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Abstract: The resolution of coherent and incoherent imaging systesms i
usually evaluated in terms of classical resolution cratesuch as Rayleigh'’s.
Based on these criteria, incoherent imaging is generalhclaoed to be
‘better’ than coherent imaging. However, this paper revsaime miscon-
ceptions in the application of the classical criteria, whicay lead to wrong
conclusions. Furthermore, it is shown that classical ggmi criteria are
no longer appropriate if images are interpreted quantéhtiinstead of
gualitatively. Then one needs an alternative criteriondmpare coherent
and incoherent imaging systems objectively. Such a ocoitesvhich relates
resolution to statistical measurement precision, is psedan this paper. It
is applied in the field of electron microscopy, where the tjoaswhether
coherent high resolution transmission electron microgc@RTEM) or
incoherent annular dark field scanning transmission egctnicroscopy
(ADF STEM) is preferable has been an issue of consideralilatde
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1. Introduction

The question whether coherent or incoherent imaging isepabfe in terms of resolution has
given rise to many discussions. Usually this comparisomagel on classical resolution criteria
such as the well-known Rayleigh resolution criterion [1fof this point of view, incoherent
imaging is often concluded to be ‘better’ than coherent iimgggiven that the same imaging
system is used in both cases [2]. However, it will be showrhis paper that there are some
misconceptions in the application of these classicalmzitd he conclusion may be different if
these criteria are applied properly, or preferably, if daralative, more meaningful performance
criterion is used.

Resolution is interpreted in many ways since it is not ungubiisly defined. Therefore,
several resolution criteria, including Rayleigh’s, haesb proposed in the past. These criteria
may be defined using, for example, decision theory (consigeesolution as a classification
task), information theory or singularity theory. An oveawi of existing criteria may be found
in [3]. The alternative criterion used in this paper is rethto statistical measurement precision
and will be used to evaluate coherent and incoherent imagyistgms.

Coherent imaging is characterized by a fixed phase reldtipfetween rays emerging from
different parts of the object under study. Therefore, itimgedr in complex amplitude. Such
fixed phase relationships do not exist for incoherent imggivhich is linear in intensity. Us-
ing these linearity properties and knowledge of the poin¢ag function, one can model, i.e.,
calculate, the image intensity distribution of two pointiszes for both types of imaging. Clas-
sical resolution criteria concern suchlculatedimages [4]. However, calculated images have
no practical meaning. In experimental physics, one is fawithl detectedmages instead [4].
Therefore, practically relevant resolution criteria sldoconcern detected images. Due to the
inherent presence of noise, detected images will never aetlgxdescribable by the chosen
two-component model. If they were, fitting the model to theebations would result in an
infinitely precise reconstruction of the locations of thenpmnents and there would be no limit
to resolution. For detected images, model fitting neverltegua perfect reconstruction. Res-
olution is then related to the limited statistical precaisisith which the component locations
can be estimated. It will be shown that the attainable pi@tisan be adequately quantified,
making use of the physics behind the image formation pro€esthermore, it can be used as a
more meaningful criterion to fairly compare the resolutidrtoherent and incoherent imaging
systems.
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2. Classical resolution criteria

Classical resolution criteria are based on calculated @pagGenerally, the model of a shift-
invariant linear system can be expressed in terms of thet gpiead function. The image of
two point objects which are illuminated coherently can baleled as:

I(r) = [3(r=PBy)=t(r—By)+
exp(i) & (r — B,) #t (r — B,) [?
= Jt(r—By) +exp(ip)t(r—By) @
with t (r) the coherent point spread functiod(r) the Dirac delta function representing the
scattering distribution of a point object= (X,y) a two-dimensional vector in the image plane,
B, andp, the positions of the componentgthe relative phase between the two components,

and x the convolution operator. Using the same imaging systerheniricoherent mode, the
model becomes:

5(r —By)*t(r—By) |2+
|exp(ig) 3 (r — By) *t (r —By) |2
t(r =By +1t(r— B @

The incoherent point spread function is the squared modilthe coherent point spread func-
tion, i.e.,|t (r)]?.

