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Abstract

The railway industry has the potential to strongly contribute to achieving various sustainable development goals by
expanding its role in the transportation system of different countries. To realize that, complex technological and societal
challenges are to be addressed, along with the development of suitable state-of-the-art methodologies fully tailored to the
particular needs of the wide variety of railway infrastructure types and conditions. Artificial intelligence (AI) methods
have been increasingly and successfully applied to solve practical problems in the railway infrastructure domain for over
two decades. This paper proposes a review of the development of AI methods in railway infrastructure. First, we present
a survey limited to selected journal papers published between 2010-2022. Bibliographical statistics are obtained, showing
the increasing number of contributions in this field. Then, we select key AI methodologies and discuss their applications
in the railway infrastructure. Next, AI methods for key railway components are analyzed. Finally, current challenges and
future opportunities are discussed.
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1. Introduction

Industrial sectors have been increasingly limiting the use of fos-

sil fuel consumption. However, transport sectors still struggle

to significantly reduce CO2 emissions. With the current techno-

logical progress, the road sector cannot cope with the challenge

despite the environmental standards and the development and

steady improvement of alternative fuel vehicles (37). Increasing

rail usage in the modal share between rail and road transport

is envisioned as an important strategy when developing gree-

ner and more sustainable societies (51). In some countries, this

can be achieved by equipping more regions with new railway

networks and infrastructures. In other countries where railway

infrastructure is already densely used, increasing the effective-

ness of their operations, the level of satisfaction of users, and

the optimal use of resources are major challenges.

Rail sectors in Europe aim to reduce CO2 emissions for

passenger and freight transport by 30% from 1990 by 2030.

However, more regions equipped with railway tracks and more

intense use of the infrastructure imply higher degradation rates

and a higher likelihood of facing disruptions. As trains run

on the track, the quality of railway infrastructure gradually

deteriorates over time. When this deterioration is not under

control, it can cause disastrous events, e.g., broken rails, train

derailment, etc (91). Thus, railway infrastructure must be

kept in acceptable condition under all sorts of different scena-

rios of degradation mechanisms, considering the most updated

knowledge about the particular types of failures in all the

components and their consequences. Further, in highly used

networks, disruption might affect many passenger and freight

transports. Thus it is crucial to not only prevent safety issues

but to keep the trust of users in the reliability of services so

that rail users do not shift to other transportation modes (18).

Generally, railway assets can be grouped into two main

types: the infrastructures and the rolling stock. Railway

infrastructures include tracks, tunnels, bridges, and catenary

systems. Rolling stock refers to assets that can move on a

railway network, and examples are locomotives, passenger coa-

ches, and freight cars. Common problems affecting these assets

can include failures with origin in the usage of infrastructure

components (such as rail defects), failures in the rolling stock

(such as door opening failures), and events due to exogenous

factors such as third parties (e.g., collisions with persons at

stations and non-authorized/trespassing people on railway pro-

perties) and weather conditions (such as flooding). The railway

industry has been dealing with those problems mostly by rel-

ying on traditional approaches. Still, some examples from the

industry about the use of artificial intelligence (AI) in rai-

lway applications have been reported. Just to mention some,

there are monitoring systems of the infrastructures powered

by AI to monitor the status of bridges, tunnels, switches, and

energy systems. Other reported examples of sensing technolo-

gies enhanced by AI include line-scan sensors and cameras from

passenger trains, and fiber optic acoustic sensors to detect rail

and wheel defects, trespassers, and level crossings. AI-based

algorithms relying on wayside train monitoring systems have

been developed for damage detection of pantographs, wheels,

and brake blocks. Furthermore, AI has also been exploited for

robust rail logistic planning. However, the use of AI in rai-

lway environments is not yet the standard. This indicates that

further developments are needed before reaching a maturity

level to be ready to implement reliable solutions under a large

variety of infrastructures. While the current developments in

the industry are interesting to analyze as they give indicati-

ons on the acceptance level of AI solutions, in this paper, we

focus on the advancements in AI solutions reported in journal

publications. Our target is to provide an overview of deve-

lopments and discuss gaps and future opportunities that can

support understanding the use of AI technologies in railway

infrastructure.

Our review primarily focuses on publications dealing with

four selected groups of railway infrastructures as illustrated in

Figure 1. The selected groups comprise railway track (rails,

welds, joints, switches, fastening systems, ballast, crossings,

and sleepers), railway catenary (catenary and pantograph),

railway civil structures (tunnels, bridges, viaducts, culverts),

and railway substructures (subgrade, soil, and embankments).

The reason is that these infrastructures form the foundation

for safety, quality and reliability of services, and long-term

costs. Moreover, by proactively identifying and addressing

degradation-related failures, risks can be minimized and a safe

railway systems can be ensured. Therefore, the focus is on their

failures arising from degradation and usage. Rolling stock, rai-

lway signaling, and operations are excluded from our review.

Interested readers in other railway topics are referred to other

recent reviews such as (43; 14; 138; 107).

Railway infrastructure is a highly complex distributed para-

meter system. In other words, the dynamic characteristics of

the railway infrastructure change over time and space. The

changes over time refer mainly to the consequences due to its

continuous usage, degradation processes, and human interven-

tions such as maintenance. The changes over space refer to

the fact that governing dynamics are different per location;

for instance, railway tracks at bridges, tunnels, stations, and

curves behave differently than straight tracks. Although the

railway infrastructure can also be seen as a line structure with

some components presenting a sort of local periodicity (such as

the sleeper spacing), the substructure and structure track para-

meters are unique at each location. Additionally, the railway

infrastructure is subject to various sources of stochasticity that

can affect its functionality, such as weather conditions. Thus,

the railway infrastructure is a dynamic, continuous, distributed,

and stochastic system that is fundamentally challenging, and

from where the need to develop new intelligent methods that

can be tailored to practical solutions at a local level naturally

appears.

The optimal use of railway infrastructure requires holistic

approaches to its management that explicitly include the com-

plex interlinks among infrastructure, society, and the environ-

ment. Railway infrastructure research is inherently multidisci-

plinary. Answering fundamental questions in this field requires

not only knowledge of its physical responses (structural, mech-

anical, etc.). We also need to understand the limitations of

selected mathematical modeling approaches, the capabilities of

state-of-the-art measurement technologies (vibration, images,

laser, etc.), the maintenance technology available, the behavior

of stochastic variables (weather, reliability, etc.), the inclu-

sion of the human aspects regarding users and workers, and

the complex interlinks between railway governance and contra-

cts, etc. It appears that the problems associated with railway

infrastructure are unique to different places and times. This

opens up many opportunities to develop a variety of new intel-

ligent solutions to capture the essential characteristics of the

infrastructure and to provide solutions that traditional methods

cannot truly provide.

Health condition monitoring and maintenance play a vital

role in ensuring the safety, availability, and reliability of
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Fig. 1. Illustration of the four selected groups of railway infrastructures considered in this work: track system, catenary system, civil structures, and

track substructures.

service simultaneously and in prolonging the life span of the

infrastructure. Early detection and preventive maintenance of

possible failures before they occur have shown great potential

for cost savings (104; 133). The continuous monitoring of cri-

tical components has not only increased the level of safety but

drastically increased the availability of the infrastructure, as

early warning systems allow to include the repairs or repla-

cement of these components during the routine maintenance

slots. Therefore, the railway industry and researchers from

various countries have been developing integrated and robust

approaches to continuously monitor and maintain railway infra-

structures (160; 15; 68; 123; 87). With the developments in

sensors and information technology, health conditions in rai-

lway infrastructure get monitored continually by using sensors

installed in the rolling stock (e.g., rail and pantograph moni-

toring), in areas adjacent to the track (e.g., switch engine

monitoring), and crowd sensing (e.g., with mobile phones that

measure vibrations, temperature, pressure, etc.). Monitoring of

railway systems has the potential to support the management of

their performance. Yet, how to respond to the daily detection of

faults poses another problem for inframanagers due to limited

resources, short closure times, lack of alternative routes, and

the standards that rely on time-based inspection. Additionally,

databases constructed from continuous data monitoring become

larger over time, which poses a challenge to their transmis-

sion, storage, and analytics. For instance, when using onboard

axle box acceleration systems and laser Doppler vibrometers,

an open challenge is how to migrate such high-frequency sam-

pling data onto any cloud and database due to the limitation of

the existing communication bandwidth. To reduce the amount

of data, data pre-processing and analytics on-premise can be an

option. Further, new standards are still required when dealing

with multiple measurement sources and new sensing techno-

logies, e.g., satellite data. All in all, the railway industry and

academia have been working to address these challenging issues

in which further cooperation can unlock the best solutions and

overcome these barriers to the adoption of AI.

Thus, advanced railway networks, in essence, require stan-

dardization and governance for big data management and

analytics to monitor the infrastructure condition and control

life cycle costs adequately (43; 93). In the literature, sophistica-

ted data management for data storage and analytics has proven

to enable the development of better railway maintenance solu-

tions. This is because big data analytics enables asset managers

to switch from reactive maintenance towards predictive main-

tenance (26). The literature on data analytics (114; 7; 141)

shows that artificial intelligence (AI) is increasingly popular in

various domains as it allows automation in decision support

tools by linking data with decisions and enabling asset-specific

and whole system behavior analyses. This paper focuses on AI

applications in railway infrastructure, including technologies,

methods, and models in AI that have been published concerning

monitoring, diagnosis, prognosis, detection, classification, and

maintenance. The paper is structured as follows. In the next

section, we conduct a bibliographical analysis to identify the

most used and promising AI methodologies in the field of rai-

lway infrastructure. Then, we discuss how these methods have

been adapted to railway environments for tackling different

challenges. Given the dense literature, we describe a few sele-

cted characteristic examples of these AI methods and railway

applications. Finally, we discuss open challenges and opportu-

nities for the development of AI in the asset management of

railway infrastructures.

2. Bibliographical analysis

Artificial intelligence (AI) refers to developing computer

systems and machines that can replicate or simulate human
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cognitive abilities. AI involves the creation of algorithms and

models that allow computer systems and machines to under-

stand natural language, to recognize patterns, to solve pro-

blems, to make decisions, and to adapt to new situations. AI

has been deployed in railway applications for decades. Some

of the first works reported in the literature of railways that

explicitly mention AI in the eighties are in the fields of diesel-

electric locomotives using expert systems (63) and derailment

analysis (55). For neural networks, the first applications repor-

ted in the early nineties were in traffic management (45) and

rail defects using ultrasonic images (92), among others. Now-

adays, AI plays an essential role in analyzing characteristics

of complex railway measurements and in identifying relevant

patterns amongst an abundance of information. Many intelli-

gent systems relying on AI technologies have been developed

and integrated into railway infrastructure to tackle problems

arising from its usage and natural degradation mechanisms.

To select these topics, a first broad bibliographical search was

conducted from where the more prominent fields and recent

trends were selected, including neural networks, metaheuristics,

regression (supervised), probabilistic graphical models, fuzzy

logic, clustering (unsupervised learning), and transfer learning.

