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Abstract: The resolution of coherent and incoherent imaging systems is
usually evaluated in terms of classical resolution criteria, such as Rayleigh’s.
Based on these criteria, incoherent imaging is generally concluded to be
‘better’ than coherent imaging. However, this paper reveals some miscon-
ceptions in the application of the classical criteria, which may lead to wrong
conclusions. Furthermore, it is shown that classical resolution criteria are
no longer appropriate if images are interpreted quantitatively instead of
qualitatively. Then one needs an alternative criterion to compare coherent
and incoherent imaging systems objectively. Such a criterion, which relates
resolution to statistical measurement precision, is proposed in this paper. It
is applied in the field of electron microscopy, where the question whether
coherent high resolution transmission electron microscopy (HRTEM) or
incoherent annular dark field scanning transmission electron microscopy
(ADF STEM) is preferable has been an issue of considerable debate.
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1. Introduction

The question whether coherent or incoherent imaging is preferable in terms of resolution has
given rise to many discussions. Usually this comparison is based on classical resolution criteria
such as the well-known Rayleigh resolution criterion [1]. From this point of view, incoherent
imaging is often concluded to be ‘better’ than coherent imaging, given that the same imaging
system is used in both cases [2]. However, it will be shown in this paper that there are some
misconceptions in the application of these classical criteria. The conclusion may be different if
these criteria are applied properly, or preferably, if an alternative, more meaningful performance
criterion is used.

Resolution is interpreted in many ways since it is not unambiguously defined. Therefore,
several resolution criteria, including Rayleigh’s, have been proposed in the past. These criteria
may be defined using, for example, decision theory (considering resolution as a classification
task), information theory or singularity theory. An overview of existing criteria may be found
in [3]. The alternative criterion used in this paper is related to statistical measurement precision
and will be used to evaluate coherent and incoherent imagingsystems.

Coherent imaging is characterized by a fixed phase relationship between rays emerging from
different parts of the object under study. Therefore, it is linear in complex amplitude. Such
fixed phase relationships do not exist for incoherent imaging, which is linear in intensity. Us-
ing these linearity properties and knowledge of the point spread function, one can model, i.e.,
calculate, the image intensity distribution of two point sources for both types of imaging. Clas-
sical resolution criteria concern suchcalculatedimages [4]. However, calculated images have
no practical meaning. In experimental physics, one is facedwith detectedimages instead [4].
Therefore, practically relevant resolution criteria should concern detected images. Due to the
inherent presence of noise, detected images will never be exactly describable by the chosen
two-component model. If they were, fitting the model to the observations would result in an
infinitely precise reconstruction of the locations of the components and there would be no limit
to resolution. For detected images, model fitting never results in a perfect reconstruction. Res-
olution is then related to the limited statistical precision with which the component locations
can be estimated. It will be shown that the attainable precision can be adequately quantified,
making use of the physics behind the image formation process. Furthermore, it can be used as a
more meaningful criterion to fairly compare the resolutionof coherent and incoherent imaging
systems.
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2. Classical resolution criteria

Classical resolution criteria are based on calculated images. Generally, the model of a shift-
invariant linear system can be expressed in terms of the point spread function. The image of
two point objects which are illuminated coherently can be modelled as:

I (r) = |δ (r−βββ 1)∗ t (r−βββ 1)+

exp(iφ)δ (r−βββ 2)∗ t (r−βββ 2) |
2

= |t (r−βββ 1)+exp(iφ) t (r−βββ 2) |
2 (1)

with t (r) the coherent point spread function,δ (r) the Dirac delta function representing the
scattering distribution of a point object,r = (x,y) a two-dimensional vector in the image plane,
βββ 1 andβββ 2 the positions of the components,φ the relative phase between the two components,
and∗ the convolution operator. Using the same imaging system in the incoherent mode, the
model becomes:

I (r) = |δ (r−βββ 1)∗ t (r−βββ 1) |
2 +

|exp(iφ)δ (r−βββ 2)∗ t (r−βββ 2) |
2

= |t (r−βββ 1)|
2 + |t (r−βββ 2)|

2 . (2)

The incoherent point spread function is the squared modulusof the coherent point spread func-
tion, i.e.,|t (r)|2.