The most famous resolution criterion is that of Rayleigh [i]s based on presumed limi-
tations to the resolving capabilities of the human visuatey and originally states that two
incoherent point sources of equal brightness are justwedaf the central maximum of the
point spread function generated by one point source casoidth the first zero of the point
spread function generated by the second. This criterionbeageneralized to include point
spread functions that have no zero in the neighborhood of¢batral maximum by taking the
resolution limit as the distance for which the intensityteg tentral dip in the composite image
is 81% of that at the maxima on either side. This correspoodsdentral dip of 19% of the
maximum intensity. After the introduction of this critenipRayleigh [5] and others [2] investi-
gated the question whether two point sources, separatdetiBayleigh distance for incoherent
point sources, would be easier or harder to resolve withreshiélumination than with inco-
herent illumination. Therefore, models as in Eq. (1) ando@) be used and it is found that
the answer depends on thhase distributiorassociated with these sources. When the sources
are in quadratureg(= 11/2), the image intensity distribution is identical to thasuking from
incoherent point sources. When the sources are in plgasd)], the dip in the image intensity
distribution is absent and therefore the points are not dis@solved as for incoherent illumi-
nation. Finally, when the two point sources are in phase siipa (¢ = n), the dip is greater
than 19%, and the two point sources are resolved better whikrent illumination than with
incoherent illumination.

Another criterion is the so-callatiffraction limit to resolution This corresponds to the cutoff
frequency of the transfer function being the frequency beywhich the transfer function of
the system is zero. Since the transfer function and the gpitad function are Fourier pairs,
the cutoff frequency and the Rayleigh limit are closely tedia The incoherent transfer function
of a diffraction-limited system extends to a frequency fldtvice the cutoff frequency of the
coherent transfer function [2]. It is tempting, therefdegconclude that incoherent imaging is
better than coherent imaging. As emphasized by GoodmathjJconclusion is in general not
valid since the cutoff frequencies in the two cases are mettly comparable. The coherent
cutoff determines the maximum frequency of the image anndit while the incoherent cutoff
refers to frequency components of the image intensity.

I(r)
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Consider now a practical example from the field of electronroscopy where there is a
continuing discussion whether coherent HRTEM or incoheAddF STEM is preferable. In
HRTEM [6], the material under study is illuminated by a cadrer nearly plane wave electron
source. The electrons are transmitted through the mataréhinteract with it. Next, a magni-
fied image of the scattered wave is formed. In ADF STEM [7], @bprscans in a raster over
the material. At each probe position, an annular detectargal in the back focal plane beyond
the material collects a fraction of the total scatteringrengpecifically, all electrons transmit-
ted through the material but scattered to relatively highles From the so-called principle
of reciprocity [6], it follows that the ADF detector is eqalent to using a large incoherent
illuminating source in HRTEM. The arguments which are gatigused to prefer ADF STEM
over HRTEM are based on the apparent better resolution ohgrent illumination compared
to coherent illumination if identical components are cdeséd for whichgp = 0 [7, 8]. How-
ever, this conclusion is only justifiable if the model for esnt HRTEM and incoherent ADF
STEM imaging is of the same form as in Eqg. (1) and (2), respelstilt is therefore important
to take these models into consideration. In case of HRTEkwfuch the material is usually
oriented along a main crystal zone axis (i.e., parallel withatom columns), the model can be
written as follows [9, 10, 11]:

2

(1) = |1+ 3 andrsn(r —By) <t (r =By . 3)
n=1

where the atom column approximation is made. In Eq. i@yepresents the total number of
atom columns being imaged, the functigns(r — B,) is the lowest energy bound state of
the nth atom column located at positigy,, t(r) is the point spread function of the electron
microscopea, is a complex coefficient depending among other parametetiseothicknesz

of the material. From the comparison of Eqg. (3) with Eq. (inay be concluded that the Dirac
delta function is now replaced witfysn(r), which is a function of finite size. This expresses
the fact that atoms may not be considered to be point scettfiee most important difference
is the presence of the term ‘1’ in Eq. (3), which is absent in(&} It represents an unscattered
wave, which in classical terms means that part of the intiédgctrons will not scatter in
the material, but may interfere with the scattered elestraet us now consider ADF STEM
assuming the same material being imaged using a microsdtipghe same lens characteristics
as in HRTEM. If the atom column approximation is made, the ehéglgiven by [10, 12, 13]:

1) = 3 Adisolt ~ B0~ Bo) @

with A, a factor depending among other parameters on the thicknasd on the detector
geometry. From the comparison of Eq. (4) with Eq. (2), it maycbncluded that these models
are equivalent apart from the replacement of the Dirac defiation with a function of finite
size. Note that in the derivation of Eq. (4), only elastictsaréang has been considered and not
thermal diffuse, inelastic scattering. The incoherentati@ristics of the model are therefore
not caused by incoherent scattering events but are puredyext by the detector geometry [13].
To study whether the presence of the term ‘1’ in Eq. (3) affebe conclusion on which
instrument is preferable in the sense of Rayleigh, HRTEM Abd STEM images of two
neighboring, identical $110 atom columns have been simulated as a function of thickness.
The distance between the columns is equal. 8 A. For HRTEM as well as for ADF STEM,
the so-called spherical aberration constant of the mioms@nd the electron wavelength are
chosen equal to.2 mm and 002 A, respectively. These settings mainly determine the ogitim
width of the microscope’s point spread function with theastbettings, like defocus and objec-
tive aperture radius, chosen in accordance with the seat&ltherzer conditions for coherent
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Fig. 1. Cross sections of HRTEM and ADF STEM intensity distributions fded#nt thick-
nesses. The height of the central dip relative to the maximum or minimumsityeabove
or below the background is indicated.

