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Subspace identification of continuous-time models using generalized
orthonormal bases

Chengpu Yu, Lennart Ljung, and Michel Verhaegen

Abstract— The continuous-time subspace identification using
state-variable filtering has been investigated for a long time. Due
to the simple orthogonal basis functions that were adopted by
the existing methods, the identification performance is quite
sensitive to the selection of the system-dynamic parameter
associated with an orthogonal basis. To cope with this prob-
lem, a subspace identification using generalized orthonormal
(Takenaka-Malmquist) basis functions is developed, which has
the potential to perform better than the existing methods
since the adopted Takenaka-Malmquist basis has more degree
of freedom in selecting the system-dynamic parameters. As
a price for the flexibility of the generalized orthonormal
bases, the transformed state-space model is time-varying or
parameter-varying which cannot be identified using traditional
subspace identification methods. To this end, a new subspace
identification algorithm is developed by exploiting the structural
properties of the time-variant system matrices, which is then
validated by numerical simulations.

I. INTRODUCTION

The identification of continuous-time (CT) system models
using sampled input and output (IO) data is investigated in
this paper. So far, there have been a large number of identifi-
cation algorithms for CT systems. See [1], [2] and the refer-
ences therein. For numerical computational perspective, the
identification methods can be classified into either prediction-
error method (PEM) [3] or subspace identification method
[4]. The PEM method is to estimate the system parameters
using the gradient-typed algorithms so that the identification
result is highly dependent on the initial parameter estimate.
In contrast, the subspace identification method is a non-
iterative identification method, which can produce accurate
identification results based on reliable algebraic computa-
tions such as QR and SVD decompositions. Therefore, the
subspace identification method is usually used in practical
applications.

The CT subspace identification in the time domain has
been studied for a long time [2], [5]–[10]. These algorithms
are based on state-variable filtering technique, i.e., the system
state sequence is filtered by a orthogonal basis filter chain,
such as Poisson filter chain [5], [9], [11] and the Laguerre
filter chain [6], [10], [12]. Either the Possion or Laguerre
filter chain is completely determined by a system-dynamic
(or pole) parameter. It has been shown in [5], [13] that the
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identification performance is sensitive to the selection of this
system-dynamic parameter. More explicitly, if the adopted
filter chain cannot accurately represent the inter sample
behavior of the discrete-time (DT) IO data, the system
transfer function cannot be correctly identified [13]. In the
absence of some prior knowledge of the system dynamics
to be identified, the proper selection of the system-dynamic
parameter seems to be challenging.

In this paper, in order to alleviate the sensitivity of
the identification performance with respect to the system-
dynamic parameter selection, the CT subspace identification
using general orthogonal basis filters will be investigated.
More explicitly, the Takenaka-Malmquist bases are consid-
ered to be the generalized orthonormal bases in this paper and
are used for the state-variable filtering. It is remarked that the
Takenaka-Malmquist bases include the Poisson, Laguerre,
Legendre and Hambo bases as special subclasses [14]. More-
over, the generalized orthonormal basis functions have more
degree of freedom. Unlike the Possion or Laguerre basis that
is determined by a single system-dynamic parameter, the
Takenaka-Malmquist basese are determined by a sequence
of system-dynamic (pole) parameters. The rich freedom of
the generalized orthonormal basis enables us to design a
system-dynamic sequence such that the inter sample behavior
of the discrete-time IO data can be well represented and
the concerned system model can be better identified. For
example, reference [15] has shown that better identification
results can be obtained by approximating the system transfer
function using the Legendre basis, since its poles is nicely
spread over the interested frequency band.

Using the generalized orthonormal bases (Takenaka-
Malmquist bases), the transformed linear time-invariant (LTI)
state-space model is not LTI any more, but linear time-variant
(LTV) or linear parameter-varying (LPV), making the contri-
bution of this paper significantly different from the existing
CT subspace identification methods. It is noteworthy that
Hambo basis was called ”generalized orthonormal basis” in
[8]; however, the transformed state-space model is still LTI.
Due to the time-varying property of the transformed state-
space model using the Takenaka-Malmquist basis, the clas-
sical subspace methods like N4SID and MOESP cannot be
implemented here. To this end, we develop a new subspace
method by exploiting the structural properties of the time-
varying system matrices. Numerical simulation examples are
provided to validate the new subspace identification method
and demonstrate better identification performance against the
Laguerre filtering method.

