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Abstract

Graph databases are systems to efficiently store and query large graphs. As graph
databases grow in popularity, they are used to answer increasingly diverse and complex
queries. However, graph databases typically have a very limited query language that can-
not express arbitrary algorithms. As a result, many users treat the database as a storage
layer to export data from and develop algorithms in external tools, wasting computation
power and storage space.

We present graphalg, a high-level, domain-specific language for writing graph algo-
rithms embedded into traditional graph queries. Our language is based on linear algebra,
with a syntax resembling GraphBLAS, and implemented in the AvantGraph database.

We implement a compiler for graphalg that can target an interpreter built on top
of a GraphBLAS implementation. Alternatively, our compiler can transform graphalg
programs into a relational algebra with loops, unifying the representation of query and
algorithm. We evaluate the programmability and performance of our system on the GAP
Benchmark Suite for graph algorithms. Our language is expressive enough to concisely
represent all GAP benchmark programs, with the majority of programs achieving per-
formance comparable to an optimized C implementation.

We conclude that graph algorithm support can be integrated into graph databases
to increase their programmability. Running graph algorithms inside of the database in-
creases performance and reducesmemory consumption compared to using external tools
for the analysis. Rather than thinking of graph databases as limited tools for answering
simple queries, we demonstrate that they can instead be a programmable framework for
efficient large-scale data analysis.
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Chapter 1

Introduction

Graphs are used to model a wide variety of systems across disciplines. They are the obvi-
ous way to represent a network of connected devices, rail infrastructure or an electrical grid.
Algorithms over graphs can be used to perform such diverse tasks as finding the most influ-
ential people in a group, uncovering fraudulent wire transfers, or finding the shortest path
between two points.

Systems specifically designed to store and analyze large graphs, graph databases, have been
developed to perform all these tasks. Graph databases typically offer a declarative interface
for the user to specify search queries, which the database efficiently executes on the large
graph it stores.

Support for graph queries in databases is becoming mainstream. Database vendors such
as Oracle [43] and Microsoft [32] provide graph query support in their offerings. Further-
more, the 2023 SQL standard will include a graph query syntax extension [18], allowing
vendor-neutral graph queries embedded in SQL.

The query languages offered by graph databases are usually declarative and focused on
pattern matching. Database vendors recognize a user demand to perform complex analyses
that cannot be expressed as simple pattern matching [39, 7]. Their solution to this problem
is to provide users with a library of algorithms for common use cases such as centrality met-
rics, community detection and pathfinding. If however, a user needs an algorithm that the
vendor does not provide an implementation for, they cannot provide a custom algorithm im-
plementation and run it inside the graph database. Their only option is to export the graph
and run the analysis in an external tool. Exporting large volumes of data is expensive both
in computing and storage costs. Furthermore, external tools cannot access the statistics the
database maintains about the graph, leading to a suboptimal processing pipeline. Due to its
restricted functionality, the graph database is demoted to amere storage layer in the analytics
pipeline.

1.1 Contributions
We posit that this is not a fundamental limitation of graph databases, but rather a by-product
of the limited programmability of their interface.

Our contributions are the following:

• We propose graphalg, a domain-specific language (DSL) for writing algorithms that
can be executed directly by a graph database (Chapter 3). Like most database query
languages, graphalg consists of high-level operations with semantics that are easy to
reason about and can be optimized well by a query planner. Graphalg natively sup-
ports iteration and conditional branching, and can concisely express a wide variety of
algorithms. Graphs are represented as matrices, with operations on them expressed in
linear algebra.
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1. INTRODUCTION

Graphalg is inspired by the GraphBLAS library [12], an open API of standard com-
ponents for building algorithms in the language of linear algebra. While the use of
linear algebra to implement graph algorithms is a proven approach, we are the first to
present a language specifically designed for writing algorithms in this style, and the
first to integrate it into a graph database.

• We develop a compiler with two backends based on different execution models, with
shared initial phases for parsing and normalization (Chapter 4). We provide a detailed
description of the intermediate representations and transformations that make up the
system and highlight the differences between the two backends. We also cover the
integration of the compiler into the target database, AvantGraph [30].

• Our GraphBLAS backend (Chapter 5) compiles graph algorithms into GraphBLAS li-
brary calls and executes them in an interpreter. We show how programs written in
our high-level DSL can be optimized to run as fast as a C implementation by fusing
operations and automatically allocating buffers for intermediate results.

• Additionally, we present the ‘operators’ backend, which transforms graphalg programs
into extended relational algebra (Chapter 6). We show how programs written in our
DSL can be transformed into the internal IR ofAvantGraph, fully integrated into queries,
and executed by the same runtime. We discuss what additional operators are needed
to support iterative algorithms with linear algebra operations, most notably loops and
semirings, and how to implement them.

The remainder of the thesis is organized as follows:

• In Chapter 7, we evaluate our system based on the design goals stated in Section 3.1,
with a particular focus on efficiency and expressivity. Execution time and memory
usage are the key metrics to determine the success of our approach. We use the input
graphs and kernels specified in the GAP Benchmark Suite [3].

• Our work overlaps with a considerable volume of existing research into various topics
such as algorithm support in databases, languages for writing graph algorithms and
linear algebra primitives in databases. A review of related work and how it compares
to our approach is in chapter Chapter 8.

• We discuss the limitations and future work in Chapter 9, and finally conclude with
Chapter 10.

For readers unfamiliar with (graph) databases or compilers, we provide background infor-
mation on those topics in Chapter 2.
We expect that graphalg will be released under an open source license as a part of Avant-
Graph in late 2023. Until then, we provide a binary distribution ofAvantGraphwith graphalg
support for experimentation and reproducibility of our results. The artifact is available at
https://doi.org/10.5281/zenodo.8286432.
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Chapter 2

Background

For this project, we develop a compiler and integrate it into a graph database. In this chapter,
we cover the relevant topics from the compiler and database literature, notably:

• Graph databases as seen from the user perspective (Section 2.1).

• Database internals, in particular query planning (Section 2.2) and query execution
(Section 2.3)

• Program representations in a compiler (Section 2.4)

• Program transformation using rewrite rules (Section 2.5)

See Figure 2.1 for a high-level view of the query lifecycle in a graph database. The query
planner, execution plan generator and execution engine are particularly important to our
work. They are covered in detail in Section 2.2 and Section 2.3.

Query 
Parser

Query 
Planner

Execution 
Engine

Graph 
storage

Execution 
Plan 

Generator

Parsed query Logical plan Physical plan

● Vertices
● Relations
● Properties

Query
Query 
results

Figure 2.1: Typical architecture of a graph database.

In Figure 2.2we showa similar overview, this time of a compilation pipeline. The parser is
the only part of the pipeline thatwedo not cover in this chapter since it is autogenerated using
ANTLR[41]. Representations used between the different stages are presented in Section 2.4,
while the stages themselves are discussed in Section 2.5.

Parsing Canonicalize
IR

Source 
code

Optimize Lower

IR
(simplified)

IR 
(optimized)

Machine code / 
Low-level IR

Figure 2.2: Typical architecture of a compiler.
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2. BACKGROUND

2.1 Graph Databases
2.1.1 Data Model
Graph databases store information as a network of vertices connected via edges. For certain
problemdomains, this is amore naturalmodel than the traditional relational databasemodel
of tables and columns. Consider for example a database that tracks the friendships that exist
between individuals in a community. In a relational database, we can model this using a
Person and a Friendship table, as shown in Table 2.3.

(a) Person table

id name
1 Alice
2 Bob
3 Charlie

(b) Friendship table

person_id friend_id
1 2
1 3
2 1
2 3
3 1
3 2

Table 2.3: Friendship database in tabular form.

The properties of every person in the database, only their name in this example, are stored
in Table 2.3a. Friendships are tracked in Table 2.3b by linking two person ids, e.g. the first
row states that person 1 (Alice), is friends with 2 (Bob).

While representing this community in tabular form is possible, a graphdatabase provides
a more intuitive model. Every person in the community can be presented with a unique
vertex, and we can add an edge between two vertices if they are friends. Plain vertices and
edges are already sufficient to model the Friendship table and the id column of the Person
table, but the database must also store the name of each person (or vertex). Many graph
databases, including AvantGraph, allow associating key-value pairs with vertices and edges.
This is the property graphmodel, and it lets us attach properties such as name:'Alice' to vertices.
Figure Figure 2.4 shows the same friendship database represented as a property graph.

1
name: Alice

2
name: Bob

3
name: Charlie

Figure 2.4: Friendship database in property graph form.

While it may not be apparent from this simple example, the property graph model is
highly flexible:

• Vertices may have many different properties, each with a different key. Properties can
be added to a subset of vertices, unlike the relational model where adding a column
applies to every row in the table.

• Edges can have properties too, creating a weighted graph. In a road network, for ex-
ample, this can be used to store the distance between locations or a speed limit.

• Edges can be labeled to store multiple relations in a single graph. Next to the edges in
Figure 2.4 that track friendships, we could for example introduce a ’family’ relationship.
Edge labels are conventionally written in uppercase, so an appropriate name for the

4



2.1. Graph Databases

relation in Figure 2.4 would be FRIEND. Vertices are not exclusive to a relationship, e.g.
two vertices connected via a FRIEND edge may also have a FAMILY edge.

Having covered the property graph datamodel used in graph databases likeAvantGraph,
let us consider how to query such graphs.

2.1.2 Querying graphs
AvantGraph (andmanyother graphdatabases) support theOpenCypher query language [40],
a declarative language inspired by SQL. OpenCypher focuses on subgraph matching: the user
specifies a target pattern, and the query engine searches the graph to find subgraphs that
match the given pattern.

To use the graph from Figure 2.4 as an example, consider that a user may wish to retrieve
the names of all individuals that are friendswithAlice. This query is visualized by Figure 2.5.

a

name: Alice
p

name: ?

FRIEND

Figure 2.5: Query pattern to find names of Alice’s friends.

Vertex a matches any vertex with the value ‘Alice’ for the name property, and p matches
any vertex with a FRIEND edge to a valid a. This pattern has a direct encoding in OpenCypher,
shown in Listing 2.1.

Listing 2.1: OpenCypher query to find names of Alice’s friends
MATCH (:Person {name: 'Alice'}) - [:FRIEND] -> (p:Person)
RETURN p.name

Not all queries can be expressed as subgraph matching. For example, a user may wish
to find the shortest path between Alice and Bob. In the graph of Figure 2.4 this is trivial, but
in a large graph there may be many paths between the two vertices, and the database must
return the shortest of all paths. OpenCypher supports such queries by providing built-in
functions for common algorithms. For this particular query, the shortestPath function can
be used, as shown in Listing 2.2.

Listing 2.2: Query to find the shortest path between Alice and Bob
MATCH
(Alice:Person {name: 'Alice'}),
(Bob:Person {name: 'Bob'}),
p = shortestPath( (Alice)-[:FRIEND*]-(Bob) )

RETURN p;

The function shortestPath evaluates all paths that satisfy the pattern (Alice)-[:FRIEND*]-(Bob),
and returns the shortest one. Invoking shortestPath inside of MATCH allows binding it to a vari-
able, which is appropriate for a function that returns a single result. If however the user re-
quires an algorithm that returns multiple results, it must be invoked through OpenCypher’s
procedure syntax instead. We show an example of a procedure call in Listing 2.3.

Listing 2.3: Calling a procedure to find shortest paths to all vertices from a single source
MATCH (source:Person {name: 'Alice'})
CALL allShortestPaths(source)
YIELD nodeId, length
RETURN nodeId, length

5



2. BACKGROUND

The above query returns the length of the shortest path to every reachable vertex in the
graph, starting from the given source. The CALL clause defines the algorithm to be executed
and the parameters to pass. Procedures return a stream of tuples. To control which columns
of the stream are passed on to later clauses, YIELD is used to select the desired columns.

Most of the programs that we use to evaluate the system return multiple results, so we
focus on supporting procedures in this work.

2.2 Query Planning
After the database has parsed and validated a query, it must decide how to compute the
desired result. It is the job of the query planner, sometimes also referred to as query optimizer,
to find the most efficient execution plan that answers the query.

2.2.1 Relational Algebra
The first step of query planning is to convert the parsed OpenCypher into a more regular
structure that is easy to manipulate and reason about. Like most query planners, Avant-
Graph uses relational algebra to represent queries. In relational algebra, queries are repre-
sented as a tree of operators. An operator receives tuples from its child operators, manipu-
lates them in some way, and passes on the result to its parent operator. The tree of operators
thus defines a data processing pipeline, which can perform a complex computation by com-
posing many simple operators.

To give an example of a query converted to relational algebra, let us revisit the query in
Listing 2.1. Because relational algebra has a more straightforward mapping to SQL, we also
give the equivalent SQL query (based on the schema in Table 2.3), shown in Listing 2.4

Listing 2.4: SQL query to find names of Alice’s friends.
SELECT p.name
FROM Person AS a
JOIN Friendship AS f ON (a.id = f.person_id)
JOIN Person AS p ON (p.id = f.friend_id)
WHERE a.name = 'Alice'

In Figure 2.6 one possible mapping to relation algebra is shown.
The leaves of the tree are references to the tables of Table 2.3, while the internal nodes

are operators. To identify particular elements of tuples we assign a single-letter label to each
table reference (a, f and p), and use the convention table.column to refer to a column. The
semantics of the operators are as follows:

• Π is the projection operator. It forwards the given subset of the input columns.

• σ is the selection operator. It forwards only the tuples for which the predicate holds.

• ’ is the join operator. It computes the cartesian product between all tuples in the two
input relations and outputs all combinations for which the given predicate matches.
Columns of both inputs are available in the output.

With the semantics of each of its operators defined, the query as expressed in relational alge-
bra becomes a plan for computing the answer to the query. We refer to it as a query plan.

2.2.2 Finding a better plan
The query plan of Figure 2.6 is but one possible plan to answer this query. This is closely
related to the declarative design of the query language: the user specifies only what is to be
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Π
p.name

σ
a.name='Alice'

’

p.id=f.friend_id

’

a.id=f.person_id

Person
a

Friendship
f

Person
p

Figure 2.6: Query plan to find names of Alice’s friends, in relational algebra.

computed, instead of how it should be done. For most queries, there will be many different
query plans that produce identical results, but the way they compute those results differs.

The database system is free to choose any plan for a particular query, as long as it is
correct, so it can evaluate many plans and pick the best one according to some cost function.
Users typically prefer their queries to be answered quickly, so most databases optimize for a
low execution time and lowmemory usage to allow running many queries concurrently. For
a discussion on how to maintain the correctness of the query plan during optimization, see
Subsection 2.5.1.

To keep the following example simple, we optimize for the lowest number of tuples
passed between operators. According to this cost metric, the plan in Figure 2.6 is far from
optimal. The σ operator is only applied after all joins have been performed. Applying this
selection closer to the leaves does not change the result, and it reduces the number of tuples
passed upstream. This particular optimization is common in databases and is referred to
as predicate pushdown. In Figure 2.7 we show an alternative query plan that is more efficient
according to our defined cost function.

AvantGraph’s query planner includes predicate pushdown and other simple optimiza-
tion rules. Additionally, it has a plan enumerator that quickly constructs thousands of equiv-
alent query plans, and picks the best one according to the estimated cost.

2.2.3 Logical to Physical plan

Initially, the planner considers pure relational algebra operators, without a particular imple-
mentation. The plans it operates on at this stage are called logical query plans. Once logical
planning is complete, the database decides how to access the input tables (i.e. their physical
representation on disk) and what implementations should be used for particular operators.
This creates a physical plan determining exactly how the query will be executed.
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Π
p.name

’

p.id=f.friend_id

’

a.id=f.person_id

σ
a.name='Alice'

Person
a

Friendship
f

Person
p

Figure 2.7: Query plan to find names of Alice’s friends, with σ pushed down.

A join operator, for example, could be implemented in many different ways:

• Nested loop join: for each tuple in the first input, loop over all tuples in the second
input.

• Hash join: build a hash table of one of the inputs (with a key based on the columns in
the predicate) and probe it for every tuple in the other input.

• Sort-merge join: sort both inputs on the columns in the predicate, then do one simulta-
neous pass over both inputs.

None of these joins is strictly better than the others, but a query planner can estimate
which join implementation will be most efficient in a particular part of the query, and select
it for the physical plan.

In AvantGraph, the logical plan is stored in the Intermediate Plan Representation (IPR). IPR
supports annotations to indicate a particular join implementation or access method, blurring
the lines between logical and physical plan, but it is otherwise a textbook logical plan repre-
sentation. Physical plans are referred to as Execution plans in AvantGraph internally. Execu-
tion plans are generated as the final step in query planning and are directly executed by the
runtime, without further modification.

2.3 Query Execution
After the query planner has established a physical plan, the query execution engine executes it
to produce the query results. In the literature, this phase is also referred to as query processing.
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2.3.1 Volcano Model
The classical execution model is the Volcano model [20]. Here, operators are represented as
iterators, producing one tuple at a time. The execution engine repeatedly polls the root node
in the plan for the next tuple, and operators may poll their child operators for input tuples
if necessary. By representing operators as iterators, we avoid having to buffer large interme-
diate outputs between operators. If all the operators in a subtree can apply their transfor-
mations locally per tuple, i.e. they do not need to combine multiple tuples, that subtree will
be pipelined: The operators are applied successively without any buffering in between. The
implementation may even be able to keep the tuple in machine registers between operators,
allowing for very fast execution with minimal memory accesses.

As an example, consider a query plan in Figure 2.8. If the join ofL andR hasmany results,
but there are only a few tuples for whichL.a+R.b ą 0 holds, an approachwithout pipelining
would have to first materialize this large intermediate result, then filter out almost all tuples.
With pipelining however, the selection predicate can be directly applied to tuples as they are
produced by the join, so the pipelined execution engine will produce the first tuples sooner
and use significantly less memory to process the query.

σ
L.a+L.b>0

(10)

’

L.key=R.key
(1M)

L
(1K)

R
(1K)

Figure 2.8: A query plan with an expensive intermediate. Each operator is annotated with
the number of tuples it produces. All tuples in L and R have the same value for column key,
so the join is a cartesian product.

AvantGraph makes three key changes to the volcano model:

• Vectorized execution: operators pass blocks of tuples in a columnar format.

• Push-based, multi-threaded evaluation: operators run in parallel, pushing data to their
parents.

• Relations between operators: handles data fan-in and fan-out between operators.

2.3.2 Vectorized Execution
In AvantGraph, the unit of data is a block of tuples rather than a single tuple. Blocks are
laid out in columnar format, with separate data arrays per output column. One reason for
this layout is that it allows the operator implementation to load columns into wide SIMD
registers and process the data with vector instructions available on modern CPUs.

Even if vector instructions cannot be used, a columnar representation can still speed up
query execution by reducing the amount of data to read. Blocks may contain many columns,
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but most operators only access a few of them. If the tuples were laid out sequentially in
memory, the entire block would have to be loaded from the main memory into the cache,
including the columns that are not needed. In a columnar representation, however, we can
selectively load only those columns that are needed by the operators. An example of a block
of 4 tuples with 4 columns is given in Figure 2.9.

a b c d a b c d a b c d a b c d

a a a a

b b b b

c c c c

d d d d

Row

Columns

Minimum cacheable size

Figure 2.9: Row vs. column-based storage. The minimum cacheable size is two fields.

Consider a selection operator with predicate a = c. If the tuples are stored sequentially
in memory, reading any a will also bring a b into the cache, and similarly reading c brings in
d. The full block will be loaded into the cache, using 8 cache lines. If, however, we assume
columnar storage, the b or d values can be skipped entirely. Only the a and c columns are
read into the cache using 4 cache lines.

2.3.3 Multi-threaded execution

While vectorized execution helps process more data per CPU core, a fast execution engine
is not constrained to a single core. On modern CPUs with many cores, multi-threaded ex-
ecution can speed up queries dramatically. The AvantGraph runtime maintains a thread
pool with one thread per core and has a custom scheduler that distributes tasks to available
worker threads. Operators do not directly process data blocks but rather submit work units
to the scheduler which will run at the scheduler’s instruction.

If there are available threads with no work units to run, the scheduler polls all operators
in the query plan for new work units. There is no requirement that a parent operator has
requested tuples for an operator to start performing work, as in the volcano model. Instead,
all operators can produce work units at any time, allowing for maximum parallelism. When
an operator produces a block, it is pushed to its output relation (relations are discussed in
the next section) and the block is buffered there until its parent is ready to process it. Avant-
Graph’s execution strategy is therefore defined as push-based [47], rather than the pull-based
strategy seen in the Volcano model.

The leaf operators in the query, which read the graph, will always be the first operators to
schedule work units since they do not have input dependencies. Once they start to produce
inputs for their parents, those operators can also begin processing blocks and trigger their
parents to start scheduling work units. Evaluation of the query thus starts at the bottom of
the plan and bubbles up to the top, so it is sometimes also referred to as bottom-up evaluation.

As an example, consider the query plan shown in Figure 2.10.
For this query, the ‘Person’ table refers to the table given in Table 2.3a. In Figure 2.11 we

see how this query executes in a pull model. When the same query is executed in a push-
based engine, the call direction is inverted, as shown in Figure 2.12. To simplify the figures,
the operators are connected directly to each other. AvantGraph instead puts relation objects
between operators, which we discuss in the next section.
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Π
p.id

σ
p.name='Alice'

Person
p

Figure 2.10: Query plan to find the ID for Alice.

Root Project Select Table scan

pull()
pull()

pull()
(1, Alice)

(1, Alice)
(1)

pull()
pull()

pull()
(2, Bob)

pull()
(3, Charlie)

pull()
H

H

H

Figure 2.11: Execution of a simple select and project query using the pull model.

2.3.4 Relations

In AvantGraph execution plans, operators are not connected directly to each other. Instead, a
child operator sends its output to a relation, which in turn is the input to the parent operator.
Relations act as a buffer between operators, storing received blocks until an input operator
is ready to process them. Relations can combine the outputs of multiple operators into a
single stream of blocks (fan-in), or send the same blocks to multiple operators (fan-out). An
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Table scan Select Project Root

(1, Alice)
(1, Alice)

(1)(2, Bob)
(3, Charlie)

complete complete complete

Figure 2.12: Execution of a simple select and project query using the push model.

example relation combining fan-in and fan-out is shown in Figure 2.13.

Relation

(1,2)

(3,4)

(1,2)
(3,4)

(1,2)
(3,4)

Figure 2.13: A relation combiningmultiple inputs (fan-in) and distributing them tomultiple
outputs (fan-out).

2.4 Program Representation
While our compiler reads programs in textual format, internally it uses a different represen-
tation that is easier to manipulate and analyze, much like a query planner converts queries
into relational algebra. Because this representation is different from the original input form,
and not preserved in the final output, it is an intermediate representation (IR). Our IR combines
the following concepts and tools:

• Abstract Syntax Trees [1]: the program text is converted into a tree structure.

• Static single assignment [11]: all variables in the abstract representation are assigned
exactly once.

• We use the MLIR framework [29] to define our IR.

2.4.1 Abstract Syntax Trees
An abstract syntax tree (AST) is the classical representation for programs in a compiler. When
converted to a structured tree, programs are easier to analyze and manipulate compared to
their textual form. Take for example the expression 1 + a ˆ 2. The corresponding AST is
given in Figure 2.14 (assuming ˆ has higher precedence than +).

The tree format is easy to traverse, and we can easily change a part of the program by
replacing a subtree. From the AST it is immediately clear that there is value multiplied by
the constant 2, which is equivalent to a bitwise left shift. The ˆ node could therefore be
replaced with a shift operation without affecting the result of the expression. To make this
change to the example expression, the right subtree of+ is replaced, as shown in Figure 2.15.
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+

1 ˆ

a 2

Figure 2.14: Abstract syntax tree for the expression 1 + aˆ 2.

+

1 ˆ

a 2

+

1 xx

a 1

Figure 2.15: Replacing ˆ2 with xx1.

2.4.2 Static Single Assignment

Static single assignment (SSA) is a common feature of compiler IRs. A program is in SSA form
if all variables are assigned a value upon definition and are not redefined. It is a requirement
for using MLIR (see Subsection 2.4.3), so we adhere to it in our compiler. SSA form may
seem restrictive, but any program that does not adhere to SSA form can be converted into an
equivalent one that does. For example, consider Listing 2.5, which is not in SSA form because
a is assigned twice. This program is easily converted to SSA form by introducing an extra
variable to hold the updated value of a and updating all uses of a after the reassignment to
use the new value.

Listing 2.5: Non-SSA program
int a = 42;
a = a + 1;
use(a);

Listing 2.6: SSA program
int a0 = 42;
int a1 = a0 + 1;
use(a1);

Enforcing SSA form in the IR makes many common program analyses and transforma-
tions easy to perform. As an example, we will perform constant folding and dead code elim-
ination on Listing 2.6.

1. a0 is assigned a constant value, and SSA form guarantees this will be the value of a0
throughout the program. We therefore safely replace all occurrences of a0 with the
value 42.

2. a1 now adds two constants, so we compute the result and make a1 the constant 43.

3. a1 is now a constant, so all uses can be replaced with its constant value.

4. Both a0 and a1 have no remaining uses, so they can be removed. The final program is
just the statement use(43);

Even conditional assignment can be modeled in SSA, though it requires the addition of
special constructs to the IR. The approach we use in our work is block arguments. Any value
used inside an if or for is explicitly passed as an argument, and any updated values are re-
turned as outputs. We show another non-SSA program and its conversion to SSA form in
Listing 2.7 and Listing 2.8 respectively.
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Listing 2.7: Non-SSA program
int b = ...;
int c = ...;
int d = ...;
int a;
if (b) {

a = c;
} else {

a = d;
}
use(a);

Listing 2.8: SSA program
int b = ...;
int c = ...;
int d = ...;
int a = if(b) (c, d) {

block(int arg0, int arg1){
yield arg0;

}
} else {

block(int arg0, int arg1){
yield arg1;

}
}
use(a);

Variables c and d are used in one of the branches, so they are passed as arguments to if.
Each branch becomes a block with two arguments. The final yield statement sets the value
returned from the branch.

This concludes our treatment of SSA in the abstract. In the next section, we discussMLIR,
an IR framework that enforces the SSA form.

2.4.3 MLIR
Multi-Level Intermediate Representation (MLIR) is a collection of tools for the definition, anal-
ysis and transformation of intermediate representations. By defining the IR for our DSL in
MLIR, we can dramatically reduce the amount of effort required to implement a compiler:

• MLIR provides the Operation Definition Specification (ODS) to declaratively define
operations, attributes and types, significantly reducing the amount of boilerplate C++
code.

• IRs defined in MLIR have a standardized textual format. A parser and printer for the
IR are automatically generated, with syntax highlighting support in popular editors.

