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A B S T R A C T

Shared automated vehicles (SAV) are expected to benefit the sustainable development of urban
regions and alleviate the negative impacts brought by the increasing number of private cars.
In this paper, we envision a future scenario where non-pooled SAVs replace private cars and
provide public on-demand mobility services to satisfy the mobility needs of a city’s residents.
To help service providers make profitable fleet sizing and management decisions, we develop a
mixed-integer non-linear programming model that considers the congestion effects and the mode
choice of urban travellers in different income classes, between SAVs and bicycles. Our model
optimises both strategic decisions (fleet size, initial fleet distribution, and service quality level)
and operational decisions (trip assignment, vehicle routing, parking, and relocation). Travellers’
preference for both transport modes is described through a binary logit model and congestion
effects are described by dynamically varying travel times with respect to traffic flow in a non-
linear fashion. In addition, we investigate two types of accept/reject mechanisms (mandatory
vs. non-mandatory acceptance) which lead to an endogenously determined acceptance rate that
can affect travellers’ willingness to use SAV services. The computational challenge posed by the
non-linear and non-convex nature of the model is addressed through reformulation and the
use of outer-inner approximation methods combined with a breakpoint generation algorithm.
We demonstrate the effectiveness of our proposed method in a case study of the city of Delft
in The Netherlands, as well as a scaling analysis on three toy networks with various sizes
and demand profiles. A sensitivity analysis of key parameters is carried out to assess system
performance. Computational results indicate that fleet sizing decisions are influenced not only
by the population’s geographical distribution and land use patterns but also by the pricing
strategy, unit operating costs of the SAV fleet, network congestion level, and traveller behaviour.
When the price rate of using SAVs is low, the fleet sizing decisions can also be influenced by
the trip accept/reject mechanism and the travellers’ sensitivity to the service quality level. In
addition, a low price of SAV service will attract more users but may not necessarily bring a
higher profit because of the increased traffic congestion.
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1. Introduction

The idea of replacing private cars with shared mobility services and active modes of transport (walking and cycling) has gained
omentum rapidly in recent years. Several main reasons are driving this shift. Firstly, the rising number of private cars has been

ausing stress in cities, such as the lack of parking for the existing demand, increased traffic congestion, air pollution, energy waste,
nd traffic accidents between cars and between cars and vulnerable road users. These effects threaten the sustainable development
f urban regions. Furthermore, removing private cars within cities can lead to numerous positive impacts on public health, including
he reduction of air and noise pollution, heat islands, and the occurrence of injuries (Nieuwenhuijsen and Khreis, 2016). Promoting
he use of active modes of transport stands to significantly improve public health by encouraging physical activity. In addition,
n-demand mobility systems like Uber and Lyft have gained popularity due to their flexible, seamless, door-to-door services.
onsequently, in many cities across the world, the concept of a ‘car-free city’ is being considered and even adopted. Cities like
amburg, Oslo, Helsinki, and Madrid have announced their plans to be (partly) private car-free cities, and many cities such as
ogota, Brussels, Chengdu, Copenhagen, and Paris have implemented car-free days (Nieuwenhuijsen and Khreis, 2016).

Given the promising transition towards a transport system without private cars, researchers are exploring future smart mobility
olutions for urban implementation, especially considering the high costs associated with traditional public transportation provision.
mong these solutions, the utilisation of shared automated vehicles (SAVs) to provide public on-demand mobility services (Liang
t al., 2020; Spieser et al., 2014) stands out as one of the most promising. Various benefits have been assessed across different
imensions. As highlighted by Spieser et al. (2014), an automated mobility-on-demand (AMoD) solution has the potential to
ulfil the mobility needs of the entire population with approximately one-third of the total number of private cars in operation.
oreover, Fagnant and Kockelman (2014) point out that each SAV could replace around eleven privately owned cars, which brings

izeable energy consumption and greenhouse gas emissions savings. The deployment of SAVs in the transportation system could
lso lead to reduced parking demand, as revealed by Zhang and Guhathakurta (2017), due to the improved intensity of vehicle
tilisation and reduced usage of private vehicles. In the future mobility system, active modes of transport, such as walking and
ycling, will continue to be utilised by citizens alongside the provision of public services by SAVs. Walking remains suitable for
hort-distance trips, while bicycles offer a competitive mode of transport for longer distances due to their numerous advantages.
icycles are known for their flexibility, user-friendliness, sustainability, and superior environmental friendliness compared to SAVs,
aking them an attractive option for individuals seeking to reduce transportation costs. Thus, even with the widespread adoption

f SAVs, bicycles are expected to remain prevalent in city centres.
The emergence of such a mobility system will most likely lead to a notable surge in demand for SAV services, consequently

oosting the need to enhance the supply capability for on-demand responsive services across time. Simultaneously, the large-scale
eployment of SAVs is anticipated to induce substantial shifts in travel behaviour and mode choice, making the future demand
rofile different from what we have today. Thus, estimating the underlying demand and comprehending the factors that influence
he demand profile is important for SAV operators to make the right decisions in fleet sizing and management.

Demand for future SAV services and fleet management will interact with each other. Demand for SAV services has a close
elationship with travellers’ choice of travel mode behaviour, which is influenced by a variety of factors including price, travel
ime, service quality, and comfort level associated with a particular mode of transport (Ashkrof et al., 2019; Correia et al., 2019).
s a mobility service provider, an SAV operator needs to manage its fleet and provide sufficient service to fulfil the mobility needs of

heir clients, which could be the entire population if alternative modes are restricted. Generally, decisions within an SAV operation
ystem fall into two main categories: (1) strategic decisions determined prior to service launch (or only questioned between large
eriods of time), such as fleet sizing, pricing strategy, and service quality level; and (2) operational decisions made and adjusted in
eal-time in response to incoming requests and the dynamically evolving network status, including trip assignment, vehicle routing,
arking, and relocation decisions. This demonstrates the interdependent nature of demand and supply. However, most of the existing
tudies regarding SAVs assume fixed and known travel demand, which is particularly unsuitable for our problem, given that the
emand for the SAV service is currently quite unknown.

Another drawback of assuming travel demand as a known fixed number or as varying linearly with the service level is the
versights of travellers’ response to decreased network service levels induced by traffic congestion—a factor that significantly affects
emand patterns. This aspect is often disregarded in existing research on fleet sizing and management. Having in mind that the
oad network is highly congested (higher travel time) and/or that the travel cost is high compared with other transport modes,
ravellers may adjust their choices. Numerous studies have underscored the profound influence of traffic congestion on travellers’
ode preferences. For instance, a preference survey conducted by Chung et al. (2012) in Cheonggyecheon stream in downtown

eoul found a 3.2% decrease in private car usage due to increased congestion, accompanied by a corresponding 3.6% increase in
ubway ridership. Additionally, a survey by Tennøy (2010) revealed that 33% of travellers will shift from vehicles to other modes
uring periods of high congestion. Therefore, congestion plays a critical role in travellers’ travel decisions and should be taken into
ccount when predicting demand for SAV services.

In the framework of operations research, most existing research on fleet management problems with traffic congestion and
ravellers’ mode choice utilise simulation-based methods (Gurumurthy et al., 2020; Hörl et al., 2021; Oh et al., 2020; Pinto et al.,
020; Wang et al., 2022). Although simulation-based methods possess the capability to replicate intricate systems with high levels
f detail, they are often time-consuming as a large number of simulations must be executed to evaluate system performance under
arious scenarios of fleet size and operational rules. Extensive research has been conducted on traffic assignments, aiming to
omprehend how traffic congestion influences route choice and travel demand. Nevertheless, traditional traffic assignment only
2

odels the flow between origins and destinations, without considering complex planning and operational decision-making for SAV
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services, such as parking location, relocation strategies, and optimal fleet size. Recent research incorporates traffic assignment into
(service) network design problems to evaluate the response of travellers to the (service) network design decisions (Cai et al., 2022;
Pinto et al., 2020; Xu et al., 2018b; Ye et al., 2021). Typically framed as bi-level programming models, these problems decide
planning decisions at the upper level, and independently model a traffic assignment problem with mode choice at the lower level.
However, incorporating the complex operational decisions of SAV services is still challenging.

The centralised control of SAVs provides an opportunity for optimising the planning and complex operational decisions through
single-level model. Unlike human drivers who often prioritise individual route preferences, SAVs can behave cooperatively by

ollowing the route guidance from the fleet operator to maximise overall profit. With a shared profit-driven aim, the planning and
perational decisions can be addressed at the same level. Therefore, we propose a single-level mathematical programming model
rom the perspective of an SAV operator to determine the most profitable strategic decisions (fleet size, initial fleet distribution, and
ervice quality level) alongside the operational decisions of a typical day (trip assignment, vehicle routing, parking, and relocations)
hile considering the congestion effects and the traveller’s mode choice between SAVs and active modes of transport depending
n their specific income profile. In this study, we take bicycles as the representative of the active modes of transport for the sake
f simplicity. We specifically focus on commuting trips during the morning peak hour, and as such, walking is not considered a
ompetitive mode of transportation for SAVs.

We explore two types of accept/reject mechanisms, namely (1) accepting all the requests, and (2) rejecting some requests but
he rejection rate will influence travellers’ attitudes towards using SAV services, to investigate how service quality levels influence
he travel demand and SAV operator supply decisions. This type of accept/reject mechanism is widely considered in dial-a-ride
roblems when some trips are not profitable or impossible to be picked up or delivered within the desired time windows. However,
ost papers only consider this mechanism from the service providers’ point of view and ignore the effect of service quality level on
assengers’ willingness to use the service again. A high rejection rate of user requests will lower the probability of a client requesting
he service again.

We formulate the proposed problem as a novel mixed integer non-linear non-convex programming model, in which a binary
ogit model is embedded to describe the travellers’ mode choice between SAVs and bikes. Recognising that travellers with different
emographic characteristics behave differently in terms of mode choice, we divide the users into three income classes. Each class
f travellers perceives the travel utility differently, which is time-dependent, flow-dependent, and path-dependent. The congestion
ffect is described within the model by dynamically varying travel times with respect to traffic flow. To capture the time-dependent
eatures of traffic flow, we model the vehicle movement through flow variables in a time-space network where the studied time
eriod is discretised and the spatial network is expanded in the time dimension. Different from the traditional vehicle routing
roblem where each vehicle is tracked individually, we use an aggregated flow which can reduce the number of decision variables in
he optimisation model. To facilitate the solution process, we reformulate the model into a mixed-integer linear programming model.
inearisation techniques are proposed to tackle the non-linearity brought by the binary logit model, acceptance rate constraints, and
emand calculation constraints. In particular, the outer-inner approximation method together with a breakpoint generation method
s proposed to linearise the binary logit model. The breakpoint generation method aims to find the least number of breakpoints
ith a pre-specified acceptable approximation error. The expression of the maximum approximation error in a specified interval is
iven.

The main contributions of this paper are summarised as follows:

• This paper extends previous work by incorporating travellers’ reactions to traffic congestion levels. The fleet management
decisions in this context, including the strategic decisions and operational decisions, are constrained by the demand-supply
equilibrium modelled through multi-class travellers’ mode choice behaviour and are influenced by congestion effects. Thus,
the obtained results can provide more practical and realistic managerial and operation insights for future SAV operators.

• This paper investigates how accept/reject mechanisms influence the closed demand-supply loop in the context of SAVs. It
also highlights the importance of considering the impact of service quality on passengers’ willingness to continue using SAV
service, emphasising the role of user attitudes and satisfaction in the success and sustainability of SAV systems. To the best of
our knowledge, it is still an under-explored topic.

• The proposed flow-based model incorporates three essential elements – mode choice, traffic congestion, and accept/rejection
mechanisms – into a single-level optimisation model. This allows us to explore the intricate interactions between these
elements, leading to a better understanding of the dynamics in SAV systems.

• The proposed model is validated through comprehensive case studies conducted in the city of Delft, The Netherlands, and three
toy networks with various sizes and demand profiles. Additionally, sensitivity analyses on critical parameters are conducted,
enabling a thorough assessment of system performance under diverse scenarios.

The remaining sections of this paper are organised as follows. The literature on fleet management and demand modelling
s reviewed in Section 2. Section 3 presents the non-linear non-convex mathematical model of the proposed fleet sizing and
anagement problem. In Section 4, a detailed description is provided of how to linearise the proposed model, enabling its solvability
sing state-of-the-art solvers. In Section 5, a case study on the city of Delft in the Netherlands is performed. In addition, a scaling
nalysis is conducted in Section 6 to evaluate the model’s performance with various network sizes and demand profiles. Section 7
3

ives the main conclusions and provides an outlook on research needs.
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2. Literature review

In this paper, we aim to combine the SAV service fleet sizing and management problem, SAVs congestion modelling, and SAV
emand modelling in one optimisation problem. Therefore, from these three aspects, we review the literature to demonstrate the
aps that we have identified as well as search the grounds for the required methodologies for our purpose.

.1. Fleet management with congestion effect and travellers’ mode choice

A considerable amount of literature has been published on the fleet management problem. The literature includes a wide range of
opics such as capacitated vehicle routing problems, vehicle routing problems with time windows, pickup and/or delivery problems,
leet sizing and vehicle routing problems, dial-a-ride transport, etc. This is independent of the vehicles being or not automated.
nterested readers can refer to Hyland and Mahmassani (2017) for the taxonomy of vehicle fleet management problems. More
pecifically, we classify our problem as an extension of fleet sizing and the vehicle routing problem with travellers’ pickup and
elivery. The objective of this type of problem is to identify the optimal planning decisions that yield the minimum costs or the
aximum profit for the fleet operator, which is constrained by the trip assignment and vehicle operations on the network.

As we mentioned before, most of the existing research on fleet management problems with closed supply–demand loops, the
onsideration of congestion effect and travellers’ mode choice use simulation techniques (Gurumurthy et al., 2020; Hörl et al., 2021;
h et al., 2020; Pinto et al., 2020; Wang et al., 2022). Only a handful of studies consider a similar problem using an optimisation-
ased method or a hybrid approach that combines optimisation with simulation. Wei et al. (2022) study the optimal transit schedules
hile taking into account the competition with ride-hailing services and traffic congestion. A mixed integer non-linear program is
roposed and solved using a bi-level heuristic algorithm including an outer loop and inner loop. The strategic transit scheduling
ecisions are determined in the outer loop given travellers’ mode choice and congestion estimates. The path choice of ride-hailing
ehicles and congestion levels are determined in the inner loop in a traffic assignment problem. However, they consider simplified
ide-hailing operations by ignoring the relocation of ride-hailing vehicles, and parking decisions. Thus, the congestion effects caused
y the re-locations of vehicles cannot be captured in the model. Pinto et al. (2020) combine optimisation-based and simulation-based
echniques. They propose a bi-level programming model to investigate the integration of the transit network redesign problem and
leet sizing problem for a shared autonomous mobility service. The upper level determines the transit pattern headways and fleet
ize of SAVs and the lower level describes the combined mode choice–traveller assignment problem. Their approach involves an
terative heuristic procedure where the upper-level problem is solved with a non-linear programming solver and the lower-level
roblem is solved through agent-based simulation given the decisions made at the upper level.

.2. Congestion modelling in fleet management problems

Congestion in road transportation networks has been extensively studied in traffic assignment problems. As one of the major
actors influencing the transportation network’s performance and decisions related to route choice, congestion effects are increasingly
eing considered in fleet management problems as well. Liang et al. (2018) envision a future on-demand mobility system where
utomated vehicles (AVs) serve as taxis to provide mobility services. They take into account the impact of congestion in determining
he optimal trip assignment and dynamic routing of AVs. Expanding on this theme, Liang et al. (2020) delve into a dial-a-ride problem
nvolving ride-sharing in light of the traffic congestion caused by the routing of a large number of AVs. Fan et al. (2022) investigate
he heterogeneous fleet sizing and vehicle routing problem for an on-demand mobility service provider envisioning a progressive
xpansion of AVs-only zones. The congestion effect is incorporated into the model to examine the impacts of the AVs-only zone on
ravellers’ behaviour and network performance.

