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Sander Borst

We study the problem of finding a temporal hybridization network for a
set of phylogenetic trees that minimizes the number of reticulations.

First, we introduce an FPT algorithm for this problem on an arbitrary set
of t binary trees with n leaves each with a running time of O(5k ·n ·m), where
k is the minimum temporal hybridization number.

We also present the concept of temporal distance, which is a measure for
how close a tree-child network is to being temporal. Then we introduce an
algorithm for computing a tree-child network with temporal distance at most
d and at most k reticulations in O((8k)d5k · n ·m).

Lastly, we introduce a O(6kk! · n) algorithm for computing a minimum
temporal hybridization network for a set of two nonbinary trees.

We also provide an implementation of all algorithms and an experimental
analysis on their performance.
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Phylogenetics is the study of the evolutionary history of biological species.
Traditionally such a history is represented by a phylogenetic tree. However, hybridization
and horizontal gene transfer, both so-called reticulation events, can lead to multiple
seemingly conflicting trees representing the evolution of different parts of the genome [1,
2]. Directed acyclic networks can be used to combine these trees into a more complete
representation of the history [3]. Reticulations are represented by vertices with in-degree
greater than one.

Therefore, an important problem is how to construct such a network based on a set
of input trees that are known to represent the evolutionary history for different parts
of the genome. The network should display all of these input trees. In general there
are many solutions to this problem, but in accordance with the parsimony principle
we are especially interested in the most simple solutions to the problem. These are
the solutions with a minimal number of reticulations. Finding a network for which the
number of reticulations, also called the hybridization number, is minimal now becomes
an optimization problem. This problem is NP-complete, even for only two binary input
trees [4]. The problem is fixed parameter tractable for an arbitrary set of non-binary
input trees if either the number of trees or the out-degree in the trees is bounded by a
constant [5]. For a set of two binary input trees an FPT algorithm with a reasonable
running time exists [6]. For more than two input trees theoretical FPT algorithms and
practical heuristic algorithms exist, but no FPT algorithm with a reasonable running
time is known. That is why we are interested in slightly modifying the problem to make
it easier to solve.

One way to do this is by restricting the solution space to the class of tree-child
networks, in which each non-leaf vertex has at least one outgoing arc that does not
enter a reticulation [7]. The minimum hybridization number over all tree-child networks
that display the input trees is called the tree-child hybridization number. These networks
can be characterized by so-called cherry picking sequences [8]. This characterization can
be used to create a fixed parameter tractable algorithm for this restricted version of the
problem for any number of binary input trees with time complexity O((8k)k ·poly(n,m))
where k is the tree-child hybridization number, n is the size of leaves and m is the number
of input trees [9].

The solution space can be reduced even further [10], leading to the problem of finding
the temporal hybridization number. The extra constraints enforce that each species
can be placed at a certain point in time such that evolution events take a positive
amount of time and that reticulation events can only happen between species that
live at the same time. For the problem of computing the temporal hybridization
number a cherry picking characterization exists too and it can be used to develop a
fixed parameter tractable algorithm for problems with two binary input trees with time
complexity O((7k)k · poly(n,m)) where k is the temporal hybridization number, n is the
number of leaves and m is the number of input trees [10]. In this thesis we introduce a
faster algorithm for solving this problem in O(5k · n ·m) time using the cherry picking
characterization. Moreover, this algorithm works for any number of binary input trees.

A disadvantage of the temporal restrictions is that in some cases no solution satisfying
the restrictions exists. In fact determining whether such a solution exists is a NP-hard
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problem [11][12]. Because of this our algorithm will not find a solution network for
all problem instances. However we show that it is possible to find a network with a
minimum number of non-temporal arcs, thereby finding a network that is ‘as temporal
as possible’. For that reason we also introduce an algorithm that also works for non-
temporal instances. This algorithm is a combination of the algorithm for tree-child
networks and the one for temporal networks introduced here.

In practical data sets, the trees for parts of the genome are often non-binary. This can
be either due to simultaneous divergence events or, more commonly, due to uncertainty
in the order of divergence events [13]. This means that many real-world datasets contain
non-binary trees, so it is very useful to have algorithms that allow for non-binary input
trees. While the general hybridization number problem is known to be FPT when either
the number of trees or the out-degree of the trees is bounded by a constant [5], an FPT
algorithm with a reasonable running time (O(6kk!·poly(n))) is only known for an input of
two trees [14]. Until recently no such algorithm was known for the temporal hybridization
number problem however. In this thesis the first FPT algorithm for constructing optimal
temporal networks based on two non-binary input trees with running time O(4kk!) is
introduced.

The structure of the paper is as follows. First we introduce some common theory
and notation in Section 1. In Section 2 we present a new algorithm for the temporal
hybridization number of binary trees, prove its correctness and analyse the running time.
In Section 3 we combine the algorithm from Section 2 with the algorithm from [9] to
obtain an algorithm for constructing tree-child networks with a minimum number of
non-temporal arcs. In Section 4 we present the algorithm for the temporal hybridization
number for two non-binary trees. In Section 5 we conduct an experimental analysis of
the algorithm for constructing temporal networks from binary trees.

1 Preliminaries
1.1 Trees
A rooted binary phylogenetic X-tree T is a rooted tree for which the leaf set is a partition
of X with |X| = n. Because we will mostly use rooted binary phylogenetic trees in this
thesis we will just refer to them as trees. Only in Section 4 trees that are not necessarily
binary are mentioned, but we will explicitly call them non-binary trees.

Each of the leaves of a tree is labeled by an element of X. We will also refer to the set
of the leaf labels in T as L(T ). For a tree T and a set of leaves A with the notation T \A
we refer to the tree obtained by removing all leaves labeled by elements from A form T
and repeatedly contracting all vertices with both in- and out-degree one. Observe that
(T \ {x}) \ {y} = T \ {x, y} = (T \ {y}) \ {x}. We will often use T to refer to a set of
m trees T1, . . . , Tm. We will write T \A for {T1 \A, . . . , Tm \A} and L(T ) = ∪mi=1L(Ti).

1.2 Temporal networks
A network on a leaf set X is a rooted acyclic directed graph satisfying:
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Figure 1: The binary trees in (a) and (b) are both displayed by the network in (c).

1. The root ρ has in-degree 0 and an out-degree not equal to 1.

2. The leaves are the nodes with out-degree zero.

3. The remaining vertices are tree vertices or hybridization vertices
a) A tree vertex has in-degree 1 and out-degree at least 2.
b) A hybridization vertex (also called reticulation) has out-degree 1 and in-degree

at least 2.

We will call the arcs ending in a hybridization vertex hybridization arcs. All other
arcs are tree arcs. A network is a tree-child network if every tree vertex has at least one
outgoing tree arc.

We say that a network N on X displays a set of trees T on X ′ with X ′ ⊆ X if every
tree in T can be obtained by removing edges and vertices and contracting vertices with
both in-degree 1 and out-degree 1. For a set of leaves A we define N \ A to be the
network obtained from N by removing all leaves in A and afterwards removing all nodes
with out-degree zero and contracting all nodes with both in- and out-degree one.

For a tree-child network N , the hybridization number ht(N ) is defined as

r(N ) =
∑
v 6=ρ

(d−(v)− 1).

where d−(v) is the in-degree of a vertex v and ρ is the root of N .
A tree-child network N with set of vertices V is temporal if there exists a map

t : V → R+, called a temporal labelling, such that for all u, v ∈ V we have t(u) = t(v)
when (u, v) is a hybridization arc and t(u) < t(v) when (u, v) is a tree arc. In Fig. 2
both a temporal and a non-temporal network are shown.

For a set of trees T we define the minimum temporal-hybridization number as

ht(T ) = min{r(N ) : N is a temporal network that displays T}
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Figure 3: No temporal network that displays these trees exists.

This definition leads to the following decision problem.

Temporal hybridization
Instance: A set of trees T and an integer k
Question: Is ht(T ) ≤ k?

Note that there are sets of trees such that no temporal network exists that displays
them. In Fig. 3 an example is given. For such a set T we have ht(T ) =∞.

1.3 Cherry picking sequences
Temporal networks can now be characterized by so-called cherry-picking sequences [10].
A cherry is a set of children of a tree vertex that only has leaves as children. So for
binary trees a cherries are pairs of leafs. We will write (a, b) ∈ T if {a, b} is a cherry of
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T and (a, b) ∈ T if there is a T ∈ T with (a, b) ∈ T . First we introduce some notation
to make it easier to speak about cherries.

Definition 1.1. For a set of binary trees T on the same taxa define H(T ) to be the set
of leaves that is in a cherry in every tree.

If two leaves are in a cherry together we call them neighbors. We also introduce
notation to speak about the neighbors of a given leaf:

Definition 1.2. Define NT (x) = {y ∈ X : (y, x) ∈ T }. For a set of trees T define
NT (x) = ∪T ∈TNT (x).

Definition 1.3. For a set of binary trees T containing a leaf x define wT (x) =
|NT (x)| − 1. We will also call this the weight of x in T .

Using this theory, we can now give the definition of cherry picking sequences.

Definition 1.4. A sequence of leaves s = (s1, s2, . . . , sn) is a cherry picking sequence
(CPS) for a set of binary trees T on the same set of taxa if it contains all leaves of T
exactly once and if for all i ∈ [n − 1] we have si ∈ H(T \ {s1, . . . , si−1}). The weight
wT (s1, . . . sn) of the sequence is defined as wT (s) =

∑n−1
i=1 wT\{s1,...,si−1}(si).

Example 1.5. For the two trees in Fig. 1, (b, e, c, d) is a minimum weight cherry-picking
sequence of weight 2. Leaves b and c (indicated in bold) have weight 1 and the rest of
the leaves have weight 0 in the sequence.

For a cherry picking sequence s with si = x we say that x is picked in s at index i.

Theorem 1.6 ([10, Theorem 1, Theorem 2]). Let T be a set of trees on X . There
exists a temporal network N that displays T with ht(N ) = k if and only if there exists
a cherry-picking sequence s for T with wT (s) = k.

This has been proven in [10, Theorem 1, Theorem 2]. The proof works by constructing
a cherry picking sequence from a temporal network and vice versa. Here, we only repeat
the construction to aid the reader, and refer to [10] for the proof of correctness.

The construction of cherry picking sequence s from a temporal network N with
temporal labeling t works in the following way: For i = 1 choose si to be a leaf x
of N such that t(px) is maximal where px is the parent of x in N . Then increase i by
one and again choose si to be a leaf x of N \ {s1, . . . , si−1} that maximizes t(px) where
px is the parent of x in N \ {s1, . . . , si−1}. In [10, Theorem 1, Theorem 2] it is shown
that now s is a cherry picking sequence with wT (s) = r(N ).

The construction of a temporal network N from a cherry picking s is somewhat
more technical: for cherry picking sequence s1, . . . , st, define Nn to be the tree, only
consisting of a root and the only leaf of T \ {s1, . . . , sn}. Now obtain Ni from Ni+1 by
adding node si and a new node psi , adding edge (psi , si) subdividing (px, x) for every
x ∈ NT\{s1,...,si−1}(si) with node qx and adding an edge (qx, psi) and finally suppressing
all nodes with in- and out-degree one. Then N = N1 displays T and r(N ) = wT (s).
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The theorem implies that the weight of a minimum weight CPS is equal to the temporal
hybridization number of the trees. Because finding an optimal temporal reticulation
network for a set of trees is an NP-hard problem [11], this implies that finding a minimum
weight CPS is an NP-hard problem.