• Commonly-used building blocks for IRs are included with MLIR. All scalar types we
need are included in MLIR, including operations such as addition, multiplication, etc.
MLIR even offers a tensor type we can use to define matrices and vectors, as well as
structural control flow operations (if, for).

MLIR organizes definitions into dialects. There is the builtin dialect with core types like
integers, arith for arithmetic operations on scalars, and scf for structured control flow oper-
ations. Operations can be grouped into a block, like statements executed one after the other.
A collection of blocks in turn can be put into a region, with the last operation in each block
determining what block to execute next.

A key feature of MLIR is that it allows operations to have nested regions, making it possi-
ble to implement complex constructs like loops as regular operations. The nested structure
of MLIR is highlighted in Listing 2.9.

Listing 2.9: A loop in MLIR.
%0 = arith.constant 0 : i64
%1 = arith.constant 1 : i64
%2 = index.constant 0

14



2.5. Program Transformation

%3 = index.constant 1
%4 = index.constant 10
%5 = scf.for %arg0 = %2 to %4 step %3 iter_args(%arg1 = %0) -> (i64) {

%6 = arith.addi %arg1, %1 : i64
scf.yield %6 : i64

}

Region

Block

Block argument

The example above also highlights MLIR’s use of block arguments, as discussed in Sub-
section 2.4.2. The design of MLIR is flexible enough to conveniently encode many IR con-
structs, yet regular enough that we can easily mix operations from different dialects in a
single module. This lets us leverage the many existing operations bundled with MLIR, and
add only those operations that are specific to our work.

MLIR also provides a standardized infrastructure to analyze andmodify programs,which
is the topic of the next background section.

2.5 Program Transformation
By definition, compilers translate programs from one language to another. This translation
requires that the compiler transforms the operations that make up the input program into
new operations that are valid in the output language. Program transformation is therefore
fundamental to the implementation of any compiler.

When transforming a program, the compiler must ensure that the behavior of the pro-
gram remains the same. In other words, all transformations applied must preserve the se-
mantics or meaning of the program.

We cover the following aspects of program transformation:

• Rewrite rules: a modular approach to transformation based on simple rules that can be
combined to produce complex transformation. Small individual rules make it easier to
guarantee the overall transformation is semantics-preserving (Subsection 2.5.1).

• Canonicalization: simplification of programs and the removal of redundant constructs.
This yields programs that do not perform unnecessary operations and reduces the set
of constructs that need to be covered by other rewrite rules (Subsection 2.5.2).

• Optimization: Finding transformations of the program that improve performance (Sub-
section 2.5.3).

• Lowering: Transforming programs into a different representation that is less abstract
and closer to the execution platform (Subsection 2.5.4).

Since rewrite rules are the fundamental building block for canonicalization, optimization,
and lowering, we start there.

2.5.1 Rewrite Rules
The rewrite rule is a powerful pattern to define transformations using a divide-and-conquer
strategy. Rewrite rules define small, local substitutions to be applied to program fragments,
and are accompanied by rules that define when they can be applied.
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As an example of a rewrite rule, consider that transposing a matrixA twice produces the
original matrix:

(AT )T = A

The define rewrite rules, we will use the following syntax:

<pattern to match>ñ <substitute for match> if <constraints (optional)>

Based on this property of the transpose operator, we can define the following rewrite
rule:

(xT )T ñ x

Where x is a placeholder for an arbitrary expression. This rewrite rule can be applied
exhaustively to the program by searching for occurrences of the pattern. For example:

(((AT )T )T )T

ñ ((AT )T )

ñ A

This particular rewrite rule can be safely applied exhaustively to a program. Every rewrite
makes the program smaller, so there must necessarily be a point at which the program can-
not be reduced any further. Not all rewrite rules have this convenient property. Consider for
example the commutativity of addition, which we express with the following rewrite rule:

x+ y ñ y + x

Applying this exhaustively to the following example program, the rewriting process does
not terminate:

1 + a

ñ a+ 1

ñ 1 + a

. . .

As we will see in Subsection 2.5.3, non-terminating rewrite rules are still useful in the
compiler context, so long as the compiler places a limit on the number of rewrites performed.

Compilers typically combine a large set of rewrite rules. Though each of these rules only
makes a small change to the program, by applyingmany different rules repeatedly, programs
can be transformed dramatically. The key advantage of individual rewrite rules is that to
prove the correctness of the overall transformation, we only have to prove the correctness of
the individual rewrite rules, which are small and limited in scope.

In the next sections, we discuss various applications of rewrite rules in compilers.

2.5.2 Canonicalization
Canonicalization is the simplification of programs by removing redundant constructs. We use
the term canonicalization to be consistent with MLIR, in other literature it is often referred
to as normalization. We have already seen one example of redundancy in Subsection 2.5.1,
where two transpose operations cancel each other. Another example of redundancy is the
calculation of values that are not needed. Consider the program in Listing 2.10.
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Listing 2.10: A program with unnecessary computation
int a = ...;
int b = computeB();
print(a);
exit(0);

in the program above, a function computeB is invoked to produce the value for variable
b, but this value is not used anywhere in the program. If computeB is known not to have any
side effects, a compiler can omit the call entirely. Known as dead code elimination, this pattern
may be expressed with the following rewrite rule:

v = e ñ nil if ␣used(v)^␣haveSideEffect(e)

In Listing 2.11, we give a program that demonstrates yet another form of redundancy.

Listing 2.11: A program that computes the same value twice
int a = ...;
int b = ...;
int c = a + b;
int d = a + b;
print(c+d);

Variables c and d hold the same value, but they are computed independently. We say
that a+b is a common subexpression. The transformation that removes the redundancy is called
common subexpression elimination (CSE). It is implemented by searching for an alreadydefined
variable that is assigned the same value as the target expression. The rewrite rule is defined
as:

eñ v if (v, e) P V

Where V is the set of already defined variables and their expressions.
Canonicalization rules can always be safely applied exhaustively since every rewrite leads

to a simpler version of the program, which makes it easy and cheap to apply. Our compiler
uses canonicalization after every transformation phase to clean up redundant code intro-
duced by other rewrites. In the next section, we cover rules that need to be applied more
carefully.

2.5.3 Optimization
Optimization is the modification of programs to make them more efficient while preserving
their behavior. In Section 2.2 we covered query planning, which is a special case of program
optimization where the program is a query. To support complex optimizations while main-
taining correctness, optimization too relies on rewrite rules. The example rewrite rules seen
in Subsection 2.5.2 both improve the efficiency of the final program, and can therefore be
classified as optimizations. For these rules, it is immediately obvious that they are beneficial,
so they can be applied liberally. A good optimizer however cannot rely on canonicalization
rules alone. In some cases, a more thorough exploration of the program space is necessary
to find a more efficient version of the program. Such an exploration may require multiple
rewrite rules to be applied, and not all of them may immediately seem beneficial.

As an example, consider the expression (a ´ 1) ¨ (a + 1). This expression contains 3
arithmetic operations, but a good optimizer can reduce this to 2 by using the distributivity
of addition:
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(a´ 1) ¨ (a+ 1) (3 operations)
ñ a2 + a´ a´ 1 (4 operations)
ñ a2 ´ 1 (2 operations)

Initially, when the distributivity rewrite is applied, the number of operations grows to
4, but it is necessary to allow the second rewrite to fire, which brings the number of oper-
ations down again. The distributivity rewrite is only beneficial here because of the special
relationship between the operands, allowing the a variables to cancel out. It is therefore not
a canonicalization rule, but it can be part of the ruleset for an optimizer.

For another example, we look at join ordering, a classic query optimization problem[49].
A property of the ’ (join) operator (see Subsection 2.2.1) is that it is associative. This means
that we can define the following rewrite rule:

(x ’ y) ’ z ñ x ’ (y ’ z)

This rewrite rule, like the distributivity rule, should not be applied as a canonicalization
rule, because it does not always improve the query plan. Instead, the classical optimization
strategy is to enumerate all possible orderings of joins, estimate their runtime cost, and pick
the ordering with the lowest cost. Provided that the cost estimate is accurate enough, a full
enumeration is guaranteed to produce the optimal query plan.

After a program has been optimized, there is one more transformation left, which we
discuss in the next section.

2.5.4 Lowering
At its most abstract level, lowering is a transformation step that converts a program expressed
in a high-level, abstract IR, into a lower-level IR that is closer to the language natively sup-
ported by the execution platform. We have already seen one example of this in the conversion
from logical into physical plans (see Section 2.2). Another example is LLVM[28], where after
optimization the LLVM IR is lowered to native machine code.

Lowering often comes down to finding a sequence of simple low-level instructions that
together implement a complex high-level operation. Take for example the matrix multipli-
cation A ¨ B as a high-level operation. It can be lowered to relational algebra by combining
a join, apply and aggregation operator, as shown in Figure 2.16. This specific lowering is
covered in detail in Chapter 6.

In other cases, the high-level IR may have one operation for a group of specialized func-
tions that exist at the low level, and we must select one. An example of this is the selection
of a particular join implementation, as seen in Section 2.2.

A program may go through successive stages of lowering before it reaches its final form,
which can be machine code or a representation that can be executed by an interpreter. In
Chapter 5 we will see a pipeline that performs multiple lowering steps, with additional op-
timization between each lowering.
This concludes our treatment of background topics on databases and compilers. The next
chapters describe the design of the language (Chapter 3), the compiler architecture (Chap-
ter 4) and the backends (Chapter 5 and Chapter 6).
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Aggregate
accumulate val using +
group by A.row, B.col

Apply
val = A.val ¨B.val

’

A.col = B.row

A B

Figure 2.16: Matrix multiplication A ¨B lowered to relational algebra
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Chapter 3

Language Design

This chapter discusses the design of the graph algorithm DSL, graphalg. We start by stating
the design goals of graphalg in Section 3.1. In Section 3.2 we describe the established compu-
tational models for the implementation of graph algorithms, and argue that linear algebra
is the best fit for our goals. Finally, Section 3.3 provides a detailed overview of the resulting
language.

3.1 Design Goals
The graphalg language is designed to be an accessible interface to developing and running
graph algorithms on large graphs stored in AvantGraph. This use case motivates the follow-
ing goals for the language:

• Efficient: AvantGraph can store graphs with billions of vertices and edges. Graphalg is
designed to be efficiently executed by the different backends, with highdata parallelism
and low memory usage.

• Ease of programming: We do not assume the users of graphalg to be expert program-
mers. We aim to provide an interface that is familiar to engineers of many different
backgrounds and handles parallelization and memory management automatically.

• Safe to run inside a database: Databases are typically shared bymany users. Individual
users must not crash the database or consume excessive resources.

• Expressive: Graphalg should be flexible enough that many different types of algo-
rithms can be written in it.

We now discuss each of these goals in more detail.

3.1.1 Efficient
Users of graphalg will run queries on very large graphs and expect answers fast. To improve
performance, the implementation must be multi-threaded to make use of all available CPU
cores. It must also avoid copying large datasets as much as possible since large graphs may
not fit into main memory (and AvantGraph has no facilities to spill intermediate results to
disk). Finally, since graphalg users may not be expert programmers, they may not write the
most efficient implementation of an algorithm. To compensate for this to some degree, the
system should be able to perform aggressive optimization of programs. AvantGraph already
performs such optimizations on query plans by using statistics known about the data. The
same optimizations should be performed on graphalg programs.

All of these requirements apply chiefly to the runtime, but we also take them into account
when designing the language to ensure that generating fast code is feasible.
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3.1.2 Ease of Programming
While we want to support efficient implementations of algorithms, we cannot shift the bur-
den of writing highly optimized code onto our users, who are not guaranteed to be expert
programmers. Firstly, we choose not to include explicit parallelism in the language. While
explicit parallelism is sometimes needed to achieve high performance, it requires users to
understand locks and atomic operations, and that they avoid concurrency bugs such as race
conditions. On top of this, atomic operations are also notoriously difficult for compilers to
optimize [33].

Secondly, graphalg should have automatic memory management. We expect users to
be most familiar with languages that have automatic memory management like Python and
MATLAB, so graphalg should offer a similar interface. An additional important benefit of
automatic memory management is that it prevents leaking memory, which also contributes
to the next requirement.

3.1.3 Safe to run inside a database
Running user-provided code inside a system shared by many users is potentially dangerous.
If graphalg programs are run unsandboxed and with full access to the memory, they may
interfere with the queries of other users. A program could for example access memory that
belongs to another query and corrupt its results. Alternatively, it could overwrite the inter-
nal data structures of the database and cause it to misbehave or crash. To avoid programs
interfering with other queries or the database while avoiding the runtime overhead of sand-
boxing, we require graphalg to be memory safe.

Another risk is that programs do not terminate, and continue to hog resources until they
are forcefully terminated. Non-terminating behavior is confusing to users, wastes compu-
tational resources, and may prevent other users from running queries, so we require that
graphalg programs are terminating. Proving termination of a program written in a Turing-
complete language is undecidable, so this requirement implies graphalg can not be Turing-
complete. However, as we will see in the later chapters this is not a severe limitation for
expressivity in practice.

3.1.4 Expressive
We have already defined requirements for the language to be efficient, easy to program and
safe. All of these can be trivially satisfied by a language so limited in functionality that no
useful programs can be written in it. For this reason, we define a notion of expressivity for
graphalg. Graphalg should be flexible enough that it can be used to implement awide variety
of graph algorithms. Rather than a complex formal definition of the required expressivity,
we select a sample of different algorithms that graphalg must be able to encode. Graphalg
is defined by generic operations that are not tailored to any specific algorithm, so if it is
expressive enough to accommodate the algorithm in the sample, likely, it will also be able
to encode many other algorithms. The algorithms we use to evaluate the expressiveness of
graphalg are the programs in the GAP benchmark suite [3], which is also used to evaluate
the performance of the system:

• Breadth-First Search (BFS) traverses the graph starting from a given source vertex. BFS
first visits all vertices at the current depth (the number of edges to the source vertex),
before visiting nodes at a greater depth. It labels each vertex in the graph with its
‘parent node’, the vertex through which they were first discovered.

• Single-Source Shortest Paths (SSSP) computes the distances of all vertices in the graph
to a given source vertex.
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• PageRank (PR) computes the PageRank score for all vertices.

• Connected Components (CC) divides a graph into its connected components and la-
bels each vertex with its connected component id.

• Betweenness Centrality (BC) approximates the betweenness centrality of the vertices
in the graph by computing shortest paths from a subset of the vertices.

• Triangle Counting (TC) counts the number of triangles (three vertices connected in a
loop) in the graph.

3.2 Computational Models Considered
The key decision in the design of our language is choice of computational model. In this
section, we explore four options that are popular in the literature as well as in industry.

3.2.1 General-Purpose Imperative
Arguably the simplest approach would be to embed an existing programming language into
the database. For example, Neo4J allows writing user-defined procedures in Java[53]. An-
other example is UDO[48], an implementation of user-defined operators for Umbra, where
the user implements a custom query operator in C++. Having the full functionality of a
general-purpose language available means those systems are highly expressive. UDO also
manages to achieve very high performance, but the user is responsible for managing mem-
ory and parallel execution. Since UDO operators are written in C++ and compiled together
with the rest of the query plan, bugs can lead tomemory corruption anywhere in the address
space of the database. By beingwritten in amemory-safe language, Neo4J stored procedures
do not have the same issue, but they still do not guarantee termination. We consider Neo4J’s
approach to be easier to use, but it is less efficient than UDO.

In summary, general-purpose languages do not meet our design goals on safety, and
struggle to combine efficiency and ease of programming.

3.2.2 Vertex-Centric Processing
A popular approach in distributed graph processing framework, the vertex-centric model
encourages its users to ‘think like a vertex’ [36]. Algorithms are implemented as programs
that run on every vertex concurrently. They can each update a property belonging to their
vertex or one of their outgoing edges, and communicate with other vertices by sending mes-
sages. The approach was popularized by Google Pregel [34] but is now implemented by
many, mostly distributed, graph processing frameworks [36]. While the scalability of the
vertex-centric approach to large clusters is often touted, it is known to suffer from efficiency
issues [26], particularly compared to shared-memory systems [37].

Since efficiency is an important design goal, and AvantGraph is a single-node system, we
do not consider the vertex-centric model suitable for our use case.

3.2.3 Edge and Vertex Sets
The edge and vertex sets model is similar to a standard imperative model, except that op-
erations on the graph structure are always performed in bulk, over sets of either vertices or
edges. The model strikes a careful balance between being expressive (by having imperative
control structures), yet amenable to analysis and optimization (by operating on the graph
with high-level bulk operations). Languages such as Greenmarl [23] (now Oracle PGX [7])
and GraphIt [60] that implement this model have shown excellent performance on graph
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analytics benchmarks [2]. The edge and vertex sets model is efficient and expressive and,
as Oracle’s production deployment of PGX demonstrates, it can be safely integrated into a
database. PGX and GraphIt also have automatic memory management, but they do require
the user to think about parallelism in their code. PGXmodels concurrent access with special
variables that support only aggregation operations, whereas GraphIt has explicit atomic ac-
cesses. This appears to be an inherent problem with the edge and vertex sets model: blocks
of user code are running in parallel for multiple vertices/edges, and need some way to com-
municate.

We consider the edge and vertex setsmodel a strong candidatewith a good track record in
efficiency. However, we find that languages based on it still have explicit parallelism, which
we would like to avoid.

3.2.4 Linear Algebra

Our choice of computational model is linear algebra. The use of linear algebra for graph
analytics has been extensively studied [25]. On the implementation side, there is Graph-
BLAS [12], an open standard for sparse linear algebra primitives designed specifically for
graph analytics. Many important graph algorithms have a direct analog in linear algebra or
can be adapted to it [50, 59, 35].

In terms of efficiency, the reference GraphBLAS implementation SuiteSparse has shown
good performance on the GAP benchmark suite [2], though not as good as e.g. GraphIt.
Linear algebra operations are higher-level than those in the other models we have consid-
ered and have a solid theoretical basis, which makes them highly amenable to analysis and
optimization.

We also consider the use of linear algebra to be beneficial for the accessibility of the lan-
guage. Linear algebra is part of the curriculum for many engineering degrees, so we can
expect that many users will be familiar with it, even if they do not have much program-
ming experience. Looking at the Python and Julia bindings for GraphBLAS [42], we can
see that graph algorithms can be implemented in this model with automatic memory man-
agement and without any explicit parallelism. Computationally expensive operations like
matrix multiplication are executed on multiple threads, but this parallelism is invisible to
the programmer.

By using linear algebra as a basis for our DSL, we can also make it safe to run inside a
database. All data access is performed on scalar values and matrix types. As long as we
perform bounds checking on matrix element access, programs cannot corrupt memory that
does not belong to them. Our language is built on top of basic linear algebra operations such
as element-wise products and matrix multiplication which are known to be terminating. By
appropriately restricting the control structures in our DSL (bounding loops and preventing
recursion), we can also guarantee that all programs are terminating.

Finally, we know that a linear algebra-based language can be expressive enough to im-
plement all programs from the GAP benchmark suite, because the LAGraph [35] library
provides reference implementations of all GAP benchmark programs built on top of Graph-
BLAS.

In conclusion, we find that linear algebra satisfies all our design goals. While not as effi-
cient as some of the other candidates, it still offers good performance and exceptional oppor-
tunities for optimization. It effectively hides parallelism and memory management, offering
a simple programming interface. Linear algebra is also a familiar tool to many engineers,
which we believe makes the language accessible to a wider audience.

With the choice of the computational model out of the way, we discuss the other details
of the language in the next section.
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3.3 Language Reference
In this section, we give a comprehensive overview of graphalg and explain key design deci-
sions. We start with the fundamental constructs present in any language, such as data types,
expressions and control flow. Then we cover the linear algebra operations that are specific
to graphalg and discuss the integration of the language into AvantGraph queries.

3.3.1 Data Types
Graphalg supports the following primitive types:

• bool: Booleans (true, false)

• int: Integers (64-bit, signed)

• real: Floating point numbers (64-bit IEEE 754)

• index: Index type / Vertex ID (64-bit unsigned)

This is the largest set of types supported by both backend runtimes (AvantGraph and
GraphBLAS), and it is sufficient to encode all programs we use in the evaluation. Booleans
are not strictly necessary since they can be emulated using integers, but the smaller boolean
type is more memory efficient, which we also found to have a measurable effect on execution
time.

Graphalg has two generic types, Vector<T> and Matrix<T>, which are defined for T P {bool,
int, real} (index is not included). Vector<T> and Matrix<T> represent sparse matrices: they
have a defined size, but not all entries may have a value. An entry that is not present is
distinct from an entry set to the zero value. The following two matrices are not equivalent to
each other: [

0 1
2 3

]
‰

[
1

2 3

]
Vector<T> is a specialization of Matrix<T>where the number of columns is one (a column

vector).
Primitive types are instantiated directly with their value, while vector and matrix types

are instantiated as empty matrices:

Listing 3.1: Instantiating different types in graphalg
b = true;
i = 42;
r = 2.14;
idx = index(42);
v = Vector<int>(10);
m = Matrix<int>(10, 10);
// Vector and Matrix can be dynamically sized
m2 = Matrix<int>(i, i);

To assign values to the entries of a matrix, assignment syntax is used:

Listing 3.2: Assigning to entries in the matrix
v = Vector<int>(10, 10);
// assign one element
v[0] = 42;
// assign to a range
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v[0:5] = 42;
// assign all elements
v[:] = 42;

The bounded range written as [a:b] denotes the half-open interval [a, b), (start inclusive,
end exclusive).

Instances of Vector<T> and Matrix<T> expose additional properties to read their dimen-
sions (nrows, ncols) and number of present entries (nvals):

Listing 3.3: Matrix properties
v = Vector<int>(10);
v.nrows // -> 10
v[0] = 1;
v[1] = 2;
v.nvals // -> 2
m = Matrix<int>(10, 20);
// only available on Matrix<T>
m.ncols // -> 20

3.3.2 Functions
Functions define a section of code with zero or more typed parameters and a single return
value. All graphalg code must be defined inside of a function. A single graphalg program
may consist ofmultiple functions that can refer to each other provided the call graph is acyclic.
Keeping the call graph acyclic prevents (mutual) recursion, which can cause non-terminating
behavior. Another advantage of an acyclic call graph is that any function call can be safely
inlined. This is an important property for the operators backend, which has no notion of
functions.

Listing 3.4: Examples of functions.
func Add(a:int, b:int) -> int {

return a + b;
}

// This pair of mutually recursive functions are not allowed
func RecursiveA() -> int {

return RecursiveB();
}
func RecursiveB() -> int {

// Creates a cycle in the call graph -> compiler error
return RecursiveA();

}

3.3.3 Expressions
Graphalg supports the usual arithmetic operations+,´, ˚, / over integers and real numbers,
respecting the typical rules of precedence (multiplication and division have higher prece-
dence than addition and subtraction). The inputs to operators must have the same type. To
apply an operator to values of different types, one of them must be cast to a matching type
using one of the cast operators int(¨), real(¨) or index(¨).

Listing 3.5: Examples of arithmetic.
a * b + c * d; // is equivalent to (a * b) + (c * d)
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intVal = 1 + int(2.14); // -> 3
realVal = 1.23 + real(4); // -> 5.23

Comparison operators (=, !=, <, <=, >, >=) are also available to compare scalar values
of the same type.

3.3.4 Variables and Scoping
Expressions can be assigned to variables to allow their value to be used in one or more later
expressions. Variables are accessible from within the scope they are defined, and from any
scopes nested inside the definition scope.

While all values in graphalg are immutable, variables may be reassigned to new values.
Like primitive values, Vector<T> and Matrix<T> instances have value semantics. We do not
presume value semantics to be objectively better than the reference semantics common in
other languages. Rather, we choose value semantics for graphalg because the operators back-
end (seeChapter 6) cannot support in-place updates. MLIR’s built-in tensor type thatwe use
internally to represent matrices also has value semantics, allowing us to reuse the standard
MLIR infrastructure as much as possible.

Assigning to the entries of amatrix creates a newmatrix and updates the variable to point
to it. The program below illustrates this:

Listing 3.6: Example of value semantics
a = Vector<int>(2);
// b points to the same value as a.
b = a;
// variable a is reassigned to a new vector filled with 42,
// while variable b still points to an empty vector.
a[:] = 42;
// a -> [42;42]
// b -> [_;_]

This differs from a language like Python where matrices have reference semantics. A
similar program in Python would produce a different output:

Listing 3.7: Reference semantics in Python
import numpy as np
a = np.array([0, 0])
b = a
# updates the vector in-place
a[:] = 42
print(a) # -> [42 42]
# b also sees updates to a
print(b) # -> [42 42]

The GraphBLAS library does have reference semantics, so in the GraphBLAS backend
(Chapter 5) there is an additional step in the compilation phase which transforms operations
with value semantics into operations with reference semantics.

3.3.5 Control Flow
Besides function calls, graphalg supports two types of control flow: conditional branching,
and bounded loops. The if statement runs one of two branches depending on the value of
the condition. All variables from the outer scopes are visible within an if branch and can
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be reassigned there. There are no operations in graphalg with side effects, so updating a
variable is the only way for an if statement to influence later program behavior.

Listing 3.8: A simple if statement
// define a in the outer scope to allow accessing it
// outside of the if branches.
a = 0
if c > 0 {

a = 42;
} else {

a = 43;
}
// variable a holds 42 or 43, depending on the value of c

The other control flow construct is the for loop. It executes its loop body for zero or
more iterations, depending on the provided range. A for loop creates an additional variable,
visible only within the loop body, called the iteration variable, that stores the current value
within the iteration range We show an example of a loop below:

Listing 3.9: A function containing a simple for loop
func Fibonacci(n:index) -> int {

a = 0;
b = 0;

for i in 0:n {
// iteration variable 'i' available in this scope
// loop body executes once for every value of i in interval [0,n)
t = a + b;
b = a;
a = t;

}

return a;
}

An optional break condition may be added to terminate the loop early before the end of
the iteration range is reached. It is checked before each iteration, terminating the loop early
if it evaluates to true.

Listing 3.10: A loop with a break condition
for i in 0:maxIterations until converged {

// update value in a loop until it converges,
// or until we reach the maximum number of iterations.
newValue = step(value);
// have we converged yet?
converged = newValue == value;
value = newValue;

}

Both endpoints of the iteration range are required. This is the second part of graphalg’s
termination guarantee: all loops are bounded, so they are guaranteed to terminate.
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3.3.6 Linear Algebra operations
Linear Algebra operations are a distinguishing feature of the language. We support a large
subset of the GraphBLAS API as native operators. Many programs written in e.g. C us-
ing GraphBLAS library calls have a direct mapping to graphalg. Moreover, because these
operations are built-in to graphalg, the resulting program is more concise and syntactically
clearer.

