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Abstract

With rapid development of digital devices with wireless services, communication networks play
a significant role in our daily lives. The explosive data demand makes it urgent to extend the
capacity of the existing networks. Cognitive Radio (CR), which can sense and use the frequency
band dynamically, can provide an efficient radio frequency usage. IEEE 802.22 working group
has developed several standards based on CR technology leading to Wireless Regional Area
Networks (WRANs). However, WRANs adopt the cellular topology in which all communica-
tion is in a point-to-multi-point (P2M) manner. This P2M communication limits the network
capacity because all messages need to be routed by the Base Station (BS) even for intra-cell
communication. Therefore, Device-to-Device (D2D) WRAN (D2DWRAN) has been proposed,
which employs D2D communication into the WRAN.

A burst allocation is the allocation of resources for wireless communication to the users, and
influences the network capacity significantly. With D2D communication, the burst allocation
problem in D2DWRAN is different from it in WRAN. This thesis attempts to solve this new
burst allocation problem. After introducing the progression from WRAN to D2DWRAN, the
new burst allocation problem is stated and formulated mathematically in different scenarios.
Then the existing optimization methods are studied and evaluated, such as Greedy Algorithm,
Simulated Annealing Algorithm, Genetic Algorithm and Ant Colony Algorithm. Some modi-
fications based on these algorithms are also proposed to solve the burst allocation problem in
D2DWRAN. These modified algorithms are also simulated and the advantages and disadvan-
tages of each of them are discussed and analysed.
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Chapter 1

Introduction

In this chapter, the background of IEEE 802.22 and D2DWRAN will be introduced in detail.
Further, the research about problem of this project and the structure of this thesis will be
persented.

1.1 Background

1.1.1 IEEE 802.22

In recent years, digital devices with wireless services become extremely popular. The strategy
to deal with proliferation of wireless service is still the topic of today’s digital communication.
Not only traditional communication network, such as Wi-Fi, mobile communication devices,
and TV broadcast, nearly all electrical equipment need the network. In a home network, all
devices are connected and share information. Thus, the capacity of network become critical.
The unlicensed bands (e.g., industrial, scientific and medical (ISM) and Unlicensed National
Information Infrastructure (U-NII)) play an important role in wireless communications since
the deployment of applications in these bands is unused [1]. Under this situation, the regu-
latory bodies start to consider opening the licensed bands for unlicensed use. At the same
time, it has been proved that the occupancy of spectrum in license bands is highly underuti-
lized [2]. Therefore, Cognitive Radio (CR) is taken into consideration to increase the channels
utilization [3].

CR is a radio that can be programmed and configured dynamically. It can detect available
channels in wireless spectrum automatically, and then adapt its parameters to allow more
wireless communications in a given spectrum band at one location. According to this technology,
the spectrum can be used more flexibly and efficiently [4].

With all these facts, the TV band Notice of Proposed Rule Making (NPRM) was issued by
the U.S. Federal Communications Commission (FCC) in May 2004 [5]. The NPRM proposes to
allow unlicensed parties to use the TV broadcast bands if no harmful interference is caused to
incumbent services. This proposal can be accomplished by employing CR-based technologies.
IEEE 802.22 has been started to work on the usage of TV channels in a CR manner.

IEEE 802.22 proposes Wireless Regional Area Network (WRAN). It can use the same spec-
trum currently utilized by TV service [6]. The key technology-CR- allows users the standard
to use the unused spectrum which is called TV White Spaces (TVWSs) [7] in TV bands on a
non-interfering basis. The TV bands are from 54 to 862 MHz [8].
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1.1.2 Structure of WRAN

Topology

WRANs network establishes a point-to-multipoint topology with one base station (BS) and
multiple customer premise equipment (CPEs) in a cell. The BS controls the whole cellular
network and makes the decision which channels are available and what information should be
broadcasted. CPEs have an omni-directional antenna for sensing and Geo-location information,
and a directional antenna for communication with BS [9].

CPE A

CPE B

CPE C

BS

Figure 1.1: WRAN standard cell.

In IEEE 802.22 network, both the BS and CPEs sense the spectrum in quiet period of a
superframe, and the information is sent to the BS. Only the BS can decide the usage of channels
via a classification mechanism [7]. Figure 1.1 shows a simple standard WRAN cell. In each
time slot, only one communication can happen in the same cell. So if CPE A wants to send
data to CPE B, there are four steps:

Step 1 CPE A sends a channel request to the BS.

Step 2 The BS allocates slots in upstream subframe and receives the message that CPE A sends
to CPE B.

Step 3 BS allocates slots for the messages from CPE A in downstream subframe and sends the
message to CPE B.

Each step needs one time slot, so the whole procedure requires at least three time slots to
complete. The two key characteristic of standard WRAN network are shown up in this example.

• Direct connection between two CPEs in the same cell are not allowed. All the connections
needs to be linked to the BS.

• Very limited connections can be established because the BS can only deal with one con-
nection in order to avoid interference.

However, this kind of network can limit the performance on channel capacity and channel
usage.
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Superframe Structure

Table I is the list of important concepts and terms regarding the channel allocation problem in
this thesis [10]. We will use these terms to explain the superframe structure of WRAN and the
research problem of channel allocation in this thesis.

In IEEE 802.22 network, orthogonal frequency-division multiple access (OFDMA) is used to
make multiple CPEs able to access to the BS simultaneously in a cell. So a superframe structure
and OFDMA is shown in Figure 1.2 [8]. A superframe contains 16 frames. A frame contains
downstream (DS) subframe and an upstream (US) subframe. The channel is divided both in
frequency domain and time domain. For convenience, one symbol in the channel can be called
an OFDMA slot or a slot for short. The DS MAP and US MAP carry the burst allocation infor-
mation. The upstream channel descriptor (UCD) and downstream channel descriptor (DCD)
provide the channel information.

Superframe n-1 Superframe n Superframe n+1

Frame 0 Frame 1 Frame 15
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Frame
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Figure 1.2: The superframe structure and OFDMA system in 802.22 [8].

Burst allocation

Burst allocation is significant for the BS. Using appropriate burst allocation mechanism, the
capacity of channel can be enhanced greatly. So, it is one of the most important functions to
evaluate the performance of the channel.
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Some similar burst allocation mechanisms are discussed in [11]. There are two main patterns:
row by row and rectangle shapes. In this thesis, we employ, row by row arrangement as priority
is given to the capacity of the channel which utilises all the slots. Another constraint is that
for every 7 slots, a pilot carrier is inserted [9]. In order to decrease the latency for CPEs, the
downstream bursts are allocated over the frequency domain (vertically) while upstream burst
is spread over the time domain (horizontal) to manage the instantaneous transmit power of
CPEs [8][9].

Some disadvantages can been seen in the topology and communication in WRAN, which are
listed:

1 All packets from CPEs have to be sent to BS, which leads to more delay and intra-cell traffic.

2 Because of the broadcast of BS, only one CPE can be allocated in one slot in the frame.

3 The subchannels can only be operated simultaneously when they are adjacent.

4 Multi-input multi-output is not supported currently [9].

5 Continuously sensing the available channels requires scheduled Quiet Periods [7].

6 Multiple channels scenario needs to consider the channel bonding [12].

Because of the drawback, an enhancement of OFDMA structure and some advanced channel
allocation algorithms are studied in [13][12],which is called Device-to-Device WRAN (D2DWRAN),
which is introduced in the following section.

1.1.3 D2DWRAN

Device-to-Device (D2D) communication is a technology component for Long Term Evolution-
Advanced (LTE-A) [14][15]. In D2D communication, CPEs transmit packages to each other over
a direct link instead of transmitting through the BS unlike the former construction. D2D users
communicate directly while being controlled by the BS. Therefore, the potential of improving
spectral utilization has been brought out in recent years, which shows that D2D can enhance
the communicating system performances by reusing channels. As a result, D2D is expected
to be a significant feature supported by the next generation cellular networks. D2DWRAN is
based on this technology and can extend it to WRAN field.

Topology

In D2DWRAN, multiple CPEs can communicate with other CPEs at the same time. Figure 1.3,
shows an example of D2DWRAN. When CPE A wants to communicate with CPE B, it only
needs to send request through BS like standard structure. When the connection is established,
there is no need to continue involving the BS in the connection. There are also three steps:

Step 1 CPE A sends the connecting request to the BS.

Step 2 The BS sends this request to CPE B.

Step 3 CPE B receives the request, schedules the slots and sends back the response. The
connection directly between CPE A and CPE B is set up.

4



CPE A

CPE B

CPE C

BS

Figure 1.3: Structure of D2DWRAN.

The steps are the same as in the Standard structure except that the advantage is that in this
process, the BS only participates in the first step. After establishing the connection, the BS
can jump out to proceed to other request instead of transmitting the message. If CPE C wants
to communicate with CPE D, these two connections could be carried out simultaneously once
the network finds that there is no interference between these two connections. There are three
main proposals in D2DWRAN?”

• Direct connection can be established between CPEs.

• Multiple channels can be allocated in one time slot.

• One channel can be reallocated in the same time slot.

According to the advantage above, the efficiency and capacity of channel can be improved
better than the standard structure.

Superframe Structure

With the new proposals in D2DWRAN, the original structure of superframe is not suitable any
more. However, the DS subframe is still the same because it is used for broadcasting by BS and
there is no need to change it. The big change is in the US subframe for D2D communication.
Furthermore, because the channel can be reused by multiple D2D links, the slots in US subframe
can be shared by different traffic simultaneously. The new structure for the US subframe of
D2DWRAN is introduced in [10] and shown in Figure 1.4.

The constraints during in the burst allocations are:

1 A burst allocation should contain at least 7 symbols as well [9].

2 Slots that are allocated in the same burst to one CPE should be adjacent so that the US
MAP can use less information to describe a burst.

It is proved that D2DWRAN can achieve higher channel capacity and efficiency than WRAN [8][10].
We discuss the burst allocation problem further to give a whole picture of this problem.
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Figure 1.4: The US subframe in D2DWRANs [10].

1.2 Problem and Motivation

It has been shown that D2DWRAN can provide better performance with respect to the capacity
of channels than WRAN in [10] with a brief algorithm from burst allocation in D2DWRAN.
But this is only the beginning. More potentials of D2DWRAN still need to be studied. This
thesis focuses on how to enhance the performance of D2DWRAN in solving the burst allocation
problem with new ways.

On the other hand, there are optimization methods regarding this problem such as Simulated
Annealing, genetic algorithm, Tabu Search. Hence, in this thesis, we focus on one adapting
existing optimization algorithms to solve the burst allocation problem in D2DWRAN. Thus, we
first list and analyze the existing optimization methods, then several optimization methods have
been chosen and adapted into the problem. In order to find out the performance of different
algorithms, we have simulated these algorithms and the analysis of the results are presented.

Through this project, the traditional optimization methods are studied, and are applied into
a practical problem.