Definition 1.7. We call two sets of trees T and T ′ equivalent if a bijection from L(T ) to
L(T ′) exists that transforms T into T ′. We call them equivalent because have the same
structure and consequently the same (temporal) hybridization, however the biological
interpretation can be different. We will write this as T ' T ′.

2 Algorithm for constructing temporal networks from binary
trees

Finding a cherry picking sequence comes down to deciding in which order to pick the
leaves. Our algorithm relies on the observation that this order does not always matter.
Intuitively the observation is that the order of two leaves in a cherry picking sequences
only matters if they appear in a cherry together somewhere during the execution of the
sequence. Therefore the algorithm keeps track of the pairs of leaves for which the order
of picking matters. We will make this more precise in the remainder of this section.
The algorithm now works by branching on the choice of which element of a pair to pick
first. These choices are stored in a so-called constraint set. Each call to the algorithm
branches into subcalls with more constraints added to the constraint set. As soon as it
is known that a certain leaf has to be picked before all of its neighbors and is in a cherry
in all of the trees, the leaf can be picked.

Definition 2.1. Let C ⊆ L(T ) × L(T ). We call C a constraint set on T if every
pair (a, b) ∈ C is a cherry in T . A cherry picking sequence s = (s1, . . . , sk) of T
satisfies C if for all (a, b) ∈ C, we have si = a and (a, b) ∈ T ′ and wT ′(a) > 0 with
T ′ = T \ {s1, . . . , si−1} for some i.

Intuitively, a cherry picking sequence satisfies a constraint set if for every pair (a, b)
in the set a is picked with positive weight and (a, b) is a cherry just before picking a.
This implies that a occurs in the cherry picking sequence before b. We will write πi(C)
for the set obtained by projecting every element of C to the i’th coordinate.

Observation 2.2. Let s be a cherry picking sequence for T and wT (x) > 0 and
a, b ∈ NT (x). Then s satisfies one of the following constraint sets:
{(a, x)}, {(b, x)}, {(x, a), (x, b)}.

Proof. Let i be the lowest index such that si ∈ {x, a, b}. If si = x, then (x, a) ∈
T \ {s1, . . . , si−1} and (x, b) ∈ T \ {s1, . . . , si−1}, so s satisfies {(a, x), (b, x)}. If si = a,
then there is a T ∈ T \ {s1, . . . , si−1} with (x, b) ∈ T , so (a, x) /∈ T , which implies
that wT\{s1,...,si−1}(si) > 0, so s satisfies {(a, x)}. Similarly if si = b then s satisfies
{(b, x)}.
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This observation implies that the problem can be reduced to three subproblems,
corresponding to either appending {(a, x)}, {(b, x)} or {(x, a), (x, b)} to C. As we will
see, this is used by the algorithm. It is possible to implement an algorithm using only
this rule, but the running time of the algorithm can be improved by using a second rule
that branches into only two subproblems when it is applicable. The rule relies on the
following observation.

Observation 2.3. If C is satisfied by s then for all x ∈ π1(C) and y ∈ NT (x) we have
that either C ∪ {(y, x)} or C ∪ {(x, y)} is also satisfied by s.

Proof. If x ∈ π1(C) then C contains a pair (x, a). If a = y it is trivial that s
satisfies C ∪ {(x, y)} = C. Otherwise Observation 2.2 implies that s satisfies one of
the constraint sets {(a, x)}, {(y, x)}, {(x, a), (x, y)}. Because s satisfies {(x, a)}, s can
not satisfy {(a, x)}. So s will satisfy either {(y, x)} or {(x, a), (x, y)}.

Using this observation we can let the algorithm branch into two paths by either adding
(x, y) or (y, x) to the constraint set C if x ∈ π1(C).

We define G(T,C) to be the set of cherries for which there is no constraint in C, so
G(T,C) = {(x, y) : (x, y) ∈ T ∧ (x, y), (y, x) /∈ C}. Observe that (x, y) ∈ G(T,C) is
equivalent with (y, x) ∈ G(T,C).

Lemma 2.4. Let (s1, s2, . . .) be a cherry picking sequence for a set of trees T that
satisfies constraint set C. Let x ∈ H(T ). Then at least one of the following statements
is true:

(1) ∃i : si = x and s′ = (si, s1, . . . , si−1, si+1, . . .) is a cherry picking sequence for T
satisfying C and w(s) = w(s′).

(2) If si = x then ∃j : sj ∈ NT (x) such then j < i.

Proof. Let r be the smallest number such that sr ∈ NT (x) ∪ {x}. In case sr 6= x it
follows directly that condition (2) holds for j = r.

For sr = x we will prove that condition (1) holds with i = r. Take an arbitrary tree
T ∈ T . Now take arbitrary j, k with s′j = sk. Now we claim that for an arbitrary
z we have (s′j , z) ∈ T (s′1, . . . , s′j−1)p if and only if (sk, z) ∈ T (s1, . . . , sk−1)p. For
s′j = s′1 = si = sk this is true because none of the elements s1, . . . , si−1 are in NT (si) so
for each z we have (s′1, z) ∈ T if and only if (si, z) ∈ T (s1, . . . , si−1).

For k with k < i we have s′j+1 = sj . Because si /∈ NT (sj) we have that
(sj , z) ∈ T \ {s′1, . . . , s′j} = {s1, . . . , sj−1, si} if and only if (sj , z) ∈ T \ {s1, . . . , sj−1}.

For k > i we have j = k and also T \ {s′1, . . . s′j−1} = T \ {s1, . . . sj−1} because
{s1, . . . sj−1} = {s′1, . . . s′j−1}. It directly follows that (s′j , z) ∈ T (s′1, . . . s′j−1) if and only
if (sj , z) ∈ T (s1, . . . sj−1).

Now because we know that for each k we have sk ∈ H(T (s1, . . . , sk−1)) and sk = s′j
is in exactly the same cherries in T (s1, . . . , sk−1) as in T (s′1, . . . , s

′
j−1), we know that

s′j ∈ H(T (s′1, . . . , s
′
j−1)), that wT (s′1,...,s′j−1)

(s′j) = wT (s1,...,sk−1)(sk) and that s′ satisfies
C. This implies that s′ is a CPS with wT (s) = wT (s

′).
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As soon as we know that a leaf in H(T ) has to be picked before all its neighbors we
can pick it, as stated by the following lemma.

Lemma 2.5. Suppose x ∈ H(T ) and constraint set C is satisfied by cherry picking
sequence s of T , with {(x, n) : n ∈ NT (x) \ {x}} ⊆ C. Then there is a cherry picking
sequence s′ with s′1 = x and w(s′) = w(s).

Proof. This follows from Lemma 2.4, because statement (2) can not be true because for
every j with sj ∈ NT (x) we have (x, sj) ∈ C and therefore i < j for si = x. So statement
(1) has to hold which yields a sequence s′ with w(s) = w(s′) and s′1 = x.

Lemma 2.6. Let s be a cherry picking sequence for T satisfying constraint set C with
x /∈ π1(C) and x /∈ π2(C). If x ∈ H(T ) and wT (x) = 0, then there is a cherry picking
sequence s′ with s′1 = x and w(s′) = w(s) satisfying C.

Proof. Because wT (x) = 0 we have NT (x) = {y}. Then from Lemma 2.4 it follows that a
sequence s′ exists such that either s′′ = (x)|s′ or s′′ = (y)|s′ is a cherry picking sequence
for T and wT (s

′′) = w(s) and s′′ satisfies C. However, because the position of x and y
in the trees are equivalent (i.e. swapping x and y does not change T ) both are true.

The algorithm that we present is a recursive algorithm that is called with parameters
k and C. In each subcall 2k − |C| decreases by at least one. One call to the algorithm
results in at most 3 subcalls. Using that information we could derive a bound on the
running time of O(9k · poly(n,m)). However using the definition of P (C) below we can
show that k − P (C) also decreases on each recursive subcall. This allows us to derive a
better bound on the running time of O(5k · poly(n,m)).

Definition 2.7. Let ψ = log(2)
log(5) . Let P (C) = ψ · |C|+ (1− 2ψ)|π1(C)|.

Each call to the algorithm branches into either two or three subcalls and reduces the
value of k − P (C). After picking a leaf, all related constraints are removed from C, but
also k is reduced by its weight. Hence picking a leaf does not increase k − P (C). We
will prove that as soon as k−P (C) < 0 no feasible solution exists, so the algorithm then
terminates. This allows us to derive a bound of O(5k−P (C) · k · n ·m) on the running
time of the algorithm. By calling the algorithm with C = ∅ this gives a bound on the
running time of O(5k · k · n ·m).

Lemma 2.8. If cherry picking sequence s for T satisfies C, then wT (s) ≥ P (C).

Proof. For x = si with i < n we prove that for Cx := {(a, b) : (a, b) ∈ C ∧ a =
x} we have wT\{s1,...,si−1}(x) ≥ P (Cx). If |Cx| = 0, then P (Cx) = 0 and the
inequality is trivial. If |Cx| = 1, then there is some (x, b) ∈ C, which implies that
wT\{s1,...,si−1}(x) > 0, so wT\{s1,...,si−1}(x) ≥ |π1(Cx)| = 1 ≥ P (C). Otherwise if
|Cx| ≥ 2, then wT\{s1,...,si−1}(x) = NT (x) − 1 ≥ |Cx| − 1 = ψ · |Cx| − 1 + (1 − ψ)|Cx| ≥
|Cx| − 1 + 2(1 − ψ) = |Cx| + (1 − 2ψ) = P (Cx). Now the result follows because
wT (s) =

∑n−1
i=1 wT\{s1,...,si−1}(si) ≥

∑n−1
i=1 P (Csi) = P (C).
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Algorithm 1
1: procedure CherryPicking(T, k, C)
2: if k − P (C) < 0 then
3: return ∅
4: end if
5: T ′, k′, C ′, p←Pick(T, k, C)
6: if |L(T ′)| = 1 then
7: return {p}
8: else if π1(C ′) * L(T ′) then
9: return ∅

10: else if k′ − P (C ′) ≤ 0 then
11: return ∅
12: end if
13:
14: R← ∅
15: if ∃(x, y) ∈ G(T ′, C ′) : wT (x) > 0 ∧ x ∈ π1(C ′) then
16: R← R∪ CherryPicking(T ′,k′,C ′ ∪ {(x, y)})
17: R← R∪ CherryPicking(T ′,k′,C ′ ∪ {(y, x)})
18: else if ∃(x, a) ∈ G(T ′, C ′) : wT ′(x) > 0 ∧ x /∈ π2(C ′) then
19: Choose b 6= a such that (x, b) ∈ G(T ′, C ′)
20: R← R∪ CherryPicking(T ′,k′,C ′ ∪ {(a, x)})
21: R← R∪ CherryPicking(T ′,k′,C ′ ∪ {(b, x)})
22: R← R∪ CherryPicking(T ′,k′,C ′ ∪ {(x, a), (x, b)})
23: end if
24: return {p|r : r ∈ R}
25: end procedure
26:
27: procedure Pick(T ′, k′, C ′)
28: (T (1), k1, C1)← (T ′, k′, C ′)
29: p(1) ← ()
30: i← 1
31: while ∃xi ∈ H(T (i)) : wT (i)(x) = 0 ∨ {(xi, n) : n ∈ NT (i)(xi) \ {xi}} ⊆ Ci do
32: p(i+1) ← p(i)|(xi)
33: ki+1 ← ki − wT (i)(xi)
34: T (i+1) ← T (i) \ {xi}
35: Ci+1 ← {(a, b) ∈ Ci : a 6= xi}
36: i← i+ 1
37: end while
38: return T (i), ki, Ci, p

(i)

39: end procedure
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2.1 Proof of correctness
Lemma 2.9. When the algorithm executes line 19 there exist an element b 6= a with
(x, b) ∈ G(T ′, C ′).

