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Abstract
Motivation: Anti-cancer therapies based on synthetic lethality (SL) exploit tumour vulnerabilities for treatment with reduced side effects, by tar-
geting a gene that is jointly essential with another whose function is lost. Computational prediction is key to expedite SL screening, yet existing
methods are vulnerable to prevalent selection bias in SL data and reliant on cancer or tissue type-specific omics, which can be scarce. Notably,
sequence similarity remains underexplored as a proxy for related gene function and joint essentiality.

Results: We propose ELISL, Early–Late Integrated SL prediction with forest ensembles, using context-free protein sequence embeddings and
context-specific omics from cell lines and tissue. Across eight cancer types, ELISL showed superior robustness to selection bias and recovery of
known SL genes, as well as promising cross-cancer predictions. Co-occurring mutations in a BRCA gene and ELISL-predicted pairs from the HH,
FGF, WNT, or NEIL gene families were associated with longer patient survival times, revealing therapeutic potential.

Availability and implementation: Data: 10.6084/m9.figshare.23607558 & Code: github.com/joanagoncalveslab/ELISL.

1 Introduction

Targeted anti-cancer therapy capitalizes on tumour-specific
molecular changes to selectively kill tumour cells, often result-
ing in reduced side effects compared to conventional chemo-
therapy and radiotherapy. Unfortunately, direct drug binding
may be prevented by alterations of the drug target, for in-
stance, caused by loss of function mutations, amplification, or
overexpression (Setton et al. 2021, Zhang et al. 2021). A
promising alternative explores synthetic lethality (SL) between
a group of genes, whereby co-occurring dysfunction of all
genes in the group causes cell death, while disruption of only
a subset of those genes is non-lethal (Chan and Giaccia 2011).
Tumours with a known dysfunctional gene can then be
treated by targeting its SL partner genes.

The viability of SL-based therapies has been confirmed by
the approval of PARP-inhibitor drugs for treatment of BRCA-
deficient tumours (Fong et al. 2009, Hutchinson 2010). Yet,
the search for other SL interactions is proving challenging.
New SL interactions are identified through expensive and la-
borious molecular perturbation experiments (Jacquemont
et al. 2012, Etemadmoghadam et al. 2013, Hubert et al.
2013, Kranz and Boutros 2014, Toledo et al. 2015), which
deem exhaustive screening impractical. Notably, computa-
tional SL prediction can greatly help prioritize candidates for
follow-up.

Existing SL prediction methods can be categorized into sta-
tistical approaches and machine learning (ML) models.

Statistical methods such as DAISY (Jerby-Arnon et al. 2014),
BiSep (Wappett et al. 2016), and ISLE (Lee et al. 2018) select
SL pairs by imposing thresholds on statistical properties asso-
ciated with SL, such as mutual exclusivity of mutations, coex-
pression, or changes in dependency on a gene for cell survival.
Although statistical methods are intuitive, they struggle to
capture complex relationships underlying SL interactions and
tend to underperform compared to ML-based models (Seale
et al. 2022). The ML models can be further split into SL-
topology and feature-based.

SL-topology methods represent existing SL data as a net-
work of pairwise SL interactions (edges) between genes
(nodes). This network is used to identify shared SL patterns
across genes and infer new SL interactions with matrix factor-
ization [pca-gCMF (Liany et al. 2019), GRSMF (Huang et al.
2019), and SL2MF (Liu et al. 2020)] or graph-based methods
[DDGCN (Cai et al. 2020) and GCATSL (Long et al. 2021)].
The dependence of SL-topology methods on existing SL inter-
actions typically means that (i) prediction scope is limited to
genes with known SL partners, (ii) performance is heavily
influenced by connectivity while SL data are reportedly
sparse, and (iii) the approach is better suited for transferring
SL interactions between genes with similar SL profiles than de
novo SL discovery. Additionally, SL data show prevalent se-
lection bias towards functionally related genes with similar SL
profiles, which SL-topology methods are designed to exploit.
However, such limited set of SL interactions will not
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generalize to most other genes, making SL-topology methods
sensitive to selection bias (Seale et al. 2022).

Feature-based ML models are built with supervised ML
algorithms using omics features [DiscoverSL (Das et al.
2018), EXP2SL (Wan et al. 2020), Lu (Lu et al. 2015), and
SBSL (Seale et al. 2022)], enabling them to learn complex
rules underlying SL interactions and remain more robust to
selection bias. Most feature-based methods rely on (regular-
ized) logistic regression or random forests to predict SL based
on multiomics features (Lu et al. 2015, Das et al. 2018, Seale
et al. 2022). Alternatively, EXP2SL uses a neural network to
learn from a fixed set of genes and their expression in cancer
cell lines (Wan et al. 2020).

Common to feature models is a focus on context-specific
data for a tissue type of interest: for lung cancer, this could be
omics of lung cancer cell lines and tumour tissue. While valu-
able for SL prediction, context-specific data may be difficult
to obtain for some (rarer) cancer types, limiting the ability to
learn useful models.

We argue that context-free metrics of functional similarity
between genes could also be informative for SL prediction.
The idea is that genes with similar functions have more re-
lated or redundant activity, making it more likely that a (can-
cer) cell would depend on the joint loss of function of those
genes for its survival (Dhanjal et al. 2017). We consider the
homology of protein sequences and similarity of protein–pro-
tein interactions (PPIs) as candidate metrics, which have been
used successfully as proxies for functional similarity in tasks
such as protein function prediction (Wang et al. 2007,
Kulmanov et al. 2017). Of note, the ISLE method has incor-
porated similarity of gene phylogenetic profiles for SL predic-
tion. While relying on sequence homology to estimate
evolutionary conservation across species, the similarity of
phylogenetic profiles is ultimately influenced by a number of
factors, including focus on DNA sequence, choice and homol-
ogy of other species data, and quality of inferred phylogenies.
We thus favour a context-free representation of each gene
pair based on direct comparison of the corresponding protein
sequences for the organism of interest. Aminoacid sequences
are closer to the functional roles of the genes than DNA, and
their features can be compared directly for any pair of genes
to provide an unbiased view of potential functional relation-
ships for cells of that organism. Our use of vectorized se-
quence embeddings further enables a fine-grained exploration
of sequence features that would otherwise be masked when
relying on a single homology value for a pair of genes.