The congestion effect, measured quantitatively by the variation of travel time as a function of flow, is typically expressed by the
ell-known Bureau of Public Roads (BPR) function, which is non-linear. Incorporating this non-linear function into a mathematical
rogramming model makes it difficult to solve to optimality. To address this issue, techniques have been proposed including but not
imited to: (1) reformulating and linearising the non-linear term (Wang et al., 2015); (2) replacing the BPR function by selecting one
rom multiple link-traveltime choices at each time point (Van Essen and Correia, 2019); (3) adopting an iterative solution algorithm
ntil the algorithm converges (Correia and Van Arem, 2016). In addition to the mathematical programming model, simulation-based
ethods have also been used as a modelling technique to study the congestion effects on the fleet management problem (Fagnant

nd Kockelman, 2014; Wang et al., 2022).
Existing studies on SAV fleet management problems fall short of taking users’ preferences and choice behaviours into account,

specially the behaviour that is influenced by the effect of traffic congestion on travel times. This is an important factor that impacts
he mobility pattern and mode preference of travellers, thereby influencing the demand for SAV services and the supply.

.3. Demand modelling methods in optimisation

A fundamental assumption used in a large body of literature on fleet management is that demand for all OD pairs is fixed and
nown in advance (Correia and Van Arem, 2016; Liang et al., 2018; Van Essen and Correia, 2019; Liang et al., 2020; Fan et al., 2022),
4
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which does not match with the real world. Assuming travel demand to be constant may lead to unrealistic managerial decisions that
result in substantial financial losses for SAV operators. Thus, a more appropriate representation of demand in the fleet management
problem is essential.

Demand modelling methods have been widely explored in the existing literature evolving from trip-based models to activity-based
odels. Trip-based demand modelling representations include but are not limited to the following: (a) elastic demand represented

y a simple linear function (Jorge et al., 2015) or a non-linear function such as an exponential function (Huang and Kockelman,
020; Huang et al., 2020; Xu and Meng, 2020); (b) probability-based demand representation of discrete choice models, such as the
inary logit model (Guo et al., 2022; Lu et al., 2021; Tian et al., 2022), multinomial logit model (Atasoy et al., 2014; Joksimovic
t al., 2005; Yang et al., 2022), logit-based chance-constrained model (Dong et al., 2022), mixed logit model (You et al., 2022); (c)
isaggregate demand representation of discrete choice models by using simulation-based linearisation (Paneque et al., 2021, 2022);
d) machine-learning methods under a big data context (Wang et al., 2020). In addition to these trip-based methods, researchers
ave also developed methods to study activity-based models that focus on the interdependent choice of full daily activity-travel
atterns at an individual or household level. These include nested logit models, dynamic discrete choice models (Västberg et al.,
020), machine-learning-based methods (Ren and Chow, 2022), etc.

Among these methods, the discrete choice model is traditionally used to analyse choice behaviours. In this paper, we incorporate
he logit model into our trip-based optimisation problem for the following reasons. Compared with a simple linear function or an
xponential function, the logit model is more realistic as it describes the probability of selecting a particular alternative against other
lternatives considering a number of factors and their relative importance. It can also take into account the travellers’ socioeconomic
haracteristics such as income level, age, etc. Simulation-based linearisation method is a promising method, but generating a large
umber of scenarios may bring a big computational burden. Machine learning methods can analyse individual decisions with a
igher prediction accuracy but the big data context is missing for the future scenario.

Including the non-linear logit formula in a mathematical model makes the model difficult to solve to optimality due to the non-
inear and non-convex formulations. To tackle the non-linearity, researchers proposed many solution methods, such as linearisation
lgorithm (piece-wise linear function approximation(Wang and Lo, 2010), outer-approximation(Xu et al., 2018a), outer-inner
pproximation(Liu and Wang, 2015; Guo et al., 2022)), heuristic and meta-heuristic (Azadeh et al., 2022; Dong et al., 2022;
oksimovic et al., 2005; Tian et al., 2022; Lu et al., 2021), and simulation (Lou et al., 2011; Paneque et al., 2021; Wang et al.,
022). Among all of them, one of the most fundamental methods is the piecewise-linear function-based approximation, which aims
o find the optimal solution by replacing the non-linear term in the objective function or constraints with a series of piece-wise
inear functions. The key idea is to transform the mixed-integer nonlinear programming model into a linear one, and then solve the
roblem to optimality. A variant of this is the outer/outer-inner approximation method. Instead of replacing the non-linear term
ith a series of piecewise linear functions, this method specifies the upper bound/the upper and lower bound of the non-linear

erm using a series of linear constraints. In this paper, we adopt the outer-inner approximation method to tackle the computational
hallenge brought by the logit model.

. Problem formulation

In this section, we start by outlining the assumptions of the problem and then provide a detailed description of the mathematical
ormulation of the proposed model.

.1. Assumptions

In this paper, we envision a future scenario in which cities are only accessible by SAV services and active modes of transportation
e.g. bicycles). Travellers who choose SAVs can request transportation services at any location in a city using SAV service applications
n their smartphones by providing trip information. After receiving the trip information, the platform decides whether to accept
r reject the trip. Two accept/reject mechanisms are investigated in this paper, namely (1) an SAV operator has to accept all the
equests, or (2) an SAV operator may reject a trip if it provides no benefits to the company. In this case, those rejected trips will use
icycles. Of course, travellers can choose to use bicycles directly if they perceive that using this mode provides greater travel utility.
nce the request is accepted, the platform will match available SAVs with customers and dispatch them to pick up the customers.

Before we can formally introduce the model, we describe the made assumptions.
(a) The proposed model serves a strategic planning purpose. During the study period, the total mobility demand in an urban

rea is assumed to be constant and known in advance, enabling the SAV operator to make optimal planning decisions. This stands
n contrast to real-time SAV operating systems where future demand remains uncertain, necessitating the continuous updating of
he optimal operational strategy in response to new incoming demand.

(b) We assume that SAVs and bicycles operate in separate lanes or designated areas, ensuring physical separation and minimal
nteraction. The flexibility and manoeuvrability of bicycles allow cyclists to easily bypass congested areas and find alternative routes.
s a result, our study primarily focuses on analysing the congestion effects caused by the routing of SAVs. It is worth noting the

mportance of considering interactions between bicycles and AVs, especially in cases where infrastructures do not allow for the
eparation of traffic (Hulse, 2023; Madigan et al., 2019; Vlakveld et al., 2020). However, we do not extensively delve into this topic
ithin the scope of our paper.

(c) We assume that travellers have perfect information about the transportation network status and will make a rational mode
5

hoice based on their perceptions of travel time.
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Fig. 1. Model structure.

(d) We assume that the SAVs in our study are at SAE level 5, and they are capable of driving throughout the entire network
without the presence of a human driver.

(e) Neither privately-owned vehicles nor human-driven vehicles are considered as an option.
(f) A traveller will only utilise a single travel mode. Transferring between modes is not considered.
(g) The model considers exogenous fares by taking SAVs. Deciding on the optimal fares is an interesting future direction.
(h) Pooled services are not considered in this study.
To provide a comprehensive understanding of the proposed model, we have illustrated its structure in Fig. 1, which outlines

the decisions, input, and output information. Additionally, we have summarised the mathematical notations used in Section 3 in
Table 1 for easy reference.

3.2. Network representation

To capture the endogenous dynamic traffic congestion caused by the large-scale deployment of SAVs, we utilise a time-space
network. A time-space network is a time-expanded version of the directed physical network (𝑁,𝐿), where 𝑁 and 𝐿 denote the set of
nodes and road links, respectively. The time dimension is discretised into  periods, with each period having a duration 𝛥𝑡, referred
to as the time step, hereinafter. Consequently, an index set of time periods 𝑇 = {0, 1, 2,… ,  } is defined within the study horizon.
At each time instant 𝑡 ∈ 𝑇 , the network is replicated, thus multiple networks are defined along with the time period, as shown in
Fig. 2. We define set 𝐺 to denote the set of links in the time-space network.

Different from the traditional physical network, the status of vehicles on the time-space network is described by both the action
of the vehicles and the time those actions take. Thus, vehicles either move with passengers or relocate without passengers on links
(𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, representing the flow departing from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 from time instant 𝑡1 ∈ 𝑇 to time instant 𝑡2 ∈ 𝑇 ,
or park at node 𝑖 ∈ 𝑁𝑝 from time instant 𝑡 to 𝑡 + 1 where 𝑡 ∈ 𝑇 . 𝑁𝑝 denotes the subset of nodes 𝑁 allowing parking for SAVs.
Here, the parking depots are restricted parking areas spread across the city that are provided by the SAV operator for their vehicles;
therefore, parking is only permitted at certain designated nodes. Fig. 2 provides an illustrative example of vehicle movements within
a time-space network, depicting passenger deliveries using solid lines, relocation movements without passengers heading to parking
stations or passengers’ pick-up/drop-off locations with dashed lines, and parking states displayed by dotted lines. In this small
physical network, we assume a uniform travel time of 1 time step for each link.

Several physical attributes related to the road links are defined, such as the length of road link (𝑖, 𝑗) ∈ 𝐿 denoted as 𝑙𝑖𝑗 , the
capacity of road link (𝑖, 𝑗) ∈ 𝐿 per time step denoted as 𝑄𝑖𝑗 , and the maximum and minimum travel time of link (𝑖, 𝑗) ∈ 𝐿 denoted
as 𝑡max

𝑖𝑗 and 𝑡min
𝑖𝑗 , respectively. Given the maximum and minimum travel time of link (𝑖, 𝑗) ∈ 𝐿, we can further shrink the size of set

𝐺 by only including the possible time choices instead of doing a complete enumeration for all the time instants. It means that we
only include link (𝑖𝑡1 , 𝑗𝑡2 ) where 𝑡1 + 𝑡min

𝑖𝑗 ≤ 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 .

Please note that when using a time-space network framework, travel time is represented in an integer number of time periods.
However, this representation does not imply that the actual travel time must be an integer value. The integer value corresponds
to the index of the time period within the study horizon. The actual value of travel time depends on the chosen time step, which
may or may not be an integer. However, we do recognise that the time step sets the precision of travel times where the maximum
precision is always limited by the duration of the time step.
6
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Table 1
Notation.

Notation Description

Sets

𝑇 = {0, 1, 2,… ,  }. Set of time instants in the operation period.
𝑁 Set of nodes.
𝐿 Set of road links between nodes in set 𝑁 .
𝐺 Set of links in the time-space network.
𝑁𝑃 Set of nodes allowing parking for SAVs with 𝑁𝑃 ⊆ 𝑁 .
𝑅 Set of groups of trips, where each group of trips 𝑟 ∈ 𝑅 has the same origin, destination, departure time, and latest

arrival time at the destination.
𝑀 Set of travel modes, with the automated vehicles (𝐴𝑉 ) and bicycles (𝐵) as the two options.

Choice model
Parameters

𝑉 𝑟
𝐵 Deterministic systematic component of the utility of bicycles for group of trips 𝑟 ∈ 𝑅.

𝑂𝑀 𝑟
𝑚 Monetary costs of travellers in group 𝑟 ∈ 𝑅 using mode 𝑚 ∈ 𝑀 , in euros.

𝛽0 Parameter converting generalised costs into utility, in utility/euro.
𝛽1 Parameter converting service rate into utility.
𝑉 𝑂𝑇 𝑟

𝑚 Travellers’ value of travel time in group 𝑟 using mode 𝑚 ∈ 𝑀 , euros/time step.
𝑇 𝑟
𝐵 Travel time of using bicycles for trips in group 𝑟 ∈ 𝑅.

𝑛𝑟 Total number of trips for group 𝑟 ∈ 𝑅.

Auxiliary variables

𝑉 𝑟
𝐴𝑉 Deterministic systematic component of travellers’ utility for using an SAV in group 𝑟 ∈ 𝑅.

𝑇 𝑟
𝐴𝑉 Longest SAVs travel time for group 𝑟 ∈ 𝑅.

𝑃 𝑟
𝐴𝑉 Probability to choose SAVs for the trips in group 𝑟 ∈ 𝑅.

𝐷𝑟
𝐴𝑉 Total number of trips using SAVs in group 𝑟 ∈ 𝑅.

Fleet sizing and management model
Parameters

𝛥𝑡 Time step.
𝑙𝑖𝑗 Length of road link (𝑖, 𝑗) ∈ 𝐿.
𝑄𝑖𝑗 Capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles per time step.
𝑡max
𝑖𝑗 Maximum travel time by cars on road link (𝑖, 𝑗) ∈ 𝐿.
𝑡min
𝑖𝑗 Minimum travel time by cars on road link (𝑖, 𝑗) ∈ 𝐿.
𝐶𝑖𝑡1 𝑗𝑡2

Spatial capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles that fit on the road link from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺.
𝛼 Trip service rate when all the requests have to be accepted, %.
𝑜𝑟 Origin node for group of trips 𝑟 ∈ 𝑅.
𝑑𝑟 Destination node for group of trips 𝑟 ∈ 𝑅.
𝑎𝑟 Departure time for group of trips 𝑟 ∈ 𝑅.
𝑏𝑟 Latest arrival time for group of trips 𝑟 ∈ 𝑅.
𝑠𝑑𝑟 Shortest travel distance for group of trips 𝑟 ∈ 𝑅, in kilometres.
𝑠𝑡𝑟 Shortest travel time assuming free-flow speed for group of trips 𝑟 ∈ 𝑅, in time steps.
𝑝0 Initial base fare for using an SAV, in euros/trip.
𝑝 Travel distance-related price for using an SAV, in euros/km.
𝑐𝑜 Unit driving operational cost of an SAV, in euros/km.
𝑐𝑑 Penalty for drop-off delay of passengers, in euros/time step.
𝑐𝑓 Depreciation cost in one hour for using an SAV, in euros/vehicle.

Decision variables

𝑆𝑟 Total number of trips served by SAVs from group 𝑟, where 𝑟 ∈ 𝑅.
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
Passenger flow in the group of trips 𝑟 ∈ 𝑅 served by an SAV in road link (𝑖, 𝑗), from time instant 𝑡1 to 𝑡2. Only defined
for (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, 𝑎𝑟 ≤ 𝑡1 < 𝑡2 ≤ 𝑏𝑟. If 𝑡1 = 𝑎𝑟, then 𝑖 = 𝑜𝑟.

Auxiliary variables

𝛼 Trip service rate when some requests can be rejected.
𝑉 SAV fleet size.
𝑉𝑖 Initial distribution of SAVs at parking node 𝑖 ∈ 𝑁𝑝 at the beginning of a day.
𝐸𝑟

𝑡 Total number of passengers in group of trips 𝑟 ∈ 𝑅 arriving at time 𝑡 ∈ 𝑇 .
𝐹𝑖𝑡1 𝑗𝑡2

Vehicle flow in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺. Note that when 𝑡1 = 0, 𝑖 ∈ 𝑁𝑃 , meaning
that SAVs have to depart from the parking nodes at the beginning of a day.

𝑊𝑖𝑡 Total number of vehicles parking at node 𝑖 ∈ 𝑁𝑃 from time instant 𝑡 to 𝑡 + 1, with 𝑡 ∈ 𝑇 .
𝑍𝑟

𝑡 Binary variable with 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 if 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑏𝑟.
𝑋𝑖𝑡1 𝑗𝑡2

Binary variable which is 1 when any vehicle travels in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺,
and 0 otherwise.

𝐴𝑟
𝑡 Binary variable which is 1 when at least one trip in group 𝑟 ∈ 𝑅 arrives at time 𝑡 ∈ 𝑇 , and 0 otherwise.
7
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Fig. 2. Illustration of the physical network, the time-space network, and vehicle movements over the time-space network.

3.3. Demand representation and choice modelling

We consider the peak hour of a typical workday in an urban area, where congestion occurs which influences travellers’ mode
choices. Instead of tracking each trip individually, demand that shares the same travel information is aggregated into a group. We
introduce set 𝑅 as the set of groups of trips, where each group of trips 𝑟 ∈ 𝑅 has the same origin 𝑜𝑟 ∈ 𝑁 , destination 𝑑𝑟 ∈ 𝑁 , departure
time 𝑎𝑟 ∈ 𝑇 , latest arrival time 𝑏𝑟 ∈ 𝑇 , shortest travel distance 𝑠𝑑𝑟 in kilometres, shortest travel time 𝑠𝑡𝑟, and the same income level
in euro/time step. Note that trips within a group only have the same departure time, latest arrival time, and shortest travel time
based on time periods, not based on the real times in seconds. Trips from one group are allowed to use different transport modes
and the total number of trips in group 𝑟 ∈ 𝑅 is denoted as 𝑛𝑟. We denote 𝑀 as the set of travel modes, with the shared automated
vehicles (𝐴𝑉 ) and bicycles (𝐵) as the two options.