The most famous resolution criterion is that of Rayleigh [1]. It is based on presumed limi-
tations to the resolving capabilities of the human visual system and originally states that two
incoherent point sources of equal brightness are just resolved if the central maximum of the
point spread function generated by one point source coincides with the first zero of the point
spread function generated by the second. This criterion canbe generalized to include point
spread functions that have no zero in the neighborhood of their central maximum by taking the
resolution limit as the distance for which the intensity at the central dip in the composite image
is 81% of that at the maxima on either side. This corresponds to a central dip of 19% of the
maximum intensity. After the introduction of this criterion, Rayleigh [5] and others [2] investi-
gated the question whether two point sources, separated by the Rayleigh distance for incoherent
point sources, would be easier or harder to resolve with coherent illumination than with inco-
herent illumination. Therefore, models as in Eq. (1) and (2)can be used and it is found that
the answer depends on thephase distributionassociated with these sources. When the sources
are in quadrature (φ = π/2), the image intensity distribution is identical to that resulting from
incoherent point sources. When the sources are in phase (φ = 0), the dip in the image intensity
distribution is absent and therefore the points are not as well resolved as for incoherent illumi-
nation. Finally, when the two point sources are in phase opposition (φ = π), the dip is greater
than 19%, and the two point sources are resolved better with coherent illumination than with
incoherent illumination.

Another criterion is the so-calleddiffraction limit to resolution. This corresponds to the cutoff
frequency of the transfer function being the frequency beyond which the transfer function of
the system is zero. Since the transfer function and the pointspread function are Fourier pairs,
the cutoff frequency and the Rayleigh limit are closely related. The incoherent transfer function
of a diffraction-limited system extends to a frequency thatis twice the cutoff frequency of the
coherent transfer function [2]. It is tempting, therefore,to conclude that incoherent imaging is
better than coherent imaging. As emphasized by Goodman [2],this conclusion is in general not
valid since the cutoff frequencies in the two cases are not directly comparable. The coherent
cutoff determines the maximum frequency of the image amplitude, while the incoherent cutoff
refers to frequency components of the image intensity.
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Consider now a practical example from the field of electron microscopy where there is a
continuing discussion whether coherent HRTEM or incoherent ADF STEM is preferable. In
HRTEM [6], the material under study is illuminated by a coherent, nearly plane wave electron
source. The electrons are transmitted through the materialand interact with it. Next, a magni-
fied image of the scattered wave is formed. In ADF STEM [7], a probe scans in a raster over
the material. At each probe position, an annular detector placed in the back focal plane beyond
the material collects a fraction of the total scattering, more specifically, all electrons transmit-
ted through the material but scattered to relatively high angles. From the so-called principle
of reciprocity [6], it follows that the ADF detector is equivalent to using a large incoherent
illuminating source in HRTEM. The arguments which are generally used to prefer ADF STEM
over HRTEM are based on the apparent better resolution of incoherent illumination compared
to coherent illumination if identical components are considered for whichφ = 0 [7, 8]. How-
ever, this conclusion is only justifiable if the model for coherent HRTEM and incoherent ADF
STEM imaging is of the same form as in Eq. (1) and (2), respectively. It is therefore important
to take these models into consideration. In case of HRTEM, for which the material is usually
oriented along a main crystal zone axis (i.e., parallel withthe atom columns), the model can be
written as follows [9, 10, 11]:

I(r) =

∣∣∣∣∣1+
nc

∑
n=1

anϕ1s,n(r−βββ n)∗ t (r−βββ n)