Proof. Because wT ′(x) > 0, there is at least a b 6= a such that b ∈ NT ′(x) \{x}. Because
x /∈ π2(C ′) we have (b, x) /∈ C ′. If (x, b) ∈ C ′ then x ∈ π1(C ′), but then x satisfies the
if-statement on line 15 and it would not have gotten to this line. Therefore (x, b) /∈ C ′

and so (x, b) ∈ G(T ′, C ′).

Lemma 2.10 (Correctness of Pick). Suppose Pick(T ′, k′, C ′) returns (T, k, C, p).

1. If a cherry picking sequence s of weight at most k for T that satisfies C exists then
a cherry picking sequence s′ of weight at most k′ for T ′ that satisfies C ′ exists.

2. If s is a cherry picking sequence of weight at most k for T that satisfies C then p|s
is a cherry picking sequence for T ′ of weight at most k′ and satisfying C ′.

Proof. We will prove the first claim for (T, k, C, p) = (T (i), ki, Ci, p
(i)) for all i defined in

Pick. We will prove this with induction on i. For i = 1 this is obvious because T (1) = T ,
p(1) = (), C1 = C and k1 = k.

Now assume the claim is true for i = i′. Now there are two cases to consider:

• If we have {(xi′ , n) : n ∈ NT (xi′)} ⊆ Ci′ we know from Lemma 2.5 that if a cherry
picking sequence s satisfying Ci exists then also a cherry picking sequence (x)|s′
that satisfies C ′ exists with w(p|(x)|s′) = w(p|s). Note that this implies that s′ is
a cherry picking sequence for T (i+1) = T ′ \ {x}, that Ci+1 = c ∈ C ′ : x /∈ {c1, c2}
is satisfied by si+1 and that w(si+1) = w(si) − wT (i)(xi) = ki − wT (i)(x). So this
proves the statement for i = i′ + 1.

• Otherwise we have wT (i′)(x) = 0 and x /∈ π1(C) and x /∈ π2(C). Then the statement
for i = i′ + 1 follows directly from Lemma 2.6.

Let j be the maximal value such xj is defined in a given invocation of Pick. We
will prove the second claim for (T, k, C, p) = (T (i), ki, Ci, p

(i)) for all i = 0, . . . , j with
induction on i. For i = 0 this is trivial. Now assume the claim is true for i = i′ and
assume s is a cherry picking sequence for T (i′+1) of weight at most ki′+1 that satisfies
Ci′+1. Then if xi′ is defined, it will be in H(T (i′)), so s′ = (xi′)|s is a cherry picking
sequence for T (i′). Because wT i′ (xi′) = ki′ − ki′+1, s′ will have weight at most ki′ . We
can write Ci′ = Cx ∪ C−x where Cx = {(a, b) : (a, b) ∈ Ci′ ∧ a = x} and C−x = Ci′ \ Cx.
Note that s satisfies Ci′+1 = C−x, so s′ = (xi′)|s also satisfies Ci′+1. Because for every
(a, b) ∈ Cx, also (a, b) ∈ T i′ , s′ also satisfies Cx, so s′ satisfies Ci′ . Now it follows from
the induction hypothesis that pi′+1|s = pi

′ |s′ is a cherry picking sequence for T ′ of weight
at most k′ and satisfying C ′.

14
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Lemma 2.11. When a cherry picking sequence of weight at most k that satisfies C
exists, CherryPicking(T, k, C) from Algorithm 1 returns a non-empty set.

Proof. Let W (k, u) be the claim that if a cherry picking sequence s of weight at most
k exists that satisfies constraint set C with n2 − |C| ≤ u, then CherryPicking(T, k, C)
will return a non-empty set. We will prove this claim with induction on k and n2 − |C|.

For the base case k = 0 if a cherry picking sequence of weight k exists we must have
that all trees are equal, so |L(T )| = 1. In this case a sequence is returned on line 7.

Note that we can never have a constraint set C with |C| > n2 because C ⊆ L(T )2.
Therefore W (k,−1) is true for all k.

Now suppose W (k, n2− |C|) is true for all cases where 0 ≤ k < kb and all cases where
k = kb and n2 − |C| ≤ u. We consider the case where a cherry picking sequence s of
weight at most k = kb+1 exists for T that satisfies C and n2− |C| ≤ u+1. Lemma 2.8
implies that k − P (C) ≥ 0, so the condition of the if-statement on line 2 will not be
satisfied.

From Lemma 2.10 it follows that a CPS s′ of weight at most k′ exists for T ′ that satisfies
C ′. From the way the Pick works it follows that either k′ < k or n2 − C ′ = n2 − C.
If |L(T ′) = 1 then {()} is returned and we have proven W (kb + 1, u + 1) to be true for
this case. Because s′ satisfies C ′, we know that π1(C) ⊆ L(T ′). We know there is an
y ∈ NT ′(s′1) with (s′1, y) /∈ C ′, because otherwise s′1 would be picked by Pick. Also s′
satisfies C ′∪{(s′1, y)}, which implies that k ≥ P (C ′∪{(s′1, y)}) > P (C ′), so the condition
of the if-statement on line 10 will not be satisfied.

Note that we have (s′1, x) ∈ G(T ′, C ′), wT ′(s′1) > 0 and s′1 /∈ π2(C ′).
This implies that either the body of the if-statement on line 15 or the body of the

else-if-statement on line 18 will be executed.
Suppose the former is true. By Observation 2.3 we know that s satisfies C ′ ∪ {(x, y)}

or C ′∪{(y, x)}. Because (x, y) ∈ G(T ′, C ′) we know |C ′∪{x, y}| = |C ′∪{y, x}| = |C ′|+1
and therefore n2− |C ′ ∪{x, y}| = n2− |C ′ ∪{y, x}| ≤ u. So by our induction hypothesis
we know that at least one of the two subcalls will return a sequence, so the main call to
the function will also return a sequence.

If instead the body of the else-if-statement on line line 18 is executed we know by
Observation 2.2 that at least one of the constraint sets C ′

1 = C∪{(a, x)}, C ′
2 = C∪{(b, x)}

and C ′
3 = C ∪{(x, a), (x, b)} is satisfied by s. Note that |C ′

3| ≥ |C ′
2| = |C ′

1| ≥ |C ′|+1, so
n2 − |C ′

3| ≤ n2 − |C ′
2| = n2 − |C ′

1| ≤ u. By the induction hypothesis it now follows that
at least one of the three subcalls will return a sequence, so the main call to the function
will also return a sequence. So for both cases we have proven W (kb + 1, u + 1) to be
true.

Lemma 2.12. Every element in the set returned by CherryPicking(T, k, C) from
Algorithm 1 is a cherry picking sequence for T of weight at most k that satisfies C.

Proof. Consider a certain call to CherryPicking(T, k, C). Assume that the lemma holds
for all subcalls to CherryPicking. We claim that during the execution every element
that is in R is a partial cherry picking sequence for T ′ of weight at most k′ that satisfies
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C ′. This is true because R starts as an empty set, so the claim is still true at that
point. At each point in the function where sequences are added to R, these sequences
are elements returned by CherryPicking(T ′, k′, C ′′) with C ′ ⊆ C ′′. By our assumption
we know that all of these elements are cherry picking sequences for T ′ of weight at
most k′ and satisfy C ′′. The latter implies that every elements also satisfies C ′ because
C ′ ⊆ C ′′. The procedure now return {p|r : r ∈ R} and from Lemma 2.10 it follows
that all elements of this set are cherry picking sequences for T of weight at most k and
satisfying C.

2.2 Runtime analysis
The following lemmas are needed for the runtime analysis of the algorithm.

Lemma 2.13. For a and b on line 19 it holds that a /∈ π1(C ′).

Proof. Suppose a ∈ π1(C ′). Then (a, z) ∈ C ′ for some z ∈ NT ′(x). If wT ′(a) > 0 then a
satisfies the conditions in the if-statement on line 15, so line 19 would not be executed.
If wT ′(a) = 0 then we must have |NT ′(a) \ {a}| = 1, so NT ′(a) \ {a} = {x}, which
implies that z = x. But (a, x) /∈ C ′ because (x, a) ∈ G(T ′, C ′), which contradicts that
(a, z) ∈ C ′. So a /∈ π1(C ′). Because of symmetry, the same argument holds for b.

Lemma 2.14. Let (s, T ′, k′, C ′) = Pick(T, k, C) from Algorithm 1. Then k′ − P (C ′) ≤
k − P (C).

Proof. We will prove with induction that for the variables ki and Ci defined in the
function body, we have ki − P (Ci) ≤ k − P (C) for all i, from which the result follows.
Note that for i = 0 this is trivial. Now suppose the inequality holds for i. Then we also
have

ki+1 − P (Ci+1) = (ki − wT (i)(xi))− (P (Ci)− (wT (i)(xi) + 1) · ψ − (1− 2ψ))

= ki − P (Ci)− (wT (i)(xi)− 1)(1− ψ)
≤ ki − P (Ci)
≤ k − P (C)

Lemma 2.15. CherryPicking from Algorithm 1 has a time complexity of O(5k · knm).

Proof. The non-recursive part of CherryPicking(T ,k,C) can be implemented to run in
O(n ·m) time where n is the number of leaves and m is the number of trees. Let f(n,m)
be an upper bound for its computation time with f(n,m) = O(n ·m). Let the runtime
of CherryPicking(T ,k,C) be t(n, k, C). We will prove this with induction on k − P (C)
that

t(n, k, C) ≤ 5k−P (C)+1f(n,m).
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For −1 ≤ k − P (C) ≤ 0 the claim follows from the fact that the function will return on
either line 3 or line 11 and therefore will not do any recursive calls.

Now assume the claim holds for −1 ≤ k − P (C) ≤ w. Now consider an instance with
k − P (C) ≤ w + ψ. Note that k′ − P (C ′) ≤ k − P (C) (Lemma 2.14). If the function
CherryPicking does any recursive calls then it either executes the body of the if-clause
on line 15, or the body of the else-if clause on line 18.