1.3 Thesis Overview

In Chapter 2, we first give a detailed introduction to the burst allocation problem in D2DWRAN.
Then this problem is formulated into a NP-hard problem. In [16], it has been approved that
the practical NP-hard problem could be solved, but in here the problem cannot fulfil the that
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situation. In order to simplify this problem, the problem is considered in two different scenar-
ios: with unlimited subchannels and with limited subchannels in Section 2.2. The details of
these two scenarios are discussed separately in Chapter 3 and Chapter 4. In Section 2.3, the
detailed mathematical formulation of the problems are presented. In Section 2.4,the existing
optimization methods are listed and analyzed.

In Chapter 3, the implementation of the existing methods into this problem are studied with
unlimited subchannels. According to the analysis in Chapter 2, we choose Greedy Algorithm,
Tabu Search, Simulated Annealing, Genetic Algorithm and Ant Colony Algorithm to solve the
burst allocation problem in D2DWRAN. These methods have been simulated with different
parameters and the performance of these methods are also compared and analyzed.

In Chapter 4, the implementation of the existing methods are studied with limited subchannel.
There are five mechanisms to change unlimited subchannels into limited subchannels in the
problem, which are abandoning rule, cutting first 60 subchannels, cut last 60 subchannels, cut
random 60 subchannels and selective choosing methods. We have simulated these mechanisms
with different optimization methods. We present and analyze the results at the end of this
chapter.

We conclude this thesis in Chapter 6. Some future works are also discussed to draw a complete
picture of the burst allocation problem in D2DWRAN.

7



Table 1.1: Explanations and concepts regarding the channel allocation in this thesis. [10]

Terms Description In 802.22

Subchannel The smallest allocation unit in
the frequency domain of the
system, it is constructed with
group of subcarriers

One subchannel contains 28
subcarriers.

Channel A TV channel that contains
multiple subchannels.

TV channels with a band-
width of 6,7,or 8 MHz. One
channel contains 60 subchan-
nels.

Symbol The smallest allocation unit in
the time domain of the sys-
tem.

There are 26 to 42 symbols in
a frame.

Slot The smallest allocation unit
in the system. It constructs
symbols an subchannel.

60×26 to 60×42 slots in a
frame.

CPE request Information about the num-
ber of slots the CPE need to
communicate either to CPE
or BS.

CPEs send their requests to
the BS.

Burst A group slots that are allo-
cated to certain communica-
tion.

A burst on a subchannel has
to cross at least 7 symbols.

Burst allocation Allocating slots to different
connection according to their
requests.

The BS manages the burst al-
location vertically in the DS
subframe and horizontally in
the US subframe.

Link A transceiver pair with a CPE
and the BS or two CPEs.

Direct CPE-CPE links are not
supported.

Slot (re)use It means a state that the slot
is allocated to one link (use)
or multiple links (reuse).

Slot reuse times The number of links that use a
certain slot simultaneously in
a frame.

Maximally one link can be al-
located to a slot.

DS Downstream. Directions of
the data flow are from the BS
to CPEs.

US Upstream. Directions of the
data flow are from CPEs to
the BS or between two CPEs.

Only the links that from
CPEs to the BS are sup-
ported.

8



Chapter 2

D2D Resource Allocation

In this chapter, the main topic of this thesis is proposed - resource allocation in D2DWRAN.
We first analyze the existing studies regarding this problem in the literature, then in Section
2.2, a simplified problem for resource allocation of D2DWRAN is introduced. This simplified
problem is formulated in Section 2.3.

2.1 OFDMA Resource Allocation

In D2DWRAN, Orthogonal Frequency Division Multiple Access (OFDMA) is employed. It is
a technique based on Orthogonal Frequency-Division Multiplexing (OFDM) with multi-user
version by assigning subsets of subcarriers to individual users. However, in order to support
D2D communication, the OFDMA system and resource allocation problem in D2DWRAN is
different from the OFDMA systems [13]. In this section, related work on resource allocation
of OFDMA systems in the literature and the resource allocation problem in D2DWRAN are
compared and analyzed.

2.1.1 Related Work on Burst Allocation

As introduced in Chapter1, burst allocation is one of the important functions in D2DWRAN.
Burst allocation in OFDMA is also an important way to enhance its performance. There are
some existing studies of burst allocation in OFDMA systems.

There are two subproblems here: the downlink burst allocation and uplink burst allocation.

In the downlink of OFDMA, there are two main dynamic resource allocations:

The first allocation problem is Margin Adaptive (MA), which tries to achieve the minimum
overall transmit power with certain data rate. This problem was first studied in [17], and it is a
convex minimization problem. A Multiuser Adaptive OFDM (MAO) scheme is proposed, which
can get the Lagrangian of the problems by Vector Space Methods [18].There are drawbacks in
this approach such as low sensitivity to channel estimation errors. Then an improvement by
using blockwise subcarrier allocation algorithm is proposed in [19][20].

The other allocation problem is Rate Adaptive (RA), which maximizes the users’ data rate
with a constrained transmit power which is formulated in [21]. A cross-layer optimization is
investigated, and algorithms are developed for Dynamic Subcarrier Allocation (DSA), Adap-
tive Power Allocation (APA) [22][23]. A combination of greedy algorithm and water-filling
algorithm, which formulates the problem by maximizing the total throughput differently, is
proposed in [24][25]. A bandwidth optimization algorithm is proposed to find the best number
and set of subscribers [26] .

In uplink process of OFDMA, resource allocation can be divided into three parts[27].
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1. Centralized single cell scheduling which the BS is responsible for the scheduling process.
In this part, greedy algorithm is proposed and improved [28][29]. A combination of water-
filling for the user on unallocated subcarriers to get optimal allocation [30]. These algorithms
are suboptimal. Ergodic resource allocation was investigated [31]. This scheduling introduces a
Ergodic which can weight the sum-rate maximization and determine the capacity region [32][33].
It is also enhanced by some other works, e.g., the problem is divided into a convex utility
maximization problem in [34][35] and Lagrangian parameters are computed in [36].

The second type is distributed base stations scheduling. This type can be divided into two dif-
ferent categories: scheduling with distributed base stations (DBSs) and scheduling with mobile
user participation.

DBS approach is proposed to increase the coverage and capacity of wireless networks [37]. It
can enhance both scenarios when a single cell with distributed antennas or a single cell with one
central antenna. But the simultaneous transmission in the downlink reduces the performance
of this approach [38]. An optimal solution to this problem is by selecting only the best channel
to the user is proposed in [39][40].

The distributed uplink scheduling scheme for OFDMA with the collaboration of mobile users
is proposed in [41].Channel state information (CSI) are exchanged between users to complete
the collaboration. Further, distributed uplink scheduling to the OFDMA system without user
cooperation is considered [42]. In order to be fair, the system changes from the scenario that
users with high priorities have privilege to a random access transmission. Aloha is one of the first
algorithms for random access without user cooperation [43][44]. Based on it, some extensions
have been proposed from then on, such as slotted Aloha to make the packets transmissions more
regular to reduced collisions [45][46][47] and reservation Aloha to further reduce the collision
[48][49][50].

The third one is scheduling in multiple cell scenarios. In this type of problems, the burst
allocation within multiple cells is considered together [27]. Static reuse schemes are based on
Fractional Frequency Reuse (FFR) where a cell is divided into an inner area [51]. Because we
do not discuss further with multiple cell scenarios, this part is left for further research.

2.1.2 Burst Allocation in D2DWRAN

The OFDMA system in D2DWRAN is developed based on the OFDMA system in WRAN.
In general, the DS subframe in the OFDMA system of WRAN supports the broadcast from
BS to CPEs, and the US subframe is used for communications from CPEs to BS. The DS
subframe in D2DWRAN is the same as WRAN. However, the US subframe in D2DWRAN
is more complicated in order to support CPE to CPE communication. Hence, the associated
burst allocation problem in the US subframe of D2DWRAN is different. There are two main
differences in the burst allocation of US subframe of D2DWRAN compared to WRAN:

• Because multiple links can be allocated in the same slots, the interference between these
links should be avoided.

• Because of the reuse of slots, it is no longer important to minimize the number of waste
slots, which is the main goal in the OFDMA of WRAN. Instead, the burst allocation in
the US subframe of D2DWRAN should try to maximize the average reuse times of slots.

Analysis and solutions for this new burst allocation problem are discussed in [10]. The main
goal of the problem is to maximize the capacity of the network and there are five constraints:

1 A link request should be only allocated in one burst.
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2 The slots allocated in the same CPEs should be adjacent. In DS subframe, US MAP is used
to record the positions of all burst allocations. All slots allocated to the same burst should
be adjacent so that it only needs four elements to describe one burst.

3 The allocation to a burst on one subchannel should contain at least 7 slots.

4 Algorithms applied should be simple, because a burst allocation decision needs to be made
in each frame every 10 ms.

5 It is possible to take other QoS parameters into consideration.

Constraints 1 and 2 guarantee the efficiency of US MAP. Otherwise, if slots allocated to the
same burst can be spread into the subchannels separately, the US MAP need much more than
4 elements to describe one burst, and the slots would be underutilized in the DS subframe.

Constraints 3 and 4 are the limitations in terms of the structure and procedure of the net-
work [8]. Constraint 5 indicates other possible QoS requirements in different scenarios.

In order to keep the US MAP small and also have some flexibility during allocation, we
need to consider the shape of a burst before the allocation. We discussed the above constraint
regarding the shape of a burst more in detail as follows:

1 The slots occupied by the same burst should be adjacent in one subchannel.

2 Burst can occupy several subchannels, which also should be adjacent.

3 Only top or bottom subchannel in one burst can have some space for other bursts. In other
words, all subchannels that are allocated to a burst should be fully occupied except the
top or bottom subchannel, which is called as an extra subchannel in this thesis. With this
assumption, bursts allocation first spreads in the time domain, then in the frequency domain.

4 The minimum length of the burst in one subchannel is 7.

5 The connections which are interfered with each other cannot have overlap slots.

The first three constraints are used to reduce the size of the US MAP. Figure 2.1 is an example
of a burst, in which five parameters are needed to indicate the position of one burst. These
parameters are the starting subchannel, number of subchannels that are occupied, an indicator
to identify whether the extra channel is on top or bottom of a burst, the staring slots on the
extra channel, and the number of slots on the extra channel.

Figure 2.1: Burst allocated in the subframe
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2.2 Two Steps to Solve the Problem

The burst allocation problem in the US subframe is a NP-hard problem [52]. To simplify this
problem, we solve this problem in two steps:

Step 1. We first assume there would be infinite number of subchannels in the US subframe for
allocation. With this assumption, all the requests can be allocated. Therefore, the goal
of the problem is to find the minimum number of required subchannels. Note that this
model also can correspond to the multiple channels situation in D2DWRAN, but it is
not in the scope of this thesis. We mainly discuss the single channel case here.

Step 2. After getting the allocation from Step 1, limited subchannels are considered in the
problem. In this step, subchannels allocated in Step 1 are selected and an allocation
for limited subchannels will be built. The goal in this step is to maximize the number
of requests with limited number of subchannels in the US subframe.

In the following section, we discussed the mathematical models of both of these two steps.

2.3 Problem Formulation

We first define some indicators in this section, then the problems are formulated.