∣∣∣∣∣

2

, (3)

where the atom column approximation is made. In Eq. (3),nc represents the total number of
atom columns being imaged, the functionϕ1s,n(r− βββ n) is the lowest energy bound state of
the nth atom column located at positionβββ n, t(r) is the point spread function of the electron
microscope,an is a complex coefficient depending among other parameters onthe thicknessz
of the material. From the comparison of Eq. (3) with Eq. (1), it may be concluded that the Dirac
delta function is now replaced withϕ1s,n(r), which is a function of finite size. This expresses
the fact that atoms may not be considered to be point scatterers. The most important difference
is the presence of the term ‘1’ in Eq. (3), which is absent in Eq. (1). It represents an unscattered
wave, which in classical terms means that part of the incident electrons will not scatter in
the material, but may interfere with the scattered electrons. Let us now consider ADF STEM
assuming the same material being imaged using a microscope with the same lens characteristics
as in HRTEM. If the atom column approximation is made, the model is given by [10, 12, 13]:

I(r) =
nc

∑
n=1

An|ϕ1s,n(r−βββ n)∗ t (r−βββ n) |
2 (4)

with An a factor depending among other parameters on the thicknessz and on the detector
geometry. From the comparison of Eq. (4) with Eq. (2), it may be concluded that these models
are equivalent apart from the replacement of the Dirac deltafunction with a function of finite
size. Note that in the derivation of Eq. (4), only elastic scattering has been considered and not
thermal diffuse, inelastic scattering. The incoherent characteristics of the model are therefore
not caused by incoherent scattering events but are purely created by the detector geometry [13].

To study whether the presence of the term ‘1’ in Eq. (3) affects the conclusion on which
instrument is preferable in the sense of Rayleigh, HRTEM andADF STEM images of two
neighboring, identical Si[110] atom columns have been simulated as a function of thickness.
The distance between the columns is equal to 1.36 Å. For HRTEM as well as for ADF STEM,
the so-called spherical aberration constant of the microscope and the electron wavelength are
chosen equal to 0.2 mm and 0.02 Å, respectively. These settings mainly determine the optimal
width of the microscope’s point spread function with the other settings, like defocus and objec-
tive aperture radius, chosen in accordance with the so-called Scherzer conditions for coherent
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Fig. 1. Cross sections of HRTEM and ADF STEM intensity distributions for different thick-
nesses. The height of the central dip relative to the maximum or minimum intensity above
or below the background is indicated.

and incoherent imaging, respectively [6, 7, 14]. In Fig. 1, cross sections of the HRTEM and
ADF STEM intensity distributions are shown for different thicknesses. Furthermore, the height
of the central dip relative to the maximum or minimum intensity above or below the background
is indicated. If this value is equal to 19% or more, the columns are resolved, if it is less than
19%, the columns are not resolved. This criterion is the usual extension of Rayleigh’s in case
of a background [14]. From Fig. 1, it can be seen that the significant value varies as a function
of thickness for HRTEM whereas it is a constant for ADF STEM. From the comparison of the
corresponding values, it follows that for certain thicknesses, the columns are resolved better
with HRTEM than with ADF STEM. This result appears even in theabsence of a phase differ-
ence between the two columns and is due to the presence of the term ‘1’ in Eq. (3). Note that
for HRTEM a phase difference will exist between two neighboring atom columns if they con-
sist of different elements or if they have a different thickness. This example illustrates that the
optimal choice between coherent or incoherent imaging systems in the sense of Rayleigh does
not only depend on the phase distribution associated with the object but also on the structure of
the models describing the image intensity distribution.

3. Attainable precision

Classical resolution criteria are concerned with calculated images, that is, noise-free images ex-
actly describable by a known parameterized model. However,these criteria disregard the pos-
sibility of using this a priori knowledge about the image intensity distribution to extract numer-
ical results from the observations by model fitting using parameter estimation methods. Since
Rayleigh’s days, visual inspection has been supplemented with intensity measuring instrumen-
tation and digital computing facilities, which make model fitting manageable. If observations
would be exactly describable by a physics based model, the resulting fit would be perfect and
there would be no limit to resolution. However, despite continuous technical progress, which
provides us with detectors which are able to count single photons, images exactly describable
by a model do not exist. This is due to the inherent presence ofnoise in the images resulting,
for example, from the intrinsic quantum nature of light. Indeed, photon production by any light
or electron source is a statistical process governed by the laws of quantum physics. The source
emits photons at random time intervals. The number of photons in a fixed observation interval
will result in a number that obeys Poisson statistics [15]. It is such statistical fluctuations of the
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observations which prevent parameter estimation methods to result in a perfect fit. Resolution
is then related to the statistical precision with which the component locations can be estimated.