Matrix Multiplication

To multiply two matrices A and B, write C = A (+.*) B. This computes the entries of C as:

Cij = ai1 ˚ b1j + ai2 ˚ b2j + ¨ ¨ ¨+ ain + bnj

Matrix multiplication is a useful primitive for implementing graph algorithms. As an
example, consider the program given in Listing 3.11, which computes the number of distinct
paths from a given vertices to every other vertex in the graph. To demonstrate that matrix
multiplication indeed relates to computing distinct paths in a graph, we illustrate the execu-
tion of the program on an example graph in Figure 3.1.

Listing 3.11: Number of distinct paths from source to all vertices in the graph
func NPaths(graph: Matrix<int>, source:index) -> Vector<int> {

paths = Vector<int>(graph.nrows);
front = Vector<int>(graph.nrows);
front[source] = 1;

for k in 0:graph.nrows {
paths += front;
// Vector-Matrix multiply
front = front (+.*) graph;

}
return paths;

}

In Listing 3.11, the matrix multiplication represents a graph traversal step. By running
the multiplication in a loop the entire graph can be explored.

Graphalg allows the user to specify different operators from matrix multiplication than
the standard addition and multiplication to change the graph property to compute during
the traversal. For example, we can write a very similar program to compute the shortest
paths in a graph, shown in Listing 3.12.

Listing 3.12: Single source shortest path algorithm in graphalg.
func SSSP(graph: Matrix<int>, source: index) -> Vector<int> {

v = Vector<int>(graph.nrows);
v[source] = 0;

for i in 0:graph.nrows {
v min= v (min.+) graph;

}

return v;
}

Instead of multiplying the number of paths and adding them, we sum the path lengths
and select theminimum length, which gives the shortest path from the source vertex to every
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Figure 3.1: Visual representation of the execution of the NPaths algorithm given in List-
ing 3.11.

other vertex in the graph. The combination of an addition monoid and a binary operator
for multiplication that together define the behavior of generalized matrix multiplication is
referred to as a semiring[25]. The particular semiring (min.+) used to compute shortest paths
is also known as the tropical semiring. A full list of supported monoids and binary operators
that can be combined into a semiring is given in Section 3.3.6.

Since Vector<T> always stores a column vector, it must be transposed before it can be
used on the left-hand side of a matrix multiplication. Graphalg adopts the same convention
as GraphBLAS, and performs this transpose explicitly.

Element-wise operations

To apply a binary function element-wise to the entries of two matrices, graphalg provides
two operators:

Listing 3.13: element-wise operations
C_intersect = A .+ B;
C_union = add(+, A, B);

If all entries of A and B are present, both operations produce the same output. The differ-
ence is in how missing entries in one of the two matrices are handled. The set intersection
variant C = A.‘B computes C as:

Cij = Aij ‘Bij where(i, j) P AXB
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Only entries that are present in both A and B will produce an entry in the output C.
Alternatively, the add operator can used, which also copies entries that are only present in
one of the two matrices:

Cij = Aij ‘Bij where(i, j) P AXB

Cij = Aij where(i, j) P AzB
Cij = Bij where(i, j) P BzA

Apply

When the function to be applied to entries is a unary operator, or if one of the operands is a
scalar value, the apply operator may is used instead.

Listing 3.14: Example of the apply operator
// Absolute value
C = apply(abs, A);

// Increment all entries by one
C = apply(+, A, 1);

See Table 3.3 and Table 3.4 for the list of supported operators.

Select

The select operator applies a predicate to each entry of the input matrix and outputs a new
matrix with the elements for which the predicate holds. Predicates can be based on the value
of the entry or its position in the matrix:

Listing 3.15: Example of the select operator
// Keep only non-zero elements
C = select(!=, A, 0);

// Keep only the entries located below the zeroth diagonal.
// the last input `-1` sets the maximum diagonal.
C = select(tril, A, -1);

Supported predicates are listed in Table 3.5.

Reduce

reduce accumulates all entries of a matrix into a single scalar value, merging values using
the given monoid (see Table 3.2). for Matrix<T> instances, entries can also be accumulated
row-wise using the reduceRows operator. As an example, the program below computes the
total number of edges in the graph, and the out-degree of each vertex.

Listing 3.16: Example of the reduce and reduceRows operators
// create a matrix with value '1' for each entry present in A
// operator 'one' is defined as one(x) = 1
ones = apply(one, A);

// note: real programs should use A.nvals
nvals = reduce(+, ones);
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// number of outgoing edges per vertex.
outDegree = reduceRows(+, ones);

Accumulate

The result of an expressionmay be accumulated into an existingmatrix rather than replacing
it. To enable accumulation, the monoid to use should be specified before the = symbol, as
shown in Listing 3.17. See Table 3.2 for a list of supported monoids.

Listing 3.17: Example of accumulation
// Define C
C = ...;

// Variable C assigned to value of A.
// The previous value of C is lost.
C = A;

// Original value of C and the value of B are added together.
// C points to the resulting new value.
C += B;

// The previous two statements are equivalent to
// using add.
C = add(+, A, B);

As we show in the example, the accumulation syntax is equivalent to using add. Even
though it is therefore technically redundant, we choose to keep this syntax for two reasons:

• Multiply and accumulate loops are very common in graph algorithms. Offering a ded-
icated accumulation syntax makes this pattern easy to identify visually.

• Accumulation syntax provides a hint to the compiler that the accumulation may be
performed in place. The GraphBLAS backend can typically optimize accumulation
syntax into an in-place operation, whereas if add is used the result is always stored in
a newly allocated buffer.

Masked assignment

When assigning a matrix to a variable, it is possible to specify an additional mask matrix to
control which elements to copy. The syntax for this is C<M> = A. Values of A are copied to C
if M has value true at that index. If the value of M is false or there is no entry present, the
existing value of C (if any) is preserved. The new value of C is then defined as:

Cij = Aij if Mij = true

Cij = Cij if (i, j) P Cij

The following additional flags may be provided to change the details of the operation:

• The mask can be complemented by prefixing it with an exclamation mark. C<!M> = A
copies all values from A for whichMij = true does not hold. Note that this does not just
copy values from A where the mask entry is false, but also entries that are not present
in M.
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• struct makes the mask structural, changing the copy condition from Mij = true into
(i, j) PM . This is particularly useful if M is not a boolean matrix.

• replace skips the preservation of existing values in C. The final output will contain only
the values copied from A.

Listing 3.18: Examples of masked assignment.
C = Vector<int>(3);
M = Vector<bool>(3);
M[1] = false;
M[2] = true;
A = Vector<int>(3);
A[:] = 1;

C[:] = 0;
// regular mask
C<M> = A; // -> [0, 0, 1]

C[:] = 0;
// complemented mask
C<!M> = A; // -> [1, 1, 0]

C[:] = 0;
// structural mask
C<M, struct> = A; // -> [0, 1, 1]

C[:] = 0;
// replace
C<M, replace> = A; // -> [_, _, 1]

Transpose

The transpose of a Matrix<T> can be obtained using the .T property. Vector<T> always stores
a column vector and does not support the transpose property.

Listing 3.19: Transpose example
// Both branches compute the same result.
// Depending on the in-memory representation,
// one may be faster than the other.
if push {

C = v (+.*) A;
} else {

C = A.T (+.*) v;
}

Supported operators

Below we list the operators supported as arguments to the linear algebra operations. The
current set of operators is sufficient for a wide variety of algorithms, although somemay still
benefit from customoperators, particularywhen combinedwith user-defined types. Support
for custom operators and types is left as future work.
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Table 3.2: Monoids

Symbol Implementation Notes
+ x+ y
- x´ y
max max(x, y)
min min(x, y)
any x When used as an accumulator,

ignores all but the first value

Table 3.3: Unary operators

Symbol Implementation Notes
abs |x|
one 1

Table 3.4: Binary operators

Symbol Implementation Notes
+ x+ y
- x´ y
* x ¨ y
/ x/y
== x == y
!= x ‰ y
< x ă y
<= x ď y
> x ą y
>= x ě y
&& x^ y Logical AND
|| x_ y Logical OR
first x
second y
secondi yrow row index of y

3.3.7 Memory management hints
Graphalg supports swap and clear primitives to provide hints to the compiler for more effi-
cient memory management in backends that lower into buffers with reference semantics. In
the GraphBLAS backend use of these hints may change the generated code, if the compiler
determines the optimization can be performed without affecting the results. The operators
backend does not make use of these hints since it does not perform in-place operations.

swap takes two variables as input and swaps their assigned values. Using swap suggests
the compiler to swap the pointers to the buffers, rather than copying the contents of the
buffers. It is functionally equivalent to (but potentially more efficient than) swapping the
values through a temporary variable.

clear takes one variable as input and assigns to it a new empty matrix of the same size.
Using clear suggests the compiler to reuse the existing buffer by erasing it. It is equivalent
to creating a new empty matrix and assigning it to an existing variable.

Listing 3.20: Examples of swap and clear.
swap A B;
// equivalent to:
T = A;
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Table 3.5: Predicates

Symbol Implementation Notes
tril xcol ď (xrow + y) true for entries on or below the yth diagonal
triu xcol ě (xrow + y) true for entries on or above the yth diagonal
== x == y
!= x ‰ y
< x ă y
<= x ď y
> x ą y
>= x ě y

A = B;
B = T;

clear A;
// equivalent to:
A = Matrix<int>(A.nrows, A.ncols);

3.3.8 Grammar
In the previous section we have informally described the operations available in graphalg.
To complement the example code presented there, we provide the detailed grammar for the
language in Listing 3.21.

Listing 3.21: Grammar describing the syntax of the graphalg language.
program ::= func_def*
func_def ::= func IDENT [[param_def]]? [[, param_def]]* [[-> type]]? { [[stmt]]* }
param_def ::= IDENT : type
ptype ::= bool | int | index | real
type ::= ptype | Matrix<ptype> | Vector<ptype>
stmt ::= return expr;

| IDENT [[<mask>]]? [[[ range [[, range]]? ]]]? [[ + | - | min]]? = expr;
| for IDENT in range [[until expr]]? block
| if expr block [[else_if]]* [[else block]]?
| swap IDENT IDENT;
| clear IDENT;

block ::= { [[stmt]]* }
else_if ::= else if expr block
mask ::= [[!]]? IDENT [[, replace]]? [[, struct]]?
range ::= [[expr]]? : [[expr]]?

| expr
expr ::= ( expr )

| expr . T
| expr . nrows
| expr . ncols
| expr . nvals
| expr [ range [[, range]]? ]
| expr semiring expr
| expr binop expr
| expr . binop expr
| select(binop, expr, expr)
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| reduce(binop, expr)
| reduceRows(binop, expr)
| apply(unop, expr)
| apply(binop, expr, [[expr]]?)
| add(binop, expr, expr)
| - expr
| ! expr
| REAL_LITERAL
| INT_LITERAL
| true
| false
| IDENT ( [[expr]]? [[, expr]]* )
| IDENT
| Matrix<ptype>(expr, expr)
| Vector<ptype>(expr)
| int(expr)
| real(expr)
| index(expr)

monoid ::= + | - | max | min | any
binop ::= +

| -
| *
| /
| ==
| !=
| <
| <=
| >
| >=
| &&
| ||
| first
| second
| secondi

unop ::= abs
| one

semiring ::= monoid . binop

3.3.9 Integration with Graph Queries
Graphalg programs can be executed inAvantGraph by embedding them into queries. For our
integration, we reuse the existing CALL syntax available in OpenCypher. Our only addition
to the OpenCypher parser is a new variation of the WITH clause. We show an example in
Listing 3.22.

Listing 3.22: A Cypher query with an embedded graph algorithm.
WITH ALGORITHM "
func TriangleCount(graph: Matrix<bool>) -> int {
    L = select(tril, graph, -1);
    U = select(triu, graph, 1);
    C<L, struct> = L (+.one) U.T;
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    return reduce(+, C);
}
"
CALL TriangleCount()
RETURN count

The WITH ALGORITHM clause is placed at the top of the query. It takes a string as an argu-
ment that contains the graphalg algorithm. After the definition of the algorithm, functions
defined inside the algorithm can be invoked using CALL.

The OpenCypher syntax does have one important drawback. The graph is always passed
as an implicit input to the algorithm, with no way to first preprocess the graph. Unfortu-
nately, none of the supported query languages in AvantGraph provide such functionality.
For this thesis, we have chosen to focus on the implementation of graphalg. We defer better
integration with query languages to future work. Queries can also be written directly in IPR,
the internal representation of queries in AvantGraph, which does allow for full flexibility of
the algorithm inputs. Written in IPR, the query shown in Listing 3.22 may instead be written
as:

Listing 3.23: An IPR query with an embedded graph algorithm.
call(

"
func TriangleCount(graph: Matrix<bool>) -> int {

L = select(tril, graph, -1);
U = select(triu, graph, 1);
C<L, struct> = L (+.one) U.T;

return reduce(+, C);
}

",
(%val) = "TriangleCount" (

matrix(
projection(

access(%0, "friend"), {
%row = src(%0),
%col = trg(%0),
%val = %0.weight,

}
),
%row, %col, %val),

),
)

This concludes our overview of the graphalg language design. In the following chapters, we
discuss the implementation of the backends.
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Chapter 4

Compiler Architecture

Our graphalg compiler has a parser and IR that both backends use. Each backend takes
common graphalg IR as input and converts it to another internal IR. In Figure 4.1 we show a
high-level overview of the compiler architecture.

Program 
text

Parse

Optimize GraphBLAS 
backend

Operators 
backend

Graphalg IR

program 
output

IPR

Figure 4.1: Graphalg compiler architecture.

AvantGraph uses ANTLR to parse queries. We have adopted the same strategy and de-
veloped an ANTLR grammar for graphalg. After ANTLR has constructed the parse tree we
immediately convert it to graphalg IR. Graphalg IR is expressed inMLIR as a combination of
the built-in dialects and a custom dialect that provides linear algebra operations. We cover
graphalg IR in detail in Section 4.1.

Once the IR has been constructed we perform standard optimizations such as constant
folding and dead-code elimination. These normalization rules are built-in to MLIR and are
run by invoking the canonicalization pass. Canonicalization simplifies the IR if the program
as the user wrote it contained code that can be simplified further, such as the statement
one_mil = 1000 * 1000;. An additional advantage is that because canonicalization runs di-
rectly after parsing, the parser can focus on generating correct rather than efficient IR. One
example of this is that when converting for loops, the parser conservatively assumes that all
live variables aremodified in the loop. When the canonicalization pass runs, it scans the loop
body for loop-carried variables that are not modified inside the body and removes them.

After performing the optimizations useful for both backends, we hand off the IR to ei-
ther the GraphBLAS or the operators backend. The GraphBLAS backend converts the IR
into bytecode with calls to GraphBLAS for linear algebra operations. An interpreter exe-
cutes the generated bytecode to produce the program output, which is then returned to the
AvantGraph runtime to be used as an intermediate result in the query. For more details on
the GraphBLAS backend, see Chapter 5. The operators backend does not evaluate the pro-
gram, but instead transforms the graphalg IR into IPR so it can be fully integrated with the
query and executed by the regular AvantGraph runtime. Its implementation is discussed in
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Chapter 6. While we leave the implementation details of the backends for later chapters, this
chapter does discuss how the backends are integrated into the AvantGraph query pipeline
(Section 4.2).

4.1 Graphalg IR
In the design of graphalg IR we follow the following principles:

• Reuse built-in operations and types asmuch as possible. Not only does this avoid defin-
ing many operations ourselves, but it also allows us to reuse existing rewrite rules. For
example, by using control flow operations included in MLIR, we get canonicalization
rules for free.

• Break complex statements into simple operations. The graphalg syntax can encode
complex operations in a single statement. Consider for example the statement R<!M,
struct> = A (min.+) B.T;. In the GraphBLAS API, such a multiplication with a trans-
posed input and mask with various flags set can be expressed with a single function
call. For our IR we choose to break up such statements into multiple simpler opera-
tions to keep individual operations simple and avoid duplicate code. The GraphBLAS
backend has additional optimization rules to fuse multiple simple operations into one
efficient GraphBLAS function call.

We begin our overview of the IR with the supported types.

4.1.1 Data types
Almost all types in graphalg IR are taken from the built-in dialect:

• bool: IntegerType, width 1 (i1).

• int: IntegerType, width 64 (i64).

• real: Float64Type (f64).

• index: IndexType (index).

• Vector<T>: RankedTensorType, rank 1 (tensor<?xT>).

• Matrix<T>: RankedTensorType, rank 2 (tensor<?x?xT>).

MLIR does not have a built-in construct for ranges as they exist in graphalg (e.g. 0:42),
so we define a custom RangeType for operations that return a range.

4.1.2 Functions
We define a custom FuncOp and ReturnOp for graphalg IR. Both ops closely follow their coun-
terparts from the func dialect in their design, but accept only the types defined above for
parameters and return values. Additionally, ReturnOp is restricted to a single return value.
Below in Listing 4.1 we give the IR for a simple function.

Listing 4.1: IR for a simple function.
// Original signature:
// func MyFunction(a: Matrix<int>, b:real) -> bool
graphalg.func @MyFunction(%arg0: tensor<?x?xi64>, %arg1: f64) -> i1 {

%false = arith.constant false
graphalg.return %false : i1

}
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4.1.3 Control Flow
We do not define any new control flow operations for graphalg IR. Instead, we reuse the
ForOp and IfOp from the scf dialect. If statements in graphalg map directly to an IfOp in the
IR, as do for loops, provided that they do not have an until condition.

In the case of a loop with a break condition, we translate it to a ForOp with an inner IfOp.
This means that after parsing, the two programs shown in Listing 4.2 result in equivalent IR,
shown in Listing 4.3.

Listing 4.2: A program with a loop break condition.
func Until(n: int) -> int {

for i in 0:100 until n > 10 {
n = n + 1;

}
return n;

}

func UntilDesugared(n:int) -> int {
for i in 0:100 {

if n > 10 {
// do nothing

} else {
n = n + 1;

}
}
return n;

}

Listing 4.3: IR for a program with a loop break condition.
graphalg.func @Until(%arg0: i64) -> i64 {

%c1_i64 = arith.constant 1 : i64
%c10_i64 = arith.constant 10 : i64
%idx1 = index.constant 1
%c100_i64 = arith.constant 100 : i64
%c0_i64 = arith.constant 0 : i64
%0 = index.castu %c0_i64 : i64 to index
%1 = index.castu %c100_i64 : i64 to index
%2 = scf.for %arg1 = %0 to %1 step %idx1 iter_args(%arg2 = %arg0) -> (i64) {

%3 = arith.cmpi sgt, %arg2, %c10_i64 : i64
%4 = scf.if %3 -> (i64) {

scf.yield %arg2 : i64
} else {

%5 = arith.addi %arg2, %c1_i64 : i64
scf.yield %5 : i64

}
scf.yield %4 : i64

}
graphalg.return %2 : i64

}

This representation does require the backends to recognize this pattern and avoid need-
lessly running a loop for many iterations, but the advantage is that all canonicalization rules
from the scf are available. We have found this to be a worthwhile tradeoff.
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4.1.4 Scalar Arithmetic

For scalar arithmetic, we use the arith and index dialects, without any custom extensions.
Specifically, we use the following operations:

• arith::ConstantOp for constant values.

• arith::SIToFPOp for casting from int to real,

• arith::FPToSIOp for casting from real to int

• index::CastUOp for converting between int and index (both ways).

• AddIOp, SubIOp, MulIOp, DivIOp (and floating point equivalents) from arith for basic
arithmetic.

• arith::CmpIOp and arith::CmpFOp for comparing scalars. Values of type index are cast
to integers before comparing them.

4.1.5 Linear Algebra

Almost all operations used for linear algebra are custom operations added in the graphalg
dialect (exceptions are DimOp and EmptyOp). We give an overview of them below.

SelectOp

SelectOp encodes the select expression. It applies a predicate to all entries of the input tensor
and returns a new tensor only the entries for which the predicate holds. The IR in Listing 4.4
encodes the expression select(>=, arg0, 0).

Listing 4.4: select example IR.
%c0_i64 = arith.constant 0 : i64
%0 = graphalg.select gte %arg0 : tensor<?x?xi64> %c0_i64 : i64 -> tensor<?x?xi64>

ApplyUnaryOp and ApplyBinaryOp

The apply expression can be usedwith binary unary and binary operators. In the IRwe create
separate operations for both variants, ApplyUnaryOp and ApplyBinaryOp. Belowwe give the IR
for the expressions apply(abs, arg0) and apply(+, arg0, 1).

Listing 4.5: apply example IR.
// apply(abs, arg0)
%0 = graphalg.apply_unary abs %arg0 : tensor<?x?xi64> -> tensor<?x?xi64>

// apply(+, arg0, 1)
%c1_i64 = arith.constant 1 : i64
%0 = graphalg.apply_binary add

%arg0 : tensor<?x?xi64>
%c1_i64 : i64 -> tensor<?x?xi64>
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ElementWiseOp

Graphalg provides an element-wise operator with set intersection semantics and another
with set union semantics. In the IR both variants are represented by an ElementWiseOp, with
a flag to switch between intersection and union mode.

Listing 4.6: Element-wise example IR.
// arg0 .+ arg1
%0 = graphalg.ewise add

%arg0 : tensor<?x?xi64>
%arg1 : tensor<?x?xi64> set_intersection -> tensor<?x?xi64>

// add(+, arg0, arg1)
%0 = graphalg.ewise add

%arg0 : tensor<?x?xi64>
%arg1 : tensor<?x?xi64> set_union -> tensor<?x?xi64>

SemiringOp

Matrix multiplication with a semiring maps straightforwardly onto a dedicated SemiringOp.
Because bothmatrix and vector types are represented by the tensor type in the IR, no separate
operations are necessary for matrix-matrix, vector-matrix and matrix-vector specializations.

Listing 4.7: Matrix multiplication example IR.
// arg0 (min.+) arg1
%0 = graphalg.semiring

(%arg0 : tensor<?x?xi64>)
(min add)
(%arg1 : tensor<?x?xi64>) -> tensor<?x?xi64>

TransposeOp

The .T property on matrices is represented in the IR with the TransposeOp.

Listing 4.8: Transpose example IR.
// arg0.T
%0 = graphalg.transpose %arg0 : tensor<?x?xi64> -> tensor<?x?xi64>

AccumOp

AccumOp copies all elements from a base tensor, and adds to that the elements of another
tensor. If an entry is present in both matrices, the two values are merged using a binary
operator. This operation is used to represent accumulation statements such as arg0 += arg1.

Listing 4.9: Accumulate example IR.
// arg0 += arg1
%0 = graphalg.accum %arg0 : tensor<?x?xi64> add =

%arg1 : tensor<?x?xi64> -> tensor<?x?xi64>
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MaskOp

MaskOp encodes masked assignment statements such as C<M> = A. The operation has flags
for making the mask structural, complemented and/or to ignore values in the base matrix
(replace).

Listing 4.10: Masked assignment example IR.
// arg0<arg1> = arg2
%1 = graphalg.mask %arg0 : tensor<?x?xi64><%arg1 : tensor<?x?xi1>> =

%0 : tensor<?x?xi64> -> tensor<?x?xi64> {
complement = false,
replace = false,
structural = false

}

// arg0<!arg1, struct> = arg2
%1 = graphalg.mask %arg0 : tensor<?x?xi64><%arg1 : tensor<?x?xi1>> =

%0 : tensor<?x?xi64> -> tensor<?x?xi64> {
complement = true,
replace = false,
structural = true

}

ReduceOp and ReduceRowsOp

Graphalg IR has dedicated operations for reducing a matrix to a vector or a scalar.

Listing 4.11: reduce and reduceRows example IR.
// reduce(+, arg0)
%0 = graphalg.reduce add %arg0 : tensor<?x?xi64> -> i64

// reduceRows(+, arg0)
%0 = graphalg.reduce_rows add %arg0 : tensor<?x?xi64> -> tensor<?xi64>

Ranges

In graphalg IR, three kinds of ranges can be constructed:

• Singleton range: this represents a range consisting of a single element. It is used when
assigning a scalar to a single element of a matrix.

• Bounded range: an index range with explicit start and endpoints. It is used to assign a
value to multiple (but not all) elements of a matrix and as bounds of a for loop.

• ‘All’ range: an index range that represents an unbounded range. Used to fill all entries
of a matrix with the same scalar value.

To create ranges, graphalg IR provides SingletonRangeOp, BoundedRangeOp and All-
RangeOp.

Listing 4.12: Ranges example IR.
%c10_i64 = arith.constant 10 : i64
%c1_i64 = arith.constant 1 : i64
%c0_i64 = arith.constant 0 : i64
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// [0]
%0 = index.castu %c0_i64 : i64 to index
%1 = graphalg.singleton_range %0

// [0:10]
%3 = index.castu %c0_i64 : i64 to index
%4 = index.castu %c10_i64 : i64 to index
%5 = graphalg.bounded_range %3 %4

// [:]
%7 = graphalg.all_range

AssignOp

AssignOp encodes the assignment of a matrix or scalar value to a submatrix of the given base
matrix. This operation is free of side effects like all other operations in the dialect and there-
fore does not modify the base tensor. Instead, it returns a new tensor with the updated
matrix.

AssignOp can also be used as a memory management hint to try and reuse an existing
buffer for a new value. Such hints are used by the GraphBLAS backend to improve the buffer-
ization strategy. They are ignored by the operators backend.

We show examples of both uses in Listing 4.13.

Listing 4.13: Assign example IR.
%c10_i64 = arith.constant 10 : i64
%c42_i64 = arith.constant 42 : i64
%c0_i64 = arith.constant 0 : i64

// arg0[0] = arg1;
%0 = index.castu %c0_i64 : i64 to index
%1 = graphalg.singleton_range %0
%2 = graphalg.assign %arg0 : tensor<?x?xi64>[%1] =

%arg1 : tensor<?xi64> -> tensor<?x?xi64>

// arg0[0:10][:] = 42;
%0 = index.castu %c0_i64 : i64 to index
%1 = index.castu %c10_i64 : i64 to index
%2 = graphalg.bounded_range %0 %1
%3 = graphalg.all_range
%4 = graphalg.assign %arg0 : tensor<?x?xi64>[%2] [%3] =

%c42_i64 : i64 -> tensor<?x?xi64>

// arg0 = arg1 (memory management hint)
%0 = graphalg.assign %arg0 : tensor<?x?xi64> =

%arg1 : tensor<?x?xi64> -> tensor<?x?xi64>

NvalsOp

NvalsOp counts the number of present entries in a given matrix. It is used to represent the
.nvals property.
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Listing 4.14: Example IR for NvalsOp.
// arg0.nvals
%0 = graphalg.nvals %arg0 : tensor<?x?xi64>

SwapOp and ClearOp

Memory hint statements swap and clearmap directly onto IR operations SwapOp and ClearOp,
respectively.