and incoherent imaging, respectively [6, 7, 14]. In Fig. bss sections of the HRTEM and
ADF STEM intensity distributions are shown for differenidknesses. Furthermore, the height
of the central dip relative to the maximum or minimum intéyabove or below the background
is indicated. If this value is equal to 19% or more, the colarare resolved, if it is less than
19%, the columns are not resolved. This criterion is the lusxtansion of Rayleigh’s in case
of a background [14]. From Fig. 1, it can be seen that the Bigmt value varies as a function
of thickness for HRTEM whereas it is a constant for ADF STENbrk the comparison of the
corresponding values, it follows that for certain thickses the columns are resolved better
with HRTEM than with ADF STEM. This result appears even in éifisence of a phase differ-
ence between the two columns and is due to the presence arthelt in Eq. (3). Note that
for HRTEM a phase difference will exist between two neighibgratom columns if they con-
sist of different elements or if they have a different thieka. This example illustrates that the
optimal choice between coherent or incoherent imagingesystn the sense of Rayleigh does
not only depend on the phase distribution associated wélolifect but also on the structure of
the models describing the image intensity distribution.

3. Attainable precision

Classical resolution criteria are concerned with cal@damages, that is, noise-free images ex-
actly describable by a known parameterized model. Howéese criteria disregard the pos-
sibility of using this a priori knowledge about the imageeimsity distribution to extract numer-
ical results from the observations by model fitting usingapagter estimation methods. Since
Rayleigh’s days, visual inspection has been supplemenitbdntensity measuring instrumen-
tation and digital computing facilities, which make moddiriig manageable. If observations
would be exactly describable by a physics based model, thétireg fit would be perfect and
there would be no limit to resolution. However, despite acomus technical progress, which
provides us with detectors which are able to count singlégrits) images exactly describable
by a model do not exist. This is due to the inherent presenc®ist in the images resulting,
for example, from the intrinsic quantum nature of light.éed, photon production by any light
or electron source is a statistical process governed byathe df quantum physics. The source
emits photons at random time intervals. The number of ptwitoa fixed observation interval
will result in a number that obeys Poisson statistics [1i5% $uch statistical fluctuations of the
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observations which prevent parameter estimation mettodssult in a perfect fit. Resolution
is then related to the statistical precision with which thenponent locations can be estimated.

Given the physical model behind the image formation proeess knowledge about the
statistics of the observations, thtainableprecision can be adequately quantified in the form
of the so-calledCramér-Rao lower boundCRLB). This is a lower bound on the variance of
any unbiased estimator of a parameter. The meaning of thisrlbound is as follows. One
can use different parameter estimation methods in ordestimate unknown parameters, such
as the least squares or the maximum likelihood (ML) estimdtioe precision of an estimator
is represented by the variance or by its square root, thelatdmeviation. Generally, different
estimators will have different precisions. It can be shdwawever, that the variance of unbiased
estimators will never be lower than the CRLB. Fortunatéigre exists a class of estimators
(including the ML estimator) that achieves this bound asiesymptotically, that is, for the
number of observations going to infinity. A summary of thdetiént steps involved to compute
the CRLB is given below. A more detailed description may henfbin [16, 17].

First, an expression for the joint probability density ftion of the observations and its de-
pendence on the unknown parameters should be establistreddependent, Poisson distrib-
uted observations, the probabil®yw; 8) that a set of observationg= (w;...wy)" is equal to
w=(w...con)" is given by:

M ) &
P(w;0) =] T;nﬂl exp(—Am) 5)
m=1 :

with A, the expectation of the observatiog,. In Eq. (5), it is supposed that these expectations
are described by an expectation model, that is, a physicdéimahich contains the parameters
0 to be estimated, such as tkeandy- coordinates of the positiorf8; and 8, of components

or atom columns. As follows from section 2, such a model eXist coherent and incoherent
imaging systems. It is given by:

)\m:g/sﬂl(r)drzgl(rm)sn )

with I (r) given by Egs. (1)-(4)m,m=1,...,M the measurement pointS;,m=1,...,M the
area of these measurement poilNghe total number of detected counts in an image, @ad
normalization factor so that the integral of the functldn) /C is equal to one.