Given the physical model behind the image formation processand knowledge about the
statistics of the observations, theattainableprecision can be adequately quantified in the form
of the so-calledCramér-Rao lower bound(CRLB). This is a lower bound on the variance of
any unbiased estimator of a parameter. The meaning of this lower bound is as follows. One
can use different parameter estimation methods in order to estimate unknown parameters, such
as the least squares or the maximum likelihood (ML) estimator. The precision of an estimator
is represented by the variance or by its square root, the standard deviation. Generally, different
estimators will have different precisions. It can be shown,however, that the variance of unbiased
estimators will never be lower than the CRLB. Fortunately, there exists a class of estimators
(including the ML estimator) that achieves this bound at least asymptotically, that is, for the
number of observations going to infinity. A summary of the different steps involved to compute
the CRLB is given below. A more detailed description may be found in [16, 17].

First, an expression for the joint probability density function of the observations and its de-
pendence on the unknown parameters should be established. For independent, Poisson distrib-
uted observations, the probabilityP(ω;θ) that a set of observationsw= (w1...wM)T is equal to
ω = (ω1...ωM)T is given by:

P(ω;θ) =
M

∏
m=1

λ ωm
m

ωm!
exp(−λm) (5)

with λm the expectation of the observationwm. In Eq. (5), it is supposed that these expectations
are described by an expectation model, that is, a physical model, which contains the parameters
θ to be estimated, such as thex- andy- coordinates of the positionsβββ 1 andβββ 2 of components
or atom columns. As follows from section 2, such a model exists for coherent and incoherent
imaging systems. It is given by:

λm =
N
C

∫

Sm

I (r)dr ≈
N
C

I (rm)Sm (6)

with I (r) given by Eqs. (1)-(4),rm,m= 1, ...,M the measurement points,Sm,m= 1, ...,M the
area of these measurement points,N the total number of detected counts in an image, andC a
normalization factor so that the integral of the functionI (r)/C is equal to one.

Next, the so-calledFisher information matrix Fwith respect to the elements of theT × 1
parameter vectorθ = (θ1...θT)T is introduced. It is defined as theT ×T matrix

F = −E

[
∂ 2 lnP(w;θ)

∂θ ∂θ T

]
, (7)

whereP(ω;θ) is the joint probability density function of the observationsw= (w1...wM)T . The
expression between square brackets represents the Hessianmatrix of lnP, for which the(r,s)th
element is defined by∂ 2 lnP(ω;θ)/∂θr∂θs. For independent, Poisson distributed observations,
whereP(ω;θ) is given by Eq. (5), it follows that the(r,s)th element ofF is equal to:

Frs =
M

∑
m=1

1
λm

∂λm

∂θr

∂λm

∂θs
. (8)

Thus, it can be used to obtain an expression for the Fisher information matrix with respect to the
x- andy-coordinates of the positionsβββ 1 andβββ 2. Assuming that these position coordinates are
the only parameters to be estimated, the parameter vectorθ is given byθ = (βx1 βx2 βy1 βy2)

T .
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An expression for the elements of the Fisher information matrix is found by substitution of the
expectation model given by Eq. (6) and its derivatives with respect to the unknown parameters
into Eq. (8):

Frs =
NSm

C

M

∑
m=1

1
I (rm)

∂ I (rm)

∂θr

∂ I (rm)

∂θs
(9)

with I (rm) the image model given by Eqs. (1)-(4). Recall that the modelI (rm) depends, among
other things, on the relative phase between two points and onthe spherical aberration con-
stant and defocus determining the point spread function. Furthermore, the number of detected
countsN depends on the brightness of the source, the source diameter, and the recording time.
Therefore, the elementsFrs, given by Eq. (9), will depend on all these microscope settings as
well. Explicit numbers for these elements are obtained by substituting values of a given set of
microscope settings and position coordinates of the components or atom columns into Eq. (9).