Listing 4.15: Example IR for SwapOp and ClearOp.
// swap arg0 arg1;
%0:2 = graphalg.swap %arg0 %arg1 : tensor<?x?xi64>

// clear arg0;
%0 = graphalg.clear %arg0 : tensor<?x?xi64> -> tensor<?x?xi64>

DimOp

To represent thematrix properties .nrows and .ncols in the IR,we reuse the existing operation
DimOp defined in the tensor dialect.

Listing 4.16: Example IR for DimOp.
// arg0.nrows
%c0 = arith.constant 0 : index
%dim = tensor.dim %arg0, %c0 : tensor<?x?xi64>

// arg0.ncols
%c1 = arith.constant 1 : index
%dim = tensor.dim %arg0, %c1 : tensor<?x?xi64>

EmptyOp

Another operation we can reuse from the tensor dialect is EmptyOp, which creates an empty
tensor. EmptyOp is used to encode the creation of a new matrix or vector.

Listing 4.17: Example IR for EmptyOp.
// M = matrix<int>(42, 42);
%c42_i64 = arith.constant 42 : i64
%0 = index.castu %c42_i64 : i64 to index
%2 = tensor.empty(%0, %0) : tensor<?x?xi64>

This concludes our overview of operations used in the IR. In the next section, we discuss how
the graphalg compiler is integrated into the query pipeline.

4.2 Integration with AvantGraph
Although both backends take the same IR as input, their output is very different, which also
reflects in their placement in the query pipeline. In Figure 4.2 we show how the backends
are integrated into the AvantGraph query pipeline.
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Figure 4.2: Integration of backends into the query pipeline.

4.2.1 GraphBLAS backend

The GraphBLAS backend integrates AvantGraph at a late stage of the pipeline, during query
execution. Throughout the planning and execution plan generation, the algorithm is stored
as a string and is not analyzed by AvantGraph at all. In the final execution plan, the graph
algorithm invocation is represented by a Call operator we add to AvantGraph for this specific
purpose. The call operator first gathers all blocks from its input relations and loads them in
the GraphBLAS data format. Only once all inputs to the algorithm have been fully evaluated
does it start to process the algorithm. The interpreter evaluates the program and returns the
output, also in the GraphBLAS data format. The call operator converts the output into blocks
of tuples and sends them to its output relation.

Coupling with the database is loose in the case of GraphBLAS, and there is a clear sep-
aration of concerns between the execution of the algorithm and the query. The downsides
are a considerable overhead from converting between data formats, and little opportunity
for cross-optimization.

4.2.2 Operators backend

The approach taken by the operators backend is radically different. The backend integrates
with AvantGraph very early on in the pipeline, right after the query has been parsed into IPR.
Before the query planner performs any normalization or optimization steps, the algorithm
is passed to the operators backend. There, the algorithm is parsed to graphalg IR and trans-
formed into IPR. The generated IPR replaces the algorithm invocation in the query, yielding
a query plan with an embedded algorithm that is fully expressed in IPR. To the remainder
of the pipeline, there is no distinction between the query and the algorithm.

Thanks to the unified representation, the algorithm can be optimized together with the
query, and there is no runtime communication overhead between the query and the algo-
rithm. The price we pay for this tight coupling is additional engineering work to map lin-
ear algebra operations to relational algebra, and in some cases implement operations from
scratch. We are also forced to use the internal data format of unordered streams of tuples,
instead of a more efficient format designed specifically for matrices.

4.2.3 Important differences

In the sections above we have already alluded to the main differences between the two back-
ends. The most important is the level of visibility the database has into the algorithm. In
the operators backend the algorithm is converted into IPR, giving AvantGraph full visibility
into the details of the algorithm. This allows the pipeline to perform simplification of the
algorithm, plan data access, and optimize it together with the rest of the query. The contrast
with the GraphBLAS backend could not be more different: the database has no visibility
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at all into the algorithm, it just passes a string to the backend and receives an output. The
upside is that the GraphBLAS backend is easier to port to other database systems.

Another important difference is that the operators backend adopts a stream processing ap-
proach, whereas the GraphBLAS backends is closer to batch processing. Because intermediate
results between operators can be large, AvantGraph tries to pipeline query execution where
possible to reduce memory consumption. The operators backend converts to IPR, so algo-
rithms will naturally take advantage of AvantGraph’s pipelining. In the GraphBLAS back-
end, however, a data format conversion is required before the algorithm can be executed, so
inputs must be fully buffered before executing the algorithm. This leads to higher loading
times and memory requirements, but once the data has been converted into the GraphBLAS
format, we can use readily available and highly-optimized linear algebra routines.
This concludes the high-level overview of the graphalg compiler and backends. We discuss
the GraphBLAS backend in detail in the next chapter.
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Chapter 5

Compilation to GraphBLAS

This chapter covers the GraphBLAS backend for graphalg. It is a black-box batch style in-
tegration with AvantGraph: all input data is converted from AvantGraph’s native storage
format into GraphBLAS data types. AvantGraph has no visibility into the algorithm and
does not perform any optimizations on it, relying fully on the GraphBLAS library.

The GraphBLAS backend transforms graphalg programs into a simple IR with a direct
mapping toGraphBLAS library calls. Arguments to the program are provided either as plain
scalar values, or as matrices in the native GraphBLAS format. An interpreter takes these
arguments and executes the final IR to produce the output. An overview of the compilation
pipeline is provided in Figure 5.1.

Lowering
GraphAlg 

dialect
GraphBLAS 

dialect
GraphBLAS 
ref dialect Output

Optimize

Bufferize

Interpret

Figure 5.1: Pipeline of the GraphBLAS backend.

In the next sections, we discuss the pipeline in more detail:

• Conversion of the graphalg dialect into the GraphBLAS dialect (lowering) is covered
in Section 5.1.

• After this conversion step an optimization pass attempts to fuse linear algebra opera-
tions as much as possible (Section 5.2).

• Another conversion is then applied, this time to convert from value semantics into ref-
erence semantics for matrices. This step is called bufferization, and is described in Sec-
tion 5.3.

• Finally, in Section 5.5 we discuss the last step of the pipeline, program interpretation.

5.1 Lowering to GraphBLAS
This lowering pass converts all operations from the graphalg dialect into a new GraphBLAS
dialect. The GraphBLAS dialect is design to resemble the GraphBLAS API (with SuiteS-
parse [12] extensions where necessary) as much as possible for easy interpretation later (see
Section 5.5). All other operations unrelated to linear algebra such as scalar arithmetic and
control flow are unaffected by the lowering: the interpreter can execute them directly. Below
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we describe how each of the linear algebra operations are lowered into GraphBLAS opera-
tions. Because the design of graphalg was heavily inspired by GraphBLAS, many lowerings
are a one-to-one mapping of operations.

5.1.1 SemiringOp

SemiringOps correspond to the GrB_mxm, GrB_vxm or GrB_mxv function in the GraphBLAS API,
depending on the rank of the arguments. Because the rank of the inputs is already encoded
into the argument types and the methods are otherwise equivalent, we choose to define a
single SemiringOp in the GraphBLAS dialect and lower to that. The final decision on which
of the GraphBLASmethods to invoke is made by the interpreter based on the argument type
information. TheGraphBLAS SemiringOp is similar to the graphalg one, but adds additional
parameters that are passed in the GraphBLAS library call:

• base: base matrix used with mask or accumulator. If a mask is given, entries of base
outside the mask are copied to the output. If an accumulator is set, all entries of base
are copied to the output and merged with entries from the multiplication result.

• mask: defines the output positions for which a matrix multiplication should be com-
puted. It is equivalent to computing the full result and then applying a graphalg
MaskOp.

• accum: the accumulator monoid to use when merging entries from base with the multi-
plication result.

• descriptor: contains flags to transpose one of the inputs, complement the mask, or
make themask structural. There is also a replace flag available which, when combined
with base, prevents any copying of elements from base. Specifying replace and base
is therefore functionally equivalent to specifying neither. Its use is to suggest to the
bufferization pass (Section 5.3) that it should try to use the buffer of base to store the
result.

A graphalg SemiringOp is lowered into aGraphBLASSemiringOpby copying all operands
and leaving the additional parameters unset. The new parameters are still needed in the IR
because the later optimization pass, described in Section 5.2, may rewrite the operation and
set a value for these new parameters.

5.1.2 ElementWiseOp

The lowering of ElementWiseOps follows a very similar pattern to the SemiringOp. They
map to either GrB_eWiseMult or GrB_eWiseAdd, depending on whether the join mode is set to
intersection or union, respectively. The same parameters base, mask, accum and descriptor
are introduced, and are left unset by the lowering.

5.1.3 ApplyUnaryOp and ApplyBinaryOp

Both operations are mapped directly to an equivalently named op in the GraphBLAS dialect.
The new operations have the same parameters as their graphalg counterparts, once again
extended with base, mask, accum and descriptor. These operations map to the GraphBLAS
function GrB_apply.
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5.1.4 SelectOp
SelectOp is directlymapped to an equivalent operationwith the same four additional param-
eters left unset. It corresponds to GrB_select. GrB_select is not one but a family of functions
with different matrices types (GrB_Matrix and GrB_Vector) and different types for the scalar
input. The interpreter calls the correct function based on MLIR’s explicit argument types.

5.1.5 ReduceOp
ReduceOp ismapped to an operation of the same name in theGraphBLASdialect. It is not ex-
tended with any additional parameters because its return value is a scalar. The conversion is
thus purely syntactical, both versions have identical operands and attributes. The operation
maps to GrB_reduce.

5.1.6 ReduceRowsOp
Conversion of ReduceRowsOp is similar to ReduceOp, but because the result is a Vector<T>,
the usual parameters base, mask, accum and descriptor are added. The corresponding func-
tion is GrB_Matrix_reduce_Monoid.

5.1.7 AssignOp
AssignOp is straightforwardly mapped to a GraphBLAS AssignOp. Since the graphalg As-
signOp already has base, it is extended only with mask, accum and descriptor. The Graph-
BLAS library function GrB_assign supports all ranges available in graphalg, so these are sim-
ilarly trivial to convert. AssignOp is a relatively simple operation, particularly if all ranges
are set to an AllRangeOp, in which case it represents a simple copy. Because the Graph-
BLAS version has an optional mask and accumulator, it is also a suitable target for the next
two operations.

5.1.8 AccumOp
The GraphBLAS dialect has no direct analog to AccumOp. However, because AssignOp has
an accumulator setting, it can represent an AccumOp by setting base and accum. Since most
linear algebra operations have an accum field, the AssignOp can typically be fused with the
operation that produces the value to accumulate. See Section 5.2 for more details.

Below we show an example of a program with an AccumOp that cannot be fused to
another operation.

Listing 5.1: A function containing an isolated accumulate operation
func Accum(a: Vector<int>, b: Vector<int>) -> Vector<int> {

a += b;
return a;

}

The AccumOp is therefore lowered into an AssignOp. The corresponding IR is given in
Listing 5.2.

Listing 5.2: Lowered IR for Listing 5.1
func.func @Accum(%arg0: tensor<?xi64>, %arg1: tensor<?xi64>) -> tensor<?xi64> {

%0 = mlir_graphblas.all_range
%1 = mlir_graphblas.assign %arg0 : tensor<?xi64> [%0] add =

%arg1 : tensor<?xi64> -> tensor<?xi64> {
complement = false,

51



5. COMPILATION TO GRAPHBLAS

replace = false,
structural = false,
transpose = false

}
return %1 : tensor<?xi64>

}

5.1.9 MaskOp
The same strategy is adopted for MaskOp. MaskOps are lowered to AssignOps by setting
the mask flag.

5.1.10 TransposeOp
The GraphBLAS dialect has a TransposeOp with base, mask, accum and descriptor, to match
the signature of GrB_transpose. In practice, we have not found any programswhere the addi-
tional parameters are useful. Therefore, our backend emits only plain transpose operations
with all optional parameters unset, and relevant transformations assert that these fields re-
main unset.

5.1.11 SwapOp and ClearOp
We replace the SwapOp and ClearOp operations with identical operations defined in the
GraphBLAS dialect. The operations do not undergo any real transformation: we only replace
them to ensure that the IR after this pipeline stage is free of references to the graphalg dialect.
After this, the operations are preserved until they are used in the Bufferization stage (see
Section 5.3).

5.1.12 NvalsOp
AnNvalsOpmaps to GrB_Matrix_nvals or GrB_Vector_nvals, depending on the type of value.
Like SwapOp and ClearOp it is replaced by an identical operation in the GraphBLAS dialect.
Unlike these operations, however, NvalsOp is preserved until the final IR, and directly exe-
cuted by the interpreter.

5.1.13 DimOp
DimOps from the tensor dialect aremapped to equivalent operations from the memref dialect
during bufferization. Memref DimOps are executed directly by the interpreter as one of one
of GrB_Matrix_nrows, GrB_Matrix_ncols or GrB_Vector_nrows, depending on the type of source
and the dimension requested in index.

5.1.14 EmptyOp
EmptyOps that remain after optimization are converted to AllocOps (from the memref di-
alect). Depending on the requested dimensions, the interpreter executes an AllocOp by call-
ing either GrB_Matrix_new or GrB_Vector_new.

5.2 Optimization
The lowering transformation described above produces an IR that can be immediately buffer-
ized, but the resulting programwill likely take a long time to execute and consume excessive
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memory in the process. To illustrate the problem, consider the graphalg program given in
Listing 5.3.

Listing 5.3: A tiny graphalg program.
func Example(M:Matrix<bool>, A:Matrix<int>, B:Matrix<int>) -> Matrix<int> {

C<M> = A (+.*) B;
return C;

}

After parsing to the graphalg dialect, we obtain the IR shown in Listing 5.4.

Listing 5.4: Program IR directly after parsing
graphalg.func @Example(

%arg0: tensor<?x?xi1>,
%arg1: tensor<?x?xi64>,
%arg2: tensor<?x?xi64>) -> tensor<?x?xi64> {

%0 = graphalg.semiring
(%arg1 : tensor<?x?xi64>)
(add mul)
(%arg2 : tensor<?x?xi64>) -> tensor<?x?xi64>

%1 = graphalg.mask<%arg0 : tensor<?x?xi1>> =
%0 : tensor<?x?xi64> -> tensor<?x?xi64>
{complement = false, replace = false, structural = false}

graphalg.return %1 : tensor<?x?xi64>
}

The steps of computing the matrix product and applying the mask are modeled as sepa-
rate operations. In Listing 5.5 we see that lowering maps the instructions one-to-one.

Listing 5.5: Program IR after lowering to the GraphBLAS dialect
func.func @Example(

%arg0: tensor<?x?xi1>,
%arg1: tensor<?x?xi64>,
%arg2: tensor<?x?xi64>) -> tensor<?x?xi64> {

%0 = mlir_graphblas.semiring null =
(%arg1 : tensor<?x?xi64>)
(add mul)
(%arg2 : tensor<?x?xi64>) -> tensor<?x?xi64> {

complement = false,
replace = false,
structural = false,
transposeLeft = false,
transposeRight = false

}
%1 = mlir_graphblas.all_range
%2 = mlir_graphblas.all_range
%3 = mlir_graphblas.assign <%arg0 : tensor<?x?xi1>> [%1, %2] null =

%0 : tensor<?x?xi64> -> tensor<?x?xi64> {
complement = false,
replace = false,
structural = false,
transpose = false

}
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return %3 : tensor<?x?xi64>
}

Directly executing this IR may be inefficient because it requires that we first compute
the full matrix product of A and B, then filter out all results not in M. If M is very sparse, a
much faster approach is to first check which entries are true in M, and only compute those
entries of C. It is for this reason that GrB_mxm has a mask parameter: it allows fusing themasked
assignment with the computation of a matrix product.

5.2.1 Assign Fusion
To exploit this feature of the GraphBLAS API, we develop an optimization rewrite rule to
fuse AssignOps with any op that has base, mask and descriptor. As a result, our compiler
optimizes Listing 5.5 into the IR given in Listing 5.6.

Listing 5.6: Program IR directly after AssignOp fusion
func.func @Example(

%arg0: tensor<?x?xi1>,
%arg1: tensor<?x?xi64>,
%arg2: tensor<?x?xi64>) -> tensor<?x?xi64> {

%0 = mlir_graphblas.semiring <%arg0 : tensor<?x?xi1>> null =
(%arg1 : tensor<?x?xi64>)
(add mul)
(%arg2 : tensor<?x?xi64>) -> tensor<?x?xi64> {

complement = false,
replace = false,
structural = false,
transposeLeft = false,
transposeRight = false

}
return %0 : tensor<?x?xi64>

}

The semiring operation subsumes the assign operation by incorporating themaskmatrix.
The body of the example function contains a single operation that maps directly to GrB_mxm,
which is efficient as can bewithin the constraints of theGraphBLASAPI. In the given example
there is no base matrix to assign to, but our optimization rules can also fuse the ops if C is an
existing matrix.

5.2.2 Transpose Fusion
Transpose operations are another prime candidate for fusion. Consider the program shown
in Listing 5.7.

Listing 5.7: A matrix product where the right-hand side is transposed
func ExampleT(A:Matrix<int>, B:Matrix<int>) -> Matrix<int> {

C = A (+.*) B.T;
return C;

}

Depending on the representation used for the matrix B, transposing it can be a very ex-
pensive operation to perform. If the transpose of B is only needed to perform the matrix
multiplication, we may be able to avoid computing it entirely. Recall that the definition of
matrix multiplication is:
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Cij =
n

ÿ

k=1

AikBkj

To adjust the formula for the case where the right-hand side is transposed, we swap in-
dices k and j:

Cij =
n

ÿ

k=1

AikBjk

Based on this formula we can conclude that so long as the representation of B (no trans-
posed) provides efficient row-wise access, transposing it is not necessary. Moreover, if B
provides fast row-wise access but reading columns is slow, computing A (+.*) B.Tmay even
be faster than computing A (+.*) B. Once again, the GraphBLAS API accounts for this with
extra parameters on GrB_mxm. In descriptor we can set transposeRight to indicate that the
right input to the multiplication should be transposed first. A rewrite rule checks if the left
or right input to a SemiringOp is a TransposeOp, and removes the TransposeOp by flipping
the flag in SemiringOp. Listing 5.8 shows the change in IR resulting from this optimization
(the source program was shown in Listing 5.7).

Listing 5.8: Example of transpose fusion.
// Original lowered IR
func.func @ExampleT(

%arg0: tensor<?x?xi64>,
%arg1: tensor<?x?xi64>) -> tensor<?x?xi64> {

%0 = mlir_graphblas.transpose null =
transpose(%arg1 : tensor<?x?xi64>) -> tensor<?x?xi64> {

complement = false,
replace = false,
structural = false,
transpose = false

}
%1 = mlir_graphblas.semiring null =

(%arg0 : tensor<?x?xi64>)
(add mul)
(%0 : tensor<?x?xi64>) -> tensor<?x?xi64> {

complement = false,
replace = false,
structural = false,
transposeLeft = false,
transposeRight = false

}
return %1 : tensor<?x?xi64>

}

// Optimized IR
func.func @ExampleT(

%arg0: tensor<?x?xi64>,
%arg1: tensor<?x?xi64>) -> tensor<?x?xi64> {

%0 = mlir_graphblas.semiring null =
(%arg0 : tensor<?x?xi64>)
(add mul)
(%arg1 : tensor<?x?xi64>) -> tensor<?x?xi64> {
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complement = false,
replace = false,
structural = false,
transposeLeft = false,
transposeRight = true

}
return %0 : tensor<?x?xi64>

}

5.2.3 Further Optimization Opportunities
In our experiments, we have found the two optimizations described to be sufficient for turn-
ing idiomatic graphalg programs into efficient GraphBLAS IR. The generated code is com-
parable in performance to hand-optimized C versions. Still, we believe there are plenty of
opportunities for further optimization, which we leave as future work. For example, the cur-
rent backend performs little optimization to avoid redundant work. Consider the program
below, which first reduces a matrix to a vector, then reduces the vector down to a scalar.

Listing 5.9: Reducing to a vector, then reducing to a scalar.
func ReduceReduce(M:Matrix<int>) -> int {

V = reduceRows(+, M);
return reduce(+, V);

}

This program can be improved by omitting the reduceRows call and directly reducing the
entries of the matrix instead. For a less experienced programmer in particular, the ineffi-
ciency of this program may not be obvious. Instead of requiring the programmer to make
this optimization, it could be implemented in the compiler as a canonicalization rule in the
graphalg dialect, where it would also benefit the other backend. The programs we use for
our evaluation do not have such inefficiencies, and therefore we have not implemented this
optimization.

5.3 Bufferization
In the bufferization pass, operations with value semantics are converted into equivalent op-
erations with reference semantics. Allocations and deallocations for buffers are also made
explicit. Bufferization is an optimization problem similar to register allocation. The amount
of buffers allocated is to be minimized, as is the copying of data between buffers. Existing
buffers should be used as much as possible, but care must be taken to avoid overwriting
contents that are still required for later computation.

To implement bufferization of our IR, we use the standard MLIR bufferization infrastruc-
ture [52]. While it has been designed for use with flat memory buffers, we have found that
it works equally well for GraphBLAS matrices. The bufferization framework uses the memref
type for buffers, which our interpreter treats as a pointer to a GraphBLAS object. Through
the BufferizableOpInterface, support for custom operations can be added to the framework.
We have implemented this interface for all GraphBLAS operations. The built-in dialects of
MLIR already implement this interface. Even complex operations like loops can be buffer-
ized without any additional effort on our part.

Below we give an example of a simple function. The corresponding IR before and after
bufferization is given in Listing 5.11.

Listing 5.10: A simple function to bufferize
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func BufferizeMe() -> int {
v = Vector<int>(10);
v[:] = 42;
return reduce(+, v);

}

Listing 5.11: IR before bufferization
// Before bufferization
func.func @BufferizeMe() -> i64 {

%c42_i64 = arith.constant 42 : i64
%c10_i64 = arith.constant 10 : i64
%0 = index.castu %c10_i64 : i64 to index
%1 = tensor.empty(%0) : tensor<?xi64>
%2 = mlir_graphblas.all_range
%3 = mlir_graphblas.assign %1 : tensor<?xi64> [%2] null =

%c42_i64 : i64 -> tensor<?xi64> {
complement = false,
replace = false,
structural = false,
transpose = false

}
%4 = mlir_graphblas.reduce null = reduce(add, %3 : tensor<?xi64>) -> i64
return %4 : i64

}

// After bufferization
func.func @BufferizeMe() -> i64 {

%c42_i64 = arith.constant 42 : i64
%c10_i64 = arith.constant 10 : i64
%0 = index.castu %c10_i64 : i64 to index
%alloc = memref.alloc(%0) {alignment = 64 : i64} : memref<?xi64>
%1 = mlir_graphblas.all_range
mlir_graphblas.assign_ref(

%alloc : memref<?xi64>,
GrB_NULL,
null,
%1,
%c42_i64 : i64) {
complement = false,
replace = false,
structural = false,
transpose = false

}
%2 = mlir_graphblas.reduce_ref(

GrB_NULL,
null,
add,
%alloc : memref<?xi64>) : i64

memref.dealloc %alloc : memref<?xi64>
return %2 : i64

}
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During bufferization, the empty tensor op has been converted into a memory allocation.
A deallocation op has also been added to free the memory once it is no longer needed. Both
GraphBLAS operations have been replaced with equivalent ops that write their output to a
memref instead of returning a new tensor.

While the MLIR bufferization pass has generally worked well for us, there are some im-
portant limitations. First of all, the algorithm is greedy, so it is not guaranteed to be optimal.
Furthermore, the bufferization pass does not recycle buffers. If a buffer of size n is no longer
needed, and the next instruction allocates a new buffer of size n, the algorithm does not
currently reuse the existing buffer. For an example of this problem, consider the function
below.

Listing 5.12: A simple loop that updates a variable
func Hints() -> Vector<int> {

a = Vector<int>(10);
for i in 0:10 {
// update a
a = ...;

}
return a;

}

The program is intended to allocate a vector a once and update it repeatedly inside the
loop. Once the program has been converted in SSA form though, this intent is no longer
obvious, as shown in Listing 5.13.

Listing 5.13: IR for Listing 5.12.
graphalg.func @Hints() -> tensor<?xi64> {

%idx1 = index.constant 1
%c0_i64 = arith.constant 0 : i64
%c10_i64 = arith.constant 10 : i64
%0 = index.castu %c10_i64 : i64 to index
%1 = tensor.empty(%0) : tensor<?xi64>
%2 = index.castu %c0_i64 : i64 to index
%3 = index.castu %c10_i64 : i64 to index
%4 = scf.for %arg0 = %2 to %3 step %idx1 iter_args(%arg1 = %1)

-> (tensor<?xi64>) {
%5 = /* update a */
scf.yield %5 : tensor<?xi64>

}
graphalg.return %4 : tensor<?xi64>

}

A fresh variable %5 is created for the updated value of a, with no obvious connection to
%arg1. Without buffer recycling, every updated version of a creates a new allocation, and the
old buffer is freed. To circumvent this issue, graphalg inserts additional AssignOps as a hint
to the bufferization pass to try and reuse a particular buffer. In Listing 5.14, we show the IR
as graphalg generates it, with an additional AssignOp.

Listing 5.14: IR for Listing 5.12, with AssignOp hint.
graphalg.func @Hints() -> tensor<?xi64> {

%idx1 = index.constant 1
%c0_i64 = arith.constant 0 : i64
%c10_i64 = arith.constant 10 : i64
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%0 = index.castu %c10_i64 : i64 to index
%1 = tensor.empty(%0) : tensor<?xi64>
%2 = index.castu %c0_i64 : i64 to index
%3 = index.castu %c10_i64 : i64 to index
%4 = scf.for %arg0 = %2 to %3 step %idx1 iter_args(%arg1 = %1)

-> (tensor<?xi64>) {
%5 = /* update a */
%6 = graphalg.assign %arg1 : tensor<?xi64> =

%5 : tensor<?xi64> -> tensor<?xi64>
scf.yield %6 : tensor<?xi64>

}
graphalg.return %4 : tensor<?xi64>

}

To also enable buffer recycling with operations that only write to some entries of a matrix
(e.g. masked assignment), we have introduced the clear operation to graphalg. The last
memory hint operation, swap, is not related to recycling, but rather to a mismatch between
GraphBLAS objects and the flat buffers that MLIR expects to bufferize for. With flat buffers,
swapping two instances requires copying all elements of the buffers. For GraphBLAS objects
in our interpreter, we can instead perform a cheap pointer swap. This is not something that
can be encoded in the bufferization framework, so instead we add a custom operation for it.