If the former is true then the function does 2 recursive calls. Each recursive call
CherryPicking(T ′, k′, C ′′) is done with a constraint set C ′′ for which |C ′′| = |C ′| + 1.
Therefore for both subproblems P (C ′′) ≥ P (C ′)+ψ and also k′−P (C ′′) ≤ k′−P (C ′)−
ψ ≤ k − P (C) − ψ ≤ w. By our induction hypothesis the running time of each of
the subcalls is now bounded by 5k

′−P (C′′)+1(k′ − P (C ′′) + 1)f(n). So therefore the total
running time of this call is bounded by

2 · 5k′−P (C′′)−ψ+1(k − 1)f(n,m) + f(n,m) ≤ 2 · 5k−P (C)−ψ+1(k − 1)f(n,m) + f(n,m)

= 5ψ5k−P (C)−ψ+1(k − 1)f(n,m) + f(n,m)

= 5k−P (C)+1(k − 1)f(n,m) + f(n,m) ≤ 5k−P (C)+1kf(n,m).

So in this case we have proven the claim for −1 ≤ k − P (C) ≤ w + ψ.
If instead the body of the else-if statement on line 18 is executed then 3 recursive

subcalls are made. Consider the first subcall CherryPicking(T ′, k′, C ′). We have C ′′ =
C ′∪{(a, x)}. Because (x, a) ∈ G(T,C) we have (a, x) /∈ C. Therefore |C ′′| = |C ′|+1. By
Lemma 2.13 we know that a /∈ π1(C ′), but we have a ∈ π1(C ′), so |π1(C ′′)| = |π1(C ′)|+1.
Therefore P (C ′′) = P (C ′)+1−ψ, so k′−P (C ′′) = k′−P (C ′)−1+ψ < k−P (C)−ψ ≤ w.
By our induction hypothesis we now know that the running time of this subcall is
bounded by

5k
′−P (C′)+ψ(k − 1)f(n,m) ≤ 5k−P (C)+ψ(k − 1)f(n,m).

Note that by symmetry the same holds for the second subcall.
For the third subcall CherryPicking(T ′, k′, C ′′) we know that P (C ′′) = P (C ′)+1. So

its running time is bounded by

5k−P (C)(k − 1)f(n,m).

So the total running time of this call is bounded by

2 · 5k−P (C)+ψ(k − 1)f(n) + 5k−P (C)f(n,m) + f(n,m)

= (2 · 5ψ + 1)5k−P (C)(k − 1)f(n,m) + f(n,m)

= 5 · 5k−P (C)(k − 1)f(n,m) + f(n,m) = 5k−P (C)+1(k − 1)f(n,m) + f(n,m)

≤ 5k−P (C)+1k · f(n,m)

So also for this case we have proven the claim for k − P (C) ≤ w + ψ.

Theorem 2.16. CherryPicking(T, k, C) from Algorithm 1 returns a cherry picking
sequence of weight at most k that satisfies C if and only if such a sequence exists. The
algorithm terminates in O(5k · poly(n,m)) time.
Proof. This follows directly from Lemma 2.12, Lemma 2.11 and Lemma 2.15.
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3 Constructing non-temporal tree-child networks from binary
trees

For every set of trees there exists a tree-child network that displays the trees. However
there are sets of trees for which no temporal network displaying the trees exist, so we
can not always find such a network. As shown in Fig. 4, approximately 5 percent of the
instances used in [9] do not admit a temporal solution.

Algorithm 1 can be used to decide whether a temporal solution exists by running it
with k = k = n− 1. However, from the outcome of running the algorithm with a lower
value of k it can sometimes also be deduced that no temporal solution exists for any k,
as stated in the following lemma.

Lemma 3.1. When for a call CherryPicking(T , C, k′) with k < ∞ the subcalls
(including the subcalls made by subcalls and so forth) returns an empty set on line 3 or
line 11, then no temporal solution exists.

Proof. By the correctness of Algorithm 1 we know that no temporal network N with
ht(N ) ≤ k′ exists. The only places in the algorithm where k is used are in the if-
conditions leading with line 3 and line 11. If the algorithm is called with k = n − 1,
none of these conditions will ever be true. Therefore, if the algorithm is called with
k = k′ ≤ n − 1, but the conditions still never become true, the program executes in
exactly the same way for k = k′ as for k = n − 1 and therefore the return value is also
equal. This implies that running CherryPicking(T , C, n − 1) yields no solution and
therefore no temporal solution exists.

In this section we introduce theory that makes it possible to quantify how close a
network is to being temporal. We can then pose the problem of finding the ‘most’
temporal network that displays a set of trees.

Definition 3.2. For a tree-child network with vertices V we call a function t : V → R+

a semi-temporal labeling if:

1. For every tree arc (u, v) we have t(u) < t(v).

2. For every hybridization vertex v we have t(v) = min{t(u) : (u, v) ∈ E}.

Note that network has a semi-temporal labeling.

Definition 3.3. For a tree-child network N with a semi-temporal labeling t, define
d(N , t) to be number of hybridization arcs (u, v) with t(u) 6= t(v). We call these arcs
non-temporal arcs.

Definition 3.4. For a tree-child network N define

d(N ) = min{d(N , t) : t is a semi-temporal labeling of N}

Call this number the temporal distance of N . Note that this number is finite for every
network, because there always exist semi-temporal labelings.
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Figure 4: The difference between the tree-child reticulation number and the temporal
reticulation number on the dataset generated in [9]. If no temporal network
exists, the instance is shown under ‘Not temporal’. Instances for which it could
not be decided if they were temporal within 10 minutes (2.6% of the instances),
are excluded.
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The temporal distance is a way to quantify how close a network is to being temporal.
The networks with temporal distance zero are the temporal networks. We can now state
a more general version of the decision problem.

Semi-temporal hybridization
Instance: A set of trees T and integers k, p.
Question: Does there exist a tree-child network N with r(N ) ≤ k and d(N ) ≤ p?

There are other, possibly more biologically meaningful ways to define such a temporal
distance. The reason for defining the temporal distance in this particular way is that
an algorithm for solving the corresponding decision problem exists. For further research
it could be interesting to explore if other definitions of temporal distance are more
useful and whether the corresponding decision problems could be solved using similar
techniques.

Van Iersel et al. presented an algorithm to solve the following decision problem in
O((8k)k ·m) time.

Tree-child hybridization
Instance: A set of trees T and integers k.
Question: Does there exist a tree-child network N with r(N ) ≤ k?

Notice that for p = k Semi-temporal hybridization is equivalent to Tree-child
hybridization and for p = 0 it is equivalent to Temporal hybridization. The
algorithm for Tree-child hybridization uses a characterization by Linz and Semple
[8] using tree-child sequences, that we will describe in the next section. We describe a new
algorithm that can be used to decide Semi-temporal hybridization. This algorithm
is a combination of the algorithms for Tree-child hybridization and Temporal
hybridization.

3.1 Tree-child sequences
First we will define the generalized cherry picking sequence (generalized CPS), which is
called a cherry picking sequence in [9]. We call it generalized cherry picking sequence
because it is a generalization of the cherry picking sequence we defined in Definition 1.4.

Definition 3.5. A partial generalized CPS on X is a sequence

s = ((x1, y1), . . . , (xr, yr), (xr+1,−), . . . , (xt,−))

with {x1, x2, . . . , xs, y1, . . . , yr} ⊆ X. A generalized CPS is full if t > r and
{x1, . . . , xt} = X.

For a tree T on X ′ ⊆ X the sequence s defines a sequence of trees (T (0), . . . , T (r)) as
follows:

• T (0) = T .
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• If (xj , yj) ∈ T (j−1), then T (j) = T (j−1) \ {xj}. Otherwise T (j) = T (j−1).

We will refer to T (r) as T (s), the tree obtained by applying sequence s to T .
A full generalized CPS on X is a generalized CPS for a set T of trees if for each T ∈ T

the tree T (s) contains just one leaf and that leaf is in {xr+1, . . . , xt}. The weight of a
sequence s for a set of trees on X is defined as wT (s) = |s| − |X|.

A generalized CPS is a tree-child sequence if |s| ≤ r + 1 and yj 6= xi for all
1 ≤ i < j ≤ |s|. If for such a tree-child sequence |s| = r, then s is also called a
tree-child sequence prefix.

It has been proven that a tree-child network displaying a set of trees T with r(N ) = k
exists if and only if a tree-child sequence s with w(s) = k exists. The network can be
efficiently computed from the corresponding sequence. The algorithm presented by Van
Iersel et al. works by searching for such a sequence.

We will show that it is possible to combine their algorithm with the algorithm
presented in Section 3. This yields an algorithm that decides Semi-temporal
hybridization in O(5k(8k)p · k · n ·m) time.

Definition 3.6. Let s = ((x1, y1), . . . , (xt,−)) be a full generalized CPS. An element
(xi, yi) is a non-temporal element when there are j, k ∈ [t] with i < j < k ≤ t and
xj 6= xi and xk = xi.

Definition 3.7. For a sequence s we define d(s) to be the number of non-temporal
elements in s.

Lemma 3.8. Let s be a full tree-child sequence s for T . Then there exists a network N
with semi-temporal labeling t such that r(N ) ≤ wT (s) and d(N , t) ≤ d(s).

Proof. This can be proven by constructing a tree-child network from the tree-child
sequence as described in [8, Proof of Theorem 2.2]. We will show that a semi-temporal
labeling satisfying our constraints exists for the resulting network. We will write

s = (x1, y1), . . . , (xr, yr), (xr+1,−)

Now we merge all consecutive elements (xi, yi), (xi+1, yi+1), . . . , (xi+j , yi+j) for which
xi = xi+1 = · · · = xi+j into one element (xi, {yi, yi+1, . . . , yi+j}) and call the resulting
sequence s′. Call an element of this sequence temporal if all corresponding elements in s
are temporal. Call it non-temporal if all corresponding elements in s are non-temporal.
Observe that it can not happen that some of the corresponding elements are temporal
while some are non-temporal.

1. Let Nr+1 be the network consisting of root ρ, vertex xr+1 and edge (ρ, xr+1). Set
i := r. Set t(ρ) := 0 and t(xr+1) := 1.

2. If i = 0, contract all edges with in- and out-degree 1 in N1 and return the resulting
network together with t1.

3. Set ti := ti+1.
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4. For the element s′i = (x, Y ) do the following:
a) If s′i is a non-temporal element then x ∈ L(Ni+1). In this case let Ni be the

network obtained from Ni+1 by subdividing (py, y) for all y ∈ Y with a new
vertex vy and adding the edge (vy, px).

b) Otherwise s′i is a temporal element and x /∈ L(Ni+1). In this case let Ni be
the network obtained from Ni+1 by adding vertex x, vertex px, edge (px, x),
subdividing edge (py, y) by vertex vy and adding edge (vy, px) for all y ∈ Y .
Set ti(px) := −∞.

5. Set τ = max{maxy∈Y ti(py), ti(px) − 1}. For all y ∈ Y set ti(vy) := τ + 1 and
ti(y) := τ + 2. If s′i is a temporal element set ti(x) := τ + 1 and ti(px) := τ + 1.