2.3.1 Burst Indicators

There are three main parameters to indicate the position of one burst in the US subframe.

• Number of slots the burst needs.

• The start point in the extra subchannel.

• The shape of the burst, to indicate whether the extra subchannel is on top or bottom.

In the previous model, two more parameters are introduced which can provide more details
of the burst: the start slot of the subchannel and the end slot of the subchannel. These two
parameters are ignored here because in this model, we only consider whether two interfered
requests can be allocated in the same subchannel instead of the exact positions in the US
subframe.

• Bij indicates the burst from CPE i to CPE j.

• Bl
ij indicates the number of slots that Bij contains.

• By
ij indicates the number of required subchannels of Bij .

• Bx
ij indicates the number of slots in the extra subchannel of Bij .

• B0
ij indicates the position of the extra subchannel. There are three values. 1 stands for

on bottom, -1 for on top, 0 means the burst only occupies one subchannel and there is no
extra subchannel.
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Table 2.1: An example of Ss.

B1 B2 B3 B4 B5 B6 B7 B8 B9

S1 1 0 0 0 0 1 0 1 0

S2 0 1 0 0 0 1 0 0 0

S3 0 1 0 0 1 0 0 0 0

S4 0 0 0 0 1 0 0 0 1

S5 0 0 0 1 1 0 0 0 1

S6 0 0 0 1 1 0 1 0 0

S7 0 0 1 1 1 0 1 0 0

S8 0 0 1 0 0 0 1 0 0

Table 2.2: An example of Siex.

B1 B2 B3 B4 B5 B6 B7 B8 B9

S1 27 0 0 0 0 40 0 27 0

S2 0 40 0 0 0 17 0 0 0

S3 0 14 0 0 10 0 0 0 0

S4 0 0 0 0 40 0 0 0 30

S5 0 0 0 40 40 0 0 0 40

S6 0 0 0 40 40 0 17 0 0

S7 0 0 23 7 40 0 40 0 0

S8 0 0 40 0 0 0 40 0 0

In the rest of the thesis, to make it more comprehensible, Bn (for example B1,B2) is introduced
to represent Bij . Sl indicates the length of one subchannel. Sn indicates the total number of
subchannel in the whole subframe. Ss is a table to record the allocation in subframe, in which
rows are subchannels, and columns are bursts. Ss is defined as,

Ss(n, k) =

{
1, if Bn is allocated in subchannel k,

0, otherwise.
(2.1)

Siex is an extension of Ss. It shows if burst is allocated in the subchannel and also the number
of slots that are allocated to this burst on this subchannel. Siex is defined as,

Siex(n, k) = n(0 ≤ n ≤ Sl) (2.2)

Table 2.3 and Table 2.2 are two examples of Ss and Siex respectively. In both tables, columns
indicate bursts, and rows indicate subchannels. The 1 appears in the first column and first row
in Table 2.3 means that the B1 is allocated in subchannel S1. Assuming that B1 requires 54
slots. The length of subchannels is less only 40 slots, so it needs two subchannels to be allocated.

13



Table 2.3

B1 B2 B3 B4 B5 B6 B7 B8 B9

B1 0 1 1 1 0 1 0 1 0

B2 1 0 0 1 0 1 0 0 0

B3 1 0 0 0 0 0 1 1 1

B4 1 1 0 0 1 0 0 0 1

B5 0 0 0 1 0 1 1 0 0

B6 1 1 0 0 1 0 1 0 0

B7 0 0 1 0 1 1 0 1 1

B8 1 0 1 0 0 0 1 0 0

B9 0 0 1 1 0 0 1 0 0

Therefore, S1 and S2 are assigned to B1. Then in table Ss, first two rows of first column becomes
1, which shows that first two subchannels are allocated to B1. Ss is simpler than Siex. But
when the length of Sl is more than 14 slots, there is an opportunity that even though two
connections are interfered with each other, they can be allocated into the same subchannel if
the total length of their extra subchannels is less than the length of the subchannels.
Im is an interference map to indicate whether B1 and B2 are interfered with each other when

they are allocated with the same slots. Im is defined as,

Im(1, 2) =

{
1, if B1 interferes with B2

0, otherwise.
(2.3)

The burst allocation in the US subframe of D2DWRAN can be divided into two different
cases: Sl < 14 and Sl ≥ 14. We discuss these cases separately in the following content.

Case-1(When Sl < 14)
In this case, two interfered bursts cannot be allocated in one subchannel. So the extra

subchannel can be considered as a complete subchannel and there is no need to consider the
Siex. The burst allocation can be formulated as follows:

min(
∑
k

max(Ss(n, k))) (2.4)

subject to: ∑
k

Ss(n, k) ≥ By
n, ∀n. (2.5)

∑
k

(Ss(n, k)
⊕

Ss(n, k + 1)) ≤ 2, ∀n. (2.6)

∑
m,n,k(m6=n)

Ss(m, k)Ss(n, k)Im(ij, pq) = 0. (2.7)

Eq.(2.4) indicates that when the number of the subchannels is unlimited, the one algorithm
estimates how less subchannels it requires to fill out all the requests. Eq.(2.5) indicates that
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the number of subchannels allocated to one request should be larger the its need. Eq.(2.6) is
used to constrain all the subchannels that are allocated to one request are adjacent. Eq.(2.7)
constrains if two subchannels are interfered, they can not be allocated in the same subchannel.

Case-2(When Sl ≥ 14)

This case is more complicated than the previous one. Two scenarios should be considered
between any two bursts:

Scenario 1: B1 and B2 don’t interfere with each other. Then they can be allocated in one
subchannel anyway.

Scenario 2: B1 and B2 interfere with each other. Then total number of slots in both the extra
subchannels should be considered. If the total number is less than the length of one subchannel,
then their extra subchannels can be allocated in the same subchannel. Otherwise, the extra
subchannels should be allocated to different subchannels.

According to these two scenarios, when considering three or more bursts, the situation will
be much more complicated. Therefore, Eq.(2.7) is not suitable anymore in this case. To avoid
interference as well as maximize the network capacity, a set S needs to be introduced, which
contains a series of subsets S(k,mn). The subset S(k,mn) is a maximum set contains all
the links that occupy the same subchannels and interfere with others. For example, S(k,123)
means in subchannel k, request 1, interferes with requests 2 and 3, while request 2 also interferes
with requests 1 and 3 in the same subchannels. The formulation is modified as follows:

min(
∑
k

max(Ss(n, k))) (2.8)

subject to: ∑
k

Ss(n, k) ≥ By
n, ∀n. (2.9)

∑
k

(Ss(n, k)
⊕

Ss(n, k + 1)) ≤ 2, ∀n. (2.10)

∑
n∈S

S ≤ Sl, ∀n. (2.11)

In this formulation, Eq.(2.9) and Eq.(2.10) stay the same as Eq.(2.5) and Eq.(2.6) because the
constraints are the same. The significant change is in Eq.(2.11). To fulfil the request that even
though two bursts are interfered with each other, if the total length of their extra subchannels is
less than the length of the subchannel, they can still be allocated into the same subchannel. But
actually, the problem to get all the subsets S is already a maximal independent set problem,
which is NP-hard. Therefore, we simplify this problem again with a new constraint as,∏

∀m
Ss(n, k)Ss(m, k)Im(n,m) = 1,

if Siex(n, k) +
∑
∀m,

Siex(m, k) ≤ Sl,

(∀n,m and n 6= m)

(2.12)

Note that in Eq.(2.12) once Bn interferes with link Br and another burst Bs, the total number
of the slots of Bn Br and Bs are considered no matter whether Br and Bs interfere with each
other. It can guarantee a correct final solution (no interference is caused), but maybe not the
best solution.
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The above constraints are based on the assumption that the number of subchannels is un-
limited in the US subframe, which is easy to implement in mathematical model. However, it
cannot be used in practical in which the number of subchannels is limited. So in Step 2, the goal
is to maximize the number of requests that are allocated with limited number of subchannels.
Therefore, Eq.(2.4) and Eq.(2.8) should be replaced by,

max(
∑
n

max(Ss(n, k))) (2.13)

Additionally, there would be one more constraint to limit the number of subchannels. In
Eq.2.14, Ns is the number of subchannels the can be allocated.∑

k

max(Ss(n, k)) ≤ Ns (2.14)

2.4 Methodology of Optimization

In this section, the existing optimization algorithms for the burst allocation problem in the US
subframe of D2DWRAN are listed and analysed before we try to solve the problem in Chapter
3 and Chapter 4.

2.4.1 Classic Algorithm

Divide and Conquer Algorithm

For most of the cases, the D&C yields solutions faster than brute-force method. The computing
time is based on the methods of dividing the problem. In general, it searches for the solution in
a recursive manner. However, this is not suitable for NP-hard problems because it still needs
to go through all the solutions. Therefore, the burst allocation problem cannot be solved in
polynomial time by D&C, and we do not consider it further in this thesis.

Dynamic Programming

Dynamic Programming is an enhancement of D&C Algorithm, except that most the sub-
problems to be solved should be the same. To make it effective, we need to keep polynomial
number of different sub-problems in a limited scale. In solving NP-hard problem, it does not
modify the drawbacks of D&C Algorithm. Thus, it is not suitable for the burst allocation
problem in the US subframe of D2DWRAN.

Greedy Algorithm

The Greedy Algorithm can quickly get a good solution of problems. However, it can only
be used to find the local optimal solutions instead of a global one. As a result, it cannot be
considered as a best choice of optimization.

Another problem is that while choosing the best candidate at the moment, sometimes the
Greedy Algorithm may lead to a dead end which cannot get a complete solution. In traveling
salesman problem, if there are three nodes connected to each other with shortest distances, then
the algorithm may go into this loop until other constraints are introduced.

Though not always the optimal solutions are guaranteed by the Greedy Algorithm, because
of the low computing time complexity, it can be used in the burst allocation problem in the US
subframe of D2DWRAN, which has been studied in [10].

Modification
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Backtracking is a general algorithm when searching all solutions of a problem [53]. It in-
crementally builds candidates to the solutions and abandons each partial candidate that is
impossible to appear with a valid solution.

With backtracking, the Greedy Algorithm can avoid invalid solutions. And by setting up the
backtracking parameter, it helps the Greedy Algorithm more likely to get to the global optimal
solution [54]. However, the Greedy Algorithm combined with backtracking will increase the
computation time of the method.

2.4.2 Heuristic Algorithms

Tabu Search

Tabu Search can accept the solution that is not better than the current candidate solution as a
new candidate solution, so it has the chance to jump out from the local best solution and get
the global optimal solution.

The aspiration criteria is introduced in Tabu Search to improve the efficiency of searching
for optimal solution [55]. In each iteration time, the program also checks the possible solutions
which are in the Tabu list. If some candidate solution can provide better solution than the
current best solution, it can be overridden from Tabu list.

The biggest disadvantage of Tabu Search is that the high computing complexity, which in-
creases sharply with the size of the candidate solutions. To improve the efficiency, it is possible
to combine Tabu Search with other Heuristic algorithms. For example, it can be combined with
Simulated Annealing [55] or Genetic Algorithm [56].