For readers interested in more details about MLIR’s bufferization architecture, we recom-
mend watching [38]. The pass documentation [52] also gives a good overview of the design
goals.

5.4 Example Pipeline
Now that we have discussed all stages of the compiler pipeline up to the interpreter, we show
how these passes together transform graphalg programs into optimized GraphBLAS IR. As
our running example, we take the simplest program from the GAP benchmark suite, triangle
count:

Listing 5.15: Triangle count program in graphalg (from the GAP benchmark suite).
func TriangleCount(graph: Matrix<bool>) -> int {

L = select(tril, graph, -1);
U = select(triu, graph, 1);
C<L, struct> = L (+.one) U.T;

return reduce(+, C);
}

The first step is to parse the source text into graphalg IR. For the triangle count program
above, the following IR is produced:

Listing 5.16: Parsed triangle count program.
graphalg.func @TriangleCount(%arg0: tensor<?x?xi1>) -> i64 {

%c-1_i64 = arith.constant -1 : i64
%c1_i64 = arith.constant 1 : i64
%0 = graphalg.select tril

%arg0 : tensor<?x?xi1> %c-1_i64 : i64 -> tensor<?x?xi1>
%1 = graphalg.select triu

%arg0 : tensor<?x?xi1> %c1_i64 : i64 -> tensor<?x?xi1>
%2 = graphalg.transpose %1 : tensor<?x?xi1> -> tensor<?x?xi1>
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%3 = graphalg.semiring
(%0 : tensor<?x?xi1>)
(add one)
(%2 : tensor<?x?xi1>) -> tensor<?x?xi64>

%4 = graphalg.mask<%0 : tensor<?x?xi1>> =
%3 : tensor<?x?xi64> -> tensor<?x?xi64> {

complement = false,
replace = false,
structural = true

}
%5 = graphalg.reduce add %4 : tensor<?x?xi64> -> i64
graphalg.return %5 : i64

}

There is an almost one-to-one correspondence between statements in the source program
and operations in the IR. The only exceptions are that the transpose of U, U.T, becomes its own
operation, and themasked assignment is split from the semiring expression. In the next stage
of the pipeline, the IR is lowered into the GraphBLAS dialect:

Listing 5.17: Lowered triangle count IR.
func.func @TriangleCount(%arg0: tensor<?x?xi1>) -> i64 {

%c-1_i64 = arith.constant -1 : i64
%c1_i64 = arith.constant 1 : i64
%0 = mlir_graphblas.select null = select(

tril,
%arg0 : tensor<?x?xi1>,
%c-1_i64 : i64) -> tensor<?x?xi1> {

complement = false,
replace = false,
structural = false,
transpose = false

}
%1 = mlir_graphblas.select null = select(

triu,
%arg0 : tensor<?x?xi1>,
%c1_i64 : i64) -> tensor<?x?xi1> {

complement = false,
replace = false,
structural = false,
transpose = false

}
%2 = mlir_graphblas.transpose null = transpose(

%1 : tensor<?x?xi1>) -> tensor<?x?xi1> {
complement = false,
replace = false,
structural = false,
transpose = false

}
%3 = mlir_graphblas.semiring null =

(%0 : tensor<?x?xi1>)
(add one)
(%2 : tensor<?x?xi1>) -> tensor<?x?xi64> {

complement = false,
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replace = false,
structural = false,
transposeLeft = false,
transposeRight = false

}
%4 = mlir_graphblas.all_range
%5 = mlir_graphblas.all_range
%6 = mlir_graphblas.assign<%0 : tensor<?x?xi1>> [%4, %5] null =

%3 : tensor<?x?xi64> -> tensor<?x?xi64> {
complement = false,
replace = false,
structural = true,
transpose = false

}
%7 = mlir_graphblas.reduce null =

reduce(add, %6 : tensor<?x?xi64>) -> i64
return %7 : i64

}

Most operations have been mapped directly to their GraphBLAS counterparts. Because
the GraphBLAS dialect has no mask operation, that operation has been mapped to assign.
The IR is now ready for optimization. In this case, the transpose operation can be fused to
the semiring, and the semiring can be fused with the assign. Performing the fusion yields
the following optimized IR:

Listing 5.18: Optimized triangle count IR.
func.func @TriangleCount(%arg0: tensor<?x?xi1>) -> i64 {

%c-1_i64 = arith.constant -1 : i64
%c1_i64 = arith.constant 1 : i64
%0 = mlir_graphblas.select null = select(

tril,
%arg0 : tensor<?x?xi1>,
%c-1_i64 : i64) -> tensor<?x?xi1> {

complement = false,
replace = false,
structural = false,
transpose = false

}
%1 = mlir_graphblas.select null = select(

triu,
%arg0 : tensor<?x?xi1>,
%c1_i64 : i64) -> tensor<?x?xi1> {

complement = false,
replace = false,
structural = false,
transpose = false

}
%2 = mlir_graphblas.semiring<%0 : tensor<?x?xi1>> null =

(%0 : tensor<?x?xi1>)
(add one)
(%1 : tensor<?x?xi1>) -> tensor<?x?xi64> {

complement = false,
replace = false,
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structural = true,
transposeLeft = false,
transposeRight = true

}
%3 = mlir_graphblas.reduce null =

reduce(add, %2 : tensor<?x?xi64>) -> i64
return %3 : i64

}

As a final step before we can execute the program in the interpreter, the IRmust be buffer-
ized. The resulting IR is still similar to the optimized IR shown above but with memory
allocation operations added.

Listing 5.19: Bufferized triangle count IR
func.func @TriangleCount(%arg0: memref<?x?xi1>) -> i64 {

%c1 = arith.constant 1 : index
%c-1_i64 = arith.constant -1 : i64
%c1_i64 = arith.constant 1 : i64
%c0 = arith.constant 0 : index
%dim = memref.dim %arg0, %c0 : memref<?x?xi1>
%dim_0 = memref.dim %arg0, %c1 : memref<?x?xi1>
%alloc = memref.alloc(%dim, %dim_0) {alignment = 64 : i64} : memref<?x?xi1>
mlir_graphblas.select_ref(

%alloc : memref<?x?xi1>,
GrB_NULL,
null,
tril,
%arg0 : memref<?x?xi1>,
%c-1_i64 : i64) {

complement = false,
replace = false,
structural = false,
transpose = false

}
%dim_1 = memref.dim %arg0, %c0 : memref<?x?xi1>
%dim_2 = memref.dim %arg0, %c1 : memref<?x?xi1>
%alloc_3 = memref.alloc(%dim_1, %dim_2)

{alignment = 64 : i64} : memref<?x?xi1>
mlir_graphblas.select_ref(

%alloc_3 : memref<?x?xi1>,
GrB_NULL,
null,
triu,
%arg0 : memref<?x?xi1>,
%c1_i64 : i64) {

complement = false,
replace = false,
structural = false,
transpose = false

}
%alloc_4 = memref.alloc(%dim, %dim_2)

{alignment = 64 : i64} : memref<?x?xi64>
mlir_graphblas.semiring_ref(
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%alloc_4 : memref<?x?xi64>,
%alloc : memref<?x?xi1>,
null,
add,
one,
%alloc : memref<?x?xi1>,
%alloc_3 : memref<?x?xi1>) {

complement = false,
replace = false,
structural = true,
transposeLeft = false,
transposeRight = true

}
%0 = mlir_graphblas.reduce_ref(

GrB_NULL,
null,
add,
%alloc_4 : memref<?x?xi64>) : i64

memref.dealloc %alloc : memref<?x?xi1>
memref.dealloc %alloc_3 : memref<?x?xi1>
memref.dealloc %alloc_4 : memref<?x?xi64>
return %0 : i64

}

This represents the final IR for the triangle count program. Memory allocation has been
made explicit, and all linear algebra operations correspond directly to one the functions from
the GraphBLAS API. It is ready to be executed by the interpreter, which we discuss next.

5.5 Interpreter
The interpreter is the final stage of the GraphBLAS backend pipeline. It takes in the buffer-
ized IR along with the name of the function to execute and values for the parameters and
executes the IR. The interpreter executes directly on the given IR and does not change it in
any way. The implementation mostly follows the classical style using a big switch inside of
a loop, as illustrated in Listing 5.20.

Listing 5.20: Illustration of the core interpreter loop.
// function is a reference to the function to execute
// results is a mapping from operations to their computed results.
for (auto op : function.getBody()) {

switch (op.getType()) {
case ADD_INT:

// op.lhs and op.rhs are references
// to the inputs of the add operation.
results[op] = results[op.lhs] + results[op.rhs];
break;

}
// ... more operations
case RETURN:

// op.value is a reference to the operation
// result to return.
return results[op.value];
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}

5.5.1 Handling Control Flow
In MLIR, structured control flow is modeled using standard operations, so support for them
is easily incorporated into the interpreter loop. However, because operations can contain
blocks which in turn contain operations again, the interpreter extracts the core loop into
a separate block evaluation function. This evaluation function can be called recursively to
evaluate nested loops and conditionals.

While our interpreter generally does not treat control flow operations as special, it does
have some specific logic for handling early break conditions in loops. During parsing, loops
with an until condition are desugared into loops with a nested if. For an example, see List-
ing 5.21 and the corresponding IR in Listing 5.22.

Listing 5.21: A program with a loop break condition.
func Until(n: int) -> int {

for i in 0:100 until n > 10 {
n = n + 1;

}
return n;

}

Listing 5.22: IR for a program with a loop break condition.
graphalg.func @Until(%arg0: i64) -> i64 {

%c1_i64 = arith.constant 1 : i64
%c10_i64 = arith.constant 10 : i64
%idx1 = index.constant 1
%c100_i64 = arith.constant 100 : i64
%c0_i64 = arith.constant 0 : i64
%0 = index.castu %c0_i64 : i64 to index
%1 = index.castu %c100_i64 : i64 to index
%2 = scf.for %arg1 = %0 to %1 step %idx1 iter_args(%arg2 = %arg0) -> (i64) {

%3 = arith.cmpi sgt, %arg2, %c10_i64 : i64
%4 = scf.if %3 -> (i64) {

scf.yield %arg2 : i64
} else {

%5 = arith.addi %arg2, %c1_i64 : i64
scf.yield %5 : i64

}
scf.yield %4 : i64

}
graphalg.return %2 : i64

}

Without any special treatment of such loops, the interpreter would always run the loop
for 100 iterations, even if the termination condition holds much earlier. This does not affect
correctness in any way, since the loop body returns the iter arg unchanged, but it is detri-
mental to performance.

To address this issue, after each loop iteration the interpreter checks two things:

1. Are any of the values given in scf.yield different from the original iter args?
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2. Did any of the executed operations have side effects? For example, most GraphBLAS
operations used after bufferization do not return any result, but they do write output
to a buffer

If neither of these conditions is met, then the state of the program has not changed during
this iteration, so running the loop for more iterations would not have any effect on the pro-
gram state. The interpreter then terminates the loop early and returns the current iter args as
the results of the operation. Our approach works well for loops with a break condition and
even generalizes to other cases where unnecessary work can be avoided, but the compiler
does not detect this. Below we show an example of a loop (without an until condition) that
our interpreter can terminate after just one iteration:

Listing 5.23: A loop without an until that can be terminated early
func Term() -> int {

n = 0;
for i in 0:10000000 {

n = n + 1;
n = n / 2;

}
return n;

}

While it is nice to see our implementation generalize to other loops, we have not observed
realistic programs where it applies to loops without an until clause.

Now that we have discussed control flow operations, we discuss the other operation that
requires special support in the interpreter, SwapRefOp.

5.5.2 Implementing SwapRefOp
SwapRefOp is the bufferized equivalent of the SwapOp operation. It takes two buffers as
arguments and swaps their contents. A naive implementation of the operation is expensive
because it requires copying two potentially very large buffers. Because the interpreter stores
all variables in a global table, it can instead scan the table for any references to the two buffers,
and update them to point to the other buffer. Swapping all pointers has the same effect as
swapping the contents, but if the buffers are large and there are not too many pointers, it is
much faster.

This concludes our discussion of the interpreter implementation. In the next section,
we consider the tradeoffs between interpretation and JIT compilation and explain why we
decided to use an interpreter.

5.5.3 Interpreter vs. JIT compilation
The bufferized IR that our pipeline produces is low-level enough that it could straightfor-
wardly be converted into LLVM IR (with function calls to a GraphBLAS implementation),
JIT-compiled and executed. This approach is particularly common in compilers that use
MLIR because an LLVM IR dialect and JIT compiler integration are readily available. Un-
fortunately, compiling to machine code has important downsides:

• Lowering the IR to LLVM IR results in a larger IR, which is more difficult to debug.

• Inspecting the program statemid-execution is challenging. Unlike C++ code compiled
ahead of time, debug symbols are unavailable.

• The LLVM JIT compiler is known to have significant startup time[58], which adds to
the query execution time.
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Instead of a full compilation pipeline, we choose to execute the bufferized IR in a simple
interpreter. This approach requires less code to implement, is easier to debug, and has low
startup time. Running the program in an interpreter is somewhat slower than executing
native code, but we expect that for most programs, performing the linear algebra operations
will dominate the execution time. These operations will be executed by the GraphBLAS
library regardless, so we expect the interpreter to have negligible runtime overhead. We
validated this hypothesis in Chapter 7. However, before describing the evaluation in detail,
we first cover the operators backend in the next chapter.
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Chapter 6

Compilation to Operators

The operators backend compiles graphalg programs into IPR, the internal query IR used in
AvantGraph. After compilation, the algorithm becomes regular IPR like any other query, so
it relies on the AvantGraph query planner, execution plan generator and execution engine to
run the algorithm. The operators backend is therefore tightly coupled to AvantGraph, which
offers many advantages:

• Most optimization is taken care of by the query planner, sowedonot need to implement
this for most of the IPR we generate. Exceptions are cases where we need to introduce
new expressions to IPR, inwhich case there are no existing optimization rules, but these
optimizations are typically also useful in regular queries.

• Because both query and embedded algorithms use the same representation, they can
be optimized holistically by the query planner. This enables optimizations that are not
possible on the GraphBLAS backend.

• Use of the GraphBLAS backend requires that all data is loaded into a GraphBLAS-
native graph storage format before it can be processed. The operators backend can
execute directly on AvantGraph’s native format, eliminating the cost of performing this
conversion.

In Figure 2.2 we show an overview of the compiler pipeline.

Lowering
GraphAlg 

dialect IPR dialect IPR (native) To query 
planner

Convert

Specialize,
Shape inference,
Remove hints,
For loops to do-while

Figure 6.1: Pipeline of the Operators backend.

In the next sections, we explain each pass of the pipeline in more detail. The first is
specialization (Section 6.1), wherewe propagate constants from the query into the algorithm
IR. This pass also fixes the dimensions of the inputmatrices, which are then used in the shape
inference pass (Section 6.2) to determine the shape of all matrix types in the algorithm. The
operators backend does not use the memory management hints available in graphalg, so we
remove them to simplify the IR (Section 6.3). Because of the push-based evaluationmodel in
the operators backend, for loopswith break conditions are difficult to implement. To simplify
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the runtime, we transform them into do-while loops, such that the break condition can be
evaluated in parallel with the loop body expressions (Section 6.4).

Once the IR has been simplified as much as possible and all dimensions are known stati-
cally, it is ready to be lowered into the IPR dialect (Section 6.5). The IPR dialect is designed
to resemble AvantGraph’s native IPR, so any IR expressed in it can be directly converted into
IPR (Section 6.6). With the conversion complete, the generated IPR replaces the original al-
gorithm invocation in the query, and the modified query is passed on to the AvantGraph
query planner for optimization.

Tomake IPR expressive enough to support the graphalg languagewe extend it with addi-
tional types of expressions, including query planner support and implementations for these
operators in the execution engine. The most important of these is support for loops, whose
runtime implementation we discuss in Section 6.7. While IPR provides the necessary primi-
tives to express matrix multiplication, we also add a dedicated semiring operator that offers
higher performance. Its design is covered in Section 6.8.

Next to expressions dedicated to graph algorithms, we add apply, aggregate and constant
expressions to IPR (see Section 6.9). These are generic operators that are also useful for
regular queries but were not yet implemented in AvantGraph.

With the described modifications, IPR is powerful enough to express most graphalg pro-
grams. In Section 9.3 we discuss the remaining limitations in AvantGraph that prevent full
graphalg support.

6.1 Specialization
When calling a graphalg function in IPR, the parameters of the function may be bound to
arbitrary IPR expressions. Often some of these parameters will be bound to constant values,
or to expressions of which some properties are known to be constant. For example, consider
the following IPR query with an embedded graphalg algorithm:

Listing 6.1: An IPR query passing a constant value to a graphalg function.
call(

"
func Example(n:int) -> int {

return n + 1;
}

",
(%val) = "Example" (101)

)

The argument specialization pass propagates such constant values into the function body,
replacing all uses of an argument value with the constant. For the function embedded in
Listing 6.1, this results in a simplification of the IR:

Listing 6.2: IR before and after specialization
// Original IR
graphalg.func @Example(%arg0: i64) -> i64 {

%c1_i64 = arith.constant 1 : i64
%0 = arith.addi %arg0, %c1_i64 : i64
graphalg.return %0 : i64

}

// Specialized
graphalg.func @Example(%arg0: i64) -> i64 {
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%c102_i64 = arith.constant 102 : i64
graphalg.return %c102_i64 : i64

}

Next to specializing for literal constants, the specialization pass also propagates the di-
mensions of matrices. If, for example, we run a triangle counting algorithm on the graph, we
pass it as an argument to the call expression:

Listing 6.3: Calling TriangleCount on the graph
call(

"
func TriangleCount(graph: Matrix<bool>) -> int { ... }

",
(%val) = "TriangleCount" (

matrix(
projection(

access(%0, "friend"), {
%row = src(%0),
%col = trg(%0),
%val = %0.weight,

}
),
%row, %col, %val),

),
)

AvantGraph keeps statistics about the graph, including the number of vertices, so at the
time the algorithm is compiled it fixes the dimensions of the graph parameter. For a graph
with 42 vertices, the specialization pass applies the following transformation:

Listing 6.4: TriangleCount IR before and after specialization.
// Original IR
graphalg.func @TriangleCount(%arg0: tensor< ?x ?xi1>) -> i64 { ... }
// Specialized
graphalg.func @TriangleCount(%arg0: tensor<42x42xi1>) -> i64 { ... }

With the dimensions of the input matrices known, we can apply the next pass, shape
inference, to infer dimensions outputs of operations that depend on the arguments.

6.2 Shape Inference
Graphalg programs do not statically define the sizes of matrices, but to lower some opera-
tions into IPR, the dimensions of the inputs must be known. The shape inference pass is a
collection of rewrite rules that propagate knownmatrix dimensions through operations. For
most operations, the shape of their output is the same as the shape of the input. Exceptions to
this are the semiring, transpose and reduce_rows operations, for which we give the rewrite
rules in Listing 6.5.

Listing 6.5: Shape inference rules for semiring, transpose and reduce_rows. Identifiers with
capital letters represent placeholders for IR fragments. %a and %b are arbitrary MLIR values.
semiring (%a:tensor<Rx_xT0) SR (%b:tensor<_xCxT1>) -> tensor<?x?xT3> =>
semiring (%a:tensor<Rx_xT0) SR (%b:tensor<_xCxT1>) -> tensor<RxCxT3>

transpose $a:tensor<RxCxT> -> tensor<?x?xT> =>
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transpose $a:tensor<RxCxT> -> tensor<CxRxT>

reduce_rows OP %a:tensor<RxCxT> -> tensor<?xT> =>
reduce_rows OP %a:tensor<RxCxT> -> tensor<RxT>

6.3 Remove Hints
After shape inference, we run a pass to removememorymanagement hints. Three operations
are removed from IR, and replaced with a simpler expression:

• swap operations are deleted, and references are updated to point directly to the original
values.

• clear operations are removed by replacing them with a new matrix allocation.

• assign operations that do not specify a range do not take any values from base and
effectively copy value. They are replaced with a direct reference to value.

In Listing 6.6 we give a small graphalg program that can be simplified by this pass. The
corresponding IR before and after the transformation is given in Listing 6.7.

Listing 6.6: A graphalg program with memory management hints.
func Example(a:Vector<int>,

b:Vector<int>,
c:Vector<int>) -> Vector<int> {

swap a b;
c = b;
return c;

}

Listing 6.7: IR simplification using the memory management hints removal pass.
// Original IR
graphalg.func @Example(%arg0: tensor<?xi64>,

%arg1: tensor<?xi64>,
%arg2: tensor<?xi64>) -> tensor<?xi64> {

%0:2 = graphalg.swap %arg0 %arg1 : tensor<?xi64>
%1 = graphalg.assign %arg2 : tensor<?xi64> =

%0#1 : tensor<?xi64> -> tensor<?xi64>
graphalg.return %1 : tensor<?xi64>

}

// Hints removed
graphalg.func @Example(%arg0: tensor<?xi64>,

%arg1: tensor<?xi64>,
%arg2: tensor<?xi64>) -> tensor<?xi64> {

graphalg.return %arg0 : tensor<?xi64>
}

6.4 For to Do-while loops
There is one step remaining until we can lower to IPR: all for loops must be converted into
do-while loops. For loops with break conditions have semantics that are difficult to map to
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the push-based, bottom-up evaluation strategy in AvantGraph. Consider for example the
following loop:

Listing 6.8: A for loop with a break condition
func ForSimple(n:int) -> int {

for k in 1:10 until n >= 256 {
n = n + n;

}
return n;

}

Executing this loop in the AvantGraph runtime is problematic because before we can
evaluate the expression in the loop body, the loop conditionmust be evaluated. However, the
loop condition and body both depend on the iter args, so if we provide the necessary inputs
to the condition expression, the body will already start to be evaluated. While this issue
could be solved by speculatively executing loop bodies or stalling the execution of certain
operators temporarily, this would add significant complexity to the runtime. Instead, we
apply a transformation to the IR that preserves the original semantics of the program, yet
allows evaluation of loop body and condition in parallel.

This transformation is done in two steps. First, we transform the for loop into a while
loop with a single condition. Using Listing 6.8 as an example, after this first transformation
step the program becomes:

Listing 6.9: A for loop after conversion to a while loop.
func ForSimple(n:int) -> int {

k = 1;
while k < 10 && n < 256 {

n = n + n;
k = k + 1;

}
return n;

}

This first step makes the iteration process explicit and folds the range check into the con-
dition expression, simplifying the loop. The condition however still needs to be evaluated
before we can run the loop body. To avoid this, we peel off the first condition check and place
it before the loop to run directly on the initial arguments. Now if this initial check passes,
we can enter the loop and immediately execute the body. The condition only needs to be
re-evaluated after each iteration, so it naturally depends on the results of the loop body. We
have effectively converted the for loop into a do-while loop:

Listing 6.10: A for loop after conversion to a do-while loop.
func ForSimple(n:int) -> int {

k = 1;
if n < 256 {

do {
n = n + n;
k = k + 1;

} while k < 10 && n < 256
}
return n;

}
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In this particular example, the condition can only be evaluated after the body has been
fully evaluated, but in more complex programs with many loop-carried dependencies, the
condition can often be evaluated in parallel with the body.

An apparent issue with this transformation is that it introduces if statements into pro-
grams, which the operators backend does not yet have support for. Fortunately, many pro-
grams have constant initial arguments to loops, particularly after argument specialization,
so the compiler can usually determine statically that the loop condition will hold on the first
iteration, and omit the if statement. The program from Listing 6.10 is no exception: if we spe-
cialize it with n = 1, the if condition trivially holds, and we obtain the following program:

Listing 6.11: A for loop after conversion to a do-while loop, specialized for n = 1.
func ForSimple(n:int) -> int {

n = 1; // specialized
k = 1;
do {

n = n + n;
k = k + 1;

} while k < 10 && n < 256
return n;

}

After converting for loops into do-while loops, the graphalg IR reaches its final form. In
the next step, it is lowered into the IPR dialect.

6.5 Lowering to IPR
The lowering pass is by far the most involved in the pipeline: all operations in the IR are
rewritten to operations from the IPR dialect. The full rewrite is necessary because expres-
sions in IPR return a stream of tuples, so all operations must be adapted to return values of
this type. A tuple stream ismodeledwith the customMLIR type ipr.tuple_stream<columns>.
An instance of the tuple steam type has one or more columns, each identified with a globally
unique id. Every column also has an associated type for the elements that are returned from
that column. Before going into the details of how each operation in the graphalg dialect is
lowered into IPR, we first discuss how types are converted into these tuple streams.

6.5.1 Graphalg Types to Tuple Streams
Scalar values (types i1, i64, f64 and index) map to a stream with a single column (and a
single value, but this is not encoded in the type). For a graphalg operation with return type
i64, after lowering the return type thus becomes a type like ipr.tuple_stream<42:i64>, where
42 can be replaced with any number that is not already used in the IR for another stream.

Vectors are encoded as a streamwhere each tuple contains the row number and the value
for that entry. A type such as tensor<10xi1> becomes ipr.tuple_stream<43:index,44:i1> (in-
formation about the dimensions of the vector is lost after lowering).

Formatrices, the encoding resembles that of vectors but includes a column index. Thema-
trix type tensor<100x100xf64> maps to ipr.tuple_stream<45:index,46:index,47:f64>. Next,
we discuss how the individual operations are mapped to IPR.

6.5.2 SelectOp
SelectOp has a direct analog in relational algebra, the σ operator, which makes the lowering
trivial. For example, the graphalg expression select(==, A, 0) is equivalent to σA.val=0(A).
Besides comparison operatorswhich compare each entry of thematrix to somevalue, graphalg
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also supports the tril and triu predicates for selecting elements from a lower or upper tri-
angle of the matrix, respectively. The predicates are defined as:

tril(r, c, y) = c ď (r + y)

triu(r, c, y) = c ě (r + y)

Where y is an additional parameter that specifies above/below which diagonal entries
are filtered. AvantGraph only supports comparisons between slots and constant values in
selection predicates, so we cannot lower tril and triu predicates for all values of y. Luckily
the programs where we have encountered these predicates always have y P t´1, 0, 1u, in
which case simple comparisons of slots are sufficient. For example:

tril(r, c,´1) = c ă r

triu(r, c, 1) = c ą r

6.5.3 TransposeOp
Whereas in GraphBLAS a transpose operation is potentially expensive because of the data
format, the operators backend does not define an order over the elements of a tuple stream,
so a projection to swap the row and column suffices. The graphalg operation A.T maps to
Πrow=A.col,col=A.row,val=A.val(A). AvantGraph removes all projections when generating an ex-
ecution plan, so transposing a matrix comes at no runtime cost.