The bibliographical search is conducted over papers publi-

shed within the context of AI and railway infrastructure. We

consider the track system, catenary-pantograph system, civil

structures, and substructure. Papers about rolling stock, rai-

lway signaling, and operations are excluded from the analysis.

The review aims at papers in scientific journals considering both

article and review types of documents. The publication years

considered are from 2010 to 2022. Only papers in English and

the engineering subject area are included (which will leave out

papers at the interfaces with other domains). Scopus is chosen

as the citation database, and the precise search terms are con-

sidered in conjunction with the generic words to capture most

documents of our interest. The search terms are incorporated

into three groups as presented in Table 1.

2.1. Paper retrieving process

The search is restricted to fields in the article title, abstract,

and keywords. As shown in Table 1, the wildcard asterisk is

employed to include plurals and spelling variants. Likewise, the

double quote, , is used to search for vague phrases in which

symbols are ignored. To search for papers using AI metho-

dologies in railway infrastructure, the associated search terms

from Group 1, Group 2, and Group 3 are all joined with the

AND operator. Once the primary search is done, the results are

manually verified to check whether some of the most well-known

publications in the different fields are included in their respe-

ctive lists. Next, the potential search results are assessed by

considering criteria described in Table 2. Upon completing the

literature retrieval process, the papers are analyzed and grou-

ped based on the aims and approaches of this review. Table 3

summarises the search results of each related area. We under-

stand particular papers might have been excluded from the

search engine, or some unrelated papers that mention the keyw-

ords in the abstract might fall in the selection. With our manual

check, we found that the number of these cases was minimal,

and the trends are representative enough to draw some general

analysis.

Fig. 2. AI research trend in railway infrastructures.

Fig. 3. Utilisation trend of each AI methodology for railway

infrastructures.

2.2. Bibliographical analysis

The quantitative analysis assisted in identifying 3,465 papers.

These are illustrated in Figure 2 in which an overview of rese-

arch trends observed from the number of publications by year

from 2010 to 2022 is given. As expected, research with AI appli-

cations in this field has gained popularity over the last twelve

years. Between 2010 and 2017, the number of publications per

year rose slightly from 95 papers to 208 papers. The number

of publications expanded significantly after 2017. This made

the overall number of publications after 2017 approximately

two times greater than that between 2010-2017. This increasing

trend over the past five years indicated the need and demand

for AI technology developments in the railway infrastructure

domain.

Next, the current progress of AI applications in rail infra-

structure is overviewed based on the AI methodologies elabora-

ted in the previous section. Figure 3 illustrates the utilization

trend of each AI methodology for railway infrastructures. It

can be seen that the four most commonly used methods in rail

infrastructure are neural networks, metaheuristics, PGM, and

regression. The total amount of publications using the neural

network-based method was the biggest.

A breakdown of the relative utilization of the AI categories

over the years is also shown in Figure 3. It can be seen that

the utilization trend of the neural network-based method shot

up in 2017. This made the neural network-based method the

most deployed in 2022. For other AI categories, their utilization

trend progressed similarly over the past decade. However, a sli-

ght drop was observed in the research trend using fuzzy-based

methods. Note that no publications about railway infrastru-

cture that employ transfer learning have been found before

2018. Its upsurge of interest was noticed after 2018.

An overview of the AI research share for railway infrastru-

cture systems is presented in Figure 4. AI has been employed

the most in track systems, whereas less attention has been paid
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Table 1. Search terms for retrieving publications.

Group Related area Identified search terms

1 Railway infrastructure rail* AND (catenary OR pantograph OR rail” OR track* OR ballast* OR weld* OR joint* OR

switch* OR turnout* OR fasten* OR level crossing*” OR sleeper* OR tunnel* OR bridge* OR

viaduct* OR culvert* OR subgrade* OR substructure OR soil OR embankment)

2 Railway application monitoring OR diagnos* OR prognos* OR detect* OR predict* OR classif* OR maintenance

3 AI computational intelligen*” OR artificial intelligen*” OR big data” OR machine learning”

OR deep learning” OR computer vision” OR probabilistic* OR bayesian OR markov OR

belief network” OR transfer learning” OR domain adaptation OR clustering OR k-mean

OR regression OR neural network” OR convolution* OR encoder OR heuristic* OR fuzzy

particle swarm” OR genetic algorithm” OR evolution*

Table 2. Inclusion criteria.

Criterion Description

1 Only papers in track systems, catenary system,

civil structures, and substructures.

2 Only papers in monitoring and maintenance.

3 Only papers that focus on using AI.

4 Papers in railway signalling, rolling stock,

and operations are excluded.

Table 3. Summary of the search results.

Group Related area No. of papers

1 & 2 Railway infrastructure 17,393

3 AI 4,284,974

1 & 2 & 3 AI in railway infrastructure 3,465

to catenary and substructure systems. To obtain insight into

the share of AI in railway infrastructure research, a compari-

son between the number of publications using AI and without

AI is exhibited in Figure 5 per selected railway component. To

retrieve the relevant AI papers per component, the associated

search terms from the selected railway component from Group

1, all railway applications from Group 2, and all AI metho-

dologies from Group 3, shown in Table 1, are all joined with

the AND operator. In this figure, the analysis of viaducts and

culverts is included with bridges, the analysis of substructures

includes soil, and wheels are included due to wheel-rail dyna-

mics. Even though rails, wheels, and bridges are the top three

components that have received the highest attention in rese-

arch, their proportion of AI research papers is less than that

of catenary and pantographs. Substructures and embankments

have received the least attention in research, and their propor-

tion of AI research is also lower than the other components.

Further discussions on the underlying reasons that prevent the

use of AI methodologies for these components will be given

later.

Figure 6 presents the distribution of AI methodologies across

the four groups of railway infrastructure. Unlike the retrie-

val process of Figure 5, the search terms for Figure 6 were

more restricted to the selected AI methodology. Without inclu-

ding general terms of AI, this resulted in the number difference

between Figure 5 and Figure 6 due to particular papers being

excluded from the search engine. However, the analysis is

to draw some general trends. Based on this, some insightful

findings are drawn:

1. For all four groups of railway infrastructures, neural net-

works, meta-heuristics, PGMs, and regressions are the most

commonly used methodologies.

2. Among the four groups, neural networks dominate the cate-

nary system with a share of 55%. The track system follows

Fig. 4. An overview of the AI research share across railway infrastructure

systems.

Fig. 5. The proportion of AI research papers per component. NB: one

research paper can include multiple railway components.

with a 34% share, while civil structures and substructures

account for 27% and 22%, respectively. In contrast, transfer

learning exhibits limited applicability, constituting only a

1% share in both the track system and civil structures.

3. All the selected AI methodologies have been adopted to

tackle issues in railway track system and civil structures.

4. Not all the selected AI methodologies have been adopted

to tackle issues in every component of the railway track

system, catenary system, and substructures. There was no

deployment of transfer learning in some components of the

track system, the catenary system, and substructures, whe-

reas transfer learning has been applied to civil structures.

Railway welds and joints are examples that researchers have

not used transfer learning for the track system.

5. Even though regression was widely used amongst other rai-

lway components, there was no publication (to the best

of our knowledge) about those methods in research for
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fasteners. Likewise, no research was conducted on fasteners

using fuzzy logic.

6. There were limited numbers of AI methodologies applied to

embankments. To the best of our knowledge, AI research

was conducted using only methodologies from neural net-

works, metaheuristics, PGMs, and regression. There was no

deployment of clustering, fuzzy logic, or transfer learning

for embankments.

In Figure 7, the recent development of the selected AI meth-

odologies in 2023 is presented across the four groups of railway

infrastructure, and a summary is given as follows:

1. Within the context of the track system, railway resea-

rchers tend to focus more intently on rails, wheels, and

ballasts, with comparatively less attention to welds and

fastenings. Similar to the AI developments observed in the

preceding years, all the selected AI methodologies have

been applied within the group and the utilization of neural

networks is more prevalent than those of the other metho-

dologies. Transfer learning is the least popular method, and

its applications remain absent in welds and joints in 2023.

2. Within the context of the catenary system, the utiliza-

tion of transfer learning remains unexplored. A number

of research is distributed equally between catenary and

pantographs, using predominantly methods stemming from

neural networks. As of 2023, there exists no research

employing fuzzy logic within the catenary system.

3. The development trend of the selected AI methods in civil

structures is similar to the catenary system. Nonetheless,

all the selected AI methodologies have found their applica-

tions within civil structures. Notably, there exists research

employing transfer learning in the context of bridges, but

such applications have yet to extend to tunnels.

4. The recent trend of AI method development in substru-

ctures also shares similarities with that of the catenary

system. Notably, the utilization of neural networks is less

than metaheuristics in embankments, and employment of

transfer learning is still missing.

3. AI in railway infrastructure

Beyond a safe railway operation, multiple aspects have to be

taken into account by the inframanager and railway opera-

tors. For instance, to minimize passenger and freight delay, to

maximize the capacity at which they can operate their net-

works, to maximize the reliability of the infrastructure, and

to do all of these at minimum costs. Further, societal and

environmental impacts also have to be addressed. To achieve

those targets, the infrastructure needs to be reliable. This

can be achieved by proper maintenance strategies that can

be used for requirements of new designs when tackling root

cause problems or new maintenance procedures over a life-

cycle that also considers the interlinks between replacements

and recycling processes. This is the so-call prescriptive main-

tenance. It is a new maintenance concept emerging in the

railway industry along with the development of business globali-

zation. Similar to the other maintenance concepts, prescriptive

maintenance comprises information from the diagnosis and pro-

gnosis and maintenance decision-making. Its goal is also to

intelligently monitor, predict, and optimize the performance

of railway infrastructure. In prescriptive maintenance, compo-

nent health information should represent a trend, and a major

focus is on analyzing the root cause of abnormal behavior, not

just the symptoms. However, the successful implementation of

prescriptive maintenance in railway infrastructure requires the

development of new AI solutions. This includes solutions from

defect detection, root-cause identification, classification, and

prediction of degradation patterns to decision-making suppor-

ting maintenance planning. Following is a narrative literature

review to offer insights into the use of AI methodologies in

railway infrastructure.

3.1. Railways and neural networks

Neural networks are non-linear models that can be used to

capture the dynamics of complex systems. Their architecture-

/model structure is based on layers, namely the input layer,

hidden layer, and output layer. Each layer comprises inte-

rconnected processing units (called neurons) to uncover the

underlying patterns or relationships within a dataset. Neural

networks can be constructed 1) with different topologies in

which connections between processing units can be designed

differently, 2) with different input signals in which input neu-

rons can accept continuous or binary values, 3) with different

internal state dynamics, and 4) with different learning proces-

ses to perform certain tasks. Contrary to multiple-layer neural

networks, typically considered as shallow networks, deep neural

networks consist of many layers commonly ranging from several

tens to more than hundreds. They are designed to automatically

learn and extract representations from raw input data. Deep

learning, with its emphasis on deep architectures and hiera-

rchical representation learning, has been developed and gained

much attention from researchers to leverage the capabilities

of neural networks for feature transformation and extraction

in big data environments. Examples of neural networks are

multilayer perceptron, artificial neural network, spiking neural

network, graph neural network, radial basis function network,

residual neural network, convolution neural network, and recur-

rent neural network. Interested readers in the field of neural

networks are referred to review papers such as (124; 5), and

recent reviews such as (1; 139; 52).