Tabu Search is a potential method for the burst allocation problem. But with the high
computing complexity, it is not a practical method, which will be discussed later in Chapter 3.

Simulated Annealing

The Simulated Annealing is simple and comprehensive to solve parallel processing problem [57].
It is robust. However, the convergence and time consumption could limit the efficiency of the
algorithm.

According to its ability of jump out the local optimal solution, it is able to solve most opti-
mization problems including the burst allocation problem in the US subframe of D2DWRAN.
Furthermore, some other heuristic algorithms employ Simulated Annealing to improve their per-
formances, for example the Neural networks. A series of new type of optimizations have been
generated via combination of these two methods, such as Boltzmann Machine [58][59],Gaussian
Machine [60] and Cauchy Machine [61][62]. However, because of the high complexity of Neural
network algorithm, it is not suitable for the burst allocation problem. Therefore, it is not in the
scope of this thesis, but more information can be found in [63]. In Chapter 3 and Chapter 4,
the implementation of Simulated Annealing will with discussed in detail while solving the burst
allocation problem in the US subframe of D2DWRAN.

Genetic Algorithm

There are some advantages in Genetic Algorithm. Firstly, it doesn’t need the continuity of
the objective function. It can realize global search to complex, peaky and non-linear function.
Secondly, because of its parallelism, it is suitable to process substantial computation. Thirdly,
Genetic Algorithm regards the problem by process characteristic symbols that are independent
from specific issues.

However, it cannot effectively solve problems which require the global optimal solution be-
cause it is easy to turn up premature convergence [64].
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The main difficulty exists in the implementation of Genetic Algorithm is choices of proper
control parameters and functions to avoid premature and also to improve the convergent effi-
ciency. It can be combined with other heuristic algorithms too, such as Simulated Annealing [65]
and Tabu Search [56].

Genetic Algorithm can be employed to solve the burst allocation problem in the US subframe
of D2DWRAN, which will be discussed in detail in Chapter 3 and Chapter 4 including the
choice of the initial group size and the design of all the functions.

2.4.3 Ant Colony Algorithm

The Ant Colony Algorithm was designed to find shortest path initially. However, it has become
attractive in many other scientific communities, such as combinatorial optimization [66], data
analysis [67] and global optimization of random continuous function [68]. It is mainly employed
to solve two application fields: NP-hard problems and shortest path problems. The burst
allocation problem in the US subframe of D2DWRAN can be solved by Ant Colony Algorithm,
and it will be discussed in detail in Chapter 3 and Chapter 4.

One possible difficulty of this algorithm is when they are adapted to the problems with huge
number of neighbourhood solutions, the possibility of the ants visiting the same way becomes
very small. In this case it requires lot of iterations to get a reasonable solution.

2.5 Summary

This chapter discussed the burst allocation problem in D2DWRAN including the mathematical
models and solving steps. Then two main research directions in this thesis were presented: burst
allocated with unlimited subchannels and with limited subchannels. In the following sections,
we will first analyze the existing solutions for these problems and then adapt these solutions
to these two steps. Some optimizations are chosen and analyzed. The chosen optimization is
divided into two parts. The first part are classical methods such as Dynamic Programming
and Greedy Algorithm. The other one are heuristic algorithms such as Tabu Search, Simulated
Annealing, Genetic Algorithm and Ant Colony Algorithm. Because the burst allocation problem
is NP-hard problem, we pay more attention on the heuristic algorithms which can control the
computation time and performance.
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Chapter 3

Algorithm with Unlimited
Subchannels

In this chapter, the burst allocation problem with unlimited subchannels has been studied. In
Section 3.1, the implementations of the existing algorithms for this problem are discussed, and
detailed descriptions of the algorithms are presented. In Section 3.2, the simulation results of
all algorithms under different parameters are plotted and discussed.

3.1 Algorithm Implementation

In this Section, we first build a general system model based on the mathematical model proposed
in Section 2.2. The difference between this general model and the mathematical model will also
be discussed. Then, to adapt this general model in different optimization algorithms, some
modifications are introduced to the model for each algorithm.

3.1.1 System Model

One of the basic problems during burst allocation is sequence of requests to be allocated. In
our system, we assume all requests are processed according to their priorities, i.e., the request
with high priority is considered first during the burst allocation. If this request is successfully
allocated, the next request is considered. Once a request is considered for allocation, the system
first checks whether it interfered with the existing allocated requests in current subchannel.
Each request often needs several continuous subchannels, so all these subchannels do not have
interfered situations. The check starts from the first subchannel of the US subframe. If it
shows there is interference, the system would check the next subchannel. The rest can be done
in the same manner until a non-interference burst is found for this request and allocated to
this requests, or such a burst cannot be found in this US subframe and the request would be
moved to the waiting list (only with assumption of limited subchannels). For example, when
the first request comes into the channel, the program checks the first subchannel whether there
is interference. Of course there is no burst in the subchannel right now, so the first request
is allocated starting from the first subchannel in the US subframe. Then the second request
comes into the channel. If the second request doesn’t interfere with the first request, it also
can be allocated from the first subchannel; otherwise, it needs to check whether it is possible
to be allocated from next subchannels. This process continues until there are no requests in
the waiting list. Different considering sequences of requests leads to different allocations and
further different slot reuse and network capacity. Therefore, different optimization algorithms
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may employ different considering sequence of requests, which will be discussed later in the
implementation of each algorithm.

As discussed in Chapter 2, there are two cases to be considered in the system model: the
case less than 14 slots in the US subframe and the case with greater than or equal to 14 slots in
the US subframe. In case with Sl < 14, the system doesn’t need to consider the length of extra
subchannel, because only one request can be allocated in this subchannel. While in case with
Sl ≥ 14, the program needs to calculate whether two interfered requests can be allocated in
the same subchannel. Further, the system needs to decide whether each request puts its extra
subchannel on top or on bottom.

According to differences of these two cases, the procedures of burst allocation are also different,
which are shown in Algorithm 1 and Algorithm 2. In the following sections, we adapt the

Algorithm 1 The general burst allocation procedure in Case Sl < 14.

1: if Sl < 14 then
2: for every request Bij in the queue do
3: for every subchannel k do
4: Deploy Bij starting from kth subchannel.
5: for next Bm

ij subchannels in Ss(k, ij) do
6: Examine whether it interferes with the existing request.
7: if interference is found then
8: Withdraw the deployment, try next subchannel.
9: else

10: Allocate with the deployment, exit loop and try next request.
11: end if
12: end for
13: end for
14: end for
15: end if

existing algorithms in to this general procedure and also evaluate the performance of these
algorithms, including Brute Force Algorithm, Greedy Algorithm, Simulated Annealing, Genetic
Algorithm, Tabu Search and Ant Colony Algorithm.

3.1.2 Brute Force Algorithm

Brute Force Algorithm lists all possible sequences of requests and run all the sequences. When
compared, it gives the optimal solution. The adapted algorithm of brute force in our system
model is described in Algorithm 3. In Algorithm 3, The E is the performance of candidate
solution. The Ebest is the performance of current best solution. The time complexity is n, n is
the total number of requests. Because of its high time complexity, it is not suitable for the burst
allocation problem in D2DWRANs, even though it is possible to be adapted to this problem.
Therefore, this algorithm will not be analyzed and discussed any further in this thesis.

3.1.3 Greedy Algorithm

Greedy Algorithm provides a simple method to get a good solution[54]. It queues the request
with a specific rule and gets the allocation result by only considering this queue of request.
When adapting to the burst allocation problem in the US subframe, the queueing rule can be
the interference degree of each request. The interference degree of a request is the number of
requests interfering with it when allocated with the same slot. Therefore, before allocation, all
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Algorithm 2 The general burst allocation procedure in Case Sl ≥ 14.

1: if Sl ≥ 14 then
2: for every request Sij in the queue do
3: for every subchannel k, do
4: Deploy Bij starting from kth subchannel.
5: for next Bm

ij subchannels in Ss(k, ij) do
6: Examine whether it interferes with the existing request.
7: if interference is found then
8: Examine whether its available slots is more than the request.
9: if the slots is enough then

10: Return a true result and try next subchannels.
11: else
12: Return a false result and exit the loop.
13: end if
14: end if
15: end for
16: examine the result.
17: if all return is true then
18: Allocate the deployment, exit the loops and examine next request.
19: else
20: if there exist a false result then
21: Withdraw the subchannel, and try next subchannel.
22: end if
23: end if
24: end for
25: end for
26: end if

the requests need to calculate their interference degrees based on the Interference map. The
requests with low interference degree is considered first during the allocation[69]. A description
is shown in Algorithm 4. From the above description, the greedy algorithm is much simpler than
brutal search. It only considers one queue during the allocation. However, the performance of
the results cannot be guaranteed. Since it is very efficient, we still use it to solve the burst
allocation problem and put it as a standard to evaluate the performance of other algorithms
later in this thesis.

3.1.4 Simulated Annealing

Simulated Annealing iteratively compares different solutions and chooses the better one for the
next loop. Each solution needs to compare to its neighbour solutions and the better one is
chosen. In order to jump out from local optimal solution, the temperature parameter T is
introduced, T is used to control the solution chosen. The detail of algorithm that is adapted
in the burst allocation problem is shown in Algorithm 5 when there are unlimited number of
subchannels. In the algorithm, T0 is the initial temperature and Te is the end temperature. T
starts from T0 and reduces to Te. Tdown represents the efficiency of cooling down. A parameter
E is introduced to estimate the performance of a solution, which is the total number of occupied
subchannels. Enew presents the number of subchannel current solution used, Ebest presents the
number of subchannel the best solution until now. P illustrates the possibility that whether
the current best solution Ebest can be replaced by current solution Enew. The lower T is, the
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Algorithm 3 Brute Force Algorithm when there are unlimited subchannels.

1: List all possible sequences in inserting order of request.
2: for every sequence in the list do
3: Call the general burst allocation procedure to reorder the request under new sequence.
4: Count the number of subchannels that the sequence occupies and record it to E.
5: if E < Ebest then
6: Ebest ← E.
7: Record the current sequence as the best solution.
8: end if
9: end for

Algorithm 4 Greedy Algorithm when there are unlimited subchannels.

1: Count the interference degrees of requests.
2: Sort the requests in the ascending order and call the general burst allocation procedure to

allocate them in the order of the queue.
3: Count the total number of subchannels that the requests occupied.

lower P .

3.1.5 Genetic Algorithm

Genetic Algorithm needs a group of solutions as the first generation. The adapted algorithm is
shown in Algorithm 6. The fitness function evaluates whether it is a better solution, which also
means the performance of the solution. While solving the burst allocation problem, we define
the fitness function as the square of reciprocal of the number of subchannels that the solution
occupies, it is shown as in Eq.(3.1),

EGA = 1/(NGA)2 (3.1)

EGA is the fitness function, NGA is the occupied subchannels number by one solution. So, if
one solution occupies less subchannels, it can obtain higher fitness function. Fitness value F (i)
is the percentage value compared to the highest fitness function shown as Eq.(3.2),

F (i) = EGA/EGAbest (3.2)

The program generates a random value range between 0 and 1 for each solution, if the percentage
is higher than this value, the solution is retained otherwise, it is abandoned. In this way, a
solution with high fitness value has low possibilities to be abandoned. Then the solution with
highest fitness value reproduces itself to keep the size of a generation.