6.5.4 SemiringOp
The lowering of SemiringOp is crucial for the operators backend because it is typically the
most computationally expensive operation in an algorithm. In this section, we discuss a
strategy for lowering matrix multiplication into standard relational algebra operators. An al-
ternative specialized operation with higher performance and integrated masked assignment
is described in Section 6.8.

A conversion of matrix multiplication into relational algebra can be derived from the
definition:

Cij =
n

ÿ

k=1

Aik ¨Bkj

To compute this in relational algebra we must:

1. Make tuples with each Aik and Bkj . We do this using a join: A ’A.col=B.row B.

2. Multiply the two entries together. We use the binary function application operator
described in Section 6.9.

3. For each entry of the result, sum the results of the multiplication. In relational alge-
bra, this is a standard aggregation with grouping. The aggregation operator is also
described in more detail Section 6.9.

The apply and aggregate operators are generic over the function they apply, so we use
the same strategy to perform matrix multiplication over arbitrary semirings. In Figure 6.2
we give an illustration of generalized matrix multiplication lowered to relational algebra.
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Aggregate
accumulate val using ‘
group by A.row, B.col

Apply
val = A.val bB.val

’

A.col = B.row

A B

Figure 6.2: Matrix multiplication A(‘.b)B lowered to relational algebra.

6.5.5 MaskOp
The lowering of a masked assignment depends on the value of base and the descriptor flags.
The simplest case is C<M> = Awhere C is a new or empty matrix. In this case Cij is defined as:

Cij = Aij if Mij = true

Expressed in relational algebra, A and M are joined on their row and column. A selec-
tion predicate filters elements from M that do not have the value true. Finally, a projection
removes the additional columns from M again. The expression tree is given in Figure 6.3.

Π
A.row,A.col, A.val

’

M.row = A.row ^M.col = A.col

A
σ

M.val = true

M

Figure 6.3: Masked assignment in relational algebra.

If the structural flag is set, the selection operators over M can be omitted, since only
the presence of entries is significant. MaskOps with a base or complemented mask are not
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yet supported. If the MaskOp can be fused to a SemiringOp though, this functionality is
implemented directly by the semiring operator (Section 6.8).

6.5.6 ReduceOp & ReduceRowsOp
Both reduction operators can be lowered directly to an aggregation operator (see Section 6.9).
For ReduceOp no grouping keys are needed, while for ReduceRowsOp the row is a grouping
key.

6.5.7 AssignOp
AssignOp serves two purposes:

1. Assign a scalar value to multiple entries of a ‘base’ matrix.

2. Assign a matrix to a submatrix of a ‘base’ matrix.

Only the assignment of scalar values has been implemented, we discuss its implementation
below. Assigning a submatrix can be expressed in relational algebra, but we have not found
a need for this functionality, so we have not implemented it.

First, we look at an assignment of the form V[a:b] = n, where V is an empty vector. The
result of this statement should be a vector with value n for all positions between a (inclusive)
and b (exclusive). In relational algebra, this vector is generated by creating the constant range
a, a + 1, a + 2, . . . , b ´ 1, and computing a cartesian product with the value n, as shown in
Figure 6.4.

ˆ

Constant
val
a

a+ 1
. . .
b´ 1

n

Figure 6.4: Assigning a scalar value to a range.

The value n does not have to be constant. It can be defined by an arbitrarily complex
expression that AvantGraph can dynamically evaluate. While Figure 6.4 may suggest that n
is passed to the join as a scalar value, such a type does not exist in IPR. Instead, n is a stream
with a single column and one tuple.

The range a:b must be constant at algorithm compilation time. a and b can be literals in
the algorithm, or they can be determined by an expression that the compiler can fold to a
constant. Expressions for a and b may also depend on the dimensions of the graph or any
matrix derived from it, so long as the dimensions can be fixed by the shape inference pass.

A special case of this is the ‘all’ range. If instead the assignment were of the form V[:] =
n, the range depends on the number of rows in V. So long as shape inference can determine
the dimensions of V, this statement compiles. It translates to the same relational algebra
expression, only with a = 0 and b = V.nrows.
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If a base matrix is present, a selection operator must first be applied to clear existing
elements from the range, after which we compute a union with the expression shown in
Figure 6.4.

6.5.8 Casting

Graphalg supports casting of scalar types, e.g. real(42) converts the integer 42 into a floating
point number 42.0. While IPR is not explicitly typed, the inputs to binary operatorsmust have
matching types to be valid at runtime, so we insert cast operators into IPR just like we do in
graphalg IR. Since in IPR scalars are tuple streams with a single column, we can implement
casts as unary functions for the apply operator (see Section 6.9).

6.5.9 For loops

Loops in graphalg are lowered to a for loop operator specifically designed for this purpose.
We discuss its implementation in detail in Section 6.7. The IPR loop operator is more re-
stricted in functionality than the for loop construct in graphalg. The following properties are
important for the translation:

• IPR loop bounds are over constant integers, whereas graphalg allows these to be dy-
namically computed. There is currently no workaround for dynamic bounds. If con-
stant bounds cannot be determined for a loop, compilation fails. In practice, we have
foundmost loop bounds to be constants, especially after running the specialization and
shape inference passes. We note that this limitation on IPR loops is imposed merely to
simplify the implementation: a future extension may lift this requirement and allow
for a wider range of programs to be accepted by the backend.

• In graphalg IR, loops can return any number of results. However, because IPR requires
a tree structure, only a single result can be returned from an IPR loop. To convert loops
that return multiple results, a separate IPR loop is created for each result. We have
found loopswithmultiple results to be uncommon, butwhen necessary this conversion
does lead to inefficient query plans. For more details, see Section 9.3.

6.5.10 Scalar Arithmetic and Compare operations

Graphalg IR can containmany different operations that accept two scalar values as input and
return another scalar as output. This includes arithmetic operations (AddIOp, SubFOp, etc.)
but also comparison operations (CmpIOp, CmpFOp). Because of the structural similarities,
all these operations are lowered using the same strategy:

1. The two scalar inputs, now tuple streams, are combined using a join operation. Because
both streams produce exactly one value, no join condition is needed.

2. An apply operator (see Section 6.9) evaluates the desired function for the two inputs.

3. Using a projection, the original two input columns are dropped, leaving only the output
column.

As an example, in Figure 6.5 we give the IPR for the graphalg expression 1 + 2.

76



6.5. Lowering to IPR

Π
val

Apply
val = lhs+ rhs

ˆ

Constant
lhs
1

Constant
rhs
2

Figure 6.5: Scalar addition in IPR.

Aggregate
accumulate val using +

group by row, col

Ť

A B

Figure 6.6: Accumulation in IPR.

6.5.11 AccumOp
Accumulate operations are lowered into IPR by first creating the union of the base and value
tuple streams, grouping the results by row and column, and aggregating results using the
accumulation function. For a graphalg statement A += B, the generated IPR is given in Fig-
ure 6.6.

This approach works only for operators that are commutative since any ordering of ele-
ments in A vs. those in B is lost. We support A -= B as a special case by applying a unary
negation to the elements of B first, after which we can aggregate the results using +.

6.5.12 ApplyUnaryOp and ApplyBinaryOp
Unary/binary function application is lowered to an IPR apply expression (see Section 6.9).
For ApplyBinaryOp, where the second input is a scalar, we have the additional requirement
that it is a constant since inputs in IPR apply must be slots or constants. This limitation could
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be lifted with an additional join operator, but we have not needed it in any programs, so it is
not implemented. As an example, in Figure 6.7 we give the IPR for apply(abs, A).

Π
A.row,A.col, val = abs

Apply
abs = |val|

A

Figure 6.7: Unary function application in IPR.

6.5.13 ElementWiseOp

To lower ElementWiseOp we use one of two strategies, depending on the join mode. For
the intersection mode, we combine the two matrices using a join operator, then apply the
function with an IPR apply expression. An example with the division operator is given in
Figure 6.8.

Π
A.row,A.col, val

Apply
val = A.val/B.val

’

A.row = B.row ^A.col = B.col

A B

Figure 6.8: Element-wise division in IPR (intersection mode).

In union mode, we also need to preserve elements that are only present in one of the two
inputs, so we cannot use an inner join. As established in Section 3.3, an ElementWiseOp in
union mode is identical to an accumulate operation, so the expression add(+, A, B) lowers
to the IPR shown previously in Figure 6.6.
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6.5.14 NvalsOp
The NvalsOp counts the number of values present in a matrix. In our tuple stream repre-
sentation, this is equivalent to counting the number of tuples. We implement this by joining
every tuple with the constant 1, then accumulating the 1 values to obtain the count. If there
are no tuples in the input stream we should return a single tuple with value 0 instead of
outputting nothing at all. To achieve this, we also feed an initial 0 value into the aggregation
using a union operator. The IPR generated for an NvalsOp is given in Figure 6.9.

Aggregate
accumulate count using +

Ť

ˆ

A
Constant
count
1

Constant
count
0

Figure 6.9: NvalsOp in IPR.

6.6 Conversion to Native IPR
In the previous section, we discussed how to convert graphalg operations into the IPR in the
abstract, with no regard for how the IR can ‘escape’ MLIR and be converted into native IPR
data structures as they are used by AvantGraph. This section covers those details.

6.6.1 Operations to IPR Expressions
The IPR dialect is designed faithfully mimic the expressions available in IPR. Each operation
in the IR is mapped directly to the equivalent IPR expression. Unlike the IPR dialect, native
IPR is untyped, so all type information is lost in the translation process. The slot numbers
encoded in the types op expressions however are preserved as properties of the IPR expres-
sions. The translation is done recursively from the return statement of the called function.
For operations that have other operations as an input (e.g. a join operationwith child inputs),
we first convert the inputs, after which the parent expression can be constructed.

6.6.2 Multiple References to Operation Results
It is common for the generated IR to contain operations with a result that is used as an input
to multiple later operations. In MLIR using the same value twice requires no special treat-
ment, but in IPR we must take special care to avoid evaluating such an expression multiple
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times. If in IPR we include the same expression multiple times in the query plan, the plan-
ner constructs separate instances of it in the execution plan, which is typically inefficient. To
ensure that an expression is evaluated once no matter how many times it is referenced in
the query, IPR supports subexpressions. Subexpressions are named expressions stored along-
side the main query expression, which can be referenced any number of times by the main
query by their name. In the final execution plan, each subexpression is instantiated once,
and their outputs are broadcast to all operators that refer to it. When converting operations
into IPR expressions, the compiler checks how many times the result is used. If it is used
more than once, the expression is placed into a subexpression. While it would be safe to
conservatively place every converted operation into a subexpression, this creates a bloated
and difficult-to-optimize query plan, so if the compiler detects that a result is used exactly
once, no subexpression is generated.

6.6.3 Loop arguments

Like multiple references, loop body arguments are another construct that is trivial to rep-
resent in MLIR, but requires special consideration in IPR. IPR has no concept of regions or
blocks, so instead we create a special iter arg expression. An iter arg is similar to a subex-
pression reference, but instead of referring to an expression defined outside of the query, it
references a result of a previous loop iteration. When a loop iteration completes, the loop ex-
pression has received all inputs from the body. If the loop condition still holds, the received
blocks are sent back to the corresponding iter args, and a new iteration begins. In Figure 6.10
we illustrate the interaction between loop and iter arg expressions in a query plan.

Loop
id:loop0

initial
inputs

loop
body

Iter arg
loop0#arg1

loop
condition

Figure 6.10: An iter arg expression in a query plan. The relation between the loop expression
and iter arg drawn with a dashed arrow is implicit, and not part of the IPR structure.

The loop and iter arg expressions are new constructs in IPR that we add specifically to
support graph algorithms. In the next section, we discuss how they are implemented.

6.7 Implementing a Loop Operator
The IPR loop expression has the following inputs:
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• Initial arguments: child expressions that produce the initial values for the loop-carried
variables.

• Loop body expressions: child expressions that produce the next values for the loop-
carried variables. Together they represent a single loop iteration. They may depend
on iter args, which provide the current values of loop-carried variables. Loop body
expressions must produce the tuples with the same slots as the corresponding initial
arguments.

• Loop condition expression: a child expression that produces a single tuple. The tuple
must contain a boolean (bit is the terminology used in the runtime) column indicating
if the loop should terminate (false) or run for another iteration (true).

When converting the query plan into an execution plan, most of this structure is pre-
served: the loop expression becomes a loop operator, and the iter arg expressions become
iter arg operators. One important difference however is that initial arguments are not inputs
to the loop operators, but instead, they are directly connected to the corresponding iter arg.
The blocks of the initial arguments need to be forwarded to the iter args to run the first iter-
ation, and connecting them directly makes this easy. Once the loop body expressions have
produced all their output blocks and the loop operator has buffered them, the loop operator
moves the buffered blocks to the iter args. The loop operators then resets the iter arg operators
to prepare them for a new iteration. This also triggers a reset of all operators whose output
is affected by the iter args, which amounts to all operators in the loop body. After all loop
body operators have been reset, the iter args start to push their received blocks, triggering
the start of a new loop iteration.

We introduce reset functionality into the runtime specifically to support iteration. In the
next section, we discuss it in more detail.

6.7.1 Resetting operators
When the iter arg operators are ready to push their new blocks, we expect the loop body
operators to process them and push the output toward the loop operator. However, after the
first iteration completes, those operators have already produced output. As a result, they
have been marked by the runtime as completed, indicating they will not produce new tuples.
Completed operators are not monitored by the runtime for new inputs to process, stalling
the query. Furthermore, some operators are stateful, and may still be storing data from the
previous iteration. Therefore, to run a new iteration, the completion status of the loop body
operators must be reset, and their internal state returned to initial conditions. To achieve this
we extend the runtimewith reset functionality: an operator can request the query coordinator
to reset an operator x in the execution plan. The coordinator then clears the completion status
of x and clears its internal state. To ensure that the new blocks xwill output can be processed
by its parents, we also reset any operators that have x as an input. A complication occurs for
operators that have multiple inputs, such as a join. If only one of its inputs is reset, the entire
join operation must be performed again. Not only do we need to reset the parent of the join,
but we also need to reset all inputs to the join, even those that do not depend on an iter arg
operator. We give the full reset algorithm in Listing 6.12.

Listing 6.12: Operator reset algorithm.
// To reset a loop, call on all iter args.
// Initialize resetOperators with the index of the loop operator.
void reset(OperatorIdx idx, set<OperatorIdx> resetOperators) {

if (resetOperators.contains(idx)) {
return;
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}
resetOperators.insert(idx);
operators[idx].completed = false;

// Do not reset inputs of iter arg, they only need
// to be evaluated at the first iteration.
if (operators[idx].type != FOR_ITER_ARG) {

for (OperatorIdx input: inputs(idx)) {
reset(input, resetOperators);

}
}
for (OperatorIdx output: outputs(idx)) {

reset(output, resetOperators);
}

}

6.7.2 Build and Destroy Operators
The presented algorithm may appear to reset nearly the entire query plan at every iteration,
but this is rarely the case. An important reason for this is that IPR join expressions are con-
verted to multiple operators in the execution plan, and those operators do not have a simple
input-output relation. If we take as an example a join of A and B, which the query planner
has determined should be computed using a hash join with A on the probe side, and B on
the build side. The corresponding execution plan is given in Figure 6.11.

Hash Join

A
Hash table

Build

B

depends on

Hash table
Destroy

depends on

Figure 6.11: Execution plan for a hash join.

Three operators have been created for the join expression:

• A build operator to create a hash table of B.

• A join operator that receives tuples of A and probes the constructed hash table. The
join and build operators are related by a depends on edge, meaning the join operator
will only start processing once the build operator has completed.
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• A destroy operator that waits until the join is completed (via another depends on edge),
and frees the memory allocated for the hash table.

If this plan fragmentwere inside a loop, andAdepends on an iter arg butB does not, then
the hash table does not need to be rebuilt for the next iteration. This is nicely captured by the
plan because the reset function propagates only over input-output relations, not depends on
edges. We do need to be careful though where the depends on edge from the destroy operator
points to. If the join is part of a loop body and the build operator does not depend on an iter
arg, the destroy operator should run after the loop operator completes instead of after the
join, to preserve the table across iteration. Our implementation performs this analysis once
in the execution plan generator and places the depends on edge accordingly.

6.8 Designing a Semiring Operator
Graphalg semiring operations can be translated into the standard relational algebra opera-
tions join, apply and aggregate. Because semiring operations represent graph traversal steps,
they are fundamental to nearly all algorithms, and hence the performance and functionality
of this operation are crucial. In our experiments, we found two important problems with
the transformation of semiring operations into standard relational algebra, stemming from
limitations of AvantGraph:

• AvantGraph does not implement merge join, so a hash join is used instead. The larger
size of the join is typically the graph (or a large subset of it), leading to a very expen-
sive build phase that loads the entire graph into a hash table. The other side of the join
is smaller (on the order of the number of vertices in the graph), but this is still suffi-
ciently large that many probes into the table are needed. The result is high memory
consumption and low performance.

• complementedmasked assignmentwith the result of a semiring, such as r<!pi, struct>
= q (any.secondi) graph, is a common pattern in graph algorithms. For example, in
breadth-first search, this is used to avoid revisiting the same vertex multiple times.
Complemented masks can be expressed in relational algebra with an anti-join. An anti-
join filters out tuples from its source relation if join to a tuple in the filter relation. Unfor-
tunately, this type of join is not supported in AvantGraph, and implementing it would
take significant engineering effort.

To solve these issues, we implement a dedicated semiring expression in IPR with built-in
support for complemented masks. We also implement a custom lowering to query opera-
tors that are optimized for matrix operations. Depending on the rank of the input matrices
(graphalg support matrix-matrix, vector-matrix and matrix-vector) and whether or not a
(complemented) mask is present, we lower to different query operators. We focus on two
common cases where we get the most benefit: Masked matrix-matrix with right transpose,
for which we show an execution plan in Figure 6.12, and vector-matrix with an optional com-
plemented mask, shown in Figure 6.13.

6.8.1 Building CSRs
The two execution plans are quite different, but they do share a ‘CSR Matrix Build’ operator.
Instead of building a hash table, the semiring operatorwe build a graph representation based
on the compressed sparse row (CSR) format [46]. This representation is better optimized for
sparse matrices where fast access to rows is required. It is also one of the formats used by
GraphBLAS. In Figure 6.14 we show a classical CSR.
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Figure 6.12: Execution plan for masked matrix-matrix multiplication.
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Figure 6.13: Execution plan for Vector-Matrix multiplication with a complemented mask.

The col array stores the column index of each value in val. The entries are sorted by row
(and column), so instead of specifying the row number for each value, it is sufficient to store
where each row begins and ends. The rowindex array does exactly this: rowindex[x] stores
the offset into col or val where row x begins.

Our format is very similar but builds the CSR directly over the blocks of tuples that it
receives from the input to avoid unnecessary copies. Instead of a single offset value, our
rowindex stores both the block sequence number and the offset inside the block. We show
the same matrix in our format in Figure 6.15. The rowindex is built by scanning the row
column once all input blocks have been received.

Building a CSR requires that the matrix entries are sorted by row and column. Avant-
Graph does not provide this guarantee even for base tables (see Section 9.3). Sorting a large
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1 2 3

7 9

0 1 2 0 2

1 2 3 7 9

col

val

rowindex

Figure 6.14: A matrix represented in the classical CSR format with flat arrays.
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Figure 6.15: Our modified CSR format constructed over blocks.

set of tuples would be prohibitively expensive, so we have made additional modifications to
the runtime to keep data (mostly) sorted. Firstly, when loading input graphs, we provide
the edges to the loader in sorted order, so that at least the base table data is sorted. This
guarantees that blocks are initially created in sorted order from the base data, but the Avant-
Graph runtimemay process blocks in parallel and does not guarantee that they are delivered
in order. While the tuples within a block will remain in sorted order, intermediate operators
may cause the blocks themselves to be reordered. To address this problem we tag blocks
originating from a base table with a sequence number and propagate it where possible (e.g.
through selection operators). The CSR build operator uses this sequence number to sort the
blocks, recreating the original sorted tuples.

We currently perform the sorting and rowindex building on a single thread, which is
a potential performance bottleneck. In practice, however, we have not found it to have a
significant effect on the runtime of any algorithm, even on a machine with 46 cores.

6.8.2 Matrix-Matrix

For matrix multiplication where the right side is transposed, entries of the output matrix are
computed as:

Cr,c = Ar,0 bBc,0 ‘Ar,1 bBc,1 ‘ ¨ ¨ ¨

Because this is amaskedmatrixmultiplication, the output should only containCr,c ifMr,c

is present. We implement this by first building CSRs for A and B, then we stream in M and
produce results as we read entries of M . For each tuple (r, c, v) of M , we load row r from A
and row c from B. We multiply elements of the two rows in element-wise fashion using b,
then aggregate the result using ‘. Our method requires only row-wise access to A and B,
which is very efficient in the CSR format.
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6.8.3 Vector-Matrix
Our approach for vector-matrix is different from the matrix-matrix strategy, and instead re-
sembles the relational algebra approach. The key difference though is that instead of probing
a hash table, we nowprobe aCSRmatrix. Probing theCSRdoes not require hashing or testing
for collisions, and is therefore much faster. If the optional complemented mask is specified,
a filter is built before the probing starts. The probe operator checks if entries are also present
in the filter, and if so it skips them. The filter is implemented as a bitvector.

We found that in the breadth-first search algorithm, building the mask filter can take up
as much as 1/3 of the total execution time, so we have implemented additional optimizations
to make it faster. The simplest way to populate the filter is to loop over the entries of M
and write to the filter once for every entry. The X86-64 CPU that we run our experiments
on has a word size of 64 bits, so writes of a smaller size suffer a performance penalty, and in
general memory on the X86-64 architecture is byte rather than bit-addressable. To try and
make the most of our 64 bit writes, we do not write bits directly to the filter, but instead we
keep one 64-bit chunk in a register. So long as consecutive entries of M all map to the same
chunk, we can simply set an extra bit in the register. Only once an entry appears that falls
outside the current chunk do we write it to the filter, and place the chunk for the new entry
in the register instead. We have also experimented with partitioning the entries of blocks
before looping over them to avoid switching chunks, but we found that the reduced amount
of writes did not offset the cost of partitioning.

6.9 Other Operators Added in AvantGraph
Next to the loop and semiring operators, which are designed specifically for use in graphalg,
we extend AvantGraph with three generic operators that are also useful for regular graph
queries:

• A constant operator that allows embedding small constant tables directly in queries.

• An apply operator that applies a unary or binary function.

• An aggregation operator that aggregates values of one column, optionally grouped by
one or more key columns.

6.9.1 Constant operator
The constant operator defines a small table that is inlined into the query plan. It is useful for
representing literals included in a query or algorithm.

To support the translation of large graphalg ranges, we also include bounded range gen-
eration into the constant operator. Expanding such a range at compile-time can potentially
consume a lot of memory, so in the constant operator, we allow specifying only the endpoints
of the range for a particular column. The entries of the range are computed at runtime and
produced one block at a time.

6.9.2 Apply operator
The apply operator applies a unary or binary function to certain columns of each tuple. For
unary functions, the argument must be a column, whereas for binary functions one of two
inputs can also be a constant value. We currently implement the following functions:

• Casting (unary): to vertex id, integer or real.

• Arithmetic (binary): add, subtract, multiply, divide.
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• Arithmetic (unary): absolute value, unary negation.

• Compare (binary): =,‰,ă,ď,ą,ě.

• Logical (binary): logical and.

The apply operator does not modify any of the original columns in the stream but instead
adds an extra column containing the result.

6.9.3 Aggregation operator
The aggregation operator takes as input a column to aggregate, a merge function or monoid
used to aggregate values, and optionally several key columns. The output stream contains
only the aggregation and key columns. One tuple for every unique combination of key values
in the input stream is returned. If the input stream contains multiple tuples for the same key
values, they are combined using the merge function.

The operators backend often inserts aggregation functions to combine two vectors, and it
is also used to perform matrix multiplication if the semiring operator is not used. For these
purposes, the aggregation operator always uses the row and column index as keys. Because
this case is so common, we provide a specialized implementation for it with a hash table
optimized for small keys.
This concludes the chapter on the operators backend. Now that we have covered the design
of the compiler and its backends, we continue with an evaluation of the system.
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Chapter 7

Evaluation

We evaluate our implementation on the design goals stated in Section 3.1:

• Efficiency: We compare the execution time of the GraphBLAS backend against LA-
Graph, a collection of state-of-the-art graph algorithm implementations based on the
GraphBLAS library (Section 7.2). We also compare the performance of theGraphBLAS
and operators backends based on total execution time (Subsection 7.3.3), graph loading
time (Subsection 7.3.4) and peak memory consumption (Subsection 7.3.5). Addition-
ally, we verify that our optimizations are generic enough to apply to new algorithms
(Subsection 7.4.1).

• Ease of programming: Graphalg is a high-level language that is memory safe and ter-
minating. With built-in support for linear algebra operations, graph algorithms can
be expressed concisely, and without explicit parallelism. Many potential users will
already be familiar with linear algebra since it is part of the curriculum in many (en-
gineering) degrees. We believe these qualities make graphalg easy to learn and use.
However, we recognize that the accessibility of the language is a subjective quality that
is difficult to quantify, especially now that the language has no active users. Running
a user study to investigate users’ experience with graphalg is outside of the scope of
this thesis, and left as future work. We do not discuss ease of programming further in
this chapter.

• Safe to run inside a database: Graphalg is a memory safe language. Furthermore, all
loops are bounded, and recursion is forbidden, providing a guarantee that all graphalg
programs terminate eventually. Graphalg thus satisfies our definition of safe execution
in a database. Theremay still be bugs in the implementation that break these properties.
Extensively testing our implementation for safety violations, however, is out of scope
for this work. We do not discuss safety further in this chapter.

• Expressivity: Graphalg can express all programs in theGAP benchmark suite. Our cur-
rent GraphBLAS backend can execute efficient implementations of the Triangle Count
(TC), Single-Source Shortest Paths (SSSP), PageRank (PR) and Breadth-First Search
(BFS) algorithms. The execution time of these programs is competitive with a good C
implementation (Section 7.2). With a few simplifications to SSSP and BFS that only af-
fect performance, the same algorithms also run on the operators backend (Section 7.3).
We also provide implementations of the remaining two algorithms, Betweenness Cen-
trality (BC) and Connected Components (CC). While they are not as efficient as the
LAGraph implementation, they demonstrate that graphalg does have the expressivity
to encode them (Section 7.4).