Much of modern technology is based on big data envi-

ronments with highly inherent complex relationships between

dependent and independent variables. In railway infrastructure,

both neural networks and deep neural networks have found their

applications for various railway infrastructure components, e.g.,

rails (61), catenary (64; 21; 162), tracks (44; 106; 159; 50; 41),

fasteners (21; 159), tunnels (4), turnouts (39), and brid-

ges (128). The existing applications of neural networks focus,

among others, on detection (61; 64; 21; 162; 44; 106; 159; 128;

71), prediction (50; 41; 4; 39), and decision-making (61; 106).

In the railway industry, there have been various applications of

neural networks and deep learning to detect defects and ano-

malies and to diagnose and prognose of railway infrastructures

including rails, level crossings, switches, welds, catenary and

pantographs.

In the research topic of detection, the challenge is to achi-

eve complete automation of defect detection at the early stages

(64; 162; 44; 128). Algorithms based on deep convolutional

neural networks (DCNNs) are predominantly utilized in rai-

lway fault inspection and detection (61; 64; 21; 162; 44; 106).

This is due to the capabilities of DCNNs and the popula-

rity of vision-based inspection. Dealing with vision-based data,

intensive research has been devoted to alleviating problems

concerning image quality acquired from inspection systems

(64; 21; 44; 159; 71).
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Fig. 6. Distribution of the selected AI methodologies across the four groups of railway infrastructures. NB: one research paper can include multiple AI

methodologies.
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Fig. 7. Development of the selected AI methodologies in 2023.

To deal with the visual complexity of defects and the simila-

rity between the component and background, Kang et al. (64)

and Chen et al. (21) proposed methodologies based on DCNNs.

Many modules were considered in developing the detection

system, including component localization and defect dete-

ction. In the component localization module, object detection

algorithms employed were the single shot multibox detector,

You-Only-Look-Once, a region convolutional neural network

(R-CNN), and fast R-CNN. Besides a fully convolutional Netw-

ork used in (21), a deep multitask neural network integrating

both a deep material classifier and a deep denoising autoenco-

der into its architecture was introduced in (64) to accomplish

simultaneous segmentation and defect detection. To obtain bet-

ter high-speed performance in detection, Zhang et al. (159)

proposed a novel structured light method based on motion

image to assist a feed-forward neural network for an inspection

of moving objects.

For prediction, neural networks are mainly selected due

to their universal approximation capabilities for non-linear

systems, self-adaptation, and the precision of their predicti-

ons. Some of the algorithms utilized within the area of railway

prediction are neural networks trained with back-propagation

(50), multi-layer perceptrons (41; 4), multi-valued neural netw-

ork (39), and several other algorithms. Multilayer feedforward

neural networks based on multi-valued neurons (MLMVN) pro-

posed by Fink et al. (39) were applied to predict reliability and

degradation based on time series. This research demonstrated

that the MLMVN developed good results for multi-step ahead

predictions and did not show accumulating errors.

Jamshidi et al. (61) and Oukhellou et al. (106) presen-

ted a framework using a neural network to detect faults. A

data-fusion technique based on Bayesian probability theory was

considered afterward to combine the outputs from a neural

network in order to make a final decision on the detection

and localization of a fault in the system. The DempsterSh-

afer theory was considered in (106) while Bayesian inference

was considered in (61). The DempsterShafer theory provides a

convenient framework for handling imprecision and uncertainty

in decision problems regarding the presence and location of a

fault.

3.2. Railways and regression

Regression and AI typically build models based on a labeled

set of data examples and predict a certain data characteristic.

For instance, the regression models can be used to evaluate new

data, which will tend to provide a prediction as the examples

provided in the database. A new data point with a high simi-

larity measure to a data point in the dataset indicates the best

match to predict a certain output (54). Examples of regres-

sion algorithms are logistic regression, ridge regression, linear

regression, stepwise regression, ordinary least-square regres-

sion, multivariate adaptive regression, principal component

regression, partial least-square regression, and project pur-

suit regression. For recent review papers on regression, readers

are referred to (99; 131). Regression has been widely emplo-

yed in rail infrastructure due to its simplicity. Based on our

review, regression has been used for association, prediction,

and assessment.

For association, examples of algorithms are Bayesian regres-

sion (147), logistic regression (29), auto-associative kernel

regression (20), locally weighted regression (20), partial least

squared regression (136), etc. Chen et al. (20) employed an

auto-associative kernel regression to explicit mapping relation-

ships between the remaining useful life and health indexes to

provide a reliable and effective RUL estimation. Sysyn et al.

(136) employed principal component analysis and partial least

squares regression to show a significant statistical relationship

between a change in the dynamic response of a railway crossing

and the rolling surface degradation during the life cycle of the

crossing.

For prediction, Wang et al. (147) employed Bayesian regres-

sion, a generalized linear regression method, for probabilistic

assessment of crack-alike rail damage using acoustic emission

monitoring data. This was developed based on a nonparame-

tric approach in the context of Bayesian inference with the

combined use of Bayesian regression and Bayes factor. To fore-

cast the degradation of track geometry, Cardenas-Gallo et al.

(29) proposed an ensemble classifier based on deterioration,

regression, and classification. In regression, a binary logistic

regression model was employed to predict how the future state

of a particular defect is described by the independent variables.

Regression-based methods have also found their applicati-

ons in feature extraction and selection in railway infrastructure.

A multivariate regression analysis with feature selection and

extraction techniques contains many popular methods like

stepwise regression, ridge and lasso regression, principal com-

ponents analysis (136), partial least squares regression (136),

proper orthogonal decomposition (36), and locally weighted

regression (20), etc. Azam et al. (36) developed a framework

to detect damage under operational conditions in railway truss

bridges. Before using an ANN to detect damage, the proper

orthogonal decomposition was employed to categorize responses

to different load patterns of trains near a bridge in their work.

In (136), principal components analysis and partial least squa-

res regression were two feature extraction methods applied to

determine the rolling surface degradation during the life cycle

of a crossing. To reduce the noise interference, the extracted

features and the combined health indicators are all smoothed

using the locally weighted regression in (20).

3.3. Railways and metaheuristics

Metaheuristics are strategies that guide the search for near-

optimal solutions to an optimization problem. Convergence to

a global optimum is not guaranteed, yet statistical analysis

shows that these techniques can systematically get close to a

global optimum. Their performance is rather problem-specific,

but their fundamentals can be applied to a broader class
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of problems. Their search techniques range from local-search

to global-search-based procedures, such as population-based

approaches. Examples of metaheuristic algorithms are diffe-

rential evolution, evolutionary computation, particle swarm

optimization (PSO), genetic algorithms (GA), and ant colony

optimization. For recent review papers on metaheuristics,

readers are referred to (154; 155; 53).

In recent years, metaheuristics have been applied to various

railway infrastructures, e.g., welds (104), bridges (142; 125; 120;

115; 28), tracks (161; 127), rails (16; 27; 110; 78), catenary and

pantograph (74; 122). According to our survey, applications of

metaheuristics lie within model updating (142; 120; 115; 28;

127) and optimization in structural design (125; 27; 110; 78;

74), maintenance (104; 159; 16; 47), and operations and control

(122).

In structural health monitoring and safety assessments,

the Finite Element Method (FEM) is the standard tool for

modeling the structural behavior of railway infrastructures.

However, the FEM cannot accurately represent the dynamic

characteristics of a structure due to a wide range of simplif-

ying assumptions. To achieve a more suitable finite element

model of the structure (120; 28; 129), calibration, a.k.a. model

updating, on uncertain parameters in the model with new mea-

surements is typically needed. This aims at minimizing the

relative difference between analytical predictions and expe-

rimental measurements. GA and PSO are two optimization

techniques widely used for this purpose. GA is a search and

optimization technique inspired by the process of natural sele-

ction and genetics. PSO, on the other hand, is inspired by the

collective behavior of bird flocking or fish schooling, where par-

ticles adjust their position based on their own experience and

the experience of their neighboring particles. With its simplicity

and trustworthy evaluations, GA has been used in (142; 120; 28)

to enhance assessment performance. In (142), Tran-Ngoc et al.

employed GA to update the unknown model parameters for a

railway bridge. Costa et al. (28) proposed an iterative method

based on GA to minimize the differences between numerical

and experimental modal responses of a stone masonry arch rai-

lway bridge. Ribeiro et al. (120) described the finite element

model updating of a bowstring-arch railway bridge based on

experimental modal data using an iterative procedure with GA.

As GA usually takes more time to converge towards a glo-

bal optimum, PSO has been employed by researchers to find

the global optima of the problem. Qin et al. (115) applied

the kriging model and PSO for the dynamic model updating of

bridge structures using the higher vibration modes under large-

amplitude initial conditions. Tran-Ngoc et al. (142) employed

PSO to minimize the discrepancies between the experimental

and the numerical results. A comparison between applying PSO

and GA was also studied in their work. The results showed that

the PSO algorithm provided better accuracy, and it reduced the

computational time compared to GA. For model updating, Shen

et al. (127) employed PSO and proposed a fusion strategy that

directly infers the stiffness of the rail pad and the ballast from

measured frequency response functions based on Gaussian pro-

cess regression. It was demonstrated that their fusion method

outperformed the PSO method in terms of accuracy and time

efficiency.

Metaheuristics have also been applied for structural design

optimization. GA is the most widely used technique within this

area based on our literature search results. Sgambi et al. (125)

proposed a method based on the combined application of GA

and FEM to design a complex long-span suspension bridge. In

(110), GA was used to optimize the rail profile on the Stockh-

olm underground to alleviate a problem with rolling contact

fatigue without consequent issues with wear and noise. Li et al.

(78) proposed a hybrid method to design a challenging railway

alignment for topographically complex mountainous regions.

The hybrid approach uses a bidirectional distance transform

and GA. Even though this hybrid method improved the perfor-

mance of GA and solved the challenging problems concerning

topographically complex mountainous regions, it was computa-

tionally more expensive than the other existing methods. In

addition, differential evolution is another technique used in

(74; 19). In (74), differential evolution was used to define the

regressive function and to determine the optimum values for

stable current collection performance of the pantograph for a

high-speed train. In (19), the railway track Health monitoring

system employed a dynamic differential evolution algorithm for

identifying defects in railway tracks. In (13), Harris hawks opti-

mization with PSO-based mutation were used for predicting soil

consolidation parameter. In (31), the performance of the Grey

Wolf optimization, PSO, and GA were compared for the esti-

mation of railway track parameters. Their results showed that

the Grey Wolf optimization performed the best in most of the

used tested cases.