The rest of this paper is organized as follows. Section II



gives the formulation of the considered CT system identifi-
cation problem. Section III reviews the existing orthonormal
basis functions that have been adopted in CT subspace
identification methods, which motivates the usage of general-
ized orthonormal bases. Section IV presents the transformed
LPV state-space model and the new developed subspace
identification method. Section V shows the performance of
the new developed identification method with relation to the
Laguerre filtering method that is commonly used in the CT
subspace identification algorithms. Finally, conclusions are
made in Section VI.

II. PROBLEM STATEMENT

We consider a continuous-time LTI state-space model as
follows

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(1)

where u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp are system
input, state and output, respectively.

For the system model in (1), we assume the model is
minimal and stable, and the input signal is persistently
exciting of any order [3].

The problem of interest is stated as: given the sampled
IO data pairs {u(tk), y(tk)} for k = 0, 1, · · · , L − 1 that
are generated by the model (1), the identification problem
is to estimate the system matrices of (1) up to a similarity
transformation, namely there exists a nonsingular matrix Q
such that the estimated system matrices (Â, B̂, Ĉ) satisfy

Â = Q−1AQ, Ĉ = CQ, B̂ = Q−1B.

Note that the sampling-time sequence {tk} is known but
might not be equidistant. In this case, the corresponding
state-space model in the time domain is time-varying so that
the traditional CT system identification routine [16], sub-
space identification of the DT system model using sampled
IO data followed by the CT model identification using the
discrete-to-continuous (D2C) conversion, may not be feasible
here.

III. PRELIMINARIES OF STATE-FILTERING METHODS

The main difficulty of the CT system identification is to
deal with the higher-order derivatives associated with the
input and output signal. Instead of the direct differentiation
which may accentuate the noise effect, the state-filtering
method is commonly used for the identification of state-space
models. So far, the commonly used filters include Poisson
filter chain [5], [9], [11] and the Laguerre filter chain [6],
[10], [12]. The poisson filter chain has the form[

σ
s+σ

(
σ
s+σ

)2

· · ·
(

σ
s+σ

)n
· · ·

]
, s ∈ C

while the Laguerre filter chain has the form[ √
2σ

s+σ

√
2σ(s−σ)
(s+σ)2 · · ·

√
2σ(s−σ)
(s+σ)2 · · ·

]
, s ∈ C,

where σ is called system-dynamic parameter or pole param-
eter.
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Fig. 1. The Takenaka-Malmquist network with a sequence of different
poles. In the diagram, x(t) is the continuous-time state of the original system
model.

The Poisson or Laguerre bases are low-pass filters with
their bandwidths being determined by the only parameter
σ. When implementing the Poisson or Laguerre filters, the
identification performance is sensitive to the selection of the
parameter σ [5], [13]. As long as the value of σ increases,
the bandwidth of the filter will becomes larger, so the
inter sample behavior of sampled IO data can be better
captured [13]. However, a large-value of σ will decrease the
smoothing capability of the Poisson or Laguerre filter, which
may result in a large error when interpolating the continuous
input/output signal from its sampled data. As a result, the
value of σ needs to be properly selected.

In order to reduce the sensitivity of the identification
performance with respect to the selection of the sole system-
dynamic parameter in Poisson or Laguerre basis, the general-
ized orthogonal basis functions (Takenaka-Malmquist bases)
will be used in this paper (see Fig. 1) which have the
following form[ √

2σ0

s+σ0

√
2σ1

s+σ1

s−σ0

s+σ0
· · ·

√
2σm

s+σm

∏m−1
l=0

s−σl

s+σl
· · ·

]
,

(2)
where σm can be any positive real value or complex value
with a positive real part.

The Legendre basis is a special kind of Takenaka-
Malmquist basis for which the pole sequence is set to
σm = σ(m + 1

2 ). It has been shown in [15] that better
identification results can be obtained by approximating the
system transfer function using the Legendre basis, since the
parameter σ can be chosen such that the pole sequence σm
can be uniformly spread in the interested frequency band,
even though the frequency response of the original may not
be known as a priori knowledge. In practice, the interested
frequency band is set to [0, 1

Ts
] with Ts being the sampling

period.

IV. NEW SUBSPACE IDENTIFICATION METHOD

A. Construction of data equation

First, we shall derive a transformed state-space model
using the Takenaka-Malmquist basis given in (2). Define the
transfer functions Wk(s) =

s−αk

s+αk
and Mk(s) =

√
2σk

s+σk
with

their time-domain impulse responses being wk(t) and mk(t),
respectively.