We propose ‘early–late integrated synthetic lethality’
(ELISL) prediction models, the first to integrate context-free
direct protein sequence relationships and context-specific
omics to predict SL for pairs of genes. Context-free features in
ELISL encode each gene pair using embeddings of their pro-
tein sequences or PPIs. Context-specific features are stratified
per tissue and sample type. We consider cancer cell lines be-
cause they are well characterized model systems with unique
gene dependency data, quantifying cell viability upon gene
perturbation, which is notably relevant for SL prediction and
unavailable for patient tumours. ELISL looks at the relation
between dependency scores and genetic or transcriptional
alterations, as increased dependency on a gene in cell lines
with altered activity of another gene could signal SL between
the two. Separately, we include tissue omics to be able to ex-
plore the complexity inherent to human tissues. Here, impact
of mutations within a gene on the expression of another gene

suggests related function and thus increased SL potential
(Seale et al. 2022). In addition, correlation in gene expression
and copy number aberration in both healthy and tumour tis-
sue could help identify tumour-specific changes in the rela-
tionship between a pair of genes (Seale et al. 2022). Finally,
effect of tumour-specific co-alterations of two genes on pa-
tient survival could be indicative of SL, as simultaneous loss
of function of SL genes might prolong survival by inducing
cancer cell death, even if co-alterations are rare due to natural
selection (Srihari et al. 2015, Lee et al. 2018, Feng et al.
2019). To effectively learn from low- and high-dimensional
data across sparser and denser representations, ELISL com-
bines early (concatenation) and late (output ensembling) inte-
gration (Zitnik et al. 2019) using a collection of forest
ensembles.

2 Materials and methods

The aim of the proposed ELISL framework is to predict if a
given gene pair is synthetic lethal by leveraging context-free
and context-specific omics that represent different relation-
ships between the pair of genes at the molecular level
(Fig. 1a). To do this, ELISL makes use of an early–late inte-
gration strategy comprising six regularized forest ensembles.
Five models learn each from one individual context-free/
specific source for later integration, and one early integration
model learns from all concatenated features, enabling interac-
tions across data sources (Fig. 1a). The final ELISL prediction
probability is calculated as a weighted average of the proba-
bilities of its six submodels.

2.1 Data collection and feature generation

ELISL models learn from two categories of features: context-
free relations between genes based on protein sequence or
PPIs, and context-specific features based on cell line and tissue
omics. A featurized representation of each gene pair is derived
per category and data source as an fi-dimensional vector,
where fi is the number of features for data source i. For a set
of N samples or gene pairs, this yields a matrix of dimensions
N � fi, where each row refers to a gene pair and columns de-
note the different features.

2.1.1 Protein sequence and PPIs
We retrieved reviewed protein sequences from UniProt
(Bateman et al. 2021) and used the SeqVec pretrained model
(Heinzinger et al. 2019) to extract a 1024D embedding vector
for every protein sequence. The sequence-based feature vector
of each gene pair was then calculated as the absolute differ-
ence between the vectors of the proteins encoded by the two
genes in the pair. We collected PPIs from the STRING data-
base (Jensen et al. 2009), considering only manually curated
or experimentally validated interactions. Using these data, we
built a network graph of genes (nodes) and undirected inter-
actions between them (edges), and extracted a 64D embed-
ding vector for each gene in the network using the Node2Vec
method with default parameters (Grover and Leskovec 2016).
To obtain the PPI feature vector for each pair of genes, we
took the absolute difference between the embedding vectors
of the two genes.

2.1.2 Cancer cell line omics
We retrieved dependency scores of cancer cell lines measured
upon gene perturbation from the Cancer Dependency Map
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portal [public release 2018Q3 (Meyers et al. 2017, Dempster
et al. 2019)]. Gene expression and mutation data from the
Cancer Cell Line Encyclopaedia (Barretina et al. 2012,
Ghandi et al. 2019) were obtained from the cBioPortal reposi-
tory (Broad 2019) (Cerami et al. 2012). Based on these omics
data, we defined alterations as encompassing non-silent muta-
tions, gene expression z-scores larger than 1.96 or smaller
than �1:96 (95% confidence interval), and discrete copy num-
ber aberration score equal to 2 (amplification) or �2 (deep
loss). For gene expression, we used log-transformed mRNA z-
scores compared to the expression distribution of all samples
(RNA-seq RPKM). For copy number scores, we used discrete
values generated by the GISTIC algorithm (Beroukhim et al.
2007, Cerami et al. 2012). Two feature sets were created
based on cell line omics: ‘CRISPR with mutation’ and
‘CRISPR with expression’ based on CRISPR gene dependency
scores and mutation data or gene expression, respectively.
Each of these comprised four features: average dependency of
the first (or second) gene across cell lines where the second (or
first) gene was unaltered, and average dependency of the first

(or second) gene across cell lines where the second (or first)
gene was altered.