The key findings of our evaluation are summarized in Section 7.5.
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7.1 Experimental setup
We base our setup on the GAP benchmark suite [3].

7.1.1 System Configuration
Experiments were run on a Kubernetes pod with an allocation of 46 logical cores (Intel(R)
Xeon(R) CPU E5-2697 v2 @ 2.70GHz) and 500GB DDR3 RAM. The 46 logical cores amount
to 23 CPUs, spread over 2 NUMA nodes. The graphs were stored on a 15000 RPM hard disk.
No other pods were scheduled on this machine. The remaining 1 core and 12GB of RAM
were reserved for Kubernetes daemon processes.

7.1.2 Software Versions
Graphalg is built on top of AvantGraph commit 93b09487. Our implementation and bench-
marking setup has the following external dependencies:

• SuiteSparse v8.0.2 [15] (the reference GraphBLAS implementation)

• LAGraph v1.0.1 [14] (only used for benchmarking)

• LLVM project (for MLIR) commit 2708869 [51]

7.1.3 Graphs
All graphs used in our evaluation are part of the GAP benchmark suite:

• road: a relatively small graph (|V | = 24M , |E| = 58M) that represents the USA road
network. It has a single strongly connected component: every vertex in the graph is
reachable from every other vertex. It also has an exceptionally large diameter.

• web: a crawl of all domains registered under the .sk LTD. It is the largest graph used
in our evaluation (|V | = 50.6M , |E| = 1, 949.4M).

• twitter: a dump of the twitter social network topology. Its size is similar to web (|V | =
61.6M , |E| = 1, 468.4M), but it is noted to have a more irregular structure.

• The GAP benchmark suite also includes two very large synthetic graphs, ‘kron’ and
‘urand’. These are too large for our current implementation to handle on this hardware,
so we omit them from the evaluation.

The base data for all graphs were retrieved from the SuiteSparse Matrix Collection [16].

7.1.4 Algorithm Parameters
We follow the GAP benchmark specification and LAGraph benchmarking setup for the pa-
rameters of the algorithms we benchmark:

• Triangle Count: no additional parameters except for the graph.

• Single-Source Shortest Paths: delta depends on the graph. It is set to 50, 000 for road,
140 for web and 51 for twitter. We select a source node from the list included with the
base graph. The same list is used in the LAGraph benchmark setup.

• PageRank: we use a damping factor of 0.85, tolerance of 10´4 and a maximum of 100
iterations.
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• Breadth-First Search: like SSSP, We select a source node from the list included with the
base graph.

• Betweenness Centrality: we select four source nodes from the list included with the
base graph.

• Connected Components: no additional parameters except for the graph.

7.2 Generated Code Quality and Interpreter Overhead
In this section, we evaluate how well our optimizing compiler can transform the high-level
graphalg language into efficient GraphBLAS library calls. We also measure the overhead
added by the interpreter versus a fully compiled C program. For this benchmark, we take
four GAP benchmark algorithm implementations from the LAGraph [35] library and port
them to graphalg.

7.2.1 Algorithm Implementations
LAGraph is a collection of high-performance graph algorithm implementations built using
GraphBLAS primitives. It is designed to provide high-quality implementations of common
algorithms that can be used as a library, and represents the state of the art in terms of per-
formance of GraphBLAS-based analytics. For the best possible performance, the reference
GraphBLAS implementation SuiteSparse supports non-standard tuning parameters on indi-
vidual matrix and vector instances to control the internal data format used for their repre-
sentation. On some algorithms, particularly Single-Source Shortest Paths and Breadth-First
Search, this improves performance, so the LAGraph implementation sets these hints if the
implementation exposes them. These tuning parameters are advanced features, which we
expect most users will not use in their algorithms. We have therefore not implemented tun-
ing parameters in graphalg, but we do not see any difficulty in adding them for expert users.
Our reference C implementations are identical to the implementations fromLAGraph, except
that the tuning parameters have been disabled.

The specific implementations we have benchmarked are:

• TC: Triangle Count using the Sandia LUTmethod [56]. The default implementation in
LAGraph.

• SSSP: Delta-Stepping Single-Source Shortest Paths [50].

• PR: the variant of PageRank specified in the GAP benchmark specification [3], as im-
plemented by LAGraph.

• BFS: Direction-Optimized Breadth-First Search [59].

The source code for the algorithms can be found in Section A.1.

7.2.2 Experimental Setup
We choose the road graph for this benchmark because it is the smallest graph. In larger
graphs, the time spent inside the GraphBLAS library would take up a larger part of the run-
ning time, impeding our ability to measure the overhead of the interpreter.

An important difference with this setup compared to later ones is that we run the Graph-
BLAS backend in standalone mode, bypassing AvantGraph. This avoids time spent loading
the graph, which is not counted in the GAP benchmarks. Fully replicating the LAGraph
benchmark setup [13] also required disabling mmap, which AvantGraph relies on heavily.
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For each benchmark instance, we loaded the graph into memory, then started with a
warmup run. The instance was then run three times, of which we report the median time.

7.2.3 Analysis

See Figure 7.1 for the execution times of the algorithms on the road graph. We include the
reference C implementation with and without tuning parameters. For graphalg, we include
the GraphBLAS backend with and without our optimizations (as described in Section 5.2).
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Figure 7.1: Execution time of the GraphBLAS backend compared to the reference implemen-
tation. All times are normalized to the execution time of the optimized C implementation
(without SuiteSparse tuning).

We find that without optimizations, graphalg is significantly slower on all benchmarks,
particularly BFS. The generated IR contains many more tensor allocations and copies, which
negatively affect performance. By running GraphBLAS in debugmode1, we can also observe
that different, less efficient GraphBLAS functions are used due to a lack of fusion.

With optimizations turned on, however, execution time approaches the reference imple-
mentation and is only a few percent slower execution on most benchmarks. We also observe
that the interpreter invokes the same GraphBLAS functions as the reference implementation,
indicating proper fusion of operations. The difference in execution time that we measure is
therefore due to the overhead of interpreting the compiled program. Overhead is highest
in the SSSP program. Most likely this is because SSSP runs many short iterations with rel-
atively cheap GraphBLAS function calls. This is in contrast to TC, where overhead is low
because the program compiles into a handful of GraphBLAS calls without any control flow.
PR represents a middle ground with a few tens of iterations that are moderately expensive,
and hence the measured overhead is between TC and SSSP.

1We enable the burble, which causes the specific implementations used for each function to be printed to the
console.
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7.2.4 Limitations of the GraphBLAS backend
For the programs we have tested, the graphalg compiler produces comparable code to the
optimized C implementation. The optimizations we have implemented are generic and not
specific to any algorithm, but they were developed to improve the performance of these spe-
cific algorithms. In Subsection 7.4.1 we show that our optimizations also suffice for the BC
and CC algorithms. We developed these algorithms after the optimizations had already
been implemented, suggesting that the same optimizations would work for many other al-
gorithms. However, we have not investigated the optimization space in detail, and additional
optimizations may be needed for new algorithms.

Our current GraphBLAS backend does not make use of SuiteSparse tuning parameters.
This can have a significant performance impact, as shown in Figure 7.1. Future work may in-
vestigate if theGraphBLASbackend could automatically perform such tuning, either through
IR analysis or profile-guided optimization. Another solution would be to extend the lan-
guage with pragmas, so expert users can set these tuning parameters manually.

7.3 GraphBLAS vs. Operators Backend
This section compares the performance of the GraphBLAS and operators backends based on
total execution time, loading time and peak memory consumption.

7.3.1 Algorithm Implementations
We use the same algorithms as in Section 7.2. The implementations of SSSP and BFS have
been simplified due to limitations of the operators backend, most notably the lack of condi-
tional branching. Particularly on the fully connected road graph, this significantly impacts
the performance of the SSSP program. To avoid excessive running times, we limit the imple-
mentation to 200 hops, which is still sufficient to obtain the shortest paths on all other graphs.
The updated implementations can be found in Section A.2.

7.3.2 Experimental Setup
To import the graphs inAvantGraph, we converted eachMatrixMarket file into a list of sorted
triplets (by row and column index). These triplets were then imported using the standard
AvantGraph loader. Edge weights were attached as integer properties.

Contrary to the previous benchmark, the graph is read from disk every run. When mea-
suring execution time, we include the time to read the graph from disk as well as the time
needed to transform it into a representation suitable for graph analytics. Likemost databases,
AvantGraph is disk-based and can support graphs that are larger than main memory. Data
is not assumed to be resident in main memory, so the cost of loading it is an important factor
in measuring query performance.

We do not count the time needed to compile algorithms and plan the execution. In our
benchmarks, this is a negligible amount, so we only measure the execution time of the query,
starting from the moment that it is handed off to the runtime.

We test three different backend configurations:

• GraphBLAS backend: the same implementation as tested in Section 7.2, now integrated
into AvantGraph.

• Operators backend: uses the operators backend, with semiring operations converted
into a chain of join, apply and aggregate operators. Due to the lack of an anti-join
operator, BFS cannot be run in this configuration.
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• Operators backend, with semiring operator: uses the same operators backend, but con-
verts semiring operations into a specialized semiring operator. This configuration does
support running BFS, but because a Matrix-Vector product is not implemented, it falls
back to a join-apply-aggregate chain for PR. We do not present results on PR for this
configuration, since they are the same as the regular operators backend configuration.

For the benchmarks of execution and loading, we run each benchmark instance three
times and report themedian. Peakmemory consumption does not vary significantly between
different runs, so we only run each instance once.

7.3.3 Total Execution Time
In Figure 7.2 we show the query execution time on the road graph, normalized to the execu-
tion time of the GraphBLAS backend.
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Figure 7.2: Query execution time on the road graph, relative to the GraphBLAS backend.

We draw the following conclusions based on the results:

• There is no clear winner between the two backends. On TC and SSSP, the operators
backendwith semiring operator outperforms the GraphBLAS backend. As we show in
Subsection 7.3.4, this is partly due to graph loading time.

• The operators backendperformsmuchbetterwith the semiring operator enabled. Build-
ing and probing hash tables is slow compared to a specialized sparse matrix represen-
tation. Results without the semiring operator are omitted in the larger graphs because
they did not terminate within reasonable time (8 hours). Because the semiring opera-
tor does not support the Matrix-Vector multiplication needed for PR, execution time of
PR is much higher on the operators backend.

• The GraphBLAS backend runs BFS more than 80 times faster than the operators back-
end. The large difference is due to GraphBLAS’ ability to aggregate in place. In the
road graph all vertices are reachable from any starting node. Over many iterations, the
algorithm fills a vector the size of the number of vertices in the graph. The GraphBLAS
backend creates the vector once and adds a few elements to it per iteration. The opera-
tors backend on the other hand must rebuild the vector at every iteration, resulting in
unnecessary copies and aggregation.
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Running the same queries on the larger web graph, shown in Figure 7.3, we see some
important differences.
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Figure 7.3: Query execution time on the web graph, relative to the GraphBLAS backend.

• SSSP now runs fastest on the GraphBLAS backend rather than the operators backend.
We suspect the reason is again in-place aggregation.

• BFS is now faster on the operators backend. This is a consequence of the graph topol-
ogy: the graph consists of many small connected components, so a BFS from one node
will only discover some of the vertices in the graph. For the operators backend, this
means there is less data to copy per iteration. The runtime of this algorithm on the web
graph is dominated by the loading time, which is lower on the operators backend (see
Subsection 7.3.4).

Lastly, we look at the execution times on the twitter graph, shown in Figure 7.4.
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Figure 7.4: Query execution time on the twitter graph, relative to the GraphBLAS backend.
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• TC is now faster on the GraphBLAS backend, where previously the operators back-
end consistently performed better. During execution we observed that the GraphBLAS
barely utilized 2 cores. Surprisingly, the operators backend fully utilized all 46 cores,
but it was still slower. Unfortunately, we cannot use profiling tools such as perf on the
server, so we were unable to investigate this result further.

• SSSP and BFS are faster on the operators backend, again due to the loading time (see
Subsection 7.3.4). Both backends spend little time executing the loop. The majority of
time is spent constructing the matrix representation, which is faster on the operators
backend.

In general, the operators backend performs better on short benchmarks due to quick load-
ing. For computationally heavy benchmarks, the GraphBLAS backend performs better. In
the next section, we investigate the effects of graph loading time in detail.

7.3.4 Loading Time vs. Loop Time
Now we break down the results from Subsection 7.3.3 into two parts:

• Loading time: time spent loading the graph from disk, and building an appropriate
representation for executing the algorithm. In the case of the GraphBLAS backend, this
involves constructing a Matrix in the internal GraphBLAS format. For the operators
backend with semiring operator, we build a CSR representation directly over the input
blocks, as described in Section 6.8.

• Loop time: time spent running the algorithm once the inputs have been loaded. For
most algorithms, this corresponds to executing a loop. TC is an exception because
it does not contain a loop. For TC, we instead count the matrix multiplication and
reduction to an integer as part of the loop time. The filtering to create the L and U
matrices, and building CSRs for those matrices makes up the loading time.

The results below are based on the same data as we presented earlier in Subsection 7.3.3.
We compare the GraphBLAS backend to the operators backendwith semiring operator. Only
those benchmarks where the load time is significant are shown. We start with a breakdown
of TC and SSSP on the road graph, shown in Figure 7.5.
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Figure 7.5: Load and loop times on the road graph.

Loading the graph takes significantly longer on the GraphBLAS backend. In both TC
and SSSP, the GraphBLAS backend spends more than half of the execution time loading the
graph. The operators backend finishes running the algorithm even before the algorithm
starts executing on the GraphBLAS backend. Even if we disregard the loading time though,
the operators backend still outperforms the GraphBLAS backend.
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The results for the web graph, shown in Figure 7.6, paint a different picture.

TC BFS
0

200

400

600

800

1,000
Ex

ec
ut

io
n
tim

e
(s
ec

on
ds

) GraphBLAS load time
GraphBLAS loop time
Operators load time
Operators loop time

Figure 7.6: Load and loop times on the web graph.

For both TC and BFS, the GraphBLAS backend now executes the loop body faster than
the operators backend. However, the loading time remains high on the GraphBLAS backend,
exceeding the total execution time of the operators backend. It has already lost the race before
it can start running the loop. The effect of loading time is strongest on the twitter graph,
shown in Figure 7.7.
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Figure 7.7: Load and loop times on the twitter graph.

In the previous two graphs TC had a low loop time, but on the twitter graph, loop time
dominates the execution time. Instead, we show SSSP, where loading time does dominate
execution time on this graph. Evenmore so than before, the loop time is negligible compared
to the loading time. The size of the twitter graph is comparable to the web graph, but the
effect is stronger because the two algorithms visit only a very small part of the graph.

We conclude that load time is indeed significant for half of the algorithms we have tested
(althoughwhich half depends on the specifics of the graph). This is especially concerning for
the GraphBLAS backend, where loading time is highest. Matrices must be converted into the
GraphBLAS native format before they can be used, an unavoidable cost to using the library.
On the operators backend we have more freedom to improve loading time. For example,
development is underway to change the AvantGraph native storage format to be more like
a CSR. This would allow the operators backend to directly run operations over the on-disk
representation, eliminating loading time.

7.3.5 Memory Consumption
Lastly, we measure the peak memory consumption for each configuration. We use heap-
track [57] to log memory allocations and deallocations. Its analysis tool can then find the
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point in time where memory usage peaks, and show where the memory was allocated.
We begin with the results for the road graph (3.6GB on disk), shown in Figure 7.8.
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Figure 7.8: Peak memory consumption on the road graph.

We note the following about the results:

• Neither backend can operate directly on stored data. Both require the graph to fit in
main memory.

• The GraphBLAS backend is remarkably efficient, consuming just a bit more than the
on-disk format. Memory usage peaks during the construction of the input graph.

• Without the specialized semiring operator, the graph is represented as a hash table.
This is very inefficient, consuming over twice the on-disk space. In the case of PR,
multiple aggregation phases each pre-allocate a large buffer for better performance,
further driving up memory usage.

• With the semiring operator enabled, the operators backend approaches the graphblas
backend. TC is still less efficient because the graph is joined with itself, and the query
plan constructs two CSR matrices for the graph. The GraphBLAS library appears to
prevent the materialization of the intermediates.

Next, we look at the results for the web (102GB) and twitter (78GB) graphs, shown in
Figure 7.9 and Figure 7.10 respectively. Because the results are so similar, the same analysis
applies to both figures:

• There is no clear winner between the backends. GraphBLAS still performs better on
TC because it avoids constructing two intermediate matrices, but on SSSP and BFS the
operators backend is more efficient.

• On the GraphBLAS backend, memory consumption is no longer fully dominated by
the graph construction phase. As a result, we observe slightly higher relative memory
usage.

• The lower relative memory usage of the operators backend on SSSP and BFS is related
to the design of our aggregation operator: it pre-allocates space based on the number of
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vertices in the graph. The edge-to-vertex ratio is much higher on the large graphs (24-
38 edges/vertex) compared to road (2.4). Because of the higher edge-to-vertex ratio,
the aggregation operators use a relatively low amount of memory.
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Figure 7.9: Peak memory consumption on the web graph.
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Figure 7.10: Peak memory consumption on the twitter graph.

To conclude: with a peak memory consumption on the order of the size of the input
graph, the current implementations are not suitable for extremely large graphs. The high
memory consumption does not come as a surprise, however. The on-disk storage format
of AvantGraph is not suitable for graph analytics, so both backends are forced to load the
full graph into a more suitable representation. Once the on-disk format evolves to be more
amenable to analyticsworkloads, we expect that the operators backendwill be able to directly
use the on-disk format, thereby reducing memory consumption dramatically. Another issue
is that our current aggregation operator pre-allocates a large buffer. The size of this buffer
could be tuned better to further reduce memory consumption.
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7.4 Expressing Betweenness Centrality and Connected
Components

A port of the betweenness centrality (BC) and connected components (CC) algorithms is
not as straightforward as it is for the other four algorithms. Although the specifics vary per
algorithm, in both cases the issue arises from limitations of the GraphBLAS API, which the
implementation resolves by using the flexibility of the C language.

The LAGraph implementation of BC needs to keep track of the depth atwhich each vertex
is first seen. Instead of storing a depth level per vertex, the implementation keeps a list of
bitmaps, one for each level. This approach is more efficient, but since the current version of
graphalg does not support arrays, we cannot replicate this code.

For CC, LAGraph provides two implementations, but neither can be ported directly to
graphalg. The fastest implementation needs a selection predicate that filters vertices based
on their rank. Since this functionality is not available in the current GraphBLAS API (there
is a note in the code that it will be added), it is implemented in plain Cwith raw access to the
underlying matrix data and explicit parallelism using OpenMP. The slower implementation
is also not suitable because it requires user-defined selection predicates.

While the current graphalg compiler does not support a particularly efficient implemen-
tation of BC or CC, it does have the expressivity to encode them. To show this, we implement
slower but correct versions of both algorithms, working around the limitations of the lan-
guage where necessary. For BC, we stick to the LAGraph implementation where possible.
Instead of using arrays, we stack the depth matrices on top of each other in one large matrix.
Per-depth matrices are extracted using matrix sub-indexing. To implement CC, we use the
simple component-at-a-time algorithm.

Both algorithms are included in Section A.3, and can be executed using the GraphBLAS
backend (the current operators backend does not support matrix indexing).

7.4.1 Performance Compared to LAGraph
We quantify the performance impact of using our simplified implementations by comparing
their execution time to the LAGraph version, similar to Section 7.2. We also show that the
existing optimizations of our compiler are sufficient to optimize our implementations of BC
and CC.

Experimental Setup

Our setup closely resembles the one from Section 7.2.

• We use the smaller road graph so that the interpreter overhead is most noticeable.

• The GraphBLAS backend is used in standalone mode.

• Each benchmark instance runs with the graph already loaded into main memory.

• For each instance, we do a warmup run. We then run it three times, and report the
median execution time.

We test four different configurations:

• The LAGraph implementation. This represents the best known implementation of the
algorithm using GraphBLAS.

• AC implementation of our simplified algorithm. This is the algorithmaswe implement
it for graphalg, butwritten inC.Wehave hand-optimized the implementation by fusing
operations as much as possible. It is not as fast as LAGraph because we do not use
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native C features like arrays or raw matrix access. Our implementation also does not
use SuiteSparse tuning parameters.

• The graphalg version of the algorithm, executed by the GraphBLAS backend with op-
timizations disabled. We show this configuration to demonstrate the effect of our opti-
mizations.

• The graphalg version of the algorithm, executed by the GraphBLAS backend with op-
timizations enabled. This is the best known implementation of the algorithm using the
current version of graphalg.

Analysis

Figure 7.11 shows the performance of the different configurations.
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Figure 7.11: Execution time of BC andCCon theGraphBLAS backend compared to LAGraph.
All times are normalized to the execution time of the C implementation. Results for BC on
Graphalg without optimizations are omitted because the interpreter ran out of memory.

Based on these results, we conclude the following:

• The LAGraph implementations are indeed significantly faster than our simplified algo-
rithm. We expect that the difference would be even larger on bigger graphs. For BC,
this would involve larger copies of submatrices. For CC, more repeated graph traver-
sals would be necessary.

• Without optimizations, graphalg is much less efficient than the C implementation. CC
takes twice as long to execute. For BC, the interpreter even runs out of memory after
allocating more than 500 GB.

• With optimizations turned on, performance is comparable to the C implementation.
This shows that our optimizations also perform well on programs that they have not
been specifically designed for. We observe that the GraphBLAS backend issues the
same GraphBLAS calls as the C implementation. The only difference in execution time
comes from interpreter overhead.
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We conclude that both BC and CC can be expressed in the current version of graphalg,
although performance could be improved further. An efficient implementation of BC and
CC would be possible with reasonable extensions to the language. To support BC, arrays
or three-dimensional tensors would be a suitable addition. For CC, rank-based selection
predicates would suffice. We leave these additions as future work.

7.5 Key Findings
Our key findings from the evaluation are the following:

• The majority of algorithms from the GAP benchmark suite can be straightforwardly
ported from LAGraph to graphalg. Barring the advanced tuning settings available in
specific GraphBLAS implementations, our GraphBLAS backend is competitive with
a state-of-the-art implementation in C (Section 7.2). The optimizations we have de-
veloped are also effective on algorithms that they were not specifically designed for
(Subsection 7.4.1).

• The operators backend performs much better with the semiring operator enabled. The
CSR representation for matrices is faster to build and probe than a hash table (Subsec-
tion 7.3.3). It also uses less memory (Subsection 7.3.5).

• Between the GraphBLAS and operators (with semiring operator) backends, there is no
clear winner. The operators backend is faster on short benchmarks. On more compu-
tationally intensive problems, the GraphBLAS backend shows superior performance
(Subsection 7.3.3).

• The operators backend performs poorly on algorithms that fill a large vector over many
iterations, due to a lack of in-place aggregation (Subsection 7.3.3). Given the severe
performance impact, future work is needed.

• On a disk-based system such as AvantGraph, the time needed to load the graph from
disk and represent it in a way suitable for analytics, load time, is an important factor in
query performance. For half of the algorithms tested, we find that load time makes up
a significant part of the total execution time (Subsection 7.3.4). It is particularly high
for the GraphBLAS backend, and non-trivial to reduce. On the operators backend load
time is consistently lower. Upcoming changes to the on-disk representation of graphs
are expected to further reduce the operators backend load time.

• Load time is significant in both backends because the entire graph is loaded into main
memory. To allow querying graphs larger than main memory, future work is needed.
In particular, the representation of graphs on disk must be changed to support direct
use in graph algorithms. Work is ongoing to make these changes in AvantGraph.

• Graphalg is expressive enough for all algorithms included in the GAP benchmark suite.
For four out of six algorithms, we can implement state-of-the-art versions with excel-
lent performance (Section 7.2). The other two algorithms can be expressed, albeit not
very efficiently (Section 7.4). We posit that these shortcomings can be addressed with
reasonable and generally useful extensions to the language.

102



Chapter 8

Related Work

In this chapter, we discuss research and systems that are related to our work along one or
more of the following axes:

• User-provided algorithm support in databases.

• Domain-specific languages for graph algorithms.

• Linear algebra in relational databases.

• MLIR-based software related to linear algebra or databases.

• User-friendly APIs built on top of GraphBLAS.

8.1 Algorithm Support in Databases
We begin our treatment of algorithm support in databases by noting that many database
systems have supported procedural extensions to SQL for decades. This technically makes
it possible to implement algorithm in them, but as noted by Gupta and Ramachandra [22],
these languages are rarely efficient. Therefore, in the remainder of this section, we focus on
systems that go beyond such extensions.

A prominent example among graph databases is the commercial system TigerGraph [17].
TigerGraph’s query language GSQL is based on SQL, with extensions to support accumula-
tors and imperative control flow. The extensions make GSQL expressive enough to encode
implementations for the algorithms in the GAP benchmark suite [54]. We estimate that the
expressivity of GSQL is similar to that of graphalg. One limitation of GSQL, which graphalg
does not have, is that per-vertex accumulators must be defined in the global scope, and may
not be declared inside loops. Being a commercial system, implementation details of Tiger-
Graph’s planner and runtime are not publicly available, so we can only speculate how much
their system resembles graphalg internally. Publicly available documentationmakes nomen-
tion of any connections to linear algebra. The paper introducing GSQL [17] mentions Green-
marl [23] as a source of inspiration, and GSQL indeed appears to resemble a vertex and
edge-set-based language, given that accumulators originate from this model. We like that
TigerGraph shows that in-place accumulators can be added to a database engine. We hope
to implement similar functionality in our operators backend in future work.

Neo4J is another graph databasewith some support for user-defined code [53]. As briefly
mentioned in Section 3.2, users of the database can write custom procedures in Java. The
Cypher language includes a dedicated CALL keyword to invoke such procedures. The Java
API offers programmers great flexibility and expressiveness, but it also makes it impossible
for the database to optimize the implementation. In Neo4J, procedures always access the
graph directly. They can not consume inputs from subqueries like in graphalg.
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User-defined operators [48] (UDO) have been proposed to address this very problem,
albeit in a relational database setting. The UDO framework lets users implement custom op-
erators that can be embedded at any position in the query. Inputs and outputs are produced
just like the native operators provided by the database. Custom operators, implemented in
C++, are compiled together with the rest of query, which allows for embedding with virtu-
ally zero overhead. The UDO solution is appealing because it offers both flexibility and very
high performance. There is also no need to implement a new language with an optimizing
compiler, as we have done for graphalg. An important downside of the UDO framework is
that since operators are written in C++ and are not sandboxed, a bug in a custom operator
can crash the database. It can also corrupt intermediate results of concurrent queries or inter-
nal data structures used by the database. Another downside is that the query planner does
not know the behavior of a custom operator, so it can not apply any optimizations to it. In
this regard, it is similar to our GraphBLAS backend.

