . . , d, i ̸= j

}
∪

{
Hi = Ei,i −

1
d + 1

Id+1 | i = 1, . . . , d
}
, (4.1)

here Ei, j denotes the matrix unit with (i, j)-entry 1 and all other entries 0. Note that

H∗

i = Hi , i = 1, . . . , d,

E∗

i,0 = −E0,i , i = 1, . . . , d,

E∗

i, j = E j,i , 1 ≤ i, j ≤ d, i ̸= j.
(4.2)

The unitary representation πσ of SU(1, d) on Aα gives rise to an unbounded ∗-representation of
su(1, d) on Aα that we also denote by πσ . As a dense domain we choose the set of polynomials
on Bd . On the basis of monomials {en | n ∈ Nd

0}, the basis of su(1, d) acts as follows.

Lemma 4.1. For n ∈ Nd
0 ,

πσ (Hi )en =

( σ

d + 1
+ ni

)
en, i = 1, . . . , d,

πσ (E0, j )en =
√

(σ + |n| − 1)n j en−v j , j = 1, . . . , d,

πσ (Ei,0)en = −
√

(ni + 1)(σ + |n|) en+vi , i = 1, . . . , d,

πσ (Ei, j )en =
√

(ni + 1)n j en+vi −v j , 1 ≤ i, j ≤ d, i ̸= j,

here vi is the standard basis vector of Cd+1 with j th entry 1 and the other entries are 0, and
e use the convention en = 0 if ni = −1 for some 1 ≤ i ≤ d.

roof. This follows directly from computing

d ⏐⏐⏐ πσ (exp(t X ))en(z), X ∈ B. □

dt t=0
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We fix a g ∈ SU(1, d) as in Theorem 3.1, i.e.

g =

(
a bt

c D

)
, with a, bi , ci ̸= 0 for i = 1, . . . , d.

urthermore, let U, p, p̃ be as in Theorem 3.1. With this g, we define a new basis of Aα by

ẽn = πσ (g)en, n ∈ Nd
0 ,

nd define a corresponding basis of su(1, d) by

B̃ = {X̃ = gXg−1
| X ∈ B},

here B is the basis given in (4.1). It immediately follows that the action of B̃ on {ẽn} is given
y

πσ (H̃i )ẽn =

( σ

d + 1
+ ni

)
ẽn, i = 1, . . . , d,

πσ (Ẽ0, j )ẽn =
√

(σ + |n| − 1)n j ẽn−v j , j = 1, . . . , d,

πσ (Ẽi,0)ẽn = −
√

(ni + 1)(σ + |n|) ẽn+vi , i = 1, . . . , d,

πσ (Ẽi, j )ẽn =
√

(ni + 1)n j ẽn+vi −v j , i, j = 1, . . . , d, i ̸= j.

(4.3)

We will use the representation of su(1, d) to derive the difference equations for the Meixner
olynomials from [8, Theorem 4.1]. First, we need a few preliminary results.

emma 4.2.

(i) For X ∈ B, we have (X̃ )∗ = X̃∗, i.e.

(H̃i )∗ = H̃i , (Ẽ0,i )∗ = −Ẽi,0, (Ẽi, j )∗ = Ẽ j,i .

for i, j = 1, . . . , d, i ̸= j .
(ii) For k, l = 1, . . . , d, k ̸= l,

H̃k =

d∑
i=1

(|Di,k |
2
+ |bk |

2)Hi +

d∑
i, j=1
i ̸= j

Di,k D j,k Ei, j + bk

d∑
j=1

D j,k E0, j − bk

d∑
i=1

Di,k Ei,0,

Ẽk,l =

d∑
i=1

(Di,k Di,l + bkbl)Hi +

d∑
i, j=1
i ̸= j

Di,k D j,l Ei, j + bk

d∑
j=1

D j,l E0, j − bl

d∑
i=1

Di,k Ei,0,

Ẽ0,l =

d∑
i=1

(ci Di,l + abl)Hi +

d∑
i, j=1
i ̸= j

ci D j,l Ei, j + a
d∑

j=1

D j,l E0, j − bl

d∑
i=1

ci Ei,0,

Ẽk,0 =

d∑
i=1

(Di,kci + bka)Hi +

d∑
i, j=1
i ̸= j

Di,kc j Ei, j + bk

d∑
j=1

c j E0, j − a
d∑

i=1

Di,k Ei,0.