The mode choices for travellers in each group are analysed using discrete choice modelling within the framework of random
utility maximisation theory. To measure the willingness or preference for using a certain type of travel mode, the utility of each
mode is calculated. Besides that, three income levels for travellers are considered: high income, middle income, and low income.
The income level determines the value of travel time (VOTT) of travellers, which has a direct impact on their perceived utility for
using a particular travel mode and consequently influences their mode choice. The VOTT of using travel mode 𝑚 ∈ 𝑀 for travellers
in the same group 𝑟 ∈ 𝑅 is assumed to be the same, which is denoted by 𝑉 𝑂𝑇 𝑟

𝑚 in euro/time step. The three classes are not explicitly
defined in the model but are implicitly included in the travel information of each group of trips.

However, the utility is not known with certainty due to factors such as unobserved variation among travellers, unobserved
attributes of the alternatives, and perception errors of travellers (Ben-Akiva et al., 1985). Therefore, the utility of mode 𝑚 ∈ 𝑀 for
trips in the group 𝑟 ∈ 𝑅, denoted as 𝑈 𝑟

𝑚, is treated as a random variable. It consists of a deterministic systematic component 𝑉 𝑟
𝑚,

which is the observable utility of mode 𝑚 ∈ 𝑀 for trips in the group 𝑟 ∈ 𝑅, and a random component 𝜖𝑟𝑚, which is the unobservable
component of the utility.

𝑈 𝑟
𝑚 = 𝑉 𝑟

𝑚 + 𝜖𝑟𝑚, ∀𝑟 ∈ 𝑅,𝑚 ∈ 𝑀 (1)

The deterministic term 𝑉 𝑟
𝐴𝑉 of the utility for using an SAV for group 𝑟 ∈ 𝑅 depends on the generalised cost of using SAVs

and travellers’ satisfaction towards SAV services. To be more specific, the generalised cost of using SAVs for group of trips 𝑟 ∈ 𝑅 is
calculated as the linear sum of the fare of travellers 𝑂𝑀𝑟

𝐴𝑉 and the travel time-related cost of the journey 𝑉 𝑂𝑇 𝑟
𝐴𝑉 𝑇

𝑟
𝐴𝑉 . The fare 𝑂𝑀𝑟

𝐴𝑉
of using the SAV service for travellers in group 𝑟 ∈ 𝑅 depends on the pricing strategy of SAV operators and the travel distance of a
trip. The perceived travel time 𝑇 𝑟

𝐴𝑉 is affected by the dynamically varying traffic congestion, which can be determined endogenously
by solving the optimisation model. 𝛽0 is a parameter that converts generalised costs into utility, expressed as utility/euro, which
indicates the sensitivity of travellers to the change in the monetary costs. Travellers’ satisfaction with the SAV service depends on
the trip service rate 𝛼. When the SAV operator is not allowed to reject any trips, the trip service rate equals 1 (100%). However, if
some trips are rejected by the SAV operator, the trip service rate will be less than 1, which will decrease the traveller’s satisfaction
with the SAV service. 𝛽1 is the parameter that describes travellers’ satisfaction with the service rate.

𝑉 𝑟
𝐴𝑉 = −𝛽0(𝑂𝑀𝑟

𝐴𝑉 + 𝑉 𝑂𝑇 𝑟
𝐴𝑉 𝑇

𝑟
𝐴𝑉 ) − 𝛽1(1 − 𝛼), ∀𝑟 ∈ 𝑅 (2)

Alternatively, the deterministic term 𝑉 𝑟
𝐵 of the utility for using a bicycle for group 𝑟 ∈ 𝑅 is calculated based on the monetary cost

of using bicycles, as shown in Eqs. (3). The monetary cost 𝑂𝑀𝑟
𝐵 for group 𝑟 ∈ 𝑅 is the bicycle’s depreciation cost which is calculated

by dividing the bicycle’s purchase price by its service life. We assume that the travel time 𝑇 𝑟
𝐵 for group 𝑟 ∈ 𝑅 is a constant, as the

congestion in motor lanes will not affect the travel time of bicycles.

𝑉 𝑟
𝐵 = −𝛽0(𝑂𝑀𝑟

𝐵 + 𝑉 𝑂𝑇 𝑟
𝐵𝑇

𝑟
𝐵), ∀𝑟 ∈ 𝑅 (3)

In Eqs. (1), 𝜖𝑟𝑚 is the error between the actual utility and the systematic utility of mode 𝑚 ∈ 𝑀 for trips in group 𝑟 ∈ 𝑅, which
can be viewed as the part of utility that is unknown to the analyst. Assuming these error terms are all independently and identically
8
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Gumbel distributed, we can compute the probability of choosing SAVs against bicycles in group 𝑟 ∈ 𝑅, denoted as continuous
variables 𝑃 𝑟

𝐴𝑉 , by using a binary logit model shown in Eqs. (4).

𝑃 𝑟
𝐴𝑉 = 𝑒𝑉

𝑟
𝐴𝑉

𝑒𝑉
𝑟
𝐴𝑉 + 𝑒𝑉

𝑟
𝐵
, ∀𝑟 ∈ 𝑅 (4)

We introduce integer variables 𝐷𝑟
𝐴𝑉 to represent the demand for SAVs for group 𝑟 ∈ 𝑅, which can be calculated using the total

umber of trips 𝑛𝑟 in group 𝑟 ∈ 𝑅 multiplied by their probability of choosing SAVs. Then, we round this value to the nearest integer
sing a floor function as shown in Eqs. (5).

𝐷𝑟
𝐴𝑉 = ⌊𝑛𝑟𝑃 𝑟

𝐴𝑉 + 0.5⌋, ∀𝑟 ∈ 𝑅 (5)

.4. Fleet sizing and management for SAV operators

In this section, we develop the base formulation for an SAV operator to manage the SAV fleet. Three tiers of decisions are made
n this model: (1) at the strategic level: the overall SAV fleet size, the initial fleet distribution at the beginning of a day and the
ervice quality level; (2) at the operational level: the assignment of passengers to SAVs, vehicle routes determination, parking and
elocation decisions; and (3) the travel time on each road link.

For each group 𝑟 ∈ 𝑅, the total number of trips served by SAVs is specified by integer variables 𝑆𝑟. Therefore, the relationship
between the total number of served trips, the total demand and the service rate can be described by Constraint (6). It should be
noted that when an SAV operator must accept all the requests to maintain a high level of service quality, the parameter 𝛼 is set
to 1. When an SAV operator can reject those requests that bring no profits for the company, 𝛼 is defined as a continuous variable
where 𝛼 ∈ [0, 1] and its value is determined endogenously by solving the model. As a result, Constraint (6) becomes a non-linear
constraint.

𝛼
∑

𝑟∈𝑅
𝐷𝑟

𝐴𝑉 =
∑

𝑟∈𝑅
𝑆𝑟 (6)

In addition, for each of the group 𝑟 ∈ 𝑅, the number of served trips 𝑆𝑟 should be less than the demand for SAVs 𝐷𝑟
𝐴𝑉 .

𝑆𝑟 ≤ 𝐷𝑟
𝐴𝑉 , ∀𝑟 ∈ 𝑅 (7)

The movement of vehicles is modelled as flow circulating on the time-space network. We introduce integer variables 𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

to represent the passenger flow in the group of trips 𝑟 ∈ 𝑅 served by an SAV in road link (𝑖, 𝑗), from time instant 𝑡1 to 𝑡2. These
variables are only defined for (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, 𝑎𝑟 ≤ 𝑡1 < 𝑡2 ≤ 𝑏𝑟. If 𝑡1 = 𝑎𝑟, then 𝑖 = 𝑜𝑟. Passengers in the same group 𝑟 ∈ 𝑅 are picked
up by the SAVs at the origin node 𝑜𝑟 at the departure time 𝑎𝑟 where 𝑟 ∈ 𝑅. This is ensured by Constraints (8). In this study, we
do not model the explicit waiting time from the passenger’s perspective. We focus on a strategic planning problem, assuming that
all the trip information is available in advance. This enables the service operator to make optimal planning decisions. Our primary
focus is to determine the required number of vehicles to ensure that travellers depart at their desired times. In addition, this analysis
concentrates on two urban travel modes: SAVs and bicycles. Our expectation is for the SAV operator to deliver a high-quality service,
with a short waiting time for travellers before pick-up. Nevertheless, we do acknowledge that our approach possesses limitations
in scenarios where passengers make their requests without sufficient advance notice and demand immediate vehicle availability.
In such cases, ignoring passenger waiting time could impact strategic decision-making. However, the explicit inclusion of waiting
time through modelling could increase the model’s complexity, presenting challenges in achieving optimal solutions. As a result, to
strike the balance between computational complexity and accuracy, we choose not to model the waiting time explicitly.

𝑆𝑟 =
∑

𝑗𝑡|
(

𝑜𝑟𝑎𝑟 ,𝑗𝑡
)

∈𝐺

𝑃𝐹 𝑟
𝑜𝑟𝑎𝑟 𝑗𝑡

, ∀𝑟 ∈ 𝑅 (8)

When delivering passengers to their destination 𝑑𝑟, SAVs serving the same group of trips 𝑟 ∈ 𝑅 are allowed to take alternative
routes to evenly distribute the flow and alleviate the network burden. For this reason, SAVs may arrive at the destination at different
times, but not later than the user-specified latest arrival time 𝑏𝑟. To describe this, integer variables 𝐸𝑟

𝑡 are defined to represent the
total number of passengers in group of trips 𝑟 ∈ 𝑅 arriving at time 𝑡 ∈ 𝑇 with 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟. Constraints (9) and (10) ensure that
the number of served trips in group 𝑟 ∈ 𝑅 is equal to the number of trips arriving at destination 𝑑𝑟 at different times.

𝑆𝑟 =
∑

𝑡∈𝑇 |𝑎𝑟+𝑠𝑡𝑟≤𝑡≤𝑏𝑟
𝐸𝑟
𝑡 , ∀𝑟 ∈ 𝑅 (9)

𝐸𝑟
𝑡 =

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡1 𝑑

𝑟
𝑡
, ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (10)

Constraints (11) and (12) guarantee that the destination node 𝑑𝑟 and the origin node 𝑜𝑟, respectively, of the group of trips 𝑟 ∈ 𝑅
will only be visited once during client delivery. It indicates that passengers will be dropped off at the destination node the first time
the SAV arrives there, and SAVs will not return to the origin node after departure.
9
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∑

𝑗𝑡1 |
(

𝑑𝑟𝑡 ,𝑗𝑡1

)

∈𝐺

𝑃𝐹 𝑟
𝑑𝑟𝑡 𝑗𝑡1

= 0, ∀𝑟 ∈ 𝑅, 𝑎𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (11)

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑜
𝑟
𝑡

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡1 𝑜

𝑟
𝑡
= 0, ∀𝑟 ∈ 𝑅, 𝑎𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (12)

The next constraints describe the passenger flow conservation at any nodes 𝑖 ∈ 𝑁 in the network except the origin node 𝑜𝑟 and
destination node 𝑑𝑟 for the group of trips 𝑟 ∈ 𝑅.

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺

𝑃𝐹 𝑟
𝑗𝑡1 𝑖𝑡

=
∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡𝑗𝑡2

, ∀𝑟 ∈ 𝑅, 𝑎𝑟 < 𝑡 < 𝑏𝑟, 𝑖 ∈ 𝑁, 𝑖 ≠ 𝑜𝑟, 𝑖 ≠ 𝑑𝑟 (13)

On the road, SAVs have three statuses: (1) transporting a passenger; (2) driving empty to pick up the next passenger or driving
to a parking depot; and (3) being parked at a depot. We introduce continuous variables 𝐹𝑖𝑡1 𝑗𝑡2

to describe the vehicle flow (the
umber of SAVs) in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺. Note that when 𝑡1 = 0, only links with 𝑖 ∈ 𝑁𝑃 are
efined, meaning that SAVs have to depart from the parking nodes at the beginning of the day. In addition, continuous variables
𝑖𝑡 are defined to represent the total number of SAVs parking at node 𝑖 ∈ 𝑁𝑃 from time instant 𝑡 to 𝑡 + 1, with 𝑡 ∈ 𝑇 . Note that

here is no need to define 𝐹𝑖𝑡1 𝑗𝑡2
and 𝑊𝑖𝑡 as integer variables explicitly. The integrality requirement for these variables is implicitly

atisfied through Constraints (14)–(17), which will be explained later.
No matter in which status, the vehicle flows 𝐹𝑖𝑡1 𝑗𝑡2

in the time-space network should always be greater than the passenger flow
𝑟∈𝑅 𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
to satisfy the mobility need, as indicated by Constraints (14).

∑

𝑟∈𝑅
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
≤ 𝐹𝑖𝑡1 𝑗𝑡2

, ∀
(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺 (14)

The next constraints describe the flow conservation rules applied to SAVs’ circulation at both normal and parking nodes.
∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺,𝑡1<𝑡

𝐹𝑗𝑡1 𝑖𝑡
=

∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺,𝑡<𝑡2

𝐹𝑖𝑡𝑗𝑡2
, ∀𝑖 ∈ 𝑁 ⧵𝑁𝑃 , 0 < 𝑡 <  (15)

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺,𝑡1<𝑡

𝐹𝑗𝑡1 𝑖𝑡
+𝑊𝑖𝑡−1 =

∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺,𝑡<𝑡2

𝐹𝑖𝑡𝑗𝑡2
+𝑊𝑖𝑡 , ∀𝑖 ∈ 𝑁𝑃 , 0 < 𝑡 <  (16)

It is worth mentioning that the vehicle flow 𝐹𝑖𝑡1 𝑗𝑡2
is associated with a vehicle flow-related cost in the objective function, which is

inimised. Further details about the objective function can be found in Section 3.6. Consequently, the minimum number of vehicles
equired to transport passengers in link (𝑖𝑡1 , 𝑗𝑡2 ) equals the total number of passengers ∑

𝑟∈𝑅 𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

according to Constraints (14),

hich is an integer. Besides the occupied vehicle flow, 𝐹𝑖𝑡1 𝑗𝑡2
also includes the empty relocating vehicle flow. These empty vehicles

re either driving after delivering the passengers or are on their way to pick up new passengers. According to the vehicle conservation
onstraints, these flows may be integer values as well.

The initial distribution of SAVs at parking node 𝑖 ∈ 𝑁𝑝 at the beginning of a day is denoted by integer variables 𝑉𝑖. At the
eginning of the optimisation period, SAVs either depart from the parking depots to pick up passengers or park at the parking node
aiting for the task given by the SAV operator, as described in Constraints (17). Given that both 𝐹𝑖0 ,𝑗𝑡 and 𝑉𝑖 take integer values,
𝑖0 will also take integer values.

∑

𝑗𝑡|(𝑖0 ,𝑗𝑡)∈𝐺
𝐹𝑖0𝑗𝑡 +𝑊𝑖0 = 𝑉𝑖, ∀𝑖 ∈ 𝑁𝑝 (17)

In addition, the sum of the initial fleet distributed at the parking nodes gives the overall SAV fleet size, denoted as integer
ariable 𝑉 , as shown in Constraint (18).

∑

𝑖∈𝑁𝑝

𝑉𝑖 = 𝑉 (18)

To specify the longest travel time of trips in group 𝑟 ∈ 𝑅, we introduce binary variables 𝐴𝑟
𝑡 which are 1 when at least one trip

n group 𝑟 ∈ 𝑅 arrives at time 𝑡 ∈ 𝑇 , and 0 otherwise. Constraints (19) specify the arrival times of trips in group 𝑟 ∈ 𝑅. Then,
onstraints (20)–(22) calculate the longest travel time experienced by trips in group 𝑟 ∈ 𝑅. Constraints (20) impose a lower bound
o the longest travel time of trips in group 𝑟 ∈ 𝑅 meaning that it has to be bigger than or equal to all of the different travel times
xperienced by travellers. Constraints (21) and (22) impose an upper bound to the longest travel time meaning that it has to be
ess than or equal to the longest travel time among all of the different travel times experienced by travellers in group 𝑟 ∈ 𝑅. We
efine binary variables 𝑍𝑟

𝑡 and impose that ∑𝑡|𝑎𝑟+𝑠𝑡𝑟≤𝑡≤𝑏𝑟 𝑍
𝑟
𝑡 equals 1 to ensure that variable 𝑇 𝑟

𝐴𝑉 can only take one value which is
he longest travel time of travellers using SAVs in group 𝑟 ∈ 𝑅.  in Constraints (21) is a sufficiently large number.