2.1.3 Tissue omics
We collected gene expression, mutation, copy number aberra-
tion, and clinical data for patient tissue samples in The Cancer
Genome Atlas (TCGA GDAC 2016) from the cBio portal
(Cerami et al. 2012). We used two different gene expression
scores: log-transformed mRNA z-scores relative to the distribu-
tion of all samples (RNA-Seq RPKM) to identify expression-
based alterations, and mRNA gene expression (RNA-Seq V2
RSEM) to quantify expression level. Additionally, we collected
healthy donor tissue gene expression data as transcript per mil-
lion from the GTEx portal (Lonsdale et al. 2013) (dbGaP
Accession phs000424.v8.p2). Alterations were defined as
encompassing non-silent somatic mutations, gene expression
z-scores larger than 1.96 or smaller than�1:96 (95% confidence
interval), and discrete copy number score of 2 (amplification) or
�2 (deep loss). Using these alterations, we categorized patient
tumour samples into two groups: with alterations in both genes,
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Figure 1. ELISL framework, SL label imbalance, and within-cancer prediction performance. (a) The ELISL framework. (b) Number and ratio of positive and

negative samples in the train set for each cancer type. (c) Prediction performance (AUPRC) of SL prediction methods within a cancer type over 10 runs. P:

significance of the difference in performance between the best of other models and the best ELISL model over 10 runs (lines between boxes).
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where an alteration in one of the omics was sufficient; and with-
out simultaneous alterations in both genes. From tissue omics,
we generated the following sets of features: patient survival, av-
erage gene expression in altered or unaltered tumour patient
samples, gene coexpression in patient tumour/normal tissue or
in healthy donor tissue, and correlation of copy number aberra-
tions in patient tumour samples. The survival feature was the P-
value of a Wald significance test for the patient group variable
based on co-mutation status using a Cox proportional hazards
(CoxPH) model of survival time, including covariates for age,
sex, and cancer type. Four average gene expression features
were defined as the average gene expression of the first (or sec-
ond) gene in tumour samples where the second (or first) gene
was: unaltered (two features) or altered (two features).
Additionally, six coexpression features were calculated as the
Pearson’s correlation and respective P-value between the expres-
sion levels of the two genes in a gene pair in the following sets of
samples: TCGA tumour samples from cancer patients (two fea-
tures), TCGA normal samples from cancer patients (two fea-
tures), and GTEx healthy donor tissue samples (two features).
Finally, two features expressing the correlation and P-value of
copy number aberrations between the two genes in a gene pair
were calculated using Spearman’s correlation.

2.1.4 SL labels
We obtained experimentally derived SL labels from four stud-
ies: DiscoverSL (Das et al. 2018), ISLE (Lee et al. 2018),
EXP2SL (Wan et al. 2020), and Lu et al. (2015). These aggre-
gate the results of 25 original experimental studies
(Supplementary Table S1), providing positive (SL) and nega-
tive (non-SL) labelled pairs. We note that there is no consen-
sus on the criteria used to identify SL and non-SL pairs, with
each study employing its own methodology. Positive SL rela-
tionships are typically identified based on statistical tests to
detect an effect of simultaneous alterations to two genes, en-
dogenous or induced, as a reduction in cell survival ability. As
for non-SL pairs, some studies use statistical tests to determine
if the interaction between the two genes improves cell survival
or growth (opposite of an SL effect), while others label any
gene pairs tested but not significant for an SL relationship as
non-SL pairs. This makes non-SL pairs less reliable, which we
consider during model evaluation. From these four studies,
we found SL labels for eight different cancer types (Fig. 1b),
and removed all gene pairs with any disagreements in SL label
across studies (Supplementary Table S2). Unless otherwise
specified, we used one SL dataset containing all unique gene
pairs found across the four SL label sets.

2.2 ELISL models

ELISL models (Fig. 1a) take as input a featurized representa-
tion of a given gene pair, and generate an SL prediction score
denoting the probability that such gene pair is synthetic lethal.
Models are learned using SL-labelled gene pairs, and the rep-
resentation comprises features from context-free and -specific
omics data.

2.2.1 Early–late integration framework
The early–late integrated framework is designed to learn mod-
els from a given number k of data sources, with k 2 N and
k � 2, as follows. We build k models, each learning from the
feature set created for one of the k individual data sources of
interest. We also train an additional model using the feature
set obtained by concatenating the features generated from all

the individual k data sources. The predictions of the kþ 1
models are aggregated using weighted average, with weights
based on the validation performances of the individual mod-
els. More formally, each individual dataset Xi, with i 2 N and
f1; . . . ;kg, is a feature matrix Xi 2 R

N�fi , with N denoting
the number of examples or gene pairs (rows in Xi) and fi the
number of features (columns in Xi). The concatenated dataset

is defined as Xkþ1 2 R
N�
Pk

i¼1
fi and results from concatenat-

ing the sets of feature matrices of all k individual data sources,
fX1; . . . ;Xkg. Each model is an ensemble of trees learned us-
ing a given dataset Xi with the corresponding labels for its N
examples (gene pairs). Models are trained together with
shared hyperparameters. Finally, the prediction score of a

pair is calculated as ŷ ¼
Pkþ1

i¼1 wiŷi , where wi is the weight of
model i and ŷi is the prediction probability score of the gene
pair according to model i. The weight wi of each model in the
final score is determined as the prediction performance on the
validation set, normalized over all models: wi ¼ piPkþ1

i¼1
pi

, where

pi denotes the performance of model i (see Supplementary
Material).

2.3 Model training and evaluation

We built ELISL models using two types of ensembles of deci-
sion trees: random forests [ELISL-RF (Ho 1995)] and
gradient-boosted decision trees [ELISL-GB (Friedman 2001)].