roof. For the first statement we use X̃ = gXg−1, J †
= J and I = J 2, to obtain

(X̃ )∗ = J (X̃ )† J = J (gXg−1)† J = (Jg−1 J )†(J X† J )(Jg† J ).

sing g−1
= Jg† J and J X† J = X∗, it follows that (X̃ )∗ = gX∗g−1

= X̃∗.
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The second statement follows from a direct calculation. For Ek,l we have

Ẽk,l =

⎛⎜⎜⎜⎝
−bkbl bk D1,l · · · bk Dd,l

−D1,kbl D1,k D1,l · · · D1,k Dd,l
...

...
. . .

...

−Dd,kbl Dd,k D1,l · · · Dd,k Dd,l

⎞⎟⎟⎟⎠
=

d∑
i=1

xi Hi +

d∑
i, j=1
i ̸= j

Di,k D j,l Ei, j + bk

d∑
j=1

D j,l E0, j − bl

d∑
i=1

Di,k Ei,0,

here the coefficients xi ∈ C are determined by the equations

−
1

d + 1

d∑
j=1

x j = −bkbl ,

xi −
1

d + 1

d∑
j=1

x j = Di,k Di,l , i = 1, . . . , d.

Note that consistency of these equations follows from the identity bkbl +
∑d

i=1 Di,k Di,l = 0,
ee (2.3). It follows that xi = Di,k Di,l + bkbl .

The results for Ẽk,0 and Ẽ0,l follow by interpreting Di,0 as ci , and b0 as a. The calculation
or H̃k runs along the same lines. □

We are now in a position to derive difference equations for the Meixner polynomials from
he action of the Cartan elements Hk .

heorem 4.3. For k = 1, . . . , d, the Meixner polynomials Mm(n) = Mm(n; U, σ ) satisfy

⏐⏐⏐ p0
pk

⏐⏐⏐2 nk Mm(n) =

⎛⎝σ + |m| +

d∑
i=1

|Uk,i p̃i |
2mi

⎞⎠Mm(n) +

d∑
i, j=1
i ̸= j

Uk,i Uk, j | p̃i |
2m j Mm−v j +vi (n)

−

d∑
i=1

Uk,i mi Mm−vi (n) − (σ + |m|)
d∑

i=1

Uk,i | p̃i |
2 Mm+vi (n).

Proof. The result follows from evaluating ⟨πσ (H̃k)ẽn, em⟩ in two ways.
First note that ⟨ẽn, em⟩ = πm,n(g). From the action of H̃k (4.3), it follows that

⟨πσ (H̃k)ẽn, em⟩ =

(
σ

d + 1
+ nk

)
πm,n(g).

n the other hand, using ⟨πσ (X )ẽn, em⟩ = ⟨ẽn, π
σ (X∗)em⟩ and Lemma 4.2, we obtain

⟨πσ (H̃k)ẽn, em⟩ =

d∑
i=1

(|Di,k |
2
+ |bk |

2)
( σ

d + 1
+ mi

)
πm,n(g)

+

d∑
i, j=1

Di,k D j,k
√

(mi + 1)m j πm−v j +vi ,n(g)
i ̸= j
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+ bk

d∑
j=1

D j,k
√

(σ + |m| − 1)m j πm−v j ,n(g)

+ bk

d∑
i=1

Di,k

√
(mi + 1)(σ + |m|) πm+vi ,n(g).

o we have a difference equation for the matrix coefficients πm,n(g). Expressing the matrix
oefficients in terms of Meixner polynomials using Theorem 3.1, and simplifying the diagonal
erms using the identity

∑d
i=1 |Di,k |

2
= |bk |

2
+ 1, we obtain a difference equation for the

eixner polynomials. □

emark 4.4. The construction of the difference equations for the multivariate Meixner
olynomials in Theorem 4.3 is similar to Iliev’s [7] construction of difference equations for
ultivariate Krawtchouk polynomials from Cartan elements of sl(d +1,C). The difference lies

n the use of the su(1, d) ∗-structure, instead of the antiautomorphism a from [7].