𝐸𝑟
𝑡

𝑛𝑟
≤ 𝐴𝑟

𝑡 ≤ 𝐸𝑟
𝑡 , ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (19)

𝑇 𝑟 ≥ 𝐴𝑟(𝑡 − 𝑎𝑟), ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (20)
10

𝐴𝑉 𝑡
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𝑇 𝑟
𝐴𝑉 ≤ 𝐴𝑟

𝑡 (𝑡 − 𝑎𝑟) +(1 −𝑍𝑟
𝑡 ), ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (21)

∑

𝑡|𝑎𝑟+𝑠𝑡𝑟≤𝑡≤𝑏𝑟
𝑍𝑟

𝑡 = 1, ∀𝑟 ∈ 𝑅 (22)

3.5. Traffic congestion

We include traffic congestion in the model by introducing flow-dependent travel time. It is important to note that only the flow
of SAVs contributes to traffic congestion, as this study does not explore the mixed flow interaction between SAVs and bicycles.
According to the BPR function (Dafermos and Sparrow, 1969), the travel time of traversing a road link has a non-linear relationship
with the vehicle flow on this link: 𝑡 = 𝑡0

(

1 + 𝑎
(

𝐹
𝑄

)𝑏
)

. Here, 𝑎 and 𝑏 are parameters; 𝑡0 represents the minimum travel time, 𝐹
enotes the vehicle flow, and 𝑄 represents the link capacity. However, involving the non-linear BPR function makes the solving
rocess more difficult. Therefore, we adopt the method proposed by Van Essen and Correia (2019) to replace the non-linear travel
ime calculation with multiple link-time-capacity choices. They use the concept of spatial link capacity 𝐶𝑖𝑡1 𝑗𝑡2

of a certain link

𝑖, 𝑗) ∈ 𝐿 within a travel time slot between 𝑡1 ∈ 𝑇 to 𝑡2 ∈ 𝑇 . The spatial link capacities can be calculated before the optimisation
sing the following equation.

𝐶𝑖𝑡1 𝑗𝑡2
= (𝑡2 − 𝑡1)𝑄𝑖𝑗

(

1
𝑎

(

𝑡2 − 𝑡1
𝑡min
𝑖𝑗

− 1

))
1
𝑏

(23)

We add 0.5 to 𝑡2 when 𝑡2− 𝑡1 equals 𝑡min
𝑖𝑗 to prevent the value of 𝐶𝑖𝑡1 𝑗𝑡2

from being zero. Among all the link-time-capacity choices,
nly one can be selected, meaning that there is a unique travel time for traversing road link (𝑖, 𝑗) at a time instant 𝑡1 ∈ 𝑇 . This is
escribed in Constraints (24) by making use of binary variables 𝑋𝑖𝑡1 𝑗𝑡2

which are 1 when any vehicle travels in road link (𝑖, 𝑗) from
ime instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, and 0 otherwise. Note that using a large set of binary variables 𝑋𝑖𝑡1 𝑗𝑡2

in the time-space
etwork may increase the complexity of solving the model (Kaufman et al., 1998). Specifying the set of binary variables requires
he enumeration for each road link (𝑖, 𝑗) ∈ 𝐿 at each time instant 𝑡1 ∈ 𝑇 and 𝑡2 ∈ 𝑇 . However, in our case, given the maximum
nd minimum travel time of link (𝑖, 𝑗) ∈ 𝐿, we only define binary variables for each link (𝑖, 𝑗) from time instant 𝑡1 ∈ 𝑇 to 𝑡2 ∈ 𝑇 if
1 + 𝑡min

𝑖𝑗 ≤ 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 . This reduces the number of binary variables required.

∑

𝑡1|
(

𝑖𝑡 ,𝑗𝑡1

)

∈𝐺

𝑋𝑖𝑡𝑗𝑡1
≤ 1, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑡 ∈ 𝑇 (24)

Constraints (25) require that the total flow on road link (𝑖, 𝑗) from time instant 𝑡1 to time instant 𝑡2 never exceeds its corresponding
patial link capacity. Given that only one specific travel time will be chosen defined by Constraints (24), many flow variables 𝐹𝑖𝑡1 𝑗𝑡2
re imposed to zero.

𝐹𝑖𝑡1 𝑗𝑡2
≤
⌊

𝐶𝑖𝑡1 𝑗𝑡2

⌋

𝑋𝑖𝑡1 𝑗𝑡2
, ∀

(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺 (25)

Vehicles that enter the road link first will leave the road link. This is known as the first-in-first-out (FIFO) rule, described by
onstraints (26). These constraints only apply to time instant 𝑡1 and 𝑡2 when 𝑡1 < 𝑡2 ≤ 𝑡1+𝑡max

𝑖𝑗 −𝑡min
𝑖𝑗 . Otherwise, if 𝑡2+𝑡min

𝑖𝑗 > 𝑡1+𝑡max
𝑖𝑗 ,

here is no need to impose FIFO rule as vehicles entering the road link (𝑖, 𝑗) at time instant 𝑡1 with the longest travel time have left
he link before any vehicles entering the road link (𝑖, 𝑗) at a later time instant 𝑡2 despite travelling with the shortest travel time.

𝑡1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(

𝑡 − 𝑡1
)

≤ 𝑡2 +
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

(𝑡 − 𝑡2) +

(

1 −
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

)

, ∀(𝑖, 𝑗) ∈ 𝐿,

𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡min

𝑖𝑗

(26)

.6. Objective function

With the purpose of maximising the total profit of the SAV operator, we define the objective function as Eq. (27), which comprises
he total revenue paid by the service users and the total costs of operating the whole system. Service users have to pay two types
f fares for using an SAV, an initial fixed base fare 𝑝0 in euros, and a distance-related price 𝑝 in euros per kilometre. The distance-
elated price is charged based on the shortest travel distance 𝑠𝑑𝑟 of the trip 𝑟 ∈ 𝑅 instead of the actual travel distance to avoid the
nnecessary detours of SAVs in order to earn extra profits.

The total costs include the following: (1) the total depreciation costs of the SAV fleet in the system, which is calculated as the
nit depreciation cost in euros per vehicle, denoted as 𝑐𝑓 , multiplied by the total fleet size. Here, 𝑐𝑓 is calculated as the vehicle’s
urchase price divided by its service life span; (2) the total operational costs including fuel, maintenance and insurance cost, which
re calculated by multiplying the total distance of all the SAVs by the unit operational cost 𝑐𝑜 in euros per kilometre; note that
11

he total travel distance includes both the deliver distance with clients and the relocation distance without clients; (3) the penalty
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for the late drop-off of the client, calculated by multiplying the delay cost 𝑐𝑑 in euros per time step by the difference between the
actual riding time of clients and the shortest travel time.

max
∑

𝑟∈𝑅
𝑂𝑀𝑟

𝐴𝑉 𝑆
𝑟 − 𝑐𝑓 ⋅ 𝑉 − 𝑐𝑜

⎛

⎜

⎜

⎜

⎝

∑

(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺

𝑙𝑖𝑗𝐹𝑖𝑡1 𝑗𝑡2

⎞

⎟

⎟

⎟

⎠

− 𝑐𝑑
∑

𝑟∈𝑅

(

∑

𝑡∈𝑇
𝑡𝐸𝑟

𝑡 − 𝑎𝑟𝑆𝑟 − 𝑠𝑡𝑟𝑆𝑟

)

(27)

where

𝑂𝑀𝑟
𝐴𝑉 = 𝑝0 + 𝑠𝑑𝑟𝑝, ∀𝑟 ∈ 𝑅. (28)

4. Problem linearisation

The model proposed in Section 3 is a non-linear mixed integer programming model because of the exponential terms in binary
logit model in Eqs. (4), the floor function to calculate the SAV demand in Eqs. (5) and the quadratic term to determine the acceptance
rate in Constraint (6). To facilitate the solution process, we propose methods in Sections 4.1, 4.2, and 4.3 to linearise these non-
linear equations and constraints, thereby transforming the model into a mixed integer linear programming model. In addition, we
determine the most appropriate value for  used in Constraints (21) and (26) to get a tighter formulation of the proposed model,
which is presented in Section 4.4.

4.1. Linearisation of the binary logit model

In Section 4.1.1, we first reformulate the binary logit model in Eqs. (4) with logarithmic functions which are still non-linear.
Then, we adopt the outer-inner approximation method to linearise the logarithmic functions. Details of this method are described
in Section 4.1.2. To use this method, a set of breakpoints needs to be pre-specified before the optimisation. Thus, in Section 4.1.3,
we propose a breakpoint determination method to find the fewest breakpoints while guaranteeing a certain level of approximation
accuracy.

4.1.1. Model reformulation
We firstly rewrite Eqs. (4) as:

𝑃 𝑟
𝐴𝑉

1 − 𝑃 𝑟
𝐴𝑉

= 𝑒𝑉
𝑟
𝐴𝑉

𝑒𝑉
𝑟
𝐵
, ∀𝑟 ∈ 𝑅. (29)

Then, we take the logarithm of both sides of Eqs. (29) to have the following equation:

ln𝑃 𝑟
𝐴𝑉 − ln(1 − 𝑃 𝑟

𝐴𝑉 ) = 𝑉 𝑟
𝐴𝑉 − 𝑉 𝑟

𝐵 , ∀𝑟 ∈ 𝑅. (30)

By defining new variables 𝐿𝑁𝑟
𝐴𝑉 and 𝐿𝑁𝑟

𝐵 , we can further simplify the equation by having the following:

𝐿𝑁𝑟
𝐴𝑉 = ln𝑃 𝑟

𝐴𝑉 , ∀𝑟 ∈ 𝑅, (31)

𝐿𝑁𝑟
𝐵 = ln(1 − 𝑃 𝑟

𝐴𝑉 ), ∀𝑟 ∈ 𝑅, (32)

𝐿𝑁𝑟
𝐴𝑉 − 𝐿𝑁𝑟

𝐵 = 𝑉 𝑟
𝐴𝑉 − 𝑉 𝑟

𝐵 , ∀𝑟 ∈ 𝑅. (33)

.1.2. Linearisation of logarithmic functions: outer-inner approximation-based linear programming relaxation
We adopt the outer-inner approximation method (Wang et al., 2015; Guo et al., 2022) to linearise the logarithmic term in

onstraints (31) and (32). The logarithmic function can be relaxed to a set of linear constraints that give the upper and the lower
ound of the original logarithmic function (see Fig. 3). The procedure for linearising Constraints (31) and (32) are the same. For
he sake of simplicity, we only take Constraints (31) as an example.

The original logarithmic function is divided into  − 1 segments by  pre-determined breakpoints ( is the number of
reakpoints). For each segment, the tangent lines at the two breakpoints and the secant line between the breakpoints serve as
he upper bound and the lower bound of the real logarithm function, respectively. Note that the breakpoints can be distributed
on-uniformly to minimise the approximation error. We introduce an index set for breakpoints, denoted by 𝐾 = {1, 2,… , 𝑘,… ,}.

Each breakpoint 𝑘 ∈ 𝐾 has coordinates (𝑢𝑘, ln 𝑢𝑘) where 𝑢𝑘 ∈ [0, 1]. The segment between two adjacent breakpoints 𝑘 ∈ 𝐾 and
𝑘 + 1 ∈ 𝐾 is denoted by [𝑢𝑘, 𝑢𝑘+1]. If the value of variable 𝑃 𝑟

𝐴𝑉 falls within the interval [𝑢𝑘, 𝑢𝑘+1], we say that [𝑢𝑘, 𝑢𝑘+1] is an active
nterval. A binary variable 𝜆𝑘𝑟 is defined for 𝑘 ∈ {1, 2,… , 𝑘,… ,−1}, 𝑟 ∈ 𝑅 to indicate whether or not an interval [𝑢𝑘, 𝑢𝑘+1] is active
or group 𝑟 ∈ 𝑅.

A set of constraints is introduced to describe this outer-inner approximation. Constraints (34) describe the tangent lines at each
reakpoint, which serve as the outer approximation of the logarithmic function.

𝐿𝑁𝑟 ≤ 1 𝑃 𝑟 + ln 𝑢𝑘 − 1, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (34)
12
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Fig. 3. Outer-inner approximation.

Constraints (35)–(41) describe the inner approximation of the logarithmic function. The value of variables 𝐿𝑁𝑟
𝐴𝑉 and 𝑃 𝑟

𝐴𝑉 can
be represented by the convex combination of the coordinates of two consecutive breakpoints, where continuous variables 𝜃𝑘𝑟 are
defined to represent the convex combination coefficient for breakpoint 𝑘 ∈ 𝐾 for group of trips 𝑟 ∈ 𝑅, as shown in Constraints (35)
and (36).

𝐿𝑁𝑟
𝐴𝑉 ≥


∑

𝑘=1
𝜃𝑘𝑟 ln 𝑢

𝑘, ∀𝑟 ∈ 𝑅 (35)

𝑃 𝑟
𝐴𝑉 =


∑

𝑘=1
𝜃𝑘𝑟 𝑢

𝑘, ∀𝑟 ∈ 𝑅 (36)

The summation of coefficient 𝜃𝑘𝑟 has to be one, according to the convexity Constraints (37).

∑

𝑘=1
𝜃𝑘𝑟 = 1, ∀𝑟 ∈ 𝑅 (37)

There exists only one active interval, meaning that the value of 𝑃 𝑟
𝐴𝑉 and 𝐿𝑁𝑟

𝐴𝑉 can only fall into one line segment for each
𝑟 ∈ 𝑅, ensured by Constraints (38).

−1
∑

𝑘=1
𝜆𝑘𝑟 = 1, ∀𝑟 ∈ 𝑅 (38)

The following constraints describe the relationship between two consecutive breakpoints and the active interval in between.

𝜃1𝑟 ≤ 𝜆1𝑟 , ∀𝑟 ∈ 𝑅 (39)

𝜃𝑘𝑟 ≤ 𝜆𝑘−1𝑟 + 𝜆𝑘𝑟 , ∀𝑟 ∈ 𝑅, 𝑘 ∈ {2,… , − 1} (40)

𝜃𝑟 ≤ 𝜆−1
𝑟 , ∀𝑟 ∈ 𝑅 (41)

4.1.3. Breakpoints determination
The approximation error from the outer-inner approximation can be reduced by using more breakpoints in the area where the

nonlinear function has higher curvature. However, using too many breakpoints will significantly increase the number of variables
and constraints, resulting in a heavy computational burden. In this section, we propose a breakpoint determination method with the
aim of locating the fewest breakpoints with a good distribution so that a certain level of approximation accuracy can be guaranteed.

First of all, a maximum acceptable approximation (MAA) error for each interval needs to be specified as the threshold, denoted
by 𝛾. Then, the maximum approximation error between two consecutive breakpoints can be calculated given the equation of the
logarithmic function and the approximation functions. Details on how to calculate the maximum approximation error are introduced
later in this section. Next, specifying the coordinate of one breakpoint, the location of another breakpoint can be determined
by ensuring that the maximum approximation error within the interval formed by these two breakpoints does not exceed the
predetermined MAA error threshold 𝛾. In this case, we can start from the last known breakpoint which is (1, 0) for the logarithmic
13
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Fig. 4. Maximum approximation error.

function ln𝑃 𝑟
𝐴𝑉 , and then calculate the coordinate of the previous breakpoint. This procedure repeats until the x-coordinate of the

newly found breakpoint is smaller than the lower bound of 𝑃 𝑟
𝐴𝑉 for all the groups 𝑟 ∈ 𝑅, which is denoted as 𝑃 . 𝑃 is defined as

the minimum probability of choosing SAVs among all the groups, under which the demand for SAVs in all the groups will be zero.
Namely, under 𝑃 , it is pointless to add additional breakpoints.

According to Constraints (5), when the value of 𝑛𝑟𝑃 𝑟
𝐴𝑉 is less than 0.5, the value of 𝐷𝑟

𝐴𝑉 will be zero. Thus, 𝑃 can take the largest
value which satisfies Constraints (42).

𝑃 ≤ 1
2𝑛𝑟

, ∀𝑟 ∈ 𝑅 (42)

When the value of 𝑃 𝑟
𝐴𝑉 is less than 𝑃 , the demand for SAVs in group 𝑟 ∈ 𝑅 will reach zero. However, this does not mean that 𝑃 𝑟

𝐴𝑉
cannot have a value less than 𝑃 . When the difference between the utility of SAVs and bicycles is sufficiently large, the probability of
choosing SAVs may drop to near zero. To ensure the feasibility of the model, a boundary breakpoint must be added. The coordinates
of this breakpoint can be specified as (1∕, ln(1∕)), where  is a sufficiently large number.