6. Decrease i by one. Go to step 2.

Note that the construction of the network is equivalent to the one described in [8, Proof
of Theorem 2.2], where it is also proven that the resulting network is a tree-child network
that is fully reduced by s. The only thing we have to prove is that t is a semi-temporal
labeling of N with d(N , t) ≤ d(s).

We will prove with induction on i that ti is a semi-temporal labeling for Ni. For Nn

it is clear that this is true. Consider an arbitrary edge (u, v) in Ni. If the edge was also
in Ni+1, then ti+1(u) = ti(u) and ti+1(v) = ti(v), so the edge satisfies the conditions for
being semi-temporal.

Now we will go through all newly introduced edges in Ni and show that they satisfy
the conditions for being semi-temporal.

• In Item 4a edges (py, vy), (vy, y), (vy, px) for all y ∈ Y and (wx, px) and (px, x) are
created. From step 5 it follows that ti(vy) = τ+1 > ti(py), that p(y) = τ+2 > τ+1
and that t(px) ≤ τ + 1 = t(vy). We also have ti(wx) < ti(x) = ti(px) and
ti(px) = ti(x). Therefore all of the created edges are semi-temporal.

• In Item 4b edges (py, vy), (vy, y), and (vy, px) are created for all y ∈ Y and (px, x)
is created. Because ti(vy) = τ + 1 > ti(py) and ti(y) = τ + 2 > τ + 1 = ti(vy) the
first two edges are semi-temporal. Because in this case s′i is a temporal element
ti(x) := τ + 1 will be set in step 5. Consequently ti(vy) = τ + 1 = ti(x), so (vy, x)
is also semi-temporal.

Note that the only place where non-temporal reticulation edges can be introduced is
in Item 4a in the creation of edges (vy, px) for all y ∈ Y . This only happens for non-
temporal items s′i and for each of this item at most |Y | non-temporal reticulation edges
are created, so d(Ni, ti) ≤ d(Ni+1, ti+1)+ |Y |. Because a non-temporal element (x, Y ) in
s′ corresponds to |Y | non-temporal elements in s, this implies that d(N , t) ≤ d(s).

Lemma 3.9. For a tree-child network N there exists a full tree-child sequence s with
d(s) ≤ d(N ) and wT (s) ≤ r(N ).
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Proof. We provide a way of constructing a tree-child sequence s from a tree-child network
N with semi-temporal labeling t such that d(s) = d(N ). We do this by modifying the
proof from [8, Lemma 3.4]. Let ρ denote the root of N and let v1, . . . , vr denote the
reticulations in the network. Let `ρ, `1, . . . , `r denote the leaves at the end of the paths
Pρ, P1, . . . , Pr starting at v1, . . . , vr respectively and consisting of only tree arcs.

We will call a set {x, y} with parents px and py in a given network a cherry if px = py.
We will call it a reticulated cherry if px and py are joined by a reticulation edge (py, px).
In this case we call x the reticulation leaf of the cherry. We call such a reticulated cherry
temporal if t(py) = t(px), otherwise we call it non-temporal´.

Start off with an empty sequence σ0. Set N0 := N and i := 1.

1. If Ni−1 consists of a single vertex x then set σi := σi−1|((x,−)) and return σi.

2. If there is a cherry {x, y} in Ni−1, then
a) If one of {x, y}, say x, is an element of {`1, . . . , `r} and vj is not a reticulation

in Ni−1 set xi := x and yi := y.
b) Otherwise let {xi, yi} := {x, y} such that xi /∈ {`p, `1, . . . , `r}.
c) Set σi = ((xi, yi))|σi−1. Let Ni be the tree-child network obtained from Ni−1

by deleting xi.
d) Go to step 5.

3. Else, if there is a non-temporal cherry {x, y} in Ni−1 with x the reticulation leaf
then set σi = σi−1|((xi, yi)). Let Ni be the tree-child network obtained from Ni−1

by deleting the edge (yi, xi) and suppressing vertices of both in-degree and out-
degree one.

4. Else, there has to be a temporal cherry {x, y} in Ni−1 with x the reticulation leaf.
Let q1, . . . , qt be the set of leaves that x is in a reticulation cherry with in Ni−1.
Set σi = σi−1|((x, q1), . . . , (x, qt)). Let Ni be the tree-child network obtained from
Ni−1 by deleting vertex x and suppressing vertices of both in-degree and out-degree
one.

5. Increase i and go to step 1.

The proof that this yields a full tree-child sequence s for N with wT (s) ≤ r(N ) can be
found in [8, Lemma 3.4], so we will omit it here. Note that non-temporal elements can
only be added to s in step 3 and each time this happens a non-temporal arc is removed
from the network. Consequently the resulting tree-child sequence can not contain more
non-temporal elements than the number of non-temporal arcs in N . It follows that
d(s) ≤ d(N ).

Observation 3.10. A tree-child sequence s can not contain both (a, b) and (b, a).

Observation 3.11. If a tree-child sequence s has a subsequence s′ that is a generalized
cherry picking sequence for T , then s is also a generalized cherry picking sequence for
T .
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Lemma 3.12. If s = ((x1, y1), . . . , (xr+1,−)) is a generalized CPS for T and there is a z
such that yi 6= z for all i. Then (T \ {z})(s) = T (s) and therefore s is also a generalized
CPS for T \ {z}.

Proof. Suppose this is not true. Because T (S) consists of a tree with only one leaf
xr+1, this implies that L((T \ {z})(s)) 6⊆ L(T (s)). Let i be the smallest i for which
L((T \ {z})((x1, y1), . . . , (xi, yi))) 6⊆ L(T ((x1, y1), . . . , (xi, yi)) \ {z}).

This implies that xi ∈ L((T \ {z})((x1, y1), . . . , (xi, yi))) but xi /∈
L(T ((x1, y1), . . . , (xi, yi)) \ {z}), so (xi, yi) /∈ (T \ {z})((x1, y1), . . . , (xi−1, yi−1)),
but (xi, yi) ∈ T ((x1, y1), . . . , (xi−1, yi−1)) \ {z}. Let p be the lowest vertex that is an
ancestor of both xi and yi in the tree (T \ {z})((x1, y1), . . . , (xi−1, yi−1)). Because xi
and yi do not form a cherry in this tree, there is another leaf q that is reachable from
p. Because q ∈ L(T ((x1, y1), . . . , (xi−1, yi−1)) \ {z}), q is also reachable from the lowest
common ancestor p′ in T ((x1, y1), . . . , (xi−1, yi−1)) \ {z}, contradicting the fact that
(xi, yi) is a cherry in this tree.

3.2 Constraint sets
The new algorithm also uses constraint sets. However, because the algorithm searches
for a generalized cherry picking sequence, we need to define what it means for such a
sequence to satisfy a constraint set.

Definition 3.13. A generalized cherry picking sequence s = ((x1, y1), . . . , (xk, yk))
satisfies constraint set C if for every (a, b) ∈ C there is an i with (xi, yi) = (a, b) and
there is some j 6= i with xj = a.

In Definition 1.1 the function H(T ) was defined for sets of binary trees with the same
leaves. After applying a tree-child sequence not all trees will necessarily have the same
leaves. Because of this, we generalize the definition of H(T ) to sets of binary trees.

Definition 3.14. For a set of binary trees T define H(T ) = {x ∈ L(T ) : ∀T ∈ T if x ∈
T then x is in a cherry in T }.

Lemma 3.15. If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T and
(a, b) ∈ T , then there is an i such that (xi, yi) = (a, b) or (xi, yi) = (b, a).

Proof. Let T ∈ T be a tree in T containing cherry (a, b). Because s fully reduces T ,
T (s) consists of only the leaf xr+1. So a or b has to be removed from T by applying s.
Without loss of generality we can assume a is removed first. This can only happen if
there is an i with (xi, yi) = (a, b).

Now we prove that if there are two cherries (a, z) and (b, z) in T , then we can branch
on three possible additions to the constraint set, just like we did for cherry picking
sequences.
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Lemma 3.16. Let s be a tree-child sequence for T and a, b ∈ NT (z) with a 6= b. Then
s satisfies one of the following constraint sets:
{(a, z)}, {(b, z)}, {(z, a), (z, b)}.

Proof. From Lemma 3.15 it follows that either (a, z) or (z, a) is in s and that either
(b, z) or (z, b) is in s. Now let si = (xi, yi) be the element of these that appears first in
s. Now we have three cases:

1. If xi = a, then si = (a, z). Let T ∈ T be the tree in which (b, z) is a cherry.
Now (b, z) ∈ T (s1, . . . , si). Because (si+1, . . . , sr+1) is a tree-child sequence for
T (s1, . . . , si), this implies that there is some j > i with xj = a. Consequently
{(a, z)} is a constraint set for s.

2. If xi = b, then the same argument as in (1) can be applied to show that {(b, z)} is
a constraint set for s.

3. If xi = z, then we either have yi = a or yi = b. Without loss of generality we can
assume yi = a. We still have (b, z) ∈ T (s1, . . . , si), which implies that there is some
j > i with (xj , yj) = (b, z) or (xj , yj) = (z, b). Because j > i and s is tree-child,
we know that yj 6= z. So (xj , yj) = (z, b), and consequently {(z, a), (z, b)} is a
constraint set for s.

We also prove that if a ∈ π1(C) and (a, b) ∈ T , then we only need to do two recursive
calls.

Lemma 3.17. Let s be a tree-child sequence for T that satisfies constraint set C and
a, b ∈ NT (z) with (z, b) ∈ C. Then s satisfies one of the following constraint sets:
{(a, z)}, {(z, a)}.

Proof. From Lemma 3.16 it follows that s satisfies one of the constraint sets {(a, z)},
{(b, z)} and {(z, a), (z, b)}. However, because s satisfies C and (z, b) ∈ C, from
Observation 3.10 it follows that (b, z) does not appear in s. Therefore s has to
satisfy either {(a, z)} or {(z, a), (z, b)}. If s satisfies {(z, a), (z, b)}, then it also satisfies
{(z, a)}.

Lemma 3.18. If a tree-child sequence s = ((x1, y1), . . . , (xr, xy), (xr+1,−)) for T
satisfies constraint set C, then wT (s) ≥ P (C).

Proof. For z ∈ L(T ) \ {xr+1}, let Cz := {(a, b) : (a, b) ∈ C ∧ a = z} and let
Sz := {(xi, yi) : i ≤ r ∧ xi = z}. We show that we have |Sz| − 1 ≥ P (Cx). If |Cz| = 0,
then P (Cz) = 0 and the inequality is trivial. If |Cz| = 1, then from the definition
of constraint sets it follows that |Sz| ≥ 2, so |Sz| − 1 ≥ 1 ≥ P (Cz). Otherwise if
|Cz| ≥ 2, then because Cz ⊆ Sz, |Sz| − 1 ≥ |Cz| − 1 = ψ · |Cz| − 1 + (1 − ψ)|Cz| ≥
|Cz| − 1 + 2(1 − ψ) = |Cz| + (1 − 2ψ) = P (Cz). Now the result follows because
wT (s) = |s| − |L(T )| =

∑
z∈L(T )\{xr+1}(|Sz| − 1) ≥

∑
z∈L(T )\{xr+1} P (Cz) = P (C).
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Next we prove that if a leaf z is in H(T ) and appears in s with all of its neighbors,
then we can move all elements containing z to the start of the sequence.