The information provided by the metaheuristic-based meth-

odology can be used to support the decision for maintenance.

Typically, most optimization solutions in railway infrastructu-

res have focused on single-objective problems. To schedule the

maintenance crew for freight rail optimally, Gorman et al. (47)

adopted three techniques (mixed integer programming, con-

straint programming, and GA) and compared them. The results

showed that the mixed integer programming network formu-

lation showed the most potential for quickly finding quality

solutions among the techniques used. Zhang et al. (161) develo-

ped an enhanced GA approach to deduce the optimal scheduling

for the maintenance work of railway tracks in the UK. In the

enhanced GA, they employed various additional techniques,

e.g., orthogonal experimental design to initialize the popula-

tion, roulette selection to generate a population for the next

generation of solutions, and the differential evolution operator

to perform the variation process. Moreover, the selection was

executed on the pooled solutions from both the parent and the

newly generated offspring to guarantee that the best solution

was not disregarded.

However, in railway maintenance optimization, focusing on

a single objective is not always valid. In the structural health

monitoring context, sometimes two or more failures often occur

simultaneously. It is thus necessary to consider all related

goals as bi-or multi-objective functions to be optimized. These

objectives make it challenging to find a single solution that

optimally satisfies all of them simultaneously. Evolutionary

Multiobjective Optimization (EMO) is a computational opti-

mization technique that aims to solve problems with multiple

objectives.

In the maintenance context, reliability, life-cycle costs, and

sometimes environmental costs are to be considered. Such opti-

mization concerns multiple objectives and searches for solutions

in the global Pareto-optimal region, where solutions cannot be

reallocated to make one objective better off without making

at least one of the others worse off. This is to achieve solu-

tions that are separated from one another to the maximum

possible extent to form the trade-off surface in the obje-

ctive space (16). Various multi-objective methods have been

employed to obtain multiple Pareto optimal solutions. Gene-

rally, two classes can be distinguished: genetic algorithm-based

D
ow

nloaded from
 https://academ

ic.oup.com
/iti/advance-article/doi/10.1093/iti/liad016/7264159 by Technische U

niversiteit D
elft user on 27 Septem

ber 2023



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

10 Submitted to Intelligent Transportation Infrastructure - Oxford

(104; 16; 27; 122) and evolutionary algorithm-based appro-

ach (104). In (104; 16; 27; 122), multi-objective optimization

was handled by a fast nondominated sorting genetic algorithm

(NSGA). In (122), NSGA2 was used to optimize both the con-

tact force and the consumption of the energy supplied by the

control force for the design process and control of the cate-

narypantograph system. In (27), Choi et al. adopted NSGA2

to minimize both the wear and fatigue of a wheel with consi-

deration for derailment, lateral force, vehicle overturning, and

vertical force generated during motion along a curved track.

The research objectives of Caetano (16) was to support an

informed decision that considered not only the railway track

life-cycle cost but also the track occupation. Nunez et al. (104)

also performed multi-objective optimization to identify the set

of all Pareto optimal solutions that formed the trade-off sur-

face between performance and maintenance cost for rail welds

in a regional railway network. In their work, a multi-objective

optimization tool from Matlab was used, and the algorithms

ARMOEA, NSGA2, SPEA2, GrEA, RSEA, and VaEA, were

compared. It was shown that SPEA demonstrated superiority

among other algorithms for their proposed maintenance decisi-

ons optimization problem, at least when the number of integer

decision variables was not extremely large.

3.4. Research based on probabilistic graphical model

A probabilistic graphical model (PGM) expresses relationships

between variables based on graphic architectures. It operates

to provide an intuitive framework for representing uncertainty

using probability distributions (143). PGMs can be divided into

two classes, i.e., Bayesian models and Markov models (75).

Examples of algorithms within PGMs are Nave and non-Nave

Bayesian, Bayesian (belief) network, Hidden Markov model,

Markov models, and Averaged one-dependence estimator. For

recent review papers on PGMs, readers are referred to (95; 126).

PGMs have been applied for various railway infrastructu-

res, e.g., railway bridges (118; 46; 103), catenary (86), turnouts

(145; 34), rails (60), tracks (6). They are considered a powerful

tool for anomaly quantification in the presence of uncertainty.

There has been a growing interest in applying PGMs to fault

diagnosis and prognosis in railway systems. In particular, they

offer solutions to damage detection, predicting the future condi-

tions of railway infrastructures, identifying causality inference,

and providing a learning mechanism that can be adaptive over

time.

For railway infrastructures, it happens that multiple fai-

lure events cannot be identified and the probability of failure

cannot be reached quantitatively by event tree and fault tree

analysis (34). Many researchers have then proposed methods

based on the Bayesian network to identify the probability and

the underlying root cause of failures in railway infrastructu-

res through various basic principles and inference algorithms.

Generally, the systematic Bayesian networks are developed in

three steps; 1) variable selection, 2) structural design of the

Bayesian network, and 3) parameter learning. Wang et al. (145)

proposed a Bayesian network for weather-related failure predi-

ction in railway turnout. In the Bayesian network development,

they first selected variables that related to weather and failu-

res. An entropy minimization-based method was presented to

discretize model variables in order to reduce the input type and

to capture better performance. In the second step, they desi-

gned the structure of the Bayesian network by learning from

real data combined with expert experience. Lastly, in parame-

ter learning, the Bayesian network was transferred into a noisy

independence of causal influence model and took advantage of

learning the conditional probabilities using a noisy MAX model

to overcome the parameter learning problem from small data

sets. Monte Carlo simulations were also employed to determine

with greater accuracy the mean and the confidence interval for

weekly estimations of failures. Dindar et al. (34) employed a

Bayesian network to analyze the probability of train derail-

ments caused by extreme weather patterns on railway turnouts.

They followed the same steps as in (145) but employed fuzzy

probability using Buckleys confidence interval-based method to

allow for gathering more information than just a single con-

fidence interval or just a point estimate in the last step of

the Bayesian network development. As opposed to (145; 34),

Imran Rafiq et al. (118) proposed a dynamic Bayesian network

to model the variation in the bridge condition with time. In a

dynamic Bayesian network, the Bayesian model is connected to

its successive time slices through temporal links to form a time-

varying model, while the Bayesian network model discussed in

(145; 34) serves as a snapshot model to estimate the railway

infrastructure condition based on its constituent element con-

ditions at a given point in time. Markov chain principles were

employed to quantify the transitional probabilities in (118).

PGMs are computationally efficient in updating the model

when new information regarding the condition state of any

variable becomes available. Neves et al. (103) proposed a PGM-

based method to update an ANN model for damage detection of

railway bridges. In their work, a Gaussian process was emplo-

yed to statistically analyze the distribution of the errors using

the predicted acceleration errors obtained from the developed

ANN. This was to define the detection threshold for the system,

allowing the determination of the probability of true and false

detection events. Finally, probability-based expected cost, as a

function of the chosen threshold, was proposed based on the

theorem of Bayes to update the model. To infer some stiffness

properties of the ballast and subsoil from measurements car-

ried out on the railway bridge, considering uncertain seasonal

effects, Gonzales et al. (46) also employed Bayesian updating

of a 3D finite element model with Markov-Chain Monte Carlo

sampling to determine posterior distributions of the uncertain

stiffness properties in the warm and cold states of the bridge.

Another typical application of PGMs is for analysis of the

risk factors correlated with failures in railway systems. Jam-

shidi et al. (60) proposed a failure risk assessment framework

based on the PGM for analyzing the rail surface defects called

squats. The proposed framework aimed to estimate the proba-

bility of rail failure based on the growth and severity of rail

squats. In their work, defect severity and growth analysis were

performed via an N-step ahead prediction model using data

measured by ultrasonic detection. To assess model uncertainty

and robustness for stochastic data behaviors, the Bayesian infe-

rence model was employed to estimate the failure probability.

Andrade et al. (6) used a hierarchical Bayesian model to handle

the spatial correlations of the deterioration rates and the ini-

tial qualities for consecutive track sections. With a hierarchical

Bayesian model, the predictive model for the degradation of

railway track geometry was improved based on the deviance

information criterion.

Furthermore, a Markov random field model was developed

in (86) for image segmentation in order to facilitate automatic

fault detection for the loose strands of the isoelectric line in the

catenary system. This work employed the Markov random field

model to provide a link between the uncertainty description

and prior knowledge in their work. They showed that detection

accuracy was improved with the use of Markov random field.
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3.5. Railways and fuzzy systems

Fuzzy logic can deal with ambiguity. While traditional logic

allows a proposition to be either true or false, in fuzzy logic, a

proposition has a degree of truth, ranging from being comple-

tely true to completely false. A formulation based on fuzzy logic

is defined by multi-valued logic where the value of a variable can

be any real number between, but not limited to, 0 and 1. The

applications of fuzzy logic-based methodology often lie within

solving a problem with uncertainties, vagueness, or imprecision

(143). Examples of fuzzy logic methods are type1- type2-fuzzy

logic, Takagi-Sugeno fuzzy inference system, Mamdani fuzzy

inference system, fuzzy C-means, and adaptive network-based

fuzzy inference system. Interested readers in fuzzy logic are

referred to review papers such as (96; 132; 33; 72).

The applications of fuzzy logic-based methods often lie

within the problem of prediction and decision under uncertain-

ties or vagueness. Examples of their applications for railway

infrastructures are detection, risk assessment, and decision

support (42; 62; 97; 58; 77).

For detection problems within a railway environment, false

alarms are one of the biggest issues that create financial losses

in the railway industry (42). False alarms are generated when

the system detects a non-existent obstacle or does not detect an

existent obstacle. Techniques utilized to alleviate the problem

include, e.g., the design of the sensor used, the conditions in

which the sensor is working, and the signal processing that is

carried out by the system, Garcia et al. (42) employed a Mam-

dani fuzzy controller to weigh the certainty of the existence

of objects given by a multisensory system to inform the moni-

toring system about the existence of obstacles. Hussain et al.

(58) also employed a fuzzy logic-based method to deal with such

uncertain circumstances in detecting adhesion and its changes

under different wheel-rail contact conditions.

As detection and diagnosis systems can facilitate the

decision-making process, much attention has been paid to

improving the reliability of such systems by using fuzzy logic-

based methods. As numerous circumstances threaten safety and

operations in railway infrastructures, it is necessary to con-

sider key performance indicators (KPIs) affecting the health

conditions of railway infrastructures over time. Under the sto-

chasticity of operational conditions, fuzzy logic-based methods

have been adopted to assess the dynamics of threats. Within

this context, Jamshidi et al. (62) and Li et al. (77) proposed a

technique stemming from fuzzy logic. To assess the dynamic of

water inrush in the progressive process of tunnel construction,

Li et al. (77) employed a fuzzy evaluation method to quantitati-

vely analyze the risk level of factors concerning both geological

condition and construction situation. Jamshidi et al. (62) pre-

sented a fuzzy TakagiSugeno interval model to predict squat

growth over time under different possible scenarios and under

different maintenance decisions. Moreover, a Mamdani fuzzy

expert system was used to calculate a single KPI to conclude

the dynamics of the deterioration of railway tracks.