As shown in Fig. 4, the approximated value lies between the tangent lines (yellow lines) and the secant lines (blue lines),
while the real value is the logarithmic function (black line). Thus, the maximum approximation error is the maximum of (1) the
maximum distance between the logarithmic function and the secant line, denoted as 𝑒max

1 , and (2) the maximum distance between the
logarithmic function and the tangent lines, denoted as 𝑒max

2 . The maximum approximation error takes the maximum value between
𝑒max
1 and 𝑒max

2 which yields:

𝑒max = max{𝑒max
1 , 𝑒max

2 }. (43)

Proposition 4.1. The maximum error between the logarithmic function and the secant line 𝑒max
1 equals the maximum error between the

logarithmic function and the tangent lines 𝑒max
2 . The maximum error at interval [𝑢𝑘−1, 𝑢𝑘] is:

𝑒max = 𝑢𝑘−1 ln 𝑢𝑘 − 𝑢𝑘 ln 𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
− ln

(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

+ ln
(

𝑢𝑘 − 𝑢𝑘−1
)

− 1. (44)

Proof. We first calculate the maximum approximation error between the logarithmic function and the secant line.
For 𝑃 𝑟

𝐴𝑉 ∈ [𝑢𝑘−1, 𝑢𝑘], we define the error at 𝑃 𝑟
𝐴𝑉 between the approximated value and the real logarithmic function as 𝑒, where

𝑒 = ln𝑃 𝑟
𝐴𝑉 −

(

ln 𝑢𝑘−1 + ln 𝑢𝑘 − ln 𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
(

𝑃 𝑟
𝐴𝑉 − 𝑢𝑘−1

)

)

. (45)

To determine which point between these two breakpoints contributes to the maximum error, we have to set the derivative of
the error 𝑒 to 0:

1
𝑃 𝑟
𝐴𝑉

− ln 𝑢𝑘 − ln 𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
= 0. (46)

This results in

𝑃 𝑟
𝐴𝑉 = 𝑢𝑘 − 𝑢𝑘−1

ln 𝑢𝑘 − ln 𝑢𝑘−1
. (47)

At this point, the maximum approximation error occurs. The approximation error equals the difference between the logarithmic
function and the secant line at this point.

𝑒max = ln
(

𝑢𝑘 − 𝑢𝑘−1
)

− ln
(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

+ 𝑢𝑘−1 ln 𝑢𝑘 − 𝑢𝑘 ln 𝑢𝑘−1 − 1. (48)
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The maximum approximation error between the tangent lines and the logarithmic function occurs at the point where two tangent
ines of the consecutive breakpoints intersect. Knowing the coordinates of the two consecutive breakpoints (𝑢𝑘, ln 𝑢𝑘) and (𝑢𝑘−1, ln 𝑢𝑘)

with 𝑢𝑘−1 < 𝑢𝑘, the tangent lines at those two breakpoints can be expressed as follows:

𝑦𝑘 = 1
𝑢𝑘

𝑥 + ln 𝑢𝑘 − 1, (49)

𝑦𝑘−1 = 1
𝑢𝑘−1

𝑥 + ln 𝑢𝑘−1 − 1. (50)

Combining the two equations, we can calculate the intersection point of the two tangent lines, which is
(

(ln 𝑢𝑘 − ln 𝑢𝑘−1)𝑢𝑘𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
,
(ln 𝑢𝑘 − ln 𝑢𝑘−1)𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
+ ln 𝑢𝑘 − 1

)

.

The maximum approximation error 𝑒max
2 is the vertical distance from the intersection point to the logarithmic function:

𝑒max
2 =

(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
+ ln 𝑢𝑘 − 1 − ln

(
(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

𝑢𝑘𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1

)

. (51)

This gives:

𝑒max
2 = 𝑢𝑘−1 ln 𝑢𝑘 − 𝑢𝑘 ln 𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
− ln

(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

+ ln
(

𝑢𝑘 − 𝑢𝑘−1
)

− 1. (52)

So, we have 𝑒max = 𝑒max
1 = 𝑒max

2 , with the maximum approximation errors occurring at different locations. □

Setting the last breakpoint equal to (1, 0) and fixing the desired maximum error 𝛾, we can determine the breakpoint before 1 by
olving the following formula numerically for 𝑢𝑘−1.

𝛾 = ln
(

𝑢𝑘 − 𝑢𝑘−1
)

− ln
(

ln 𝑢𝑘 − ln 𝑢𝑘−1
)

+ 𝑢𝑘−1 ln 𝑢𝑘 − 𝑢𝑘 ln 𝑢𝑘−1

𝑢𝑘 − 𝑢𝑘−1
− 1 (53)

with

𝑢𝑘 = 1. (54)

Similarly, 𝑢𝑘−2 can be obtained by using the found 𝑢𝑘−1 as input.

4.2. Linearisation of the floor function

The demand calculation function in Eqs. (5) is non-linear. Therefore, we replace Eqs. (5) by the following constraints:

𝑛𝑟 ⋅ 𝑃 𝑟
𝐴𝑉 − 0.5 < 𝐷𝑟

𝐴𝑉 ≤ 𝑛𝑟𝑃 𝑟
𝐴𝑉 + 0.5, ∀𝑟 ∈ 𝑅. (55)

4.3. Linearisation of the acceptance rate constraint

When an SAV operator is allowed to reject nonprofitable requests, 𝛼 is defined as a continuous variable with 𝛼 ∈ [0, 1]. As a result,
Constraint (6) becomes a non-linear constraint consisting of the product of the continuous variable 𝛼 and the integer variables 𝐷𝑟

𝐴𝑉 .
To linearise this constraint, we introduce additional binary variables 𝐷ℎ to discretise the integer term ∑

𝑟∈𝑅 𝐷𝑟
𝐴𝑉 , and continuous

ariables 𝑌ℎ ∈ [0, 1] to describe the value of the integer term ∑

𝑟∈𝑅 𝑆𝑟, where ℎ ∈ {0, 1,… ,}. Here,  should be chosen such that
these constraints still hold when all demand would use SAVs.

Then, we substitute Constraint (6) with the following constraints.

∑

𝑟∈𝑅
𝐷𝑟

𝐴𝑉 =

∑

ℎ=0
2ℎ𝐷ℎ (56)

𝑌ℎ ≤ 𝛼, ∀ℎ ∈ {0, 1,… ,} (57)

𝑌ℎ ≤ 𝐷ℎ, ∀ℎ ∈ {0, 1,… ,} (58)

𝑌ℎ ≥ 𝛼 +𝐷ℎ − 1, ∀ℎ ∈ {0, 1,… ,} (59)


∑

2ℎ𝑌ℎ =
∑

𝑆𝑟 (60)
15
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4.4. Tightening the model by choosing an appropriate value for 

 used in Constraints (21) and (26) represents a sufficiently large number. However, using an excessively large  may lead to
a model with a weak relaxation, which can, in turn, slow down the solving process of the mixed-integer programming (MIP) model.
Thus, choosing a proper value for  is beneficial in tightening the proposed model. The main criterion for choosing an appropriate
value for  is to identify the smallest value that is sufficiently large to prevent the cut-off of any feasible solution. The value of 
should be specified for each of the constraints to get a tighter formulation.

We first rewrite Constraints (21) as follows with constraint-specific values 1
𝑟 where 𝑟 ∈ 𝑅.

𝑇 𝑟
𝐴𝑉 ≤ 𝐴𝑟

𝑡 (𝑡 − 𝑎𝑟) +1
𝑟 (1 −𝑍𝑟

𝑡 ), ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (61)

Given that the longest travel time 𝑇 𝑟
𝐴𝑉 for SAV in group 𝑟 ∈ 𝑅 is inherently less than or equal to the time difference between

the latest arrival time 𝑏𝑟 and the departure time 𝑎𝑟, 1
𝑟 can take the following value regardless of the values of the binary variables

𝐴𝑟
𝑡 .

1
𝑟 = 𝑏𝑟 − 𝑎𝑟, ∀𝑟 ∈ 𝑅 (62)

Then, we rewrite Constraints (26) using a constraint-specific value 2
𝑖𝑗𝑡1𝑡2

with 𝑡1, 𝑡2 ∈ 𝑇 if 𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡min

𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐿.

𝑡1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(

𝑡 − 𝑡1
)

≤ 𝑡2 +
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

(𝑡 − 𝑡2)+2
𝑖𝑗𝑡1𝑡2

(

1 −
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

)

, ∀(𝑖, 𝑗) ∈ 𝐿,

𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡min

𝑖𝑗

(63)

When the value of ∑𝑡∈𝑇 𝑋𝑖𝑡2 𝑗𝑡
is 0, indicating that no vehicles enter the link (𝑖, 𝑗) ∈ 𝐿 at time instant 𝑡2 ∈ 𝑇 , Constraints (63)

ecome the follows:

𝑡1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(

𝑡 − 𝑡1
)

≤ 𝑡2 +2
𝑖𝑗𝑡1𝑡2

, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡min

𝑖𝑗 . (64)

The left-hand side of Constraints (64) indicates the time that a vehicle leaves link (𝑖, 𝑗) ∈ 𝐿 if it enters this link at time instant
𝑡1 ∈ 𝑇 . Knowing that a maximum travel time for a vehicle traversing link (𝑖, 𝑗) ∈ 𝐿 is 𝑡max

𝑖𝑗 , the latest time that a vehicle leaves link
𝑖, 𝑗) ∈ 𝐿 can never exceed its maximum travel time plus the entering time, which gives:

𝑡1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(

𝑡 − 𝑡1
)

≤ 𝑡1 + 𝑡max
𝑖𝑗 , ∀𝑡1 ∈ 𝑇 , (𝑖, 𝑗) ∈ 𝐿. (65)

Combining Constraints (64) and (65) gives the smallest value that 2
𝑖𝑗𝑡1𝑡2

can take, which is:

2
𝑖𝑗𝑡1𝑡2

= 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡2, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max

𝑖𝑗 − 𝑡min
𝑖𝑗 . (66)

To help readers comprehend the model more efficiently, we summarise the complete problem formulation as well as the notations
of the sets, parameters, and variables in Appendix.

5. Case study of the city of Delft, in The Netherlands

In this section, we present the computational results of the case study of Delft, in The Netherlands to evaluate the effectiveness
of the proposed model.

5.1. Application setting

The proposed model is applied to a quasi-real case study of the city of Delft, in the South Holland province in The Nether-
lands (Correia and Van Arem, 2016). A simplified road network of Delft is used in this case study which contains 35 nodes and 104
directed links (two-way circulation allowed), displayed in Fig. 5. SAVs are free to drive on the entire network, but only 7 nodes
are designated as free parking depots, which are nodes 3, 10, 11, 15, 19, 22, and 27 (identified in red). The parking depots are
distributed throughout the city, with three located in the city centre and four located on the outskirts, which facilitates the use of
SAV services by residents from all areas of the city. In addition, each road link has either one lane or two lanes, with a capacity of
1600 or 3200, respectively. Vehicles are allowed to travel on these two types of road links with a maximum travel speed (free-flow
speed without congestion) of 50 km/h and 70 km/h, respectively, and with a minimum travel speed of 5 km/h.

The mobility data for the morning peak hour in Delft was obtained using the Dutch mobility dataset (MON 2007/2008). This
dataset provides the daily mobility information of a sample of residents, including but not limited to the origin, destination, departure
time, arrival time, transport mode, etc. It has been used previously (Correia and Van Arem, 2016; Liang et al., 2020) to study the
future mobility system with AVs in urban networks. However, this dataset does not have a large sample of trips for this city if we
focus on just one hour. To overcome this limitation and characterise as much as possible the real mobility pattern in the morning
peak hour, we filtered out the trips in the database from 7 am to 10 am with travel modes of bicycle, car, and taxi, and then evenly
distributed them within one hour with one-third of the amount. In total, 2933 trips are generated, aggregated into 45 groups of
16
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Fig. 5. Simplified road network of Delft used in the case study.

Table 2
Parameter summary.

Parameter Description and reference values

𝑡max
𝑖𝑗 Maximum travel time by SAVs which is computed by dividing the length of the road link by the minimum travel speed of 5 km/h.

𝑡min
𝑖𝑗 Minimum travel time by SAVs which is calculated by dividing the length of the road link by the related maximum travel speed (50

km/h or 70 km/h). Note that the minimum travel time on each road link has a minimum value of 1 time step (2.5 min in this case
study) due to the time-space network. It imposes that no vehicles can travel with a travel time of zero.

𝐶𝑖𝑡1 𝑗𝑡2
Spatial capacity of each road link which is calculated using Eq. (23).

𝑠𝑑𝑟, 𝑠𝑡𝑟 Shortest travel distance/time which is calculated using the shortest path algorithm assuming SAVs can travel with free-flow speed.

𝑇 𝑟
𝐵 Travel time of bicycles which is calculated by dividing the length of the shortest path by the average speed of the Dutch on a pedal

bicycle, 12.4 km/h (BicycleDutch, 2018).

𝛽0 Parameter used in the logit model with a value of 0.1.

𝑉 𝑂𝑇 𝑟
𝐴𝑉 Travellers’ VOTT for using an AV with high income, middle income, and low income equal to 6.6, 4.6, and 3.8 euro/h, respectively

(Kolarova et al., 2019).

𝑉 𝑂𝑇 𝑟
𝐵 Travellers’ VOTT for using a bicycle with high income, middle income, and low income equal to 24.9, 17.3, and 14.1 euro/h,

respectively (Kolarova et al., 2019).

𝑝0, 𝑝 Initial base fare and price per km which are set to 3 euros and 1.28 euros/km, respectively, according to the price rate of Uber in
Delft, in The Netherlands (Uber, 2023).

𝑐𝑜 Operational cost of SAVs which is set to 0.32 euro/km (calculated according to the methodology proposed by Bösch et al., 2018).

𝑐𝑓 Depreciation cost of SAVs which is set to 1.2 euro/vehicle/h (Fan et al., 2022).

𝑐𝑑 Delay penalty which is set to 0.2 euro/min (Liang et al., 2020).

𝛼 Service rate which is set to 1 when the SAV operator has to serve all the trips.

𝑎, 𝑏 Parameters in the BPR function which are set to 2 and 4, respectively (Van Essen and Correia, 2019).

The optimisation period contains two parts. One is a one-hour period studied during the morning peak, comprised of 24 time
steps of each 2.5 min. Besides that, 5 additional time steps are added as a pre-optimisation period. This is needed since we assume
that all the SAVs depart from parking depots in the morning to serve the trips. For SAVs to arrive at the requested origin on time,
additional time steps are required as slack in the optimisation period. Therefore, the optimisation period contains a total of 29 time
steps.

The parameters used in this case study related to the network setting, the demand, and the SAV operating system are summarised
and explained in Table 2.
17
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Fig. 6. Relationship between MAA error and the number of generated breakpoints.

Table 3
Optimisation results with different MAA errors.

MAA error 0.005 0.01 0.05

Value Value Relative change Value Relative change

Number of breakpoints 31 23 −28.57% 11 −64.29%
Objective function value 11 128.07 11 143.30 +0.14% 11 414.46 +2.57%
Optimal fleet size of SAVs 890 891 +0.11% 914 +2.70%
Demand for SAVs 1269 1271 +0.16% 1304 +2.76%
Computational time 3126 s 2236 s −28.47% 1921 s −38.55%

5.2. Breakpoint generation

Before solving the reformulated MILP model, a set of breakpoints was generated with a pre-specified MAA error. This error
represents the maximum acceptable difference between the approximation value and the true value of the non-linear terms in
Constraints (31) and (32). Therefore, the smaller this value is, the more precise the approximation will be; however, the greater the
number of breakpoints that will be generated.

Fig. 6 shows the relationship between the number of generated breakpoints and the value of the MAA error. We can observe
a clear trend where the number of generated breakpoints increases dramatically with the decrease in the value of the MAA error,
especially when the approximation error is less than 0.05. On the one hand, more breakpoints lead to higher accuracy, but on the
other hand, they lead to greater computational time. To balance these two factors, we need an MAA error that can ensure a good
quality of the optimisation results within an acceptable computational time. To find a proper value for this case study, we first
tested the model in the base scenario with three different values for the MAA error, which are 0.05, 0.01, and 0.005, yielding 11,
23, and 31 breakpoints, respectively.