There also needs over-cross function and mutation function to make variance of the generation.
In over-cross function, two solutions are picked up randomly. Then they change the number in
a random position. At the same time, the same number in the sequence needs to be changed
to make sure there is not a same number in one sequence. Through this way, two new solutions
are generated. In mutation function, if one solution is chosen, it changes its own two positions
of number and generates a new solution.

3.1.6 Tabu Search

The detailed description of the adapted Tabu Search algorithm is shown in Algorithm 7. In
Tabu Search Algorithm, the main idea is to create a Tabu list to avoid falling into a local
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Algorithm 5 Simulated Annealing when there are unlimited subchannels.

1: Set up T0 and Te.
2: Set up circle time n.
3: while T > Te do
4: for every circle i do
5: Generate a random sequence.
6: Call the general burst allocation procedure to reorder the requests with the sequence.
7: Count the number of subchannels which the sequence occupies and record it to ESAnew.

8: if ESAnew < ESAbest then
9: BSAbest ← BSAnew.

10: SSAbest ← SSAnew.
11: else
12: if P (ESA, ESAnew,K) > random(0, 1) then
13: BSAbest ← BSAnew.
14: ESAbest ← ESAnew.
15: end if
16: end if
17: end for
18: T ← T ∗ Tdown.
19: end while

optimal solution. Therefore, we assume Ta is a Tabu list array and the length of this array is
set Tal. When the algorithm starts, Ta is empty, and one solution is chosen randomly. The
solutions that have only two differences with the chosen solution are called neighbour solutions.
During each iteration, the program searches all the possible neighbour solutions of the chosen
one, and records the best one of these. Then it checks the Ta to see whether the change that
leads to best solution is in the list. If not, the best solution will be taken as the current best
solution, the pair which makes this solution will be recorded into the Ta. If the pair has been
recorded by Ta, the best solution will be discarded and the second best choice is considered,
and so on. The program stops when the Ta is full. At that time the best solution is the output
of this algorithm.

There is an aspiration criterion in Tabu Search. With this criterion, when the program finds
a change that already exists in Ta, it will check whether this change can get a better solution
than the current best solution. If so, the aspiration criterion takes effect and the change will be
allowed and it will replace the current best solution.

In burst allocation problem, the neighbour solutions are produced by changing the two se-
quences of the initial solution. After comparison, the change that can produce the best solution
will be recorded in Ta.

3.1.7 Ant Colony Algorithm

In Ant Colony Algorithm, we need to simulate ants finding route through all nodes. If ants
are at random nodes, they start to find out which is the best way to go through all the nodes.
The method of deciding the route for ants is after calculating all the distances to each node
which have not been, and then ants find the shortest one. This procedure takes the new node as
a starter to find the next node. When an ant goes to a new node, a parameter called pheromone
will be left for this choice, which will help other ants to choose the route when they are in the
same position. The strength of pheromone decreases over time. However, it can help other ants
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Algorithm 6 Genetic Algorithm when there are unlimited subchannels.

1: Set up Ps and Pt.
2: Set up probability Pc and Pm.
3: Generate Ps random sequence.
4: while circle time TGA < Pt do
5: for every circle TGA do
6: Get the sequence from Ps.
7: Call the general burst allocation procedure to reorder the requests with the sequence.
8: Count the number of subchannels which the sequence occupies and record it to EGA.
9: if EGA < EGAbest then

10: EGAbest ← EGA.
11: end if
12: for every solution i do
13: F (i)← EGA

EGAbest
.

14: Generate a random value m between 0 and 1.
15: if F (i) < m then
16: Discard this sequence i, and copy the best sequence ib.
17: else
18: Keep the sequence.
19: end if
20: end for
21: Generate random value P1 and P2 between 0 and 1.
22: if Pc < P1 then
23: Pick up two solutions from the group and change their number in one position.
24: Change the same number in the sequence.
25: Re-evaluate the fitness of this two solutions.
26: end if
27: if Pm < P2 then
28: Pick up one solution form the group and change its positions of two numbers.
29: Re-evaluate the fitness of this solution.
30: end if
31: end for
32: TGA ← TGA + 1;
33: end while

to make decision more effectively.

When this algorithm is used in the burst allocation problem in the US subframe problem,
we can assume ants get many requests and try to go through all the requests. Ants may pass
different sequences and we can also assume the distances are the numbers of occupied subchan-
nels. In scenarios with unlimited subchannels, the goal is to achieve the lowest total distance.
So in the next iteration time, ants intend to go to the sequence with short distance. The follow
Algorithm 8 shows the implementation of Ant Colony Algorithm in the burst allocation problem
in the US subframe of D2DWRAN.

3.2 Simulations and Results

In this section, simulation results of different algorithms within a D2DWRAN system are plotted
and discussed. We assume this D2DWRAN cell has a radius of 40km and up to 200 CPEs. In
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Algorithm 7 Tabu Search Algorithm when there are unlimited subchannels.

1: Set up Ta and Tal.
2: Generate a random sequence.
3: while circle time TTB < Tal do
4: List all the possible change in Tac in the sequence.
5: Get the sequence after changing.;
6: Call the general burst allocation procedure to reorder the links with the sequence.
7: Count the subchannels that have be occupied and record it to ETB.
8: if ETB < ETBtemp then
9: Check the current change in the Tabu list Tal.

10: if the change exists in Tal then
11: if ETB < E(TBbest) then
12: Take the current sequence as the best solution.
13: E(TBbest)← ETB

14: else
15: Discard the change.
16: end if
17: else
18: ETBtemp ← ETB.
19: end if
20: end if
21: Add the change which lead to ETBtemp to Ta.
22: TTB ← TTB + 1.;
23: end while

the upstream, some requests are sent to the BS and the rest are CPE-CPE communication
within transmission radius. Each CPE generates a new request as soon as the previous request
is allocated. The situations of channels are fixed. The size of requests, length of the US
subchannels and the interference map between CPEs are given in the Table 3.1. All other
parameters regarding different algorithms are discussed separately later in this chapter. Finally,
we also compare the performance of these algorithms.

Table 3.1: Simulation parameters

Parameters Values

Number of requests 200
Length of US subframe 40
Number of US subframe unlimited

Size of request
200 fixed requests are given,

30% is CPE-BS 70% is CPE-CPE
Interference map fixed and provided by previous research

We consider two main performances to evaluate the algorithm: computation time and total
number of subchannels to allocate all the requests.

3.2.1 Brute Force Algorithm

With Brute force algorithm, the computation time is 200! in this simulation scenario. The
number of solutions goes up to 7.88 exp 374. Hence, it is difficult to use Brute Force algorithm
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Algorithm 8 Ant Colony Algorithm when there are unlimited subchannels.

1: Set up Pheromone and TAC .
2: Assign the dots to nodes randomly.
3: while Circle time TAC < Tmax. do
4: for each ant do
5: List all the possible choice to other nodes in current node.
6: Calculate the possibility to different choice.
7: Choose one node and update the pheromone.
8: Call the general burst allocation procedure to reorder the links with the sequence.
9: Count the subchannels that have be occupied and record it to EAC .

10: if EAC < EACtemp then
11: if the change exists in Tal then
12: if EAC < EACbest then
13: Take the current sequence as the best solution.
14: EACbest ← EAC .
15: else
16: Discard the change.
17: end if
18: else
19: EACtemp ← EAC .
20: end if
21: end if
22: end for
23: TAC ← TAC + 1.
24: end while

in the burst allocation problem.

3.2.2 Greedy Algorithm

In the Greedy algorithm, the requests are considered in a definite order. One possible parameter
can be considered, that is how to arrange the order of the requests with the same interference
degrees. There are three ways to deal with this problem that may influence the results. The first
one is after ordering the requests by interference degree without any further action. The second
one is when the requests are ordered by interference degree, the requests with same interference
degree are ordered by the number of occupied subchannels in an accent order. While the third
one is the opposite of second, it orders requests that have the same interference degree by the
number of occupied subchannels in a descending order. All of these ways are tested and the
results are plotted in Figure 3.1 shows the results under three methods and different interference
degree arrangement. The blue bars show the performance with ascending order of interference
degrees, while the red bars show the one with descending order of interference degrees. The
results show evidently that the ascended interference degree can use less subchannels to be
allocated all the requests, which means the better performance.

When considering both results with ascending order and descending order together, it shows
another conclusion. When the interference degree is in ascending order, the subchannels number
in descending order shows the best performance. When the interference degree is in descending
order, the result without further ordering gets the best solution. So it is hard to conclude that
the ordering the subchannels’ number in descending order can give best performance, although
it often shows a better solution than the one with ascended order.
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Figure 3.1: Using different ordering sequence in greedy algorithm.

3.2.3 Simulated Annealing

The main parameters in Simulated Annealing are the decrease speed k and iteration time m. k
is determined by the temperature range that decides how many times to change in Simulated
Annealing and how better solution it is. In Simulated Annealing, the total computation time
is O(m ∗ k). m and k can be decided manually, so the computation time can be very small, in
which case the performance is not reasonable.

In this simulation, two different ranges of temperature are shown in the result, 0.1 ∼ 1 and
0.01 ∼ 1. In general, with the temperature range extending, there is more time cost to get the
results meanwhile, it gives a better performance to the problem. Iteration time also influences
the performance of results and the time to get the result.
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In Figure 3.2, there is comparison between the number of occupied subchannels when the
range of temperature is 1 ∼ 0.1 and 1 ∼ 0.01. The x-axis is the circle time under each
temperature, and the y-axis is the number of occupied subchannels. It can be seen that when the
range of temperature increases, the number of occupied subchannels decreases. And when the
circle time goes up, the number of occupied subchannels also represents a trend of descending.
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So it can be concluded that the performance of Simulated Annealing greatly depends on the
iteration time, which is affected both by range of temperature and the circle time. When the
circle time goes up to 60, the result does not show better performance than when circle time
is 50. It can be concluded that when getting closer to the optimal solution, it will be more
difficult to get a further improvement.

Figure 3.3 shows the computation time of the same scenarios as in Figure 3.2. Obviously, it
is more time consuming when the range of temperature is getting larger. When the range of
temperature is 1 ∼ 0.01, the computation time is almost linearly increasing with the tempera-
ture.

From Figure 3.2 and Figure 3.3, it can be concluded that if the Simulated Annealing is
expected to be a better performance, it needs more time to operate more iterations. However,
when the solution gets close to the optimal solution, it will need much more iterations and more
time consumption to achieve a better solution.

3.2.4 Genetic Algorithm

We consider four parameters in the Genetic Algorithm: Generation group size G, generation
time Gm, crossover probability Pc and mutation probability Pm. The total time consumption
is O(G+Gm ∗G ∗ (Pc + Pm))
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Figure 3.4 and Figure 3.5 show the performance when Generation time is set to 10. The x-axis
is the generation group size range from 100 to 600. The y-axis in Figure 3.4 is the number of
occupied subchannels, and in Figure 3.5 it is the time consumption.