2.3.1 Single-cancer models
For each cancer type, we first split the labelled pairs into dis-
joint train (80%) and test (20%) sets. Then, we generated 10
runs: per run, pairs of train and test were drawn by random
undersampling of the majority class to ensure balance of posi-
tive and negative SL labels. All SL prediction models were
evaluated in 10 runs, each using one of the generated train/
test splits (runtimes in Supplementary Table S3). Per run,
models were learned on the train set and evaluated on the test
set using area under the precision–recall curve (AUPRC) and
receiver-operating characteristic curve (AUROC) as perfor-
mance metrics. For ELISL, the hyperparameters and the
weight of each submodel were determined with Bayesian grid
search and 5-fold cross-validation, using validation AUPRC
as performance metric (Supplementary Section S1.3). We
assessed significance of the difference in performance between
the best ELISL and the best of the other models using two-
sided Wilcoxon signed-rank tests.

2.3.2 Comparison with other SL prediction methods
We trained the pca-gCMF, GCATSL, and GRSMF methods
using the parameters suggested by the authors. For SBSL-EN,
and SBSL-MUVR, we found hyperparameters using grid
search as described in the original paper (Supplementary
Material). All models were trained and evaluated on the same
train and test sets.

2.3.3 Pan-cancer models
Pan-cancer models were obtained by ensembling the already
trained models from each cancer type, where the weight of
each model in the final prediction was attributed based on
validation performance. Combining the predictions of the dif-
ferent models in this way allowed us to bypass challenges of
training with large imbalances in number of samples across
cancer types. This would have required us to balance the data
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across cancer types, which could also severely limit the num-
ber of pairs available for training.

2.3.4 Importance of feature categories
We calculated the importance of each feature category for the
ELISL-RF models of the six cancer types with the smallest var-
iance in AUPRC scores across runs (BRCA, CESC, COAD,
LAML, LUAD, and OV). To calculate the importance score
for a given feature set, we permuted the values of all of its fea-
tures across the gene pairs in the test set, so as to break the re-
lation between features and labels. When permuting a given
feature set, the concatenated features also changed accord-
ingly. We calculated the prediction errors for the original test
set and each of 20 different permuted test sets as (1-AUPRC)
scores. The importance score was then defined as the ratio be-
tween the prediction errors obtained for the permuted test set
and the original test set.

2.4 Detailed analysis of predicted SL pairs

To evaluate predictions for gene pairs with known labels, we
ranked all gene pairs found in at least 1 of the 10 tests sets
based on their average prediction probability scores of the
single-cancer models obtained over the 10 runs.

2.4.1 Predictions for gene pairs with unknown SL labels
We created a set of gene pairs with unknown SL labels for
breast cancer by generating all possible pairs of genes found
in cancer and DNA repair pathways, using KEGG, PID, and
Reactome pathway gene sets from the molecular signatures
database v7.1 (Liberzon et al. 2011). From the total of 572
genes found across all pathways (Supplementary Section
S1.2.1), we generated 163 306 gene pairs. After excluding the
pairs already present in the train or test sets, we ended up
with 163 118 gene pairs. The SL scores of the pairs with un-
known labels were determined as the average prediction prob-
ability over the 10 runs of the single-cancer experiment.

2.4.2 Survival analysis of newly predicted SL gene pairs
To validate predicted SL gene pairs without known labels, we
investigated differences in survival time between patients with
or without simultaneous alterations (co-mutation) in both
genes. Given that only a small number of patient tumours typ-
ically carried simultaneous mutations, we looked at the rela-
tion between gene families rather than individual genes. We
stratified the patient tumour samples into two groups based
on co-mutation status, denoting presence or absence of altera-
tions in genes of both families. Specifically, for a given pair of
genes (Gene 1 and Gene 2), we denote the group of samples
with co-mutations in both a member from the family of Gene
1 (Fam 1) and a member from the family of Gene 2 (Fam 2)
as (Fam 1 and Fam 2), while the group without co-mutations
is expressed by �(Fam 1 and Fam 2). Survival times of both
groups were estimated using a CoxPH model, including cova-
riates for age, sex, and cancer type in addition to co-mutation
status. The significance of each variable in the CoxPH model
(P-value) was calculated using Wald significance tests. We
also generated plots of Kaplan–Meier survival curves for the
patient groups. Additionally, we represented two subgroups
of the group without co-mutations, namely: the subgroup
with mutation in only one of the families but not both (Fam 1
or Fam 2), and the subgroup with no mutation in any of the
genes from both families (Unaltered). Note that, although the
ELISL-RF model included a survival-based feature as part of

the tissue-specific model, the contribution of tissue features
overall was reportedly small (1.09). One reason for this could
be the fact that survival data were very sparse due to the rare
occurrence of co-mutations in both genes.

3 Results and discussion

3.1 Cancer-specific SL prediction

We first evaluated the ability of ELISL models to generalize
within a cancer type, for eight distinct cancer types. We com-
pared ELISL-RF and ELISL-GB to five other recently pub-
lished ML models with high performances in their categories,
namely: pca-gCMF, GRSMF, and GCATSL as SL-topology
methods, and SBSL-MUVR and SBSL-EN as supervised ML
models.

Supervised ELISL models significantly outperformed the
other methods in breast (BRCA), lung (LUAD), and skin
(SKCM) cancers (Wilcoxon P � 0:01). Graph-based matrix
factorization GRSMF took the lead in cervix (CESC) and co-
lon (COAD), and was close second to GCATSL in leukaemia
(LAML) and ovarian (OV) cancers [AUPRC (Fig. 1c),
AUROC (Supplementary Figs S1a and S2a)], with ELISL
models remaining competitive as well. The performance of
GCATSL varied widely across cancer types, and was notably
poor in BRCA, COAD, and SKCM. For kidney (KIRC) can-
cer, all methods showed high variance, and there was no clear
best performing model. Overall, across all cancer types and
runs, ELISL-GB was the most successful method (average
AUPRC 0.805), while GRSMF and ELISL-RF were second
and third (average AUPRCs 0.796 and 0.785), respectively
(Supplementary Fig. S2a). SL-topology models showed strik-
ingly high performances in OV. This is consistent with the
previous report that SL-topology methods might excel on OV
due to the strong selection bias in SL labelled pairs, which
span a limited set of functionally related genes (Seale et al.
2022).