We implemented the reformulated MILP model in Python 3.7 and then solved it using Gurobi optimiser version 10.0.0 on an
Intel(R) Xeon(R) W-2123 CPU @3.60 GHz, and 32.00 GB RAM computer. Table 3 shows the optimisation results with the three
mentioned MAA errors. Here, we used the objective function value, the optimal total fleet size, the total demand for SAVs, and the
computational time as indicators to compare the performance for these three cases. The objective function value is the maximised
profit for an SAV operator. The optimal fleet size and the total demand for SAVs are selected as the indicators because fleet sizing
is one of the most important planning decisions for an SAV operator, and the demand for SAVs directly impacts the fleet sizing
decision. In addition to this reason, the demand for SAVs is one of the attributes most affected by the approximation error.

We first ran the model with MAA error of 0.005, then used the corresponding optimisation results as the benchmark to compare
with other cases in which the MAA error is 0.01 and 0.05. The relative changes in the values of the indicators are computed.
Looking at the optimisation results with MAA values of 0.005 and 0.01 in Table 3, we observe very small differences in the objective
function values (0.14% relative difference), the values of the optimal fleet sizes (1 unit difference), and the values of the demand
for SAVs (2 units difference), indicating that using 23 breakpoints has already achieved a good approximation accuracy. Adding
more breakpoints does not bring a significant improvement to the optimisation outcomes.

In all, the MAA error of 0.01 was used throughout the experiments, which yields 23 breakpoints.

5.3. Optimisation results

The model was tested first in a base scenario with parameters given in Section 5.1. Then, we conducted a sensitivity analysis
to the following parameters: SAVs price rate, unit operational cost, delay penalty, parameter 𝛽0, and the combination of them
in 6 scenarios. We also investigate the impact of congestion by evaluating non-congested scenarios as a comparison of the existing
scenarios. As previously mentioned, this paper explores two accept/reject mechanisms. Scenarios 1 to 9 assume that the SAV operator
must accept all requests, while scenarios 10 to 13 assume that the SAV operator may reject the nonprofitable trips. A sensitivity
analysis of SAV price rate and parameter 𝛽1 is carried out to see how travellers’ satisfaction with the service quality level influences
the managerial decisions of the SAV operator under different pricing policies.
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Table 4
Scenario description.

Scenario description 𝑝0 (euro) 𝑝 (euro/km) 𝑐𝑜 (euro/km) 𝛼 𝑐𝑑 (euro/min) 𝛽0 (utility/euro) 𝛽1
S1 Base scenario 3 1.28 0.32 1 0.2 0.1 –
S2 Lower price 1.5 0.64 0.32 1 0.2 0.1 –
S3 Lower operational cost 3 1.28 0.1 1 0.2 0.1 –
S4 No delay penalty 3 1.28 0.32 1 0 0.1 –
S5 Higher 𝛽0 3 1.28 0.32 1 0.2 0.5 –
S6 Higher 𝛽0 with lower price 1.5 0.64 0.32 1 0.2 0.5 –
S7 Base scenario without congestion 3 1.28 0.32 1 0.2 0.1 –
S8 Lower price without congestion 1.5 0.64 0.32 1 0.2 0.1 –
S9 Higher 𝛽0 with lower price without congestion 1.5 0.64 0.32 1 0.2 0.5 –
S10 Base scenario with rejection 3 1.28 0.32 – 0.2 0.5 1
S11 Lower price with rejection 1.5 0.64 0.32 – 0.2 0.5 1
S12 Base scenario with rejection and lower 𝛽1 3 1.28 0.32 – 0.2 0.5 0.1
S13 Lower price with rejection and lower 𝛽1 1.5 0.64 0.32 – 0.2 0.5 0.1

Fig. 7. Fleet size and initial distribution of SAVs at the beginning of a day in all the scenarios.

Table 5
Optimisation results for all the scenarios.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Total profit (euro) 11 143.31 3389.07 13 904.24 11 695.33 7530.06 3653.06 11 924.48 4905.77 6437.42 11 143.31 3463.92 11 152.51 3505.19
Total revenue (euro) 16 663.61 11 729.52 16 672.16 16 601.24 10 846.61 15 113.09 16 836.59 11 874.50 15 667.01 16 663.61 11 159.4 16 599.62 10 691.84
Average price per trip (euro) 13.11 6.84 13.11 13.10 14.23 7.07 13.12 6.84 7.02 13.11 6.92 13.15 6.81
Total depreciation cost (euro) 1069.20 1501.20 1009.20 1064.40 673.20 1930.80 1077.60 1519.20 2006.40 1069.20 1453.2 1080.0 1377.6
Total operational cost (euro) 3962.10 5765.25 1285.72 3841.51 2559.35 7510.24 3834.51 5449.54 7223.18 3962.10 5485.27 3934.11 5245.55
Total delay penalty cost (euro) 489 1074 473 0 84 2019 0 0 0 489 757.0 433 563.5
Total demand for SAVs 1271 1715 1272 1267 762 2138 1283 1737 2232 1271 1690 1273 1714.0
SAV demand share 43.33% 58.47% 43.37% 43.20% 25.98% 72.89% 43.74% 59.22% 76.10% 43.33% 57.62% 43.4% 58.44%
Total satisfied trips for SAVs 1271 1715 1272 1267 762 2138 1283 1737 2232 1271 1613 1262 1570
Percentage of satisfied demand 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 95.44% 99.14% 91.6%
Average delay per trip (min) 1.93 3.13 1.85 3.25 0.55 4.73 0 0 0 1.93 2.35 1.68 1.8
SAVs total travel distance (km) 12 381.57 18 016.39 12 857.21 12 004.73 7997.96 23 469.50 11 982.85 17 029.80 22 572.45 12 381.57 17 141.48 12 294.10 16 392.34
SAVs total deliver distance (km) 10 552.54 15 554.53 10 807.14 10 324.48 6843.03 20 266.68 10 146.56 14 482.82 19 248.45 10 552.54 14 907.98 10 523.65 14 041.77
SAVs total relocate distance (km) 1829.03 2461.86 2050.06 1680.25 1154.92 3202.82 1836.29 2546.98 3324 1829.03 2233.49 1770.46 2350.57
SAVs total delivery time (h) 339.5 512.08 338.29 366.25 201.75 715.04 301.5 427.33 567.21 339.5 467.96 334.08 435.54
Average delivery time per trip (min) 16.03 17.93 15.95 17.35 15.88 20.08 14.1 14.75 15.25 16.03 17.4 15.88 16.65
Computational time (s) 1986 s 7846 s 2398 s 91 545 s 634 s 86 400 s 337 s 386 s 388 s 9517 s 60 758 s 6145 s 11 510 s
MIP Gap 0 0 0 0 0 0.57% 0 0 0 0 0 0 0

Table 4 shows the descriptions and parameter settings for all scenarios. The optimal fleet size distribution can be found in Fig. 7
and key performance indicators can be found in Table 5.

5.3.1. Base scenario
As can be seen in Fig. 7, almost all the SAVs are distributed at parking depots 3, 19, 22, and 27 at the beginning of the day,

as these depots are either close to residential areas or the train station in Delft where the commuting demand is high during the
morning peak hour. Depots 10, 11, and 15 have hardly any SAVs as these depots are either located on the outskirts of the city or
near the campus area which is usually the destination of commuting in the morning. The distribution of the fleet at the beginning of
the day is highly influenced by the geographical distribution of the population, the distribution of land use, and the travel patterns
of residents.
19
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Fig. 8. SAV demand share for different user classes with (a) high VOTT, (b) middle VOTT, and (c) low VOTT.

Table 6
Optimisation results under the base scenario.

User class 0–5 km 5–10 km ≥10 km

High VOTT SAV demand share 46.90% 50.23% 59.22%
Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.99 1.79 2.70
Average travel time-related cost per trip for using a bicycle 7.53 13.82 27.03

Middle VOTT SAV demand share 41.59% 40.93% 40.78%
Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.76 1.36 1.98
Average travel time-related cost per trip for using a bicycle 5.23 9.63 18.78

Low VOTT SAV demand share 40.00% 37.33% 33.33%
Average price per trip 8.04 12.32 20.81
Average travel time-related cost per trip for using an SAV 0.62 1.07 1.75
Average travel time-related cost per trip for using a bicycle 4.27 7.85 15.31

In Table 5, 43.33% of the travellers choose to use SAV services. However, travellers from different income classes behave
differently facing trips with different lengths, as shown in Table 6. We classified trips into three groups in terms of their lengths:
less than 5 km, between 5 and 10 km, and more than 10 km. Then, we calculated the demand share of SAV services for travellers in
different classes (with high VOTT, middle VOTT, and low VOTT), and their corresponding cost structures (price, travel time-related
cost for using an SAV, and a bicycle).

Results indicate that travellers with a high VOTT are more sensitive to variations in trip length compared with the other classes.
When the trip length is longer than 10 km, 59.22% of travellers with a high VOTT use SAVs rather than cycling because the increase
in time-related costs of cycling is significant for them. When the length of the trip is short (less than 5 km), 46.9% of travellers with
a high VOTT choose SAVs, meaning that using bicycles can slightly save them some costs. But the difference between using these
two modes is not big. For trips between 5 km and 10 km, half of the people choose SAVs as the utilities for using these two modes
are the same. It makes little difference which mode they choose. Note that travellers with a middle VOTT and a low VOTT always
prefer bicycles to SAVs as the price for using SAVs is high. In addition, travellers with a middle VOTT are insensitive to the changes
in trip length. For them, the cost difference between these two modes does not change significantly with the increase in trip length.

5.3.2. Sensitivity analysis on price rate
The price rate has a great impact on travellers’ behaviour, which in turn affects the total demand for SAV services and fleet sizing

decisions. In Table 5, one can see that the demand for SAVs increased from 1271 (in S1 Base scenario) to 1715 (in S2 Lower price)
20
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when the price rate reduces to half of what it was in the base scenario S1. To satisfy the increased demand, the SAV operator has
to deploy a larger fleet size. At the same time, the congestion level increased as more vehicles circulated on the road network and
competed for the shortest paths. It can be seen from Table 5 that the average delay time per trip increased from 1.93 (in S1 Base
scenario) to 3.13 min (in S2 Lower price) and the average delivery time per trip increased from 16.03 min (in S1 Base scenario) to
17.93 min (in S2 Lower price). Thus, more delay penalty was generated which reduced the total profits. Even though more travellers
choose to use SAVs, the total profit is still lower than the one in S1 Base scenario because of the lower revenue, higher depreciation
costs, higher operational costs and higher delay penalty.

When the price rate for using an SAV is reduced, the willingness of travellers from different income classes to use the SAV service
ncreases compared with S1 Base scenario, as can be seen in Fig. 8. For travellers with high VOTT (in Fig. 8a), SAVs are preferable
o bicycles regardless of trip length. For travellers with middle VOTT whose trips are less than 10 km in length, the preference
etween the two modes is not obvious. Only when the trip length exceeds 10 km, do travellers prefer to use SAVs over the bicycle
ode. A similar trend is observed for travellers with a lower VOTT. The longer the trip is, the more likely a traveller with a low
OTT will choose SAVs.

.3.3. Sensitivity analysis on operational costs
As depicted in Fig. 7, the total fleet size in S3 Lower operational cost is 50 vehicles smaller than the one in S1 Base scenario.

ooking at the optimisation results displayed in Table 5, we found that the total profit increases from 11 143.31 euros (in S1 Base
cenario) to 13 904.24 euros (in S3 Lower operational cost). The change in demand for SAVs in S1 and S3 is negligible, and the total
elocation distance increases from 1829.03 km (in S1 Base scenario) to 2050.06 km (in S3 Lower operational cost). This indicates
hat the SAV operator can save money by deploying a smaller fleet and allowing SAVs to relocate more frequently at a lower
perational cost.

In addition, the total delay penalty cost decreases from 489 euros (in S1 Base scenario) to 473 euros (in S3 Lower operational
ost), while the total delivery distance of the SAVs increases from 10 552.54 km (in S1 Base scenario) to 10 807.14 km (in S3 Lower
perational cost), meaning that SAVs detour more to avoid traffic congestion to deliver clients as soon as possible, as well as to pick
p more clients.

Looking at Fig. 8, we barely notice any difference between the SAV shares for different user classes and trip length. Thus, we
onclude that lowering the operational cost of the SAV fleet does not have a significant influence on the demand structure.

All in all, SAV operators earn more profits through operational cost savings, less delay penalty, and fewer depreciation costs of
he fleet, even though SAVs detour and relocate more.

.3.4. Sensitivity analysis on delay penalty
The SAV operator earns greater profits when there is no delay penalty for the late drop-off of clients in S4. However, the

ttractiveness of the SAV service drops slightly, which is reflected in the reduced demand for SAVs, which can be seen in Table 5.
urthermore, the reduced amount of fleet size is consistent with the decreased demand for SAVs.

To compare the trip delay information between S4 (no delay penalty) and S1 (base scenario), we have plotted the delay
istributions, along with the mean and the 90th percentile values for the delay in Fig. 9. The results indicate that 90% of trips
n S1 experience a delay within 5 min, whereas 90% of trips in S4 have a delay within 7.5 min. Additionally, the average delay
er trip is 1.93 min in S1 and 3.25 min in S4. These findings indicate that when there is no penalty for late deliveries, the actual
elivery time becomes longer compared to the base scenario S1, resulting in increased delay, which can also be seen from the
ncreased average delivery time per trip and the increased average delay per trip in S4 in Table 5. However, it is crucial to consider
he perspective of passengers using the SAV service in an inter-modal fashion, who require a certain level of reliability in their
rrival time, because of the need to coordinate with other transportation modes. In scenarios where an SAV cannot guarantee
rrival before a traveller’s acceptable latest arrival time, the trip may be rejected, and the traveller may opt for an alternative mode
f transportation. From this perspective, implementing a delay penalty for the SAVs could encourage more reliable and timely
eliveries, addressing passengers’ concerns and potentially reducing trip rejections. The value of the delay penalty will influence
he demand for SAVs, and consequently, impact overall profitability. Investigating the optimal delay penalty value remains an area
or future research.

The value of the delay penalty will influence the demand for Shared Autonomous Vehicles (SAVs), and consequently, impact
verall profitability. Investigating the optimal delay penalty value and the spatial impact of the rejection rate remains an area for
uture research.

Overall, the delay penalty does not have a significant impact on fleet sizing decisions and travellers’ behaviour. Travellers with
igher VOTT care more for late arrival than those with a relatively lower VOTT.

.3.5. Sensitivity analysis on 𝛽0
The parameter 𝛽0 indicates the level of sensitivity that travellers exhibit towards the changes in monetary costs. In this section,

we tested a higher value of 𝛽0 which is 0.5 utility/euro in two scenarios S5 and S6, based on S1 Base scenario and S2 Lower price.
We tested these two scenarios with different price rates because the congestion level is different in both, which allows for observing
the impact of network congestion levels on the optimisation results.

Looking at Fig. 7, we found a big difference in the optimal fleet size in S5 Higher 𝛽0 and S6 Higher 𝛽0 with lower price, compared
ith S1 Base scenario and S2 Lower price. The fleet size differences mainly come from the decreased/increased demand in these
21

wo scenarios, which are 762 and 2138, as can be found in Table 5. When looking into the details of SAV demand share in S5
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Fig. 9. Delay distribution in S1 (base scenario) and S4 (no delay penalty).

Higher 𝛽0 and S6 Higher 𝛽0 with lower price, we notice that more travellers tend to choose the mode with the least generalised
costs, resulting in a greater difference between the demand share for SAVs and bicycles. Note that the variation of the SAV demand
share for all the user classes in all types of trips in S5 and S6 share a similar trend as in S1 and S2, indicating that a higher value
of 𝛽0 can only bring a larger degree of variation to the demand share, but it cannot completely alter travellers’ preference towards
the modes.

A value of 𝛽0 that is precisely estimated for the application city can enhance the realism of the model and lead to a more accurate
fleet sizing decision. Note that the model was solved in S6 Higher 𝛽0 with a lower price with a MIP gap of 0.57% with a time limit
of 24 h because the congestion level is high due to the increased demand for SAVs.

5.3.6. Impact of traffic congestion
To test the impact of traffic congestion on the strategic and operational decisions, we removed traffic congestion from S1 Base

scenario, S2 Lower price and S6 Higher 𝛽0 with lower price, by assuming all vehicles can travel at free-flow speed. These three
scenarios are selected as references because they exhibit gradually increased congestion levels. Removing congestion in these three
scenarios gives us three new scenarios named S7, S8, and S9.