In Figure 3.4 the number of occupied subchannels is almost a horizontal line. It is hard to
say there is some relationship between the group size and the result. The result shows some
randomness. So it can be concluded that increasing the generation group size cannot improve
the performance of the Genetic Algorithm but significantly increase the cost of it.

From Figure 3.5 it can be seen the time consumption related to the generation group size
almost linearly. The reason is that the initial group is the main part that needs to be calculated.
When the program needs to proceed to a new generation, only two or three new lists need to
be reconsidered.

In Figure 3.6 and Figure 3.7, the generation group size is 600, and we test different generation
times. The x-axis represents the generation times range from 10 to 500. The y-axis in Figure 3.6
is the number of occupied subchannels, while in Figure 3.7 shows the time consumption.
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From Figure 3.6, It can be seen that as the generation times increases, there is a decline
in the performance. It also shows that same tendency when the result is getting close to the
optimal solution. But In Figure 3.7, the time consumption keeps increasing, and the tendency
is much more obvious than the tendency of the number of subchannels going down. And the
time already goes up to 12000sec when the iteration time goes up to 500, so it is difficult to get
a further solution.

Compared to the Simulated Annealing, the Genetic Algorithm shows a higher performance.
When the generation group size is 600, its result can stay behind 736, and its computation time
is only 12000s, which is one fifth of the Simulated Annealing.
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Figure 3.8: Occupied subchannels
number when using GA
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probability.
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Figure 3.9: Running time when using
GA with different cross over

probability.

Figure 3.8 to Figure 3.11 show the results when the size of initial group is 600 and the
generation time is 100. Figure 3.8 and Figure 3.9 show the occupied subchannels number and
time consumption when the cross over probability ranges from 0.1 to 0.5. Figure 3.10 and
Figure 3.11 show the occupied subchannels number and time consumption when the mutation
probability ranges from 0.1 to 0.5.

The results show both of the probabilities can influence the occupied subchannels number
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Figure 3.10: Occupied subchannels
number when using GA
with different mutation
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Figure 3.11: Running time when using
GA with different mutation

probability.

and time consumption limitedly. The performance is nearly linear as either of them changes.
So in our other simulations later in this thesis, both of them are assigned with a specific value
0.5.

From the last four simulations it can be seen that the simulation results are different from
the theoretical results. The crossover probability and mutation probability cannot influence the
results as expected. The most efficient way to improve the performance of Genetic Algorithm is
by increasing the iteration time in each generation. While going up to a certain size, the initial
group can influence the results further.

3.2.5 Tabu Search

The Tabu Search mainly depends on the length of Tabu list Tl. The time consumption of the
algorithm is O(

(
200
2

)
∗ Tl). If the Tabu list is set to 15, then there will be about 30000 solutions

to be calculated. Compared to Genetic Algorithm and Simulated Annealing, it is not efficient.
Therefore, we do not discuss it further later in this thesis similar to Brutal Search.

3.2.6 Ant Colony Algorithm

Ant Colony Algorithm also has four parameters: the number of ants Na, circle time m, attrac-
tiveness α and trail level β. Among them, later two can be determined by the probability of
one move chosen by ants. The formulation can be shown as,

p =
αβ∑

all allowed route αβ
(3.3)

The formulation of these two basic factors are changed to get different results under different
scenarios. The time complexity is about O(Na ∗m).

In general, Ant Colony Algorithm can give a good solution when the iteration time increases.
The detailed results are shown below.

There are eight figures to provide the results of Ant Colony Algorithm. Figure 3.12 and
Figure 3.13 show when the other parameters are fixed, the performance and consuming time
with the size of ants group. In Figure 3.12 and Figure 3.13, the iteration time is set to 20, and
the factors alpha and beta are set to 2 and 5 respectively. In Figure 3.14 and Figure 3.15, the
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Figure 3.12: Occupied subchannels
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algorithm with different

group size.
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Figure 3.13: Running time when using
AC algorithm with different

group size.
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Figure 3.14: Occupied subchannels
number when using AC
algorithm with different

circle time.
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The iteration time in Ant Colony Algorithm 

Figure 3.15: Running time when using
AC algorithm with different

circle time.

size of ants group is also 20, and factors alpha and beta are set to 2 and 5 respectively. The
x-axis is the iteration times from 1 ∼ 50. In Figure 3.16 and Figure 3.17, the only changed
parameter is alpha, from 1 to 5. While in Figure 3.18 and Figure 3.19, it is the result from
different value of beta.

The result shows with either the number of ants or circle time increasing, the cost time
increases significantly. However, the performance does not get better as expected. There may
be the problem of this design of program. Ant Colony Algorithm is a graphic algorithm that
needs the distance between two nodes. In this program, the distance is defined as the number of
subchannels required. As the result showing, most of the solutions have less differences than 30
subchannels, and the total number of the subchannels goes up to 800 subchannels. Compared
to the cardinal number, the change is very limited, which make ants hard to choose a better
path.
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Figure 3.16: Occupied subchannels
number when using AC
algorithm with different

factor α.
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Figure 3.17: Running time when using
AC algorithm with different

factor α.
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Figure 3.18: Occupied subchannels
number when using AC
algorithm with different

factor β.
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Figure 3.19: Running time when using
AC algorithm with different

factor β.

3.3 Summary

In this chapter, the implementations of existing optimizations under unlimited subchannels sce-
narios are discussed and simulated. It can be seen that it is hard to the implement the Brute
force algorithm and Tabu Search because of the high computational complexity. Greedy algo-
rithm can provide a quick result, but the performance is not guaranteed. Simulated Annealing
and Genetic Algorithm can control the time and performance. Both of them need much more
time than Greedy algorithm, but also can achieve better performance. Simulated Annealing
needs more time to get the same performance as Genetic Algorithm. Ant Colony Algorithm
does not show the performance as expected, we have to analyse the problem and it needs to be
modified in further works.
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Chapter 4

Algorithm with Limited Subchannels

In this chapter, the burst allocation problem in the US subframe of D2DWRAN with limited
subchannels is studied based on the problem with unlimited subchannels. In Section 4.1, we
propose three methods to fulfil the requirement of limited subchannels. In Section 4.2 and
Section 4.3, the implementation and simulation results are discussed.

4.1 Implementation of Different Methods

When limited subchannels are considered, the formulation of problem becomes the Eq.(2.13) and
Eq.(2.14) as discussed in Chapter 2. After getting the results under unlimited subchannels, we
need to modify the solutions with unlimited subchannels into solutions with limited subchannels.

A simple way is to choose the required number of subchannels in the solutions with unlimited
subchannels. From the simulation results in Chapter 3, we know that there are about 800
subchannels to allocate all requests, therefore the total choices are

(
800
60

)
. However, the strategy

to choose the limited subchannels (60 subchannels in the OFDMA system of D2dWRAN) is
critical to the performance of solutions. We propose three methods based on the optimization of
algorithms in this section for the problem with unlimited subchannels: abandoning rule, cutting
rule and selective choosing. The abandoning rule method is used while allocating each request
and the cutting rule method is considered at the end of each allocation iteration time. Different
from the previous two, the selective choosing only processes the final output solution to get the
solution with limited subchannels. The details of these methods are discussed below.

4.1.1 Method One: Abandoning Rule

This method is based on setting up the limited number of subchannels initially. So before
solving the problem, the number of subchannels is set to be a definite number directly, in this
simulation it is 60, then it uses existing algorithm to process the request. While allocating a
new request, this request is first allocated in the same manner as the scenarios with unlimited
subchannels. Then the program will check whether the total number of subchannels are beyond
the number of subchannels. If it is not beyond the number of subchannels, the new request will
be kept in the channel. Otherwise, the new request is discarded directly.

From the algorithm description it can be seen that the number limitation is set up at the
beginning of the program, and it will check the total number of subchannels during each iter-
ation. We also consider two cases regarding the length of the US subframe, and the detailed
description of this method is shown in Algorithm 9 and Algorithm 10.

In these algorithms, the first is for the case that the length of US subframe is less than 14,
and the other one is for the case that length of US subframe is more than 14. It can be seen
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Algorithm 9 Abandoning rule in case Sl < 14.

1: Set up the subchannels to Ns.
2: if Sl < 14 then
3: for Every request Bij in the queue. do
4: for every subchannel k do
5: Deploy Bij starting from kth subchannel.
6: for next Bm

ij subchannels in Ss(k, ij) do
7: Examine whether it interferes with the existing request.
8: if interference is found then
9: Withdraw the deployment, try next subchannel.

10: else
11: Check the whether number of subchannels k > Ns.
12: if k > Ns then
13: Abandon the request directly, exit loop and try next request.
14: else
15: Allocate with the deployment, exit loop and try next request.
16: end if
17: end if
18: end for
19: end for
20: end for
21: end if

that the main body of the program doesn’t change much compared to the program which is
under unlimited subchannels, except that some constraints are added. Because this method
needs to check all the requests every iteration time, the computational complexity is the same
as the problem with unlimited subchannels and the solutions with unlimited subchannels are
not used directly in this method.

4.1.2 Method Two: Cutting Rule

This method is also implemented during each iteration of the optimization algorithms, and it
is called at the end of each iteration time. When a temporary solution is built in an iteration
of the algorithms for the problem with unlimited subchannels, a cutting rule is inserted to pick
up some certain subchannels from the unlimited subchannels to form the temporary solution
with limited subchannels. Therefore, the main consideration in this method is to select Ns

subchannels from the allocation with unlimited subchannels. We choose the first Ns subchannels
in this method. Because allocation algorithms allocates starts from the third subchannels of
a US subframe and goes to the next subchannel one by one. So it has a probability that the
first Ns subchannels contain more requests than other subchannels. Even though there may be
more requests assembling on other parts of the channel, the performance of the algorithms are
not influenced. That is because the cutting rule is called during iteration and the best solution
may be kept. The algorithm description is shown in Algorithm 11.

This method can directly use the results from the scenarios with unlimited subchannels, hence,
it does not add extra computation. However, the first Ns subchannels does not necessarily
contain the most requests compared to other subchannels and the performance of this method
cannot be guaranteed. Therefore, when we implement this method, we also consider other
two selecting strategies: the last Ns subchannels and random Ns subchannels. The simulation
results are discussed and compared later in this chapter.
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Algorithm 10 Abandoning rule in case Sl ≥ 14.