Next, the so-calledrisher information matrix Fwith respect to the elements of tiex 1
parameter vectof = (6;...67)" is introduced. It is defined as tiex T matrix

o |:(92|I’IP(W;9)} |

06067 "

whereP(w; 8) is the joint probability density function of the observatsw = (wy...wy)T. The
expression between square brackets represents the Hegi@aof InP, for which the(r, s)th
element is defined b§?InP(w; 8) /96,3 6s. For independent, Poisson distributed observations,
whereP(w; 0) is given by Eq. (5), it follows that thér, s)th element of is equal to:

M 1 9AndAnm
Fe= Y — . 8
s n;)\m 06, 065 ®)

Thus, it can be used to obtain an expression for the Fishamivation matrix with respect to the
x- andy-coordinates of the positior$; andp,. Assuming that these position coordinates are
the only parameters to be estimated, the parameter véesagiven by = (B Bxz By1 ,Bﬂ)T.
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An expression for the elements of the Fisher informationrixét found by substitution of the

expectation model given by Eqg. (6) and its derivatives wétspect to the unknown parameters

into Eq. (8):

£ NS M1 9l(rm) dl (rm)
T C & l(rm) 96 06

9)

with | (ry) the image model given by Egs. (1)-(4). Recall that the mb(iel) depends, among
other things, on the relative phase between two points anth@rspherical aberration con-
stant and defocus determining the point spread functiorthEtmore, the number of detected
countsN depends on the brightness of the source, the source diametethe recording time.
Therefore, the elementss, given by Eqg. (9), will depend on all these microscope sgstias
well. Explicit numbers for these elements are obtained Igtiuting values of a given set of
microscope settings and position coordinates of the coesror atom columns into Eq. (9).
It can be shown that the covariance matoy( 6) of any unbiased estimatérof 6 satisfies:

covB) > F1 (10)

This inequality expresses that the difference of the medroV( 9) andF—tis posmve semidef-
inite. Since the diagonal elementscmfv(e) represent the variances ef GT and since the
diagonal elements of a positive semidefinite matrix are egative, these variances are larger
than or equal to the corresponding diagonal elemenits éf

var(6) > [F1] (11)

rr’

wherer = 1,...,T and[F 1], is the (r,r)th element of the inverse of the Fisher information
matrix. In thIS sensel- ! represents a lower bound to the variances of all unbi&sethe
matrix F 1 is called the CRLB on the variance 6f
Finally, the CRLB can be extended to include unbiased esbiraaf vectors of functions of
the parameters instead of the parameters propey(I83t= (y1(0)...yc(0))" be such a vector
and lety be an unbiased estimator g(f6). Then, it can be shown that
dy _ 10y"

cov(y) > —=F~

FELAFT) (12)

where dy/00" is theC x T Jacobian matrix defined by itg,s)th elementdy /96s. The
right-hand member of this inequality is the CRLB on the vaci of y. It can be used
to compute the scalar valued CRLB on the variance of unbiaséichators of the distance

0= \/(le—BZX)ZJr (B1y — B,y)? between two point source objects from the CRLB on the
variance of estimators of the andy-coordinates of the positiorf$; and8,. Equation (12) is

then equal to:
= l7ke) ldéT
var (5) 37 55 (13)
with 8 = (Bx1 B By B)/Z)T, the elements of given by Eq. (9), and

05 _1
5

30T Ba—Be Be—Ba Br—Bz Be—PBu ). (14)

It follows from Eq. (9) that the right-hand member of Eq. (18)nversely proportional to the
number of detected counks This means that the distandecan be estimated more precisely
if the dose increases. The final expression defining the CRLBhe variance of unbiased
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Fig. 2. Lower bound on the standard deviation of the distance for two pointes sepa-
rated by the Rayleigh distance as a function of the relative ppase

estimators of the distan@® given by the right-hand member of Eq. (13), can be consitlase
an alternative, nowadays more meaningful, criterion oblggon.