In Fig. 7, it can be seen that the optimal fleet size increases from 891 (in S1 Base scenario) to 898 (in S7 Base scenario without
congestion), from 1251 (in S2 Lower price) to 1266 (in S8 Lower price without congestion), from 1609 (in S6 Higher 𝛽0 with lower
price) to 1670 (in S9 Higher 𝛽0 with a lower price without congestion). It turns out that congestion has a significant impact on fleet
sizing decisions, which should be taken into consideration when solving the fleet management problem.

Without congestion, all trips can be delivered to the desired destinations in the shortest travel time and travel distance, as can
be seen in Table 5. The average delay per trip and the total delay penalty in S7 Base scenario without congestion, S8 Lower price
without congestion and S9 Higher 𝛽0 with lower price without congestion are 0. Consequently, the demand for SAVs increased from
1271 (in S1 Base scenario) to 1283 (in S7 Base scenario without congestion), from 1715 (in S2 Lower price) to 1737 (in S8 Lower
price without congestion), and from 2138 (in S6 Higher 𝛽0 with lower price) to 2232 (in S9 Higher 𝛽0 with lower price without
congestion) because travellers are more willing to take SAVs if the travel time is lower. However, despite an increase in demand,
the total travel distance and the total delivery time of SAVs decrease correspondingly, indicating that SAVs no longer need to take
longer detours to avoid the competition for the shortest paths, which reduces operational costs significantly.

5.3.7. Comparison of the two accept/reject mechanisms
In terms of the accept/reject mechanism, from S10 to S13, the SAV operator can reject nonprofitable trips. 𝛼 is defined as a

continuous variable that represents the trip service rate. However, the rejection rate will have an impact on travellers’ satisfaction
with the SAV service since 𝛼 is included in the utility calculation. Two pricing rates are tested. S10 and S12 share the same price
setting as S1 Base scenario. S11 and S13 share the same price setting as S2 Lower price. Besides, travellers may have different
sensitivities to the rejection rate, which is reflected in parameter 𝛽1. A lower value of parameter 𝛽1 is tested in S12 and S13 meaning
that travellers can have a lower sensitivity towards the rejection rate.

First, we shall have a look at the trip service rate in different scenarios when the SAV operator is allowed to reject non-profitable
trips. Looking at the optimisation results in Table 5, we noticed that S1 Base scenario and S10 Base scenario with rejection yield
the same service rate, indicating that the SAV operator did not reject any requests to maintain a high level of service quality despite
having the option to decline nonprofitable requests. In S10 Base scenario, 𝛽1 equals 1, and travellers are sensitive to the change in
rejection rate. Thus, with this price setting, rejecting trips can decrease demand for SAVs even for profitable requests. However, in
S11, when the price rate of using SAVs is lower than in S10 Base scenario, the trip satisfaction rate dropped to 95.44%. This indicates
that the SAV operator is willing to accept the loss of revenue caused by decreased travellers’ satisfaction and reduced demand in
order to save costs by rejecting non-profitable trips. As can be observed in Table 5, the SAV operator earned more profits in S11
Lower price with rejection compared with S2 Lower price while satisfying fewer trips. The cost saving comes from less operational
cost, less depreciation cost, and less delay penalty.

When travellers are less sensitive to the service quality level, the trip service rate decreased from 100% (in S10 Base scenario
22

with rejection) to 99.14% (in S12 Base scenario and lower 𝛽1) and from 95.44% (in S11 Lower price with rejection) to 91.6% (in S13
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Fig. 10. Illustration of grid networks: (a) small, (b) medium, and (c) large.

Lower price with rejection and lower 𝛽1). It indicates that the SAV operator can increase the profit by rejecting more nonprofitable
trips, even if it brings negative impacts on travellers’ satisfaction. Although this resulted in a decrease in revenue due to a lower
number of satisfied trips, the SAV operator can save on operational costs and reduce delay penalties leading to a higher overall
profit.

Rejecting some trips mitigates traffic congestion on the network. As shown in Table 5, the average delay per trip decreases from
1.93 min (in S1 Base scenario and S10 Base scenario with rejection) to 1.68 min (in S12 Base scenario with rejection and lower
𝛽1), and the average delivery time per trip decreases from 16.03 min (in S1 Base scenario and S10 Base scenario with rejection) to
15.88 min (in S12 Base scenario with rejection and lower 𝛽1). The same trend can be found when the price rate of using SAV services
is low. The average delay per trip decreases from 3.13 min (in S2 Lower price) to 2.35 min (in S11 Lower price with rejection),
then to 1.8 min (in S13 Lower price with rejection and lower 𝛽1), and the average delivery time per trip decreases from 17.93 min
(in S2 Lower price) to 17.4 min (in S11 Lower price with rejection), then to 16.65 min (in S13 Lower price with rejection and lower
𝛽1).

In terms of the fleet sizing decisions, we can conclude that these two accept/reject mechanisms do not have a significant impact
on the fleet size decisions when the price rate of using SAVs is high. As can be seen in Table 5, the total SAV fleet size in S10 Base
scenario with rejection is the same as that in S1 Base scenario, while the total SAV fleet size in S12 Base scenario with rejection
and lower 𝛽1 is slightly higher than that in S1 Base scenario and S10 Base scenario with rejection. This indicates that using a bit
more vehicles in S12 can save the relocation distance and further release the congestion effect caused by the relocation of SAVs.
This part of the savings is greater than the increased depreciation costs of the total fleet which makes it the optimal strategy in S12.
However, when the price rate is low, we observe that the fleet size is sensitive to the accept/reject mechanism and parameter 𝛽1.
When travellers have a low sensitivity to the service quality level (rejection rate), the SAV operator tends to reject more nonprofitable
trips to gain more profits. Thus, a smaller fleet can be deployed as the number of served trips decreases. Our future research will
involve further exploration of the spatial impacts of the rejection rate.

6. Scaling analysis: evaluating model performance with various network sizes and demand profiles

Scalability denotes the capability of the proposed methodology to manage an expanding workload, including accommodating
larger network sizes and rising demands. Investigating the scalability of our proposed model holds significance due to its nature
as a single-level mixed integer programming model that integrates endogenous demand, congestion and accept/reject mechanism,
and that is solved using an exact method. Thus, within this section, we present the computational tests conducted to evaluate
the performance of the proposed model under various network sizes and demand profiles. These experiments were executed on a
desktop computer with an Intel(R) Xeon(R) W-2123 CPU @3.60 GHz, and 32.00 GB RAM. The implementation of the model was
accomplished using Python 3.7, and the MILP solver Gurobi 10.0.0 was utilised to solve the optimisation problems.

To evaluate the model’s scalability towards the network sizes, we generated three grid networks, each with varying sizes: 16
nodes and 48 directed links, 64 nodes and 224 directed links, and 144 nodes and 528 directed links, as illustrated in Fig. 10. All the
links are two-way circulation allowed. For each network, we distributed 4, 8, and 12 parking depots, respectively. The road links in
these networks have an equal length of 2 km and an equal capacity of 3200 vehicles/h. In our testing, we set a time step of 2.5 min
with the shortest travel time per link at 2.5 min (1 time step) and the longest travel time per link at 10 min (4 time steps).

To investigate the impact of demand variations, we conducted tests with different demand profiles. The total number of trips and
the number of groups of trips were modified to simulate the varying passenger demands in different scenarios. The configuration
of the tests can be found in Table 7. Trip details such as origin, destination, and departure time were randomly generated to create
realistic scenarios. The shortest travel time and the shortest travel distance were calculated using the Dijkstra shortest path algorithm
23

based on the known origin and destination. The latest arrival time for each trip was calculated by doubling the shortest travel time
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Table 7
Configurations and computational results (Note: ‘N’ represents the number of nodes; ‘L’ represents the number of links; ‘P’ represents the number of parking
depots; ‘R’ represents the number of trips; ‘G’ represents the number of group of trips).

Configuration N L P R G Computational time MIP gap

N16_L48_P4_R1000_G30 16 48 4 1000 30 15 s 0
N16_L48_P4_R2000_G60 16 48 4 2000 60 19 s 0
N16_L48_P4_R3000_G90 16 48 4 3000 90 60 s 0
N64_L224_P8_R1000_G30 64 224 8 1000 30 1112 s≈0.31 h 0
N64_L224_P8_R2000_G60 64 224 8 2000 60 1270 s≈0.35 h 0
N64_L224_P8_R3000_G90 64 224 8 3000 90 7142 s≈1.98 h 0
N144_L528_P12_R1000_G30 144 528 12 1000 30 1984 s≈0.55 h 0
N144_L528_P12_R2000_G60 144 528 12 2000 60 4192 s≈1.16 h 0
N144_L528_P12_R3000_G90 144 528 12 3000 90 9874 s≈2.74 h 0
N144_L528_P12_R6000_G90 144 528 12 6000 90 10 637 s≈2.95 h 0
N144_L528_P12_R9000_G90 144 528 12 9000 90 21 925 s≈6.09 h 0
N144_L528_P12_R6000_G180 144 528 12 6000 180 26 892 s≈7.47 h 0
N144_L528_P12_R9000_G180 144 528 12 9000 180 36 615 s≈10.17 h 0
N144_L528_P12_R12000_G180 144 528 12 12 000 180 >24 h –

and adding it to the departure time. The optimisation period contains 29 time steps, the same as the case study of the city of Delft
in the Netherlands. Furthermore, the remaining parameters remain consistent with the Delft case study and are provided in Table 2
for reference.

The computation times for each of the tests are summarised in Table 7. In the first 9 instances, we increase the number of trips
nd the number of groups of trips for each network setting. Notably, there is a clear tendency for increased computation time with
higher number of trips and more groups. Then, we compare the instances with the same number of trips and groups, but with

ncreased network size from small (N16_L48_P4) to medium (N64_L224_P8) and then to large (N144_L528_P12). For these increased
etwork sizes, we observe a consistent trend of increasing computation time. To test the computational limits of the proposed model
sing the current computer, we further intensified the congestion level by enlarging the number of groups and the total trips in the
arge grid network (N144_L528_P12). As depicted in the last 6 instances of Table 7, this led to a notable increase in computation
ime. Solving the final instance with 12 000 trips and 180 groups of trips within the large grid network took more than 24 h in
omputational time. It is important to note that the performance of the proposed model may vary when executed on different
omputers and utilising different optimisation solvers.

The computational burden of the proposed model arises from the rapid increase in the number of variables and constraints within
he time-space network framework. Particularly, the significant rise in the number of integer variables, such as 𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
and 𝑋𝑖𝑡1 𝑗𝑡2

,

oses challenges for exact methods like branch-and-bound. To further reduce the computational complexity, the following measures
an be adopted: (1) employing a rolling-horizon framework to divide the optimisation period into smaller horizons and subsequently
esolving the model within each of these horizons; (2) clustering requests based on their spatial and temporal information; (3)
eveloping tailored algorithms to tackle the issue, such as decomposition-based algorithms or meta-heuristics. It is worth mentioning
hat all these measures come with the potential drawback of losing optimal solutions.

. Conclusion and future work

In this paper, we propose a non-convex non-linear mathematical programming model to optimise fleet sizing and management
ecisions of an SAV service while considering traffic congestion and the non-linear demand of multi-class users (according to
ncome). The congestion effect is measured through a dynamically varying travel time with respect to the traffic flow. Travellers’
ode choice behaviour is modelled between SAVs and bicycles, assuming that no private cars are allowed in cities, which is captured

hrough an endogenous binary logit model. The two accept/rejection mechanisms (mandatory vs. non-mandatory acceptance)
re explored, and the service level is endogenously determined which can affect travellers’ willingness to use SAV services. The
omputational challenge posed by the non-linear and non-convex nature of the model is addressed through reformulation and the
se of outer-inner approximation methods combined with a breakpoint generation algorithm to obtain a relaxed version of the
riginal problem. The reformulated model can be solved using state-of-art solvers, such as Gurobi.

A quasi-real case study of Delft, in The Netherlands, was performed and a sensitivity analysis was carried out to demonstrate
he performance of the proposed model and provide managerial insights to SAV operators in a promising future scenario. Results
ndicated that demand for SAVs, supply strategies of SAV operators, and network performance (traffic congestion) are interdependent
ith each other. Thus, it is crucial to take their interactions into account when managing fleets in an SAV service system. In terms
f the fleet sizing strategy, computational results indicated that the initial distribution of the SAV operator’s fleet is greatly impacted
y factors such as the population’s geographical distribution, land use patterns, and residents’ travel behaviour. In addition, the fleet
izing decision is significantly influenced by the pricing strategy, unit operating costs of the SAV fleet, network congestion level, and
he value of the parameters 𝛽0. When the price rate is low, the fleet sizing decision is also sensitive to the accept/reject mechanism
mandatory vs. non-mandatory acceptance) and the travellers’ sensitivity to the service quality level described by parameter 𝛽1. The
leet sizing decision is insensitive to the change in the delay penalty. When the pricing rate of using SAVs is high, the fleet sizing
s insensitive to parameter 𝛽 . In addition, a low price of SAV service will attract more users but it may not necessarily bring a
24
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higher profit because of the increased traffic congestion. Besides, bringing fleets with lower operational costs to the system may
earn more profits for an SAV operator through operational cost savings, reduction in delay penalties due to the improved traffic
congestion, and lower depreciation costs of their fleets as less fleet is needed, despite the fact that SAVs had to take more detours
and relocations.

Results indicate that SAV services are more attractive to travellers with a higher VOTT than those with a lower VOTT. Besides,
ravellers with a high VOTT are more sensitive to variations in trip length compared with the other classes. For long trips, travellers
ith high VOTT always prefer SAV services. However, for those with lower VOTT, SAV services are only preferred when the price

s low. For middle and short trips, bicycles are preferable in most cases unless the price rate is low.
As a direction for future research, we propose the integration of the following aspects into our model: (1) demand and

eparture time stochasticity; (2) optimising the pricing strategies; (3) worst-case scenarios in robust optimisation; (4) incorporation
f ride-sharing mechanisms within the SAV service system; (5) interaction between SAVs and public transit systems.
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ppendix. Problem formulation

See Table A.8 for the mathematical notations.

ixed integer linear program

max
∑

𝑟∈𝑅
𝑂𝑀𝑟

𝐴𝑉 𝑆
𝑟 − 𝑐𝑓 ⋅ 𝑉 − 𝑐𝑜

⎛

⎜

⎜

⎜

⎝

∑

(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺

𝑙𝑖𝑗𝐹𝑖𝑡1 𝑗𝑡2

⎞

⎟

⎟

⎟

⎠

− 𝑐𝑑
∑

𝑟∈𝑅

(

∑

𝑡∈𝑇
𝑡𝐸𝑟

𝑡 − 𝑎𝑟𝑆𝑟 − 𝑠𝑡𝑟𝑆𝑟

)

(A.1)

where

𝑂𝑀𝑟
𝐴𝑉 = 𝑝0 + 𝑠𝑑𝑟𝑝, ∀𝑟 ∈ 𝑅. (A.2)

subject to:

𝑉 𝑟
𝐴𝑉 = −𝛽0(𝑂𝑀𝑟

𝐴𝑉 + 𝑉 𝑂𝑇 𝑟
𝐴𝑉 𝑇

𝑟
𝐴𝑉 ) − 𝛽1(1 − 𝛼), ∀𝑟 ∈ 𝑅 (A.3)

𝑛𝑟𝑃 𝑟
𝐴𝑉 − 0.5 < 𝐷𝑟

𝐴𝑉 ≤ 𝑛𝑟𝑃 𝑟
𝐴𝑉 + 0.5, ∀𝑟 ∈ 𝑅 (A.4)

∑

𝑟∈𝑅
𝐷𝑟

𝐴𝑉 =

∑

ℎ=0
2ℎ𝐷ℎ (A.5)

𝑌ℎ ≤ 𝛼, ∀ℎ ∈ {0, 1,… ,} (A.6)

𝑌ℎ ≤ 𝐷ℎ, ∀ℎ ∈ {0, 1,… ,} (A.7)

𝑌ℎ ≥ 𝛼 +𝐷ℎ − 1, ∀ℎ ∈ {0, 1,… ,} (A.8)


∑

ℎ=0
2ℎ𝑌ℎ =

∑

𝑟∈𝑅
𝑆𝑟 (A.9)

𝑆𝑟 ≤ 𝐷𝑟
𝐴𝑉 , ∀𝑟 ∈ 𝑅 (A.10)

𝑆𝑟 =
∑

𝑗𝑡|
(

𝑜𝑟𝑎𝑟 ,𝑗𝑡
)

∈𝐺

𝑃𝐹 𝑟
𝑜𝑟𝑎𝑟 𝑗𝑡

, ∀𝑟 ∈ 𝑅 (A.11)

𝑆𝑟 =
∑

𝐸𝑟
𝑡 , ∀𝑟 ∈ 𝑅 (A.12)
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Table A.8
Notation.