It can be shown that the covariance matrixcov(θ̂ ) of any unbiased estimator̂θ of θ satisfies:

cov(θ̂ ) ≥ F−1 (10)

This inequality expresses that the difference of the matricescov(θ̂ ) andF−1 is positive semidef-
inite. Since the diagonal elements ofcov(θ̂ ) represent the variances ofθ̂1, ..., θ̂T and since the
diagonal elements of a positive semidefinite matrix are nonnegative, these variances are larger
than or equal to the corresponding diagonal elements ofF−1:

var(θ̂r) ≥
[
F−1]

rr , (11)

wherer = 1, ...,T and [F−1]rr is the(r, r)th element of the inverse of the Fisher information
matrix. In this sense,F−1 represents a lower bound to the variances of all unbiasedθ̂ . The
matrixF−1 is called the CRLB on the variance ofθ̂ .

Finally, the CRLB can be extended to include unbiased estimators of vectors of functions of
the parameters instead of the parameters proper. Letγ(θ) = (γ1(θ)...γC(θ))T be such a vector
and letγ̂ be an unbiased estimator ofγ(θ). Then, it can be shown that

cov(γ̂) ≥
∂γ

∂θ T F−1 ∂γT

∂θ
(12)

where ∂γ/∂θ T is the C× T Jacobian matrix defined by its(r,s)th element∂γr/∂θs. The
right-hand member of this inequality is the CRLB on the variance of γ̂. It can be used
to compute the scalar valued CRLB on the variance of unbiasedestimators of the distance

δ =
√

(βββ 1x−βββ 2x)
2 +(βββ 1y−βββ 2y)

2 between two point source objects from the CRLB on the

variance of estimators of thex- andy-coordinates of the positionsβββ 1 andβββ 2. Equation (12) is
then equal to:

var
(

δ̂
)
≥

∂δ
∂θ T F−1 ∂δ T

∂θ
(13)

with θ = (βx1 βx2 βy1 βy2)
T , the elements ofF given by Eq. (9), and

∂δ
∂θ T =

1
δ

(
βx1−βx2 βx2−βx1 βy1−βy2 βy2−βy1

)
. (14)

It follows from Eq. (9) that the right-hand member of Eq. (13)is inversely proportional to the
number of detected countsN. This means that the distanceδ can be estimated more precisely
if the dose increases. The final expression defining the CRLB on the variance of unbiased

(C) 2006 OSA 1 May 2006 / Vol. 14,  No. 9 / OPTICS EXPRESS  3836
#67555 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 19 April 2006



Fig. 2. Lower bound on the standard deviation of the distance for two pointsources sepa-
rated by the Rayleigh distance as a function of the relative phaseφ .

estimators of the distanceδ , given by the right-hand member of Eq. (13), can be considered as
an alternative, nowadays more meaningful, criterion of resolution.

Following the procedure described in the previous paragraph, the lower bound on the stan-
dard deviation of the distance, that is, the square root of the CRLB, has been computed as a
function of the relative phaseφ for two point sources separated by the Rayleigh distance (for
incoherent point sources) and assuming the functiont(r) in Eqs. (1) and (2) to be the square
root of the well-known Airy disk. For both imaging modes, thetotal number of photons to form
the image has been assumed to be the same. Furthermore, throughout this paper, the pixel size
has been chosen in the region where any further decrease onlyslightly improves the precision
[10]. The results are shown in Fig. 2. This figure can be used tofind out if the distance could be
estimated more or less precisely with coherent imaging thanwith incoherent imaging. It follows
that the precision for coherent imaging is identical to thatof incoherent imaging if the relative
phase between the two point objects is equal toπ/2. The reason for this is that the models
given by Eqs. (1) and (2) are identical in this case. Furthermore, it follows that coherent imag-
ing is preferable in terms of precision if the relative phaseis less thanπ/2. If it is larger than
π/2, incoherent imaging is preferable. This result is exactlythe opposite of what is found in
terms of Rayleigh resolution. It can be understood by carrying out simulation experiments and
subsequent estimation of the position coordinates using the ML estimator. By analyzing these
results it can be shown that the ML estimator attains the CRLBand that the bias is undetectably
small at the distance considered. For relative phases less thanπ/2 the ML estimates of the po-
sition coordinates are stronger correlated than for relative phases larger thanπ/2. A stronger
correlation of the position coordinates affects the precision of the distance in a favorable way.