Lemma 3.19. If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T , z ∈ H(T )
and I is a set of indices such that {yi : i ∈ I} = NT (z) and xi = z for all i ∈ I. Then
the sequence s′ obtained by first adding the elements from s with an index in I and then
adding elements (x, y) of s for which x 6= z is a tree-child sequence for T . We have
d(s′) ≤ d(s).

Proof. We can write s′ = ((x′1, y
′
1), . . . , (xr+1,−)) = sa|sb where sa consists of the

elements {si : i ∈ I} and sb is s with the elements at indices in I removed.First we
prove that s′ is a tree-child sequence. Suppose that s′ is not a tree-child sequence. Then
there are i, j with i < j such that x′i = y′j . Note that we can not have that y′j = z,
because of how we constructed s′. This implies that both indices i and j are in sb,
implying that sb is not tree-child. But because sb is a subsequence of s this implies that
s is not tree-child, which contradicts the conditions from the lemma. So s′ is tree-child.

We now prove that s′ fully reduces T . Because T (sa) = T \ {z} from Lemma 3.12 it
follows that sa|s is a generalized CPS for T . Because z /∈ L(T (sa)), T (sa|s) = T (sa|sb).
So s′ is a generalized CPS for T .

Finally since for every non-temporal element in s′ the corresponding element in s is
also non-temporal. We conclude that d(s′) ≤ d(s).

3.3 Trivial cherries
We will call a pair (a, b) a trivial cherry if there is a T ∈ T with a ∈ L(T ) and for
every tree T ∈ T that contains a, we have (a, b) ∈ T . They are called trivial cherries
because they can be picked without limiting the possibilities for the rest of the sequence,
as stated in the following lemma.

Lemma 3.20. If s = ((x1, y1), . . . , (xr+1,−)) is a tree-child sequence for T of minimum
length and (a, b) is a trivial cherry in T , then there is an i such that (xi, yi) = (a, b)
or (xi, yi) = (b, a). Also, there exists a tree-child sequence s′ for T with |s| = |s′|,
d(s′) = d(s) and s′1 = (a, b).

Proof. This follows from Lemma 3.19.

Lemma 3.21 (Correctness of Pick). Suppose Pick(T ′, k′, C ′) in Section 3.3 returns
(T, k, C, p). Then a tree-child sequence s of weight at most k for T that satisfies C exists
if and only if a tree-child sequence s′ of weight at most k′ for T ′ that satisfies C ′ exists.
In this case p|s is a tree-child sequence for T ′ of weight at most k′ and satisfying C ′.

The proof for this lemma is the same as for Lemma 2.10, but uses Lemma 3.19 instead
of Lemma 2.5. The following lemma was proven in [9, Lemma 11].

Lemma 3.22. Let sa|sb be a tree-child sequence for T with weight k. If T (sa) contains
no trivial cherries, then the number of unique cherries is at most 4k.
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Algorithm 2
procedure Pick(T ′, k′, C ′)

(T (1), k1, C1)← (T ′, k′, C ′)
p(1) ← ()
i← 1
while ∃xi ∈ H(T (i)) : (wT (i)(xi) = 0 ∨ {(xi, n) : n ∈ NT (i)(xi)} ⊆ Ci) ∧ (∀y ∈

NT (i)∀T ∈ T : y ∈ T ) do
(n1, . . . , nt)← NT (xi)
p(i+1) ← p(i)|((xi, n1), . . . , (xi, nt))
ki+1 ← ki − wT (i)(xi)
T (i+1) ← T (i)

Ci+1 ← {c ∈ Ci : x /∈ {c1, c2}}
i← i+ 1

end while
return T (i), ki, Ci, pi

end procedure

Lemma 3.23. If ((x1, y1), . . . , (x2, y2), (xr+1,−), , (xt,−)) is a full tree child-sequence of
minimal length for T satisfying C and H(T )\π2(C) = ∅, then (x1, y1) is a non-temporal
element.

Proof. First observe that x1 /∈ π2(C) because the sequence satisfies C. Suppose (x1, y1)
is a temporal element. This implies that there is an i such that for all j < i we have
xj = x1 and xk 6= x1 for all k ≥ i. This implies that for every T ∈ T there is a j < i
such that x1 is not in T ((xj , yj)). Consequently (xj , yj) is a cherry in T . Because this
holds for every tree T ∈ T we must have H(T ) \ π2(C), contradicting the assumption
that H(T ) \ π2(C) = ∅.

3.4 The algorithm
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Algorithm 3
1: procedure SemiTemporalCherryPicking(T, k, k?, p, C)
2: if k − P (C) < 0 then
3: return ∅
4: end if
5: T ′, k′, C ′, f ←Pick(T, k, C)
6: if |L(T ′)| = 1 then
7: return {f}
8: else if k′ − P (C ′) ≤ 0 ∨ π1(C ′) * L(T ′) then
9: return ∅

10: end if
11:
12: R← ∅
13: if ∃(x, y) ∈ T : wT (x) > 0 ∧ x ∈ π1(C ′) then
14: R← R∪ SemiTemporalCherryPicking(T ′, k′, k?, p, C ′ ∪ {(x, y)})
15: R← R∪ SemiTemporalCherryPicking(T ′, k′, k?, p, C ′ ∪ {(y, x)})
16: else if ∃(x, a) ∈ G(T ′, C ′) : wT ′(x) > 0 ∧ x /∈ π2(C ′) then
17: Choose b 6= a such that (x, b) ∈ G(T ′, C ′)
18: R← R∪ SemiTemporalCherryPicking(T ′, k′, k?, p, C ′ ∪ {(a, x)})
19: R← R∪ SemiTemporalCherryPicking(T ′, k′, k?, p, C ′ ∪ {(b, x)})
20: R← R∪ SemiTemporalCherryPicking(T ′, k′, k?, p, C ′ ∪ {(x, a), (x, b)})
21: else if p > 0 then
22: P ← {(x, y) ∈ T ′ : y ∈ T ′ ∀T ′ ∈ T ′ ∧ x /∈ π2(C)}
23: if |P | > 8k? then
24: return ∅
25: end if
26: for (x, y) ∈ P do
27: C ′′ ← C \ {(x, y)}
28: if |{(x, z) ∈ C}| = 1 then
29: C ′′ ← C ′′ \ {(x, z) ∈ C}
30: end if
31: R ← R ∪ {(x, y)|r : r ∈ SemiTemporalCherryPicking(T ′((x, y)),

k′ − 1, k?, p− 1, C ′′)}.
32: end for
33: end if
34: return {f |r : r ∈ R}
35: end procedure
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Lemma 3.24. Let s? be a tree-child sequence prefix, T ? a set of trees with the same leaves
and define T := T ?(s). Suppose k, p ∈ N and C ∈ L(T )2. When a generalized cherry
picking sequence s exists that satisfies C and such that s?|s is a tree-child sequence for
T ? with wT ?(s?|s) ≤ k? and d(s) ≤ p exists, SemiTemporalCherryPicking(T, k, k?, p, C)
from Algorithm 3 returns a non-empty set.

Proof. Let W (k, u) be the claim that if a tree-child sequence s for T of weight at most
k exists that satisfies constraint set C with n2 − |C| ≤ u and d(s) ≤ p, such that s?|s is
a tree-child sequence of weight at most k?, then the algorithm will return a non-empty
set. We will prove this claim with induction on k and n2 − |C|.

For the base case k = 0, if a generalized cherry picking sequence of weight k exists
we must have that all cherries in T are trivial cherries. Therefore |L(T ′)| = 1, and a
non-empty set is returned.

Note that we can never have a constraint set C with |C| > n because C ⊆ L(T )2.
Therefore W (k,−1) is true for all k.

Now suppose W (k, n2− |C|) is true for all cases where 0 ≤ k < kb and all cases where
k = kb and n2 − |C| ≤ u. We consider the case where a sequence s with d(s) ≤ p of
weight at most k = kb + 1 exists for T that satisfies C and n2 − |C| ≤ ub + 1 such
that s?|s is a tree-child sequence for T ? with wT ?(s?|s) ≤ k?. Now we will prove that a
non-empty set is returned by the algorithm. .

Lemma 3.18 implies that k − P (C) ≥ 0, so the if-statement on line 2 will not be
satisfied. From Lemma 3.21 it follows that a tree-child cherry picking sequence s′ for
T ′ of weight at most k′ exists for T ′ that satisfies C ′. From the way the Pick works it
follows that either k′ < k or n2 − C ′ = n2 − C. If |L(T ′)| = 1 then {()} is returned and
we have proven W (kb + 1, u+ 1) to be true for this case. Otherwise s′ is not empty, so
k′ − P (C ′) ≥ wT (s

′) > 0. Because s′ satisfies C ′, π1(C ′) ⊆ L(T ′). So the condition on
line 8 is not satisfied.

Now we are left with three cases:

1. If there is a pair (x, y) ∈ G(T ′, C ′) with wT (x) > 0 ∧ x ∈ π1(C
′), then from

Lemma 3.17 it follows that s satisfies either C ′∪{(x, y)} or C ′∪{(y, x)}. From our
induction hypothesis it now follows that either SemiTemporalCherryPicking(T ′,
k′, p, C ′ ∪ {(x, y)}) or SemiTemporalCherryPicking(T ′, k′, p, C ′ ∪ {(y, x)}) will
return a non-empty set. Therefore R will not be empty, so a non-empty set will
be returned.

2. Otherwise, if there is a pair (x, a) ∈ G(T ′, C ′) with wT ′(x) > 0 ∧ x /∈ π2(C
′),

there is a b 6= a with (x, b) ∈ G(T ′, C ′), for the same reasons as in Lemma 2.9 for
the temporal case. Now from Lemma 3.16 it follows that s satisfies C ′ ∪ {(a, x)},
C ′ ∪ {(b, x)} or C ′ ∪ {(x, a), (x, b)}. From our induction hypothesis it now follows
that the corresponding subcall will return a non-empty set. Therefore R will not
be empty, so a non-empty set will be returned.

3. Because the conditions in both the if and the else-if statement are not satisfied
it follows that H(T ) \ π1(C) is empty. Now from Lemma 3.23 it follows that s1
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has to be a non-temporal element. Now observe that for s′1 = (x, y) we must
have x /∈ π2(C), because otherwise s′ has to contains some element (z, x), but
such an element can not appear after an element (x, y), because the sequence
is a tree-child sequence. Also y has to be in all trees in T , because otherwise
s contains an element (y, z), which contradicts the assumption that s|s′ is tree-
child. So now we have shown that s′1 ∈ P . Each element of P is a cherry in T .
Lemma 3.22 implies that there are at most 4k? unique cherries in T . Therefore it
follows that |P | ≤ 8k?. Because s′1 ∈ P , there R is not empty because the result
of SemiTemporalCherryPicking(T ′(s′1), k

′ − 1, p − 1, C ′′) is added to R, which by
our induction hypothesis is a non-empty set.