Lemma 1: Using the Takenaka-Malmquist basis (2), the
CT system model (1) can be transformed into the following



state-space model

[Wkx](t) = Akx(t) +Bk[Mku](t) + Ekx0mk(t)

[Mky](t) = Ckx(t) +Dk[Mku](t) + Fkx0mk(t),
(3)

where [Wkx](t) is a continuous-time convolution operator
defined by [Wkx](t) =

∫∞
0
wk(τ)xk(t − τ)dτ , x0 denotes

the initial value of x(t), and the associated system matrices
are

Ak = (A+ σkI)
−1(A− σkI), Bk =

√
2σk(A+ σkI)

−1B

Ck =
√
2σkC(A+ σkI)

−1, Dk = −C(A+ σkI)
−1B

Ek =
√
2σk(A+ σkI)

−1, Fk = −C(A+ σkI)
−1.

The above lemma can be proven following Lemma 3.4 in
[7] by extending the constant σ to variant σk. However, the
following two aspects of the above state-space model needs
to be noted:

1) Although the original system model does not have an
input forward-feed term, the transformed model in (3)
has one.

2) As the Takenaka-Malmquist basis functions may have
different poles, the state-space model in (3) is time-
varying (or linear-parameter varying).

Based on the state-space model (3), the continuous-time
data equation shall be derived. Due to the heterogeneous
property of the Takenaka-Malmquist chain network, the
derived data equation is more involved than those in [7],
[8], [10]. For the sake of the notational simplicity, the terms
relevant to the initial state value will be omitted; however, the
initial state value will be taken into account in the numerical
simulation.

Define the matrix product

Φ(j, i) =

{
AjAj−1 · · ·Ai j ≥ i

I j < i.

and the composite transformation operator

[ψj,i] =

{
[Wj · · ·Wi] j ≥ i

1 j < i.

It is remarked that the matrices Ai and Aj are commutative,
namely AiAj = AjAi; therefore, the matrix Φ(j, i) can also
be represented by the consecutive product of {Ak}jk=i in an
arbitrary ordering.

Lemma 2: According to the signal flow diagram in Fig.
1, the state signal xi(t) and output signal yi(t) can be
represented as

xi(t) = Φ(i− 1, 0)x(t) +

i−1∑
j=0

Φ(j − 1, 0)Bj [ψi−1,j+1Mju](t)

yi(t) = CiΦ(i− 1, 0)x(t) +

i−1∑
j=0

CjΦ(j − 1, 0)B√
2σi

[ψi−1,j+1Mju](t)

−
i∑

j=0

CjΦ(j − 1, 0)B√
2σi

[ψi,j+1Mju](t).

(4)

Proof: The state signal xi(t) can be derived as follows:

x1(t) = [W0x](t) = A0x(t) +B0[M0u](t),

x2(t) = [W1x1](t) = A0[W1x](t) +B0[W1M0u](t)

= A0 (A1x(t) +B1[M1u](t)) +B0[W1M0u](t)

= A0A1x(t) +A0B1[M1u](t) +B0[W1M0u](t),

· · ·
(5)

Note that the above derivation is based on the expression of
[Wix](t) in equation (3).

The expression of the output signal yi(t) is given by

yi(t) = C[Mixi](t) =
C√
2σi

(xi(t)− [Wixi](t))

=
C√
2σi

(xi(t)− xi+1(t)) .

By using the expression of xi(t) in (5), the lemma is then
proven.

By stacking the output signals yi(t) in (4), we can obtain
the following continuous-time data equation

y(t) = Ox(t) + Tu(t), (6)

where

y(t) =

 y0(t)
y1(t)
...

yN−1(t)

 ,u(t) =
 u0(t)

u1(t)
...

uN−1(t)

 ,
ui(t) =

 [Miu] (t)
[ψi+1,i+1Miu] (t)

...
[ψN−1,i+1Miu] (t)

 , O =

 C0

C1Φ(0, 0)
...

CN−1Φ(N − 2, 0)


and the convolution matrix is defined as

T = [T0, T1, · · · , TN−1]

with Ti being a N × (N − i) block matrix defined by

T0 =


−D0 0 · · · 0

D0 −D0

...
...

. . .
. . . 0

0 · · · D0 −D0


D0 = −C(A+ σ0I)

−1B

Ti =


0 0 · · · 0

−Γi 0 · · · 0

Γi −Γi

...
...