3.2 Robustness of SL prediction to gene selection

bias

To assess the impact of gene selection bias on the SL predic-
tion methods, we performed experiments with induced or in-
herent differences in selection bias between the train and test
sets.

3.2.1 Double gene holdout
To induce differences in gene selection bias, we enforced zero
overlap in genes between each train and corresponding test
set (Fig. 2a). This differs from the original experiment
(Fig. 1c), where matched train/test sets were disjoint in terms
of gene pairs but not individual genes. All methods were eval-
uated in four cancer types: BRCA, CESC, LUAD, and OV.
We excluded KIRC and SKCM due to the limited number of
gene pairs, and COAD and LAML due to poor performances
in the original experiment (Fig. 1c).

Using double gene holdout, the performances of all models
decreased significantly for all cancer types [AUPRC (Fig. 2a),
AUROC (Supplementary Figs S1b and S2b)], possibly owing
to the reduction in the number of training gene pairs imposed
by the train/test set construction (Supplementary Table S5).
For BRCA, the two ELISL models performed the best (median
AUPRC: ELISL-RF 0.67, ELISL-GB 0.69), while the perfor-
mance of SL-topology methods dropped to nearly random
(Fig. 2a, top left). For CESC, GRSMF had outperformed

ELISL 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad764/7479688 by TU
 D

elft Library user on 17 January 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data


0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

P = 0.00195

cancer = BRCA

P = 0.92188

cancer = CESC

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

Methods

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

P = 0.19336

cancer = LUAD

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

Methods

P = 0.04883

cancer = OV

GCATSL GRSMF pca-gCMF SBSL_EN SBSL_MUVR ELISL-RF ELISL-GB Random

(a)

(b)

Single cancer experiment Single cancer experiment

Single cancer experiment Single cancer experimentDouble holdout experiment

Double holdout experiment Double holdout experiment

Double holdout experiment

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

P = 0.00586 P = 0.00391 P = 0.01953

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

Methods

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

PR
C

P = 0.00586

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

Methods

P = 0.01367

G
C

AT
SL

G
R

SM
F

pc
a-

gC
M

F

SB
SL

_E
N

SB
SL

_M
U

VR

EL
IS

L-
R

F

EL
IS

L-
G

B

Methods

P = 0.55664

BRCA from ISLE to discoverSL LUAD from discoverSL to ISLE LUAD from discoverSL to EXP2SL

BRCA from discoverSL to ISLE LUAD from ISLE to discoverSL LUAD from EXP2SL to discoverSL

Figure 2. Impact of gene selection bias on SL prediction performance. (a) Left panels: performance under similar train/test bias (same as in Fig. 1c); right

panels: double gene holdout inducing differences in gene selection bias between train and test set. Performance (AUPRC) per cancer type and for 10 runs

where each pair of train and test sets does not share any genes. P: significance of the difference between the double holdout performances of the two

models that performed best under similar bias. (b) Cross-SL label source. Performance (AUPRC) reported for models trained using labels from one SL

source and evaluated on another SL source (10 runs). P: significance of the difference between the best ELISL model and the best of the other models.

6 Tepeli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad764/7479688 by TU
 D

elft Library user on 17 January 2024



ELISL in the original single-cancer experiment, but this differ-
ence was no longer apparent or significant using double gene
holdout (Wilcoxon P � 0:92, Fig. 2a, top right). For LUAD,
most methods struggled with double gene holdout (Fig. 2a,
bottom left). However, supervised ML models SBSL and
ELISL retained above random performances, with ELISL-RF
achieving the best median AUPRC (0.59). For OV, we saw
the largest decrease in performance using double holdout
compared to the original experiment, which was expected
given the prominent SL label bias. ELISL-RF and GRSMF
performed the best in OV (median AUPRC 0.59 for both) us-
ing double gene holdout, while SBSL models retained their
originally modest performances (Fig. 2a, bottom right). The
GCATSL method performed poorly with double gene holdout
in all cancers (near 0.5 median AUPRC), including in OV for
which it was the best model in the original experiment (0.98
median AUPRC).

Overall, supervised ML models SBSL and ELISL performed
better than the remaining models using double gene holdout.
SL-topology methods delivered inconsistent performances
across cancer types, and were thus more sensitive to selection
bias. ELISL models outperformed the other methods in BRCA
and LUAD, and were comparable to the best performing
models in CESC and OV.

3.2.2 Cross-SL label prediction
Since the double holdout is an extreme scenario, we also eval-
uated SL prediction models with inherently occurring differ-
ences in gene selection bias between train and test sets. To do
this, we trained the models using SL labelled pairs from one
data source and tested them on labelled pairs from another
source for the same cancer type. We used the following (and
reverse) SL labelled sources, yielding between 78 and 1146
train samples (Supplementary Table S5): for BRCA, train on
ISLE and test on DiscoverSL; for LUAD, train on DiscoverSL
and test on EXP2SL or Lu et al.