1: if Sl ≥ 14 then
2: for every request Sij in the queue do
3: for every subchannel k, do
4: Deploy Bij starting from kth subchannel.
5: for next Bm

ij subchannels in Ss(k, ij) do
6: Examine whether it interferes with existing requests.
7: if interference is found then
8: Check whether available slots is more than the request.
9: if the slots is enough then

10: Return a true result and try next subchannels.
11: else
12: Return a false result and exit the loop.
13: end if
14: end if
15: end for
16: Examine the result.
17: if all return is true then
18: Check the whether number of subchannels k > Ns.
19: if k > Ns then
20: Abandon the request directly, exit loop and try next request.
21: else
22: Allocate with the deployment, exit loop and try next request.
23: end if
24: else
25: if there exist a false result then
26: Withdraw the deployment, and try next subchannel.
27: end if
28: end if
29: end for
30: end for
31: end if

4.1.3 Method Three: Selective Choosing

In this method, a simple cutting rule is used similar to the greedy algorithm. The final output
solution of the optimization algorithms under unlimited subchannels situation is recorded based
on the algorithms in Chapter 3. Then the selective choosing method is called to process the
solution with unlimited subchannels into a solution with limited subchannels. Similar to greedy
algorithm, all the subchannels are sorted in descending order first by the request number in
subchannels. Then subchannels containing the most requests are selected first. However, a
request often occupies multiple subchannels, and the neighbouring subchannels which contain
the same the requests should also be selected. The selective choosing method is described in
Algorithm 12:

This method is more intelligent than other two methods. On the contrary, it will require
more time to calculate all the results to get the final solution.
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Algorithm 11 Cutting rule

1: Start each algorithm.
2: Set up the subchannels to unlimited.
3: Run the main part of each algorithm.
4: In each end of iteration,
5: Cutting the result to Ns.
6: Count the number of requests Na.
7: for each row do
8: Count the subchannels Ns and Ns + 1 by rows.
9: if the count equal to 2 then

10: Nb ≤ Nb + 1.
11: end if
12: go to the next row;
13: end for
14: Final subchannels number is Na −Nb in this iteration.
15: Go to the next iteration.
16: Compare the result of each iteration and get the better solution.

4.2 Methods Implementation

In this section, we implement and simulate the above three methods in Simulated Annealing,
Genetic Algorithm and Ant Colony Algorithm. The three methods are considered in five sub-
methods, including the abandoning rule, the cutting rule when selecting the first 60 subchannels,
the cutting rule when selecting the last 60 subchannels, the cutting rule when randomly selecting
60 subchannels, and selective choosing.

In Simulating Annealing Algorithm, the temperature range is set from 100 to 1, the iteration
time in each temperature is 10, and the declined efficiency is 0.05. In Genetic Algorithm, the
initial group is set to 100, and the generation time is also 100 times, the probability of mutation
and cross over is set to 0.3. In Ant Colony Algorithm, the number of ants is set to 30, the circle
time is set to 50, the factor alpha is set to 5, and the factor beta is set to 3.

All algorithms use the same parameters of channels to make the comparison convenient. 200
established requests are provided with constant length and interference map. The length of
subchannels is 40, and there are 60 subchannels.
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Algorithm 12 Selective choosing

1: Set up the subchannels to unlimited.
2: Run each algorithm under unlimited subchannels situation.
3: Get the final result of subchannels.
4: Sort all the subchannels with the request number in descending order.
5: Set Sf = 0.
6: for every subchannels Sn in this new order do
7: Count its entire neighbor subchannels which contain some same request.
8: St <= Sf + Sn.
9: if St <= Ns then

10: Sf = St.
11: else
12: Discard the St and quit the loop.
13: end if
14: end for
15: Count all the requests in the selected subchannels.
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Figure 4.3: Comparison of slots usage.
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Figure 4.1 and Figure 4.2 show the results of allocated requests and running time in different
algorithms while using different methods. In Figure 4.1, results of 5 scenarios mentioned above
in three algorithms are presented. The x-axis represents the results with five different meth-
ods. From left to right, is the abandoning rule, keeping first 60 subchannels, keeping last 60
subchannels, keeping random 60 continuous subchannels and selective choosing method. The
y-axis represents the number of requests that can be allocated in the channels. The bars show
the results with three algorithms separately, from left to right, they are results with Genetic
Algorithm, Simulated Annealing and Ant Colony Algorithm. In Figure 4.2, the running time
of different methods is given. Similarly in Figure 4.1, the x-axis and bars represents different
methods and different algorithms. The y-axis represents the running time.

From the results it can conclude that as analysed, the method that keep first 60 subchannels
can perform better than the method keeping other subchannels. However, if the subchannels
are limited initially, the results also show a good performance as the first 60 subchannels, at
the same time, it shows shorter time than other methods. Selective method shows a better
performance than other methods in requests’ capacity, while the time taken is the same as in
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the method of keeping first 60 subchannels.

From the results in Figure 4.3, we can conclude that the main efficiency of the algorithm is
based on the number of subchannels. So from this point of view, fewer subchannels lead to
less time consumption. Meanwhile, fewer subchannels also lead to less capacity. In this case,
selective choosing can achieve better performance than others.

In Figure 4.3, another performance evaluation of the solutions is used, which calculates the
slot reuse. This result can directly show us how many times the slots are reused in program. It
can give us another way to evaluate the methods used in solving the burst allocation problem.
However, this evaluation is different from the expectation we initially proposed, so it can be a
reference to results of this project. We can see from the figures that the trends of slot reuse are
different from request capacity. For example, although selective choosing method shows better
performance than other methods in request capacity, the slot reuse of selective choosing is not
better than the rest of the methods. Its average slot reuse time is even half of result of using
abandoning rule. Meanwhile, the method that just keeps first 60 subchannels achieves the best
slot reuse.

Figure 4.3 also shows the performance of three different optimization algorithms in terms of
slot reuse. It shows that Genetic Algorithm can usually give the best performance of all. On
the contrary, Simulated Annealing achieves the worst performance in the point of view of the
slot reuse. In the Ant Colony Algorithm, the abandoning rule method cannot give the same
performance compared to the performance of abandoning rule in other algorithms.

In the following simulations and results, the slot reuse performance is also examined. Note
that slot reuse is not the main goal of our problem, but the main goal of our problem is
to allocate as many requests as possible in the limited subchannels. However, it is still an
important reference to evaluate the channel utilization.

4.3 Simulation and Results

According to the analysis in Section 4.2, two main methods are chosen for further simulation and
examination: the abandoning rule and selective choosing. The reason for choosing abandoning
rule is because that it can get a solution efficiently, i.e., its running time is no more than one
third of other methods. Although the performance of the abandoning rule may be not as good
as other methods, the loss in request capacity is less than 10% compared to the best methods.
Thus, we study the abandoning rule further because of its time efficiency and comparable
performance. The reason to study selective choosing further is because it doesn’t spend more
time than cutting rule, but it shows nearly 20% better performance than other methods. From
the points of views of time consumption and performance, it is not worthwhile to study the
cutting rule anymore and we only focus on the abandoning rule and selective choosing in the
following discussion.

In next step, combination of abandoning rule and selective choosing and different optimiza-
tion algorithms are simulated and the results are presented. Four optimization algorithms
are considered: Greedy algorithm, Simulated Annealing, Genetic Algorithm and Ant Colony
Algorithm.

4.3.1 Greedy Algorithm

In this part, we also consider the three parameters. They are interference degree order, sub-
channels number order, method to modify the unlimited situation into limited one.

Figure 4.4 shows the similar situation as Figure 3.1. The simulation with ascending inter-
ference degree and descending number of subchannels shows the best performance. It can be
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confirmed that Greedy algorithm is more suitable with ascending interference degree.
On the other hand, when Greedy Algorithm is combined with the abandoning rule and

selective choosing, although the abandoning rule can save about 30% running time, it brings
out nearly 50% less performance than when selective choosing method is used.

So in greedy algorithm, there is no doubt that selective choosing method should be used to
make the algorithm more efficient.

4.3.2 Simulated Annealing

In Simulated Annealing algorithm, there are still two parameters to change, the temperature
range and iteration time.

The results with different methods are showed in Figure 4.5 and Figure 4.6. In Figure 4.5, the
x-axis represents the iteration time of Simulated Annealing. The y-axis represents the requests
capacity of the different algorithms. There are four lines in the figure, each line shows different
combination of range and methods. The two upper lines show range from 1 0.1 and 1 0.01
with Selective choosing method. The two under lines show the same range with abandoning
rule. Figure 4.6 shows the results of running time of different parameter values in Simulated
Annealing.

Figure 4.5 gives the number of requests that can be allocated in the channel. As we can see
the selective choosing method shows 20% better performance than the abandoning rule method.
When the iteration time increases to 50, it is extremely time consuming. While the abandoning
rule does not only show drawback in request capacity, it appears instable when the iteration
time is small. This instability especially appears when range is small such as from 1 to 0.1.

Figure 4.6 shows the running time with different methods and different parameters in Sim-
ulated Annealing. It shows when the iteration time is small, the difference of running time
between selective choosing and abandoning rule is not obvious. But as the iteration time in-
creases, the difference grows. When the iteration time goes up to 50, the running time of
selective choosing is almost five times to the one of abandoning rule.
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Figure 4.7 shows the average slot reuse time of different combinations in Simulated Annealing.
The x-axis and lines are still the same as in Figure 4.5. The y-axis shows the average rate of
slots reused. It can be seen that the average slot reuse are quite unstable. The reason is still
that the program doesn’t consider the rate of slots reused, so the result represents a fluctuation
that can be considered as a common pheromone. It is different from Figure 4.5 and Figure 4.6,
and the performance of abandoning rule absolutely beyond selective choosing method.
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So it can be concluded that if the iteration time is small, we can adapt selective choosing
method in Simulated Annealing to obtain high performance. As to large iteration time, the
time consumption increases much faster than the burst allocation performance. In this case,
the only choice is to sacrifice some performance to save the running time by using abandoning
rule.

4.3.3 Genetic Algorithm

In this simulation different group sizes and iteration time are considered.
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Figure 4.9: Running time in GA with
different initial group size.

Figure 4.8 and Figure 4.9 are results in Genetic Algorithm with different initial group sizes.
The iteration time is set to 200, and the occurring probability of cross-over and mutation are
both set to 0.5. Figure 4.8 shows the request capacity with different initial group sizes and
methods. The y-axis shows the number of requests allocated in the channel. The two lines are
different results of two methods: abandoning rule and selective choosing. The upper one is the
result with selective choosing method, while the under one is the result with abandoning rule.
Figure 4.9 shows the running time.

We can see from Figure 4.8 that the initial group size influences the performance less than
in the unlimited subchannel scenarios in Figure 3.4. As the size of initial group increases, the
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performance is nearly the same. It has a sharp increasing tendency when the size goes up to
50. Because Genetic Algorithm needs a big enough group size at first. When the group size
can fulfil the requirement that provides sufficient sample, the increasing group cannot continue
to enhance the performance of the algorithm. While solving the burst allocation problem in
limited subchannels, the group size can shrink to 50 because it is not helpful to improve the
performance of algorithm.

In Figure 4.9, the running time with selective choosing is more significant than Figure 4.6.
In general, the running time by using selective choosing method is much more obvious than
by using abandoning rule. As the size of initial group increasing, the running time by using
selective choosing method increases much more than by using abandoning rule. When the size
of initial group goes up to 400, the running time of selective choosing method is almost seven
times to the one of abandoning rule. Even when the size of initial group is small, the running
time of selective choosing method is still much more than abandoning rule.
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Figure 4.11: Running time in GA with
different iteration time.