. . .
. . . 0

0 · · · Γi −Γi


Γi = CiΦ(i− 1, 0)B for 1 ≤ i ≤ N − 1.

From the definitions of the augmented input signal u(t)
and the convolution matrix T , we can find that the data
equation (6) is different from those of commonly confronted
time-varying systems. More explicitly, the dimension of the
stacked input signal u(t) is proportionally to the square of the
dimension parameter N . As a result, the traditional subspace
methods such as N4SID and MOESP cannot be implemented



here. To this end, we have to develop a new identification
approach.

Using the sampled data at times t0, t1, · · · , tL−1, we can
then obtain the following matrix-form data equation

Y = Ox+ TU (7)

where

Y = [y(t0), · · · ,y(tL−1)]

U = [u(t0), · · · ,u(tL−1)]

x = [x(t0), · · · , x(tL−1)] .

In the sequel, we assume that the value of L is large enough

such that the matrix
[
U
Y

]
is fat.

It can be observed from the data equation (7) that, com-
pared with the uniform sampling strategy, the non-uniform
sampling does not pose any difficulty to the subspace i-
dentification problem. The only difference is that the non-
uniform sampling may cause larger approximation error
when computing the filtered input/output samples, as will
be shown in Subsection IV-C.

B. New subspace identification method

According to the data equation (7), we shall develop
a subspace identification method to identify the system
matrices (A,B,C) in (1) up to a similarity transformation.
The subspace identification of time-varying systems or lin-
ear parameter-varying systems usually requires the system
matrices to be periodically varying [17], [18]; however, the
developed subspace identification method in this paper does
not require this periodic property.

Estimation of the matrices C and A. First, the column
space of the extended observability matrix O is to be
extracted, as shown in the following lemma.

Lemma 3: Consider the data equation (7). Suppose that

rank
[
U
x

]
= rank(U)+n. Let the following LQ factoriza-

tion be given[
U
Y

]
=

[
L11 0
L21 L22

] [
Q1

Q2

]
.

Then, we have that

range(O) = range(L22).
The rank condition in the above lemma can be satisfied when
the input sequence u(tk) is persistently exciting of any finite
order [4].

Let the SVD decomposition of L22 be given as

L22 = [Θ1 Θ2]

[
Σ 0
0 0

] [
V T1
V T2

]
,

where Σ ∈ Rn×n is a diagonal matrix with positive diagonal
entries. Then, we have that

O = Θ1Q, (8)

where Q ∈ Rn×n is a nonsingular matrix.
Next, the matrices C and A are to be estimated based on

the obtained column subspace of the extended observability

matrix O. Different from the traditional subspace identifica-
tion for which there exists a shift property for the extended
observability matrix, the extended observability matrix O in
(6) does not exist an explicit shift structure; however, we
will show that the matrix A can still be estimated (up to a
similarity transformation) using the least-squares estimation
method.

Let the matrices O and Θ1 be partitioned as

O =


O0

O1

...
ON−1

 , Θ1 =


Θ1,0

Θ1,1

...
Θ1,N−1

 . (9)

According to the definition of O in (6), the block components
of O can be explicitly expressed as

Oi =
√
2σiC(A+ σiI)

−1

i−1∏
j=0

(A− σjI)(A+ σjI)
−1


(10)

for i = 0, · · · , N−1. By exploiting the commutative property
of the matrix product in the above equation, we can establish
the following relationship:

Oi√
2σi

(A+ σiI) =
Oi−1√
2σi−1

(A− σi−1I) (11)

for i = 1, · · · , N − 1. The matrix O is unknown, but its
estimate Θ1 up to a similarity transformation; therefore, the
system matrices (C,A) need to be computed based on the
available matrix Θ1.

Define the matrices

M =


Θ1,0√
2σ0

− Θ1,1√
2σ1

...
Θ1,N−2√
2σN−2

− Θ1,N−1√
2σN−1



R =


√

σ0

2 Θ1,0 +
√

σ1

2 Θ1,1

...√
σN−2

2 Θ1,N−2 +
√

σN−1

2 Θ1,N−1

 .
Then, the matrix A (up to a similarity transform) satisfies
the following linear equation:

MA = R, (12)

where M and R are known. The estimate of A can be
obtained as:

Â = L†
ARA, (13)

where † denotes the MoorePenrose pseudo inverse.
After obtaining the estimate Â, the matrix C can be

straightforwardly estimated according to the relation O0 =√
2σ0C(A+ σ0I)