Lemma 3.25. Let s? be a tree-child sequence prefix, T ? a set of trees with the same
leaves and define T := T ?(s). Suppose k, p ∈ N and C ∈ L(T )2. If a call to
function SemiTemporalCherryPicking(T, k, k?, p, C) returns S, then for every s ∈ S,
the sequence s′ = s?|s is a tree-child sequence for T ? with d(s) ≤ p and w(s) ≤ k.

Proof. Consider a certain call to SemiTemporalCherryPicking(T, k, k?, p, C). Assume
that the lemma holds for all subcalls to SemiTemporalCherryPicking. We claim that
during the execution for every element s ∈ R the sequence s′ = s?|s is a tree-child
sequence for T ? with d(s) ≤ p and w(s) ≤ k. Because R starts as an empty set, so the
claim is still true at that point. For every element added to R at line

At each point in the function where sequences are added to R, these sequences are
elements returned by SemiTemporalCherryPicking(T ′, k′, k?, p′, C ′) for some C ′ and
some p′. By our assumption we know that every element r of this set is a tree-child
sequence for T ′ with w(s) ≤ k′ and d(s) ≤ p′. The procedure now returns {f |r : r ∈ R}
and from Lemma 3.21 it follows that every element f |r of this set is a tree-child sequences
for T with w(s) ≤ k and d(s) ≤ p. Because T = T ?(s?), s?|s is a tree-child sequence for
T? for all s ∈ R

Lemma 3.26. Algorithm 3 has a running time of O(5k · (8k?)p · k · n ·m).

Proof. This can be proven by combining the proofs from Lemma 2.15 and [9, Lemma
11].

Theorem 3.27. SemiTemporalCherryPicking(T, k, k, p, ∅) from Algorithm 1 returns a
cherry picking sequence of weight at most kif and only if such a sequence exists. The
algorithm terminates in O(5k · (8k)p · k · n ·m) time.

Proof. This follows directly from Lemma 2.12, Lemma 2.11 and Lemma 2.15.
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4 Constructing temporal networks from two non-binary trees
The algorithms described in the previous sections only work when all input trees are
binary. In this section we introduce the first algorithm for constructing a minimum
temporal hybridization number for a set of two non-binary input trees. The algorithm
is based on [14] and has time complexity O(6kk! · n2).

We say that a binary tree T ′ is a refinement of a non-binary tree T when T can
be obtained from T ′ by contracting some of the edges. Now we say that a network N
displays a non-binary tree T if there exists a binary refinement T ′ of T such that both N
displays T ′. Now the hybridization number ht(T ) can be defined for a set of non-binary
trees T like in the binary case.

Definition 4.1. A set S ⊆ NT (x) is a neighbor cover for x in T if S ∩ NT (x) 6= ∅ for
all T ∈ T .

Definition 4.2. For a set of non-binary trees T , define wT (x) as the minimum size of
a neighbor cover of x in T minus one.

Note that computing the minimum size of a neighbor cover is a NP-hard problem
itself. However if |T | is constant the problem can be solved in polynomial time. Note
that for binary trees this definition is equivalent to the definition given in Definition 1.3.

Next Definition 1.1 is generalized to non-binary trees.

Definition 4.3. For a set of non-binary trees T on the same taxa define H(T ) = {x ∈
L(T ) : ∀T ∈ T NT (x) 6= ∅}.

The non-binary analogue of Definition 1.4 is given by the following lemma.

Definition 4.4. For a set of non-binary trees T with n = L(T ), let s = (s1, . . . , sn−1)
be a sequence of leaves. Let T0 = T and Ti = Ti−1 \ {s1, . . . , si}. The sequence s is a
cherry picking sequence if for all i, si ∈ H(T \ {s1, . . . , si−1}). Define the weight of the
sequence as wT (s) =

∑n−1
i=1 wTi−1(si).

Lemma 4.5. A temporal network N that displays a set of nonbinary trees T with
reticulation number r(N ) = k exists if and only if a cherry picking sequence of weight
at most k exists.

Proof. Note that this is a generalization of Theorem 1.6 to the case of non-binary input
trees and the proof is essentially the same. A cherry picking sequence with weight k can
be constructed from a temporal network with reticulation number k in the same way as
in the proof of Theorem 1.6.

The construction of a temporal network N from a cherry picking s is also very similar
to the binary case: for cherry picking sequence s1, . . . , st, define Nt+1 to be the network,
only consisting of a root, the only leaf of T \ {s1, . . . , st} and an edge between the two.
For each i let Si be a minimal neighbor cover of si in T \ {s1, . . . , si−1}. Now obtain
Ni from Ni+1 by adding node si, subdividing (px, x) for every x ∈ Si with node qx and
adding an edge (qx, si) and finally suppressing all nodes with in- and out-degree one. It
can be shown that r(N ) = wT (s).
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Lemma 4.6. If s is a cherry picking sequence for T and for x ∈ H(T ) we have wT (x) = 0
then there is a cherry picking sequence s′ for T with wT (s′) = wT (s) and s′1 = x.

Proof. We have NT (x) = {y}. Now let z be the element of {x, y} that appears in s
first with si = z. Now s′ = (si, s1, . . . , si−1, si+1, . . .) is a cherry picking sequence for T
with wT (s

′) = wT (s). If z = x, then this proves the lemma. Otherwise we note that
by swapping x and y in T , the trees stay the same. So we can also swap x and y in s′

without affecting the weight. Now s′ = x, which proves the lemma.

The algorithm relies on some theory from [14], that we will introduce first.
For a vertex v of T we say that all vertices reachable by v form a pendant subtree.

For a pendant subtree S we define L(S) set of the leaves of S. Now we define

Cl(T ) = {L(S) : S is a pendant subtree of T }.

We call this the set of clusters of T . Then we define Cl(T ) =
⋃

T ∈T Cl(T ). Call a cluster
C with |C| = 1 trivial. Now we call a nontrivial cluster C ∈ Cl(T ) a minimal cluster if
there is no C ′ ∈ Cl(T ) with C ′ nontrivial and C ′ ( C.

In a cherry picking sequence s we say that at index i the cherry (si, y) is reduced if
there is a T ∈ T such that NT\{s1,...,si−1}(si) = {y}.

Lemma 4.7. Let T be a set of trees with |T | = 2 such that T contains no leaf x with
wT (x) = 0. Let s be a cherry picking sequence for T . Then there is a cherry C in T
and a cherry picking sequence s′ = (s′1, . . .) for T with s′i ∈ C for i = 1, . . . , |C| − 1 and
wT (s

′) ≤ wT (s).

Proof. Let p be the first index that a cherry is reduced in s. Let (a, b) be one of the
cherries that is reduced at index p. Now there will be a cherry in T that contains both
a and b. Let C be one of the minimum clusters that is contained in this cherry. Let
x be the element of C that occurs last in s. Now let c1, . . . , ct be the elements from
C \ {x} ordered by their index in s. Now we claim that for any permutation σ of [t]
we have s′ = (cσ(1), . . . , cσ(t))|(s \ (C \ {x})) is a cherry picking sequence for T and
wT (s

′) ≤ wT (s).
Let i be the index of the last element of C \ {x} in s. Suppose that s′ is not a CPS

for T . Let j be the smallest index for which s′j /∈ H(T \ {s′1, . . . , s′j−1}).
Let T ∈ T be such that s′j is not in a cherry in T \ {s′1, . . . , s′j−1}. Choose k such that

sk = s′j . Now there are three cases:

• Suppose j > i, then k = j and {s1, . . . , sk} = {s′1, . . . , s′j}. This implies that
s′j ∈ H(T \ {s′1, . . . , s′j}), which contradicts our assumption.

• Otherwise, suppose s′j ∈ {c1, . . . , ct}. Then j ≤ t. Now sk has to be in a cherry in
T \ {s1, . . . , sk−1}. Because no cherries are reduced before index i in s this means
that s′j is in a cherry in T . Because no cherries are reduced in s′ before index t,
this implies that the same cherry is still in T \ {s′1, . . . , s′j−1}, which contradicts
our assumption.
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• Otherwise we must have j ≤ i. Because no cherries are reduced before index i in
s this means that s′j is in a cherry Q in T . If this cherry contains a leaf y with
s′w = y for w > j, then s′j is still in a cherry in T \{s′1, . . . , s′j−1}, contradicting our
assumption, so this can not be true. However, that implies that the neighbors of
sk in T \{s1, . . . , sk−1} are all elements of {c1, . . . , ct}. Let v be the second largest
number such that cv is one of these neighbors. Let q be the index of cv in s. Now
cherry Q will be reduced by s at index max(q, j) < i, which contradicts the fact
that C is contained in a cherry of T that is reduced first by s.

Now to prove that wT (s′) ≤ wT (s), we will prove that for sj = s′k we have

wT\{s1,...,sj−1}(sj) ≥ wT\{s′1,...,s′k−1}(s
′
k).

Note that for j ≥ i this is trivial, so assume j < i. If sj ∈ C \ {x}, then
wT\{s1,...,sj−1}(sj) ≥ wT (sj) because no cherries are reduced before i, which implies
that no new elements added to cherries before i. For the same reason we must have
sj ∈ H(T ). Because there are no x ∈ H(T ) with wT (x) = 0 we must have wT (sj) = 1.
So wT\{s′1,...,s′k−1}(s

′
k) ≤ wT\{s1,...,sj−1}(sj) = 1.

4.1 Bounding the number of minimal clusters
By Lemma 4.7 in the construction of a cherry picking sequence we can restrict ourselves
to only appending elements from minimal clusters. We use the following theory from
[14] to bound the number of minimal clusters.

Definition 4.8. Define the relation x
T−→ y for leaves x and y of T if every nontrivial

cluster C ∈ Cl(T ) also contains y.

Observation 4.9 ([14, Observation 2]). The relation T−→ defines a partial ordering on
L(T ).

Now call x ∈ L(T ) a terminal if there is no y 6= x with x T−→ y. Now we will first show
that all minimal clusters contain a terminal. Then a bound on the number of terminals
gives a bound on the number of minimal clusters.

Lemma 4.10. Every minimal cluster contains a terminal.

Proof. Let C be a minimal cluster of T . Let x be an element of C that is maximal in C
with respect to the partial ordering ‘ T−→’ (if we say that x T−→ y means that y is ‘greater
than or equal to’ y). Now suppose that x is not a terminal. Then there is an y such that
x

T−→ y. However then y ∈ C, but this contradicts the fact that x is a maximal element
in C with respect to ‘ T−→’. Because this is a contradiction, x has to be a terminal.

Lemma 4.11. Let T be a set of trees with ht(T ) ≥ 1 containing no zero-weight leaves.
Let N be a network that displays T . Then T contains at most 2r(N ) terminals that are
not directly below a reticulation node.
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Proof. We reformulate the proof from [14, Lemma 3]. We use the fact that for each
terminal one of the following conditions holds: the parent px of x in N is a reticulation
(condition 1) or a reticulation is reachable in a directed tree-path from the parent px of
x (condition 2). This is always true because if neither of the conditions holds, because
otherwise another leaf y is reachable from px, implying that x T−→ y, which contradicts
that x is a terminal.