Figure 4.10 and Figure 4.11 are the results with two methods and different iteration time
in Genetic Algorithm. In this simulation, the initial group is set to 200, and the occurring
probability of cross-over and mutation are also set to 0.5.

In Figure 4.10, the selective choosing method shows an improved performance when itera-
tion time increasing. While the abandoning rule displays the same instability as in Simulated
Annealing. So if the abandoning rule is chosen, low iteration time is enough for the perfor-
mance. As to selective choosing method, it needs to consider to choose a point in low value of
parameters to ensure the performance of the method. In Figure 4.11, the slope of the selective
choosing method is much larger than the one in Figure 4.9. It can be concluded that in general,
the abandoning rule is more suitable than selective choosing method. If better performance is
needed, the modification with selective choosing needs sacrificing much more time, which is not
desirable in the burst allocation problem.

In Figure 4.12 and Figure 4.13, the average of slots reuse time with different values of pa-
rameters are plotted. Figure 4.12 shows the results with different initial group sizes of Genetic
Algorithm and Figure 4.13 shows results with different iteration time of Genetic Algorithm.
Figure 4.12 and Figure 4.13, it can be concluded that abandoning rule is still better than se-
lective choosing method. Compared to Figure 4.7, it shows that the stability is better than the
latter. Moreover, the reusing time is improved obviously, increasing from about 5.5 to 9.
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4.3.4 Ant Colony Algorithm

In Ant Colony Algorithm, there are only two parameters to change in order to assess the
performance of two methods in different situations: the size of ant group and the iteration time.
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Figure 4.15: Running time in AC with
different ant group size.

Figure 4.14 to Figure 4.17 are the results of two methods in Ant Colony Algorithm with
different values of ant group size and iteration time separately. In Figure 4.14 and Figure 4.15,
the iteration time is set to 20, the two factors in AC α and β are set to 2 and 5 separately,
the only changing parameter is the size of ant group and method. While in Figure 4.16 and
Figure 4.17 the changing parameter changes from ant group size to iteration time. The ant
group size is set to 20.

In Figure 4.14, the x-axis is the size of ant group in Ant Colony Algorithm. The y-axis is the
capacity of the requests. Different lines means different methods. In Figure 4.15, the y-axis is
changed to the running time of the algorithm, then others are kept the same as in Figure 4.14.
Figure 4.16 and Figure 4.17 have the similar measurement with Figure 4.14 and Figure 4.15.
The detailed data are shown in the figures instead of the average value. We also draw a tendency
line to show the trend of the performance with different methods.
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Figure 4.17: Running time in AC with
different ant group size.

In Figure 4.14 and Figure 4.16, it can be seen that the results are not like other algorithms
before which show regulatory. On the contrary, the data shows a complete irregularity. From
the tendency line, we still can see that the selective choosing method shows better performance
than abandoning rule method.

In Figure 4.15 and Figure 4.17, the running time of two methods with different parameters
in Ant Colony Algorithm are quite similar to the one in Genetic Algorithm. But considering
the complication of performance in AC, more efforts are needed to get further results.

0

2

4

6

8

10

0 20 40 60

T
h

e
 a

v
e

ra
g

e
 r

a
te

 o
f 

sl
o

ts
 r

e
u

se
d

 

the size of ant group in Ant Colony Algorithm 

AC algorithm

with

Selective

choosing

AC algorithm

with

Abandoning

rule

Figure 4.18: The average rate of slots
reused with different ant

group size.

0

2

4

6

8

10

0 20 40 60

T
h

e
 a

v
e

ra
g

e
 r

a
te

 o
f 

sl
o

ts
 r

e
u

se
d

 

the iteration time in Ant Colony Algorithm 

AC algorithm

with

Selective

choosing

AC algorithm

with

Abandoning

rule

Figure 4.19: The average rate of slots
reused with different

iteration time.

Figure 4.18 and Figure 4.19 show the average slot reused time in Ant Colony Algorithm
with different values of parameters. Figure 4.18 is the performance with different group size of
ants, while Figure 4.19 is the performance with different iteration time. The results have some
randomness, therefore, in Figure 4.18 and Figure 4.19, we only show all the results instead of
the average value. The lines drawn in the figures are the average of the scattered results to
see its tendency. Compared to other results in Ant Colony Algorithm, it is difficult to see the
differences between the two methods. The results are similar with different methods or with
different values of parameters.
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4.4 Summary

In this chapter, we extend the problem from unlimited subchannels into limited subchannels
by three methods: abandoning rule, cutting rule and selective choosing. Among these three
methods, the abandoning rule has the least running time, while the selective choosing method
has the best performance. Then these two methods are combined and examined with different
optimizations algorithms with different values of parameters. The results show that the Simu-
lated Annealing method and Genetic Algorithm method can both allocate nearly 120 requests
when using selective choosing method, which is better than when using abandoning method.
However, regarding time consuming, the selective choosing method performs worse than the
abandoning rule. Therefore, when the time consumption is acceptable, it is better to choose
selective choosing with higher performance rather than the abandoning rule. While the size of
the problem grows, the selective choosing scarifies too much time to get a good performance. As
to Ant Colony Algorithm, it shows highly randomness in the problem with limited subchannels
compared to the problem with unlimited subchannels. The results cannot provide conclusion
whether the abandoning rule or the selective choosing is better when Ant Colony Algorithm is
adapted.
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Chapter 5

Conclusions and Future Work

In this chapter, we draw some conclusions and list future work in D2DWRAN. In Section 5.1, all
the discussed optimizations algorithms and methods regarding the burst allocation problem in
D2DWRAN are reviewed with some final conclusions. In Section 5.2, the future work regarding
the burst allocation problem is discussed.

5.1 Conclusions

The burst allocation problem in D2DWRAN is a computationally hard problem, which is the
main topic of this thesis. In Chapter 2, we introduced D2DWRAN and brought out the burst
allocation problem. This problem was formulated mathematically in Chapter 2 too as a basis
of the following discussions in this thesis. In order to solve this problem, we divided it into two
different scenarios: with unlimited subchannels and with limited subchannels. In the unlimited
subchannel scenario, we assumed that there are always enough subchannels to allocate all the
requests in the US subframe. This is a simplified problem compared to the scenarios with lim-
ited subchannels, and we solved this problem first in Chapter 3. Moreover, it can be considered
as multiple channels situations that can be useful in further work of D2DWRAN since multiple
operating channels are one of the major proposals of D2DWRAN. The limited subchannels sce-
nario was based on the unlimited subchannels scenario with some other methods. This problem
is solved in Chapter 4. Therefore, the main research content in this thesis contains two parts:
implementation of optimization under unlimited subchannels scenario and implementation of
optimization under limited subchannels scenario.

Before solving the problem in Chapter 3 and Chapter 4, we introduced the existing algorithms
that had the potential to solve the burst allocation problem in Chapter ??. These algorithms in-
cludes classic optimization: D&C, Greedy Algorithm and dynamic programming; and heuristic
algorithm: Simulated Annealing, Tabu Search, Genetic Algorithm and Ant Colony Algorithm.
With in-depth analysis and discussion, the Greedy Algorithm, Simulated Annealing algorithm,
Tabu Search, Genetic Algorithm and Ant Colony algorithm were chosen to be investigated
further in solving the burst allocation problem in Chapter 3 and Chapter 4.

In Chapter 3, the implementation of each algorithm in the burst allocation problem with
unlimited subchannels was studied and analyzed. As a conclusion of this chapter, Tabu Search
and Brute force algorithms are not suitable for the burst allocation problem because of their
extremely high time complexity. Therefore, four other algorithms are simulated and discussed
further in this chapter, which are the Greedy Algorithm, Simulated Annealing, Genetic Algo-
rithm and Ant Colony Algorithm. Among these four optimization algorithms, even though the
performance of the output solution cannot be guaranteed, Greedy Algorithm has the lowest
time complexity compared to other algorithms. Therefore, it is still possible to be used to solve
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this problem. Heuristic algorithms show higher performances than Greedy Algorithm, but their
running time becomes very long. Meanwhile, one can control heuristic algorithm’s running
time and performance by playing with the parameters. For example, Simulated Annealing can
control the temperature range and circle time in one temperature, both of which can strongly
influence the running time and performance of the Simulated Annealing program. Genetic Al-
gorithm achieves better performance than Simulated Annealing as well as shorter running time.
It has four parameters to control: size of initial group, generation time, cross-over and mutation
probability. The size of initial group can strongly influence the running time of program, but
its affects is very limited to the performance, while iteration time can improve the performance
efficiently. Both of the probabilities cannot influence the results much. Therefore, it is possible
to set a small initial group and select a certain value to iteration time to get desired results.
Ant Colony Algorithm also has four parameters to control its performance and running time:
ant group, iteration time, factor alpha and factor bate. However in this thesis, the result of
Ant Colony Algorithm showed there is some problems existing in the simulation which cannot
lead to the right results. So it needs more study to get to the right results. The simulation
results showed that the running time of the Genetic Algorithm is accepted but performance of
the output solution is worse than the Simulated Annealing.

In Chapter 4, we focused on taking advantages of the studies in Chapter 3 to solve the burst
allocation problem with limited subchannels. Three methods were proposed: abandoning rule,
cutting rule and selective choosing. After comparing these three methods, abandoning rule
and selective choosing method were chosen to be employed in the optimization algorithms so
solve the burst allocation with limited subchannels. Greedy Algorithm was also implemented
and simulated in this chapter as a reference substance. It showed that compared to Greedy
Algorithm, the performance of heuristic algorithms were about 20% better, which is worthwhile
for the extra time consumption. However, Ant Colony Algorithm also showed serious instability
in the limited subchannel problem than in the unlimited subchannels scenario. Hence, it is less
desirable to be used to solve this problem.

5.2 Future Work

The optimization of the burst allocation in D2DWRAN is studied in this thesis including the
existing algorithms and implementation of these algorithms. However, there are still many
aspects regarding this topic need be done in future work before it can be implemented in
D2DWRAN. For example, the studies of optimization in this thesis is based on the model
established in Chapter 2, and it is possible to modify the model and apply different formulation
to simulate the problem. Accordingly, the performance of the optimization algorithms might
be different.

Further, we only discussed the possibility of several optimizations in burst allocation problem.
There are some other algorithms that might be suitable for this problem, such as combination of
several algorithm, and some other Artificial Intelligence algorithm. Moreover, the combination
of two or more optimizations is also an option to enhance the performance. In this project,
the main problem with the optimization algorithm is the high time complexity that might not
be different in a real D2DWRAN system. The algorithms should be implemented into the
real experiments and examine the performance. Additionally, there are still some problems
in Ant Colony Algorithm especially in solving the problem with unlimited scenarios. To have
stable Ant Colony Algorithm, more research needs to be done. Last but not least, we have
mentioned that the scenario under unlimited subchannels can be used in multiple channels, but
the implementation of multiple channel resource allocation is a different problem, and more
research work is certainly needed.
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Finally at the end, we have to remember that the burst allocation problem studied in this
thesis is only one of the research topics in D2DWRANs. There is still a long way to go before
using D2DWRANs in daily life.
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