ELISL models outperformed the other methods when train-
ing on ISLE and predicting on DiscoverSL for BRCA, as well
as when training on DiscoverSL and predicting on EXP2SL
for LUAD [AUPRC (Fig. 2b), AUROC (Supplementary Figs
S1c and S2c)]. For the remaining LUAD experiments, one of
the ELISL models ranked second, whereas the linear SBSL-EN
model took the lead. ELISL was not competitive when train-
ing on DiscoverSL and predicting on ISLE for BRCA: this was
the combination where models had the least number of gene
pairs to train on, 78, which could be challenging for models
using larger numbers of features, such as ELISL. Overall,
across all cancer types and runs, ELISL-RF was the most suc-
cessful method in both the double holdout and cross-dataset
experiments (average AUPRCs 0.631 and 0.685), while SBSL-
EN was second best with average AUPRCs 0.617 and 0.665,
respectively (Supplementary Fig. S2b and c). Thus, supervised
ML models emerged as the most robust to selection bias, with
SBSL-EN and ELISL-RF standing out.

3.3 Cross-cancer SL prediction using ELISL-RF

models

There is evidence that some SL interactions may occur in mul-
tiple cancer types. For instance, PARP-inhibitor drugs are ap-
proved for the treatment of BRCA-deficient breast, ovarian,
prostate (Teyssonneau et al. 2021), and pancreatic (Brown
and Reiss 2021) tumours (Ashworth and Lord 2018). This
suggests that there could be some benefit in leveraging

successful models trained on cancer types with sufficient data
(BRCA, LUAD, and OV) to predict SL in other cancers, for
which samples are either not available or difficult to obtain
(CESC, KIRC, and SKCM). To investigate, we evaluated the
performance of cancer-specific ELISL-RF models against each
of the remaining cancer types using the corresponding train
and test sets over 10 runs from the original single-cancer
experiment.

The success of cross-cancer SL predictions was modest for
most pairwise cancer combinations, to which the quality and
biases of the labels could have contributed as well [AUPRC
(Fig. 3a), AUROC (Supplementary Fig. S3a)]. Nevertheless,
we saw some promising results. For the prediction of CESC
pairs, the LUAD-trained model performed better than the
CESC-trained model itself (0.85 versus 0.77 mean AUPRC).
Models trained on COAD or KIRC also achieved reasonable
performances in CESC (0.69 and 0.71 mean AUPRC, respec-
tively). For SL prediction in KIRC, the best model was trained
using KIRC labelled pairs (0.72 mean AUPRC), followed by
the model trained on CESC (0.68 mean AUPRC), and by the
models trained on BRCA and LUAD (0.63 mean AUPRC).
Overall, the results indicate that there could be potential in
identifying SL relationships across cancer types.

We further investigated if models learned using SL labels
from multiple cancer types (pan-cancer) would provide any
benefit compared to cross-cancer predictions. For every can-
cer type T, we trained models using labelled pairs from all
other cancer types except T, and then evaluated the predic-
tions for labelled pairs in T (see Section 2). Pan-cancer models
showed promising performance for CESC (0.74 mean
AUPRC) and reasonable results for KIRC (0.65; Fig. 4a, bot-
tom row). Performances of pan-cancer models were not better
than those of cancer-specific and cross-cancer models, indicat-
ing that prior selection of relevant cancer types could be
needed to effectively enable pan-cancer models to predict SL
for cancer types with limited sample sizes.

3.4 Feature contributions to ELISL-RF models

To quantify the contribution of the different feature categories
to the predictions of the ELISL-RF model, we used permuta-
tion feature importance (Fisher et al. 2019) (see Section 2).
Sequence embeddings emerged as the most important feature
in five cancer types (BRCA, COAD, LAML, LUAD, and OV),
and second most important in CESC (mean importance: se-
quence 1.18) behind dependency with mutation (mean impor-
tance: 1.23) (Fig. 3b). We note that importance values were
more prominent for BRCA, CESC, LUAD, and OV because
the performance of ELISL-RF was also higher for these cancer
types (between 0.77 and 0.94 mean AUPRC) compared to
COAD and LAML (0.67 and 0.63). High performance means
low errors, which can result in larger ratios (importances) for
small changes in performance. Beyond sequence, PPI and the
interaction of CRISPR dependency and mutation were the
second most important feature categories overall. Ultimately,
all data sources contributed to the ELISL-RF model (mean im-
portance > 1) in at least two cancer types, with the variation
in importance across cancers suggesting that the integration
of multiomics could be beneficial for cross-cancer SL predic-
tion. We checked if the high-dimensionality of sequence
embeddings influenced ELISL-RF, but using embedding sizes
between 32 and 1024 led to comparable performances
(Supplementary Section S1.4 and Supplementary Fig. S3b).
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3.5 Potential of SL pairs predicted by ELISL-RF

models

To further assess the potential of ELISL-RF models, we first
analysed the top known gene pairs ranked by prediction prob-
ability in BRCA, LUAD, and OV. The top three pairs for
BRCA and OV were labelled as synthetic lethal (Fig. 4a). In
fact, all top 82 pairs for BRCA and top 16 pairs for OV had
positive labels, confirming that ELISL-RF can recover known
SL interactions. For LUAD, we counted six SL and four non-
SL pairs amongst the top 10 predictions (Supplementary
Table S6). Notably, the highest ranked gene pair in LUAD,
KRAS-MRPL28, had a non-SL label. However, an indepen-
dent study found that disruption of MRPL28 was lethal in
KRAS-mutant cancer cell lines (Martin et al. 2017). The find-
ing was for colorectal cell lines, but lung cancer could share
underlying mechanisms given that KRAS mutations are fre-
quent in lung and colorectal cancers, and colorectal cancers
often metastasize to lung (Penna and Nordlinger 2002, Mitry
et al. 2010). Therefore, we cannot discard the possibility that
KRAS-MRPL28 could be mislabelled for LUAD.