In addition to railway safety and operations, there are incre-

asing requirements concerning riding comfort. As railway tracks

deteriorate over time and maintenance becomes expensive,

Metin et al. (97) presented a fuzzy logic controller to ensure

that the vibration responses are within permissible limits. In

their work, the performance of the fuzzy logic controller was

compared with the conventional proportional integral derivative

controller. The results showed that the fuzzy logic controller

demonstrated superiority in active vibration control and incre-

ased passenger comfort. Other notable AI techniques applied in

catenary systems using fuzzy logic are (156; 67; 66; 10; 11).

3.6. Railways and clustering

Clustering is a technique for partitioning a set of objects into

different data groups. The procedure is done so that objects in

the same cluster are more similar than those in other clusters.

Further, different clusters are preferred to contain rather dif-

ferent samples. Thus, clustering methods require selecting an

appropriate measure and an objective function that minimizes

the within-cluster variation and maximizes the between-cluster

variation. Different measures result in different clusters. Exam-

ples of clustering algorithms are k-means, k-nearest neighbor,

self-organizing maps, mixture of Gaussian models, and hiera-

rchical clustering. Interested readers in the field of clustering

are referred to review papers such as (152; 94; 116).

Various applications in the area of railway monitoring and

maintenance have been found using clustering methodologies.

For monitoring, clustering can be employed to detect and assess

damage in railway infrastructures. Cardoso et al. (17) proposed

a clustering technique to uncover hidden patterns in monitoring

data. A hierarchical clustering algorithm was applied to modal

parameters and used to perform automated modal identifica-

tion in railway bridges. Unlike (17), Cury et al. (30) proposed

a novel technique based on symbolic data analysis for provi-

ding a clustering of different structural states in which the

number of states is not known a priori and has to be deter-

mined. The symbolic clustering methods considered in (30)

included hierarchy-divisive methods, dynamic clustering, and

hierarchy-agglomerative schemes. The results highlighted the

large capability of the symbolic data analysis methods to pro-

vide clusters of different structural behaviors in railway bridges.

Both hierarchy-divisive and dynamic cloud methods demon-

strated better results compared to those obtained by using the

hierarchy-agglomerative method.

Clustering-based methodologies have been applied to sup-

port decisions for the optimal planning of maintenance of

railway infrastructures. Within this context, Cirovic et al. (59),

Su et al (133), and Peng and Ouyang (108) presented a cluste-

ring technique to determine groups of maintenance jobs and

groups of railway assets that can be treated within either the

allocated time slots or budget allowance. In (59), Cirovic et al.

proposed a technique based on fuzzy clustering to define the

optimal strategy which supports the choice of level crossings

for installing safety equipment in Serbian railway. These crite-

ria were used to form a set of data for training the adaptive

neuro-fuzzy network. In (133), Su et al. solved a mixed integer

linear programming problem to obtain the resulting optimal

clusters of railway components that were treated within the

allocated maintenance time slots. This was to determine the

trade-off between traffic disruption and the total setup cost

associated with each maintenance slot while guaranteeing that

the total duration of the resulting maintenance slots was no

less than the estimated maintenance time. In (108), F. Peng

and Y. Ouyang also employed a mixed-integer mathematical

programming model in the form of a vehicle routing problem

with side constraints to classify track maintenance jobs into

projects. The algorithm framework of job clustering considered

in their work included a constructive greedy heuristic, a local

search heuristic, and a feasibility heuristic.
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3.7. Railways and transfer learning

Transfer learning-based methods are developed to tackle pro-

blems concerning limited labeled data in supervised learning.

The knowledge from one or multiple tasks (the source domain)

is expected to transfer to other related but different ones (the

target domain). The transfer scenarios can be divided into two

categories, i.e., transfer in the identical machine and transfer

across different machines (75). The latter is also known as

domain adaptation, where differences between feature spaces

and label spaces are allowed, e.g., transferring knowledge from

railway track to railway catenary. For recent review papers on

transfer learning, readers are referred to (166; 70).

The existing supervised AI learning algorithms manifest a

relatively advanced performance in different railway enginee-

ring applications. Their fruitful performance relies extensively

on sufficient training data and high-dimensional balanced data-

sets (64; 44; 106). Otherwise, imbalance and insufficient labeled

datasets can impair the ability of, e.g., the classification algori-

thms. For railway engineering, the amount of monitoring data

collected from railway infrastructures, especially defective sam-

ples, cannot generally be collected in a short time to obtain

balanced datasets for network training under different opera-

ting conditions (164; 25; 153; 167). To alleviate this issue,

increasing attention has been paid to developing algorithms

based on the transfer learning approach. It refers to the concept

of transferring the knowledge of the pre-trained model to other

related but different ones. The transfer scenarios can be develo-

ped using other AI methodologies such as CNN (164; 25), deep

learning (153; 167), and AdaBoost (164; 80).

Zhong et al. (164) and Chen et al (25) proposed a transfer

learning approach based on CNN. In (25), a multi-layer CNN

was employed in which the low-level layers of a model were

pre-trained on large audio data for feature extraction. Next, the

acoustic-specific features were transferred to train the high-level

layers by using acoustic emission monitoring data for condition

assessment of the rail structure. To overcome the problem of a

limited amount of defective data, Zhong et al. (164) proposed

an improved algorithm based on the Faster R-CNN algorithm

to build a transfer learning model in defect localization.

Based on deep learning, Zhong et al. (164) also introduced

an algorithm based on a generative adversarial network to con-

struct defect detection models by using only normal samples.

Yao et al. (153) employed a generative adversarial network to

generate additional fault samples in order to balance and train

the data sets. Residual Network was developed for fault diagno-

sis and classification of track fasteners, and the extended data

set was used for group training and validation. With generative

adversarial network and residual network, the results showed

that the fault detection accuracy of rail fasteners did not impair

when using a serious shortage of fault data. In (167), Zhuang et

al. employed firstly extended Haar-like features to extract effe-

ctive features of cracks on railway ties and fasteners. Secondly, a

cascading classifier ensemble was developed by integrating indi-

vidual cascading classifiers built via the LogitBoost algorithm

with a bootstrap aggregation. However, the framework propo-

sed in (167) could not identify patterns that were not included

in the training dataset.

Among transfer learning algorithms, the Adaboost algori-

thm is one of the most widely used tools to overcome the

problem of insufficient training data. The core idea of Ada-

Boost is to iteratively train the weak learning algorithm, whose

predictive performance is lower, for the same data set and inte-

grate them into a strong learning algorithm, whose predictive

performance is higher. Lin et al. (80) employed AdaBoost to

relate catenary fault frequency with meteorological conditions.

In their work, only a small number of training samples were

classified correctly by each weak classifier chosen from the single

decision tree. The AdaBoost algorithm was adopted to adjust

the weights of misclassified samples and weak classifiers and

train multiple weak classifiers. Finally, the weak classifiers were

combined to construct a strong classifier for the final prediction.

Transfer learning can be applied to a pre-trained model of

any type and transfer learning alone particularly deals with

the issue when the amount of available data for the target

task is limited. However, the combination of transfer learning

with other neural network architectures (such as recurrent neu-

ral networks, and convolutional neural networks) can lead to

hybrid models that leverage the strengths of different approa-

ches, providing more accurate solutions for railway problems.

Furthermore, when multiple neural networks are trained inde-

pendently, the knowledge of the pre-trained models can be

aggregated by using transfer learning in an ensemble setting

and can be adapted to different railway networks or different

environments. The combination of transfer learning with neu-

ral networks can potentially lead to improved performance,

generalization, and robustness. In (22), the concept of transfer

learning was applied to deep convolutional neural networks for

multi-category damage image classification recognition of high-

speed rail reinforced concrete bridges. The results showed that

the approach reduced the training time of the neural network

models and led to lower generalization errors. In (158), deep

transfer learning and graph neural networks were proposed for

the health assessment of high-speed rail suspension systems.

Using transfer learning in an ensemble setting to combine tran-

sferable features in the source domain, the shortage problem of

labeled data in the real operating condition was alleviated as

the initial hyper-parameters of the model in the target domain

were obtained from the pre-train model in the source domain.

3.8. Discussion

Table 4 presents the potentials of the selected AI methodologies

for applications in railway infrastructure and their limitations.

Based on these, some insightful findings are:

• Neural networks require further adaptations to describe

real-world physical interpretation due to their black-box

characteristic. Having a black box model that is not gua-

ranteed to perform under new unexpected conditions makes

the users and rail operators concerned about the use of the

model predictions. Based on the review in this section, it is

observed that several works have applied neural networks

in combination with regression (4; 128) and other soft-

computing techniques, e.g., support vector machine (71),

decision tree (106), and fuzzy (61) to provide more explai-

nability about the correlation between model behaviors and

the physical problem.

• It was observed that researchers have developed hybrid

models combining two (or more) AI techniques to perform a

specific task. Examples of combing AI methods are 1) meta-

heuristics-based method with neural network-based method

(78; 103), 2) PGM-based method with neural network-based

method (61; 106), 3) regression-based method with PGM-

based methods (147; 29), etc. The use of a combination

of methods has the potential to improve overall performa-

nce when these methods are complementary to each other.
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Table 4. Summary of potentials and limitations of selective AI

methodologies.

AI methods Tasks Achievements Limitations Papers discussed

in this work

Neural network detection, capability to deal with long training process to determine (61; 64; 21)

association, non-linear and complex the optimal network and (162; 44; 106)

prediction, relationships between lack of interpretability (159; 50; 41)

decision support dependent and independent (4; 39; 128)

variables with high precision (71)

of the predictions

Regression association, ability to provide an explicit non-competitive accuracy (147; 29; 20)

prediction, mapping relationships between compare to other AI methods (136; 36)

assessment variables with physical meaning

Meta-heuristic FE model updating, ability to provide optimal solution long computation time to (104; 142; 125)

design optimization, to problems concerning either find optimal solution (120; 115; 28)

and maintenance single or multiple objectives. (161; 127; 16)

optimization (27; 110; 78)

(74; 122; 47)

(13; 19; 31)

PGM detection, powerful tool for dealing with rely on a high-quality training (118; 46; 103)

prediction, situation in the presence of dataset and often suffer from the (86; 145; 34)

identify causality uncertainty, and solving inference curse of dimensionality. (60; 6)

inference problems

Fuzzy logic detection, ability to produce fuzzy rules for highly dependent on human (42; 62; 97)

assessment, problems with uncertainty knowledge and expertise, and have (58; 77)

control to regularly update the rules.