Following the procedure described in the previous pardgréqe lower bound on the stan-
dard deviation of the distance, that is, the square root®fQRLB, has been computed as a
function of the relative phasg for two point sources separated by the Rayleigh distanae (fo
incoherent point sources) and assuming the fundtionin Eqgs. (1) and (2) to be the square
root of the well-known Airy disk. For both imaging modes, tb&al number of photons to form
the image has been assumed to be the same. Furthermorghtbubthis paper, the pixel size
has been chosen in the region where any further decreasslagiijly improves the precision
[10]. The results are shown in Fig. 2. This figure can be usdddoout if the distance could be
estimated more or less precisely with coherent imagingwitinincoherent imaging. It follows
that the precision for coherent imaging is identical to thfahcoherent imaging if the relative
phase between the two point objects is equaltt@. The reason for this is that the models
given by Egs. (1) and (2) are identical in this case. Furtloeemit follows that coherent imag-
ing is preferable in terms of precision if the relative phiaskess thart/2. If it is larger than
11/2, incoherent imaging is preferable. This result is exattty opposite of what is found in
terms of Rayleigh resolution. It can be understood by cagyiut simulation experiments and
subsequent estimation of the position coordinates usiadvth estimator. By analyzing these
results it can be shown that the ML estimator attains the CRhdBthat the bias is undetectably
small at the distance considered. For relative phasesHassif2 the ML estimates of the po-
sition coordinates are stronger correlated than for relgthases larger tham/2. A stronger
correlation of the position coordinates affects the pienisf the distance in a favorable way.

Finally, the concept of resolution in terms of the CRLB isdis®objectively compare coher-
ent HRTEM and incoherent ADF STEM. In Fig. 3, the lower boumdtlwe standard deviation
of the distance between two Si[110] columns is shown as aifimof the field of view for
HRTEM and ADF STEM. This lower bound has been computed bytgubieg Eq. (9) into
the square root of the right-hand member of Eq. (13). The @magdel in Eqg. (9) is given by
Eqg. (3) and (4) for HRTEM and ADF STEM, respectively. A detdildescription of these two
models and an expression for the number of detected cdumat® outside the scope of this
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Fig. 3. Lower bound on the standard deviation of the distance betweeri[id@Bcolumns
for HRTEM and ADF STEM as a function of the field of view. The recordinge and pixel
size are kept constant in this evaluation.

paper, but can be found in [11] and [12] for HRTEM and ADF STEWMspectively. The com-
putation of the lower bound is done for a microscope with aesighl aberration constant and
electron wavelength equal to 0.5 mm and OﬁOZespectiver. The other microscope settings
have been adjusted to their optimal values according toriheiples of statistical experimental
design. In brief, this means that those microscope settinggspond to the minimum of the
CRLB. A comprehensive report of these principles can bedanr{10, 11, 12]. In the com-
putation of Fig. 3, the total recording time is kept consta@isuming that specimen drift puts
a practical constraint to the experiment. Since ADF STEMdesaare recorded by scanning
a probe over the material, a larger field of view implies adargcan speed and therefore less
incident electrons per probe position. This has an unfélereffect on the precision leading to
an increase of the standard deviation for increasing fielden?. It is related to the fact that the
lower bound on the variance of the distance is inversely gutognal to the number of detected
countsN as mentioned before. From Fig. 3, it can be seen that for diehll of views, that

is, less than 2 nfin this example, ADF STEM is preferable in terms of precisiotherwise
HRTEM is preferable. It should be emphasized that thesdtsesannot be explained using a
Rayleigh-type criterion since such a criterion does nog tagcount of, for example, the elec-
tron dose. Furthermore, using the CRLB it can be shown thiatisfradiation sensitivity of
the material rather than specimen drift which puts a coimtta the experiment, the incident
electron dose per squaﬁehas to be kept constant. In that case, HRTEM is usually pexdie

4. Conclusions

In conclusion, we proposed a quantitative resolution kdtethat can be used to compare the
performance of coherent and incoherent imaging systemesxpgessing resolution in terms of
the precision with which the distance between neighborinjgais can be estimated, the pro-
posed criterion reflects the purpose of quantitative erpenis, that is, precise measurement of
physical parameters. As such, it may replace Rayleighelissical resolution criteria that ex-
press the possibility to visually distinguish neighboroigects. Based on Rayleigh’s resolution
criterion, incoherent imaging is often found to be bettemtlscoherent imaging. However, this
conclusion is only true if there is no phase difference betweys emerging from two neigh-
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boring point sources. If there is a phase differenca,afoherent imaging is preferred. In terms
of precision the conclusion is just the contrary. Moreover,applied both Rayleigh’s resolu-
tion criterion and the precision based alternative in the fié electron microscopy, comparing
coherent HRTEM and incoherent ADF STEM. In terms of Rayleighfound that depending
on the material thickness, HRTEM may be preferable evenaratisence of a phase difference
between neighboring atom columns. In terms of precision aumd that HRTEM is usually
preferable, except for fields of view smaller than a few sgdaranometers.
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