3.5.1 Predictions for gene pairs with unknown SL status
Finally, we used ELISL-RF to make predictions for unknown
gene pairs. We focussed on BRCA, for which ELISL-RF mod-
els achieved the highest performance across experiments with
varying gene selection bias. Since we aimed to assess the im-
pact of top SL and non-SL predictions on patient survival, we
also trained a separate ELISL-RF model on BRCA data with-
out the survival feature for fairer analysis. We predicted labels
for all pairs of genes involved in cancer and DNA repair path-
ways from KEGG, Reactome, and PID (Supplementary
Section S1.2.1) using both models. Overall, ELISL-RF

without survival feature assigned higher SL prediction scores
to pairs with known SL labels (median 0.62), compared to
pairs with known non-SL labels (median 0.38), as expected
(Fig. 4b). The distribution of SL prediction scores for un-
known pairs showed no particular tendency (median 0.49).

Without the survival feature, we found two unknown gene
pairs among the 10 pairs with the highest ELISL-RF predic-
tion scores, BRCA2–FGF6 and BRCA2–WNT10A (Fig. 4c),
immediately followed by BRCA1–NEIL2 and BRCA1–
NEIL1 among unknown pairs (Supplementary Fig. S4). Using
the survival feature, ELISL-RF ranked three unknown gene
pairs in the top 10: BRCA1–HHIP, BRCA2–FGF6, and
BRCA1–FGF8 (Fig. 4c and Supplementary Fig. S4). Of note,
BRCA1–HHIP also ranked highly without the survival fea-
ture (15th among unknowns). We investigated the functional
roles of these genes and their families, as well as association
with patient survival. We extended our analysis to gene fami-
lies to obtain more robust estimates of survival time, given
that genes were infrequently co-altered.

Concerning the BRCA1–HHIP interaction, the hedgehog
interacting protein (HHIP) binds to all three hedgehog (HH)
family members (IHH, SHH, and DHH) with affinity to the
PTCH1 receptor, and regulates the HH signalling pathway
(Chen and Struhl 1996, Marigo et al. 1996, Ingham and
McMahon 2001). The HH pathway is SL with the PI3K/
AKT/mTOR pathway in rhabdomyosarcoma (Graab et al.
2015), and the inhibition of PI3K is known to strengthen
BRCA–PARP SL in BRCA1-deficient breast cancer (Juvekar
et al. 2012). We thus reason that the HHIP gene or HH fam-
ily could be an SL partner for BRCA1/2. Notably, the
BRCA2–PTCH1 pair had a positive SL label (Wang et al.
2014), and all pairs between BRCA genes and HH family
members yielded high prediction scores (>0.7 without

BRCA CESC COAD KIRC LAML LUAD OV SKCM
Test

O
TH

ER
O

V
LU

AD
LA

M
L

KI
R

C
C

O
AD

C
ES

C
BR

C
A

Tr
ai

n

0.6 0.74 0.45 0.65 0.51 0.57 0.43 0.53

0.5 0.58 0.52 0.59 0.5 0.57 0.47 0.81

0.49 0.5 0.47 0.55 0.5 0.45 0.87 0.63

0.6 0.85 0.45 0.63 0.53 0.86 0.46 0.46

0.6 0.66 0.51 0.56 0.63 0.67 0.49 0.57

0.71 0.71 0.48 0.72 0.51 0.58 0.48 0.53

0.48 0.69 0.67 0.61 0.51 0.41 0.48 0.62

0.5 0.77 0.57 0.68 0.51 0.58 0.46 0.48

0.94 0.52 0.47 0.63 0.49 0.58 0.48 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) (b)

Permutation Dataset Importance

Sequence

PPI

CRISPR
w/ Mutation

CRISPR
w/ Expression

Tissue

Sequence

PPI

CRISPR
w/ Mutation

CRISPR
w/ Expression

Tissue

cancer = COAD cancer = LAML

1 2 3

Sequence

PPI

CRISPR
w/ Mutation

CRISPR
w/ Expression

Tissue

cancer = LUAD

1 2 3

cancer = OV

cancer = BRCA cancer = CESC
SK

C
M

Figure 3. ELISL-RF SL prediction within/across cancer types and feature contribution. (a) Performance of cancer-specific models and pan-cancer models,

measured as average AUPRC over 10 runs. Pan-cancer model performances are reported in a separate row at the bottom, where models are trained on

all other cancer types except the one the model is supposed to predict on. (b) Contribution of each data source to the predictions of the ELISL-RF model

within the same cancer type.

8 Tepeli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad764/7479688 by TU
 D

elft Library user on 17 January 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad764#supplementary-data


survival feature, Fig. 4d). Analysis of TCGA tumour samples
showed that patients whose tumours carried alterations in a
BRCA gene (BRCA1 or BRCA2) and an HH family member
(IHH, SHH, DHH, and PTCH1) had longer survival times
than the rest (difference in median >220 months and
P � 8:04� 10�3; Fig. 4e and Supplementary Table S7).

We assessed the BRCA2–FGF6 and BRCA1–FGF8 pairs
together, as involving a BRCA gene and fibroblast growth
factor (FGF) family member (FGF1 to FGF23). The FGF fam-
ily regulates cell differentiation and proliferation, taking part
in cancer pathogenesis (Beenken and Mohammadi 2009). The
BRCA1–FGF12 pair had a positive SL label, and all pairs be-
tween a BRCA gene and FGF family members had prediction
scores higher than 0.7 (Fig. 4d). The median survival time for
patients whose tumours had alterations in both families,
BRCA1/2 and FGF1 to FGF23, was 23 months longer than

for other patients with P � 1:55� 10�2 (Fig. 4f and
Supplementary Table S7).