Let R be the set of reticulation nodes in N and let W be the set of terminals in
T that are not directly beneath a reticulation. We describe a mapping F : W → R
such that each reticulation r is mapped to at most d−(r) times. Note that for each
x ∈ W condition 2 holds. For these elements let F (x) = y where y is a reticulation
reachable from p(x) by a tree-path. Note that there can not be a path from p(x) to
y containing only tree arcs when x 6= y are both in H(T ) because then x → y which
contradicts that x is a terminal. It follows that each reticulation r can be mapped to at
most d−(r) times: at most once incoming edge. Then for the set of terminals Ω we have
|Ω| ≤

∑
r∈R d

−(r) ≤
∑

r∈R(1 + (d−(r)− 1)) ≤ |R|+ k ≤ 2k.

Lemma 4.12. Let T be a set of nonbinary trees such that ht(T ) ≥ 1. Then any set S
of terminals in T with |S| ≥ 2ht(T ) + 1 contains at least one element x ∈ H(T ) such
that s is a cherry picking sequence for T with wT (s) = ht(T ) and s1 = x.

Proof. Let N be a temporal network that displays T such that r(N ) = ht(T ) with
corresponding cherry picking sequence s. From the Lemma 4.11 it follows that at most
r(N ) terminals exist in T that are not directly below a reticulation. So there is an x ∈ S
that is directly below a reticulation.

Now let T ′ be the set of all binary trees displayed by N . Note that s is a cherry picking
sequence for T ′. Let i be such that si = x. Because x is directly below a reticulation inN ,
we have sj /∈ NT ′(x), which implies by Lemma 2.4 that s′ = (si, s1, . . . , si−1, si+1, . . .)
is a cherry picking sequence for T ′ with wT ′(s′) = wT ′(s) = r(N ) = ht(T ). Now
wT (s

′) ≤ wT ′(s′) = ht(T ), so wT (s′) = ht(T ).

4.2 Run-time analysis
Lemma 4.13. The running time of CherryPicking(T, k) from Algorithm 4 is 6kk!·k ·n2
if T is a set consisting of two nonbinary trees.

Proof. Let f(n) be an upper bound for the running time of the non-recursive part of the
function. We claim that the maximum running time t(n, k) for running the algorithm
on trees with n leaves and parameter k is bounded by 6kk!kf(n).

For k = 0 it is clear that this claim holds. Now we will prove that it holds for any
call, by assuming that the bound holds for all subcalls.

If |S| > 2k, then the algorithm branches into 2k + 1 subcalls. The total running time
can then be bounded by

(2k + 1)t(n, k − 1) + f(n) ≤ (2k + 1)6k−1(k − 1)!(k − 1)f(n) + f(n)

≤ 6k(k)!(k)f(n).
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Algorithm 4
1: procedure CherryPicking(T, k)
2: s← ()
3: while ∃x ∈ H(T ) : wT (x) = 0 do
4: T ← T \ {x}
5: s← s|(x)
6: end while
7:
8: if |L(T )| = 1 then
9: return {s}

10: else if k = 0 then
11: return ∅
12: end if
13:
14: S ← set of terminals in T
15: if |S| > 2k then
16: S′ ←subset of S of size 2k + 1
17: for x ∈ S′ ∩H(T ) do
18: R← R ∪ {(x) | x : x ∈ CherryPicking(T \ {x}, k − 1 ) }
19: end for
20: else
21: for q ∈ S do
22: D ← set of minimum clusters that contain q
23: if ∃y, z : D = {{q, y}, {q, z}} then
24: for x ∈ {q, y, z} ∩H(T ) do
25: R← R ∪ {(y) | x : x ∈ CherryPicking(T \ {y}, k − 1)}
26: end for
27: else
28: for C ∈ D do
29: for x ∈ C : C \ {x} ⊆ H(T ) do
30: (c1, . . . , ct)← C \ {x}
31: R ← R ∪ {(c1, . . . , ct) | x : x ∈ CherryPicking(T \
{c1, . . . , ct}, k − t)}

32: end for
33: end for
34: end if
35: end for
36: end if
37: return {s|x : x ∈ R}
38: end procedure
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If the condition of the if-statement on line 23 is true, then for that q the functions
does 3 subcalls with k reduced by one. So the recursive part of the total running time
for this q is bounded by

3T (k − 1) ≤ 6k−1(k − 1)!(k − 1)f(n) = 3k2k−1(k − 1)!(k − 1)f(n).

If the condition on line 23 holds then there is at most one d ∈ D with |d| ≤ 2. Using
this information we can bound the total running time of the subcalls that are done for
q in the else clause by∑

d∈D
|d|t(k − |d|+ 1) ≤

∑
d∈D
|d|6k−|d|+1(k − |d|+ 1)!(k − |d|+ 1)f(n)

≤
∑
d∈D
|d|6k−|d|+1(k − |d|+ 1)!(k − |d|+ 1)f(n)

≤ (k − 1)!(k − 1)f(n)
∑
d∈D
|d|6k−|d|+1 (1)

≤ (k − 1)!(k − 1)f(n)(2 · 6k−1 + 3 · 6k−2) (2)
= (k − 1)!(k − 1)f(n)2k−1(9 · 3k−2)

= (k − 1)!(k − 1)f(n)2k−13k. (3)

Note that (2) follows from the fact that x 7→ x6k−x+1 is a decreasing function
for x ∈ [1,∞). So for each q the running time of the subcalls is bounded by
(k − 1)!(k − 1)f(n)2k−13k. Now the total running time is bounded by

f(n) + (k − 1)!(k − 1)f(n)2k−13k|S| (4)
≤ f(n) + (k − 1)!(k − 1)f(n)2k−13k2k (5)
≤ f(n) + k!(k − 1)f(n)6k (6)
≤ 6kk!kf(n) (7)

Because the non-recursive part of the function can be implemented to run in O(n2) time
the total running time of the function is O(6kk! · k · n2).

Lemma 4.14. Let T be a set of non-binary trees. If ht(T ) ≤ k, then
CherryPicking(T, k) from Algorithm 4 returns a cherry picking sequence for T of weight
at most k.

Proof. First we will prove with induction on k that if ht(T ) ≤ k then a sequence is
returned.

For k = 0 it is true because if ht(T ) = 0, as long as L(T ) > 1 then |H(T )| > 0 and
all elements of H(T ) will have zero weight, so they are removed on line 4. After that
L(T ) = 1 so an empty sequence will be returned, which proves that the claim is true for
k = 0.
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Now assume that the claim holds for for k < k′ and assume that ht(T ) ≤ k′. Now
we will prove that a sequence is returned by CherryPicking(T, k) in this case. After
removing an element x with weight zero on line 4 we still have ht(T ) ≤ k′ (Lemma 4.6).
If |L(T )| = 1, an empty sequence is returned. If this is not the case then 0 < ht(T ) ≤ k,
so the else if is not executed.

If |S| > 2k then from Lemma 4.12 it follows that for S′ ⊆ S with |S′| = 2k + 1 there
is at least one x ∈ S′ such that ht(T \ {x}) ≤ k′− 1. Now from the induction hypothesis
it follows that CherryPicking(T \ {x}, k′) returns at least one sequence, which implies
that R is not empty. Because of that the main call will return at least one sequence,
which proves that the claim holds for k = k′.

The only thing left to prove is that every returned sequence is a cherry picking sequence
for T . This follows from the fact that only elements from H(T ) are appended to s and
that R consists of cherry picking sequences for T \ {s1, . . . , st}.

5 Experimental results
We developed implementations of Algorithm 1, Algorithm 4 and Algorithm 3 [15]. To
analyse the performance of the algorithms we made use of dataset generated in [9] for
experiments with an algorithm for construction of tree-child networks with a minimal
hybridization number.

5.1 Algorithm 1
In Fig. 5 the running time of Algorithm 1 on the dataset from [9] is shown. The results
are consistent with the bound on the running time that was proven in Section 2. Also,
the algorithm is able to compute solutions for relatively high values of k, indicating that
the algorithm performs well in practice.

The authors of [9] also provide an implementation of their algorithm for tree-child
algorithms. The implementation contains several optimizations to improve the running
time. One of them is an operation called cluster reduction [16]. The implementation
is also multi-threaded. In Fig. 6 we provide a comparison of the running times of the
tree-child algorithm with Algorithm 1. In this comparison we let both implementations
use a single thread, because our implementation of the algorithm for computing the
hybridization number does not support multithreading. The implementation could
however be modified to solve different subproblems in different threads which will
probably also result in a significant speed-up. In Algorithm 1 we see that the difference
in time complexity between the O((8k)k) algorithm and the O(5k) algorithm is also
observable in practice.

5.2 Algorithm 4
We used the software from [9] to generate random binary problem instances and
afterwards randomly contracted edges in the trees to obtain non-binary problem
instances. We used this dataset to test the running time of Algorithm 4. The results are
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Figure 5: The running time of Algorithm 1 on problem shown relative to the
corresponding temporal hybridization number. A timeout of 10 minutes was
used. Instances for which the algorithm timed out are shown in red at the
value of k where they timed out. On the log scale the exponential relation
is clearly visible. However fitting an exponential function on the data yields
a O(2.5k) function for temporal hybridization number k, while the worst-case
bound that we proved is O(5k).
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Figure 6: Difference between the running time of Algorithm 1 and the algorithm for
tree-child networks from [9].

39



Sander Borst

0 2 4 6 8 10
Temporal hybridization number

10 3

10 2

10 1

100

101

102

103

Ru
nn

in
g 

tim
e 

(s
) (

lo
g)

O(6k k! )
Experimental result

Figure 7: Running time of Algorithm 4 on a generated set of instances consisting of trees
with average out-degree 2.5 relative to the temporal hybridization number. A
timeout of 10 minutes was used.

shown in Fig. 7. We see that the algorithm is usable in practice and has a reasonable
running time.

5.3 Algorithm 3
Algorithm 3 was tested on all non-temporal instances in the dataset from [9]. In Fig. 8
the running time of Algorithm 3 is compared to that of the algorithm from [9]. The
data seems shows that the algorithm from [9] is often faster than Algorithm 3. This
suggests that Algorithm 3 is mostly of theoretical value and is not very useful in practice.
However, it should be noted that we only tested the algorithms it on a relatively small
dataset.
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Figure 8: Difference between the running time of Algorithm 3 and the algorithm for
constructing tree-child networks from [9] on all non-temporal instances in the
dataset from [9].
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6 Conclusions and further research directions
Algorithm 1, the algorithm for constructing minimum temporal hybridization networks,
has a significantly better running time than the algorithms that were known before. The
results from the implementation show that the algorithm also works well in practice.
However this implementation could still be improved, for example by making use of
parallelization.

While we also present an algorithm that finds optimal temporal networks for nonbinary
trees, the running time of this algorithm is significantly worse and, moreover, it only
works for pairs of trees. An open question is whether this could be improved to a
running time of O(ck · poly(n)) for some c ∈ R, perhaps using techniques similar to
our approach for binary trees. Another important open problem is whether Temporal
Hybridization is FPT for a set of more than two non-binary input trees.

In Section 3 a metric is provided to quantify how close a hybridization network is to
being temporal. However, other, possibly more biologically meaningful, metrics could
also be used for this purpose. An open problem is whether an FPT algorithm exists that
solves the decision problem associated with these metrics.
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