We note that we can rewrite the difference equations as

nk Mm(n) =

⏐⏐⏐⏐ pk

p0

⏐⏐⏐⏐2 d∑
i, j=1
i ̸= j

Uk,iUk, j | p̃i |
2m j

[
Mm−v j +vi (n) − Mm(n)

]

−

⏐⏐⏐⏐ pk

p0

⏐⏐⏐⏐2 d∑
i=1

Uk,i mi

[
Mm−vi (n) − Mm(n)

]
−

⏐⏐⏐⏐ pk

p0

⏐⏐⏐⏐2 d∑
i=1

Uk,i | p̃i |
2(σ + |m|)

[
Mm+vi (n) − Mm(n)

]
.

omparing this with the difference equations from [8, Theorem 4.1], we see that the result
s again very similar; the difference is the occurrence of complex conjugates of appropriate
arameters.

In the same way as in Theorem 4.3 we obtain ‘lowering and raising’ relations for the
eixner polynomials from the actions of Ek,l .

Theorem 4.5. For k, l = 0, . . . , d, k ̸= l,⏐⏐⏐ p0
pl

⏐⏐⏐2 nl Mm(n + vk − vl) =(
σ + |m| +

d∑
i=1

Ul,iUk,i | p̃i |
2mi

)
Mm(n) +

d∑
i, j=1
i ̸= j

Ul,iUk, j | p̃i |
2m j Mm+vi −v j (n)

−

d∑
i=1

Uk,i mi Mm−vi (n) − (σ + |m|)
d∑

i=1

Ul,i | p̃i |
2 Mm+vi (n),

where we use the notations U0,i = 1, v0 = 0 and n0 = −σ − |n|.

Using the duality property of the multivariate Meixner polynomials Mm(n), Theorem 3.2(iii),
it follows that they also satisfy difference equations and lowering/raising relations in the
variable m.
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5. Degenerate multivariate meixner polynomials

So far we considered matrix coefficients πm,n(g) where g =
(

a bt
c D

)
∈ SU(1, d) with

, bi , ci ̸= 0. These matrix coefficients correspond to Griffith’s multivariate Meixner poly-
omials which are associated to the matrix Û = ( 1 1t

1 U ) ∈ Md+1, see also the discussion at the
nd of Section 3. In the present section, we consider the degenerate case in which the vectors
and c may contain elements equal to 0. For convenience we assume

bk+1 = · · · = bd = 0 and cl+1 = · · · = cd = 0

or some k, l ∈ {1, . . . , d} and the other elements of b and c are nonzero. This will correspond
o multivariate Meixner polynomials associated to a matrix Û with zero entries in the first row
nd first column. We briefly describe some properties of these polynomials, which are similar
o properties of Griffiths’ multivariate Meixner polynomials.

In the non-degenerate case we have an explicit expression for the matrix coefficients using
he hypergeometric expression for the multivariate Meixner polynomials. By taking limits we
btain an explicit expression for πσ

m,n(g).

emma 5.1. The matrix coefficient πσ
m,n(g) is given by

πσ
m,n(g) =

√
(σ )|m|(σ )|n|

m! n!
(−1)|m|a−σ−|m|−|n|

k∏
i=1

l∏
j=1

bni
i c

m j
j

×

∑
(ai, j )∈Mk,l (m,n)

∏d
j=1(−m j )∑d

i=1 ai, j

∏d
i=1(−ni )∑d

j=1 ai, j

(σ )∑d
i, j=1 ai, j

d∏
i, j=1

1
ai, j !

×

l∏
j=1

(
k∏

i=1

(
1 −

aD j,i
bi c j

)ai, j
d∏

i=k+1

(
−

aD j,i
c j

)ai, j

)

×

d∏
j=l+1

(
k∏

i=1

(
−

aD j,i
bi

)ai, j
d∏

i=k+1

(−aD j,i )ai, j

)
,

here

Mk,l(m, n) =

{
(ai, j ) ∈ Md (N0) :

d∑
j=1

ai, j = ni for i = k + 1, . . . , d

and
d∑

i=1

ai, j = m j for j = l + 1, . . . , d
}

.