Clustering detection, ability to discover hidden patterns inability to perform if there exists (133; 17; 30)

assessment, in datasets without providing a mixture of clusters with (59; 108)

labelled data different characteristics

Transfer learning detection, capability to deal with imbalance inability to deal with situations (164; 25; 153)

prediction and insufficient labeled datasets when health information (167; 80)

are unrelated.

For instance, global optimization approaches can potenti-

ally find parameters of neural networks that better fit an

objective function. However, when different methods solve

a similar task, a major emphasis on the analysis of the

consensus between these methods is needed.

• Deep learning concerns multiple layers of computational

units in which the actual optimization of the whole stru-

cture is a highly non-convex problem. They contain a huge

amount of parameters and, in some cases, more than milli-

ons of parameters which results in long computation time to

find a near-optimal solution. Moreover, large labeled data-

sets, preferably balanced, are required to train deep learning

models. Despite these shortcomings, interest in these meth-

ods has increased in view of the rather impressive results

from other fields. To alleviate the issues and make its advan-

tages more pronounced, transfer learning is employed to

help retrain the trained deep learning models to perform

a similar task. This not only reduces computational effort

but also the amount of training data for deep learning.

• PGMs and fuzzy logic have received a growing interest for

applications in fault prognosis due to their powerful capabi-

lity to deal with the presence of vagueness, uncertainty and

solving inference problems (118; 145; 34; 60; 6). However,

there are several sources of uncertainty, e.g., measurement

data, model structure and parameters, and different data

behavior from future operational conditions. These uncer-

tainties propagate over time and the existing models have

to be updated when new information regarding the health

condition of any variable becomes available. Most existing

models are computationally inefficient in updating. Based

on our review, however, limited work has been found to

address such a problem for railway infrastructure.

4. Challenges from railway infrastructure

State-of-the-art intelligent solutions show good generalization

capabilities to solve problems from different fields. Some par-

ticular challenges from railway infrastructures prevent direct

exploitation of the existing state-of-the-art methodologies, as

will be highlighted in a sequel. Consequently, their successful

application in the field of railway infrastructure requires desi-

gning and developing methodologies to capture the particular

and challenging characteristics of railway infrastructure.

4.1. Insufficient and imbalanced data for model training

For railway infrastructure, conventional supervised methods,

particularly deep learning, require a large amount of labe-

led data available for learning to guarantee their performance.

However, collecting accurate and verified labeled samples of

high-quality faulty and healthy states from thousands of km

of rail lines is extremely difficult, costly, and time-consuming.

Regarding class information for defects, often few labeled data

are available due to the lack of historical data with sufficient
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quality and localization. Likewise, healthy data are difficult to

label because of their variants of behavior at different locati-

ons; in particular, rails are affected by local track dynamics

and different stochastic variables. Sometimes, there is no stan-

dard/threshold to evaluate the level of health conditions. For

instance, an embankment is one of the areas in railway infra-

structure that require further study. Furthermore, in some

railway infrastructure, obtaining a wide variety of class infor-

mation for defects is extremely difficult. Therefore, data from

healthy infrastructure are abundant, whereas defective ones are

few. As a result, the data used for training AI models are

seriously imbalanced, and labeled data are insufficient.

4.2. Training AI models with complex railway data

Railway infrastructures are complex and highly nonlinear. They

involve different assets and can be affected by various anoma-

lies. Detecting failures and maintaining the structure requires

multiple measurement systems. Most of the information about

the condition of the infrastructure is collected with inspection

systems. Typical systems in the industry include eddy cur-

rent, ultra-sonic, vibration measurements between wheel and

rail using accelerometers, video images and track geometry

recording vehicles (135; 134). Depending on track tonnage,

the number of trains passing by the track, and maximum

line speed, data measurement frequencies and data processing

requirements can differ substantially. Thus, selecting a proper

AI methodology must account for the nature of the railway

components and their inherent dynamics. There is a signifi-

cant interdependency between railway track-related assets, not

only in functionality but also in using anomaly detection algo-

rithms or maintenance planning. For example, a track video

scan (56; 165; 105; 111) allows the asset manager to capture

the health condition of different track components, e.g., faste-

ners, switches, and sleepers (32; 48; 121; 137; 40; 130). However,

video image-based measurements can only capture anomalies

in the track structure when they are visible. This means that

early-stage anomalies in rail (invisible ones) or vertical irregula-

rities in the track cannot be detected effectively using only video

cameras. Using together images and other sources of data, such

as axle box acceleration (ABA) measurements, track geometry,

or eddy current and ultrasonics, can provide a more integra-

ted assessment of the track condition. ABA measurements can

detect light squats (Phusakulkajorn et al.; 113), which occur

at frequency bands up to 2.5 kHz with train speeds of about

100 kilometers per hour (102). New technologies, such as a

Laser Doppler Vibrometer sensor, can also provide continuous

monitoring along a railway line, and they can measure with fre-

quency sampling that goes higher than the order of MHz. Thus,

continuous monitoring of hundreds of kilometers with the latest

technologies creates a better overview of the current track con-

dition, but at the expense of creating a huge volume of data

and a very high dimensionally problem from which key featu-

res are to be extracted to represent the data effectively. In this

case, developing ultra-fast AI solutions, also considering edge

computing (23), could support addressing these challenges.

In addition to the characteristics of the railway infrastru-

cture, the most suitable AI method can be determined based

on the nature of the measurement data. Measuring data can

vary from an unorganized and semi-organized data structure

to a fully organized structure. Measured data collected by

human operators, e.g., track information and historical operati-

onal activities, usually are fully structured or semi-structured.

On the contrary, advanced anomaly detection systems con-

tain a massive sampling pool and high complexity as they are

high-dimensional and nonlinear that require additional meth-

odologies for preprocessing, including noise removal, feature

extraction, and selection.

Employing multiple systems to monitor railway infrastru-

cture performance indicates the need to deal with heterogene-

ous data. The information about defects obtained by a single

source can easily show trends; however, it is limited by the

nature of the measurement itself. When different data types

are exploited to extract information and to provide additio-

nal information about the same defect, we have the risk that

the data sources are not containing complementary information

for data analytics. That is when the physical understanding

of the advantages and limitations of the different monitoring

systems is not included. Different systems might provide dif-

ferent detection reports that appear to contradict each other.

Thus, new AI solutions to deal with heterogeneous data can also

support the development of holistic approaches to integrate rai-

lway information and make the decision-support models more

robust. In addition to the integration of information, data

alignment from different measurement trains on a track is

another challenge. A robust optimization model is needed to

correct positional errors of inspection data from heterogeneous

measurements (151).

4.3. Training AI models for maintenance purposes

Railway infrastructures are dynamic, stochastic, and distribu-

ted parameter systems that change critical parameters over

different locations and times. Moreover, their failures have com-

plex characteristics that result from multiple incidents involving

different causalities and uncertainties affecting their functi-

onality, e.g., operational conditions, maintenance activities,

weather conditions, traffic loads, the geometry of the infra-

structure, and the properties of construction materials (8; 89).

Therefore, it is crucial to have an accurate remaining useful life

and degradation pattern estimation. An early prediction may

result in over-maintenance, and a late prediction could lead

to catastrophic failures. Consequently, the existing degrada-

tion models for rails have to be updated when new information

regarding the health condition of any variable becomes availa-

ble. However, some models may not be computationally efficient

in updating. New models and techniques are needed to alleviate

the issue.

To estimate remaining useful life or degradation patterns,

many existing models rely on handcrafted features representing

degradation processes caused by those factors. The feature sele-

ction/extraction often requires domain knowledge and expertise

about common causes leading to system degradation. For insta-

nce, the location or type of rail surface defects may cause

different degradation patterns. The dependency on a large

variability of datasets and experimental tests in large railway

infrastructures presents a challenge for training in prognostic

models. Research in certain applications uses data from run-

to-failure tests, from which the labels can be derived (73). For

railway applications, it is impossible to conduct such tests. To

accurately determine the associated remaining useful life and

degradation pattern at every time step for railway infrastru-

cture, the threshold of its failure must be defined. Therefore,

some experiential knowledge is needed. For instance, a rail is

deemed reliable when the size of rail surface defects achieves

a threshold of a certain length (61). As such, condition-

based maintenance strategies have to systematically improve to
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capture new situations and to perform better under new condi-

tions, e.g., when facing new challenges from more intensive use

of the infrastructure, climate change, and harsh environmental

conditions.

Railway infrastructure systems are also large-scale due to

various reasons. Firstly, railway infrastructure often involves

many basic components distributed over various kilometers of

railway tracks. Further, a railway line can cover a long distance

(e.g., over 250 km) with defects that have a size in the order of

centimeters (e.g., squats) which their locations are distributed

over the whole infrastructure (133). This causes the mainte-

nance optimization problem to become large and intractable.

Obtaining an exact resolution of each plan along the prediction

horizon is time-consuming and leads to the large-scale opti-

mization problem (2). Secondly, maintenance operations over

the whole prediction horizon might change when performing

maintenance optimization based on a rolling horizon under real-

life conditions. That is, long-term maintenance plans might

continuously change according to new predictions and new ope-

ration plans. Consequently, the flexibility in the maintenance

contracts to include adaptive plans and methods for learning

from these plans can be supported with new AI methodolo-

gies. Lastly, and most importantly, incorporating the inherent

characteristics of the railway system gives rise to a complex

nonlinear model that becomes too large and complex to solve

efficiently and that leads to a high computational burden (109).

For these, the amount of information needed to guarantee the

proper operation and the high computational burden of solving

problems for such complex and large-scale systems present chal-

lenges in research concerning AI. The difficulties include stack

overflow and long computation time, and a very challenging-

to-obtain set of optimal solutions due to the irregular shape of

the resulting Pareto fronts.

4.4. Barriers for AI deployments in the railway industry

Many stakeholders are interrelated within the railway industry.

However, they are conservative and usually resist the changes

introduced by the digitalization of railway infrastructure, as

these can affect the way they worked before. Likewise, the lack

of understanding of AI used and the reliability of the results are

barriers to the adoption of new methods, especially with regard

to safety requirements. Without effective cybersecurity, rail

operators cannot be assured of securing their data and informa-

tion. Consequently, business resources cannot be consolidated,

and data are scarce with limited access.

Other aspects that prevent the successful implementation of

AI in railway infrastructures also include a lack of standards,

traceability, and interpretability of results using complex AI

methodologies, particularly neural networks. Results and their

implications for the safety of railway infrastructure provided

by AI are often difficult to understand. As the infrastructure

manager is responsible for his assets and has to ensure the requi-

red safe operation, the physical explanation of the problem

and the causality are crucial for preventing failures. Failing

to provide such information prevents the exploitation of AI

methodologies for decision support systems.

Even though there are more applications of AI methodo-

logies in the railway industry, some projects did not have a

continuation. The reasons are, firstly and importantly, lack

of budget. Secondly, digitalization is not complete and accu-

rate. The railway industry tends to be conservative, and for

some inframanagers, the documentation is mainly paper-based.