Finally, the concept of resolution in terms of the CRLB is used to objectively compare coher-
ent HRTEM and incoherent ADF STEM. In Fig. 3, the lower bound on the standard deviation
of the distance between two Si[110] columns is shown as a function of the field of view for
HRTEM and ADF STEM. This lower bound has been computed by substituting Eq. (9) into
the square root of the right-hand member of Eq. (13). The image model in Eq. (9) is given by
Eq. (3) and (4) for HRTEM and ADF STEM, respectively. A detailed description of these two
models and an expression for the number of detected countsN are outside the scope of this
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Fig. 3. Lower bound on the standard deviation of the distance between two Si[110] columns
for HRTEM and ADF STEM as a function of the field of view. The recordingtime and pixel
size are kept constant in this evaluation.

paper, but can be found in [11] and [12] for HRTEM and ADF STEM,respectively. The com-
putation of the lower bound is done for a microscope with a spherical aberration constant and
electron wavelength equal to 0.5 mm and 0.02Å, respectively. The other microscope settings
have been adjusted to their optimal values according to the principles of statistical experimental
design. In brief, this means that those microscope settingscorrespond to the minimum of the
CRLB. A comprehensive report of these principles can be found in [10, 11, 12]. In the com-
putation of Fig. 3, the total recording time is kept constantpresuming that specimen drift puts
a practical constraint to the experiment. Since ADF STEM images are recorded by scanning
a probe over the material, a larger field of view implies a larger scan speed and therefore less
incident electrons per probe position. This has an unfavorable effect on the precision leading to
an increase of the standard deviation for increasing field ofview. It is related to the fact that the
lower bound on the variance of the distance is inversely proportional to the number of detected
countsN as mentioned before. From Fig. 3, it can be seen that for smallfield of views, that
is, less than 2 nm2 in this example, ADF STEM is preferable in terms of precision, otherwise
HRTEM is preferable. It should be emphasized that these results cannot be explained using a
Rayleigh-type criterion since such a criterion does not take account of, for example, the elec-
tron dose. Furthermore, using the CRLB it can be shown that ifit is radiation sensitivity of
the material rather than specimen drift which puts a constraint to the experiment, the incident
electron dose per squareÅ has to be kept constant. In that case, HRTEM is usually preferred.

4. Conclusions

In conclusion, we proposed a quantitative resolution criterion that can be used to compare the
performance of coherent and incoherent imaging systems. Byexpressing resolution in terms of
the precision with which the distance between neighboring objects can be estimated, the pro-
posed criterion reflects the purpose of quantitative experiments, that is, precise measurement of
physical parameters. As such, it may replace Rayleigh-likeclassical resolution criteria that ex-
press the possibility to visually distinguish neighboringobjects. Based on Rayleigh’s resolution
criterion, incoherent imaging is often found to be better than coherent imaging. However, this
conclusion is only true if there is no phase difference between rays emerging from two neigh-
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boring point sources. If there is a phase difference ofπ, coherent imaging is preferred. In terms
of precision the conclusion is just the contrary. Moreover,we applied both Rayleigh’s resolu-
tion criterion and the precision based alternative in the field of electron microscopy, comparing
coherent HRTEM and incoherent ADF STEM. In terms of Rayleighwe found that depending
on the material thickness, HRTEM may be preferable even in the absence of a phase difference
between neighboring atom columns. In terms of precision we found that HRTEM is usually
preferable, except for fields of view smaller than a few squared nanometers.

Acknowledgments

The authors acknowledge Dr. J. C. H. Spence for fruitful discussions. S. Van Aert gratefully
acknowledges the financial support of the Fund for ScientificResearch - Flanders.

(C) 2006 OSA 1 May 2006 / Vol. 14,  No. 9 / OPTICS EXPRESS  3839
#67555 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 19 April 2006