8.2 Domain-specific Languages for Graph Algorithms
Oracle PGX [7], formerly Greenmarl [23], is a DSL for graph analytics. The language is
based on the vertex and edge set model. Like TigerGraph it has explicit accumulators, but it
is not as deeply integratedwith the database. While PGX executes its algorithms on the same
runtime as the query languagePGQL [43], both languages have separated compiler pipelines.
Algorithms and queries can thus be evaluated on the same dataset, but algorithms cannot be
embedded in queries like graphalg. PGX is most interesting to us because the design goals
are similar. PGX strives to be a language that is efficient yet easy to use, and safe to run inside
a database.

For similar reasons, the GraphIt [60] language is interesting to us. It has demonstrated
excellent performance on many graph algorithms, also compared to Greenmarl. The lan-
guage, based on the vertex and edge set model, stands out by separating edge processing
logic from graph traversal. This allows the compiler to optimize the traversal strategy based
on graph properties. For example, the GraphIt compiler can apply the push-pull optimiza-
tion automatically, which must be done manually in GraphBLAS [59]. We suspect there is
a significant overlap between the optimizations GraphIt performs and those employed by
a query planner. Future work may investigate to what extent such optimizations could be
automatically applied to graphalg.

8.3 Linear Algebra in Graph Databases
RedisGraph [9] is a graph database provided as a Redis module. It is of particular interest
to us because the database is built on top of the GraphBLAS library: graphs are stored as
matrices in the native GraphBLAS format, and queries are executed using standard Graph-
BLAS library calls. RedisGraph exposes only the Cypher interface to its users, so running
algorithms on it is not possible. However, the GraphBLAS backend could be easily adapted
to integrate with RedisGraph. Because the graph is already stored in the native GraphBLAS
format, it would fully eliminate the graph loading times observed in the AvantGraph integra-
tion. Unfortunately, RedisGraph is being phased out [27], so it is unlikely such an integration
will be attempted.

While we havemostly discussed implementations so far, there is also relevant research on
the theoretical expressiveness of linear algebra for use in graph databases. MATLANG [8]
is a formal language with linear algebra primitives and other common matrix operations.
The authors show that the basic version of MATLANG is equivalent to relational algebra
extended with arithmetic and aggregation. During the implementation of graphalg, whose
expressiveness subsumes that of basic MATLANG, we have indeed found that arithmetic
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and aggregation had to be added to AvantGraph to support it. While the extensions to MAT-
LANG presented in the original paper have no analog in our language, there is other work
extendingMATLANG to include loops [19], bringingMATLANGcloser to graphalg in terms
of expressive power. We hope that based on the work done on MATLANG, a more formal
definition of the expressiveness of graphalg can be established in the future.

8.4 Linear Algebra in Relational Databases
Linear algebra extensions to relational databases have been widely studied [45]. Given the
volume of related work on this topic, we restrict our review to systems designed for sparse
rather than dense matrices.

The first implementation of sparse matrices in a relational database system that we are
aware of is Sparse Relational Array Mapping [10] (SRAM). SRAM is integrated into Mon-
etDB/X100 [6]. SRAM shows many similarities with our Operators backend. For example,
sparse matrices are also represented as blocks with index columns and a value column. A
key difference is that SRAMdoes not provide linear algebra operations in the query language.
Instead, SRAM exposes more basic array manipulation operations, which can be combined
to implement e.g. matrix multiplication. The mapping to relational algebra is slightly more
complicated in SRAM because it adopts different semantics for entries in matrices without
an explicit value. In graphalg, such entries are simply omitted from the tuple stream, but in
SRAM they have an implicit default value. If used in a join, entrieswith the default valuemay
satisfy the join condition and thus need to be part of the output. As a result, the element-wise
product of two matrices requires only one join in graphalg, whereas in SRAM it requires a
union of 4 joins. SRAM supports persisting arrays to disk and indexing them, which Avant-
Graph/graphalg does not support yet.

Another more recent proposal to introduce linear algebra concepts in relation databases
is presented in [31]. The interface is quite different from SRAM (and graphalg). Instead of
placingmatrices at the level of tables, new column types are introduced for matrices and vec-
tor, so that matrices are stored inside tables. Additional functions to operate over the new
types, such as matrix multiplication, are provided. There are also conversion functions to
convert a table into a matrix, and the authors note that the system can also support hybrid
formats. For example, a matrix may be stored as a table of vectors if this makes the query
easier to express or more efficient to execute. Contrary to SRAM graphalg, vectors are al-
ways stored as dense arrays. Matrices are stored as a list of vectors, with consecutive empty
rows compressed using run-length encoding. Because matrices are stored as values in tables,
linear algebra operations are performed inside of projections, just like scalar arithmetic. Con-
sequently, the query optimizer does not perform any optimization on such operations. The
projection operator executes linear algebra expressions exactly as they were written, using a
dense linear algebra library.

8.5 MLIR for Linear Algebra and Databases
In this section, we present projects with a connection to our work that also use the MLIR
framework.

While originally designed for dense matrices, the MLIR tensor type has been extended
with support for sparse representations [4]. With these changes, it is possible to attach an
attribute to tensor types indicating that they are sparse. Because graphalg does notmix dense
and sparse tensor types, this new annotation is not relevant to our implementation. What
is relevant however is that the built-in linear algebra operations that come with MLIR have
been updated to support processing sparse matrices. Thanks to this effort, there is a clear
path towards compilation of graphalg programs to native code, with significantly reduced
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implementation effort. For the GraphBLAS backend, we still choose to use an interpreter, as
fully compiled programs are more difficult to debug, and execution time is dominated by
GraphBLAS library calls. Because AvantGraph does not compile its queries to native code, it
is also not a good fit for the operators backend.

Moving from MLIR infrastructure to tools built using MLIR, COMET [55] is a compiler
for sparse tensor algebra based on MLIR. With an extension to support semirings [21], it
is also useful for graph analytics. In a head-to-head comparison with LAGraph, COMET
demonstrates that full compilation offers significantly higher performance. COMET is also
interesting because it includes a domain-specific language to write algorithms in. It operates
at a similar abstraction level to graphalg, and before deciding to implement graphalg, we
considered using the COMET DSL instead. Unfortunately, it lacks support for control flow.
Asmentioned in [4], COMETpredates sparse tensor support inMLIR. It uses custom internal
dialects to handle sparse tensors rather than the new features in MLIR, which we fear may
hurt community adoption. If a fully compiled version of graphalg is ever built, we think
COMET will be a fantastic source of inspiration.

LingoDB [24] is a data processing system built on MLIR. LingoDB supports fully com-
piled execution of SQL queries, but unlike other such systems, it is designed to be maintain-
able and extensible. A SQL query is converted into MLIR directly after parsing and under-
goes multiple lowerings towards LLVM IR. It is then JIT-compiled and executed to produce
the query results. WhileAvantGraph is not a fully-compiled engine, andwemostly useMLIR
to represent IR which is not yet relational, we have found LingoDB a very useful source of
inspiration when developing the IPR dialect.

8.6 User-Friendly Interfaces for GraphBLAS
The GraphBLAS standard defines a C API for linear algebra operations. While powerful, the
API is not particularly ergonomic to use, owing to the limitations of the C language. To cre-
ate a more convenient interface to GraphBLAS, bindings to the high-level languages Python
and Julia have been developed [42]. Experiments done by the authors show that writing the
algorithm in a high-level language does not have a significant impact on the performance,
because the computationally expensive operations are handled by GraphBLAS. This is con-
sistent with our evaluation of the GraphBLAS backend.
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Chapter 9

Discussion

Before concluding this thesis, we discuss the limitations of our work, and how they may
be addressed in future work. Most of the limitations we identify are contingent only on
engineering effort, while some also require additional research.

9.1 Loading Time and Memory Consumption
Our current system has significant runtime overhead and high memory consumption be-
cause the full graph must be loaded into the main memory before it can be used in an al-
gorithm. The underlying cause is that the current on-disk graph storage format used by
AvantGraph is not well suited to graph analytics. AvantGraph currently stores edges as an
unordered list of source and target pairs. Most graph algorithms need fast access to the
neighbors of a vertex, which is not possible with the current on-disk representation. Both
backends are thus forced to read the entire graph and build a more efficient representation.

This problem is especially difficult to solve in the GraphBLAS backend. The GraphBLAS
library is designed for in-memory analytics and has no API for performing operations on
data that is not stored in its internal formats. It may be possible to extend it with support for
a disk-backed format, but since the implementations of the operations are tightly linked to
the representation, we expect it would require major changes throughout the code base.

For the operators backend, we are more optimistic. The only changes needed here to
operate over a disk-backed graph would be in the matrix probe operator. Work is currently
ongoing to migrate the on-disk storage into a format that resembles CSR. After this migra-
tion, the matrix probe operator can be changed to read directly from disk rather than an
in-memory CSR, virtually eliminating loading time.

9.2 In-place Aggregation in the Operators Backend
A common pattern in graph algorithms is to iteratively populate or aggregate into a vector.
The GraphBLAS backend can perform such operations efficiently in place. On the operators
backend, however, all existing entries must be fed into a union operator with the new values,
which is unnecessarily costly. Some systems, like TigerGraph [17], support explicit accumu-
lators to solve this problem. In future work, we hope to investigate automatically inserting
accumulators as a compiler optimization.

9.3 Missing Functionality in the Operators Backend
The operators backend does not currently have feature parity with the GraphBLAS backend.
Because graphalg is inspired by GraphBLAS, many operations have a direct mapping to the
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GraphBLAS API. On the operators backend, however, we have to do significantly more work
to transform the program into equivalent IPR. In some cases, we have also had to implement
additional functionality in IPR and the runtime. As a result, adding features to the operators
backend takes more effort. We do believe the effort is worthwhile though, since the benefit
is better integration with the database. We expect that future work will focus mainly on the
operators backend, and this feature parity will be achieved.

9.3.1 Conditional branching

While the operators backend supports loops with an early break condition, we have not im-
plemented support for conditional branching (if statements). All programs from the GAP
benchmark suite can be expressed without conditional branching, but we have had to sim-
plify some programs to eliminate branching, leading to less efficient implementations of
those algorithms. Branching is non-trivial to implement in the AvantGraph runtime because
of the push-based evaluation model (see Section 2.3). In the push-based model, operators
do not wait until they are requested to produce outputs, but rather they proactively produce
results and push them to the operators that depend on them. A naive implementation of an
‘if’ operator is shown in Figure 9.1.

if C
then A
else B

C A B

Figure 9.1: Naive execution plan with a conditional branch.

The desired semantics of the if operator is thatC is evaluated first, after which eitherA or
B is evaluated, but not both. In a push-basedmodel however,C,A andBwill all be evaluated
concurrently, resulting in speculative execution of both branches. While correct behaviour,
speculative execution can waste resources. AvantGraph also does not have existing support
for canceling the execution of operators, which we would need to avoid completing a branch
whose results are no longer needed. These problems are not fundamental, but they didmake
the cost of implementing an if operator too high for this project.

9.3.2 Multiple Return Values from Loops

IPR is designed to represent trees of operators that each return a single stream of tuples.
This conflicts with for loops in graphalg, which may have multiple result values. Initially we
attempted to add support formultiple return values from expressions specifically for this use
case. However, we have found that the consumers of IPR rely on the single result property,
particularly the query optimizer, so we have had to abandon this approach. To maintain the
tree structure in the presence of loops, we have found it necessary to duplicate loops, creating
a copy for each result value. In the programs we have tested, loops rarely have more than a
single result value, so this approach is sufficient. We hypothesize that it would be possible to
fuse them again in the execution plan generation step after all optimization of IPR has been
performed. Implementing this is left as future work.
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9.3.3 No left/anti-join
AvantGraph did not support the execution of anti-joins when we started this project. With-
out an anti-join, it is impossible to express complemented masks, a necessary primitive to
implement e.g. Breadth-First Search. We estimated that implementing a fully generic anti-
join for tuple streams with an arbitrary amount of columns and data types would require
significant effort. Therefore, we implemented limited support into the custom semiring op-
erator. This is enough for our benchmark programs, but more work is required to support
complemented masks independent of semiring operations.

9.3.4 Unsorted base table data
As mentioned in Section 6.8, our current solution requires that the edges of the graph are
stored on disk in sorted order. Other components of AvantGraph do not rely on this guaran-
tee, and the AvantGraph data importer makes no effort to maintain it. Our current solution
is to manually sort the input graph before inserting it. Since the AvantGraph team is already
working on a new on-disk format that will guarantee sorted order, we feel that this approach
is sufficient until the new format is ready.

9.4 Efficiently Expressing More Algorithms
Our benchmark setup includes only six algorithms, four of which we can currently express
efficiently. As we have established in Section 7.4, this is not a fundamental limitation of
graphalg, but rather it is a matter of careful language design and compiler engineering. Be-
sides betweenness centrality and connected components, in future work, we would like to
investigate community detection using the Louvain [5] and Infomap [44] methods1.

9.5 Comparison with Other Graph Databases
We would have liked to compare our system to other graph databases with support for user-
defined algorithms. Unfortunately, the only systems that support this, TigerGraph [17] and
Oracle PGX [7], are both commercial and not freely available for evaluation. Even among
relational databases, there are no obvious candidates to compare to. We believe Umbra with
its user-defined operators [48] would be the best fit, but it is not publicly available either. We
hope that in the context of a conference or journal paper, it will be possible to obtain one of
these systems for evaluation.
In summary, most of the current limitations of our compiler can be addressedwith additional
engineering effort. For in-place aggregation and returning multiple results from loops, we
expect that additional research is needed as well. In the next chapter, we conclude the thesis.

1The Louvain and Infomap methods were highlighted as important algorithms by an industry partner.
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Chapter 10

Conclusion

Our goal for this project was to increase the programmability of graph databases by adding
support for user-defined graph algorithms that can be embedded into queries.

We have developed graphalg, a domain-specific language for writing graph algorithms
in the language of linear algebra. Our graphalg compiler, integrated into the AvantGraph
graphdatabase, includes twobackends. The first is theGraphBLASbackend,which compiles
graphalg into GraphBLAS library calls and executes them in an interpreter. The operators
backend adopts a radically different approach, instead compiling graphalg into the internal
IR of the database, where it is optimized and executed as one with the query.

Graphalg is a high-level language with automatic memory management and paralleliza-
tion. Based on linear algebra, we believe it is easy to learn and use. In exchange for this ease
of programming, graphalg sacrifices little in terms of performance. We have shown that it
is nearly as efficient as an optimized and fully compiled C implementation of the same algo-
rithm, thanks to the compiler optimizations we have implemented. Graphalg is also a safe
language to embed in a database, thanks to its memory safety and guaranteed termination.
The language is expressive enough for a variety of applications, which we have shown by
implementing graphalg versions of all algorithms included in the GAP benchmark suite.

Today, graph analytics is usually performed with specialized tools. Even if the data is
originally stored in a graph database, it is exported and processed in an external tool. As
our work demonstrates, existing graph databases can be adapted to support the efficient
execution of analytics workloads. Using our system, a graph database can offer the same
functionality as an external graph analytics framework with a more convenient interface and
excellent performance.
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Acronyms

AST abstract syntax tree

CPU central processing unit

CSE common subexpression elimination

CSR compressed sparse row

DSL domain-specific language

IR intermediate representation

MLIR multi-level intermediate representation

SIMD single instruction, multiple data

SSA single static assignment
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Appendix A

Graphalg Implementations of Graph
Algorithms

A.1 Benchmark Programs for Interpreter Overhead
The programs listed in this section are equivalent to the original LAGraph implementations
(without SuiteSparse extensions).

func TriangleCount(graph: Matrix<bool>) -> int {
L = select(tril, graph, -1);
U = select(triu, graph, 1);
C<L, struct> = L (+.one) U.T;

return reduce(+, C);
}

// SSSP with Delta stepping
func SingleSourceShortestPath(

graph: Matrix<int>,
source: index,
delta: int) -> Vector<int> {

// Tentative shortest path length
t = Vector<int>(graph.nrows);
t[:] = INT64_MAX;
t[source] = 0;

tmasked = Vector<int>(graph.nrows);
tReq = Vector<int>(graph.nrows);
tless = Vector<bool>(graph.nrows);

reach = Vector<int>(graph.nrows);
reach[source] = true;

s = Vector<int>(graph.nrows);
s[source] = true;

AL = select(<=, graph, delta);
AH = select(>, graph, delta);

// Used to partially clear other vectors
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empty = Vector<int>(graph.nrows);

// while t >= step * Delta not empty
for step in 0:graph.nrows until reach.nvals == 0 {

clear s;

uBound = (step + 1) * delta;

clear tmasked;
tmasked<reach> = t;
tmasked = select(<, tmasked, uBound);

done = tmasked.nvals == 0;
for i in 0:graph.nrows until done {

tReq = tmasked (min.+) AL;
s<tmasked, struct>[:] = true;
done = tReq.nvals == 0;
if !done {

// Using set intersection
tless = tReq .< t;

tless = select(!=, tless, 0);
done = tless.nvals == 0;
if !done {

reach<tless, struct>[:] = true;

clear tmasked;
tmasked<tless, struct> = select(<, tReq, uBound);

t<tless, struct> = tReq;
done = tmasked.nvals == 0;

}
}

}

clear tmasked;
tmasked<s, struct> = t;

tReq = tmasked (min.+) AH;

// Using set intersection
tless = tReq .< t;

t<tless> = tReq;

reach<tless>[:] = true;

reach<s, struct> = empty;
}

return t;
}
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func PageRank(graph: Matrix<real>,
graph_T: Matrix<real>,
d_out: Vector<int>,
damping: real,
tol: real,
itermax: int) -> Vector<real> {

n = graph.nrows;
teleport = (1 - damping) / n;
rdiff = 1.0;

t = Vector<real>(n);
r = Vector<real>(n);
w = Vector<real>(n);

r[:] = 1.0 / n;

d = apply(/, d_out, damping);

d1 = Vector<real>(n);
d1[:] = 1.0 / damping;
d = add(max, d1, d);

for i in 0:itermax until rdiff <= tol {
swap r t;

w = t ./ d;

r[:] = teleport;
r += graph_T (+.second) w;

t -= r;
t = apply(abs, t);
rdiff = reduce(+, t);

}

return r;
}

// BFS with push-pull optimization
func BreadthFirstSearch(

graph: Matrix<bool>,
graph_t: Matrix<bool>,
out_degree: Vector<int>,
source: index) -> Vector<int> {

n = graph.nrows;

pi = Vector<int>(n);
pi[source] = int(source);
q = Vector<int>(n);
q[source] = int(source);

w = Vector<int>(n);
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nq = index(1);
alpha = 8.0;
beta1 = 8.0;
beta2 = 512.0;

n_over_beta1 = int(n / beta1);
n_over_beta2 = int(n / beta2);

do_push = true;
last_nq = index(0);
edges_unexplored = graph.nvals;
any_pull = false;

push_pull = true;
nvisited = 1;
for k in 1:n until nvisited >= n {

if push_pull {
if do_push {

growing = nq > last_nq;
switch_to_pull = false;
if edges_unexplored < n {

push_pull = false;
} else if any_pull {

switch_to_pull = growing && (nq > n_over_beta1);
} else {

w<q, replace, struct> = out_degree;
edges_in_frontier = reduce(+, w);
switch_to_pull = growing

&& (edges_in_frontier > (edges_unexplored / alpha));
}
if switch_to_pull {

do_push = false;
}

} else {
shrinking = nq < last_nq;
if shrinking && (nq <= n_over_beta2) {

do_push = true;
}

}
any_pull = any_pull || (!do_push);

}

if do_push {
q<!pi, replace, struct> = q (any.secondi) graph;

} else {
q<!pi, replace, struct> = graph_t (any.secondi) q;

}

last_nq = nq;
nq = q.nvals;
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pi<q, struct> = q;

nvisited = nvisited + nq;
}

return pi;
}

A.2 Benchmark Programs for Comparing Backends
The TriangleCount the PageRank implementations here match the ones presented in Sec-
tion A.1. The only difference is that we compute the transpose, out-degree etc. inside the al-
gorithm rather than passing them as parameters, since the database does not cache them. Sin-
gleSourceShortestPath and BreadthFirstSearch are simplified to remove conditional branch-
ing.
call(

"
func TriangleCount(graph: Matrix<bool>) -> int {

L = select(tril, graph, -1);
U = select(triu, graph, 1);
C<L, struct> = L (+.one) U.T;

return reduce(+, C);
}

",
(%val) = "TriangleCount" (

matrix(
projection(

access(%0, "friend"), {
%row = src(%0),
%col = trg(%0),
%val = %0.weight,

}
),
%row, %col, %val),

),
)

call(
"

func SSSP(graph: Matrix<int>, source: index) -> Vector<int> {
v = Vector<int>(graph.nrows);
v[source] = 0;

for i in 0:300 {
v min= v (min.+) graph;

}

return v;
}

",
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(%row, %val) = "SSSP" (
matrix(

projection(
access(%0, "friend"), {

%row = src(%0),
%col = trg(%0),
%val = %0.weight,

}
),
%row, %col, %val),

v:START,
),

)

call(
"

func PageRank(graph: Matrix<bool>,
damping: real,
tol: real,
itermax: int) -> Vector<real> {

cnt = apply(one, graph);
d_out = reduceRows(+, cnt);

n = graph.nrows;
teleport = (1 - damping) / n;
rdiff = 1.0;

t = Vector<real>(n);
r = Vector<real>(n);
w = Vector<real>(n);

r[:] = 1.0 / n;

d = apply(/, d_out, damping);

d1 = Vector<real>(n);
d1[:] = 1.0 / damping;
d = add(max, d1, d);

for i in 0:itermax until rdiff <= tol {
swap r t;

w = t ./ d;

r[:] = teleport;
r += graph.T (+.second) w;

t -= r;
t = apply(abs, t);
rdiff = reduce(+, t);

}
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return r;
}

",
(%row, %val) = "PageRank" (

matrix(
projection(

access(%0, "friend"), {
%row = src(%0),
%col = trg(%0),
%val = %0.weight,

}
),
%row, %col, %val),

0.85,
0.0001,
100

),
)

call(
"

func BreadthFirstSearch(graph: Matrix<bool>, source: index) -> Vector<int> {
n = graph.nrows;
out_degree = reduceRows(+, graph);

pi = Vector<int>(n);
pi[source] = int(source);
q = Vector<int>(n);
q[source] = int(source);

nq = index(1);

nvisited = 1;
for k in 1:n until (nq == 0) || (nvisited >= n) {

q<!pi, replace, struct> = q (any.secondi) graph;

nq = q.nvals;

pi<q, struct> = q;

nvisited = nvisited + nq;
}

return pi;
}

",
(%row,%val) = "BreadthFirstSearch" (

matrix(
projection(

access(%0, "friend"), {
%row = src(%0),
%col = trg(%0),
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%val = %0.weight,
}

),
%row, %col, %val),
v:START,

),
)

A.3 Implementations of Betweenness Centrality and Connected
Components

The implementation of Connected Components is based on the simple component-at-a-time
algorithm. For Betweenness Centrality we base our implementation on LAGraph, but sub-
stitute C arrays for submatrix indexing.

func ConnectedComponents(graph: Matrix<bool>) -> Vector<int> {
label = Vector<int>(graph.nrows);
label[:] = 0;
reach = Vector<bool>(graph.nrows);
front = Vector<bool>(graph.nrows);

cid = 1;
unlabeled = int(graph.nrows);
vid = index(0);
for v in 0:graph.nrows until unlabeled == 0 {

vid = v;
if label[vid] == 0 {

// Vertex is not part of a known component.
// Find all nodes reachable from this vertex (the new component).
clear reach;
reach[vid] = true;
clear front;
front[vid] = true;
for unused in 0:graph.nrows until (front.nvals == 0) || (reach.nvals == unlabeled) {

front<!reach, replace, struct> = front (any.one) graph;
reach<front, struct> = true;

}
// Label all the vertices we found
label<reach, struct>[:] = cid;
unlabeled = unlabeled - reach.nvals;
cid = cid + 1;

}
}

return label;
}

func Betweenness(
graph: Matrix<bool>,
graph_t: Matrix<bool>,
sources: Vector<int>) -> Vector<real> {
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n = graph.nrows;
ns = sources.nrows;

paths = Matrix<real>(ns, n);
frontier = Matrix<real>(ns, n);

for i in 0:ns {
src = sources[i];
paths[i, src] = 1.0;
frontier[i, src] = 1.0;

}

frontier<!paths, replace, struct> = frontier (+.first) graph;
//S = [Matrix<bool>(ns, n); n+1];
S = Matrix<bool>(ns*(n+1), n);
Sd = Matrix<bool>(ns, n);

// BFS stage
last_was_pull = false;
frontier_size = frontier.nvals;
depth = index(0);
for d in 0:n until frontier_size <= 0 {

// Sd = S[depth]
//Sd = S[depth*ns:(depth+1)*ns, :];
Sd<frontier, replace, struct> = true;
// S[depth] = Sd;
S[depth*ns:(depth+1)*ns] = Sd;

paths += frontier;

pull_min_density = 0.10;
if last_was_pull {

pull_min_density = 0.06;
}
frontier_density = real(int(frontier_size)) / (ns*n);
do_pull = frontier_density > pull_min_density;

if do_pull {
frontier<!paths, replace, struct> = frontier (+.first) graph_t.T;

} else {
frontier<!paths, replace, struct> = frontier (+.first) graph;

}

last_was_pull = do_pull;
frontier_size = frontier.nvals;
depth = index(depth + 1);

}

// Betweenness centrality phase
bc_update = Matrix<real>(ns, n);
bc_update[:, :] = 1;
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W = Matrix<real>(ns, n);
for d in 1:depth {

i = depth-d;
// Sd = S[i]
Sd = S[i*ns:(i+1)*ns, :];
W<Sd, replace, struct> = bc_update ./ paths;

wsize = W.nvals;
// Sd = S[i-1]
Sd = S[(i-1)*ns:i*ns, :];
ssize = Sd.nvals;
w_density = real(int(wsize)) / (ns*n);
w_to_s_ratio = real(int(wsize)) / ssize;
do_pull = ((w_density > 0.1) && (w_to_s_ratio > 1))

|| ((w_density > 0.01) && (w_to_s_ratio > 10));

if do_pull {
W<Sd, replace, struct> = W (+.first) graph.T;

} else {
W<Sd, replace, struct> = W (+.first) graph_t;

}

bc_update += W .* paths;
}

centrality = Vector<real>(n);
centrality[:] = -int(ns);
centrality += reduceRows(+, bc_update.T);
return centrality;

}
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