−1, i.e.,

Ĉ =
Θ1,0

2σ0
(A+ σ0I). (14)

Estimation of the matrix B. The matrix B shall be esti-
mated based on the data equation (7) as well as the obtained



estimates Â and Ĉ. It can be observed from the structure of
the convolution matrix T in (6) that, given the estimates of
C and A, the matrix T is linear with respect to the matrix
variable B. As a result, the matrix B can be estimated by
solving the following least-squares estimation problem

[B̂, x̂] = argmin
x,B

∥Y −Θ1x− T (B)U∥2F . (15)

C. Calculation of filtered input and output signals
As a preliminary step for the new subspace identification

method, the samples of the filtered IO signals in equation (6)
need to computed. For the sake of brevity, only the output-
signal filtering will be explained in details.

According to the signal flow graph in Fig. 1, the output
signal yi(t) for i = 0, · · · , N − 1 can be written as

yi(t) = C[Mixi](t)

= [Miϕi−1,0y](t)

=
1√
2σi

{[ϕi−1,0y](t)− [ϕi,0y](t)} .
(16)

Denote zi(t) = [ϕi,0y](t). Then the signal yi(t) can be
compactly represented as

yi(t) =
1√
2σi

[zi−1(t)− zi(t)] . (17)

In particular, the signal zi(t) in the above equation can
recursively computed as

z0(t) = [W0y](t) =

∫ ∞

0

w0(τ)y(t− τ)dτ

zi(t) = [Wizi−1](t) =

∫ ∞

0

wi(τ)zi−1(t− τ)dτ.

(18)

Again, for the sake of brevity, only the computation of the
samples of z0(t) will be elaborated on.

The state-space form of z0(t) = [W0y](t) can be repre-
sented as

ξ̇(t) = −σ0ξ(t) + y(t)

z0(t) = −2σ0ξ(t) + y(t).
(19)

The corresponding sampled output can be obtained as

z0(tk) = y(tk)− 2σ0e
−σ0∆kξ(tk−1)

− 2σ0

∫ ∆k

0

e−σ0τy(tk − τ)dτ

= y(tk) + [z0(tk−1)− y(tk−1)]e
−σi∆k

− 2σ0

∫ ∆k

0

e−σ0τy(tk − τ)dτ,

(20)

where ∆k = tk − tk−1. The above equation shows that the
sample data z0(tk) can be computed based on its previous
sample data z0(tk−1). However, the integration involved in
the above equation can only be approximately computed
since we do not know the continuous values of y(t) for
t ∈ (tk−1, tk].

Here, based on the sample data y(tk) for k = 0, · · · , N−1,
the continuous segment of y(t) at t ∈ (tk−1, tk] is approxi-
mated by a pth-order polynomial [6]:

y(tk − τ) ≈ g0(k) + g1(k)τ + · · ·+ gp(k)τ
p, τ ∈ (0,∆k],

(21)

where the coefficients gj(k) for j = 0, · · · , p are de-
termined by interpolating the p + 1 points {y(tk−j)} for
j = ⌊−p

2 ⌋, · · · , ⌊p2⌋ − 1 with y(t) = 0 for t < 0 and
t > tN−1. It has been shown in [6] that, if the samples
are uniformly sampled using the sampling interval Ts, a p-
th order polynomial approximation gives an approximation
error of O(T p+1

s ). As a result, when Ts ≪ 1, higher-order
polynomial approximation will lead to higher accuracy.

Using the pth-order polynomial approximation, the inte-
gration in (20) can be represented as∫ ∆k

0

e−σiτy(tk − τ)dτ ≈
2p∑
j=0

gj(k)

∫ ∆k

τ=0

e−σkττ jdτ

= e−σk∆kui(tk) +

2p∑
j=0

gj(k)αj ,

(22)

where

α0 = − 1

σk

(
e−σk∆k − 1

)
αj = − 1

σk
∆j
ke

−σk∆k +
j

σk
αj−1, for j ≥ 1.

To ease the reference, the sample data yi(tk) for k =
0, · · · , N−1 can be computed via carrying out the following
four steps.

S1. Interpolate the discrete-time samples using the pth-
order polynomial fitting approach, as shown in (21).

S2. Compute the sample data z0(tk) recursively as
shown in (20), where the involved integration is
computed according to equation (22).

S3. Similar to the computation of z0(tk) as shown in
S1-S2, compute the DT data zi(tk) according to
equation (18).