Notation Description

Set

𝑇 = {0, 1, 2,… ,  }. Set of time instants in the operation period.
𝑁 Set of nodes.
𝐿 Set of road links between nodes in set 𝑁 .
𝐺 Set of links in the time-space network.
𝑁𝑃 Set of nodes allowing parking for SAVs with 𝑁𝑃 ⊆ 𝑁 .
𝑅 Set of groups of trips, where each group of trips 𝑟 ∈ 𝑅 has the same origin, destination, departure time, and latest arrival time at

the destination.
𝑀 Set of travel modes, with the automated vehicles (𝐴𝑉 ) and bicycles (𝐵) as the two options.
𝐾 = {1, 2,… , 𝑘,… ,}. Index set of predetermined breakpoints.

Parameters

𝛥𝑡 Time step.
𝑙𝑖𝑗 Length of road link (𝑖, 𝑗) ∈ 𝐿.
𝑄𝑖𝑗 Capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles per time step.
𝑡max
𝑖𝑗 Maximum travel time by cars on road link (𝑖, 𝑗) ∈ 𝐿.
𝑡min
𝑖𝑗 Minimum travel time by cars on road link (𝑖, 𝑗) ∈ 𝐿.
𝐶𝑖𝑡1 𝑗𝑡2

Spatial capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles that fit on the road link from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺.
𝛼 Trip service rate when all the requests have to be accepted, %.
𝑜𝑟 Origin node for group of trips 𝑟 ∈ 𝑅.
𝑑𝑟 Destination node for group of trips 𝑟 ∈ 𝑅.
𝑎𝑟 Departure time for group of trips 𝑟 ∈ 𝑅.
𝑏𝑟 Latest arrival time for group of trips 𝑟 ∈ 𝑅.
𝑠𝑑𝑟 Shortest travel distance for group of trips 𝑟 ∈ 𝑅, in kilometres.
𝑠𝑡𝑟 Shortest travel time assuming free-flow speed for group of trips 𝑟 ∈ 𝑅, in time steps.
𝑛𝑟 Total number of trips for group 𝑟 ∈ 𝑅.
𝑉 𝑟
𝐵 Deterministic systematic component of the utility of bicycles for group of trips 𝑟 ∈ 𝑅.

𝑂𝑀 𝑟
𝑚 Monetary costs of travellers in group 𝑟 ∈ 𝑅 using mode 𝑚 ∈ 𝑀 , in euros.

𝛽0 Parameter converting costs into utility, utility/euro.
𝛽1 Parameter converting service rate into utility.
𝑉 𝑂𝑇 𝑟

𝑚 Travellers’ value of travel time in group 𝑟 using mode 𝑚 ∈ 𝑀 , euros/time step.
𝑇 𝑟
𝐵 Travel time of using bicycles for trips in group 𝑟 ∈ 𝑅.

𝑝0 Initial base fare for using SAVs, euros/trip.
𝑝 Travel distance-related price for using an SAV, euros/km.
𝑐𝑜 Unit driving operational cost of an SAV, euros/km.
𝑐𝑑 Penalty for drop-off delay of passengers, euros/time step.
𝑐𝑓 Depreciation cost in one hour for using an SAV, euros/vehicle.
(𝑢𝑘 , ln 𝑢𝑘) Coordinates of the 𝑘th breakpoint.
1

𝑟 Big-M parameter, where 𝑟 ∈ 𝑅.
2

𝑖𝑗𝑡1 𝑡2
Big-M parameter, where 𝑡1 , 𝑡2 ∈ 𝑇 , if 𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max

𝑖𝑗 − 𝑡min
𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐿.

Decision variables

𝑉 𝑟
𝐴𝑉 Deterministic systematic component of travellers’ utility for using an SAV in group 𝑟 ∈ 𝑅.

𝑇 𝑟
𝐴𝑉 Longest SAVs travel time for group 𝑟 ∈ 𝑅.

𝑃 𝑟
𝐴𝑉 Probability to choose SAVs for the trips in group 𝑟 ∈ 𝑅.

𝐷𝑟
𝐴𝑉 Total number of trips using SAVs in group 𝑟 ∈ 𝑅.

𝛼 Trip service rate when some requests can be rejected.
𝑉 SAV fleet size.
𝑉𝑖 Initial distribution of SAVs at parking node 𝑖 ∈ 𝑁𝑝 at the beginning of a day.
𝑆𝑟 Total number of trips served by SAVs from group 𝑟, where 𝑟 ∈ 𝑅.
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
Passenger flow in the group of trips 𝑟 ∈ 𝑅 served by an SAV in road link (𝑖, 𝑗), from time instant 𝑡1 to 𝑡2. Only defined for
(𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, 𝑎𝑟 ≤ 𝑡1 < 𝑡2 ≤ 𝑏𝑟. If 𝑡1 = 𝑎𝑟, then 𝑖 = 𝑜𝑟.

𝐸𝑟
𝑡 Total number of passengers in group of trips 𝑟 ∈ 𝑅 arriving at time 𝑡 ∈ 𝑇 .

𝐹𝑖𝑡1 𝑗𝑡2
Vehicle flow in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺. Note that when 𝑡1 = 0, 𝑖 ∈ 𝑁𝑃 , meaning that SAVs
have to depart from the parking nodes at the beginning of a day.

𝑊𝑖𝑡 Total number of SAVs parking at node 𝑖 ∈ 𝑁𝑃 from time instant 𝑡 to 𝑡 + 1, with 𝑡 ∈ 𝑇 .
𝑍𝑟

𝑡 Binary variable with 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 if 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑏𝑟.
𝑋𝑖𝑡1 𝑗𝑡2

Binary variable which is 1 when any vehicle travels in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, and 0
otherwise.

𝐴𝑟
𝑡 Binary variable which is 1 when at least one trip in group 𝑟 ∈ 𝑅 arrives at time 𝑡 ∈ 𝑇 , and 0 otherwise.

𝐿𝑁 𝑟
𝐴𝑉 Auxiliary continuous variable, where 𝑟 ∈ 𝑅.

𝐿𝑁 𝑟
𝐵 Auxiliary continuous variable, where 𝑟 ∈ 𝑅.

𝜆𝑘𝑟 Binary variable indicating whether an interval [𝑢𝑘 , 𝑢𝑘+1] is active or not, where 𝑘 ∈ {1, 2,… , 𝑘,… , − 1}, 𝑟 ∈ 𝑅.
𝜃𝑘𝑟 Convex combination coefficient for breakpoint 𝑘 ∈ 𝐾 for group of trips 𝑟 ∈ 𝑅.

(continued on next page)
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Table A.8 (continued).

𝜆
𝑘
𝑟 Binary variable indicating whether an interval [1 − 𝑢𝑘+1 , 1 − 𝑢𝑘] is active or not, where 𝑘 ∈ {1, 2,… , 𝑘,… , − 1}, 𝑟 ∈ 𝑅.

𝜃
𝑘
𝑟 Convex combination coefficient for breakpoint 𝑘 ∈ 𝐾 for group of trips 𝑟 ∈ 𝑅.

𝐷ℎ Binary variables utilised for discretising integer variables, where ℎ ∈ {0, 1,… ,}.
𝑌ℎ Continuous variables utilised for describing the value of the integer variables, where ℎ ∈ {0, 1,… ,}.

𝐸𝑟
𝑡 =

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡1 𝑑

𝑟
𝑡
, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (A.13)

∑

𝑗𝑡1 |
(

𝑑𝑟𝑡 ,𝑗𝑡1

)

∈𝐺

𝑃𝐹 𝑟
𝑑𝑟𝑡 𝑗𝑡1

= 0, ∀𝑟 ∈ 𝑅, 𝑎𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.14)

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑜
𝑟
𝑡

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡1 𝑜

𝑟
𝑡
= 0, ∀𝑟 ∈ 𝑅, 𝑎𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.15)

∑

𝑗𝑡0 |
(

𝑗𝑡0 ,𝑖𝑡1

)

∈𝐺

𝑃𝐹 𝑟
𝑗𝑡0 𝑖𝑡1

=
∑

𝑗𝑡2 |
(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺

𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

, ∀𝑟 ∈ 𝑅, 𝑎𝑟 < 𝑡1 < 𝑏𝑟, 𝑖 ∈ 𝑁, 𝑖 ≠ 𝑜𝑟, 𝑖 ≠ 𝑑𝑟 (A.16)

∑

𝑟∈𝑅
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
≤ 𝐹𝑖𝑡1 𝑗𝑡2

, ∀
(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺 (A.17)

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺,𝑡1<𝑡

𝐹𝑗𝑡1 𝑖𝑡
=

∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺,𝑡<𝑡2

𝐹𝑖𝑡𝑗𝑡2
, ∀𝑖 ∈ 𝑁 ⧵𝑁𝑃 , 0 < 𝑡 <  , (A.18)

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺,𝑡1<𝑡

𝐹𝑗𝑡1 𝑖𝑡
+𝑊𝑖𝑡−1 =

∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺,𝑡<𝑡2

𝐹𝑖𝑡𝑗𝑡2
+𝑊𝑖𝑡 , ∀𝑖 ∈ 𝑁𝑃 , 0 < 𝑡 <  , (A.19)

∑

𝑗𝑡|(𝑖0 ,𝑗𝑡)∈𝐺
𝐹𝑖0𝑗𝑡 +𝑊𝑖0 = 𝑉𝑖, ∀𝑖 ∈ 𝑁𝑝 (A.20)

∑

𝑖∈𝑁𝑝

𝑉𝑖 = 𝑉 (A.21)

𝐸𝑟
𝑡

𝑛𝑟
≤ 𝐴𝑟

𝑡 ≤ 𝐸𝑟
𝑡 , ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.22)

𝑇 𝑟
𝐴𝑉 ≥ 𝐴𝑟

𝑡 (𝑡 − 𝑎𝑟), ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.23)

𝑇 𝑟
𝐴𝑉 ≤ 𝐴𝑟

𝑡 (𝑡 − 𝑎𝑟) + (𝑏𝑟 − 𝑎𝑟)(1 −𝑍𝑟
𝑡 ), ∀𝑟 ∈ 𝑅, 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.24)

∑

𝑡|𝑎𝑟+𝑠𝑡𝑟≤𝑡≤𝑏𝑟
𝑍𝑟

𝑡 = 1, ∀𝑟 ∈ 𝑅 (A.25)

∑

𝑡2|
(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺

𝑋𝑖𝑡1 𝑗𝑡2
≤ 1, ∀(𝑖, 𝑗) ∈ 𝐿, 𝑡1 ∈ 𝑇 (A.26)

𝐹𝑖𝑡1 𝑗𝑡2
≤
⌊

𝐶𝑖𝑡1 𝑗𝑡2

⌋

𝑋𝑖𝑡1 𝑗𝑡2
, ∀

(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺 (A.27)

𝑡1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(

𝑡 − 𝑡1
)

≤ 𝑡2 +
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

(𝑡 − 𝑡2)+(𝑡1 + 𝑡max
𝑖𝑗 − 𝑡2)

(

1 −
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

)

, ∀(𝑖, 𝑗) ∈ 𝐿,

𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max
𝑖𝑗 − 𝑡min

𝑖𝑗

(A.28)

𝐿𝑁𝑟
𝐴𝑉 − 𝐿𝑁𝑟

𝐵 = 𝑉 𝑟
𝐴𝑉 − 𝑉 𝑟

𝐵 , ∀𝑟 ∈ 𝑅 (A.29)

𝐿𝑁𝑟
𝐴𝑉 ≤ 1

𝑢𝑘
𝑃 𝑟
𝐴𝑉 + ln 𝑢𝑘 − 1, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.30)

𝐿𝑁𝑟
𝐴𝑉 ≥


∑

𝑘=1
𝜃𝑘𝑟 ln 𝑢

𝑘, ∀𝑟 ∈ 𝑅 (A.31)

𝑃 𝑟
𝐴𝑉 =


∑

𝜃𝑘𝑟 𝑢
𝑘, ∀𝑟 ∈ 𝑅 (A.32)
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
∑

𝑘=1
𝜃𝑘𝑟 = 1, ∀𝑟 ∈ 𝑅 (A.33)

−1
∑

𝑘=1
𝜆𝑘𝑟 = 1, ∀𝑟 ∈ 𝑅 (A.34)

𝜃1𝑟 ≤ 𝜆1𝑟 , ∀𝑟 ∈ 𝑅 (A.35)

𝜃𝑘𝑟 ≤ 𝜆𝑘−1𝑟 + 𝜆𝑘𝑟 , ∀𝑟 ∈ 𝑅, 𝑘 ∈ {2,… , − 1} (A.36)

𝜃𝑟 ≤ 𝜆−1
𝑟 , ∀𝑟 ∈ 𝑅 (A.37)

𝐿𝑁𝑟
𝐵 ≤ 1

𝑢𝑘
(1 − 𝑃 𝑟

𝐴𝑉 ) + ln 𝑢𝑘 − 1, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.38)

𝐿𝑁𝑟
𝐵 ≥


∑

𝑘=1
𝜃
𝑘
𝑟 ln 𝑢

𝑘, ∀𝑟 ∈ 𝑅 (A.39)

1 − 𝑃 𝑟
𝐴𝑉 =


∑

𝑘=1
𝜃
𝑘
𝑟 𝑢

𝑘, ∀𝑟 ∈ 𝑅 (A.40)


∑

𝑘=1
𝜃
𝑘
𝑟 = 1, ∀𝑟 ∈ 𝑅 (A.41)

−1
∑

𝑘=1
𝜆
𝑘
𝑟 = 1, ∀𝑟 ∈ 𝑅 (A.42)

𝜃
1
𝑟 ≤ 𝜆

1
𝑟 , ∀𝑟 ∈ 𝑅 (A.43)

𝜃
𝑘
𝑟 ≤ 𝜆

𝑘−1
𝑟 + 𝜆

𝑘
𝑟 , ∀𝑟 ∈ 𝑅, 𝑘 ∈ {2,… , − 1} (A.44)

𝜃

𝑟 ≤ 𝜆

−1
𝑟 , ∀𝑟 ∈ 𝑅 (A.45)

0 ≤ 𝛼 ≤ 1 (A.46)

𝑉 𝑟
𝐴𝑉 ≥ 0, ∀𝑟 ∈ 𝑅 (A.47)

𝑇 𝑟
𝐴𝑉 ∈ N0, ∀𝑟 ∈ 𝑅 (A.48)

𝑃 𝑟
𝐴𝑉 ≥ 0, ∀𝑟 ∈ 𝑅 (A.49)

𝐷𝑟
𝐴𝑉 ∈ N0, ∀𝑟 ∈ 𝑅 (A.50)

𝐷ℎ ∈ {0, 1}, ∀ℎ ∈ {0, 1,… ,} (A.51)

𝑌ℎ ≥ 0, ∀ℎ ∈ {0, 1,… ,} (A.52)

𝑉 ∈ N0 (A.53)

𝑉𝑖 ∈ N0, ∀𝑖 ∈ 𝑁𝑃 (A.54)

𝑆𝑟 ∈ N0, ∀𝑟 ∈ 𝑅 (A.55)

𝐸𝑟
𝑡 ∈ N0, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (A.56)

𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

∈ N0, ∀𝑟 ∈ 𝑅, (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺 (A.57)

𝐹 ≥ 0, ∀(𝑖 , 𝑗 ) ∈ 𝐺 (A.58)
28
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𝑊𝑖𝑡 ≥ 0, ∀𝑖 ∈ 𝑁𝑃 , 𝑡 ∈ 𝑇 (A.59)

𝑍𝑟
𝑡 ∈ {0, 1}, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 , 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑏𝑟 (A.60)

𝑋𝑖𝑡1 𝑗𝑡2
∈ {0, 1}, ∀(𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺 (A.61)

𝐴𝑟
𝑡 ∈ {0, 1}, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 , 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (A.62)

𝐿𝑁𝑟
𝐴𝑉 ≥ 0, ∀𝑟 ∈ 𝑅 (A.63)

𝐿𝑁𝑟
𝐵 ≥ 0, ∀𝑟 ∈ 𝑅 (A.64)

𝜃𝑘𝑟 ≥ 0, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.65)

𝜆𝑘𝑟 ∈ {0, 1}, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.66)

𝜃
𝑘
𝑟 ≥ 0, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.67)

𝜆
𝑘
𝑟 ∈ {0, 1}, ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾 (A.68)
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