Dynamical models used are primarily in 2D and digital maps

of the asset positions are partly not available. This creates

a problem of allocating failures when the location of rai-

lway infrastructures is not accurate and precise. Therefore,

AI developments are needed to check and improve localiza-

tion accuracy in order to obtain reliable data in the future.

Lastly, system integration requires a proper understanding of

the system hazards and associated risks. Proper integration of

a new system into the current operating system requires to be

done in a smooth way and without interrupting the service.

Moreover, how to implement AI in real operations is another

challenge.

5. Research directions and future opportunities

The challenges discussed previously create a need to develop

new intelligent methods based on AI that should be tailored

to the particularities of railway infrastructures. This section

presents research directions and future opportunities for rai-

lway infrastructure. As the use of AI is not yet standardized

and their solutions are mostly not traceable and interpretable,

implementing AI solutions only serves as a decision-support for

railway infrastructure managers at the moment. Humans are

still required to make final decisions. We have not yet reached

the point of having fully automated AI capable of making final

decisions.

Based on our literature review and our view, research dire-

ctions and future opportunities for railway infrastructure given

in Subsections 5.1 - 5.7 are conceivable as there exist current

developments in academia. However, further validations in dif-

ferent environments/network lines and standardizations are still

needed before reaching a maturity level to be ready for real

implementation in the railway industry.

It is noteworthy that some research directions are relatively

difficult to achieve in the upcoming years within the context

of railway infrastructure. Given the rapid pace of technolo-

gical development and advancements, making such conclusive

judgments about the feasibility and ease of potential research

directions in the near future for railway infrastructures is com-

plex and subjective. Therefore, the discussion only serves as an

informative and advantageous resource for the readers. Drawing

from our perspective, these are transformers (see Section 5.8),

metaverse (see Section 5.9), and emerging technologies such

as blockchain technology (see Section 5.10). This is because

their adoption and implementation are hindered by the uni-

que challenges and characteristics of the railway infrastructures.

For instance, many railway infrastructures and systems have

been in place for decades. They may have been designed and

built using outdated technologies and standards. Introducing

new technologies often requires retrofitting or replacing existing

infrastructure, which can be expensive, time-consuming, and

disruptive. Moreover, integrating new technologies like tran-

sformers or blockchain requires careful consideration of how

these technologies will interact with existing systems and pro-

cesses. A skilled workforce with expertise is also required for

implementing and maintaining advanced technologies like tran-

sformers, metaverse-related solutions, and blockchain where

railway organizations may lack the necessary expertise and

resources.

5.1. Hybrid models

Hybrid models are promising and have the potential to offer

more competitive AI and machine learning models with high

performance. Hybrid models refer to a combination of multiple
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methods or techniques to solve a particular problem. They are

developed not only to improve overall performance via their

advantages but also to alleviate the limitations of the meth-

ods. The models can be constituted by combining 1) different

AI methods, 2) human experts and AI methods, 3) physical-

based methods or other traditional methods and AI methods,

or 4) a mixture of AI, human experts, and physical-based

models. Tailoring hybrid models to railway infrastructure appli-

cations requires in-depth knowledge of the particularities of the

problem and a particular focus on the interfaces between the

methods. For example, the performance of probabilistic models

in prognosis can be impaired by the accumulating error from

using results obtained from diagnosis models based on deep

learning. Then, a combination of AI-based models with human-

expert or physical-based knowledge is required. In catenary

systems, it was mentioned in (85) that, despite the fruitful

outcomes of using AI for catenary systems, the growing depen-

dency on data has led to underutilized knowledge of physics

accumulated in the past decades. However, the use of AI for

catenary systems seldom exploits the physical knowledge to

improve the resulting performances. It has been demonstra-

ted that PGMs such as Bayesian networks can consider the

underlying physics in inspection data using tailored features

(146). Likewise, hybrid multi-scale models can also capture

degradation mechanisms for various components involved in the

maintenance process while considering some parameters and

dynamics determined by data-based approaches. As the meth-

ods explicitly include the physical/mechanical characteristics of

the infrastructure, the link between data and the physical infra-

structure system can be explainable. This helps to improve the

interpretability of AI methodologies, particularly neural net-

works. Therefore, it can be foreseen that AI applications will

be even more powerful when combined with knowledge from

other approaches. Hybrid models will allow researchers in rai-

lway engineering to enhance model effectiveness and get better

solutions for railway problems. Moreover, combining AI-based

models with human-expert or physical-based knowledge is expe-

cted to increase exploitation and reduce resistance to the use

of AI in the railway industry.

5.2. Learning methodologies

Learning methodologies are crucial to improving performa-

nce based on current and previous experiences systematically.

AI methods have been used to learn from current data and

performance. However, learning can be continuous based on

previous experiences and mistakes. For example, defects that

were not detected on time or maintenance decisions that were

not correctly prioritized. Learning mechanisms (such as deep

reinforcement learning) allow us to systematically include ways

to improve our perception and decision mechanism continu-

ously. Learning methodologies provide practical answers to how

railway infrastructures 1) can perceive their condition, 2) can

make optimal and timely decisions, and 3) can keep learning

to improve their performance over time systematically. For

these, three promising approaches to learning methodologies

are highlighted as follows:

5.2.1. Deep learning

Deep learning has shown the capability to extract highly com-

plex abstractions from different data types and achieved great

success in many applications. It is foreseen that deep learning

has opened up an opportunity to step beyond the capabili-

ties of a human operator. Deep learning provides a promising

direction for big data analytics for assessment and prediction

using a tremendous amount of railway data. With the help

of deep learning, inspections of railway infrastructures can be

fully automated, which fully or partially replaces traditional

manual testing and visual inspections. Moreover, computatio-

nal intelligence methods for expert system design can support

railway infrastructure assessment in real time. For instance,

in (81), deep learning relying on image-based data that can

capture the vibrations of pantograph-catenary interactions and

the health conditions of catenary-supporting structures was

employed to simultaneously monitor the health condition of

catenary components, including contact wires, messenger wires,

droppers, and up to 12 types of supporting components. In

(64; 21; 86; 162; 35; 79; 150; 88; 84; 90; 57; 82; 83; 117),

deep learning was also employed for defect detection and ach-

ieved satisfactory results in imaging data. Likewise, recent

deep learning-based approaches have significantly demonstra-

ted their capability to fuse information for multi-sensor condi-

tion data, including the fusion of static, moving, and crowd-

based sensing technologies (106; 10). Various fusion techniques

using deep learning algorithms have been proven to assist in

learning features from multiple signal sources simultaneously

and effectively (20). However, choosing data representations

of fused data plays a fundamental role in designing data fusion

algorithms. As a result, how to integrate information from mul-

tiple data sources and then make a more robust deep learning

algorithm is another challenging task for railway infrastructure.

In addition to data-based deep learning approaches, physics-

informed neural networks (119; 65) have recently emerged as

another promising approach for solving problems based on

mathematical physics models of railway infrastructures with a

small amount of data.

5.2.2. Transfer learning

Within the concept of transfer learning, we can benefit from

existing pre-trained models in various ways. Firstly, statisti-

cally similar datasets of identical structures can be leveraged to

replace the requirement of augmenting a training dataset, espe-

cially when some of the actual measurement data are difficult

to obtain. In (149), it showed that transfer learning allows the

CNN model trained in one domain to the use in other domains

where training data are lacking. In (25), transfer learning was

employed for evaluating structural conditions of rail in a pro-

gressive manner by using acoustic emission monitoring data

and knowledge transferred from an acoustic-related database.

Secondly, transfer learning has shown its potential to relax the

prerequisite for training a deep learning architecture containing

up to millions of model parameters. This allows computation

time to be reduced, and this facilitates online monitoring of rai-

lway infrastructure systems. Thirdly, transfer learning can be

used to adapt to work under new conditions where the models

have not yet been tested/trained. Due to the impossibility of

acquiring training data that represent all operating conditions

and fault types, transfer learning is beneficial to make use of

information between units or between models. In (98; 148; 24),

transfer learning was shown to be able to train models that

are robust to newly encountered conditions. This resulted in

an improvement in the model performance on the target task.

Therefore, transfer learning should be further explored in the

field of railway infrastructure, where we aim to apply know-

ledge from a different railway network to the monitoring and

decision-making processes in another network. With transfer
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learning, intelligent sensing and decision support systems can

improve over time.

5.2.3. Deep reinforcement learning

Deep reinforcement learning (DRL) refers to a broad group of

learning techniques that emulate how living beings learn by

trying actions and learning from successes and failures (100).

Its learning process is experience-driven, and its efficiency is

enhanced by trial and error to optimize the cumulative rew-

ard. In DRL, labeled data are not required, which is beneficial

when mainly unlabeled data are available. DRL has shown the

potential to handle the dynamic and complex nature of physi-

cal problems where solutions to new problems can be adjusted

and utilize experience and knowledge learned from solving old

problems. For instance, an algorithm developed for track com-

ponent A can be applied to track component B even though

they might be at the same usage level, track tonnage, or envi-

ronmental situation. In (163), a DRL approach was developed

to refine the localization of fasteners in the catenary support

to improve an automatic looseness detection method based on

deep learning. With state-of-the-art methods, the learning pro-

cess can be fast and efficient. DRL is also capable of modeling

complex stochastic environments and handling relatively high-

dimensional problems. It can be used to optimize maintenance

and renewal planning by considering cost-effectiveness and risk

reduction over a planning horizon and taking into account pre-

dictive and condition-based maintenance tasks, as well as time,

resource, and engineering constraints (101). However, DRL has

not experienced many key developments compared to deep lear-

ning. Research on its application to solve problems related to

renewal and maintenance planning for railway infrastructure

is still limited. As DRL is relatively new to railway infrastru-

cture, its adaptation to solve railway problems has many open

challenges, e.g., a major difficulty is data recorded at diffe-

rent monitoring times that is required to train this sort of

network. In addition to data-based deep learning approaches,

recent advances in physics-informed neural networks have emer-

ged as another promising approach for solving problems based

on mathematical physics models of railway infrastructures with

a small amount of data.

All in all, by including perception, decision, and lear-

ning, the railway infrastructures can be emulated as a living

being from where each methodology will contribute to creating

its digital brain. However, learning methodologies for railway

infrastructures have still been relatively limited.

5.2.4. Metaheuristics

Heuristic optimization is a promising approach for decision-

making in railway infrastructure systems. For example, one

typical characteristic of maintenance strategies in railways

(such as grinding and tamping) is that relaxing strong assum-

ptions of simple models leads to the formulation of more reali-

stic and complex problem formulations. This may create a need

for nonlinear relationships between variables which gives rise

to a mixed-integer nonlinear optimization problem, especially

when discrete decisions are present in a problem. To deal with

challenges in maintaining large-scale railway infrastructures,

hierarchical and distributed optimization-based methods can be

considered. A significant challenge is to speed up the solution

of the optimization problems by partitioning and coordina-

tion between reduced-size subproblems. Most decomposition-

based approaches work by decomposing the large-scale multi-

objective optimization problem into multiple single-objective

subproblems based on a set of weight vectors. Then, the sub-

problems can be solved cooperatively in, e.g., an evolutionary

algorithm framework. Stochastic optimization for decisions in

rail systems explicitly includes the effect of different sources

of stochasticity and uncertainty, such as in measurements,

loading conditions, infrastructure parameters, and external

factors, including climate/weather. Multi-objective decision-

based methods for dynamic decision support tools in railway

infrastructure systems help find different solutions, typically

to quantify trade-offs between cost reduction and performance.