roof. First, we write out the Meixner polynomial Mm(n; U, σ ) from Theorem 3.1, i.e. in
he non-degenerate case, as a hypergeometric series using (3.2), which is a sum labeled by
ai, j ) ∈ Md (N0) of the form

πσ
m,n(g) = C

⎛⎝ d∏
i, j=1

bni
i c

m j
j

⎞⎠∑
(ai, j )

Bai, j

d∏
i, j=1

(
1 −

aD j,i

bi c j

)ai, j

,

where C and Bai, j are independent of b and c. The factor Bai, j contains a term (−ni )∑d
j=1 ai, j

,∑d
which equals 0 if j=1 ai, j > ni , so that the sum is a finite sum labeled by (ai, j ) ∈ Md (N0)
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with
∑d

j=1 ai, j ≤ ni for 1 ≤ i ≤ d. For taking the limit bi → 0 we use

lim
bi →0

bni
i

d∏
j=1

(
1 −

aD j,i

bi c j

)ai, j

=

{∏d
j=1

(
−

aD j,i
c j

)ai, j
, if

∑d
j=1 ai j = ni ,

0, if
∑d

j=1 ai j < ni .

Applying this for i = k + 1, . . . , d, shows that the sum over matrices (ai, j ) ∈ Md (N0) reduces
to a sum over matrices for which the elements of the i th row sum to ni , of the form

C ′

⎛⎝ d∏
j=1

c
m j
j

⎞⎠∑
(ai, j )

Bai, j

d∏
j=1

k∏
i=1

(
1 −

aD j,i

bi c j

)ai, j d∏
i=k+1

(
−

aD j,i

c j

)ai, j

,

here C ′ is independent of c. Bai, j also contains a term (−m j )∑d
i=1 ai, j

, which equals 0 for
d
i=1 ai, j > m j . Furthermore, we have

lim
c j →0

c
m j
j

k∏
i=1

(
1 −

aD j,i

bi c j

)ai, j d∏
i=k+1

(
−

aD j,i

c j

)ai, j

=

{∏k
i=1

(
−

aD j,i
bi

)ai, j ∏d
i=k+1(−aD j,i )ai, j , if

∑d
i=1 ai, j = m j ,

0, if
∑d

i=1 ai, j < m j .

pplying this for j = l + 1, . . . , d, we are left with a sum over matrices (ai, j ) for which the
lements of the j th column sum to m j , of the form

C ′′
∑
(ai, j )

Bai, j

l∏
j=1

(
k∏

i=1

(
1 −

aD j,i
bi c j

)ai, j
d∏

i=k+1

(
−

aD j,i
c j

)ai, j

)

×

d∏
j=l+1

(
k∏

i=1

(
−

aD j,i
bi

)ai, j
d∏

i=k+1

(−aD j,i )ai, j

)
.

Writing out C ′′ and Bai, j explicitly gives the result. □

For σ > 0 and U ∈ Md , we define the degenerate multivariate Meixner polynomials
M̂m(n; U, σ ) by

M̂m(n; U, σ ) =

∑
(ai, j )∈Mk,l (m,n)

∏d
j=1(−m j )∑d

i=1 ai, j

∏d
i=1(−ni )∑d

j=1 ai, j

(σ )∑d
i, j=1 ai, j

d∏
i, j=1

1
ai, j !

×

∏
1≤i≤k
1≤ j≤l

(
1 − Ui, j

)ai, j
∏

1≤i, j≤d
i≥k+1 or j≥l+1

(
−Ui, j

)ai, j .

efine, similar as in Theorem 3.1,

pi =
bi

a
, i = 1, . . . , k,

p̃ j =
c j

, j = 1, . . . , l,

a
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N
t

and U ∈ Md by

Ui, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aD j,i
bi c j

1 ≤ i ≤ k, 1 ≤ j ≤ l,
aD j,i

bi
1 ≤ i ≤ k, l + 1 ≤ j ≤ d,

aD j,i
c j

k + 1 ≤ i ≤ d, 1 ≤ j ≤ l,

aD j,i k + 1 ≤ i ≤ d, l + 1 ≤ j ≤ d.