S4. Compute the DT data yi(tk) using the obtained
quantities of zi(tk), as shown in equation (17).

V. NUMERICAL SIMULATIONS

To evaluate the performance of the proposed method in
this paper, we shall test a fourth-order system model given
as [13]:

G(s) =
−0.8471s3 + 0.9081s2 − 5.972s+ 5.519

s4 + 3.115s3 + 5.036s2 + 4.577s+ 2.254
,

which has two pairs of complex conjugated poles at
−0.4636± 1.0972i and −1.0939± 0.6262i. The bandwidth
of the system is 1.3742 rad/s.

In the simulation, the continuous input signal is generated
as a sequence of standard random Gaussian noise with the
samples being interpolated by the first-order-hold operation.
The sampling interval is set to Ts = 0.005s. The output
samples are then acquired at the time points tk = kTs for
k = 1, 2, · · · . When computing the filtered input and output
data, the order of the local fitting polynomial (21) is set to
p = 3. The dimension parameter N in the data equation (6)
is set to N = 8.

The sampled IO data used for the system identification are
shown in Fig. 2. The data length is set to 400.
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Fig. 2. Sequences of IO data.

For the ease of reference, the proposed identifica-
tion method is called Takenaka-Malmquist method. The
pole sequence of the Takenaka-Malmquist basis is set to
{4, 12, 20 · · · , 60}. For comparison purposes, the Laguerre
filtering method is simulated as well. The Laguerre basis is
determined by only one pole parameter. To have a compre-
hensive understanding of the Laguerre filtering method, we
test the Laguerre filtering method using different poles at
{4, 28, 60}, which are exactly the first, the middle and the
last points of the pole sequence selected for the Takenaka-
Malmquist basis.

10-2 10-1 100 101 102

Frequency rad/s

10-3

10-2

10-1

100

101

M
ag

ni
tu

de

True frequency response
Takenaka-Malmquist
Laguerre, =4
Laguerre, =28
Laguerre, =60

Fig. 3. Bode frequency responses of the original and identified systems.
Note that the frequency-response curve of the Takenaka-Malmquist method
overlaps with the true frequency-response curve.

Fig. 3 shows the identification performance of the
Takenaka-Malmquist method and the Laguerre method with
different poles, where we can observe that

1) The Takenaka-Malmquist method performs much bet-
ter than the Laguerre filtering method, i.e., the iden-
tified system model using the Takenaka-Malmquist
method is the most close to the true system model
in terms of the frequency response.

2) The identification performance of the Laguerre method
is sensitive to the selection of the pole value. Using
a larger pole value, better frequency-response fitting

can be obtained at the high-frequency band. However,
by setting a small pole value, we cannot see the
improvement of the frequency-response fitting in the
low-frequency band. Therefore, the selection of the
pole value seems to be a challenging task.
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Fig. 4. Identification performance in terms of the frequency response error
|G(jw)− Ĝ(jw)| with Ĝ(jw) being the estimated frequency response.

Fig. 4 shows the frequency-response errors of the identi-
fied system models with relation to that of the true system
model. It is easy to see that the Takenaka-Malmquist method
has better identification performance at both low-frequency
bands and high-frequency bands. This can be explained that
the poles of the Takenaka-Malmquist basis are uniformly
spread in the frequency domain so that the system dynamics
can be better captured using the Takenaka-Malquist basis
than using the Laguerre basis.

VI. CONCLUSION

In this paper, the continuous-time subspace identification
problem has been investigated and a new identification
method using the generalized basis functions (Takenaka-
Malmquist bases) has been developed. The new subspace
identification framework provides more freedom in selecting
the system-dynamic parameters; hence, the sensitivity of the
identification performance of existing methods with respect
to the selection of a single system-dynamic parameter can
be alleviated. However, the transformed state-space model
using the generalized orthogonal basis is time-varying or
parameter-varying, which cannot be identified using tradi-
tional subspace identification methods. To cope with this
problem, a new subspace identification method has been
developed by exploiting the hidden shift properties of the ex-
tended observability matrix corresponding to the parameter-
varying system model.

This paper provides a general subspace identification
framework for CT system in the sense that most of the
existing orthogonal basis filters can be incorporated into this
framework. In our future work, the process and measurement
noise of the CT system model will be taken into account, and
how to adaptively tuning the system-dynamic parameters of
the generalized orthonormal bases will be investigated.
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