But they can include punctuality, efficiency, robustness, safety,

sustainability (recycling/disposal), energy consumption, etc.

5.3. Digital twins

When only limited data are available and they are imbalanced,

transfer learning, on the one hand, can be considered to allevi-

ate the issues arising from using small datasets to train machine

learning models. On the other hand, it is crucial to have a suf-

ficient amount of data. When it is not possible to collect real

data, particularly data related to rare events, e.g., failures or

defects, using synthetic data is an option. A digital twin can

be a good candidate for that.

Digital twins are a conceptual framework for interconnecting

a physical system and its digital representations (140). Digital

twins are created by capturing and integrating various data

types from sensors, devices, and other sources, including phy-

sical models. The purpose is to gain deeper insights into the

physical entities they represent. Digital twins allow us to emu-

late future scenarios of the consequences. This helps us with

risk assessment and decision-making to prepare for and miti-

gate the impact of rare events. Within this context, an open

challenge that needs to be addressed is an effective method to

generate synthetic data representing the total variation of the

expected railway operating conditions.

In (76), a building information model (BIM) was used

to photo-realistically simulate severe structural damage in a

synthetic computer graphics environment. In (69), a deep

learning-integrated digital twin model was developed to esta-

blish an interoperable functionality and to develop typologies of

models described for autonomous real-time interpretation and

decision-making support for the architecture, engineering and

construction sector. By applying the concept of digital twins

to railway infrastructure, railway companies can cut costs,

modernize workflows, and increase efficiency and performance.

Digital twins allow companies to offer new services such as

remote monitoring, real-time diagnostics, predictive maintena-

nce, and automated operations. With a combination of various

sensors throughout the whole infrastructure, information can

be immediately analyzed by AI and big data to plan maintena-

nce actions proactively. This can avoid incidents or delay and

improve safety and operational efficiency.

While digital twins bring numerous opportunities to the

railway industry, they present challenges in their implemen-

tation. To successfully implement digital twins in railway

infrastructure, sufficient data need to be available for properly

calibrating digital twins. Moreover, a new mindset of rail ope-

rators and authorities must be developed; they must promote

cooperation, share data, and consolidate business resources.

Also, business models need to be changed, and, most importan-

tly, financial investments and a strategy to tackle cyber threats

are required (9).
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5.4. Multidisciplinary research for holistic approach

Railway infrastructure research is inherently multidisciplinary.

Answering fundamental questions in the field requires know-

ledge from different fields. Combined with AI, some of the

emerging fields related to resilience engineering, climate change,

cyber security, etc., are essential for solving open research que-

stions. For example, AI research related to an embankment

requires knowledge of geosciences, railway engineering, and

computer sciences, among other fields. Without knowledge

sharing and research collaborations, the essential physics and

dynamics of the infrastructures cannot be studied efficiently.

When considering the whole life cycle of the railway infrastru-

cture, environmental and social impacts add more dimensions.

This requires a holistic approach to analyze different aspects of

the overall life cycle cost to evaluate the system’s environmen-

tal, economic, and social performance. For instance, the study

in (49) showed that the operation and maintenance phases are

responsible for most emissions, with electricity consumption

being the primary contributor. Energy costs were identified

as the main contributor (92%) to the overall life cycle cost,

and reducing these costs could help lower the system’s total

cost. The social impact assessment in (49) revealed that the

urban transportation industry has strong connections with con-

sumers, workers, the local community, and society. Even though

new AI technologies can be employed to assist learning, they

can extract valuable insights, patterns, or relationships from

the data without human dependency. When no historical data

is available, physical models are needed. In the field of rai-

lway infrastructure, 3D dynamic models are widely used as

they offer dynamics and physical interpretation of the systems.

However, when it comes to a complex non-static problem, e.g.,

soil (157; 3), a new dynamical model and sensing technologies

are needed. The lack of historical data and efficient higher-

dimensional dynamic models results in less research on some

railway components, e.g., substructures and embankments.

However, this also opens up opportunities for AI approaches in

the areas with few data when the available physical knowledge

can be included.

5.5. Validity of the data

Many existing studies developed AI methodologies using trai-

ning data under specific environments and operating conditi-

ons. Ultimately, we aim to develop innovative solutions that

can facilitate the work of infra managers so they can focus on

other critical challenges. To ensure the robustness, generaliza-

tion, and efficacy of the new methodologies, the validity of the

data sources and field validations are required. It’s essential

to regularly and continuously assess and measure the impact

of data to ensure they deliver tangible results that meet the

needs of rail operators. Accurate and reliable data serves as

the foundation for making informed decisions. For example,

can we trust the decision driven by the data we use to train

the model? Moreover, more controlled field measurements and

shared case studies should be provided so that the research-

ers can validate and compare the performance level of their

models developed with the state-of-the-art methods in the field

of railway infrastructures.

5.6. Interoperability of the data

In the railway industry, data interoperability appears to be a

significant challenge in delivering AI-based solutions. Its pro-

blem is how to convert and integrate the data between different

systems, e.g., the data coming from the APIs of different

customers. Each API has its own way of working. Having com-

patibility among software is thus critical to facilitate the use

of AI. A data standard is also required to enable the available

interactions between heterogeneous formats and systems.

5.7. Cloud infrastructures

Digitalization in railway infrastructures generates a large

volume of real-time data as many devices and sensors are used

to monitor the assets. This data can provide insights into the

health conditions of the monitored assets, and this enables pre-

dictive maintenance. To derive actionable insights in real-time,

cloud infrastructures need to be invested and leveraged. With

such big data, the communication network and the adoption of

5G technology are required. A petabyte-scale Internet of Things

and edge data to the cloud must be agile. The adoption of edge

computing is required for the use of machine learning and AI

algorithms to help manage the infrastructures in near real-time.

5.8. Transformers

Transformer models refer to a specific type of deep learning

networks. They are designed with large encoder and decoder

blocks based on a self-attention mechanism which represents

the key innovation that allows transformers to selectively focus

on different parts of the input sequence (144). Instead of rel-

ying on sequential processing, transformers process the entire

input sequence in parallel. Before transformers arrived, users

had to train neural networks with large labeled datasets that

were costly and time-consuming to produce. By finding patterns

between elements mathematically, transformers eliminate that

need. Even without pre-training on large datasets, transformer-

based models are more robust to generalization (12). Therefore,

transformer models have opened up another technique to tackle

insufficient and imbalanced railway data. This allows more rese-

archers in railway engineering to conduct research with machine

learning without facing issues arising from the training data.

However, transformer models themselves can contain trillion

parameters, e.g., Googles Switch Transformer has 1.6 tril-

lion parameters (38). This poses another challenge in training

transformer models that require further research.

5.9. Metaverse

Metaverse is a concept referring to a virtual world where users

can interact with each other and computer-generated environ-

ments in real time. The concept of the metaverse often involves

a combination of technologies such as virtual reality (VR),

augmented reality (AR), artificial intelligence (AI), blockch-

ain, and other emerging technologies, e.g., robotics and drones.

Even though the metaverse is currently used for entertainment

and gaming, it has the potential to be applied in the railway

industry.

By using technologies that are equipped with cameras, IoT

devices, and sensors that collect real-time data from instru-

mented railway infrastructure, data obtained can be analyzed

by AI and can be used to create virtual environments. Many

aspects of real fieldwork that transcend physical limitations

can be created. For instance, to create a virtual environment

from information collected in areas that are difficult to access

and risky to humans. This enables railway infra managers to

conduct virtual inspections, identify issues, explore, analyze,

and optimize various aspects of the railway infrastructure, e.g.,

design, operation, and maintenance. However, applying the
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metaverse in railway infrastructure is still an emerging concept,

and its full potential is yet to be explored.

5.10. Emerging technologies

Several emerging technologies can contribute to improving the

reliability of railway infrastructure. Examples include blockch-

ain technology, robotics, and drones. Blockchain technology can

enhance the reliability of the supply chain management pro-

cess in the railway industry. It can provide transparent and

tamper-resistant records of the origin, maintenance history,

and certification of critical components, ensuring the inte-

grity and reliability of the infrastructure. Robots and drones,

equipped with cameras and sensors, can be used to regularly

inspect railway tracks, bridges, tunnels, and other infrastru-

cture components. They can provide detailed visual data and

collect information in areas that are difficult to access and

risky to humans. In addition to the aforementioned trends,

further potential technologies can include web3, cryptocurre-

ncies, nonfungible tokens, natural language processing, 5G or

6G technology, conversational AI Humans, etc. These emer-

ging technologies have the potential to revolutionize the railway

industry by improving reliability, safety, minimizing various

types of risks, and enhancing the overall performance of the

railway infrastructure. However, their use cases and implemen-

tation will depend on technological advancements, industry

requirements, and regulatory considerations on planning and

integration with existing systems.

6. Conclusion

This paper reviews some AI methodologies developed and

integrated into railway infrastructures to tackle problems ari-

sing from its usage and natural degradation mechanisms. The

methods focused on in this paper are neural networks, metah-

euristics, regressions, probabilistic graphical models, clustering,

fuzzy logic, and transfer learning. Based on our survey of jour-

nal papers on Scopus, they have shown great promise for various

applications in railway infrastructure. Not only at a research

level but many of these AI and ML applications have also been

implemented in the railway industry, in which the extent of

their implementations varies across different railway operators

and regions. Despite their success, the use of AI methodo-

logies exhibits certain limitations that pose challenges for a

successful implementation in the railway industry. Some consi-

derations and discussions about the challenges and the need for

new intelligent methods are presented in this paper to bridge

the gaps between industrial applications and new AI develo-

pments. Researchers in academia and industry can exploit the

information from our paper to visualize trends and to develop

benchmarks of problems and methods tailored to the particula-

rities of railway infrastructures. Finally, we aim with this paper

to also inform the railway industry about the overview of tech-

nological advances in the field of AI, so even more innovative use

cases and applications can emerge in the near future. In addi-

tion to the enthusiasm surrounding the implementation of AI

in railway infrastructure, it is imperative to prioritize economic

efficiency and feasibility. For instance, the existing maintenance

and operational protocols rely on predefined rule sets, which

would necessitate modifications when incorporating solutions

provided by AI technologies. Consequently, alongside techno-

logical advancements, a fundamental redesign of inspection,

monitoring, and maintenance procedures becomes essential.
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