It is convenient to define p, p̃ ∈ Cd by

p = (p1, . . . , pk,
1
a , . . . , 1

a ), p̃ = ( p̃1, . . . , p̃l ,
1
a , . . . , 1

a ).

ote that we now have D j,i = api p̃ jUi, j for 1 ≤ i, j ≤ d. Then, it follows from Lemma 5.1
hat πσ

m,n(g) is a multiple of M̂m(n; U, σ ),

πσ
m,n(g) =

√
(σ )|m|(σ )|n|

m! n!
(−1)|m|a−σ p̃mpn M̂m(n; U, σ ).

Properties of the matrix coefficients can easily be translated to properties of the degenerate
Meixner polynomials, similar as in the previous sections. We will state the orthogonality
relations, the generating function, the duality property and difference equations, and leave the
other properties to the interested reader. First we need to introduce some notations, similarly
to the notations used at the end of Section 3. Given U ∈ Md and pi , p j ∈ C for i = 1, . . . , k,
j = 1, . . . , l, such that 1 −

∑k
i=1 |pi |

2
= 1 −

∑l
i=1 | p̃i |

2, we denote

Û =

(
1 1t

l
1k U

)
,

where 1k is the vector u with ui = 1 for i = 1, . . . , k and ui = 0 for i = k + 1, . . . , d, and

C = diag(1, −|p1|
2, . . . ,−|pk |

2, −|p0|
2, . . . ,−|p0|

2),

C̃ = diag(1, −| p̃1|
2
, . . . ,−| p̃l |

2
, −|p0|

2, . . . ,−|p0|
2),

where |p0|
2

= 1 −
∑k

i=1 |pi |
2.

Theorem 5.2. Let σ ∈ N≥d+1, pi , p̃ j ∈ C for i = 1, . . . , k, j = 1, . . . , l and U ∈ Md

such that Û †CÛC̃ = |p0|
2 Id+1. The polynomials M̂m(n) = M̂m(n; U, σ ) have the following

properties:

(i) Orthogonality relations:

∑
n∈Nd

0

(σ )|n|

n!
pnpn M̂m(n)M̂m′ (n) = δm,m′

m!p̃−mp̃
−m

(σ )|m||p0|
2σ

,

∑
d

(σ )|m|

m!
p̃mp̃

m
M̂m(n)M̂m(n′) = δn,n′

n!p̃−np̃
−n

(σ )|n||p0|
2σ

.

m∈N0
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(ii) Generating function:∑
m∈Nd

0

(σ )|m|

m!
M̂m(n; U, σ )tm

=

⎛⎝1 −

l∑
j=1

t j

⎞⎠−σ−|n|
k∏

i=1

⎛⎝1 −

d∑
j=1

Ui, j t j

⎞⎠ni d∏
i=k+1

⎛⎝−

d∑
j=1

Ui, j t j

⎞⎠ni

.

(iii) Duality: M̂m(n; U, σ ) = M̂n(m; U t , σ ).
(iv) Difference equations: for s = 1, . . . , d,⏐⏐⏐ p0

ps

⏐⏐⏐2ns M̂m(n) =(
χk(s)(σ + |m|) +

d∑
i=1

|Us,i p̃i |
2mi

)
M̂m(n) +

d∑
i, j=1
i ̸= j

Us,iUs, j | p̃i |
2m j Mm−v j +vi (n)

− χk(s)

(
d∑

i=1

Us,i mi M̂m−vi (n) + (σ + |m|)
d∑

i=1

Us,i | p̃i |
2 M̂m+vi (n)

)
.

where

χk(s) =

{
1, s ≤ k,

0, s ≥ k + 1.

roof. The orthogonality relations are orthogonality relations for the matrix coefficients
m,n(g). In this case g = a P̃Û t P with P̃ = diag(1, p̃) and P = diag(1, p), where pi , p̃i

nd Ui, j are related to g as described above. Note that C̃ = P̃† J P̃ and C = P† J P . The
dentity g† Jg = J then leads to the condition Û †CÛC̃ = |p0|

2 Id+1. The generating function
ollows from writing out

πσ (g)en(z) =

∑
m

πσ
m,n(g)em(z)

n terms of the degenerate Meixner polynomials and setting

ti =

{
−

ci zi
a , for i = 1, . . . , l,

−
zi
a , for i = l + 1, . . . , d.

The duality property and the difference equations are obtained in the same way as in
Theorems 3.2 and 4.3. □
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