The top 5% of gene pairs (SL score >7.57) also included
several interactions between BRCA genes and WNT family
members, eight and six when using and not using the survival
feature, respectively (Fig. 4d and Supplementary Fig. S4). The
WNT pathway regulates various processes, including cell fate
determination (Nusse 2005, Patel et al. 2019), and its inhibi-
tion could induce a BRCA-like state that makes cells vulnera-
ble to PARP inhibition (Kaur et al. 2021). This might suggest
interactions between WNT, BRCA, and PARP. Patients with
tumours carrying mutations in BRCA and WNT genes lived
(median) 89 months longer than the rest (P � 7:35� 10�5;
Fig. 4g and Supplementary Table S7).

The NEIL gene family (comprising NEIL1-3) encodes DNA
glycosylases involved in DNA repair via the base excision
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Figure 4. Analysis of top SL gene pairs predicted by ELISL-RF. (a) Top 3 pairs ranked by SL prediction score for BRCA, LUAD, and OV (average across 10

test sets). (b and c) Show results for prediction of unknown gene pairs (not in test sets) using ELISL-RF trained on BRCA data without the survival feature.

(b) Distribution of SL scores for unknown pairs compared to known SL and non-SL pairs. Dashed lines denote 5% and 95% percentiles. (c) Prediction
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gene pair, using Kaplan–Meier curves and Wald test P-values of survival differences based on CoxPH models of co-mutation status adjusted for age, sex,

and cancer type. For pairs involving BRCA genes and members of the (e) HH, (f) FGF, (g) WNT, and (h) NEIL families.
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repair mechanism (Prakash et al. 2012, Parsons and Edmonds
2016). Prior literature has suggested that specific SNPs in the
NEIL2 gene could establish a synthetic lethal relationship
with BRCA1/2 genes (Osorio et al. 2014, Ben�ıtez-Buelga et al.
2017). Our analysis of TCGA tumour samples unveiled that
patients with alterations in a BRCA gene (BRCA1/2) and a
member of the NEIL family (NEIL1-3) experienced 24-month
longer median survival times than others, although this differ-
ence did not reach statistical significance, likely due to the in-
frequency of co-occurring alterations (P � 9:63� 10�2;
Fig. 4f and Supplementary Table S7).

For comparison with the known BRCA–PARP interaction,
alterations in both BRCA and PARP (PARP1-16) genes led to
20 months longer median survival (P � 3:14� 10�3;
Supplementary Fig. S5). For contrast, we looked at the four gene
pairs with the lowest ELISL-RF scores for both models, with
and without the survival feature. The union yielded five unique
gene pairs: three pairs with non-SL label, PARP1–RIPK1 (both
models), MAP3K7–PARP1 (both models), and GRK4–PARP1
(without survival); and two pairs with unknown SL status,
namely MAP2K2–PARP1 (with survival) and DAPK2–PARP1
(both models) (Supplementary Fig. S6). For PARP–RIPK,
MAP3K–PARP, DAPK–PARP, and GRK–PARP, survival of
patients with alterations in both gene families was respectively 8,
3, 9, and 8 months shorter (P-values 3:83� 10�1, 4:07� 10�6,
2:15� 10�1, 2:09� 10�2; Supplementary Fig. S6a–d). For
MAP2K–PARP, alteration in both gene families was associated
with 17 months longer survival and P � 2:41� 10�3

(Supplementary Fig. S6e).
Overall, the significant association between patient survival

times and co-alteration in families of highly ranked gene pairs
suggests that ELISL-RF prioritizes promising SL interactions.

4 Conclusion

We proposed ELISL, forest ensemble models that leverage
gene functional relationships to predict SL in cancer. To our
knowledge, ELISL models are the first to use context-free di-
rect protein sequence relationships as a proxy for functional
association for SL prediction, in addition to context-specific
omics. The ELISL early–late integration strategy effectively
enabled learning from high-dimensional sequence embeddings
and tailored omics features.

ELISL models outperformed existing SL prediction meth-
ods, emerging as the most robust models overall under vary-
ing gene selection bias. Nevertheless, learning from biased
data remains a fundamental ML challenge that merits further
research. Some SL-topology models (GRSMF and pca-gCMF)
performed well when train and test set followed similar distri-
butions, but struggled to make useful predictions under differ-
ent bias, confirming previous work (Seale et al. 2022). Other
feature-based models, SBSL, showed inconsistent performan-
ces across cancer types. This result exposed the issue of rely-
ing on context-specific features alone, which can be sparse or
unavailable for some cancer types.

Sequence embeddings contributed the most to the predic-
tions of ELISL models, and thus were responsible for the ad-
vantage of ELISL over context-specific SBSL models.
Sequence embeddings also make ELISL models less dependent
on context-specific features like gene dependencies, which are
exclusively available for cellular models and may not directly
translate to patient tumours.

Predicting SL relations for a cancer type using a model
trained on another cancer type revealed challenging, but it
was encouraging to see that ELISL models trained on colon,
kidney, or lung cancer performed reasonably well on cervix
cancer. Cross-cancer prediction should improve as higher
quality, less biased, SL data become available. Nevertheless, a
few successful cases point to the existence of SL interactions
across cancer types, which could bring benefit to a larger
number of patients in the future.

Using ELISL to make predictions for unknown gene pairs, we in-
vestigated promising SL interactions. Survival analysis showed that
simultaneous mutations in a BRCA gene and at least one member
of the HH, FGF, WNT, or NEIL families associated with longer
median patient survival times, reinforcing the ability of ELISL to
predict SL interactions with therapeutic potential.

Supplementary data

Supplementary data are available at Bioinformatics online.
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